[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Microbiology and Molecular Biology Reviews : MMBR logoLink to Microbiology and Molecular Biology Reviews : MMBR
. 1997 Dec;61(4):533–616. doi: 10.1128/mmbr.61.4.533-616.1997

Cell biology and molecular basis of denitrification.

W G Zumft 1
PMCID: PMC232623  PMID: 9409151

Abstract

Denitrification is a distinct means of energy conservation, making use of N oxides as terminal electron acceptors for cellular bioenergetics under anaerobic, microaerophilic, and occasionally aerobic conditions. The process is an essential branch of the global N cycle, reversing dinitrogen fixation, and is associated with chemolithotrophic, phototrophic, diazotrophic, or organotrophic metabolism but generally not with obligately anaerobic life. Discovered more than a century ago and believed to be exclusively a bacterial trait, denitrification has now been found in halophilic and hyperthermophilic archaea and in the mitochondria of fungi, raising evolutionarily intriguing vistas. Important advances in the biochemical characterization of denitrification and the underlying genetics have been achieved with Pseudomonas stutzeri, Pseudomonas aeruginosa, Paracoccus denitrificans, Ralstonia eutropha, and Rhodobacter sphaeroides. Pseudomonads represent one of the largest assemblies of the denitrifying bacteria within a single genus, favoring their use as model organisms. Around 50 genes are required within a single bacterium to encode the core structures of the denitrification apparatus. Much of the denitrification process of gram-negative bacteria has been found confined to the periplasm, whereas the topology and enzymology of the gram-positive bacteria are less well established. The activation and enzymatic transformation of N oxides is based on the redox chemistry of Fe, Cu, and Mo. Biochemical breakthroughs have included the X-ray structures of the two types of respiratory nitrite reductases and the isolation of the novel enzymes nitric oxide reductase and nitrous oxide reductase, as well as their structural characterization by indirect spectroscopic means. This revealed unexpected relationships among denitrification enzymes and respiratory oxygen reductases. Denitrification is intimately related to fundamental cellular processes that include primary and secondary transport, protein translocation, cytochrome c biogenesis, anaerobic gene regulation, metalloprotein assembly, and the biosynthesis of the cofactors molybdopterin and heme D1. An important class of regulators for the anaerobic expression of the denitrification apparatus are transcription factors of the greater FNR family. Nitrate and nitric oxide, in addition to being respiratory substrates, have been identified as signaling molecules for the induction of distinct N oxide-metabolizing enzymes.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham Z. H., Lowe D. J., Smith B. E. Purification and characterization of the dissimilatory nitrite reductase from Alcaligenes xylosoxidans subsp. xylosoxidans (N.C.I.M.B. 11015): evidence for the presence of both type 1 and type 2 copper centres. Biochem J. 1993 Oct 15;295(Pt 2):587–593. doi: 10.1042/bj2950587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adman E. T. Copper protein structures. Adv Protein Chem. 1991;42:145–197. doi: 10.1016/s0065-3233(08)60536-7. [DOI] [PubMed] [Google Scholar]
  3. Adman E. T., Godden J. W., Turley S. The structure of copper-nitrite reductase from Achromobacter cycloclastes at five pH values, with NO2- bound and with type II copper depleted. J Biol Chem. 1995 Nov 17;270(46):27458–27474. doi: 10.1074/jbc.270.46.27458. [DOI] [PubMed] [Google Scholar]
  4. Alefounder P. R., Ferguson S. J. The location of dissimilatory nitrite reductase and the control of dissimilatory nitrate reductase by oxygen in Paracoccus denitrificans. Biochem J. 1980 Oct 15;192(1):231–240. doi: 10.1042/bj1920231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Anders H. J., Kaetzke A., Kämpfer P., Ludwig W., Fuchs G. Taxonomic position of aromatic-degrading denitrifying pseudomonad strains K 172 and KB 740 and their description as new members of the genera Thauera, as Thauera aromatica sp. nov., and Azoarcus, as Azoarcus evansii sp. nov., respectively, members of the beta subclass of the Proteobacteria. Int J Syst Bacteriol. 1995 Apr;45(2):327–333. doi: 10.1099/00207713-45-2-327. [DOI] [PubMed] [Google Scholar]
  6. Anderson L. A., Palmer T., Price N. C., Bornemann S., Boxer D. H., Pau R. N. Characterisation of the molybdenum-responsive ModE regulatory protein and its binding to the promoter region of the modABCD (molybdenum transport) operon of Escherichia coli. Eur J Biochem. 1997 May 15;246(1):119–126. doi: 10.1111/j.1432-1033.1997.00119.x. [DOI] [PubMed] [Google Scholar]
  7. Andersson L. A., Loehr T. M., Wu W. S., Chang C. K., Timkovich R. Modelling heme d1. The spectral properties of copper(II) porphyrindiones. FEBS Lett. 1990 Jul 16;267(2):285–288. doi: 10.1016/0014-5793(90)80946-g. [DOI] [PubMed] [Google Scholar]
  8. Anthamatten D., Scherb B., Hennecke H. Characterization of a fixLJ-regulated Bradyrhizobium japonicum gene sharing similarity with the Escherichia coli fnr and Rhizobium meliloti fixK genes. J Bacteriol. 1992 Apr;174(7):2111–2120. doi: 10.1128/jb.174.7.2111-2120.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Antholine W. E., Kastrau D. H., Steffens G. C., Buse G., Zumft W. G., Kroneck P. M. A comparative EPR investigation of the multicopper proteins nitrous-oxide reductase and cytochrome c oxidase. Eur J Biochem. 1992 Nov 1;209(3):875–881. doi: 10.1111/j.1432-1033.1992.tb17360.x. [DOI] [PubMed] [Google Scholar]
  10. Aono S., Nakajima H., Saito K., Okada M. A novel heme protein that acts as a carbon monoxide-dependent transcriptional activator in Rhodospirillum rubrum. Biochem Biophys Res Commun. 1996 Nov 21;228(3):752–756. doi: 10.1006/bbrc.1996.1727. [DOI] [PubMed] [Google Scholar]
  11. Arai H., Igarashi Y., Kodama T. Anaerobically induced expression of the nitrite reductase cytochrome c-551 operon from Pseudomonas aeruginosa. FEBS Lett. 1991 Mar 25;280(2):351–353. doi: 10.1016/0014-5793(91)80329-2. [DOI] [PubMed] [Google Scholar]
  12. Arai H., Igarashi Y., Kodama T. Expression of the nir and nor genes for denitrification of Pseudomonas aeruginosa requires a novel CRP/FNR-related transcriptional regulator, DNR, in addition to ANR. FEBS Lett. 1995 Aug 28;371(1):73–76. doi: 10.1016/0014-5793(95)00885-d. [DOI] [PubMed] [Google Scholar]
  13. Arai H., Igarashi Y., Kodama T. Nitrite activates the transcription of the Pseudomonas aeruginosa nitrite reductase and cytochrome c-551 operon under anaerobic conditions. FEBS Lett. 1991 Aug 19;288(1-2):227–228. doi: 10.1016/0014-5793(91)81040-f. [DOI] [PubMed] [Google Scholar]
  14. Arai H., Igarashi Y., Kodama T. Structure and ANR-dependent transcription of the nir genes for denitrification from Pseudomonas aeruginosa. Biosci Biotechnol Biochem. 1994 Jul;58(7):1286–1291. doi: 10.1271/bbb.58.1286. [DOI] [PubMed] [Google Scholar]
  15. Arai H., Igarashi Y., Kodama T. The structural genes for nitric oxide reductase from Pseudomonas aeruginosa. Biochim Biophys Acta. 1995 Apr 4;1261(2):279–284. doi: 10.1016/0167-4781(95)00018-c. [DOI] [PubMed] [Google Scholar]
  16. Arai H., Sanbongi Y., Igarashi Y., Kodama T. Cloning and sequencing of the gene encoding cytochrome c-551 from Pseudomonas aeruginosa. FEBS Lett. 1990 Feb 12;261(1):196–198. doi: 10.1016/0014-5793(90)80669-a. [DOI] [PubMed] [Google Scholar]
  17. Arciero D. M., Hooper A. B. Hydroxylamine oxidoreductase from Nitrosomonas europaea is a multimer of an octa-heme subunit. J Biol Chem. 1993 Jul 15;268(20):14645–14654. [PubMed] [Google Scholar]
  18. Arvidsson R. H., Nordling M., Lundberg L. G. The azurin gene from Pseudomonas aeruginosa. Cloning and characterization. Eur J Biochem. 1989 Jan 15;179(1):195–200. doi: 10.1111/j.1432-1033.1989.tb14540.x. [DOI] [PubMed] [Google Scholar]
  19. Averill B. A., Tiedje J. M. The chemical mechanism of microbial denitrification. FEBS Lett. 1982 Feb 8;138(1):8–12. doi: 10.1016/0014-5793(82)80383-9. [DOI] [PubMed] [Google Scholar]
  20. Axelrod H. L., Feher G., Allen J. P., Chirino A. J., Day M. W., Hsu B. T., Rees D. C. Crystallization and X-ray structure determination of cytochrome c2 from Rhodobacter sphaeroides in three crystal forms. Acta Crystallogr D Biol Crystallogr. 1994 Jul 1;50(Pt 4):596–602. doi: 10.1107/S0907444994001319. [DOI] [PubMed] [Google Scholar]
  21. BEINERT H., GRIFFITHS D. E., WHARTON D. C., SANDS R. H. Properties of the copper associated with cytochrome oxidase as studied by paramagnetic resonance spectroscopy. J Biol Chem. 1962 Jul;237:2337–2346. [PubMed] [Google Scholar]
  22. Baikalov I., Schröder I., Kaczor-Grzeskowiak M., Grzeskowiak K., Gunsalus R. P., Dickerson R. E. Structure of the Escherichia coli response regulator NarL. Biochemistry. 1996 Aug 27;35(34):11053–11061. doi: 10.1021/bi960919o. [DOI] [PubMed] [Google Scholar]
  23. Baker S. C., Saunders N. F., Willis A. C., Ferguson S. J., Hajdu J., Fülöp V. Cytochrome cd1 structure: unusual haem environments in a nitrite reductase and analysis of factors contributing to beta-propeller folds. J Mol Biol. 1997 Jun 13;269(3):440–455. doi: 10.1006/jmbi.1997.1070. [DOI] [PubMed] [Google Scholar]
  24. Balderston W. L., Sherr B., Payne W. J. Blockage by acetylene of nitrous oxide reduction in Pseudomonas perfectomarinus. Appl Environ Microbiol. 1976 Apr;31(4):504–508. doi: 10.1128/aem.31.4.504-508.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Bartnikas T. B., Tosques I. E., Laratta W. P., Shi J., Shapleigh J. P. Characterization of the nitric oxide reductase-encoding region in Rhodobacter sphaeroides 2.4.3. J Bacteriol. 1997 Jun;179(11):3534–3540. doi: 10.1128/jb.179.11.3534-3540.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Bastian N. R., Hibbs J. B., Jr Assembly and regulation of NADPH oxidase and nitric oxide synthase. Curr Opin Immunol. 1994 Feb;6(1):131–139. doi: 10.1016/0952-7915(94)90044-2. [DOI] [PubMed] [Google Scholar]
  27. Battistoni A., Rotilio G. Isolation of an active and heat-stable monomeric form of Cu,Zn superoxide dismutase from the periplasmic space of Escherichia coli. FEBS Lett. 1995 Oct 30;374(2):199–202. doi: 10.1016/0014-5793(95)01106-o. [DOI] [PubMed] [Google Scholar]
  28. Batut J., Daveran-Mingot M. L., David M., Jacobs J., Garnerone A. M., Kahn D. fixK, a gene homologous with fnr and crp from Escherichia coli, regulates nitrogen fixation genes both positively and negatively in Rhizobium meliloti. EMBO J. 1989 Apr;8(4):1279–1286. doi: 10.1002/j.1460-2075.1989.tb03502.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Baumann B., Snozzi M., Zehnder A. J., Van Der Meer J. R. Dynamics of denitrification activity of Paracoccus denitrificans in continuous culture during aerobic-anaerobic changes. J Bacteriol. 1996 Aug;178(15):4367–4374. doi: 10.1128/jb.178.15.4367-4374.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Bazylinski D. A., Blakemore R. P. Denitrification and Assimilatory Nitrate Reduction in Aquaspirillum magnetotacticum. Appl Environ Microbiol. 1983 Nov;46(5):1118–1124. doi: 10.1128/aem.46.5.1118-1124.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Bazylinski D. A., Soohoo C. K., Hollocher T. C. Growth of Pseudomonas aeruginosa on nitrous oxide. Appl Environ Microbiol. 1986 Jun;51(6):1239–1246. doi: 10.1128/aem.51.6.1239-1246.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Becker S., Holighaus G., Gabrielczyk T., Unden G. O2 as the regulatory signal for FNR-dependent gene regulation in Escherichia coli. J Bacteriol. 1996 Aug;178(15):4515–4521. doi: 10.1128/jb.178.15.4515-4521.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Beckman D. L., Kranz R. G. Cytochromes c biogenesis in a photosynthetic bacterium requires a periplasmic thioredoxin-like protein. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2179–2183. doi: 10.1073/pnas.90.6.2179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Beckman D. L., Trawick D. R., Kranz R. G. Bacterial cytochromes c biogenesis. Genes Dev. 1992 Feb;6(2):268–283. doi: 10.1101/gad.6.2.268. [DOI] [PubMed] [Google Scholar]
  35. Beckmann R., Bubeck D., Grassucci R., Penczek P., Verschoor A., Blobel G., Frank J. Alignment of conduits for the nascent polypeptide chain in the ribosome-Sec61 complex. Science. 1997 Dec 19;278(5346):2123–2126. doi: 10.1126/science.278.5346.2123. [DOI] [PubMed] [Google Scholar]
  36. Beinert H. Copper A of cytochrome c oxidase, a novel, long-embattled, biological electron-transfer site. Eur J Biochem. 1997 May 1;245(3):521–532. doi: 10.1111/j.1432-1033.1997.t01-1-00521.x. [DOI] [PubMed] [Google Scholar]
  37. Beinert H., Kiley P. Redox control of gene expression involving iron-sulfur proteins. Change of oxidation-state or assembly/disassembly of Fe-S clusters? FEBS Lett. 1996 Mar 11;382(1-2):218–221. doi: 10.1016/0014-5793(96)00140-8. [DOI] [PubMed] [Google Scholar]
  38. Bell L. C., Ferguson S. J. Nitric and nitrous oxide reductases are active under aerobic conditions in cells of Thiosphaera pantotropha. Biochem J. 1991 Jan 15;273(Pt 2):423–427. doi: 10.1042/bj2730423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Bell L. C., Richardson D. J., Ferguson S. J. Identification of nitric oxide reductase activity in Rhodobacter capsulatus: the electron transport pathway can either use or bypass both cytochrome c2 and the cytochrome bc1 complex. J Gen Microbiol. 1992 Mar;138(3):437–443. doi: 10.1099/00221287-138-3-437. [DOI] [PubMed] [Google Scholar]
  40. Bell L. C., Richardson D. J., Ferguson S. J. Periplasmic and membrane-bound respiratory nitrate reductases in Thiosphaera pantotropha. The periplasmic enzyme catalyzes the first step in aerobic denitrification. FEBS Lett. 1990 Jun 4;265(1-2):85–87. doi: 10.1016/0014-5793(90)80889-q. [DOI] [PubMed] [Google Scholar]
  41. Bennasar A., Rosselló-Mora R., Lalucat J., Moore E. R. 16S rRNA gene sequence analysis relative to genomovars of Pseudomonas stutzeri and proposal of Pseudomonas balearica sp. nov. Int J Syst Bacteriol. 1996 Jan;46(1):200–205. doi: 10.1099/00207713-46-1-200. [DOI] [PubMed] [Google Scholar]
  42. Bennett B., Berks B. C., Ferguson S. J., Thomson A. J., Richardson D. J. Mo(V) electron paramagnetic resonance signals from the periplasmic nitrate reductase of Thiosphaera pantotropha. Eur J Biochem. 1994 Dec 15;226(3):789–798. doi: 10.1111/j.1432-1033.1994.00789.x. [DOI] [PubMed] [Google Scholar]
  43. Bennett B., Charnock J. M., Sears H. J., Berks B. C., Thomson A. J., Ferguson S. J., Garner C. D., Richardson D. J. Structural investigation of the molybdenum site of the periplasmic nitrate reductase from Thiosphaera pantotropha by X-ray absorption spectroscopy. Biochem J. 1996 Jul 15;317(Pt 2):557–563. doi: 10.1042/bj3170557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Benning M. M., Meyer T. E., Holden H. M. X-Ray structure of the cytochrome c2 isolated from Paracoccus denitrificans refined to 1.7-A resolution. Arch Biochem Biophys. 1994 May 1;310(2):460–466. doi: 10.1006/abbi.1994.1193. [DOI] [PubMed] [Google Scholar]
  45. Benov L., Chang L. Y., Day B., Fridovich I. Copper, zinc superoxide dismutase in Escherichia coli: periplasmic localization. Arch Biochem Biophys. 1995 Jun 1;319(2):508–511. doi: 10.1006/abbi.1995.1324. [DOI] [PubMed] [Google Scholar]
  46. Bergmann D. J., Arciero D. M., Hooper A. B. Organization of the hao gene cluster of Nitrosomonas europaea: genes for two tetraheme c cytochromes. J Bacteriol. 1994 Jun;176(11):3148–3153. doi: 10.1128/jb.176.11.3148-3153.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Berks B. C. A common export pathway for proteins binding complex redox cofactors? Mol Microbiol. 1996 Nov;22(3):393–404. doi: 10.1046/j.1365-2958.1996.00114.x. [DOI] [PubMed] [Google Scholar]
  48. Berks B. C., Baratta D., Richardson J., Ferguson S. J. Purification and characterization of a nitrous oxide reductase from Thiosphaera pantotropha. Implications for the mechanism of aerobic nitrous oxide reduction. Eur J Biochem. 1993 Mar 1;212(2):467–476. doi: 10.1111/j.1432-1033.1993.tb17683.x. [DOI] [PubMed] [Google Scholar]
  49. Berks B. C., Ferguson S. J., Moir J. W., Richardson D. J. Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. Biochim Biophys Acta. 1995 Dec 12;1232(3):97–173. doi: 10.1016/0005-2728(95)00092-5. [DOI] [PubMed] [Google Scholar]
  50. Berks B. C., Page M. D., Richardson D. J., Reilly A., Cavill A., Outen F., Ferguson S. J. Sequence analysis of subunits of the membrane-bound nitrate reductase from a denitrifying bacterium: the integral membrane subunit provides a prototype for the dihaem electron-carrying arm of a redox loop. Mol Microbiol. 1995 Jan;15(2):319–331. doi: 10.1111/j.1365-2958.1995.tb02246.x. [DOI] [PubMed] [Google Scholar]
  51. Berks B. C., Richardson D. J., Reilly A., Willis A. C., Ferguson S. J. The napEDABC gene cluster encoding the periplasmic nitrate reductase system of Thiosphaera pantotropha. Biochem J. 1995 Aug 1;309(Pt 3):983–992. doi: 10.1042/bj3090983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Berks B. C., Richardson D. J., Robinson C., Reilly A., Aplin R. T., Ferguson S. J. Purification and characterization of the periplasmic nitrate reductase from Thiosphaera pantotropha. Eur J Biochem. 1994 Feb 15;220(1):117–124. doi: 10.1111/j.1432-1033.1994.tb18605.x. [DOI] [PubMed] [Google Scholar]
  53. Berlett B. S., Friguet B., Yim M. B., Chock P. B., Stadtman E. R. Peroxynitrite-mediated nitration of tyrosine residues in Escherichia coli glutamine synthetase mimics adenylylation: relevance to signal transduction. Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):1776–1780. doi: 10.1073/pnas.93.5.1776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Besson S., Carneiro C., Moura J. J., Moura I., Fauque G. A cytochrome cd1-type nitrite reductase isolated from the marine denitrifier Pseudomonas nautica 617: purification and characterization. Anaerobe. 1995 Aug;1(4):219–226. doi: 10.1006/anae.1995.1021. [DOI] [PubMed] [Google Scholar]
  55. Betlach M. R., Tiedje J. M., Firestone R. B. Assimilatory nitrate uptake in Pseudomonas fluorescens studied using nitrogen-13. Arch Microbiol. 1981 Apr;129(2):135–140. doi: 10.1007/BF00455349. [DOI] [PubMed] [Google Scholar]
  56. Blackburn N. J., Barr M. E., Woodruff W. H., van der Oost J., de Vries S. Metal-metal bonding in biology: EXAFS evidence for a 2.5 A copper-copper bond in the CuA center of cytochrome oxidase. Biochemistry. 1994 Aug 30;33(34):10401–10407. doi: 10.1021/bi00200a022. [DOI] [PubMed] [Google Scholar]
  57. Blasco F., Iobbi C., Giordano G., Chippaux M., Bonnefoy V. Nitrate reductase of Escherichia coli: completion of the nucleotide sequence of the nar operon and reassessment of the role of the alpha and beta subunits in iron binding and electron transfer. Mol Gen Genet. 1989 Aug;218(2):249–256. doi: 10.1007/BF00331275. [DOI] [PubMed] [Google Scholar]
  58. Blasco F., Iobbi C., Ratouchniak J., Bonnefoy V., Chippaux M. Nitrate reductases of Escherichia coli: sequence of the second nitrate reductase and comparison with that encoded by the narGHJI operon. Mol Gen Genet. 1990 Jun;222(1):104–111. doi: 10.1007/BF00283030. [DOI] [PubMed] [Google Scholar]
  59. Blasco F., Nunzi F., Pommier J., Brasseur R., Chippaux M., Giordano G. Formation of active heterologous nitrate reductases between nitrate reductases A and Z of Escherichia coli. Mol Microbiol. 1992 Jan;6(2):209–219. doi: 10.1111/j.1365-2958.1992.tb02002.x. [DOI] [PubMed] [Google Scholar]
  60. Blasco F., Pommier J., Augier V., Chippaux M., Giordano G. Involvement of the narJ or narW gene product in the formation of active nitrate reductase in Escherichia coli. Mol Microbiol. 1992 Jan;6(2):221–230. doi: 10.1111/j.1365-2958.1992.tb02003.x. [DOI] [PubMed] [Google Scholar]
  61. Bleakley B. H., Tiedje J. M. Nitrous oxide production by organisms other than nitrifiers or denitrifiers. Appl Environ Microbiol. 1982 Dec;44(6):1342–1348. doi: 10.1128/aem.44.6.1342-1348.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Bollivar D. W., Elliott T., Beale S. I. Anaerobic protoporphyrin biosynthesis does not require incorporation of methyl groups from methionine. J Bacteriol. 1995 Oct;177(20):5778–5783. doi: 10.1128/jb.177.20.5778-5783.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Bonnefoy V., Demoss J. A. Nitrate reductases in Escherichia coli. Antonie Van Leeuwenhoek. 1994;66(1-3):47–56. doi: 10.1007/BF00871632. [DOI] [PubMed] [Google Scholar]
  64. Boogerd F. C., Van Verseveld H. W., Stouthamer A. H. Respiration-driven proton translocation with nitrite and nitrous oxide in Paracoccus denitrificans. Biochim Biophys Acta. 1981 Dec 14;638(2):181–191. doi: 10.1016/0005-2728(81)90226-7. [DOI] [PubMed] [Google Scholar]
  65. Boogerd F. C., van Verseveld H. W., Stouthamer A. H. Electron transport to nitrous oxide in Paracoccus denitrificans. FEBS Lett. 1980 May 5;113(2):279–284. doi: 10.1016/0014-5793(80)80609-0. [DOI] [PubMed] [Google Scholar]
