Leptin is recognized as a profibrogenic hormone in the liver, but the mechanisms involved have not been clarified. The tissue inhibitor of metalloproteinase (TIMP)-1, which acts through inhibition of collagen degradation, is synthesized by activated hepatic stellate cells (HSC) in response to fibrogenic substances. The capacity of leptin to induce TIMP-1 and its signaling molecules were investigated in a human HSC cell line, LX-2. Leptin stimulated TIMP-1 protein, mRNA, and promoter activity. JAK1 and -2, as well as STAT3 and -5, were activated. After leptin, there was increased expression of tyrosine 1141-phosphorylated leptin receptor, which may contribute to STAT3 activation. AG 490, a JAK inhibitor, blocked JAK phosphorylation with concomitant inhibition of STAT activation, TIMP-1 mRNA expression, and promoter activity. Leptin also induced an oxidative stress, which was inhibited by AG 490, indicating a JAK mediation process. ERK1/2 MAPK and p38 were activated, which was prevented by catalase, indicating an H2O2-dependent mechanism. Catalase treatment resulted in total suppression of TIMP-1 mRNA expression and promoter activity. SB203580, a p38 inhibitor, prevented p38 activation and reduced TIMP-1 message half-life with down-regulation of TIMP-1 mRNA. These changes were reproduced by overexpression of the dominant negative p38alpha and p38beta mutants. PD098059, an ERK1/2 inhibitor, opposed ERK1/2 activation and TIMP-1 promoter activity, leading to TIMP-1 mRNA down-regulation. Thus, leptin has a direct action on liver fibrogenesis by stimulating TIMP-1 production in activated HSC. This process appears to be mediated by the JAK/STAT pathway via the leptin receptor long form and the H2O2-dependent p38 and ERK1/2 pathways via activated JAK.