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Greg OMAN

UNIFYING SOME NOTIONS OF INFINITY

IN ZC AND ZF

A b s t r a c t. Let ZC − I (respectively, ZF − I) be the theory

obtained by deleting the axiom of infinity from the usual list of

axioms for Zermelo set theory with choice (respectively, the usual

list of axioms for Zermelo-Fraenkel set theory). In this note, we

present a collection of sentences ∃xϕ(x) for which (ZC − I) +

∃xϕ(x) (respectively, (ZF −I) + ∃xϕ(x)) proves the existence of

an infinite set.

.1 Introduction

Many set-theoretic axioms postulating the existence of an infinite set have

been discovered during the 20th century; Zermelo’s 1908 axiom ([26]) is as

follows:
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Axiom of Infinity 1.1 (Zermelo). There exists a set Y with the fol-

lowing properties:

1. ∅ ∈ Y , and

2. for all y ∈ Y , also {y} ∈ Y .

It is easy to construct a model of Peano arithmetic (PA) via this axiom

(and the remaining axioms of Zermelo set theory). To wit, suppose that Y

satisfies (1) and (2) above, and let X be the intersection of all subsets of

Y which contain ∅ and are closed under the function f : Y → Y defined

by f(y) := {y}. It is routine to show that the triple (X, f,∅) is a Peano

system1.

Years later, von Neumann proposed a different axiom. Contemporarily,

von Neumann’s axiom has usurped Zermelo’s in the standard axiomatiza-

tion of ZFC.

Axiom of Infinity 1.2 (von Neumann). There exists a set I such that

1. ∅ ∈ I, and

2. for every x ∈ I, also x ∪ {x} := x+ ∈ I.

Assuming Axiom of Infinity 2, one obtains the least infinite ordinal ω by

taking the intersection of the inductive sets (more formally, by applying

separation). Moreover, it is easy to show that (ω, S,∅) is a Peano system,

where S : ω → ω is defined by S(n) := n+.

It is clear that the sets postulated by the above axioms are infinite in

some sense. Note also that, assuming either of the above axioms of infinity,

one can construct an infinite set in ZF for which the defining properties (1)

and (2) of the axiom fail. For example, consider a set Y as in the statement

of Zermelo’s axiom. Pick any a /∈ Y , and set Y ′ := {{y, a} : y ∈ Y }. An

analogous construction applies if we assume von Neumann’s axiom. Thus,

there is a sense in which Axioms of Infinity 1 and 2 capture something a bit

more than simply “infinitude.” Further, notice that the inductive property

of a Peano system is, in a sense, built into the above axioms: by taking the

1 That is, f is one-to-one, ∅ := e /∈ f [X], and any set Z ⊆ X which contains e and is

closed under f exhausts X. This definition is due to Guiseppe Peano, who proposed it

as an axiomatic foundation for number theory in 1889 ([17]).
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intersection of the sets satisfying Axiom of Infinity 1 (respectively, Axiom

of Infinity 2), one immediately obtains a Peano system.

Other infinity axioms been proposed which one might expect to (in-

formally) “capture” the essence of infinity (and nothing more) within the

context of set theory2. Possibly the two best-known are the following:

Definition 1.3 (Dedekind-Infinite Set). A set X is Dedekind-infinite if

and only if there exists a bijection between X and a proper subset of itself.

Definition 1.4 (Tarski-Infinite Set). A set X is Tarski-infinite if and

only if there exists a nonempty subset S ⊆ P(X) such that for every A ∈ S,

there exists B ∈ S with A ( B.

A case can be made to support the claim that the existence of a Tarski-

infinite set is the most natural candidate to be adopted as an infinity axiom

(that is, intuitively, “Tarski-infinite” is the correct formalization of “infi-

nite”). An informal, heuristic argument follows. If X is infinite, then there

is some x1 ∈ X. Similarly, there exists x2 ∈ X\{x1}. Now choose x3 ∈
X\{x1, x2}, and so on. Then we have {x1} ( {x1, x2} ( {x1, x2, x3} ( · · · ,
and we see that X is Tarski-infinite. Conversely, it is clear that any Tarski-

infinite set is, in some sense, infinite.