  66. Bosma G., Braster M., Stouthamer A. H., van Verseveld H. W. Subfractionation and characterization of soluble c-type cytochromes from Paracoccus denitrificans cultured under various limiting conditions in the chemostat. Eur J Biochem. 1987 Jun 15;165(3):665–670. doi: 10.1111/j.1432-1033.1987.tb11492.x. [DOI] [PubMed] [Google Scholar]
  67. Bott M., Thöny-Meyer L., Loferer H., Rossbach S., Tully R. E., Keister D., Appleby C. A., Hennecke H. Bradyrhizobium japonicum cytochrome c550 is required for nitrate respiration but not for symbiotic nitrogen fixation. J Bacteriol. 1995 Apr;177(8):2214–2217. doi: 10.1128/jb.177.8.2214-2217.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Brandner J. P., Donohue T. J. The Rhodobacter sphaeroides cytochrome c2 signal peptide is not necessary for export and heme attachment. J Bacteriol. 1994 Feb;176(3):602–609. doi: 10.1128/jb.176.3.602-609.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Braun C., Zumft W. G. Marker exchange of the structural genes for nitric oxide reductase blocks the denitrification pathway of Pseudomonas stutzeri at nitric oxide. J Biol Chem. 1991 Dec 5;266(34):22785–22788. [PubMed] [Google Scholar]
  70. Braun C., Zumft W. G. The structural genes of the nitric oxide reductase complex from Pseudomonas stutzeri are part of a 30-kilobase gene cluster for denitrification. J Bacteriol. 1992 Apr;174(7):2394–2397. doi: 10.1128/jb.174.7.2394-2397.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Breton J., Berks B. C., Reilly A., Thomson A. J., Ferguson S. J., Richardson D. J. Characterization of the paramagnetic iron-containing redox centres of Thiosphaera pantotropha periplasmic nitrate reductase. FEBS Lett. 1994 May 23;345(1):76–80. doi: 10.1016/0014-5793(94)00445-5. [DOI] [PubMed] [Google Scholar]
  72. Breton R., Watson D., Yaguchi M., Lapointe J. Glutamyl-tRNA synthetases of Bacillus subtilis 168T and of Bacillus stearothermophilus. Cloning and sequencing of the gltX genes and comparison with other aminoacyl-tRNA synthetases. J Biol Chem. 1990 Oct 25;265(30):18248–18255. [PubMed] [Google Scholar]
  73. Brito F., DeMoss J. A., Dubourdieu M. Isolation and identification of menaquinone-9 from purified nitrate reductase of Escherichia coli. J Bacteriol. 1995 Jul;177(13):3728–3735. doi: 10.1128/jb.177.13.3728-3735.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Broda E. Two kinds of lithotrophs missing in nature. Z Allg Mikrobiol. 1977;17(6):491–493. doi: 10.1002/jobm.3630170611. [DOI] [PubMed] [Google Scholar]
  75. Brons H. J., Hagen W. R., Zehnder A. J. Ferrous iron dependent nitric oxide production in nitrate reducing cultures of Escherichia coli. Arch Microbiol. 1991;155(4):341–347. doi: 10.1007/BF00243453. [DOI] [PubMed] [Google Scholar]
  76. Brudvig G. W., Stevens T. H., Chan S. I. Reactions of nitric oxide with cytochrome c oxidase. Biochemistry. 1980 Nov 11;19(23):5275–5285. doi: 10.1021/bi00564a020. [DOI] [PubMed] [Google Scholar]
  77. Brunelli L., Crow J. P., Beckman J. S. The comparative toxicity of nitric oxide and peroxynitrite to Escherichia coli. Arch Biochem Biophys. 1995 Jan 10;316(1):327–334. doi: 10.1006/abbi.1995.1044. [DOI] [PubMed] [Google Scholar]
  78. Bryan B. A., Jeter R. M., Carlson C. A. Inability of Pseudomonas stutzeri denitrification mutants with the phenotype of Pseudomonas aeruginosa to grow in nitrous oxide. Appl Environ Microbiol. 1985 Nov;50(5):1301–1303. doi: 10.1128/aem.50.5.1301-1303.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Börner G., Karrasch M., Thauer R. K. Molybdopterin adenine dinucleotide and molybdopterin hypoxanthine dinucleotide in formylmethanofuran dehydrogenase from Methanobacterium thermoautotrophicum (Marburg). FEBS Lett. 1991 Sep 23;290(1-2):31–34. doi: 10.1016/0014-5793(91)81218-w. [DOI] [PubMed] [Google Scholar]
  80. Cai M., Bradford E. G., Timkovich R. Investigation of the solution conformation of cytochrome c-551 from Pseudomonas stutzeri. Biochemistry. 1992 Sep 15;31(36):8603–8612. doi: 10.1021/bi00151a030. [DOI] [PubMed] [Google Scholar]
  81. Cai M., Timkovich R. Solution conformation of cytochrome c-551 from Pseudomonas stutzeri ZoBell determined by NMR. Biophys J. 1994 Sep;67(3):1207–1215. doi: 10.1016/S0006-3495(94)80590-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Calder K., Burke K. A., Lascelles J. Induction of nitrate reductase and membrane cytochromes in wild type and chlorate-resistant Paracoccus denitrificans. Arch Microbiol. 1980 Jun;126(2):149–153. doi: 10.1007/BF00511220. [DOI] [PubMed] [Google Scholar]
  83. Calmels S., Ohshima H., Henry Y., Bartsch H. Characterization of bacterial cytochrome cd(1)-nitrite reductase as one enzyme responsible for catalysis of nitrosation of secondary amines. Carcinogenesis. 1996 Mar;17(3):533–536. doi: 10.1093/carcin/17.3.533. [DOI] [PubMed] [Google Scholar]
  84. Camilli A., Mekalanos J. J. Use of recombinase gene fusions to identify Vibrio cholerae genes induced during infection. Mol Microbiol. 1995 Nov;18(4):671–683. doi: 10.1111/j.1365-2958.1995.mmi_18040671.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Canters G. W., Gilardi G. Engineering type 1 copper sites in proteins. FEBS Lett. 1993 Jun 28;325(1-2):39–48. doi: 10.1016/0014-5793(93)81410-2. [DOI] [PubMed] [Google Scholar]
  86. Canters G. W. The azurin gene from Pseudomonas aeruginosa codes for a pre-protein with a signal peptide. Cloning and sequencing of the azurin gene. FEBS Lett. 1987 Feb 9;212(1):168–172. doi: 10.1016/0014-5793(87)81579-x. [DOI] [PubMed] [Google Scholar]
  87. Carlson C. A., Ferguson L. P., Ingraham J. L. Properties of dissimilatory nitrate reductase purified from the denitrifier Pseudomonas aeruginosa. J Bacteriol. 1982 Jul;151(1):162–171. doi: 10.1128/jb.151.1.162-171.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Carlson C. A., Ingraham J. L. Comparison of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans. Appl Environ Microbiol. 1983 Apr;45(4):1247–1253. doi: 10.1128/aem.45.4.1247-1253.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Carlson C. A., Pierson L. S., Rosen J. J., Ingraham J. L. Pseudomonas stutzeri and related species undergo natural transformation. J Bacteriol. 1983 Jan;153(1):93–99. doi: 10.1128/jb.153.1.93-99.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Carlson C. R., Grønstad A., Kolstø A. B. Physical maps of the genomes of three Bacillus cereus strains. J Bacteriol. 1992 Jun;174(11):3750–3756. doi: 10.1128/jb.174.11.3750-3756.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Carr G. J., Ferguson S. J. Nitric oxide formed by nitrite reductase of Paracoccus denitrificans is sufficiently stable to inhibit cytochrome oxidase activity and is reduced by its reductase under aerobic conditions. Biochim Biophys Acta. 1990 May 15;1017(1):57–62. doi: 10.1016/0005-2728(90)90178-7. [DOI] [PubMed] [Google Scholar]
  92. Carr G. J., Ferguson S. J. The nitric oxide reductase of Paracoccus denitrificans. Biochem J. 1990 Jul 15;269(2):423–429. doi: 10.1042/bj2690423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Carr G. J., Page M. D., Ferguson S. J. The energy-conserving nitric-oxide-reductase system in Paracoccus denitrificans. Distinction from the nitrite reductase that catalyses synthesis of nitric oxide and evidence from trapping experiments for nitric oxide as a free intermediate during denitrification. Eur J Biochem. 1989 Feb 15;179(3):683–692. doi: 10.1111/j.1432-1033.1989.tb14601.x. [DOI] [PubMed] [Google Scholar]
  94. Carratala J., Salazar A., Mascaro J., Santin M. Community-acquired pneumonia due to Pseudomonas stutzeri. Clin Infect Dis. 1992 Mar;14(3):792–792. doi: 10.1093/clinids/14.3.792. [DOI] [PubMed] [Google Scholar]
  95. Castignetti D., Hollocher T. C. Heterotrophic nitrification among denitrifiers. Appl Environ Microbiol. 1984 Apr;47(4):620–623. doi: 10.1128/aem.47.4.620-623.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Cavicchioli R., Chiang R. C., Kalman L. V., Gunsalus R. P. Role of the periplasmic domain of the Escherichia coli NarX sensor-transmitter protein in nitrate-dependent signal transduction and gene regulation. Mol Microbiol. 1996 Sep;21(5):901–911. doi: 10.1046/j.1365-2958.1996.491422.x. [DOI] [PubMed] [Google Scholar]
  97. Chaddock A. M., Mant A., Karnauchov I., Brink S., Herrmann R. G., Klösgen R. B., Robinson C. A new type of signal peptide: central role of a twin-arginine motif in transfer signals for the delta pH-dependent thylakoidal protein translocase. EMBO J. 1995 Jun 15;14(12):2715–2722. doi: 10.1002/j.1460-2075.1995.tb07272.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Chan M. K., Mukund S., Kletzin A., Adams M. W., Rees D. C. Structure of a hyperthermophilic tungstopterin enzyme, aldehyde ferredoxin oxidoreductase. Science. 1995 Mar 10;267(5203):1463–1469. doi: 10.1126/science.7878465. [DOI] [PubMed] [Google Scholar]
  99. Chan S. I., Li P. M. Cytochrome c oxidase: understanding nature's design of a proton pump. Biochemistry. 1990 Jan 9;29(1):1–12. doi: 10.1021/bi00453a001. [DOI] [PubMed] [Google Scholar]
  100. Chan Y. K., McCormick W. A., Watson R. J. A new nos gene downstream from nosDFY is essential for dissimilatory reduction of nitrous oxide by Rhizobium (Sinorhizobium) meliloti. Microbiology. 1997 Aug;143(Pt 8):2817–2824. doi: 10.1099/00221287-143-8-2817. [DOI] [PubMed] [Google Scholar]
  101. Chang C. K. On the structure of heme d1. An isobacteriochlorin derivative as the prosthetic group of dissimilatory nitrite reductase? J Biol Chem. 1985 Aug 15;260(17):9520–9522. [PubMed] [Google Scholar]
  102. Chang C. K., Timkovich R., Wu W. Evidence that heme d1 is a 1,3-porphyrindione. Biochemistry. 1986 Dec 30;25(26):8447–8453. doi: 10.1021/bi00374a019. [DOI] [PubMed] [Google Scholar]
  103. Chang T. K., Iverson S. A., Rodrigues C. G., Kiser C. N., Lew A. Y., Germanas J. P., Richards J. H. Gene synthesis, expression, and mutagenesis of the blue copper proteins azurin and plastocyanin. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1325–1329. doi: 10.1073/pnas.88.4.1325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Chauhan S., O'Brian M. R. Bradyrhizobium japonicum delta-aminolevulinic acid dehydratase is essential for symbiosis with soybean and contains a novel metal-binding domain. J Bacteriol. 1993 Nov;175(22):7222–7227. doi: 10.1128/jb.175.22.7222-7227.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Chen J. Y., Chang W. C., Chang T., Chang W. C., Liu M. Y., Payne W. J., LeGall J. Cloning, characterization, and expression of the nitric oxide-generating nitrite reductase and of the blue copper protein genes of Achromobacter cycloclastes. Biochem Biophys Res Commun. 1996 Feb 15;219(2):423–428. doi: 10.1006/bbrc.1996.0249. [DOI] [PubMed] [Google Scholar]
  106. Chen Y., Rosazza J. P. A bacterial nitric oxide synthase from a Nocardia species. Biochem Biophys Res Commun. 1994 Sep 15;203(2):1251–1258. doi: 10.1006/bbrc.1994.2317. [DOI] [PubMed] [Google Scholar]
  107. Chen Y., Rosazza J. P. Purification and characterization of nitric oxide synthase (NOSNoc) from a Nocardia species. J Bacteriol. 1995 Sep;177(17):5122–5128. doi: 10.1128/jb.177.17.5122-5128.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Chiang R. C., Cavicchioli R., Gunsalus R. P. Identification and characterization of narQ, a second nitrate sensor for nitrate-dependent gene regulation in Escherichia coli. Mol Microbiol. 1992 Jul;6(14):1913–1923. doi: 10.1111/j.1365-2958.1992.tb01364.x. [DOI] [PubMed] [Google Scholar]
  109. Chikwem J. O., Downey R. J. Purification and characterization of the respiratory nitrate reductase of Bacillus stearothermophilus. Anal Biochem. 1982 Oct;126(1):74–80. doi: 10.1016/0003-2697(82)90110-5. [DOI] [PubMed] [Google Scholar]
  110. Chou P. L., Ohtsuka M., Minowa T., Yamasato K., Sakano Y., Matsuzawa H., Ohta T., Sakai H. Reddish Escherichia coli cells caused by overproduction of Bacillus stearothermophilus uroporphyrinogen III methylase: cloning, sequencing, and expression of the gene. Biosci Biotechnol Biochem. 1995 Oct;59(10):1817–1824. doi: 10.1271/bbb.59.1817. [DOI] [PubMed] [Google Scholar]
  111. Clark M. A., Tang Y. J., Ingraham J. L. A NosA-specific bacteriophage can be used to select denitrification-defective mutants of Pseudomonas stutzeri. J Gen Microbiol. 1989 Oct;135(10):2569–2575. doi: 10.1099/00221287-135-10-2569. [DOI] [PubMed] [Google Scholar]
  112. Claros M. G., von Heijne G. TopPred II: an improved software for membrane protein structure predictions. Comput Appl Biosci. 1994 Dec;10(6):685–686. doi: 10.1093/bioinformatics/10.6.685. [DOI] [PubMed] [Google Scholar]
  113. Conrad R. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev. 1996 Dec;60(4):609–640. doi: 10.1128/mr.60.4.609-640.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Coomber S. A., Jones R. M., Jordan P. M., Hunter C. N. A putative anaerobic coproporphyrinogen III oxidase in Rhodobacter sphaeroides. I. Molecular cloning, transposon mutagenesis and sequence analysis of the gene. Mol Microbiol. 1992 Nov;6(21):3159–3169. doi: 10.1111/j.1365-2958.1992.tb01772.x. [DOI] [PubMed] [Google Scholar]
  115. Costa C., Macedo A., Moura I., Moura J. J., Le Gall J., Berlier Y., Liu M. Y., Payne W. J. Regulation of the hexaheme nitrite/nitric oxide reductase of Desulfovibrio desulfuricans, Wolinella succinogenes and Escherichia coli. A mass spectrometric study. FEBS Lett. 1990 Dec 10;276(1-2):67–70. doi: 10.1016/0014-5793(90)80508-g. [DOI] [PubMed] [Google Scholar]
  116. Coyle C. L., Zumft W. G., Kroneck P. M., Körner H., Jakob W. Nitrous oxide reductase from denitrifying Pseudomonas perfectomarina. Purification and properties of a novel multicopper enzyme. Eur J Biochem. 1985 Dec 16;153(3):459–467. doi: 10.1111/j.1432-1033.1985.tb09324.x. [DOI] [PubMed] [Google Scholar]
  117. Coyne M. S., Arunakumari A., Averill B. A., Tiedje J. M. Immunological identification and distribution of dissimilatory heme cd1 and nonheme copper nitrite reductases in denitrifying bacteria. Appl Environ Microbiol. 1989 Nov;55(11):2924–2931. doi: 10.1128/aem.55.11.2924-2931.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Coyne M. S., Arunakumari A., Pankratz H. S., Tiedje J. M. Localization of the cytochrome cd1 and copper nitrite reductases in denitrifying bacteria. J Bacteriol. 1990 May;172(5):2558–2562. doi: 10.1128/jb.172.5.2558-2562.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Cramm R., Siddiqui R. A., Friedrich B. Primary sequence and evidence for a physiological function of the flavohemoprotein of Alcaligenes eutrophus. J Biol Chem. 1994 Mar 11;269(10):7349–7354. [PubMed] [Google Scholar]
  120. Cramm R., Siddiqui R. A., Friedrich B. Two isofunctional nitric oxide reductases in Alcaligenes eutrophus H16. J Bacteriol. 1997 Nov;179(21):6769–6777. doi: 10.1128/jb.179.21.6769-6777.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Craske A., Ferguson S. J. The respiratory nitrate reductase from Paracoccus denitrificans. Molecular characterisation and kinetic properties. Eur J Biochem. 1986 Jul 15;158(2):429–436. doi: 10.1111/j.1432-1033.1986.tb09771.x. [DOI] [PubMed] [Google Scholar]
  122. Crooke H., Cole J. The biogenesis of c-type cytochromes in Escherichia coli requires a membrane-bound protein, DipZ, with a protein disulphide isomerase-like domain. Mol Microbiol. 1995 Mar;15(6):1139–1150. doi: 10.1111/j.1365-2958.1995.tb02287.x. [DOI] [PubMed] [Google Scholar]
  123. Crouzet J., Cauchois L., Blanche F., Debussche L., Thibaut D., Rouyez M. C., Rigault S., Mayaux J. F., Cameron B. Nucleotide sequence of a Pseudomonas denitrificans 5.4-kilobase DNA fragment containing five cob genes and identification of structural genes encoding S-adenosyl-L-methionine: uroporphyrinogen III methyltransferase and cobyrinic acid a,c-diamide synthase. J Bacteriol. 1990 Oct;172(10):5968–5979. doi: 10.1128/jb.172.10.5968-5979.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Cruz Ramos H., Boursier L., Moszer I., Kunst F., Danchin A., Glaser P. Anaerobic transcription activation in Bacillus subtilis: identification of distinct FNR-dependent and -independent regulatory mechanisms. EMBO J. 1995 Dec 1;14(23):5984–5994. doi: 10.1002/j.1460-2075.1995.tb00287.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Cunningham L., Williams H. D. Isolation and characterization of mutants defective in the cyanide-insensitive respiratory pathway of Pseudomonas aeruginosa. J Bacteriol. 1995 Jan;177(2):432–438. doi: 10.1128/jb.177.2.432-438.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Cutruzzolà F., Arese M., Grasso S., Bellelli A., Brunori M. Mutagenesis of nitrite reductase from Pseudomonas aeruginosa: tyrosine-10 in the c heme domain is not involved in catalysis. FEBS Lett. 1997 Jul 28;412(2):365–369. doi: 10.1016/s0014-5793(97)00583-8. [DOI] [PubMed] [Google Scholar]
  127. Cuypers H., Berghöfer J., Zumft W. G. Multiple nosZ promoters and anaerobic expression of nos genes necessary for Pseudomonas stutzeri nitrous oxide reductase and assembly of its copper centers. Biochim Biophys Acta. 1995 Nov 7;1264(2):183–190. doi: 10.1016/0167-4781(95)00128-4. [DOI] [PubMed] [Google Scholar]
  128. Cuypers H., Viebrock-Sambale A., Zumft W. G. NosR, a membrane-bound regulatory component necessary for expression of nitrous oxide reductase in denitrifying Pseudomonas stutzeri. J Bacteriol. 1992 Aug;174(16):5332–5339. doi: 10.1128/jb.174.16.5332-5339.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Cuypers H., Zumft W. G. Anaerobic control of denitrification in Pseudomonas stutzeri escapes mutagenesis of an fnr-like gene. J Bacteriol. 1993 Nov;175(22):7236–7246. doi: 10.1128/jb.175.22.7236-7246.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Dailey H. A. Purification and characterization of bacterial ferrochelatase. Methods Enzymol. 1986;123:408–415. doi: 10.1016/s0076-6879(86)23050-5. [DOI] [PubMed] [Google Scholar]
  131. Daniel R. M., Appleby C. A. Anaerobic-nitrate, symbiotic and aerobic growth of Rhizobium japonicum: effects on cytochrome P 450 , other haemoproteins, nitrate and nitrite reductases. Biochim Biophys Acta. 1972 Sep 20;275(3):347–354. doi: 10.1016/0005-2728(72)90215-0. [DOI] [PubMed] [Google Scholar]
  132. Darwin A. J., Stewart V. Nitrate and nitrite regulation of the Fnr-dependent aeg-46.5 promoter of Escherichia coli K-12 is mediated by competition between homologous response regulators (NarL and NarP) for a common DNA-binding site. J Mol Biol. 1995 Aug 4;251(1):15–29. doi: 10.1006/jmbi.1995.0412. [DOI] [PubMed] [Google Scholar]
  133. David M., Daveran M. L., Batut J., Dedieu A., Domergue O., Ghai J., Hertig C., Boistard P., Kahn D. Cascade regulation of nif gene expression in Rhizobium meliloti. Cell. 1988 Aug 26;54(5):671–683. doi: 10.1016/s0092-8674(88)80012-6. [DOI] [PubMed] [Google Scholar]
  134. De Groote M. A., Granger D., Xu Y., Campbell G., Prince R., Fang F. C. Genetic and redox determinants of nitric oxide cytotoxicity in a Salmonella typhimurium model. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6399–6403. doi: 10.1073/pnas.92.14.6399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. De Mot R., Schoofs G., Nagy I., Vanderleyden J. Sequence of the cobA gene encoding S-adenosyl-L-methionine: uroporhyrinogen III methyltransferase of Pseudomonas fluorescens. Gene. 1994 Dec 2;150(1):199–200. doi: 10.1016/0378-1119(94)90886-9. [DOI] [PubMed] [Google Scholar]
  136. DeMoss J. A., Hsu P. Y. NarK enhances nitrate uptake and nitrite excretion in Escherichia coli. J Bacteriol. 1991 Jun;173(11):3303–3310. doi: 10.1128/jb.173.11.3303-3310.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. DeMoss J. A. Limited proteolysis of nitrate reductase purified from membranes of Escherichia coli. J Biol Chem. 1977 Mar 10;252(5):1696–1701. [PubMed] [Google Scholar]
  138. Delic-Attree I., Toussaint B., Vignais P. M. Cloning and sequence analyses of the genes coding for the integration host factor (IHF) and HU proteins of Pseudomonas aeruginosa. Gene. 1995 Feb 27;154(1):61–64. doi: 10.1016/0378-1119(94)00875-s. [DOI] [PubMed] [Google Scholar]
  139. Demoss J. A., Fan T. Y., Scott R. H. Characterization of subunit structural alterations which occur during purification of nitrate reductase from Escherichia coli. Arch Biochem Biophys. 1981 Jan;206(1):54–64. doi: 10.1016/0003-9861(81)90065-5. [DOI] [PubMed] [Google Scholar]
  140. Dempsey J. A., Cannon J. G. Locations of genetic markers on the physical map of the chromosome of Neisseria gonorrhoeae FA1090. J Bacteriol. 1994 Apr;176(7):2055–2060. doi: 10.1128/jb.176.7.2055-2060.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Dennison C., Vijgenboom E., de Vries S., van der Oost J., Canters G. W. Introduction of a CuA site into the blue copper protein amicyanin from Thiobacillus versutus. FEBS Lett. 1995 May 22;365(1):92–94. doi: 10.1016/0014-5793(95)00429-d. [DOI] [PubMed] [Google Scholar]
  142. Dermastia M., Turk T., Hollocher T. C. Nitric oxide reductase. Purification from Paracoccus denitrificans with use of a single column and some characteristics. J Biol Chem. 1991 Jun 15;266(17):10899–10905. [PubMed] [Google Scholar]
