[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
KR2023Proceedings of the 20th International Conference on Principles of Knowledge Representation and ReasoningProceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning

Rhodes, Greece. September 2-8, 2023.

Edited by

ISSN: 2334-1033
ISBN: 978-1-956792-02-7

Sponsored by
Published by

Copyright © 2023 International Joint Conferences on Artificial Intelligence Organization

Argumentative Reasoning in ASPIC+ under Incomplete Information

  1. Daphne Odekerken(Utrecht University, National Police Lab AI, Netherlands Police)
  2. Tuomo Lehtonen(University of Helsinki)
  3. AnneMarie Borg(Utrecht University)
  4. Johannes P. Wallner(TU Graz)
  5. Matti Järvisalo(University of Helsinki)

Keywords

  1. Argumentation
  2. Logic programming, answer set programming

Abstract

Reasoning under incomplete information is an important research direction in AI argumentation. Most computational advances in this direction have so-far focused on abstract argumentation frameworks. Development of computational approaches to reasoning under incomplete information in structured formalisms remains to-date to a large extent a challenge. We address this challenge by studying the so-called stability and relevance problems---with the aim of analyzing aspects of resilience of acceptance statuses in light of new information---in the central structured formalism of ASPIC+. Focusing on the case of the grounded semantics and an ASPIC+ fragment motivated through application scenarios, we develop exact ASP-based algorithms for stability and relevance in incomplete ASPIC+ theories, and pinpoint the complexity of reasoning about stability (coNP-complete) and relevance (Sigma_2^P-complete), further justifying our ASP-based approaches. Empirically, the algorithms exhibit promising scalability, outperforming even a recent inexact approach to stability, with our ASP-based iterative approach being the first algorithm proposed for reasoning about relevance in ASPIC+.