Many papers have been written over the years studying various notions

of finiteness and infinitude in fragments of ZFC and other set theories.

For example, ZF proves that every Dedekind-infinite set is Tarski-infinite.

Moreover, it can be shown in ZFC that a set is Tarski-infinite if and only if

it is Dedekind-infinite. However, ZF alone is not strong enough to establish

this equivalence ([18], p. 195), nor is ZF strong enough to prove that every

infinite set is Tarski-infinite. In [6], the author defines and studies what he

calls a T -notion of infinity, where T is a set theory (including an axiom of

infinity) which is at least as strong as ZF. We refer the reader to [3]–[5],

[16], [19], [21], and [22] for additional investigations of the finite and infinite

in various set theories. Now consider replacing an axiom of infinity of ZFC

with its negation. One then obtains so-called finite set theory. This theory

is also well-studied in the literature; see [1], [2], [7], [11], [13], [20], and [24].

Our objective in this article is a bit different. We remove the infinity

axiom from ZC (respectively, ZF) but do not replace it with its negation.

2 The previous paragraph shows that neither Zermelo’s axiom nor von Neumann’s

axiom does this, but that was not their purpose. The purpose of their axioms was simply

to postulate the existence of some set that one would intuitively regard as being infinite.
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Instead, we consider a large collection of sentences which, along with the

other axioms of ZC minus infinity (respectively, ZF minus infinity), imply

the existence of an infinite set (of course, we must make precise what we

mean by “infinite set”). More precisely, we initiate an investigation of

Problems 1 and 2 below.

Problem 1.5. Let ZC−I denote Zermelo set theory with choice minus

the axiom of infinity (extensionality, pairing, separation, union, power set,

and choice remain). Study the sentences ∃xϕ(x) for which (ZC − I) +

∃xϕ(x) |=“There exists a Dedekind (Tarski) infinite set.”

Problem 1.6. Study an analogous problem in the theory ZF − I.

Since the axioms of choice, foundation, and replacement play a non-

trivial role in this paper, we pause to state these axioms explicitly for the

reader.

Axiom 1.7 (Axiom of Choice). If X is a set of non-empty sets, then

X has a choice function. Explicitly, there is a function F with domain X
such that F (X) ∈ X for all X ∈ X .

Axiom 1.8 (Axiom of Foundation (Regularity)). For every non-empty

set X, there exists some m ∈ X such that X ∩m = ∅.

Axiom 1.9 (Axiom Schema of Replacement). Let φ be any formula in

the language of ZFC whose free variables are among x, y,A,w1, . . . , wn and

let B be a variable distinct from the free variables of φ. Then

∀A∀w1∀w2 . . . ∀wn
[
∀x(x ∈ A⇒ ∃!y φ)⇒ ∃B ∀x

(
x ∈ A⇒ ∃y(y ∈ B∧φ)

)]
.

We conclude the introduction by mentioning that the results of this

paper are not overly technical in nature. A basic familiarity with axiomatic

set theory is sufficient to digest the contents of this note.

.2 Notions of Infinity in ZC − I

We begin by reminding the reader that the theory ZC is axomatized by

the usual axioms of ZFC minus the axioms of foundation and replacement.

Next, we state a new definition which will play a prominent role throughout

this article.
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Definition 2.1. Let ϕ(x) be a formula in the language of set theory

(in which only x occurs free). Say that ϕ(x) is K-finite (the K is for

Kuratowski; see Example 2.10) provided the following is a theorem of ZC−
I:

ϕ(∅) ∧ ∀x∀y(ϕ(x)⇒ ϕ(x ∪ {y})).

Informally, the motivation for the above definition is this: ϕ(x) is K-finite

if ZC − I |= ϕ(s) for every finite set s.

There is an abundance of natural K-finite formulas; we present a sam-

pling below. As the proofs that the formulas are K-finite are all straight-

forward, we omit them. The reader is referred to [14], [15], [23], and [25]

for further reading on various notions of finiteness in set theory.

Example 2.2. “Every linear order on x is a well-order.”

Example 2.3. “Any two well-orders on x are isomorphic.”