  143. Detlefsen D. J., Thanabal V., Pecoraro V. L., Wagner G. Solution structure of Fe(II) cytochrome c551 from Pseudomonas aeruginosa as determined by two-dimensional 1H NMR. Biochemistry. 1991 Sep 17;30(37):9040–9046. doi: 10.1021/bi00101a019. [DOI] [PubMed] [Google Scholar]
  144. Ding H., Hidalgo E., Demple B. The redox state of the [2Fe-2S] clusters in SoxR protein regulates its activity as a transcription factor. J Biol Chem. 1996 Dec 27;271(52):33173–33175. doi: 10.1074/jbc.271.52.33173. [DOI] [PubMed] [Google Scholar]
  145. Dodd F. E., Hasnain S. S., Abraham Z. H., Eady R. R., Smith B. E. Structures of a blue-copper nitrite reductase and its substrate-bound complex. Acta Crystallogr D Biol Crystallogr. 1997 Jul 1;53(Pt 4):406–418. doi: 10.1107/S0907444997002667. [DOI] [PubMed] [Google Scholar]
  146. Dodd F. E., Hasnain S. S., Hunter W. N., Abraham Z. H., Debenham M., Kanzler H., Eldridge M., Eady R. R., Ambler R. P., Smith B. E. Evidence for two distinct azurins in Alcaligenes xylosoxidans (NCIMB 11015): potential electron donors to nitrite reductase. Biochemistry. 1995 Aug 15;34(32):10180–10186. doi: 10.1021/bi00032a011. [DOI] [PubMed] [Google Scholar]
  147. Doi M., Shioi Y., Morita M., Takamiya K. Two types of cytochrome cd1 in the aerobic photosynthetic bacterium, Erythrobacter sp. OCh 114. Eur J Biochem. 1989 Oct 1;184(3):521–527. doi: 10.1111/j.1432-1033.1989.tb15045.x. [DOI] [PubMed] [Google Scholar]
  148. Dolata M. M., Van Beeumen J. J., Ambler R. P., Meyer T. E., Cusanovich M. A. Nucleotide sequence of the heme subunit of flavocytochrome c from the purple phototrophic bacterium, Chromatium vinosum. A 2.6-kilobase pair DNA fragment contains two multiheme cytochromes, a flavoprotein, and a homolog of human ankyrin. J Biol Chem. 1993 Jul 5;268(19):14426–14431. [PubMed] [Google Scholar]
  149. Dong A., Huang P., Zhao X. J., Sampath V., Caughey W. S. Characterization of sites occupied by the anesthetic nitrous oxide within proteins by infrared spectroscopy. J Biol Chem. 1994 Sep 30;269(39):23911–23917. [PubMed] [Google Scholar]
  150. Dong X. R., Li S. F., DeMoss J. A. Upstream sequence elements required for NarL-mediated activation of transcription from the narGHJI promoter of Escherichia coli. J Biol Chem. 1992 Jul 15;267(20):14122–14128. [PubMed] [Google Scholar]
  151. Donohue T. J., McEwan A. G., Kaplan S. Cloning, DNA sequence, and expression of the Rhodobacter sphaeroides cytochrome c2 gene. J Bacteriol. 1986 Nov;168(2):962–972. doi: 10.1128/jb.168.2.962-972.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  152. Downey R. J., Kiszkiss D. F., Nuner J. H. Influence of oxygen on development of nitrate respiration in Bacillus stearothermophilus. J Bacteriol. 1969 Jun;98(3):1056–1062. doi: 10.1128/jb.98.3.1056-1062.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Doyle W. A., Burke J. F., Chovnick A., Dutton F. L., Whittle J. R., Bray R. C. Properties of xanthine dehydrogenase variants from rosy mutant strains of Drosophila melanogaster and their relevance to the enzyme's structure and mechanism. Eur J Biochem. 1996 Aug 1;239(3):782–795. doi: 10.1111/j.1432-1033.1996.0782u.x. [DOI] [PubMed] [Google Scholar]
  154. Dreusch A., Bürgisser D. M., Heizmann C. W., Zumft W. G. Lack of copper insertion into unprocessed cytoplasmic nitrous oxide reductase generated by an R20D substitution in the arginine consensus motif of the signal peptide. Biochim Biophys Acta. 1997 Apr 11;1319(2-3):311–318. doi: 10.1016/s0005-2728(96)00174-0. [DOI] [PubMed] [Google Scholar]
  155. Dreusch A., Riester J., Kroneck P. M., Zumft W. G. Mutation of the conserved Cys165 outside of the CuA domain destabilizes nitrous oxide reductase but maintains its catalytic activity. Evidence for disulfide bridges and a putative protein disulfide isomerase gene. Eur J Biochem. 1996 Apr 15;237(2):447–453. doi: 10.1111/j.1432-1033.1996.0447k.x. [DOI] [PubMed] [Google Scholar]
  156. Drummond J. T., Matthews R. G. Nitrous oxide degradation by cobalamin-dependent methionine synthase: characterization of the reactants and products in the inactivation reaction. Biochemistry. 1994 Mar 29;33(12):3732–3741. doi: 10.1021/bi00178a033. [DOI] [PubMed] [Google Scholar]
  157. Dubourdieu M., DeMoss J. A. The narJ gene product is required for biogenesis of respiratory nitrate reductase in Escherichia coli. J Bacteriol. 1992 Feb;174(3):867–872. doi: 10.1128/jb.174.3.867-872.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Dunstan R. H., Kelley B. C., Nicholas D. J. Fixation of dinitrogen derived from denitrification of nitrate in a photosynthetic bacterium, Rhodopseudomonas sphaeroides forma sp. denitrificans. J Bacteriol. 1982 Apr;150(1):100–104. doi: 10.1128/jb.150.1.100-104.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  159. Eaves D. J., Palmer T., Boxer D. H. The product of the molybdenum cofactor gene mobB of Escherichia coli is a GTP-binding protein. Eur J Biochem. 1997 Jun 15;246(3):690–697. doi: 10.1111/j.1432-1033.1997.t01-1-00690.x. [DOI] [PubMed] [Google Scholar]
  160. Egami F. A comment to the concept on the role of nitrate fermentation and nitrate respiration in an evolutionary pathway of energy metabolism. Z Allg Mikrobiol. 1973;13(2):177–181. doi: 10.1002/jobm.3630130212. [DOI] [PubMed] [Google Scholar]
  161. Einarsdóttir O., Caughey W. S. Interactions of the anesthetic nitrous oxide with bovine heart cytochrome c oxidase. Effects on protein structure, oxidase activity, and other properties. J Biol Chem. 1988 Jul 5;263(19):9199–9205. [PubMed] [Google Scholar]
  162. Ensign S. A., Hyman M. R., Arp D. J. In vitro activation of ammonia monooxygenase from Nitrosomonas europaea by copper. J Bacteriol. 1993 Apr;175(7):1971–1980. doi: 10.1128/jb.175.7.1971-1980.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Farinha M. A., Ronald S. L., Kropinski A. M., Paranchych W. Localization of the virulence-associated genes pilA, pilR, rpoN, fliA, fliC, ent, and fbp on the physical map of Pseudomonas aeruginosa PAO1 by pulsed-field electrophoresis. Infect Immun. 1993 Apr;61(4):1571–1575. doi: 10.1128/iai.61.4.1571-1575.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Farrar J. A., Lappalainen P., Zumft W. G., Saraste M., Thomson A. J. Spectroscopic and mutagenesis studies on the CuA centre from the cytochrome-c oxidase complex of Paracoccus denitrificans. Eur J Biochem. 1995 Aug 15;232(1):294–303. doi: 10.1111/j.1432-1033.1995.tb20811.x. [DOI] [PubMed] [Google Scholar]
  165. Farrar J. A., Thomson A. J., Cheesman M. R., Dooley D. M., Zumft W. G. A model of the copper centres of nitrous oxide reductase (Pseudomonas stutzeri). Evidence from optical, EPR and MCD spectroscopy. FEBS Lett. 1991 Dec 2;294(1-2):11–15. doi: 10.1016/0014-5793(91)81331-2. [DOI] [PubMed] [Google Scholar]
  166. Fast B., Lindgren P., Götz F. Cloning, sequencing, and characterization of a gene (narT) encoding a transport protein involved in dissimilatory nitrate reduction in Staphylococcus carnosus. Arch Microbiol. 1996 Dec;166(6):361–367. doi: 10.1007/BF01682980. [DOI] [PubMed] [Google Scholar]
  167. Fauman E. B., Yuvaniyama C., Schubert H. L., Stuckey J. A., Saper M. A. The X-ray crystal structures of Yersinia tyrosine phosphatase with bound tungstate and nitrate. Mechanistic implications. J Biol Chem. 1996 Aug 2;271(31):18780–18788. doi: 10.1074/jbc.271.31.18780. [DOI] [PubMed] [Google Scholar]
  168. Fedorova R. I., Milekhina E. I., Il'iukhina N. I. O vozmozhnosti metoda "gazoobmena" dlia obnaruzheniia zhizni vne zemli--identifikatsiia azotfiksiruiushchikh mikroorganizmov. Izv Akad Nauk SSSR Biol. 1973 Nov-Dec;6:797–806. [PubMed] [Google Scholar]
  169. Fee J. A., Sanders D., Slutter C. E., Doan P. E., Aasa R., Karpefors M., Vänngård T. Multi-frequency EPR evidence for a binuclear CuA center in cytochrome c oxidase: studies with a 63Cu- and 65Cu-enriched, soluble domain of the cytochrome ba3 subunit II from Thermus thermophilus. Biochem Biophys Res Commun. 1995 Jul 6;212(1):77–83. doi: 10.1006/bbrc.1995.1938. [DOI] [PubMed] [Google Scholar]
  170. Fegley B., Jr, Prinn R. G., Hartman H., Watkins G. H. Chemical effects of large impacts on the Earth's primitive atmosphere. Nature. 1986 Jan 23;319:305–308. doi: 10.1038/319305a0. [DOI] [PubMed] [Google Scholar]
  171. Fenderson F. F., Kumar S., Adman E. T., Liu M. Y., Payne W. J., LeGall J. Amino acid sequence of nitrite reductase: a copper protein from Achromobacter cycloclastes. Biochemistry. 1991 Jul 23;30(29):7180–7185. doi: 10.1021/bi00243a020. [DOI] [PubMed] [Google Scholar]
  172. Fernández-López M., Olivares J., Bedmar E. J. Purification and characterization of the membrane-bound nitrate reductase isoenzymes of Bradyrhizobium japonicum. FEBS Lett. 1996 Aug 19;392(1):1–5. doi: 10.1016/0014-5793(96)00670-9. [DOI] [PubMed] [Google Scholar]
  173. Finazzi-Agrò A., Rotilio G., Avigliano L., Guerrieri P., Boffi V., Mondovì B. Environment of copper in Pseudomonas fluorescens azurin: fluorometric approach. Biochemistry. 1970 Apr 28;9(9):2009–2014. doi: 10.1021/bi00811a023. [DOI] [PubMed] [Google Scholar]
  174. Firestone M. K., Firestone R. B., Tiedje J. M. Nitric oxide as an intermediate in denitrification: evidence from nitrogen-13 isotope exchange. Biochem Biophys Res Commun. 1979 Nov 14;91(1):10–16. doi: 10.1016/0006-291x(79)90575-8. [DOI] [PubMed] [Google Scholar]
  175. Fischer H. M. Genetic regulation of nitrogen fixation in rhizobia. Microbiol Rev. 1994 Sep;58(3):352–386. doi: 10.1128/mr.58.3.352-386.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  176. Fleischmann R. D., Adams M. D., White O., Clayton R. A., Kirkness E. F., Kerlavage A. R., Bult C. J., Tomb J. F., Dougherty B. A., Merrick J. M. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995 Jul 28;269(5223):496–512. doi: 10.1126/science.7542800. [DOI] [PubMed] [Google Scholar]
  177. Fonstein M., Koshy E. G., Nikolskaya T., Mourachov P., Haselkorn R. Refinement of the high-resolution physical and genetic map of Rhodobacter capsulatus and genome surveys using blots of the cosmid encyclopedia. EMBO J. 1995 Apr 18;14(8):1827–1841. doi: 10.1002/j.1460-2075.1995.tb07171.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  178. Forget P. Les nitrate-réductases bactériennes. Solubilisation, purification et propriétés de l'enzyme A de Micrococcus denitrificans. Eur J Biochem. 1971 Feb 1;18(3):442–450. doi: 10.1111/j.1432-1033.1971.tb01262.x. [DOI] [PubMed] [Google Scholar]
  179. Fries M. R., Zhou J., Chee-Sanford J., Tiedje J. M. Isolation, characterization, and distribution of denitrifying toluene degraders from a variety of habitats. Appl Environ Microbiol. 1994 Aug;60(8):2802–2810. doi: 10.1128/aem.60.8.2802-2810.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. Frustaci J. M., O'Brian M. R. Characterization of a Bradyrhizobium japonicum ferrochelatase mutant and isolation of the hemH gene. J Bacteriol. 1992 Jul;174(13):4223–4229. doi: 10.1128/jb.174.13.4223-4229.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  181. Fujiwara T., Fukumori Y. Cytochrome cb-type nitric oxide reductase with cytochrome c oxidase activity from Paracoccus denitrificans ATCC 35512. J Bacteriol. 1996 Apr;178(7):1866–1871. doi: 10.1128/jb.178.7.1866-1871.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  182. Fülöp V., Moir J. W., Ferguson S. J., Hajdu J. The anatomy of a bifunctional enzyme: structural basis for reduction of oxygen to water and synthesis of nitric oxide by cytochrome cd1. Cell. 1995 May 5;81(3):369–377. doi: 10.1016/0092-8674(95)90390-9. [DOI] [PubMed] [Google Scholar]
  183. Gaballa A., Koedam N., Cornelis P. A cytochrome c biogenesis gene involved in pyoverdine production in Pseudomonas fluorescens ATCC 17400. Mol Microbiol. 1996 Aug;21(4):777–785. doi: 10.1046/j.1365-2958.1996.391399.x. [DOI] [PubMed] [Google Scholar]
  184. Galimand M., Gamper M., Zimmermann A., Haas D. Positive FNR-like control of anaerobic arginine degradation and nitrate respiration in Pseudomonas aeruginosa. J Bacteriol. 1991 Mar;173(5):1598–1606. doi: 10.1128/jb.173.5.1598-1606.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  185. Galván A., Quesada A., Fernández E. Nitrate and nitrate are transported by different specific transport systems and by a bispecific transporter in Chlamydomonas reinhardtii. J Biol Chem. 1996 Jan 26;271(4):2088–2092. doi: 10.1074/jbc.271.4.2088. [DOI] [PubMed] [Google Scholar]
  186. Gamble T. N., Betlach M. R., Tiedje J. M. Numerically dominant denitrifying bacteria from world soils. Appl Environ Microbiol. 1977 Apr;33(4):926–939. doi: 10.1128/aem.33.4.926-939.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  187. Garber E. A., Castignetti D., Hollocher T. C. Proton translocation and proline uptake associated with reduction of nitric oxide by denitrifying Paracoccus denitrificans. Biochem Biophys Res Commun. 1982 Aug 31;107(4):1504–1507. doi: 10.1016/s0006-291x(82)80169-1. [DOI] [PubMed] [Google Scholar]
  188. Garber E. A., Hollocher T. C. 15N,18O tracer studies on the activation of nitrite by denitrifying bacteria. Nitrite/water-oxygen exchange and nitrosation reactions as indicators of electrophilic catalysis. J Biol Chem. 1982 Jul 25;257(14):8091–8097. [PubMed] [Google Scholar]
  189. Garber E. A., Hollocher T. C. Positional isotopic equivalence of nitrogen in N2O produced by the denitrifying bacterium Pseudomonas stutzeri. Indirect evidence for a nitroxyl pathway. J Biol Chem. 1982 May 10;257(9):4705–4708. [PubMed] [Google Scholar]
  190. Garber E. A., Wehrli S., Hollocher T. C. 15N-tracer and NMR studies on the pathway of denitrification. Evidence against trioxodinitrate but for nitroxyl as an intermediate. J Biol Chem. 1983 Mar 25;258(6):3587–3591. [PubMed] [Google Scholar]
  191. Garcia J. L. Etude de la dénitrification chez une bactérie thermophile sporulée. Ann Microbiol (Paris) 1977 May-Jun;128A(4):447–458. [PubMed] [Google Scholar]
  192. García-Horsman J. A., Barquera B., Rumbley J., Ma J., Gennis R. B. The superfamily of heme-copper respiratory oxidases. J Bacteriol. 1994 Sep;176(18):5587–5600. doi: 10.1128/jb.176.18.5587-5600.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  193. George G. N., Cramer S. P., Frey T. G., Prince R. C. X-ray absorption spectroscopy of oriented cytochrome oxidase. Biochim Biophys Acta. 1993 May 6;1142(3):240–252. doi: 10.1016/0005-2728(93)90152-6. [DOI] [PubMed] [Google Scholar]
  194. George G. N., Turner N. A., Bray R. C., Morpeth F. F., Boxer D. H., Cramer S. P. X-ray-absorption and electron-paramagnetic-resonance spectroscopic studies of the environment of molybdenum in high-pH and low-pH forms of Escherichia coli nitrate reductase. Biochem J. 1989 May 1;259(3):693–700. doi: 10.1042/bj2590693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  195. Gilles-González M. A., González G., Perutz M. F. Kinase activity of oxygen sensor FixL depends on the spin state of its heme iron. Biochemistry. 1995 Jan 10;34(1):232–236. doi: 10.1021/bi00001a027. [DOI] [PubMed] [Google Scholar]
  196. Ginard M., Lalucat J., Tümmler B., Römling U. Genome organization of Pseudomonas stutzeri and resulting taxonomic and evolutionary considerations. Int J Syst Bacteriol. 1997 Jan;47(1):132–143. doi: 10.1099/00207713-47-1-132. [DOI] [PubMed] [Google Scholar]
  197. Girsch P., de Vries S. Purification and initial kinetic and spectroscopic characterization of NO reductase from Paracoccus denitrificans. Biochim Biophys Acta. 1997 Jan 16;1318(1-2):202–216. doi: 10.1016/s0005-2728(96)00138-7. [DOI] [PubMed] [Google Scholar]
  198. Glaser J. H., DeMoss J. A. Phenotypic restoration by molybdate of nitrate reductase activity in chlD mutants of Escherichia coli. J Bacteriol. 1971 Nov;108(2):854–860. doi: 10.1128/jb.108.2.854-860.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  199. Glaser P., Danchin A., Kunst F., Zuber P., Nakano M. M. Identification and isolation of a gene required for nitrate assimilation and anaerobic growth of Bacillus subtilis. J Bacteriol. 1995 Feb;177(4):1112–1115. doi: 10.1128/jb.177.4.1112-1115.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  200. Glockner A. B., Jüngst A., Zumft W. G. Copper-containing nitrite reductase from Pseudomonas aureofaciens is functional in a mutationally cytochrome cd1-free background (NirS-) of Pseudomonas stutzeri. Arch Microbiol. 1993;160(1):18–26. doi: 10.1007/BF00258141. [DOI] [PubMed] [Google Scholar]
  201. Glockner A. B., Zumft W. G. Sequence analysis of an internal 9.72-kb segment from the 30-kb denitrification gene cluster of Pseudomonas stutzeri. Biochim Biophys Acta. 1996 Nov 12;1277(1-2):6–12. doi: 10.1016/s0005-2728(96)00108-9. [DOI] [PubMed] [Google Scholar]
  202. Godden J. W., Turley S., Teller D. C., Adman E. T., Liu M. Y., Payne W. J., LeGall J. The 2.3 angstrom X-ray structure of nitrite reductase from Achromobacter cycloclastes. Science. 1991 Jul 26;253(5018):438–442. doi: 10.1126/science.1862344. [DOI] [PubMed] [Google Scholar]
  203. Godfrey C., Greenwood C., Thomson A. J., Bray R. C., George G. N. Electron-paramagnetic-resonance spectroscopy studies on the dissimilatory nitrate reductase from Pseudomonas aeruginosa. Biochem J. 1984 Dec 1;224(2):601–608. doi: 10.1042/bj2240601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  204. Gokce N., Hollocher T. C., Bazylinski D. A., Jannasch H. W. Thermophilic Bacillus sp. that shows the denitrification phenotype of Pseudomonas aeruginosa. Appl Environ Microbiol. 1989 Apr;55(4):1023–1025. doi: 10.1128/aem.55.4.1023-1025.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  205. Goldflam M., Rowe J. J. Evidence for gene sharing in the nitrate reduction systems of Pseudomonas aeruginosa. J Bacteriol. 1983 Sep;155(3):1446–1449. doi: 10.1128/jb.155.3.1446-1449.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  206. Goretski J., Hollocher T. C. The kinetic and isotopic competence of nitric oxide as an intermediate in denitrification. J Biol Chem. 1990 Jan 15;265(2):889–895. [PubMed] [Google Scholar]
  207. Goretski J., Hollocher T. C. Trapping of nitric oxide produced during denitrification by extracellular hemoglobin. J Biol Chem. 1988 Feb 15;263(5):2316–2323. [PubMed] [Google Scholar]
  208. Goretski J., Zafiriou O. C., Hollocher T. C. Steady-state nitric oxide concentrations during denitrification. J Biol Chem. 1990 Jul 15;265(20):11535–11538. [PubMed] [Google Scholar]
  209. Gorny N., Wahl G., Brune A., Schink B. A strictly anaerobic nitrate-reducing bacterium growing with resorcinol and other aromatic compounds. Arch Microbiol. 1992;158(1):48–53. doi: 10.1007/BF00249065. [DOI] [PubMed] [Google Scholar]
  210. Green J., Bennett B., Jordan P., Ralph E. T., Thomson A. J., Guest J. R. Reconstitution of the [4Fe-4S] cluster in FNR and demonstration of the aerobic-anaerobic transcription switch in vitro. Biochem J. 1996 Jun 15;316(Pt 3):887–892. doi: 10.1042/bj3160887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  211. Green J., Irvine A. S., Meng W., Guest J. R. FNR-DNA interactions at natural and semi-synthetic promoters. Mol Microbiol. 1996 Jan;19(1):125–137. doi: 10.1046/j.1365-2958.1996.353884.x. [DOI] [PubMed] [Google Scholar]
  212. Greenberg E. P., Becker G. E. Nitrous oxide as end product of denitrification by strains of fluorescent pseudomonads. Can J Microbiol. 1977 Jul;23(7):903–907. doi: 10.1139/m77-133. [DOI] [PubMed] [Google Scholar]
  213. Greenwood C., Barber D., Parr S. R., Antonini E., Brunori M., Colosimo A. The reaction of Pseudomonas aeruginosa cytochrome c-551 oxidase with oxygen. Biochem J. 1978 Jul 1;173(1):11–17. doi: 10.1042/bj1730011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  214. Grossmann J. G., Abraham Z. H., Adman E. T., Neu M., Eady R. R., Smith B. E., Hasnain S. S. X-ray scattering using synchrotron radiation shows nitrite reductase from Achromobacter xylosoxidans to be a trimer in solution. Biochemistry. 1993 Jul 27;32(29):7360–7366. doi: 10.1021/bi00080a005. [DOI] [PubMed] [Google Scholar]
  215. Grovc J., Busby S., Cole J. The role of the genes nrf EFG and ccmFH in cytochrome c biosynthesis in Escherichia coli. Mol Gen Genet. 1996 Sep 13;252(3):332–341. doi: 10.1007/BF02173779. [DOI] [PubMed] [Google Scholar]
  216. Grove J., Tanapongpipat S., Thomas G., Griffiths L., Crooke H., Cole J. Escherichia coli K-12 genes essential for the synthesis of c-type cytochromes and a third nitrate reductase located in the periplasm. Mol Microbiol. 1996 Feb;19(3):467–481. doi: 10.1046/j.1365-2958.1996.383914.x. [DOI] [PubMed] [Google Scholar]
  217. Grunden A. M., Ray R. M., Rosentel J. K., Healy F. G., Shanmugam K. T. Repression of the Escherichia coli modABCD (molybdate transport) operon by ModE. J Bacteriol. 1996 Feb;178(3):735–744. doi: 10.1128/jb.178.3.735-744.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  218. Gudat J. C., Singh J., Wharton D. C. Cytochrome oxidase from Pseudomonas aeruginosa. I. Purification and some properties. Biochim Biophys Acta. 1973 Feb 22;292(2):376–390. doi: 10.1016/0005-2728(73)90044-3. [DOI] [PubMed] [Google Scholar]
  219. Guest J. R. The Leeuwenhoek Lecture, 1995. Adaptation to life without oxygen. Philos Trans R Soc Lond B Biol Sci. 1995 Nov 29;350(1332):189–202. doi: 10.1098/rstb.1995.0152. [DOI] [PubMed] [Google Scholar]
