[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Oct;75(10):4848–4852. doi: 10.1073/pnas.75.10.4848

Glucose-induced conformational change in yeast hexokinase.

W S Bennett Jr, T A Steitz
PMCID: PMC336218  PMID: 283394

Abstract

The A isozyme of yeast hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) crystallized as a complex with glucose has a conformation that is dramatically different from the conformation of the B isozyme crystallized in the absence of glucose. Comparison of the high-resolution structures shows that one lobe of the molecule is rotated by 12 degrees relative to the other lobe, resulting in movements of as much as 8 A in the polypeptide backbone and closing the cleft between the lobes into which glucose is bound. The conformational change is produced by the binding of glucose (R.C. McDonald, T.A. Steitz, and D.M. Engelman, unpublished data) and is essential for catalysis [Anderson, C.M., Stenkamp, R.E., McDonald, R.C. & Steitz, T.A. (1978) J. Mol. Biol. 123, 207-219] and thus provides an example of induced fit. The surface area of the hexokinase A-glucose complex exposed to solvent is smaller than that of native hexokinase B. By using the change in exposed surface area to estimate the hydrophobic contribution to the free energy changes upon glucose binding, we find that the hydrophobic effect alone favors the active conformation of hexokinase in the presence and absence of sugar. The observed stability of the inactive conformation of the enzyme in the absence of substrates may result from a deficiency of complementary interactions within the cavity that forms when the two lobes close together.