Example 2.4. “For all y if y /∈ x, then there is no surjection from x

onto x ∪ {y}.”

Example 2.5. “If x has at least two elements, then there is no surjec-

tion of x onto x× x.”

Example 2.6. “If x 6= ∅, then x contains a maximal element with

respect to every partial order on x.”

Example 2.7. (Stäckel-finiteness) “x can be given a well-order such

that the opposite order also well-orders x.”

Example 2.8. (Dedekind-finiteness) “There is no bijection between x

and a proper subset of itself.”

Example 2.9. (Tarski-finiteness) “Every nonempty subset s ⊆ P(x)

has a ⊆-maximal element.”

Example 2.10. (Kuratowski-finiteness) “For every y ⊆ P(x): if y

satisfies

1. ∅ ∈ y, and

2. for all z ∈ P(x) and t ∈ x: if z ∈ y, then z ∪ {t} ∈ y,

then x ∈ y.”
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Remark 2.11. It is straightforward to check that neither choice nor

foundation is needed in the proofs of the K-finiteness of the above formulas.

One of the fundamental theorems of ZC − I of which we shall shortly

make use is the Well-Ordering Theorem. It is well-known that under ZF,

the Well-Ordering Theorem is an equivalent of the axiom of choice. The

standard proof of the Well-Ordering Theorem from the axiom of choice em-

ploys Hartogs’ Lemma: for every set X, there is an ordinal α which cannot

be mapped injectively into X. One then applies transfinite recursion to

obtain a bijection between X and some ordinal β ≤ α; a well-order on X is

easily obtained via this bijection. Now, the usual proof of Hartogs’ Lemma

invokes the axiom schema of replacement. In the absence of replacement,

there is a work-around. The following result is known (perhaps not well-

known) and is essentially Zermelo’s original proof of his then-controversial

Well-Ordering Theorem. We present a sketch of the proof (which does not

require the axioms of infinity, foundation, or replacement) which appears

on p. 13 of [10].

Lemma 2.12 (Zermelo). ZC − I |= every set can be well-ordered.

Sketch of Proof. Let X be a nonempty set, and let γ be a choice

function for P(X)\{∅}. Call a subset Y ⊆ X a γ-set if there is a well-order

≤Y of Y such that

for every a ∈ Y : γ({z|z /∈ Y or a ≤Y z}) = a.

Observe that non-empty γ-sets exist: let a := γ(X) and set Y := {a}.
Then it is immediate that Y is a γ-set. Now, it can be shown that if Y is a

γ-set with well-order ≤Y and Z is a γ-set with well-order ≤Z , then Y ⊆ Z
and ≤Z is an extension of ≤Y or vice-versa. One then takes the union of

the γ-sets and shows that this union is a γ-set which exhausts X. 2

We now present the main result of this section.

Theorem 2.13. Suppose that ϕ(x) is a K-finite formula. Then (ZC−
I) + ∃x¬ϕ(x) |=“There exists a Dedekind (Tarski) infinite set.”3

3 Of course, there are many K-finite formulas ϕ(x) for which (ZC − I) + ∃x¬ϕ(x)

is inconsistent (for example, take ϕ(x) to be x = x), in which case the assertion of the

theorem is trivial.
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Proof. (1) We assume that ϕ(x) is K-finite and consider the theory

(ZC − I) + ∃x¬ϕ(x). Let Y be a set such that ¬ϕ(Y ), and let ≤ be a

well-order on Y . Observe that by definition of “K-finite formula,” Y is not

empty. For y ∈ Y , we let seg(y) := {y′ ∈ Y : y′ < y} and define S : Y → Y

as follows:

S(y) =

{
min({y′ : y < y′}) if {y′ : y < y′} 6= ∅, and

y otherwise.

We consider two cases:

Case 1. ϕ(seg(y)) for every y ∈ Y . In this case, we claim that Y does

not possess a maximal element with respect to ≤. Indeed, suppose such

a y0 exists. Then Y = seg(y0) ∪ {y0}. But since ϕ(seg(y0)) and because

ϕ(x) is K-finite, it follows that ϕ(seg(y0) ∪ {y0}), that is, ϕ(Y ). This

contradicts ¬ϕ(Y ). Now let e be the ≤-minimal element of Y . It is clear

that S : Y → Y \{e} is an injection. Thus Y is Dedekind-infinite. Moreover,

{seg(y) : y ∈ Y } ⊆ P(Y ) shows that Y is Tarski-infinite as well.