  220. Guigliarelli B., Asso M., More C., Augier V., Blasco F., Pommier J., Giordano G., Bertrand P. EPR and redox characterization of iron-sulfur centers in nitrate reductases A and Z from Escherichia coli. Evidence for a high-potential and a low-potential class and their relevance in the electron-transfer mechanism. Eur J Biochem. 1992 Jul 1;207(1):61–68. doi: 10.1111/j.1432-1033.1992.tb17020.x. [DOI] [PubMed] [Google Scholar]
  221. Guigliarelli B., Magalon A., Asso M., Bertrand P., Frixon C., Giordano G., Blasco F. Complete coordination of the four Fe-S centers of the beta subunit from Escherichia coli nitrate reductase. Physiological, biochemical, and EPR characterization of site-directed mutants lacking the highest or lowest potential [4Fe-4S] clusters. Biochemistry. 1996 Apr 16;35(15):4828–4836. doi: 10.1021/bi952459p. [DOI] [PubMed] [Google Scholar]
  222. Gurne D., Chen J., Shemin D. Dissociation and reassociation of immobilized porphobilinogen synthase: use of immobilized subunits for enzyme isolation. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1383–1387. doi: 10.1073/pnas.74.4.1383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  223. Gäher M., Einsiedler K., Crass T., Bautsch W. A physical and genetic map of Neisseria meningitidis B1940. Mol Microbiol. 1996 Jan;19(2):249–259. doi: 10.1046/j.1365-2958.1996.416901.x. [DOI] [PubMed] [Google Scholar]
  224. HART L. T., LARSON A. D., MCCLESKEY C. S. DENITRIFICATION BY CORYNEBACTERIUM NEPHRIDII. J Bacteriol. 1965 Apr;89:1104–1108. doi: 10.1128/jb.89.4.1104-1108.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  225. HORIO T., HIGASHI T., SASAGAWA M., KUSAI K., NAKAI M., OKUNUKI K. Preparation of crystalline Pseudomonas cvtochrome c-551 and its general properties. Biochem J. 1960 Oct;77:194–201. doi: 10.1042/bj0770194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  226. HORIO T., HIGASHI T., YAMANAKA T., MATSUBARA H., OKUNUKI K. Purification and properties of cytochrome oxidase from Pseudomonas aeruginosa. J Biol Chem. 1961 Mar;236:944–951. [PubMed] [Google Scholar]
  227. Haltia T., Finel M., Harms N., Nakari T., Raitio M., Wikström M., Saraste M. Deletion of the gene for subunit III leads to defective assembly of bacterial cytochrome oxidase. EMBO J. 1989 Dec 1;8(12):3571–3579. doi: 10.1002/j.1460-2075.1989.tb08529.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  228. Haltia T., Puustinen A., Finel M. The Paracoccus denitrificans cytochrome aa3 has a third subunit. Eur J Biochem. 1988 Mar 15;172(3):543–546. doi: 10.1111/j.1432-1033.1988.tb13923.x. [DOI] [PubMed] [Google Scholar]
  229. Haltia T., Saraste M., Wikström M. Subunit III of cytochrome c oxidase is not involved in proton translocation: a site-directed mutagenesis study. EMBO J. 1991 Aug;10(8):2015–2021. doi: 10.1002/j.1460-2075.1991.tb07731.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  230. Hansson M., Hederstedt L. Purification and characterisation of a water-soluble ferrochelatase from Bacillus subtilis. Eur J Biochem. 1994 Feb 15;220(1):201–208. doi: 10.1111/j.1432-1033.1994.tb18615.x. [DOI] [PubMed] [Google Scholar]
  231. Harwood C. S., Gibson J. Shedding light on anaerobic benzene ring degradation: a process unique to prokaryotes? J Bacteriol. 1997 Jan;179(2):301–309. doi: 10.1128/jb.179.2.301-309.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  232. Haskin C. J., Ravi N., Lynch J. B., Münck E., Que L., Jr Reaction of NO with the reduced R2 protein of ribonucleotide reductase from Escherichia coli. Biochemistry. 1995 Sep 5;34(35):11090–11098. doi: 10.1021/bi00035a014. [DOI] [PubMed] [Google Scholar]
  233. Hay M., Richards J. H., Lu Y. Construction and characterization of an azurin analog for the purple copper site in cytochrome c oxidase. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):461–464. doi: 10.1073/pnas.93.1.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  234. Hazes B., Magnus K. A., Kalk K. H., Bonaventura C., Hol W. G. Nitrate binding to Limulus polyphemus subunit type II hemocyanin and its functional implications. J Mol Biol. 1996 Oct 4;262(4):532–541. doi: 10.1006/jmbi.1996.0533. [DOI] [PubMed] [Google Scholar]
  235. He Y., Shelver D., Kerby R. L., Roberts G. P. Characterization of a CO-responsive transcriptional activator from Rhodospirillum rubrum. J Biol Chem. 1996 Jan 5;271(1):120–123. doi: 10.1074/jbc.271.1.120. [DOI] [PubMed] [Google Scholar]
  236. Heider J., Fuchs G. Anaerobic metabolism of aromatic compounds. Eur J Biochem. 1997 Feb 1;243(3):577–596. doi: 10.1111/j.1432-1033.1997.00577.x. [DOI] [PubMed] [Google Scholar]
  237. Heiss B., Frunzke K., Zumft W. G. Formation of the N-N bond from nitric oxide by a membrane-bound cytochrome bc complex of nitrate-respiring (denitrifying) Pseudomonas stutzeri. J Bacteriol. 1989 Jun;171(6):3288–3297. doi: 10.1128/jb.171.6.3288-3297.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  238. Hemschemeier S., Grund M., Keuntje B., Eichenlaub R. Isolation of Escherichia coli mutants defective in uptake of molybdate. J Bacteriol. 1991 Oct;173(20):6499–6506. doi: 10.1128/jb.173.20.6499-6506.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  239. Henry Y., Bessières P. Denitrification and nitrite reduction: Pseudomonas aeruginosa nitrite-reductase. Biochimie. 1984 Apr;66(4):259–289. doi: 10.1016/0300-9084(84)90005-1. [DOI] [PubMed] [Google Scholar]
  240. Hernandez D., Dias F. M., Rowe J. J. Nitrate transport and its regulation by O2 in Pseudomonas aeruginosa. Arch Biochem Biophys. 1991 Apr;286(1):159–163. doi: 10.1016/0003-9861(91)90022-b. [DOI] [PubMed] [Google Scholar]
  241. Hernandez D., Rowe J. J. Oxygen inhibition of nitrate uptake is a general regulatory mechanism in nitrate respiration. J Biol Chem. 1988 Jun 15;263(17):7937–7939. [PubMed] [Google Scholar]
  242. Higgins C. F. ABC transporters: from microorganisms to man. Annu Rev Cell Biol. 1992;8:67–113. doi: 10.1146/annurev.cb.08.110192.000435. [DOI] [PubMed] [Google Scholar]
  243. Hill K. E., Wharton D. C. Reconstitution of the apoenzyme of cytochrome oxidase from Pseudomonas aeruginosa with heme d1 and other heme groups. J Biol Chem. 1978 Jan 25;253(2):489–495. [PubMed] [Google Scholar]
  244. Hille Russ. The Mononuclear Molybdenum Enzymes. Chem Rev. 1996 Nov 7;96(7):2757–2816. doi: 10.1021/cr950061t. [DOI] [PubMed] [Google Scholar]
  245. Hilton J. C., Rajagopalan K. V. Identification of the molybdenum cofactor of dimethyl sulfoxide reductase from Rhodobacter sphaeroides f. sp. denitrificans as bis(molybdopterin guanine dinucleotide)molybdenum. Arch Biochem Biophys. 1996 Jan 1;325(1):139–143. doi: 10.1006/abbi.1996.0017. [DOI] [PubMed] [Google Scholar]
  246. Hinton S. M., Dean D. Biogenesis of molybdenum cofactors. Crit Rev Microbiol. 1990;17(3):169–188. doi: 10.3109/10408419009105724. [DOI] [PubMed] [Google Scholar]
  247. Hochstein L. I., Lang F. Purification and properties of a dissimilatory nitrate reductase from Haloferax denitrificans. Arch Biochem Biophys. 1991 Aug 1;288(2):380–385. doi: 10.1016/0003-9861(91)90210-a. [DOI] [PubMed] [Google Scholar]
  248. Hochstein L. I., Tomlinson G. A. The enzymes associated with denitrification. Annu Rev Microbiol. 1988;42:231–261. doi: 10.1146/annurev.mi.42.100188.001311. [DOI] [PubMed] [Google Scholar]
  249. Hoeren F. U., Berks B. C., Ferguson S. J., McCarthy J. E. Sequence and expression of the gene encoding the respiratory nitrous-oxide reductase from Paracoccus denitrificans. New and conserved structural and regulatory motifs. Eur J Biochem. 1993 Nov 15;218(1):49–57. doi: 10.1111/j.1432-1033.1993.tb18350.x. [DOI] [PubMed] [Google Scholar]
  250. Hoffmann T., Troup B., Szabo A., Hungerer C., Jahn D. The anaerobic life of Bacillus subtilis: cloning of the genes encoding the respiratory nitrate reductase system. FEMS Microbiol Lett. 1995 Sep 1;131(2):219–225. doi: 10.1111/j.1574-6968.1995.tb07780.x. [DOI] [PubMed] [Google Scholar]
  251. Hoitink C. W., Canters G. W. The importance of Asn47 for structure and reactivity of azurin from Alcaligenes denitrificans as studied by site-directed mutagenesis and spectroscopy. J Biol Chem. 1992 Jul 15;267(20):13836–13842. [PubMed] [Google Scholar]
  252. Hoitink C. W., Woudt L. P., Turenhout J. C., van de Kamp M., Canters G. W. Isolation and sequencing of the Alcaligenes denitrificans azurin-encoding gene: comparison with the genes encoding blue copper proteins from Pseudomonas aeruginosa and Alcaligenes faecalis. Gene. 1990 May 31;90(1):15–20. doi: 10.1016/0378-1119(90)90434-s. [DOI] [PubMed] [Google Scholar]
  253. Hole U. H., Vollack K. U., Zumft W. G., Eisenmann E., Siddiqui R. A., Friedrich B., Kroneck P. M. Characterization of the membranous denitrification enzymes nitrite reductase (cytochrome cd1) and copper-containing nitrous oxide reductase from Thiobacillus denitrificans. Arch Microbiol. 1996 Jan;165(1):55–61. doi: 10.1007/s002030050296. [DOI] [PubMed] [Google Scholar]
  254. Holloway B. W., Römling U., Tümmler B. Genomic mapping of Pseudomonas aeruginosa PAO. Microbiology. 1994 Nov;140(Pt 11):2907–2929. doi: 10.1099/13500872-140-11-2907. [DOI] [PubMed] [Google Scholar]
  255. Holloway P., McCormick W., Watson R. J., Chan Y. K. Identification and analysis of the dissimilatory nitrous oxide reduction genes, nosRZDFY, of Rhizobium meliloti. J Bacteriol. 1996 Mar;178(6):1505–1514. doi: 10.1128/jb.178.6.1505-1514.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  256. Holmes B. Identification and distribution of Pseudomonas stutzeri in clinical material. J Appl Bacteriol. 1986 May;60(5):401–411. doi: 10.1111/j.1365-2672.1986.tb05085.x. [DOI] [PubMed] [Google Scholar]
  257. Honeycutt R. J., McClelland M., Sobral B. W. Physical map of the genome of Rhizobium meliloti 1021. J Bacteriol. 1993 Nov;175(21):6945–6952. doi: 10.1128/jb.175.21.6945-6952.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  258. Hornberger U., Liebetanz R., Tichy H. V., Drews G. Cloning and sequencing of the hemA gene of Rhodobacter capsulatus and isolation of a delta-aminolevulinic acid-dependent mutant strain. Mol Gen Genet. 1990 May;221(3):371–378. doi: 10.1007/BF00259402. [DOI] [PubMed] [Google Scholar]
  259. Horowitz P. M., Muhoberac B. B., Falksen K., Wharton D. C. Controlled proteolysis by subtilisin as a probe for cyanide-induced conformational changes in Pseudomonas cytochrome oxidase. J Biol Chem. 1982 Mar 10;257(5):2140–2143. [PubMed] [Google Scholar]
  260. Howes B. D., Abraham Z. H., Lowe D. J., Brüser T., Eady R. R., Smith B. E. EPR and electron nuclear double resonance (ENDOR) studies show nitrite binding to the type 2 copper centers of the dissimilatory nitrite reductase of Alcaligenes xylosoxidans (NCIMB 11015). Biochemistry. 1994 Mar 22;33(11):3171–3177. doi: 10.1021/bi00177a005. [DOI] [PubMed] [Google Scholar]
  261. Huie R. E., Padmaja S. The reaction of no with superoxide. Free Radic Res Commun. 1993;18(4):195–199. doi: 10.3109/10715769309145868. [DOI] [PubMed] [Google Scholar]
  262. Hulse C. L., Averill B. A. Isolation of a high specific activity pink, monomeric nitrous oxide reductase from Achromobacter cycloclastes. Biochem Biophys Res Commun. 1990 Jan 30;166(2):729–735. doi: 10.1016/0006-291x(90)90870-s. [DOI] [PubMed] [Google Scholar]
  263. Hungerer C., Troup B., Römling U., Jahn D. Cloning, mapping and characterization of the Pseudomonas aeruginosa hemL gene. Mol Gen Genet. 1995 Aug 21;248(3):375–380. doi: 10.1007/BF02191605. [DOI] [PubMed] [Google Scholar]
  264. Hungerer C., Troup B., Römling U., Jahn D. Regulation of the hemA gene during 5-aminolevulinic acid formation in Pseudomonas aeruginosa. J Bacteriol. 1995 Mar;177(6):1435–1443. doi: 10.1128/jb.177.6.1435-1443.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  265. Hutchins S. R. Biodegradation of monoaromatic hydrocarbons by aquifer microorganisms using oxygen, nitrate, or nitrous oxide as the terminal electron acceptor. Appl Environ Microbiol. 1991 Aug;57(8):2403–2407. doi: 10.1128/aem.57.8.2403-2407.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  266. Huynh B. H., Lui M. C., Moura J. J., Moura I., Ljungdahl P. O., Münck E., Payne W. J., Peck H. D., Jr, DerVartanian D. V., LeGall J. Mössbauer and EPR studies on nitrite reductase from Thiobacillus denitrificans. J Biol Chem. 1982 Aug 25;257(16):9576–9581. [PubMed] [Google Scholar]
  267. Hyman M. R., Arp D. J. Acetylene inhibition of metalloenzymes. Anal Biochem. 1988 Sep;173(2):207–220. doi: 10.1016/0003-2697(88)90181-9. [DOI] [PubMed] [Google Scholar]
  268. Hyman M. R., Seefeldt L. C., Morgan T. V., Arp D. J., Mortenson L. E. Kinetic and spectroscopic analysis of the inactivating effects of nitric oxide on the individual components of Azotobacter vinelandii nitrogenase. Biochemistry. 1992 Mar 24;31(11):2947–2955. doi: 10.1021/bi00126a015. [DOI] [PubMed] [Google Scholar]
  269. IWASAKI H., SHIDARA S., SUZUKI H., MOR T. Studies on denitrification. VII. Further purification and properties of denitrifying enzyme. J Biochem. 1963 Apr;53:299–303. [PubMed] [Google Scholar]
  270. Igarashi N., Moriyama H., Fujiwara T., Fukumori Y., Tanaka N. The 2.8 A structure of hydroxylamine oxidoreductase from a nitrifying chemoautotrophic bacterium, Nitrosomonas europaea. Nat Struct Biol. 1997 Apr;4(4):276–284. doi: 10.1038/nsb0497-276. [DOI] [PubMed] [Google Scholar]
  271. Ingledew W. J., Poole R. K. The respiratory chains of Escherichia coli. Microbiol Rev. 1984 Sep;48(3):222–271. doi: 10.1128/mr.48.3.222-271.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  272. Ingledew W. J., Saraste M. The reaction of cytochrome cd1 with oxygen and peroxides [proceedings]. Biochem Soc Trans. 1979 Feb;7(1):166–168. doi: 10.1042/bst0070166. [DOI] [PubMed] [Google Scholar]
  273. Iobbi-Nivol C., Crooke H., Griffiths L., Grove J., Hussain H., Pommier J., Mejean V., Cole J. A. A reassessment of the range of c-type cytochromes synthesized by Escherichia coli K-12. FEMS Microbiol Lett. 1994 Jun 1;119(1-2):89–94. doi: 10.1111/j.1574-6968.1994.tb06872.x. [DOI] [PubMed] [Google Scholar]
  274. Iobbi-Nivol C., Palmer T., Whitty P. W., McNairn E., Boxer D. H. The mob locus of Escherichia coli K12 required for molybdenum cofactor biosynthesis is expressed at very low levels. Microbiology. 1995 Jul;141(Pt 7):1663–1671. doi: 10.1099/13500872-141-7-1663. [DOI] [PubMed] [Google Scholar]
  275. Iobbi-Nivol C., Santini C. L., Blasco F., Giordano G. Purification and further characterization of the second nitrate reductase of Escherichia coli K12. Eur J Biochem. 1990 Mar 30;188(3):679–687. doi: 10.1111/j.1432-1033.1990.tb15450.x. [DOI] [PubMed] [Google Scholar]
  276. Iwasaki H., Matsubara T. A nitrite reductase from Achromobacter cycloclastes. J Biochem. 1972 Apr;71(4):645–652. [PubMed] [Google Scholar]
  277. Iwasaki H., Matsubara T. Cytochrome c-557 (551) and cytochrome cd of Alcaligenes faecalis. J Biochem. 1971 May;69(5):847–857. doi: 10.1093/oxfordjournals.jbchem.a129536. [DOI] [PubMed] [Google Scholar]
  278. Iwasaki H., Noji S., Shidara S. Achromobacter cycloclastes nitrite reductase. The function of copper, amino acid composition, and ESR spectra. J Biochem. 1975 Aug;78(2):355–361. doi: 10.1093/oxfordjournals.jbchem.a130915. [DOI] [PubMed] [Google Scholar]
  279. Iwata S., Ostermeier C., Ludwig B., Michel H. Structure at 2.8 A resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature. 1995 Aug 24;376(6542):660–669. doi: 10.1038/376660a0. [DOI] [PubMed] [Google Scholar]
  280. Jackson M. A., Tiedje J. M., Averill B. A. Evidence for a NO-rebound mechanism for production of N2O from nitrite by the copper-containing nitrite reductase from Achromobacter cycloclastes. FEBS Lett. 1991 Oct 7;291(1):41–44. doi: 10.1016/0014-5793(91)81099-t. [DOI] [PubMed] [Google Scholar]
  281. Jacobs N. J., Borotz S. E., Guerinot M. L. Protoporphyrinogen oxidation, a step in heme synthesis in soybean root nodules and free-living rhizobia. J Bacteriol. 1989 Jan;171(1):573–576. doi: 10.1128/jb.171.1.573-576.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  282. Jacobs N. J., Jacobs J. M. Nitrate, fumarate, and oxygen as electron acceptors for a late step in microbial heme synthesis. Biochim Biophys Acta. 1976 Oct 13;449(1):1–9. doi: 10.1016/0005-2728(76)90002-5. [DOI] [PubMed] [Google Scholar]
  283. Jahn D., Verkamp E., Söll D. Glutamyl-transfer RNA: a precursor of heme and chlorophyll biosynthesis. Trends Biochem Sci. 1992 Jun;17(6):215–218. doi: 10.1016/0968-0004(92)90380-r. [DOI] [PubMed] [Google Scholar]
  284. Jenal-Wanner U., Egli T. Anaerobic degradation of nitrilotriacetate (NTA) in a denitrifying bacterium: purification and characterization of the NTA dehydrogenase-nitrate reductase enzyme complex. Appl Environ Microbiol. 1993 Oct;59(10):3350–3359. doi: 10.1128/aem.59.10.3350-3359.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  285. Jensen B. B., Burris R. H. N2O as a substrate and as a competitive inhibitor of nitrogenase. Biochemistry. 1986 Mar 11;25(5):1083–1088. doi: 10.1021/bi00353a021. [DOI] [PubMed] [Google Scholar]
  286. Jeter R. M., Sias S. R., Ingraham J. L. Chromosomal location and function of genes affecting Pseudomonas aeruginosa nitrate assimilation. J Bacteriol. 1984 Feb;157(2):673–677. doi: 10.1128/jb.157.2.673-677.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  287. Jin S., Ishimoto K., Lory S. Nucleotide sequence of the rpoN gene and characterization of two downstream open reading frames in Pseudomonas aeruginosa. J Bacteriol. 1994 Mar;176(5):1316–1322. doi: 10.1128/jb.176.5.1316-1322.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  288. Johann S., Hinton S. M. Cloning and nucleotide sequence of the chlD locus. J Bacteriol. 1987 May;169(5):1911–1916. doi: 10.1128/jb.169.5.1911-1916.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  289. John P. Aerobic and anaerobic bacterial respiration monitored by electrodes. J Gen Microbiol. 1977 Jan;98(1):231–238. doi: 10.1099/00221287-98-1-231. [DOI] [PubMed] [Google Scholar]
  290. Johnson J. L., Bastian N. R., Rajagopalan K. V. Molybdopterin guanine dinucleotide: a modified form of molybdopterin identified in the molybdenum cofactor of dimethyl sulfoxide reductase from Rhodobacter sphaeroides forma specialis denitrificans. Proc Natl Acad Sci U S A. 1990 Apr;87(8):3190–3194. doi: 10.1073/pnas.87.8.3190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  291. Johnson J. L., Bastian N. R., Schauer N. L., Ferry J. G., Rajagopalan K. V. Identification of molybdopterin guanine dinucleotide in formate dehydrogenase from Methanobacterium formicicum. FEMS Microbiol Lett. 1991 Jan 15;61(2-3):213–216. doi: 10.1016/0378-1097(91)90554-n. [DOI] [PubMed] [Google Scholar]
  292. Johnson J. L., Chaudhury M., Rajagopalan K. V. Identification of a molybdopterin-containing molybdenum cofactor in xanthine dehydrogenase from Pseudomonas aeruginosa. Biofactors. 1991 Jun;3(2):103–107. [PubMed] [Google Scholar]
  293. Johnson J. L., Hainline B. E., Rajagopalan K. V. Characterization of the molybdenum cofactor of sulfite oxidase, xanthine, oxidase, and nitrate reductase. Identification of a pteridine as a structural component. J Biol Chem. 1980 Mar 10;255(5):1783–1786. [PubMed] [Google Scholar]
  294. Johnson J. L., Indermaur L. W., Rajagopalan K. V. Molybdenum cofactor biosynthesis in Escherichia coli. Requirement of the chlB gene product for the formation of molybdopterin guanine dinucleotide. J Biol Chem. 1991 Jul 5;266(19):12140–12145. [PubMed] [Google Scholar]
  295. Johnson J. L., Rajagopalan K. V., Meyer O. Isolation and characterization of a second molybdopterin dinucleotide: molybdopterin cytosine dinucleotide. Arch Biochem Biophys. 1990 Dec;283(2):542–545. doi: 10.1016/0003-9861(90)90681-n. [DOI] [PubMed] [Google Scholar]
  296. Johnson M. E., Rajagopalan K. V. Involvement of chlA, E, M, and N loci in Escherichia coli molybdopterin biosynthesis. J Bacteriol. 1987 Jan;169(1):117–125. doi: 10.1128/jb.169.1.117-125.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  297. Jones R. M., Jordan P. M. Purification and properties of the uroporphyrinogen decarboxylase from Rhodobacter sphaeroides. Biochem J. 1993 Aug 1;293(Pt 3):703–712. doi: 10.1042/bj2930703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  298. Jones R. W., Ingledew W. J., Graham A., Garland P. B. Topography of nitrate reductase of the cytoplasmic membrane of Escherichia coli: the nitrate-reducing site [proceedings]. Biochem Soc Trans. 1978;6(6):1287–1289. doi: 10.1042/bst0061287. [DOI] [PubMed] [Google Scholar]
  299. Joshi M. S., Johnson J. L., Rajagopalan K. V. Molybdenum cofactor biosynthesis in Escherichia coli mod and mog mutants. J Bacteriol. 1996 Jul;178(14):4310–4312. doi: 10.1128/jb.178.14.4310-4312.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  300. Joshi M. S., Rajagopalan K. V. Specific incorporation of molybdopterin in xanthine dehydrogenase of Pseudomonas aeruginosa. Arch Biochem Biophys. 1994 Feb 1;308(2):331–334. doi: 10.1006/abbi.1994.1047. [DOI] [PubMed] [Google Scholar]
