In this paper, we present design, implementation and specifications of the Wrist Gimbal, a three degree-of-freedom (DOF) exoskeleton developed for forearm and wrist rehabilitation. Wrist Gimbal has three active DOF, corresponding to pronation/supination, flexion/extension and adduction/abduction joints. We mainly focused on a robust, safe and practical device design to facilitate clinical implementation, testing and acceptance. Robustness and mechanical rigidity was achieved by implementing two bearing supports for each of the pronation/supination and adduction/abduction axes. Rubber hard stops for each axis, an emergency stop button and software measures ensured safe operation. An arm rest with padding and straps, a handle with adjustable distal distance and height and a large inner volume contribute to ease of use, of patient attachment and to comfort. We present the specifications of Wrist Gimbal in comparison with similar devices in the literature and example data collected from a healthy subject.