Case 2. ¬ϕ(seg(y)) holds for some y ∈ Y . Let y0 ∈ Y be least such that

¬ϕ(seg(y0)). Because ϕ(∅), y0 is not the ≤-least element of Y . We claim

that if y < y0, then there exists z such that y < z < y0. Indeed, suppose

there is y ∈ Y with y < y0, yet there is no z with y < z < y0. Then

seg(y0) = seg(y) ∪ {y}. By minimality of y0, we see that ϕ(seg(y)). As

ϕ(x) is K-finite, also ϕ(seg(y) ∪ {y}). But then ϕ(seg(y0)), and we have

reached a contradiction. Now the argument presented in Case 1 shows that

seg(y0) is Dedekind and Tarski-infinite. The proof is complete. 2

Corollary 2.14. If ϕ(x) is K-finite, then (ZC−I)+∃x¬ϕ(x) |=“There

exists a Peano system.”

Proof. By Theorem 2.13, it suffices to prove that (ZC − I)+“There

exists a Dedekind-infinite set”|=“There exists a Peano system.” Toward this

end, suppose that D is Dedekind-infinite, and let f : D → D′ be a bijection

of D with a proper subset D′ of D. Now choose any e ∈ D\D′, and let

X :=
⋂
{Y ⊆ D : e ∈ Y and Y is closed under f}. It is patent that (X, f, e)

is a Peano system. 2
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.3 Notions of Infinity in ZF − I

We continue the investigation initiated in the previous section, but we drop

the axiom of choice. In its place, we add the axioms of replacement and

foundation (regularity), that is, we consider the theory ZF −I of Zermelo-

Fraenkel set theory without choice or infinity.

We begin with a couple of observations. First, the standard proof of the

Transfinite Recursion Theorem invokes neither choice nor infinity (see the

text [8] for the precise formulation of the Transfinite Recursion Theorem

in ZFC and its proof). Thus:

Lemma 3.1. ZF − I |=“the Transfinite Recursion Theorem.”

Armed with the Transfinite Recursion Theorem, we may define the sets Vα
of the cumulative hierarchy as usual. Further, foundation and replacement

yield

Lemma 3.2. ZF −I |=“Every set is a member of Vα for some ordinal

α.”

Recall from Example 2.9 that a set x is Tarski-finite (henceforth ab-

breviated T -finite) if and only if every nonempty subset of P(x) has a

⊆-maximal element. Let us agree to call an ordinal α a natural number if

and only if α is a T -finite set4.

We now prove a trivial but useful lemma (the lemma is well-known in

ZFC, but it holds even if there is no set containing all natural numbers;

this is known also). We include the easy proof for completeness.

Lemma 3.3. ZF − I proves the following:

1. 0 := ∅ is a natural number.

2. If n is a natural number, so is n+ 1 := n ∪ {n}.

3. If n is a natural number and x < n, then x is a natural number.

4 This is a common definition of “natural number” in the absence of an infinity axiom.

Another popular definition is as follows: an ordinal number α is a natural number if and

only if for every ordinal β ≤ α, either β = ∅ or β is a successor ordinal. It is not hard

to show that these definitions are equivalent in ZF − I; see p. 80 of [12].
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4. (Induction Principle) Suppose that ϕ(x) is a formula such that ϕ(0)

and for every natural number n: if ϕ(n), then ϕ(n+ 1). Then ϕ(m)

for every natural number m.

Proof. Items (1) and (2) follow immediately by definition of “natural

number,” Example 2.9, and Remark 2.11. Assertion (3) is easily deduced

from the fact that every ordinal is transitive and any subset of a T -finite set

is T -finite (this is trivial to verify). Finally, suppose that ϕ(x) is a formula

such that ϕ(0) and for every natural number n: if ϕ(n), then ϕ(n + 1).