  301. Jüngst A., Braun C., Zumft W. G. Close linkage in Pseudomonas stutzeri of the structural genes for respiratory nitrite reductase and nitrous oxide reductase, and other essential genes for denitrification. Mol Gen Genet. 1991 Feb;225(2):241–248. doi: 10.1007/BF00269855. [DOI] [PubMed] [Google Scholar]
  302. Jüngst A., Wakabayashi S., Matsubara H., Zumft W. G. The nirSTBM region coding for cytochrome cd1-dependent nitrite respiration of Pseudomonas stutzeri consists of a cluster of mono-, di-, and tetraheme proteins. FEBS Lett. 1991 Feb 25;279(2):205–209. doi: 10.1016/0014-5793(91)80150-2. [DOI] [PubMed] [Google Scholar]
  303. Jüngst A., Zumft W. G. Interdependence of respiratory NO reduction and nitrite reduction revealed by mutagenesis of nirQ, a novel gene in the denitrification gene cluster of Pseudomonas stutzeri. FEBS Lett. 1992 Dec 21;314(3):308–314. doi: 10.1016/0014-5793(92)81495-8. [DOI] [PubMed] [Google Scholar]
  304. Kakutani T., Watanabe H., Arima K., Beppu T. A blue protein as an inactivating factor for nitrite reductase from Alcaligenes faecalis strain S-6. J Biochem. 1981 Feb;89(2):463–472. doi: 10.1093/oxfordjournals.jbchem.a133221. [DOI] [PubMed] [Google Scholar]
  305. Kakutani T., Watanabe H., Arima K., Beppu T. Purification and properties of a copper-containing nitrite reductase from a denitrifying bacterium, Alcaligenes faecalis strain S-6. J Biochem. 1981 Feb;89(2):453–461. doi: 10.1093/oxfordjournals.jbchem.a133220. [DOI] [PubMed] [Google Scholar]
  306. Kaldorf M., Linne von Berg K. H., Meier U., Servos U., Bothe H. The reduction of nitrous oxide to dinitrogen by Escherichia coli. Arch Microbiol. 1993;160(6):432–439. doi: 10.1007/BF00245303. [DOI] [PubMed] [Google Scholar]
  307. Kalkowski I., Conrad R. Metabolism of nitric oxide in denitrifying Pseudomonas aeruginosa and nitrate-respiring Bacillus cereus. FEMS Microbiol Lett. 1991 Jul 15;66(1):107–111. doi: 10.1016/0378-1097(91)90429-e. [DOI] [PubMed] [Google Scholar]
  308. Karlsson B. G., Pascher T., Nordling M., Arvidsson R. H., Lundberg L. G. Expression of the blue copper protein azurin from Pseudomonas aeruginosa in Escherichia coli. FEBS Lett. 1989 Mar 27;246(1-2):211–217. doi: 10.1016/0014-5793(89)80285-6. [DOI] [PubMed] [Google Scholar]
  309. Karrasch M., Börner G., Thauer R. K. The molybdenum cofactor of formylmethanofuran dehydrogenase from Methanosarcina barkeri is a molybdopterin guanine dinucleotide. FEBS Lett. 1990 Nov 12;274(1-2):48–52. doi: 10.1016/0014-5793(90)81326-j. [DOI] [PubMed] [Google Scholar]
  310. Kasting J. F. Bolide impacts and the oxidation state of carbon in the Earth's early atmosphere. Orig Life Evol Biosph. 1992;20:199–231. doi: 10.1007/BF01808105. [DOI] [PubMed] [Google Scholar]
  311. Kastrau D. H., Heiss B., Kroneck P. M., Zumft W. G. Nitric oxide reductase from Pseudomonas stutzeri, a novel cytochrome bc complex. Phospholipid requirement, electron paramagnetic resonance and redox properties. Eur J Biochem. 1994 Jun 1;222(2):293–303. doi: 10.1111/j.1432-1033.1994.tb18868.x. [DOI] [PubMed] [Google Scholar]
  312. Katayama Y., Hiraishi A., Kuraishi H. Paracoccus thiocyanatus sp. nov., a new species of thiocyanate-utilizing facultative chemolithotroph, and transfer of Thiobacillus versutus to the genus Paracoccus as Paracoccus versutus comb. nov. with emendation of the genus. Microbiology. 1995 Jun;141(Pt 6):1469–1477. doi: 10.1099/13500872-141-6-1469. [DOI] [PubMed] [Google Scholar]
  313. Kawasaki S., Arai H., Igarashi Y., Kodama T. Sequencing and characterization of the downstream region of the genes encoding nitrite reductase and cytochrome c-551 (nirSM) from Pseudomonas aeruginosa: identification of the gene necessary for biosynthesis of heme d1. Gene. 1995 Dec 29;167(1-2):87–91. doi: 10.1016/0378-1119(95)00641-9. [DOI] [PubMed] [Google Scholar]
  314. Kawasaki S., Arai H., Kodama T., Igarashi Y. Gene cluster for dissimilatory nitrite reductase (nir) from Pseudomonas aeruginosa: sequencing and identification of a locus for heme d1 biosynthesis. J Bacteriol. 1997 Jan;179(1):235–242. doi: 10.1128/jb.179.1.235-242.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  315. Kelly M., Lappalainen P., Talbo G., Haltia T., van der Oost J., Saraste M. Two cysteines, two histidines, and one methionine are ligands of a binuclear purple copper center. J Biol Chem. 1993 Aug 5;268(22):16781–16787. [PubMed] [Google Scholar]
  316. Kereszt A., Slaska-Kiss K., Putnoky P., Banfalvi Z., Kondorosi A. The cycHJKL genes of Rhizobium meliloti involved in cytochrome c biogenesis are required for "respiratory" nitrate reduction ex planta and for nitrogen fixation during symbiosis. Mol Gen Genet. 1995 Apr 10;247(1):39–47. doi: 10.1007/BF00425819. [DOI] [PubMed] [Google Scholar]
  317. Keshive M., Singh S., Wishnok J. S., Tannenbaum S. R., Deen W. M. Kinetics of S-nitrosation of thiols in nitric oxide solutions. Chem Res Toxicol. 1996 Sep;9(6):988–993. doi: 10.1021/tx960036y. [DOI] [PubMed] [Google Scholar]
  318. Ketchum P. A., Denariaz G., LeGall J., Payne W. J. Menaquinol-nitrate oxidoreductase of Bacillus halodenitrificans. J Bacteriol. 1991 Apr;173(8):2498–2505. doi: 10.1128/jb.173.8.2498-2505.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  319. Khoroshilova N., Beinert H., Kiley P. J. Association of a polynuclear iron-sulfur center with a mutant FNR protein enhances DNA binding. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2499–2503. doi: 10.1073/pnas.92.7.2499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  320. Khoroshilova N., Popescu C., Münck E., Beinert H., Kiley P. J. Iron-sulfur cluster disassembly in the FNR protein of Escherichia coli by O2: [4Fe-4S] to [2Fe-2S] conversion with loss of biological activity. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6087–6092. doi: 10.1073/pnas.94.12.6087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  321. Kim C. H., Hollocher T. C. Catalysis of nitrosyl transfer reactions by a dissimilatory nitrite reductase (cytochrome c,d1). J Biol Chem. 1984 Feb 25;259(4):2092–2099. [PubMed] [Google Scholar]
  322. Kim K. R., Craig H. Nitrogen-15 and oxygen-18 characteristics of nitrous oxide: a global perspective. Science. 1993 Dec 17;262(5141):1855–1857. doi: 10.1126/science.262.5141.1855. [DOI] [PubMed] [Google Scholar]
  323. Kinsman R., Hayes P. K. Genes encoding proteins homologous to halobacterial Gvps N, J, K, F & L are located downstream of gvpC in the cyanobacterium Anabaena flos-aquae. DNA Seq. 1997;7(2):97–106. doi: 10.3109/10425179709020156. [DOI] [PubMed] [Google Scholar]
  324. Kizawa H., Tomura D., Oda M., Fukamizu A., Hoshino T., Gotoh O., Yasui T., Shoun H. Nucleotide sequence of the unique nitrate/nitrite-inducible cytochrome P-450 cDNA from Fusarium oxysporum. J Biol Chem. 1991 Jun 5;266(16):10632–10637. [PubMed] [Google Scholar]
  325. Knowles R. Denitrification. Microbiol Rev. 1982 Mar;46(1):43–70. doi: 10.1128/mr.46.1.43-70.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  326. Kobayashi M., Matsuo Y., Takimoto A., Suzuki S., Maruo F., Shoun H. Denitrification, a novel type of respiratory metabolism in fungal mitochondrion. J Biol Chem. 1996 Jul 5;271(27):16263–16267. doi: 10.1074/jbc.271.27.16263. [DOI] [PubMed] [Google Scholar]
  327. Kobayashi M., Shoun H. The copper-containing dissimilatory nitrite reductase involved in the denitrifying system of the fungus Fusarium oxysporum. J Biol Chem. 1995 Feb 24;270(8):4146–4151. doi: 10.1074/jbc.270.8.4146. [DOI] [PubMed] [Google Scholar]
  328. Koike I., Hattori A. Energy yield of denitrification: an estimate from growth yield in continuous cultures of Pseudomonas denitrificans under nitrate-, nitrite- and oxide-limited conditions. J Gen Microbiol. 1975 May;88(1):11–19. doi: 10.1099/00221287-88-1-11. [DOI] [PubMed] [Google Scholar]
  329. Koschorreck M., Moore E., Conrad R. Oxidation of nitric oxide by a new heterotrophic Pseudomonas sp. Arch Microbiol. 1996 Jul;166(1):23–31. doi: 10.1007/s002030050351. [DOI] [PubMed] [Google Scholar]
  330. Kramer S. P., Johnson J. L., Ribeiro A. A., Millington D. S., Rajagopalan K. V. The structure of the molybdenum cofactor. Characterization of di-(carboxamidomethyl)molybdopterin from sulfite oxidase and xanthine oxidase. J Biol Chem. 1987 Dec 5;262(34):16357–16363. [PubMed] [Google Scholar]
  331. Kristjansson J. K., Hollocher T. C. First practical assay for soluble nitrous oxide reductase of denitrifying bacteria and a partial kinetic characterization. J Biol Chem. 1980 Jan 25;255(2):704–707. [PubMed] [Google Scholar]
  332. Kristjansson J. K., Hollocher T. C. Substrate binding site for nitrate reductase of Escherichia coli is on the inner aspect of the membrane. J Bacteriol. 1979 Mar;137(3):1227–1233. doi: 10.1128/jb.137.3.1227-1233.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  333. Kristjansson J. K., Walter B., Hollocher T. C. Respiration-dependent proton translocation and the transport of nitrate and nitrite in Paracoccus denitrificans and other denitrifying bacteria. Biochemistry. 1978 Nov 14;17(23):5014–5019. doi: 10.1021/bi00616a024. [DOI] [PubMed] [Google Scholar]
  334. Kroll J. S., Langford P. R., Wilks K. E., Keil A. D. Bacterial [Cu,Zn]-superoxide dismutase: phylogenetically distinct from the eukaryotic enzyme, and not so rare after all! Microbiology. 1995 Sep;141(Pt 9):2271–2279. doi: 10.1099/13500872-141-9-2271. [DOI] [PubMed] [Google Scholar]
  335. Kroneck P. M., Antholine W. A., Riester J., Zumft W. G. The cupric site in nitrous oxide reductase contains a mixed-valence [Cu(II),Cu(I)] binuclear center: a multifrequency electron paramagnetic resonance investigation. FEBS Lett. 1988 Dec 19;242(1):70–74. doi: 10.1016/0014-5793(88)80987-6. [DOI] [PubMed] [Google Scholar]
  336. Kroneck P. M., Antholine W. E., Kastrau D. H., Buse G., Steffens G. C., Zumft W. G. Multifrequency EPR evidence for a bimetallic center at the CuA site in cytochrome c oxidase. FEBS Lett. 1990 Jul 30;268(1):274–276. doi: 10.1016/0014-5793(90)81026-k. [DOI] [PubMed] [Google Scholar]
  337. Kroneck P. M., Riester J., Zumft W. G., Antholine W. E. The copper site in nitrous oxide reductase. Biol Met. 1990;3(2):103–109. doi: 10.1007/BF01179514. [DOI] [PubMed] [Google Scholar]
  338. Kucera I., Matchová I., Spiro S. Respiratory inhibitors activate an Fnr-like regulatory protein in Paracoccus denitrificans: implications for the regulation of the denitrification pathway. Biochem Mol Biol Int. 1994 Feb;32(2):245–250. [PubMed] [Google Scholar]
  339. Kucera I., Skládal P. Formation of a potent respiratory inhibitor at nitrite reduction by nitrite reductase isolated from the bacterium Paracoccus denitrificans. J Basic Microbiol. 1990;30(7):515–522. doi: 10.1002/jobm.3620300712. [DOI] [PubMed] [Google Scholar]
  340. Kudo T., Tomura D., Liu D. L., Dai X. Q., Shoun H. Two isozymes of P450nor of Cylindrocarpon tonkinense: molecular cloning of the cDNAs and genes, expressions in the yeast, and the putative NAD(P)H-binding site. Biochimie. 1996;78(8-9):792–799. doi: 10.1016/s0300-9084(97)82538-2. [DOI] [PubMed] [Google Scholar]
  341. Kukimoto M., Nishiyama M., Murphy M. E., Turley S., Adman E. T., Horinouchi S., Beppu T. X-ray structure and site-directed mutagenesis of a nitrite reductase from Alcaligenes faecalis S-6: roles of two copper atoms in nitrite reduction. Biochemistry. 1994 May 3;33(17):5246–5252. doi: 10.1021/bi00183a030. [DOI] [PubMed] [Google Scholar]
  342. Kukimoto M., Nishiyama M., Ohnuki T., Turley S., Adman E. T., Horinouchi S., Beppu T. Identification of interaction site of pseudoazurin with its redox partner, copper-containing nitrite reductase from Alcaligenes faecalis S-6. Protein Eng. 1995 Feb;8(2):153–158. doi: 10.1093/protein/8.2.153. [DOI] [PubMed] [Google Scholar]
  343. Kukimoto M., Nishiyama M., Tanokura M., Adman E. T., Horinouchi S. Studies on protein-protein interaction between copper-containing nitrite reductase and pseudoazurin from Alcaligenes faecalis S-6. J Biol Chem. 1996 Jun 7;271(23):13680–13683. doi: 10.1074/jbc.271.23.13680. [DOI] [PubMed] [Google Scholar]
  344. Kukimoto M., Nishiyama M., Tanokura M., Murphy M. E., Adman E. T., Horinouchi S. Site-directed mutagenesis of azurin from Pseudomonas aeruginosa enhances the formation of an electron-transfer complex with a copper-containing nitrite reductase from Alcaligenes faecalis S-6. FEBS Lett. 1996 Sep 23;394(1):87–90. doi: 10.1016/0014-5793(96)00934-9. [DOI] [PubMed] [Google Scholar]
  345. Kullik I., Fritsche S., Knobel H., Sanjuan J., Hennecke H., Fischer H. M. Bradyrhizobium japonicum has two differentially regulated, functional homologs of the sigma 54 gene (rpoN). J Bacteriol. 1991 Feb;173(3):1125–1138. doi: 10.1128/jb.173.3.1125-1138.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  346. Kustu S., Santero E., Keener J., Popham D., Weiss D. Expression of sigma 54 (ntrA)-dependent genes is probably united by a common mechanism. Microbiol Rev. 1989 Sep;53(3):367–376. doi: 10.1128/mr.53.3.367-376.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  347. Kwiatkowski A. V., Laratta W. P., Toffanin A., Shapleigh J. P. Analysis of the role of the nnrR gene product in the response of Rhodobacter sphaeroides 2.4.1 to exogenous nitric oxide. J Bacteriol. 1997 Sep;179(17):5618–5620. doi: 10.1128/jb.179.17.5618-5620.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  348. Kwiatkowski A. V., Shapleigh J. P. Requirement of nitric oxide for induction of genes whose products are involved in nitric oxide metabolism in Rhodobacter sphaeroides 2.4.3. J Biol Chem. 1996 Oct 4;271(40):24382–24388. doi: 10.1074/jbc.271.40.24382. [DOI] [PubMed] [Google Scholar]
  349. Körner H., Mayer F. Periplasmic location of nitrous oxide reductase and its apoform in denitrifying Pseudomonas stutzeri. Arch Microbiol. 1992;157(3):218–222. doi: 10.1007/BF00245153. [DOI] [PubMed] [Google Scholar]
  350. Körner H., Zumft W. G. Expression of denitrification enzymes in response to the dissolved oxygen level and respiratory substrate in continuous culture of Pseudomonas stutzeri. Appl Environ Microbiol. 1989 Jul;55(7):1670–1676. doi: 10.1128/aem.55.7.1670-1676.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  351. Kündig C., Hennecke H., Göttfert M. Correlated physical and genetic map of the Bradyrhizobium japonicum 110 genome. J Bacteriol. 1993 Feb;175(3):613–622. doi: 10.1128/jb.175.3.613-622.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  352. LaCelle M., Kumano M., Kurita K., Yamane K., Zuber P., Nakano M. M. Oxygen-controlled regulation of the flavohemoglobin gene in Bacillus subtilis. J Bacteriol. 1996 Jul;178(13):3803–3808. doi: 10.1128/jb.178.13.3803-3808.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  353. Lancaster J. R., Jr Simulation of the diffusion and reaction of endogenously produced nitric oxide. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8137–8141. doi: 10.1073/pnas.91.17.8137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  354. Lang S. E., Jenney F. E., Jr, Daldal F. Rhodobacter capsulatus CycH: a bipartite gene product with pleiotropic effects on the biogenesis of structurally different c-type cytochromes. J Bacteriol. 1996 Sep;178(17):5279–5290. doi: 10.1128/jb.178.17.5279-5290.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  355. Lappalainen P., Aasa R., Malmström B. G., Saraste M. Soluble CuA-binding domain from the Paracoccus cytochrome c oxidase. J Biol Chem. 1993 Dec 15;268(35):26416–26421. [PubMed] [Google Scholar]
  356. Lappalainen P., Watmough N. J., Greenwood C., Saraste M. Electron transfer between cytochrome c and the isolated CuA domain: identification of substrate-binding residues in cytochrome c oxidase. Biochemistry. 1995 May 2;34(17):5824–5830. doi: 10.1021/bi00017a014. [DOI] [PubMed] [Google Scholar]
  357. Larsson S., Källebring B., Wittung P., Malmström B. G. The CuA center of cytochrome-c oxidase: electronic structure and spectra of models compared to the properties of CuA domains. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7167–7171. doi: 10.1073/pnas.92.16.7167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  358. Lazazzera B. A., Bates D. M., Kiley P. J. The activity of the Escherichia coli transcription factor FNR is regulated by a change in oligomeric state. Genes Dev. 1993 Oct;7(10):1993–2005. doi: 10.1101/gad.7.10.1993. [DOI] [PubMed] [Google Scholar]
  359. Lazazzera B. A., Beinert H., Khoroshilova N., Kennedy M. C., Kiley P. J. DNA binding and dimerization of the Fe-S-containing FNR protein from Escherichia coli are regulated by oxygen. J Biol Chem. 1996 Feb 2;271(5):2762–2768. doi: 10.1074/jbc.271.5.2762. [DOI] [PubMed] [Google Scholar]
  360. Lee H. S., Abdelal A. H., Clark M. A., Ingraham J. L. Molecular characterization of nosA, a Pseudomonas stutzeri gene encoding an outer membrane protein required to make copper-containing N2O reductase. J Bacteriol. 1991 Sep;173(17):5406–5413. doi: 10.1128/jb.173.17.5406-5413.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  361. Lee H. S., Hancock R. E., Ingraham J. L. Properties of a Pseudomonas stutzeri outer membrane channel-forming protein (NosA) required for production of copper-containing N2O reductase. J Bacteriol. 1989 Apr;171(4):2096–2100. doi: 10.1128/jb.171.4.2096-2100.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  362. Lee J. K., Wang S., Eraso J. M., Gardner J., Kaplan S. Transcriptional regulation of puc operon expression in Rhodobacter sphaeroides. Involvement of an integration host factor-binding sequence. J Biol Chem. 1993 Nov 15;268(32):24491–24497. [PubMed] [Google Scholar]
  363. Leong S. A., Ditta G. S., Helinski D. R. Heme biosynthesis in Rhizobium. Identification of a cloned gene coding for delta-aminolevulinic acid synthetase from Rhizobium meliloti. J Biol Chem. 1982 Aug 10;257(15):8724–8730. [PubMed] [Google Scholar]
  364. Li J., Kustu S., Stewart V. In vitro interaction of nitrate-responsive regulatory protein NarL with DNA target sequences in the fdnG, narG, narK and frdA operon control regions of Escherichia coli K-12. J Mol Biol. 1994 Aug 12;241(2):150–165. doi: 10.1006/jmbi.1994.1485. [DOI] [PubMed] [Google Scholar]
  365. Li P. M., Malmström B. G., Chan S. I. The nature of CuA in cytochrome c oxidase. FEBS Lett. 1989 May 8;248(1-2):210–211. doi: 10.1016/0014-5793(89)80463-6. [DOI] [PubMed] [Google Scholar]
  366. Libby E., Averill B. A. Evidence that the type 2 copper centers are the site of nitrite reduction by Achromobacter cycloclastes nitrite reductase. Biochem Biophys Res Commun. 1992 Sep 30;187(3):1529–1535. doi: 10.1016/0006-291x(92)90476-2. [DOI] [PubMed] [Google Scholar]
  367. Lin J. T., Goldman B. S., Stewart V. The nasFEDCBA operon for nitrate and nitrite assimilation in Klebsiella pneumoniae M5al. J Bacteriol. 1994 May;176(9):2551–2559. doi: 10.1128/jb.176.9.2551-2559.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  368. Liu M. C., Payne W. J., Peck H. D., Jr, LeGall J. Comparison of cytochromes from anaerobically and aerobically grown cells of Pseudomonas perfectomarinus. J Bacteriol. 1983 Apr;154(1):278–286. doi: 10.1128/jb.154.1.278-286.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  369. Liu M. Y., Liu M. C., Payne W. J., Legall J. Properties and electron transfer specificity of copper proteins from the denitrifier "Achromobacter cycloclastes". J Bacteriol. 1986 May;166(2):604–608. doi: 10.1128/jb.166.2.604-608.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  370. Lodge J., Williams R., Bell A., Chan B., Busby S. Comparison of promoter activities in Escherichia coli and Pseudomonas aeruginosa: use of a new broad-host-range promoter-probe plasmid. FEMS Microbiol Lett. 1990 Jan 15;55(1-2):221–225. doi: 10.1016/0378-1097(90)90199-z. [DOI] [PubMed] [Google Scholar]
  371. Lopez Corcuera G., Bastidas M., Dubourdieu M. Molybdenum uptake in Escherichia coli K12. J Gen Microbiol. 1993 Aug;139(8):1869–1875. doi: 10.1099/00221287-139-8-1869. [DOI] [PubMed] [Google Scholar]
  372. Lorenz M. G., Wackernagel W. High Frequency of Natural Genetic Transformation of Pseudomonas stutzeri in Soil Extract Supplemented with a Carbon/Energy and Phosphorus Source. Appl Environ Microbiol. 1991 Apr;57(4):1246–1251. doi: 10.1128/aem.57.4.1246-1251.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  373. Lu W. P., Ragsdale S. W. Reductive activation of the coenzyme A/acetyl-CoA isotopic exchange reaction catalyzed by carbon monoxide dehydrogenase from Clostridium thermoaceticum and its inhibition by nitrous oxide and carbon monoxide. J Biol Chem. 1991 Feb 25;266(6):3554–3564. [PubMed] [Google Scholar]
  374. Ludwig B., Schatz G. A two-subunit cytochrome c oxidase (cytochrome aa3) from Paracoccus dentrificans. Proc Natl Acad Sci U S A. 1980 Jan;77(1):196–200. doi: 10.1073/pnas.77.1.196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  375. Ludwig W., Mittenhuber G., Friedrich C. G. Transfer of Thiosphaera pantotropha to Paracoccus denitrificans. Int J Syst Bacteriol. 1993 Apr;43(2):363–367. doi: 10.1099/00207713-43-2-363. [DOI] [PubMed] [Google Scholar]
  376. Luque F., Mitchenall L. A., Chapman M., Christine R., Pau R. N. Characterization of genes involved in molybdenum transport in Azotobacter vinelandii. Mol Microbiol. 1993 Feb;7(3):447–459. doi: 10.1111/j.1365-2958.1993.tb01136.x. [DOI] [PubMed] [Google Scholar]
