3d multi-bodies: Fitting sets of plausible 3d human models to ambiguous image data

B Biggs, D Novotny, S Ehrhardt, H Joo… - Advances in neural …, 2020 - proceedings.neurips.cc
Advances in neural information processing systems, 2020proceedings.neurips.cc
We consider the problem of obtaining dense 3D reconstructions of deformable objects from
single and partially occluded views. In such cases, the visual evidence is usually insufficient
to identify a 3D reconstruction uniquely, so we aim at recovering several plausible
reconstructions compatible with the input data. We suggest that ambiguities can be modeled
more effectively by parametrizing the possible body shapes and poses via a suitable 3D
model, such as SMPL for humans. We propose to learn a multi-hypothesis neural network …
Abstract
We consider the problem of obtaining dense 3D reconstructions of deformable objects from single and partially occluded views. In such cases, the visual evidence is usually insufficient to identify a 3D reconstruction uniquely, so we aim at recovering several plausible reconstructions compatible with the input data. We suggest that ambiguities can be modeled more effectively by parametrizing the possible body shapes and poses via a suitable 3D model, such as SMPL for humans. We propose to learn a multi-hypothesis neural network regressor using a best-of-M loss, where each of the M hypotheses is constrained to lie on a manifold of plausible human poses by means of a generative model. We show that our method outperforms alternative approaches in ambiguous pose recovery on standard benchmarks for 3D humans, and in heavily occluded versions of these benchmarks.
proceedings.neurips.cc