Aim: The aim of this investigation was to evaluate the potential of folic acid-tailored solid lipid nanoparticles (SLNs) for encapsulation as well as for in vitro cytotoxicity study of irinotecan hydrochloride trihydrate (IHT) against colorectal cancer (CRC) by using HT-29 cells. Methods: Solvent diffusion technique was employed for the preparation of SLNs. Further, the formulations were optimised via three-level, three-factor Box-Behnken design (BBD). Results: The uncoupled SLNs (IRSLNs) and folic acid-coupled SLNs (IRSLNFs) formulations revealed not only high %entrapment efficiency but also small particle size. Moreover, in vitro drug release results from IRSLNs and IRSLNFs confirmed that they followed sustained-release effect for up to 144 h. Whereas, in vitro cell viability study against HT-29 cell line suggested significantly (p < 0.05) higher cytotoxicity (IC50 = 15 µg/ml) of IRSLNFs over IRSLNs and IHT solution. Conclusions: Outcomes suggested that the engineered IRSLNFs hold great potential for targeting CRC for an extended period of time.
Keywords: Box–Behnken design; Folic acid; HT-29 cells; SLNs; colorectal cancer; irinotecan hydrochloride trihydrate.