Suppose by way of contradiction that there is a natural number m such

that ¬ϕ(m). We may assume that m is the least such natural number.

Since ϕ(0), we have m 6= 0. Let n < m be arbitrary. Then (3) implies that

n is a natural number. The minimality of m yields ϕ(n). But then also

ϕ(n+ 1), by assumption. Since ¬ϕ(m), we conclude that n+ 1 < m. Now

observe that m is a nonempty subset of P(m), and for every i ∈ m, both

i+ 1 ∈ m and i ( i+ 1. But then m is not T -finite, a contradiction. This

contradiction completes the argument. 2

Next, we present another new definition.

Definition 3.4. Let ϕ(x) be a formula. Say that ϕ(x) is a Vω-formula

provided the following is a theorem of ZF − I:

∀x∀y((y is a natural number ∧ x ∈ Vy)⇒ ϕ(x)).

In what follows, “ω exists” abbreviates the sentence, “There exists a set

to which every natural number belongs.” From such a set, one can extract

the usual ordinal ω by separation.

Proposition 3.5. Let ϕ(x) be a Vω-formula. Then

(ZF − I) + ∃x¬ϕ(x) |=“ω exists.”

Proof. We let ϕ(x) be a Vω-formula. Recall from Lemma 3.2 that

ZF − I |=“Every set is a member of Vα for some ordinal α.” As ϕ(x) is

a Vω-formula, we see that (ZF − I) + ∃x¬ϕ(x) |=“There exists an ordinal

α which is not a natural number.” The class of ordinal numbers is linearly

ordered (which can be proved in ZF − I; cf. [9]). This fact along with (3)

of Lemma 3.3 implies that every natural number belongs to α. 2

Ultimately, we shall establish an analog of Theorem 2.13 in the theory

ZF − I. First we prove a lemma.
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Lemma 3.6. ZF − I proves each of the following:

1. Every subset of a natural number is equinumerous with a natural num-

ber.

2. For all natural numbers n: if x and y are sets both of which are

equinumerous with n, then x∪y is equinumerous with a natural num-

ber.

3. For all natural numbers n: if x is a set equinumerous with n, then

P(x) is equinumerous with a natural number.

Sketch of proof. We work in the theory ZF − I.

(1) Easy induction.

(2) We induct on n, the case n = 0 being trivial. Assume the claim

holds for some natural number n, and suppose that x and y are sets which

are both equinumerous with n+1. Henceforth we use the familiar notation

a ∼ b to denote the assertion that a and b are equinumerous sets. Now,

there exists x0 ∈ x (y0 ∈ y) with x\{x0} ∼ n (y\{y0} ∼ n). By the

inductive hypothesis, (x\{x0}) ∪ (y\{y0}) ∼ m for some natural number

m. It is easy to see that x∪y is equinumerous with m, m+1, or (m+1)+1.

(3) As above, we proceed by induction on n, the case n = 0 being

trivial. Suppose the assertion holds for the natural number n, and let

x ∼ n + 1. Then there exists x0 ∈ x such that x\{x0} ∼ n. Observe that

P(x) = P(x\{x0}) ∪ {y ∪ {x0} : y ∈ P(x\{x0})}. We now invoke (2) and

the inductive hypothesis to finish the proof. 2

We give two final definitions and examples, then we establish the main

result of this section.

Definition 3.7. Let ϕ(x) be a formula. Say that ϕ(x) is card-invariant

if and only if ZF − I proves the following:

∀x∀y(x ∼ y ⇒ (ϕ(x)⇔ ϕ(y))).

Before presenting our next example, we remind the reader (Example

2.10) that a set x is Kuratowski-finite provided for every y ⊆ P(x): if y

satisfies

1. ∅ ∈ y, and
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2. for all z ∈ P(x) and t ∈ x: if z ∈ y, then z ∪ {t} ∈ y,

then x ∈ y.

Example 3.8. ZF − I proves: if x and x′ are sets such that x ∼ x′

and x is Kuratowski-finite, then x′ is Kuratowski-finite as well. Therefore,

ϕ(x) := “x is Kuratowski-finite” is a card-invariant formula.