  377. MacMicking J. D., Nathan C., Hom G., Chartrain N., Fletcher D. S., Trumbauer M., Stevens K., Xie Q. W., Sokol K., Hutchinson N. Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell. 1995 May 19;81(4):641–650. doi: 10.1016/0092-8674(95)90085-3. [DOI] [PubMed] [Google Scholar]
  378. Macy J. M., Rech S., Auling G., Dorsch M., Stackebrandt E., Sly L. I. Thauera selenatis gen. nov., sp. nov., a member of the beta subclass of Proteobacteria with a novel type of anaerobic respiration. Int J Syst Bacteriol. 1993 Jan;43(1):135–142. doi: 10.1099/00207713-43-1-135. [DOI] [PubMed] [Google Scholar]
  379. Maier R. J., Graham L. Molybdate transport by Bradyrhizobium japonicum bacteroids. J Bacteriol. 1988 Dec;170(12):5613–5619. doi: 10.1128/jb.170.12.5613-5619.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  380. Majewska M. D., Demirgören S., London E. D. Binding of pregnenolone sulfate to rat brain membranes suggests multiple sites of steroid action at the GABAA receptor. Eur J Pharmacol. 1990 Oct 30;189(4-5):307–315. doi: 10.1016/0922-4106(90)90124-g. [DOI] [PubMed] [Google Scholar]
  381. Malkin R., Malmström B. G. The state and function of copper in biological systems. Adv Enzymol Relat Areas Mol Biol. 1970;33:177–244. doi: 10.1002/9780470122785.ch4. [DOI] [PubMed] [Google Scholar]
  382. Malmström B. G. Cytochrome c oxidase: some current biochemical and biophysical problems. Q Rev Biophys. 1973 Nov;6(4):389–431. doi: 10.1017/s0033583500001578. [DOI] [PubMed] [Google Scholar]
  383. Mancinelli R. L., Cronin S., Hochstein L. I. The purification and properties of a cd-cytochrome nitrite reductase from Paracoccus halodenitrificans. Arch Microbiol. 1986;145:202–208. doi: 10.1007/BF00446781. [DOI] [PubMed] [Google Scholar]
  384. Mancinelli R. L., Hochstein L. I. The occurrence of denitrification in extremely halophilic bacteria. FEMS Microbiol Lett. 1986;35:55–58. doi: 10.1111/j.1574-6968.1986.tb01498.x. [DOI] [PubMed] [Google Scholar]
  385. Mancinelli R. L., McKay C. P. The evolution of nitrogen cycling. Orig Life Evol Biosph. 1988;18:311–325. doi: 10.1007/BF01808213. [DOI] [PubMed] [Google Scholar]
  386. Marger M. D., Saier M. H., Jr A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem Sci. 1993 Jan;18(1):13–20. doi: 10.1016/0968-0004(93)90081-w. [DOI] [PubMed] [Google Scholar]
  387. Martin C. T., Scholes C. P., Chan S. I. On the nature of cysteine coordination to CuA in cytochrome c oxidase. J Biol Chem. 1988 Jun 15;263(17):8420–8429. [PubMed] [Google Scholar]
  388. Masuko M., Iwasaki H., Sakurai T., Suzuki S., Nakahara A. Characterization of nitrite reductase from a denitrifier, Alcaligenes sp. NCIB 11015. A novel copper protein. J Biochem. 1984 Aug;96(2):447–454. doi: 10.1093/oxfordjournals.jbchem.a134856. [DOI] [PubMed] [Google Scholar]
  389. Matchová I., Kucera I. Evidence for the role of soluble cytochrome c in the dissimilatory reduction of nitrite and nitrous oxide by cells of Paracoccus denitrificans. Biochim Biophys Acta. 1991 Jun 17;1058(2):256–260. doi: 10.1016/s0005-2728(05)80245-2. [DOI] [PubMed] [Google Scholar]
  390. Matsubara T., Frunzke K., Zumft W. G. Modulation by copper of the products of nitrite respiration in Pseudomonas perfectomarinus. J Bacteriol. 1982 Mar;149(3):816–823. doi: 10.1128/jb.149.3.816-823.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  391. Matsubara T., Iwasaki H. A new-type of copper-protein from Alcaligenes faecalis. J Biochem. 1972 Apr;71(4):747–750. [PubMed] [Google Scholar]
  392. Matsubara T., Iwasaki H. Enzymatic steps of dissimilatory nitrite reduction in Alcaligenes faecalis. J Biochem. 1971 May;69(5):859–868. doi: 10.1093/oxfordjournals.jbchem.a129537. [DOI] [PubMed] [Google Scholar]
  393. Matsubara T., Iwasaki H. Nitric oxide-reducing activity of Alcaligenes faecalis cytochrome cd. J Biochem. 1972 Jul;72(1):57–64. doi: 10.1093/oxfordjournals.jbchem.a129897. [DOI] [PubMed] [Google Scholar]
  394. Matsubara T. Studies on denitrification. 8. Some properties of the N2O-anaerobically grown cell. J Biochem. 1971 Jun;69(6):991–1001. doi: 10.1093/oxfordjournals.jbchem.a129572. [DOI] [PubMed] [Google Scholar]
  395. Matsushita K., Shinagawa E., Adachi O., Ameyama M. o-Type cytochrome oxidase in the membrane of aerobically grown Pseudomonas aeruginosa. FEBS Lett. 1982 Mar 22;139(2):255–258. doi: 10.1016/0014-5793(82)80864-8. [DOI] [PubMed] [Google Scholar]
  396. Matsuura Y., Takano T., Dickerson R. E. Structure of cytochrome c551 from Pseudomonas aeruginosa refined at 1.6 A resolution and comparison of the two redox forms. J Mol Biol. 1982 Apr 5;156(2):389–409. doi: 10.1016/0022-2836(82)90335-7. [DOI] [PubMed] [Google Scholar]
  397. Maupin-Furlow J. A., Rosentel J. K., Lee J. H., Deppenmeier U., Gunsalus R. P., Shanmugam K. T. Genetic analysis of the modABCD (molybdate transport) operon of Escherichia coli. J Bacteriol. 1995 Sep;177(17):4851–4856. doi: 10.1128/jb.177.17.4851-4856.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  398. McClung C. R., Somerville J. E., Guerinot M. L., Chelm B. K. Structure of the Bradyrhizobium japonicum gene hemA encoding 5-aminolevulinic acid synthase. Gene. 1987;54(1):133–139. doi: 10.1016/0378-1119(87)90355-6. [DOI] [PubMed] [Google Scholar]
  399. McEwan A. G., Greenfield A. J., Wetzstein H. G., Jackson J. B., Ferguson S. J. Nitrous oxide reduction by members of the family Rhodospirillaceae and the nitrous oxide reductase of Rhodopseudomonas capsulata. J Bacteriol. 1985 Nov;164(2):823–830. doi: 10.1128/jb.164.2.823-830.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  400. McEwan A. G., Kaplan S., Donohue T. J. Synthesis of Rhodobacter sphaeroides cytochrome c2 in Escherichia coli. FEMS Microbiol Lett. 1989 Jun;50(3):253–258. doi: 10.1016/0378-1097(89)90427-8. [DOI] [PubMed] [Google Scholar]
  401. McNicholas P. M., Rech S. A., Gunsalus R. P. Characterization of the ModE DNA-binding sites in the control regions of modABCD and moaABCDE of Escherichia coli. Mol Microbiol. 1997 Feb;23(3):515–524. doi: 10.1046/j.1365-2958.1997.d01-1864.x. [DOI] [PubMed] [Google Scholar]
  402. McTavish H., Fuchs J. A., Hooper A. B. Sequence of the gene coding for ammonia monooxygenase in Nitrosomonas europaea. J Bacteriol. 1993 Apr;175(8):2436–2444. doi: 10.1128/jb.175.8.2436-2444.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  403. Melville S. B., Gunsalus R. P. Isolation of an oxygen-sensitive FNR protein of Escherichia coli: interaction at activator and repressor sites of FNR-controlled genes. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1226–1231. doi: 10.1073/pnas.93.3.1226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  404. Melville S. B., Gunsalus R. P. Mutations in fnr that alter anaerobic regulation of electron transport-associated genes in Escherichia coli. J Biol Chem. 1990 Nov 5;265(31):18733–18736. [PubMed] [Google Scholar]
  405. Menéndez C., Igloi G., Henninger H., Brandsch R. A pAO1-encoded molybdopterin cofactor gene (moaA) of Arthrobacter nicotinovorans: characterization and site-directed mutagenesis of the encoded protein. Arch Microbiol. 1995 Aug;164(2):142–151. doi: 10.1007/BF02525320. [DOI] [PubMed] [Google Scholar]
  406. Menéndez C., Siebert D., Brandsch R. MoaA of Arthrobacter nicotinovorans pAO1 involved in Mo-pterin cofactor synthesis is an Fe-S protein. FEBS Lett. 1996 Aug 5;391(1-2):101–103. doi: 10.1016/0014-5793(96)00712-0. [DOI] [PubMed] [Google Scholar]
  407. Merchant K., Chen H., Gonzalez T. C., Keefer L. K., Shaw B. R. Deamination of single-stranded DNA cytosine residues in aerobic nitric oxide solution at micromolar total NO exposures. Chem Res Toxicol. 1996 Jul-Aug;9(5):891–896. doi: 10.1021/tx950102g. [DOI] [PubMed] [Google Scholar]
  408. Merchante R., Pooley H. M., Karamata D. A periplasm in Bacillus subtilis. J Bacteriol. 1995 Nov;177(21):6176–6183. doi: 10.1128/jb.177.21.6176-6183.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  409. Merrick M. J. In a class of its own--the RNA polymerase sigma factor sigma 54 (sigma N). Mol Microbiol. 1993 Dec;10(5):903–909. doi: 10.1111/j.1365-2958.1993.tb00961.x. [DOI] [PubMed] [Google Scholar]
  410. Milcamps A., Van Dommelen A., Stigter J., Vanderleyden J., de Bruijn F. J. The Azospirillum brasilense rpoN gene is involved in nitrogen fixation, nitrate assimilation, ammonium uptake, and flagellar biosynthesis. Can J Microbiol. 1996 May;42(5):467–478. doi: 10.1139/m96-064. [DOI] [PubMed] [Google Scholar]
  411. Miller J. B., Scott D. J., Amy N. K. Molybdenum-sensitive transcriptional regulation of the chlD locus of Escherichia coli. J Bacteriol. 1987 May;169(5):1853–1860. doi: 10.1128/jb.169.5.1853-1860.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  412. Miyata M., Mori T. Studies on denitrification. X. The "denitrifying enzyme" as a nitrite reductase and the electron donating system for denitrification. J Biochem. 1969 Oct;66(4):463–471. doi: 10.1093/oxfordjournals.jbchem.a129170. [DOI] [PubMed] [Google Scholar]
  413. Miyata M. Studies on denitrification. XIV. The electron donating system in the reduction of nitric oxide and nitrate. J Biochem. 1971 Aug;70(2):205–213. doi: 10.1093/oxfordjournals.jbchem.a129632. [DOI] [PubMed] [Google Scholar]
  414. Mohr C. D., Sonsteby S. K., Deretic V. The Pseudomonas aeruginosa homologs of hemC and hemD are linked to the gene encoding the regulator of mucoidy AlgR. Mol Gen Genet. 1994 Jan;242(2):177–184. doi: 10.1007/BF00391011. [DOI] [PubMed] [Google Scholar]
  415. Moir J. W., Baratta D., Richardson D. J., Ferguson S. J. The purification of a cd1-type nitrite reductase from, and the absence of a copper-type nitrite reductase from, the aerobic denitrifier Thiosphaera pantotropha; the role of pseudoazurin as an electron donor. Eur J Biochem. 1993 Mar 1;212(2):377–385. doi: 10.1111/j.1432-1033.1993.tb17672.x. [DOI] [PubMed] [Google Scholar]
  416. Moir J. W., Crossman L. C., Spiro S., Richardson D. J. The purification of ammonia monooxygenase from Paracoccus denitrificans. FEBS Lett. 1996 May 27;387(1):71–74. doi: 10.1016/0014-5793(96)00463-2. [DOI] [PubMed] [Google Scholar]
  417. Mokhele K., Tang Y. J., Clark M. A., Ingraham J. L. A Pseudomonas stutzeri outer membrane protein inserts copper into N2O reductase. J Bacteriol. 1987 Dec;169(12):5721–5726. doi: 10.1128/jb.169.12.5721-5726.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  418. Muhoberac B. B., Wharton D. C. EPR study of heme x NO complexes of ascorbic acid-reduced Pseudomonas cytochrome oxidase and corresponding model complexes. J Biol Chem. 1980 Sep 25;255(18):8437–8442. [PubMed] [Google Scholar]
  419. Muhoberac B. B., Wharton D. C. Electron paramagnetic resonance study of the interaction of some anionic ligands with oxidized Pseudomonas cytochrome oxidase. J Biol Chem. 1983 Mar 10;258(5):3019–3027. [PubMed] [Google Scholar]
  420. Murphy M. E., Sies H. Reversible conversion of nitroxyl anion to nitric oxide by superoxide dismutase. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10860–10864. doi: 10.1073/pnas.88.23.10860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  421. Méjean V., Iobbi-Nivol C., Lepelletier M., Giordano G., Chippaux M., Pascal M. C. TMAO anaerobic respiration in Escherichia coli: involvement of the tor operon. Mol Microbiol. 1994 Mar;11(6):1169–1179. doi: 10.1111/j.1365-2958.1994.tb00393.x. [DOI] [PubMed] [Google Scholar]
  422. Nakahara K., Shoun H., Adachi S., Iizuka T., Shiro Y. Crystallization and preliminary X-ray diffraction studies of nitric oxide reductase cytochrome P450nor from Fusarium oxysporum. J Mol Biol. 1994 May 27;239(1):158–159. doi: 10.1006/jmbi.1994.1355. [DOI] [PubMed] [Google Scholar]
  423. Nakahara K., Shoun H. N-terminal processing and amino acid sequence of two isoforms of nitric oxide reductase cytochrome P450nor from Fusarium oxysporum. J Biochem. 1996 Dec;120(6):1082–1087. doi: 10.1093/oxfordjournals.jbchem.a021525. [DOI] [PubMed] [Google Scholar]
  424. Nakahara K., Tanimoto T., Hatano K., Usuda K., Shoun H. Cytochrome P-450 55A1 (P-450dNIR) acts as nitric oxide reductase employing NADH as the direct electron donor. J Biol Chem. 1993 Apr 15;268(11):8350–8355. [PubMed] [Google Scholar]
  425. Nakano M. M., Zuber P., Glaser P., Danchin A., Hulett F. M. Two-component regulatory proteins ResD-ResE are required for transcriptional activation of fnr upon oxygen limitation in Bacillus subtilis. J Bacteriol. 1996 Jul;178(13):3796–3802. doi: 10.1128/jb.178.13.3796-3802.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  426. Nakayama N., Shoun H. Fatty acid hydroxylase of the fungus Fusarium oxysporum is possibly a fused protein of cytochrome P-450 and its reductase. Biochem Biophys Res Commun. 1994 Jul 15;202(1):586–590. doi: 10.1006/bbrc.1994.1968. [DOI] [PubMed] [Google Scholar]
  427. Nakayama N., Takemae A., Shoun H. Cytochrome P450foxy, a catalytically self-sufficient fatty acid hydroxylase of the fungus Fusarium oxysporum. J Biochem. 1996 Mar;119(3):435–440. doi: 10.1093/oxfordjournals.jbchem.a021260. [DOI] [PubMed] [Google Scholar]
  428. Nathan C. F., Hibbs J. B., Jr Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr Opin Immunol. 1991 Feb;3(1):65–70. doi: 10.1016/0952-7915(91)90079-g. [DOI] [PubMed] [Google Scholar]
  429. Neidle E. L., Kaplan S. Expression of the Rhodobacter sphaeroides hemA and hemT genes, encoding two 5-aminolevulinic acid synthase isozymes. J Bacteriol. 1993 Apr;175(8):2292–2303. doi: 10.1128/jb.175.8.2292-2303.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  430. Neidle E. L., Kaplan S. Rhodobacter sphaeroides rdxA, a homolog of Rhizobium meliloti fixG, encodes a membrane protein which may bind cytoplasmic [4Fe-4S] clusters. J Bacteriol. 1992 Oct;174(20):6444–6454. doi: 10.1128/jb.174.20.6444-6454.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  431. Newton N. The two-haem nitrite reductase of Micrococcus denitrificans. Biochim Biophys Acta. 1969;185(2):316–331. doi: 10.1016/0005-2744(69)90425-2. [DOI] [PubMed] [Google Scholar]
  432. Nishiyama M., Suzuki J., Kukimoto M., Ohnuki T., Horinouchi S., Beppu T. Cloning and characterization of a nitrite reductase gene from Alcaligenes faecalis and its expression in Escherichia coli. J Gen Microbiol. 1993 Apr;139(4):725–733. doi: 10.1099/00221287-139-4-725. [DOI] [PubMed] [Google Scholar]
  433. Nivière V., Wong S. L., Voordouw G. Site-directed mutagenesis of the hydrogenase signal peptide consensus box prevents export of a beta-lactamase fusion protein. J Gen Microbiol. 1992 Oct;138(10):2173–2183. doi: 10.1099/00221287-138-10-2173. [DOI] [PubMed] [Google Scholar]
  434. Nohno T., Noji S., Taniguchi S., Saito T. The narX and narL genes encoding the nitrate-sensing regulators of Escherichia coli are homologous to a family of prokaryotic two-component regulatory genes. Nucleic Acids Res. 1989 Apr 25;17(8):2947–2957. doi: 10.1093/nar/17.8.2947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  435. Noji S., Nohno T., Saito T., Taniguchi S. The narK gene product participates in nitrate transport induced in Escherichia coli nitrate-respiring cells. FEBS Lett. 1989 Jul 31;252(1-2):139–143. doi: 10.1016/0014-5793(89)80906-8. [DOI] [PubMed] [Google Scholar]
  436. Noji S., Taniguchi S. Molecular oxygen controls nitrate transport of Escherichia coli nitrate-respiring cells. J Biol Chem. 1987 Jul 15;262(20):9441–9443. [PubMed] [Google Scholar]
  437. Nordling M., Young S., Karlsson B. G., Lundberg L. G. The structural gene for cytochrome c551 from Pseudomonas aeruginosa. The nucleotide sequence shows a location downstream of the nitrite reductase gene. FEBS Lett. 1990 Jan 1;259(2):230–232. doi: 10.1016/0014-5793(90)80015-b. [DOI] [PubMed] [Google Scholar]
  438. Norris G. E., Anderson B. F., Baker E. N. Structure of azurin from Alcaligenes denitrificans at 2.5 A resolution. J Mol Biol. 1983 Apr 15;165(3):501–521. doi: 10.1016/s0022-2836(83)80216-2. [DOI] [PubMed] [Google Scholar]
  439. Nunoshiba T., deRojas-Walker T., Wishnok J. S., Tannenbaum S. R., Demple B. Activation by nitric oxide of an oxidative-stress response that defends Escherichia coli against activated macrophages. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9993–9997. doi: 10.1073/pnas.90.21.9993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  440. Obika K., Tomura D., Fukamizu A., Shoun H. Expression of the fungal cytochrome P-450nor cDNA in Escherichia coli. Biochem Biophys Res Commun. 1993 Nov 15;196(3):1255–1260. doi: 10.1006/bbrc.1993.2387. [DOI] [PubMed] [Google Scholar]
  441. Ohkubo S., Iwasaki H., Hori H., Osawa S. Evolutionary relationship of denitrifying bacteria as deduced from 5S rRNA sequences. J Biochem. 1986 Nov;100(5):1261–1267. doi: 10.1093/oxfordjournals.jbchem.a121832. [DOI] [PubMed] [Google Scholar]
  442. Oliver J. D., Colwell R. R. Extractable lipids of gram-negative marine bacteria: phospholipid composition. J Bacteriol. 1973 Jun;114(3):897–908. doi: 10.1128/jb.114.3.897-908.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  443. Omata T. Structure, function and regulation of the nitrate transport system of the cyanobacterium Synechococcus sp. PCC7942. Plant Cell Physiol. 1995 Mar;36(2):207–213. doi: 10.1093/oxfordjournals.pcp.a078751. [DOI] [PubMed] [Google Scholar]
  444. Oren A., Ginzburg M., Ginzburg B. Z., Hochstein L. I., Volcani B. E. Haloarcula marismortui (Volcani) sp. nov., nom. rev., an extremely halophilic bacterium from the Dead Sea. Int J Syst Bacteriol. 1990 Apr;40(2):209–210. doi: 10.1099/00207713-40-2-209. [DOI] [PubMed] [Google Scholar]
  445. Otte S., Grobben N. G., Robertson L. A., Jetten M. S., Kuenen J. G. Nitrous oxide production by Alcaligenes faecalis under transient and dynamic aerobic and anaerobic conditions. Appl Environ Microbiol. 1996 Jul;62(7):2421–2426. doi: 10.1128/aem.62.7.2421-2426.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  446. Page K. M., Connolly E. L., Guerinot M. L. Effect of iron availability on expression of the Bradyrhizobium japonicum hemA gene. J Bacteriol. 1994 Mar;176(5):1535–1538. doi: 10.1128/jb.176.5.1535-1538.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  447. Page K. M., Guerinot M. L. Oxygen control of the Bradyrhizobium japonicum hemA gene. J Bacteriol. 1995 Jul;177(14):3979–3984. doi: 10.1128/jb.177.14.3979-3984.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  448. Page M. D., Ferguson S. J. A bacterial c-type cytochrome can be translocated to the periplasm as an apo form; the biosynthesis of cytochrome cd1 (nitrite reductase) from Paracoccus denitrificans. Mol Microbiol. 1989 May;3(5):653–661. doi: 10.1111/j.1365-2958.1989.tb00213.x. [DOI] [PubMed] [Google Scholar]
  449. Page M. D., Ferguson S. J. Cloning and sequence analysis of cycH gene from Paracoccus denitrificans: the cycH gene product is required for assembly of all c-type cytochromes, including cytochrome c1. Mol Microbiol. 1995 Jan;15(2):307–318. doi: 10.1111/j.1365-2958.1995.tb02245.x. [DOI] [PubMed] [Google Scholar]
  450. Page M. D., Ferguson S. J. Differential reduction in soluble and membrane-bound c-type cytochrome contents in a Paracoccus denitrificans mutant partially deficient in 5-aminolevulinate synthase activity. J Bacteriol. 1994 Oct;176(19):5919–5928. doi: 10.1128/jb.176.19.5919-5928.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  451. Page M. D., Ferguson S. J. Paracoccus denitrificans CcmG is a periplasmic protein-disulphide oxidoreductase required for c- and aa3-type cytochrome biogenesis; evidence for a reductase role in vivo. Mol Microbiol. 1997 Jun;24(5):977–990. doi: 10.1046/j.1365-2958.1997.4061775.x. [DOI] [PubMed] [Google Scholar]
  452. Page M. D., Pearce D. A., Norris H. A., Ferguson S. J. The Paracoccus denitrificans ccmA, B and C genes: cloning and sequencing, and analysis of the potential of their products to form a haem or apo- c-type cytochrome transporter. Microbiology. 1997 Feb;143(Pt 2):563–576. doi: 10.1099/00221287-143-2-563. [DOI] [PubMed] [Google Scholar]
  453. Palmedo G., Seither P., Körner H., Matthews J. C., Burkhalter R. S., Timkovich R., Zumft W. G. Resolution of the nirD locus for heme d1 synthesis of cytochrome cd1 (respiratory nitrite reductase) from Pseudomonas stutzeri. Eur J Biochem. 1995 Sep 15;232(3):737–746. [PubMed] [Google Scholar]
  454. Palmer T., Santini C. L., Iobbi-Nivol C., Eaves D. J., Boxer D. H., Giordano G. Involvement of the narJ and mob gene products in distinct steps in the biosynthesis of the molybdoenzyme nitrate reductase in Escherichia coli. Mol Microbiol. 1996 May;20(4):875–884. doi: 10.1111/j.1365-2958.1996.tb02525.x. [DOI] [PubMed] [Google Scholar]
  455. Palmer T., Vasishta A., Whitty P. W., Boxer D. H. Isolation of protein FA, a product of the mob locus required for molybdenum cofactor biosynthesis in Escherichia coli. Eur J Biochem. 1994 Jun 1;222(2):687–692. doi: 10.1111/j.1432-1033.1994.tb18913.x. [DOI] [PubMed] [Google Scholar]