Full text

PDF
4848

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson C. M., McDonald R. C., Steitz T. A. Sequencing a protein by x-ray crystallography. I. Interpretation of yeast hexokinase B at 2.5 A resolution by model building. J Mol Biol. 1978 Jul 25;123(1):1–13. doi: 10.1016/0022-2836(78)90373-x. [DOI] [PubMed] [Google Scholar]
  2. Anderson C. M., Stenkamp R. E., McDonald R. C., Steitz T. A. A refined model of the sugar binding site of yeast hexokinase B. J Mol Biol. 1978 Aug 5;123(2):207–219. doi: 10.1016/0022-2836(78)90321-2. [DOI] [PubMed] [Google Scholar]
  3. Anderson C. M., Stenkamp R. E., Steitz T. A. Sequencing a protein by x-ray crystallography. II. Refinement of yeast hexokinase B co-ordinates and sequence at 2.1 A resolution. J Mol Biol. 1978 Jul 25;123(1):15–33. doi: 10.1016/0022-2836(78)90374-1. [DOI] [PubMed] [Google Scholar]
  4. Blow D. M., Steitz T. A. X-ray diffraction studies of enzymes. Annu Rev Biochem. 1970;39:63–100. doi: 10.1146/annurev.bi.39.070170.000431. [DOI] [PubMed] [Google Scholar]
  5. Chothia C. Hydrophobic bonding and accessible surface area in proteins. Nature. 1974 Mar 22;248(446):338–339. doi: 10.1038/248338a0. [DOI] [PubMed] [Google Scholar]
  6. Chothia C., Janin J. Principles of protein-protein recognition. Nature. 1975 Aug 28;256(5520):705–708. doi: 10.1038/256705a0. [DOI] [PubMed] [Google Scholar]
  7. Colman P. M., Deisenhofer J., Huber R. Structure of the human antibody molecule Kol (immunoglobulin G1): an electron density map at 5 A resolution. J Mol Biol. 1976 Jan 25;100(3):257–278. doi: 10.1016/s0022-2836(76)80062-9. [DOI] [PubMed] [Google Scholar]
  8. Danenberg K. D., Cleland W. W. Use of chromium-adenosine triphosphate and lyxose to elucidate the kinetic mechanism and coordination state of the nucleotide substrate for yeast hexokinase. Biochemistry. 1975 Jan 14;14(1):28–39. doi: 10.1021/bi00672a006. [DOI] [PubMed] [Google Scholar]
  9. DelaFuente G., Lagunas R., Sols A. Induced fit in yeast hexokinase. Eur J Biochem. 1970 Oct;16(2):226–233. doi: 10.1111/j.1432-1033.1970.tb01075.x. [DOI] [PubMed] [Google Scholar]
  10. Fletterick R. J., Bates D. J., Steitz T. A. The structure of a yeast hexokinase monomer and its complexes with substrates at 2.7-A resolution. Proc Natl Acad Sci U S A. 1975 Jan;72(1):38–42. doi: 10.1073/pnas.72.1.38. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hoggett J. G., Kellett G. L. Yeast hexokinase. A fluorescence temperature-jump study of the kinetics of the binding of glucose to the monomer forms of hexokinases P-I and P-II. Eur J Biochem. 1976 Sep 15;68(2):347–353. doi: 10.1111/j.1432-1033.1976.tb10821.x. [DOI] [PubMed] [Google Scholar]
  12. Jencks W. P. Binding energy, specificity, and enzymic catalysis: the circe effect. Adv Enzymol Relat Areas Mol Biol. 1975;43:219–410. doi: 10.1002/9780470122884.ch4. [DOI] [PubMed] [Google Scholar]
  13. Kaji A., Colowick S. P. Adenosine triphosphatase activity of yeast hexokinase and its relation to the mechanism of the hexokinase reaction. J Biol Chem. 1965 Nov;240(11):4454–4462. [PubMed] [Google Scholar]
  14. Ladner R. C., Heidner E. J., Perutz M. F. The structure of horse methaemoglobin at 2-0 A resolution. J Mol Biol. 1977 Aug 15;114(3):385–414. doi: 10.1016/0022-2836(77)90256-x. [DOI] [PubMed] [Google Scholar]
  15. Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
  16. MALEY F., LARDY H. A. Synthesis of N-substituted glucosamines and their effect on hexokinase. J Biol Chem. 1955 Jun;214(2):765–773. [PubMed] [Google Scholar]
  17. Muirhead H., Cox J. M., Mazzarella L., Perutz M. F. Structure and function of haemoglobin. 3. A three-dimensional fourier synthesis of human deoxyhaemoglobin at 5.5 Angstrom resolution. J Mol Biol. 1967 Aug 28;28(1):117–156. doi: 10.1016/s0022-2836(67)80082-2. [DOI] [PubMed] [Google Scholar]
  18. Richards F. M. Areas, volumes, packing and protein structure. Annu Rev Biophys Bioeng. 1977;6:151–176. doi: 10.1146/annurev.bb.06.060177.001055. [DOI] [PubMed] [Google Scholar]
  19. Richmond T. J., Richards F. M. Packing of alpha-helices: geometrical constraints and contact areas. J Mol Biol. 1978 Mar 15;119(4):537–555. doi: 10.1016/0022-2836(78)90201-2. [DOI] [PubMed] [Google Scholar]
  20. Rossmann M. G., Argos P. A comparison of the heme binding pocket in globins and cytochrome b5. J Biol Chem. 1975 Sep 25;250(18):7525–7532. [PubMed] [Google Scholar]
  21. Schmidt J. J., Colowick S. P. Chemistry and subunit structure of yeast hexokinase isoenzymes. Arch Biochem Biophys. 1973 Oct;158(2):458–470. doi: 10.1016/0003-9861(73)90537-7. [DOI] [PubMed] [Google Scholar]
  22. Steitz T. A., Anderson W. F., Fletterick R. J., Anderson C. M. High resolution crystal structures of yeast hexokinase complexes with substrates, activators, and inhibitors. Evidence for an allosteric control site. J Biol Chem. 1977 Jul 10;252(13):4494–4500. [PubMed] [Google Scholar]
  23. Winkler F. K., Schutt C. E., Harrison S. C., Bricogne G. Tomato bushy stunt virus at 5.5-A resolution. Nature. 1977 Feb 10;265(5594):509–513. doi: 10.1038/265509a0. [DOI] [PubMed] [Google Scholar]
  24. Womack F. C., Welch M. K., Nielsen J., Colowick S. P. Purification and serological comparison of the yeast hexokinases P-I and P-II. Arch Biochem Biophys. 1973 Oct;158(2):451–457. doi: 10.1016/0003-9861(73)90536-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES