[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

DSpace 9

DSpace is the world leading open source repository platform that enables organisations to:

  • easily ingest documents, audio, video, datasets and their corresponding Dublin Core metadata
  • open up this content to local and global audiences, thanks to the OAI-PMH interface and Google Scholar optimizations
  • issue permanent urls and trustworthy identifiers, including optional integrations with handle.net and DataCite DOI

Join an international community of leading institutions using DSpace.

The test user accounts below have their password set to the name of this software in lowercase.

  • Demo Site Administrator = dspacedemo+admin@gmail.com
  • Demo Community Administrator = dspacedemo+commadmin@gmail.com
  • Demo Collection Administrator = dspacedemo+colladmin@gmail.com
  • Demo Submitter = dspacedemo+submit@gmail.com
Photo by @inspiredimages
 

Communities in DSpace

Select a community to browse its collections.

Now showing 1 - 5 of 26

Recent Submissions

Thumbnail Image
Item
Asistentes de aprendizaje basados en inteligencia artificial: Principios de seguridad y experiencias de implementación en educación superior
(Dykinson, 2024-12-30) Casañ, M. J.; Alier, M.; Pereira, J.; García-Peñalvo, F. J.
El capítulo presenta el impacto y las aplicaciones de la Inteligencia Artificial Generativa (IAGen) en educación superior, centrándose en principios de seguridad y experiencias prácticas. Desde finales de 2022, herramientas como ChatGPT y Dall-E han revolucionado los métodos de enseñanza, promoviendo la personalización del aprendizaje y la automatización de procesos educativos. Sin embargo, estas tecnologías también plantean desafíos, como la privacidad de datos, las "alucinaciones" en las respuestas de los modelos, los sesgos inherentes y la dependencia tecnológica. Para garantizar una implementación segura y ética de la IAGen, los autores proponen siete principios clave: confidencialidad, alineación con estrategias educativas, prácticas didácticas, precisión, comprensión, supervisión humana y entrenamiento ético. Estos principios buscan integrar herramientas de IA de manera alineada con los valores institucionales y las normativas de privacidad. El capítulo también introduce LAMB (Learning Assistant Manager and Builder), un marco de software diseñado para crear asistentes de aprendizaje seguros y personalizados. Estos asistentes, interoperables con sistemas como Moodle, emplean recuperación aumentada por generación (RAG) para combinar datos específicos con la capacidad de los modelos de lenguaje. Un ejemplo práctico de LAMB se ilustra en un curso de negocios donde se utilizó un asistente para realizar análisis PESTLE y DAFO, mostrando una recepción positiva por parte de los estudiantes. Finalmente, se concluye que integrar la IAGen en la educación no solo debe enfocarse en su potencial innovador, sino en asegurar una aplicación ética y responsable, alineada con los objetivos educativos. Herramientas como LAMB ejemplifican cómo la IA puede ser una pieza valiosa y segura en los ecosistemas educativos.
Thumbnail Image
Item
Safe AI in Education Manifesto. Version 0.4.0
(2024-10-08) Alier-Forment, Marc; García-Peñalvo, Francisco José; Casañ, María José; Pereira, Juanan; Llorens-Largo, Faraón
The Safe AI in Education Manifesto outlines ethical principles for integrating AI into educational environments. It emphasizes the need for human oversight, ensuring AI complements rather than replaces educators. Decision-making must remain transparent and appealable, protecting the educational process's integrity. Confidentiality is paramount; institutions must safeguard student data and ensure AI systems comply with stringent privacy standards. AI tools should align with educational strategies, supporting learning objectives without enabling unethical practices or adding complexity. The manifesto calls for AI systems to respect didactic practices, adapting seamlessly to instructional designs without burdening educators or students. It stresses accuracy and explainability, requiring AI outputs to be reliable, transparent, and verifiable. Interfaces must be intuitive, communicating their limitations to foster trust and critical engagement. Ethical training and transparency in AI model development are essential, including minimizing biases and disclosing data sources. The manifesto commits to advancing AI’s potential in education while prioritizing privacy, fairness, and educational integrity, providing a living framework adaptable to technological evolution. It can be signed at: https://manifesto.safeaieducation.org/
Thumbnail Image
Item
Workshop about developing educative scenarios with GenAI tools
(Zenodo, 2024-06-12) García-Carrasco, J.
The document outlines a workshop designed for Master’s students in ICT applied to education at the University of Salamanca. Led by Francisco José García-Peñalvo, the workshop aims to explore the application of generative AI (GenAI) tools like ChatGPT in education. The objectives include learning to integrate GenAI in teaching, reflecting on its potential and risks, and designing educational scenarios collaboratively. The eight-hour session is part of a course on "Design and Assessment of Digital Resources." Students, mostly with educational backgrounds, engage in a structured process involving an introduction, AI-focused discussions, and hands-on sessions with ChatGPT. Teams of three work to develop and present educational scenarios using GenAI. Examples of tasks include creating stories for primary school, designing gamified learning activities, or developing subject-specific assessments. The emphasis is on the process over the final product. Teams document prompts and workflows and present findings to facilitate peer discussion on lessons learned, focusing on benefits and challenges. Key takeaways stress the importance of an initial introduction to GenAI, collaborative work, and reflection. The workshop highlights the transformative potential of GenAI in education while advocating for critical engagement with its ethical and practical implications.
Thumbnail Image
Item
Embracing GenAI literacy in education: A roadmap for empowerment
(Zenodo, 2024-06-12) García-Peñalvo, Francisco José
The paper discusses the emergence of Generative Artificial Intelligence (GenAI) as a transformative force in education and the necessity of GenAI literacy for both educators and students. GenAI literacy involves understanding generative AI systems, their societal impacts, and ethical implications. It encompasses skills ranging from basic knowledge of how these systems work to critical evaluation and innovative application. For teachers, fostering GenAI literacy requires integrating GenAI concepts into existing curricula without overhauling them, organizing professional development workshops with hands-on training, and forming collaborative learning communities to share best practices. For students, the focus should be on developing critical thinking and ethical reasoning skills, engaging in active-based learning using GenAI tools, and promoting interdisciplinary approaches that span STEM, humanities, and social sciences. The paper argues that GenAI literacy is not limited to mastering tools but also involves cultivating a critical perspective on technology’s role in society. By emphasizing complex thinking competencies, it aims to prepare future generations for AI-augmented environments. This literacy is positioned as a cornerstone for responsibly harnessing AI’s potential and addressing challenges like bias, privacy, and intellectual property. Ultimately, the paper presents a roadmap for empowering individuals and institutions to navigate and shape the evolving AI landscape responsibly and innovatively. It underscores the importance of equipping society with the knowledge and skills necessary to engage meaningfully with one of the most influential technologies of the 21st century.
Thumbnail Image
Item
Using ChatGPT for discovering conceptual classes in object-oriented modeling
(Zenodo, 2023-07-31) García-Peñalvo, Francisco José
Using ChatGPT to discover conceptual classes in UML diagram class