Proof. Let x and x′ be sets and f : x → x′ be a bijection. Assume

that x is Kuratowski-finite. Clearly f : P(x) → P(x′) defined by f(α) :=

{f(β) : β ∈ α} is a bijection as well. Let y′ ⊆ P(x′) be arbitrary, and

assume that

∅ ∈ y′, and (3.1)

for all z′ ∈ P(x′) and t′ ∈ x′ : if z′ ∈ y′, then z′ ∪ {t′} ∈ y′. (3.2)

We must show that x′ ∈ y′. Toward this end, observe that

y′ = f [y] for some y ⊆ P(x).5 (3.3)

By (3.1) above, we see that ∅ ∈ f [y]; thus f(i) = ∅ for some i ∈ y. Hence

i = ∅, and

∅ ∈ y. (3.4)

Next, let z ∈ P(x) and t ∈ x be arbitrary, and assume that z ∈ y. We shall

prove that

z ∪ {t} ∈ y. (3.5)

First, f(z) ∈ P(x′) and f(t) ∈ x′. As z ∈ y, also f(z) ∈ f [y] = y′. Invoking

(3.2) and (3.3),

f(z) ∪ {f(t)} ∈ f [y]. (3.6)

It follows immediately by definition of f that f({t}) = {f(t)}. We now

have

f(z ∪ {t}) = f(z) ∪ f({t}) = f(z) ∪ {f(t)} ∈ f [y]. (3.7)

5 The set f [y] denotes the image of y under f .
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Therefore, f(z ∪ {t}) = f(α) for some α ∈ y. Since f is one-to-one, (3.5)

follows. Because x is Kuratowski-finite, (3.4) and (3.5) yield that x ∈ y.

We deduce that f(x) ∈ f [y]. By definition of f , we have f(x) = x′. Recall

from (3.3) that y′ = f [y]. Hence x′ ∈ y′, which was to be shown. 2

Definition 3.9. Let ϕ(x) be a formula. Call ϕ(x) an ω-formula if and

only if ZF − I proves:

∀x(x is a natural number⇒ ϕ(x)).

Example 3.10. Let ϕ(x) be “x is transitive”. Then it is easy to see

that ϕ(x) is an ω-formula.

We now present our second theorem.

Theorem 3.11. Suppose that ϕ(x) is a card-invariant ω-formula. Then

(ZF − I) + ∃x¬ϕ(x) |=“ω exists.”

Proof. Let ϕ(x) be an ω-formula. Recall that V0 = ∅ and for every

natural number n, we have Vn+1 = P(Vn). Induction and (3) of Lemma

3.6 imply that Vn is equinumerous with a natural number for every natural

number n. Next, let n be a natural number and let y ∈ Vn be arbitrary.

Since Vn is transitive, y ⊆ Vn. Because Vn is equinumerous with a natural

number, we deduce from (1) of Lemma 3.6 that y is also equinumerous

with a natural number. As ϕ(x) is a card-invariant ω-formula, we see that

(ZF − I) |= ϕ(y). We have shown that ϕ(x) is a Vω-formula. Invoking

Proposition 3.5 completes the argument. 2

We end the article with the following corollary and subsequent remark.

Corollary 3.12. (ZF −I) + ∃x¬ϕ(x) |=“ω exists,” where ϕ(x) is any

of the formulas presented in Examples 1–9.

Proof. Let ϕ(x) be such a formula. Recall that ϕ(x) is K-finite.

Moreover, this can be established without the axiom of choice (Remark

2.11). Thus ZF − I |=“ϕ(x) is K-finite.” It is easy to see that ϕ(x) is

card-invariant (we proved this explicitly in Example 3.8 for ϕ(x) := “x

is Kuratowski-finite”). Moreover, the K-finiteness of ϕ(x) implies imme-

diately (via induction) that ϕ(x) is an ω-formula. We are now done by

Theorem 3.11. 2
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Remark 3.13. As stated in the introduction, ZF is not strong enough

to prove that a set is Dedekind-infinite if and only if it is Tarski-infinite.

However, Corollary 3.12 shows that ZF−I |= (∃x(x is Dedekind-infinite))⇔
(∃x(x is Tarski-infinite)).
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