Cryptochrome (CRY) is intimately associated with the circadian clock of many organisms. In the fruit fly Drosophila melanogaster, CRY seems to be involved in photoreception as well as in the core clockwork. In spite of the critical role of CRY for the clock of Drosophila, it was not quite clear whether CRY is expressed in every clock cell. With the help of a new antibody and a mutant that lacks CRY, we show here that CRY is expressed in specific subsets of Drosophila's pacemaker neurons and in the photoreceptor cells of the compound eyes. In the pacemaker neurons, CRY levels and kinetics under light-dark cycles are quite different from each other. High-amplitude oscillations are observed in only three groups of clock neurons, suggesting that these three groups are strongly receptive to light. The different CRY kinetics may account for phase differences in oscillations of the clock proteins observed in these three groups in earlier studies. The molecular clock of the neurons that contain lower CRY levels or are completely CRY negative can still be synchronized by light, probably via intercellular communication with the CRY-positive neurons as well as via external photoreceptors.
(c) 2008 Wiley-Liss, Inc.