  456. Parr S. R., Barber D., Greenwood C., Brunori M. The electron-transfer reaction between azurin and the cytochrome c oxidase from Pseudomonas aeruginosa. Biochem J. 1977 Nov 1;167(2):447–455. doi: 10.1042/bj1670447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  457. Payne W. J., Grant M. A., Shapleigh J., Hoffman P. Nitrogen oxide reduction in Wolinella succinogenes and Campylobacter species. J Bacteriol. 1982 Nov;152(2):915–918. doi: 10.1128/jb.152.2.915-918.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  458. Payne W. J. Reduction of nitrogenous oxides by microorganisms. Bacteriol Rev. 1973 Dec;37(4):409–452. doi: 10.1128/br.37.4.409-452.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  459. Pfenninger S., Antholine W. E., Barr M. E., Hyde J. S., Kroneck P. M., Zumft W. G. Electron spin-lattice relaxation of the [Cu(1.5) ... Cu(1.5)] dinuclear copper center in nitrous oxide reductase. Biophys J. 1995 Dec;69(6):2761–2769. doi: 10.1016/S0006-3495(95)80149-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  460. Philippot L., Clays-Josserand A., Lensi R., Trinsoutreau I., Normand P., Potier P. Purification of the dissimilative nitrate reductase of Pseudomonas fluorescens and the cloning and sequencing of its corresponding genes. Biochim Biophys Acta. 1997 Feb 28;1350(3):272–276. doi: 10.1016/s0167-4781(97)00007-9. [DOI] [PubMed] [Google Scholar]
  461. Pichinoty F., Mandel M., Greenway B., Garcia J. L. Etude de 14 bactéries dénitrifiantes appartenant au groupe Pseudomonas stutzeri isolées du sol par culture d'enrichissement en présence d'oxyde nitreux. Ann Microbiol (Paris) 1977 Jan;128A(1):75–87. [PubMed] [Google Scholar]
  462. Pitterle D. M., Rajagopalan K. V. The biosynthesis of molybdopterin in Escherichia coli. Purification and characterization of the converting factor. J Biol Chem. 1993 Jun 25;268(18):13499–13505. [PubMed] [Google Scholar]
  463. Pollock W. B., Voordouw G. Aerobic expression of the cyf gene encoding cytochrome c-553 from Desulfovibrio vulgaris Hildenborough in Escherichia coli. Microbiology. 1994 Apr;140(Pt 4):879–887. doi: 10.1099/00221287-140-4-879. [DOI] [PubMed] [Google Scholar]
  464. Poole R. K., Anjum M. F., Membrillo-Hernández J., Kim S. O., Hughes M. N., Stewart V. Nitric oxide, nitrite, and Fnr regulation of hmp (flavohemoglobin) gene expression in Escherichia coli K-12. J Bacteriol. 1996 Sep;178(18):5487–5492. doi: 10.1128/jb.178.18.5487-5492.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  465. Poth M. Dinitrogen production from nitrite by a nitrosomonas isolate. Appl Environ Microbiol. 1986 Oct;52(4):957–959. doi: 10.1128/aem.52.4.957-959.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  466. Poth M., Focht D. D. N Kinetic Analysis of N(2)O Production by Nitrosomonas europaea: an Examination of Nitrifier Denitrification. Appl Environ Microbiol. 1985 May;49(5):1134–1141. doi: 10.1128/aem.49.5.1134-1141.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  467. Preisig O., Anthamatten D., Hennecke H. Genes for a microaerobically induced oxidase complex in Bradyrhizobium japonicum are essential for a nitrogen-fixing endosymbiosis. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3309–3313. doi: 10.1073/pnas.90.8.3309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  468. Preisig O., Zufferey R., Hennecke H. The Bradyrhizobium japonicum fixGHIS genes are required for the formation of the high-affinity cbb3-type cytochrome oxidase. Arch Microbiol. 1996 May;165(5):297–305. doi: 10.1007/s002030050330. [DOI] [PubMed] [Google Scholar]
  469. Preuss M., Klemme J. H. Purification and characterization of a dissimilatory nitrite reductase from the phototrophic bacterium Rhodopseudomonas palustris. Z Naturforsch C. 1983 Nov-Dec;38(11-12):933–938. [PubMed] [Google Scholar]
  470. Rabin R. S., Collins L. A., Stewart V. In vivo requirement of integration host factor for nar (nitrate reductase) operon expression in Escherichia coli K-12. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8701–8705. doi: 10.1073/pnas.89.18.8701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  471. Rabin R. S., Stewart V. Dual response regulators (NarL and NarP) interact with dual sensors (NarX and NarQ) to control nitrate- and nitrite-regulated gene expression in Escherichia coli K-12. J Bacteriol. 1993 Jun;175(11):3259–3268. doi: 10.1128/jb.175.11.3259-3268.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  472. Rabin R. S., Stewart V. Either of two functionally redundant sensor proteins, NarX and NarQ, is sufficient for nitrate regulation in Escherichia coli K-12. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8419–8423. doi: 10.1073/pnas.89.18.8419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  473. Rabus R., Widdel F. Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Arch Microbiol. 1995 Feb;163(2):96–103. doi: 10.1007/BF00381782. [DOI] [PubMed] [Google Scholar]
  474. Rainey P. B., Bailey M. J. Physical and genetic map of the Pseudomonas fluorescens SBW25 chromosome. Mol Microbiol. 1996 Feb;19(3):521–533. doi: 10.1046/j.1365-2958.1996.391926.x. [DOI] [PubMed] [Google Scholar]
  475. Rainey P. B., Thompson I. P., Palleroni N. J. Genome and fatty acid analysis of Pseudomonas stutzeri. Int J Syst Bacteriol. 1994 Jan;44(1):54–61. doi: 10.1099/00207713-44-1-54. [DOI] [PubMed] [Google Scholar]
  476. Rajagopalan K. V., Johnson J. L. The pterin molybdenum cofactors. J Biol Chem. 1992 May 25;267(15):10199–10202. [PubMed] [Google Scholar]
  477. Ramseier T. M., Winteler H. V., Hennecke H. Discovery and sequence analysis of bacterial genes involved in the biogenesis of c-type cytochromes. J Biol Chem. 1991 Apr 25;266(12):7793–7803. [PubMed] [Google Scholar]
  478. Ray A., Williams H. D. A mutant of Pseudomonas aeruginosa that lacks c-type cytochromes has a functional cyanide-insensitive oxidase. FEMS Microbiol Lett. 1996 Jan 1;135(1):123–129. doi: 10.1111/j.1574-6968.1996.tb07976.x. [DOI] [PubMed] [Google Scholar]
  479. Rech S., Deppenmeier U., Gunsalus R. P. Regulation of the molybdate transport operon, modABCD, of Escherichia coli in response to molybdate availability. J Bacteriol. 1995 Feb;177(4):1023–1029. doi: 10.1128/jb.177.4.1023-1029.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  480. Rech S., Wolin C., Gunsalus R. P. Properties of the periplasmic ModA molybdate-binding protein of Escherichia coli. J Biol Chem. 1996 Feb 2;271(5):2557–2562. doi: 10.1074/jbc.271.5.2557. [DOI] [PubMed] [Google Scholar]
  481. Rees E., Siddiqui R. A., Köster F., Schneider B., Friedrich B. Structural gene (nirS) for the cytochrome cd1 nitrite reductase of Alcaligenes eutrophus H16. Appl Environ Microbiol. 1997 Feb;63(2):800–802. doi: 10.1128/aem.63.2.800-802.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  482. Reichenbecher W., Rüdiger A., Kroneck P. M., Schink B. One molecule of molybdopterin guanine dinucleotide is associated with each subunit of the heterodimeric Mo-Fe-S protein transhydroxylase of Pelobacter acidigallici as determined by SDS/PAGE and mass spectrometry. Eur J Biochem. 1996 Apr 15;237(2):406–413. doi: 10.1111/j.1432-1033.1996.0406k.x. [DOI] [PubMed] [Google Scholar]
  483. Renner E. D., Becker G. E. Production of nitric oxide and nitrous oxide during denitrification by Corynebacterium nephridii. J Bacteriol. 1970 Mar;101(3):821–826. doi: 10.1128/jb.101.3.821-826.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  484. Reyes F., Roldán M. D., Klipp W., Castillo F., Moreno-Vivián C. Isolation of periplasmic nitrate reductase genes from Rhodobacter sphaeroides DSM 158: structural and functional differences among prokaryotic nitrate reductases. Mol Microbiol. 1996 Mar;19(6):1307–1318. doi: 10.1111/j.1365-2958.1996.tb02475.x. [DOI] [PubMed] [Google Scholar]
  485. Rice P. A., Yang S., Mizuuchi K., Nash H. A. Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. Cell. 1996 Dec 27;87(7):1295–1306. doi: 10.1016/s0092-8674(00)81824-3. [DOI] [PubMed] [Google Scholar]
  486. Richardson D. J., Bell L. C., McEwan A. G., Jackson J. B., Ferguson S. J. Cytochrome c2 is essential for electron transfer to nitrous oxide reductase from physiological substrates in Rhodobacter capsulatus and can act as an electron donor to the reductase in vitro. Correlation with photoinhibition studies. Eur J Biochem. 1991 Aug 1;199(3):677–683. doi: 10.1111/j.1432-1033.1991.tb16170.x. [DOI] [PubMed] [Google Scholar]
  487. Richardson D. J., McEwan A. G., Jackson J. B., Ferguson S. J. Electron transport pathways to nitrous oxide in Rhodobacter species. Eur J Biochem. 1989 Nov 20;185(3):659–669. doi: 10.1111/j.1432-1033.1989.tb15163.x. [DOI] [PubMed] [Google Scholar]
  488. Riester J., Zumft W. G., Kroneck P. M. Nitrous oxide reductase from Pseudomonas stutzeri. Redox properties and spectroscopic characterization of different forms of the multicopper enzyme. Eur J Biochem. 1989 Jan 2;178(3):751–762. doi: 10.1111/j.1432-1033.1989.tb14506.x. [DOI] [PubMed] [Google Scholar]
  489. Ritchie G. A., Nicholas D. J. Identification of the sources of nitrous oxide produced by oxidative and reductive processes in Nitrosomonas europaea. Biochem J. 1972 Mar;126(5):1181–1191. doi: 10.1042/bj1261181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  490. Ritz D., Bott M., Hennecke H. Formation of several bacterial c-type cytochromes requires a novel membrane-anchored protein that faces the periplasm. Mol Microbiol. 1993 Aug;9(4):729–740. doi: 10.1111/j.1365-2958.1993.tb01733.x. [DOI] [PubMed] [Google Scholar]
  491. Ritz D., Thöny-Meyer L., Hennecke H. The cycHJKL gene cluster plays an essential role in the biogenesis of c-type cytochromes in Bradyrhizobium japonicum. Mol Gen Genet. 1995 Apr 10;247(1):27–38. doi: 10.1007/BF00425818. [DOI] [PubMed] [Google Scholar]
  492. Rivers S. L., McNairn E., Blasco F., Giordano G., Boxer D. H. Molecular genetic analysis of the moa operon of Escherichia coli K-12 required for molybdenum cofactor biosynthesis. Mol Microbiol. 1993 Jun;8(6):1071–1081. doi: 10.1111/j.1365-2958.1993.tb01652.x. [DOI] [PubMed] [Google Scholar]
  493. Robertson L. A., Kuenen J. G. Combined heterotrophic nitrification and aerobic denitrification in Thiosphaera pantotropha and other bacteria. Antonie Van Leeuwenhoek. 1990 Apr;57(3):139–152. doi: 10.1007/BF00403948. [DOI] [PubMed] [Google Scholar]
  494. Robertson L. A., van Niel E. W., Torremans R. A., Kuenen J. G. Simultaneous Nitrification and Denitrification in Aerobic Chemostat Cultures of Thiosphaera pantotropha. Appl Environ Microbiol. 1988 Nov;54(11):2812–2818. doi: 10.1128/aem.54.11.2812-2818.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  495. Romberg R. W., Kassner R. J. Nitric oxide and carbon monoxide equilibria of horse myoglobin and (N-methylimidazole)protoheme. Evidence for steric interaction with the distal residues. Biochemistry. 1979 Nov 27;18(24):5387–5392. doi: 10.1021/bi00591a020. [DOI] [PubMed] [Google Scholar]
  496. Rosentel J. K., Healy F., Maupin-Furlow J. A., Lee J. H., Shanmugam K. T. Molybdate and regulation of mod (molybdate transport), fdhF, and hyc (formate hydrogenlyase) operons in Escherichia coli. J Bacteriol. 1995 Sep;177(17):4857–4864. doi: 10.1128/jb.177.17.4857-4864.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  497. Roth J. R., Lawrence J. G., Bobik T. A. Cobalamin (coenzyme B12): synthesis and biological significance. Annu Rev Microbiol. 1996;50:137–181. doi: 10.1146/annurev.micro.50.1.137. [DOI] [PubMed] [Google Scholar]
  498. Routledge M. N., Wink D. A., Keefer L. K., Dipple A. Mutations induced by saturated aqueous nitric oxide in the pSP189 supF gene in human Ad293 and E. coli MBM7070 cells. Carcinogenesis. 1993 Jul;14(7):1251–1254. doi: 10.1093/carcin/14.7.1251. [DOI] [PubMed] [Google Scholar]
  499. Rowe J. J., Ubbink-Kok T., Molenaar D., Konings W. N., Driessen A. J. NarK is a nitrite-extrusion system involved in anaerobic nitrate respiration by Escherichia coli. Mol Microbiol. 1994 May;12(4):579–586. doi: 10.1111/j.1365-2958.1994.tb01044.x. [DOI] [PubMed] [Google Scholar]
  500. Römermann D., Friedrich B. Denitrification by Alcaligenes eutrophus is plasmid dependent. J Bacteriol. 1985 May;162(2):852–854. doi: 10.1128/jb.162.2.852-854.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  501. Römermann D., Warrelmann J., Bender R. A., Friedrich B. An rpoN-like gene of Alcaligenes eutrophus and Pseudomonas facilis controls expression of diverse metabolic pathways, including hydrogen oxidation. J Bacteriol. 1989 Feb;171(2):1093–1099. doi: 10.1128/jb.171.2.1093-1099.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  502. Römling U., Duchéne M., Essar D. W., Galloway D., Guidi-Rontani C., Hill D., Lazdunski A., Miller R. V., Schleifer K. H., Smith D. W. Localization of alg, opr, phn, pho, 4.5S RNA, 6S RNA, tox, trp, and xcp genes, rrn operons, and the chromosomal origin on the physical genome map of Pseudomonas aeruginosa PAO. J Bacteriol. 1992 Jan;174(1):327–330. doi: 10.1128/jb.174.1.327-330.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  503. Römling U., Tümmler B. The impact of two-dimensional pulsed-field gel electrophoresis techniques for the consistent and complete mapping of bacterial genomes: refined physical map of Pseudomonas aeruginosa PAO. Nucleic Acids Res. 1991 Jun 25;19(12):3199–3206. doi: 10.1093/nar/19.12.3199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  504. Sabaty M., Gagnon J., Verméglio A. Induction by nitrate of cytoplasmic and periplasmic proteins in the photodenitrifier Rhodobacter sphaeroides forma sp. denitrificans under anaerobic or aerobic condition. Arch Microbiol. 1994;162(5):335–343. doi: 10.1007/BF00263781. [DOI] [PubMed] [Google Scholar]
  505. Sambongi Y., Ferguson S. J. Synthesis of holo Paracoccus denitrificans cytochrome c550 requires targeting to the periplasm whereas that of holo Hydrogenobacter thermophilus cytochrome c552 does not. Implications for c-type cytochrome biogenesis. FEBS Lett. 1994 Feb 28;340(1-2):65–70. doi: 10.1016/0014-5793(94)80174-6. [DOI] [PubMed] [Google Scholar]
  506. Sambongi Y., Stoll R., Ferguson S. J. Alteration of haem-attachment and signal-cleavage sites for Paracoccus denitrificans cytochrome C550 probes pathway of c-type cytochrome biogenesis in Escherichia coli. Mol Microbiol. 1996 Mar;19(6):1193–1204. doi: 10.1111/j.1365-2958.1996.tb02465.x. [DOI] [PubMed] [Google Scholar]
  507. Samuelsson M. O. Dissimilatory nitrate reduction to nitrate, nitrous oxide, and ammonium by Pseudomonas putrefaciens. Appl Environ Microbiol. 1985 Oct;50(4):812–815. doi: 10.1128/aem.50.4.812-815.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  508. Sann R., Kostka S., Friedrich B. A cytochrome cd1-type nitrite reductase mediates the first step of denitrification in Alcaligenes eutrophus. Arch Microbiol. 1994;161(6):453–459. doi: 10.1007/BF00307765. [DOI] [PubMed] [Google Scholar]
  509. Santini C. L., Iobbi-Nivol C., Romane C., Boxer D. H., Giordano G. Molybdoenzyme biosynthesis in Escherichia coli: in vitro activation of purified nitrate reductase from a chlB mutant. J Bacteriol. 1992 Dec;174(24):7934–7940. doi: 10.1128/jb.174.24.7934-7940.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  510. Santini C. L., Karibian D., Vasishta A., Boxer D., Giordano G. Escherichia coli molybdoenzymes can be activated by protein FA from several gram-negative bacteria. J Gen Microbiol. 1989 Dec;135(12):3467–3475. doi: 10.1099/00221287-135-12-3467. [DOI] [PubMed] [Google Scholar]
  511. Saraste M., Castresana J. Cytochrome oxidase evolved by tinkering with denitrification enzymes. FEBS Lett. 1994 Mar 14;341(1):1–4. doi: 10.1016/0014-5793(94)80228-9. [DOI] [PubMed] [Google Scholar]
  512. Satoh T., Hoshino Y., Kitamura H. Rhodopseudomonas sphaeroides forma sp. denitrificans, a denitrifying strain as a subspecies of Rhodopseudomonas sphaeroides. Arch Microbiol. 1976 Jul;108(3):265–269. doi: 10.1007/BF00454851. [DOI] [PubMed] [Google Scholar]
  513. Savioz A., Zimmermann A., Haas D. Pseudomonas aeruginosa promoters which contain a conserved GG-N10-GC motif but appear to be RpoN-independent. Mol Gen Genet. 1993 Apr;238(1-2):74–80. doi: 10.1007/BF00279533. [DOI] [PubMed] [Google Scholar]
  514. Sawers R. G. Identification and molecular characterization of a transcriptional regulator from Pseudomonas aeruginosa PAO1 exhibiting structural and functional similarity to the FNR protein of Escherichia coli. Mol Microbiol. 1991 Jun;5(6):1469–1481. doi: 10.1111/j.1365-2958.1991.tb00793.x. [DOI] [PubMed] [Google Scholar]
  515. Sawers R. G., Zehelein E., Böck A. Two-dimensional gel electrophoretic analysis of Escherichia coli proteins: influence of various anaerobic growth conditions and the fnr gene product on cellular protein composition. Arch Microbiol. 1988 Jan;149(3):240–244. doi: 10.1007/BF00422011. [DOI] [PubMed] [Google Scholar]
  516. Scharf B., Engelhard M. Halocyanin, an archaebacterial blue copper protein (type I) from Natronobacterium pharaonis. Biochemistry. 1993 Nov 30;32(47):12894–12900. doi: 10.1021/bi00210a043. [DOI] [PubMed] [Google Scholar]
  517. Schell M. A. Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol. 1993;47:597–626. doi: 10.1146/annurev.mi.47.100193.003121. [DOI] [PubMed] [Google Scholar]
  518. Schilke B. A., Donohue T. J. ChrR positively regulates transcription of the Rhodobacter sphaeroides cytochrome c2 gene. J Bacteriol. 1995 Apr;177(8):1929–1937. doi: 10.1128/jb.177.8.1929-1937.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  519. Schindelin H., Kisker C., Hilton J., Rajagopalan K. V., Rees D. C. Crystal structure of DMSO reductase: redox-linked changes in molybdopterin coordination. Science. 1996 Jun 14;272(5268):1615–1621. doi: 10.1126/science.272.5268.1615. [DOI] [PubMed] [Google Scholar]
  520. Schmidt K. D., Tümmler B., Römling U. Comparative genome mapping of Pseudomonas aeruginosa PAO with P. aeruginosa C, which belongs to a major clone in cystic fibrosis patients and aquatic habitats. J Bacteriol. 1996 Jan;178(1):85–93. doi: 10.1128/jb.178.1.85-93.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  521. Schneider B., Nies A., Friedrich B. Transfer and expression of lithoautotrophy and denitrification in a host lacking these metabolic activities. Appl Environ Microbiol. 1988 Dec;54(12):3173–3176. doi: 10.1128/aem.54.12.3173-3176.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  522. Schneider F., Löwe J., Huber R., Schindelin H., Kisker C., Knäblein J. Crystal structure of dimethyl sulfoxide reductase from Rhodobacter capsulatus at 1.88 A resolution. J Mol Biol. 1996 Oct 18;263(1):53–69. doi: 10.1006/jmbi.1996.0555. [DOI] [PubMed] [Google Scholar]
  523. Schröder I., Darie S., Gunsalus R. P. Activation of the Escherichia coli nitrate reductase (narGHJI) operon by NarL and Fnr requires integration host factor. J Biol Chem. 1993 Jan 15;268(2):771–774. [PubMed] [Google Scholar]
  524. Schulp J. A., Stouthamer A. H. The influence of oxygen, glucose and nitrate upon the formation of nitrate reductase and the respiratory system in Bacillus licheniformis. J Gen Microbiol. 1970 Dec;64(2):195–203. doi: 10.1099/00221287-64-2-195. [DOI] [PubMed] [Google Scholar]
  525. Scott D., Amy N. K. Molybdenum accumulation in chlD mutants of Escherichia coli. J Bacteriol. 1989 Mar;171(3):1284–1287. doi: 10.1128/jb.171.3.1284-1287.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  526. Scott R. A., Zumft W. G., Coyle C. L., Dooley D. M. Pseudomonas stutzeri N2O reductase contains CuA-type sites. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4082–4086. doi: 10.1073/pnas.86.11.4082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  527. Sears H. J., Bennett B., Spiro S., Thomson A. J., Richardson D. J. Identification of periplasmic nitrate reductase Mo(V) EPR signals in intact cells of Paracoccus denitrificans. Biochem J. 1995 Aug 15;310(Pt 1):311–314. doi: 10.1042/bj3100311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  528. Sears HJ, Little PJ, Richardson DJ, Berks BC, Spiro S, Ferguson SJ. Identification of an assimilatory nitrate reductase in mutants of Paracoccus denitrificans GB17 deficient in nitrate respiration. Arch Microbiol. 1997 Jan 29;167(1):61–66. doi: 10.1007/s002030050417. [DOI] [PubMed] [Google Scholar]
  529. Shanmugam K. T., Stewart V., Gunsalus R. P., Boxer D. H., Cole J. A., Chippaux M., DeMoss J. A., Giordano G., Lin E. C., Rajagopalan K. V. Proposed nomenclature for the genes involved in molybdenum metabolism in Escherichia coli and Salmonella typhimurium. Mol Microbiol. 1992 Nov;6(22):3452–3454. doi: 10.1111/j.1365-2958.1992.tb02215.x. [DOI] [PubMed] [Google Scholar]
  530. Shapleigh J. P., Davies K. J., Payne W. J. Detergent inhibition of nitric-oxide reductase activity. Biochim Biophys Acta. 1987 Feb 25;911(3):334–340. doi: 10.1016/0167-4838(87)90074-4. [DOI] [PubMed] [Google Scholar]
  531. Shapleigh J. P., Payne W. J. Nitric oxide-dependent proton translocation in various denitrifiers. J Bacteriol. 1985 Sep;163(3):837–840. doi: 10.1128/jb.163.3.837-840.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  532. Shapleigh J. P., Payne W. J. Respiration-linked proton flux in Wolinella succinogenes during reduction of N-oxides. Arch Biochem Biophys. 1986 Feb 1;244(2):713–718. doi: 10.1016/0003-9861(86)90640-5. [DOI] [PubMed] [Google Scholar]
  533. Sharrocks A. D., Green J., Guest J. R. In vivo and in vitro mutants of FNR the anaerobic transcriptional regulator of E. coli. FEBS Lett. 1990 Sep 17;270(1-2):119–122. doi: 10.1016/0014-5793(90)81248-m. [DOI] [PubMed] [Google Scholar]
  534. Shearer G., Kohl D. H. Nitrogen isotopic fractionation and 18O exchange in relation to the mechanism of denitrification of nitrite by Pseudomonas stutzeri. J Biol Chem. 1988 Sep 15;263(26):13231–13245. [PubMed] [Google Scholar]
  535. Shelver D., Kerby R. L., He Y., Roberts G. P. Carbon monoxide-induced activation of gene expression in Rhodospirillum rubrum requires the product of cooA, a member of the cyclic AMP receptor protein family of transcriptional regulators. J Bacteriol. 1995 Apr;177(8):2157–2163. doi: 10.1128/jb.177.8.2157-2163.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  536. Shimada H., Orii Y. Oxidation-reduction behavior of the heme c and heme d moieties of Pseudomonas aeruginosa nitrite reductase and the formation of an oxygenated intermediate at heme d1. J Biochem. 1976 Jul;80(1):135–140. doi: 10.1093/oxfordjournals.jbchem.a131245. [DOI] [PubMed] [Google Scholar]
  537. Shingler V. Signal sensing by sigma 54-dependent regulators: derepression as a control mechanism. Mol Microbiol. 1996 Feb;19(3):409–416. doi: 10.1046/j.1365-2958.1996.388920.x. [DOI] [PubMed] [Google Scholar]
  538. Shiro Y., Fujii M., Iizuka T., Adachi S., Tsukamoto K., Nakahara K., Shoun H. Spectroscopic and kinetic studies on reaction of cytochrome P450nor with nitric oxide. Implication for its nitric oxide reduction mechanism. J Biol Chem. 1995 Jan 27;270(4):1617–1623. doi: 10.1074/jbc.270.4.1617. [DOI] [PubMed] [Google Scholar]
  539. Shiro Y., Fujii M., Isogai Y., Adachi S., Iizuka T., Obayashi E., Makino R., Nakahara K., Shoun H. Iron-ligand structure and iron redox property of nitric oxide reductase cytochrome P450nor from Fusarium oxysporum: relevance to its NO reduction activity. Biochemistry. 1995 Jul 18;34(28):9052–9058. doi: 10.1021/bi00028a014. [DOI] [PubMed] [Google Scholar]
  540. Shoun H., Kim D. H., Uchiyama H., Sugiyama J. Denitrification by fungi. FEMS Microbiol Lett. 1992 Jul 15;73(3):277–281. doi: 10.1016/0378-1097(92)90643-3. [DOI] [PubMed] [Google Scholar]
  541. Shoun H., Tanimoto T. Denitrification by the fungus Fusarium oxysporum and involvement of cytochrome P-450 in the respiratory nitrite reduction. J Biol Chem. 1991 Jun 15;266(17):11078–11082. [PubMed] [Google Scholar]
  542. Sias S. R., Ingraham J. L. Isolation and analysis of mutants of Pseudomonas aeruginosa unable to assimilate nitrate. Arch Microbiol. 1979 Sep;122(3):263–270. doi: 10.1007/BF00411289. [DOI] [PubMed] [Google Scholar]
  543. Sias S. R., Stouthamer A. H., Ingraham J. L. The assimilatory and dissimilatory nitrate reductases of Pseudomonas aeruginosa are encoded by different genes. J Gen Microbiol. 1980 May;118(1):229–234. doi: 10.1099/00221287-118-1-229. [DOI] [PubMed] [Google Scholar]
  544. Siddiqui R. A., Warnecke-Eberz U., Hengsberger A., Schneider B., Kostka S., Friedrich B. Structure and function of a periplasmic nitrate reductase in Alcaligenes eutrophus H16. J Bacteriol. 1993 Sep;175(18):5867–5876. doi: 10.1128/jb.175.18.5867-5876.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  545. Silvestrini M. C., Colosimo A., Brunori M., Walsh T. A., Barber D., Greenwood C. A re-evaluation of some basic structural and functional properties of Pseudomonas cytochrome oxidase. Biochem J. 1979 Dec 1;183(3):701–709. doi: 10.1042/bj1830701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  546. Silvestrini M. C., Cutruzzolà F., D'Alessandro R., Brunori M., Fochesato N., Zennaro E. Expression of Pseudomonas aeruginosa nitrite reductase in Pseudomonas putida and characterization of the recombinant protein. Biochem J. 1992 Jul 15;285(Pt 2):661–666. doi: 10.1042/bj2850661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  547. Silvestrini M. C., Cutruzzolà F., Schininà M. E., Maras B., Rolli G., Brunori M. Isolation and characterization of the d1 domain of Pseudomonas aeruginosa nitrite reductase. J Inorg Biochem. 1996 May 1;62(2):77–87. doi: 10.1016/0162-0134(95)00090-9. [DOI] [PubMed] [Google Scholar]
  548. Silvestrini M. C., Falcinelli S., Ciabatti I., Cutruzzolà F., Brunori M. Pseudomonas aeruginosa nitrite reductase (or cytochrome oxidase): an overview. Biochimie. 1994;76(7):641–654. doi: 10.1016/0300-9084(94)90141-4. [DOI] [PubMed] [Google Scholar]
  549. Silvestrini M. C., Galeotti C. L., Gervais M., Schininà E., Barra D., Bossa F., Brunori M. Nitrite reductase from Pseudomonas aeruginosa: sequence of the gene and the protein. FEBS Lett. 1989 Aug 28;254(1-2):33–38. doi: 10.1016/0014-5793(89)81004-x. [DOI] [PubMed] [Google Scholar]
  550. Silvestrini M. C., Tordi M. G., Colosimo A., Antonini E., Brunori M. The kinetics of electron transfer between pseudomonas aeruginosa cytochrome c-551 and its oxidase. Biochem J. 1982 May 1;203(2):445–451. doi: 10.1042/bj2030445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  551. Silvestrini M. C., Tordi M. G., Musci G., Brunori M. The reaction of Pseudomonas nitrite reductase and nitrite. A stopped-flow and EPR study. J Biol Chem. 1990 Jul 15;265(20):11783–11787. [PubMed] [Google Scholar]
  552. Slutter C. E., Sanders D., Wittung P., Malmström B. G., Aasa R., Richards J. H., Gray H. B., Fee J. A. Water-soluble, recombinant CuA-domain of the cytochrome ba3 subunit II from Thermus thermophilus. Biochemistry. 1996 Mar 19;35(11):3387–3395. doi: 10.1021/bi9525839. [DOI] [PubMed] [Google Scholar]
  553. Smith G. B., Tiedje J. M. Isolation and characterization of a nitrite reductase gene and its use as a probe for denitrifying bacteria. Appl Environ Microbiol. 1992 Jan;58(1):376–384. doi: 10.1128/aem.58.1.376-384.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  554. Smith M. S. Nitrous oxide production by Escherichia coli is correlated with nitrate reductase activity. Appl Environ Microbiol. 1983 May;45(5):1545–1547. doi: 10.1128/aem.45.5.1545-1547.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  555. Snyder S. W., Bazylinski D. A., Hollocher T. C. Loss of N2O reductase activity as an explanation for poor growth of Pseudomonas aeruginosa on N2O. Appl Environ Microbiol. 1987 Sep;53(9):2045–2049. doi: 10.1128/aem.53.9.2045-2049.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  556. Snyder S. W., Hollocher T. C. Purification and some characteristics of nitrous oxide reductase from Paracoccus denitrificans. J Biol Chem. 1987 May 15;262(14):6515–6525. [PubMed] [Google Scholar]
  557. SooHoo C. K., Hollocher T. C., Kolodziej A. F., Orme-Johnson W. H., Bunker G. Extended x-ray absorption fine structure and electron paramagnetic resonance of nitrous oxide reductase from Pseudomonas aeruginosa strain P2. J Biol Chem. 1991 Feb 5;266(4):2210–2218. [PubMed] [Google Scholar]
  558. SooHoo C. K., Hollocher T. C. Loss of nitrous oxide reductase in Pseudomonas aeruginosa cultured under N2O as determined by rocket immunoelectrophoresis. Appl Environ Microbiol. 1990 Nov;56(11):3591–3592. doi: 10.1128/aem.56.11.3591-3592.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  559. SooHoo C. K., Hollocher T. C. Purification and characterization of nitrous oxide reductase from Pseudomonas aeruginosa strain P2. J Biol Chem. 1991 Feb 5;266(4):2203–2209. [PubMed] [Google Scholar]
  560. Speno H., Taheri M. R., Sieburth D., Martin C. T. Identification of essential amino acids within the proposed CuA binding site in subunit II of Cytochrome c oxidase. J Biol Chem. 1995 Oct 27;270(43):25363–25369. doi: 10.1074/jbc.270.43.25363. [DOI] [PubMed] [Google Scholar]
  561. Spiro S. An FNR-dependent promoter from Escherichia coli is active and anaerobically inducible in Paracoccus denitrificans. FEMS Microbiol Lett. 1992 Nov 1;77(1-3):145–148. doi: 10.1016/0378-1097(92)90146-f. [DOI] [PubMed] [Google Scholar]
  562. Spiro S., Guest J. R. FNR and its role in oxygen-regulated gene expression in Escherichia coli. FEMS Microbiol Rev. 1990 Aug;6(4):399–428. doi: 10.1111/j.1574-6968.1990.tb04109.x. [DOI] [PubMed] [Google Scholar]
  563. Spiro S., Guest J. R. Regulation and over-expression of the fnr gene of Escherichia coli. J Gen Microbiol. 1987 Dec;133(12):3279–3288. doi: 10.1099/00221287-133-12-3279. [DOI] [PubMed] [Google Scholar]
  564. Spiro S. The FNR family of transcriptional regulators. Antonie Van Leeuwenhoek. 1994;66(1-3):23–36. doi: 10.1007/BF00871630. [DOI] [PubMed] [Google Scholar]
  565. Steffens G. C., Biewald R., Buse G. Cytochrome c oxidase is a three-copper, two-heme-A protein. Eur J Biochem. 1987 Apr 15;164(2):295–300. doi: 10.1111/j.1432-1033.1987.tb11057.x. [DOI] [PubMed] [Google Scholar]
  566. Steinman H. M. Bacteriocuprein superoxide dismutases in pseudomonads. J Bacteriol. 1985 Jun;162(3):1255–1260. doi: 10.1128/jb.162.3.1255-1260.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  567. Stewart V., Parales J., Jr, Merkel S. M. Structure of genes narL and narX of the nar (nitrate reductase) locus in Escherichia coli K-12. J Bacteriol. 1989 Apr;171(4):2229–2234. doi: 10.1128/jb.171.4.2229-2234.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  568. Stoll R., Page M. D., Sambongi Y., Ferguson S. J. Cytochrome c550 expression in Paracoccus denitrificans strongly depends on growth condition: identification of promoter region for cycA by transcription start analysis. Microbiology. 1996 Sep;142(Pt 9):2577–2585. doi: 10.1099/00221287-142-9-2577. [DOI] [PubMed] [Google Scholar]
  569. Stouthamer A. H. Metabolic regulation including anaerobic metabolism in Paracoccus denitrificans. J Bioenerg Biomembr. 1991 Apr;23(2):163–185. doi: 10.1007/BF00762216. [DOI] [PubMed] [Google Scholar]
  570. Strange R. W., Dodd F. E., Abraham Z. H., Grossmann J. G., Brüser T., Eady R. R., Smith B. E., Hasnain S. S. The substrate-binding site in Cu nitrite reductase and its similarity to Zn carbonic anhydrase. Nat Struct Biol. 1995 Apr;2(4):287–292. doi: 10.1038/nsb0495-287. [DOI] [PubMed] [Google Scholar]
  571. Straub K. L., Benz M., Schink B., Widdel F. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl Environ Microbiol. 1996 Apr;62(4):1458–1460. doi: 10.1128/aem.62.4.1458-1460.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  572. Subczynski W. K., Lomnicka M., Hyde J. S. Permeability of nitric oxide through lipid bilayer membranes. Free Radic Res. 1996 May;24(5):343–349. doi: 10.3109/10715769609088032. [DOI] [PubMed] [Google Scholar]
  573. Sutherland J., Greenwood C., Peterson J., Thomson A. J. An investigation of the ligand-binding properties of Pseudomonas aeruginosa nitrite reductase. Biochem J. 1986 Feb 1;233(3):893–898. doi: 10.1042/bj2330893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  574. Suwanto A., Kaplan S. Chromosome transfer in Rhodobacter sphaeroides: Hfr formation and genetic evidence for two unique circular chromosomes. J Bacteriol. 1992 Feb;174(4):1135–1145. doi: 10.1128/jb.174.4.1135-1145.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  575. Suwanto A., Kaplan S. Physical and genetic mapping of the Rhodobacter sphaeroides 2.4.1 genome: presence of two unique circular chromosomes. J Bacteriol. 1989 Nov;171(11):5850–5859. doi: 10.1128/jb.171.11.5850-5859.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  576. Suzuki S., Yoshimura T., Kohzuma T., Shidara S., Masuko M., Sakurai T., Iwasaki H. Spectroscopic evidence for a copper-nitrosyl intermediate in nitrite reduction by blue copper-containing nitrite reductase. Biochem Biophys Res Commun. 1989 Nov 15;164(3):1366–1372. doi: 10.1016/0006-291x(89)91820-2. [DOI] [PubMed] [Google Scholar]
  577. Tait G. H. Aminolaevulinate synthetase of Micrococcus denitrificans. Purification and properties of the enzyme, and the effect of growth conditions on the enzyme activity in cells. Biochem J. 1973 Feb;131(2):389–403. doi: 10.1042/bj1310389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  578. Tam R., Saier M. H., Jr Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol Rev. 1993 Jun;57(2):320–346. doi: 10.1128/mr.57.2.320-346.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  579. Tamir S., Burney S., Tannenbaum S. R. DNA damage by nitric oxide. Chem Res Toxicol. 1996 Jul-Aug;9(5):821–827. doi: 10.1021/tx9600311. [DOI] [PubMed] [Google Scholar]
  580. Teraguchi S., Hollocher T. C. Purification and some characteristics of a cytochrome c-containing nitrous oxide reductase from Wolinella succinogenes. J Biol Chem. 1989 Feb 5;264(4):1972–1979. [PubMed] [Google Scholar]
  581. Thiemens M. H., Trogler W. C. Nylon production: an unknown source of atmospheric nitrous oxide. Science. 1991 Feb 22;251(4996):932–934. doi: 10.1126/science.251.4996.932. [DOI] [PubMed] [Google Scholar]
  582. Thomas K. L., Lloyd D., Boddy L. Effects of oxygen, pH and nitrate concentration on denitrification by Pseudomonas species. FEMS Microbiol Lett. 1994 May 1;118(1-2):181–186. doi: 10.1111/j.1574-6968.1994.tb06823.x. [DOI] [PubMed] [Google Scholar]
  583. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  584. Thöny-Meyer L., Beck C., Preisig O., Hennecke H. The ccoNOQP gene cluster codes for a cb-type cytochrome oxidase that functions in aerobic respiration of Rhodobacter capsulatus. Mol Microbiol. 1994 Nov;14(4):705–716. doi: 10.1111/j.1365-2958.1994.tb01308.x. [DOI] [PubMed] [Google Scholar]
  585. Thöny-Meyer L. Biogenesis of respiratory cytochromes in bacteria. Microbiol Mol Biol Rev. 1997 Sep;61(3):337–376. doi: 10.1128/mmbr.61.3.337-376.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  586. Thöny-Meyer L., Fischer F., Künzler P., Ritz D., Hennecke H. Escherichia coli genes required for cytochrome c maturation. J Bacteriol. 1995 Aug;177(15):4321–4326. doi: 10.1128/jb.177.15.4321-4326.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  587. Thöny-Meyer L., Künzler P., Hennecke H. Requirements for maturation of Bradyrhizobium japonicum cytochrome c550 in Escherichia coli. Eur J Biochem. 1996 Feb 1;235(3):754–761. doi: 10.1111/j.1432-1033.1996.00754.x. [DOI] [PubMed] [Google Scholar]
  588. Timkovich R., Cork M. S. Magnetic susceptibility measurements on Pseudomonas cytochrome cd1. Biochim Biophys Acta. 1983 Jan 12;742(1):162–168. doi: 10.1016/0167-4838(83)90372-2. [DOI] [PubMed] [Google Scholar]
  589. Timkovich R., Dhesi R., Martinkus K. J., Robinson M. K., Rea T. M. Isolation of Paracoccus denitrificans cytochrome cd1: comparative kinetics with other nitrite reductases. Arch Biochem Biophys. 1982 Apr 15;215(1):47–58. doi: 10.1016/0003-9861(82)90277-6. [DOI] [PubMed] [Google Scholar]
  590. Timkovich R., Robinson M. K. Evidence for water as the product for oxygen reduction by cytochrome cd. Biochem Biophys Res Commun. 1979 May 28;88(2):649–655. doi: 10.1016/0006-291x(79)92097-7. [DOI] [PubMed] [Google Scholar]
  591. Tindall B. J., Tomlinson G. A., Hochstein L. I. Transfer of Halobacterium denitrificans (Tomlinson, Jahnke, and Hochstein) to the genus Haloferax as Haloferax denitrificans comb. nov. Int J Syst Bacteriol. 1989 Jul;39(3):359–360. doi: 10.1099/00207713-39-3-359. [DOI] [PubMed] [Google Scholar]
  592. Toffanin A., Wu Q., Maskus M., Caselia S., Abruña H. D., Shapleigh J. P. Characterization of the gene encoding nitrite reductase and the physiological consequences of its expression in the nondenitrifying Rhizobium "hedysari" strain HCNT1. Appl Environ Microbiol. 1996 Nov;62(11):4019–4025. doi: 10.1128/aem.62.11.4019-4025.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  593. Tomlinson G. A., Jahnke L. L., Hochstein L. I. Halobacterium denitrificans sp. nov., an extremely halophilic denitrifying bacterium. Int J Syst Bacteriol. 1986 Jan;36(1):66–70. doi: 10.1099/00207713-36-1-66. [DOI] [PubMed] [Google Scholar]
  594. Tomura D., Obika K., Fukamizu A., Shoun H. Nitric oxide reductase cytochrome P-450 gene, CYP 55, of the fungus Fusarium oxysporum containing a potential binding-site for FNR, the transcription factor involved in the regulation of anaerobic growth of Escherichia coli. J Biochem. 1994 Jul;116(1):88–94. doi: 10.1093/oxfordjournals.jbchem.a124508. [DOI] [PubMed] [Google Scholar]
  595. Toritsuka N., Shoun H., Singh U. P., Park S. Y., Iizuka T., Shiro Y. Functional and structural comparison of nitric oxide reductases from denitrifying fungi Cylindrocarpon tonkinense and Fusarium oxysporum. Biochim Biophys Acta. 1997 Mar 7;1338(1):93–99. doi: 10.1016/s0167-4838(96)00193-8. [DOI] [PubMed] [Google Scholar]
  596. Torres J., Darley-Usmar V., Wilson M. T. Inhibition of cytochrome c oxidase in turnover by nitric oxide: mechanism and implications for control of respiration. Biochem J. 1995 Nov 15;312(Pt 1):169–173. doi: 10.1042/bj3120169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  597. Tosques I. E., Kwiatkowski A. V., Shi J., Shapleigh J. P. Characterization and regulation of the gene encoding nitrite reductase in Rhodobacter sphaeroides 2.4.3. J Bacteriol. 1997 Feb;179(4):1090–1095. doi: 10.1128/jb.179.4.1090-1095.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  598. Tosques I. E., Shi J., Shapleigh J. P. Cloning and characterization of nnrR, whose product is required for the expression of proteins involved in nitric oxide metabolism in Rhodobacter sphaeroides 2.4.3. J Bacteriol. 1996 Aug;178(16):4958–4964. doi: 10.1128/jb.178.16.4958-4964.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  599. Totten P. A., Lara J. C., Lory S. The rpoN gene product of Pseudomonas aeruginosa is required for expression of diverse genes, including the flagellin gene. J Bacteriol. 1990 Jan;172(1):389–396. doi: 10.1128/jb.172.1.389-396.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  600. Toyama H., Chistoserdova L., Lidstrom M. E. Sequence analysis of pqq genes required for biosynthesis of pyrroloquinoline quinone in Methylobacterium extorquens AM1 and the purification of a biosynthetic intermediate. Microbiology. 1997 Feb;143(Pt 2):595–602. doi: 10.1099/00221287-143-2-595. [DOI] [PubMed] [Google Scholar]
  601. Troup B., Hungerer C., Jahn D. Cloning and characterization of the Escherichia coli hemN gene encoding the oxygen-independent coproporphyrinogen III oxidase. J Bacteriol. 1995 Jun;177(11):3326–3331. doi: 10.1128/jb.177.11.3326-3331.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  602. Trueman L. J., Richardson A., Forde B. G. Molecular cloning of higher plant homologues of the high-affinity nitrate transporters of Chlamydomonas reinhardtii and Aspergillus nidulans. Gene. 1996 Oct 10;175(1-2):223–231. doi: 10.1016/0378-1119(96)00154-0. [DOI] [PubMed] [Google Scholar]
  603. Tsukihara T., Aoyama H., Yamashita E., Tomizaki T., Yamaguchi H., Shinzawa-Itoh K., Nakashima R., Yaono R., Yoshikawa S. Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A. Science. 1995 Aug 25;269(5227):1069–1074. doi: 10.1126/science.7652554. [DOI] [PubMed] [Google Scholar]
  604. Turk T., Hollocher T. C. Oxidation of dithiothreitol during turnover of nitric oxide reductase: evidence for generation of nitroxyl with the enzyme from Paracoccus denitrificans. Biochem Biophys Res Commun. 1992 Mar 31;183(3):983–988. doi: 10.1016/s0006-291x(05)80287-6. [DOI] [PubMed] [Google Scholar]
  605. Tyson K. L., Cole J. A., Busby S. J. Nitrite and nitrate regulation at the promoters of two Escherichia coli operons encoding nitrite reductase: identification of common target heptamers for both NarP- and NarL-dependent regulation. Mol Microbiol. 1994 Sep;13(6):1045–1055. doi: 10.1111/j.1365-2958.1994.tb00495.x. [DOI] [PubMed] [Google Scholar]
  606. Uhland K., Ehrle R., Zander T., Ehrmann M. Requirements for translocation of periplasmic domains in polytopic membrane proteins. J Bacteriol. 1994 Aug;176(15):4565–4571. doi: 10.1128/jb.176.15.4565-4571.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  607. Unden G., Becker S., Bongaerts J., Holighaus G., Schirawski J., Six S. O2-sensing and O2-dependent gene regulation in facultatively anaerobic bacteria. Arch Microbiol. 1995 Aug;164(2):81–90. [PubMed] [Google Scholar]
  608. Unden G., Schirawski J. The oxygen-responsive transcriptional regulator FNR of Escherichia coli: the search for signals and reactions. Mol Microbiol. 1997 Jul;25(2):205–210. doi: 10.1046/j.1365-2958.1997.4731841.x. [DOI] [PubMed] [Google Scholar]
  609. Unkles S. E., Hawker K. L., Grieve C., Campbell E. I., Montague P., Kinghorn J. R. crnA encodes a nitrate transporter in Aspergillus nidulans. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):204–208. doi: 10.1073/pnas.88.1.204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  610. Usuda K., Toritsuka N., Matsuo Y., Kim D. H., Shoun H. Denitrification by the fungus Cylindrocarpon tonkinense: anaerobic cell growth and two isozyme forms of cytochrome P-450nor. Appl Environ Microbiol. 1995 Mar;61(3):883–889. doi: 10.1128/aem.61.3.883-889.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  611. Van Hartingsveldt J., Marinus M. G., Stouthamer A. H. Mutants of Pseudomonas aeruginosa bblocked in nitrate or nitrite dissimilation. Genetics. 1971 Apr;67(4):469–482. doi: 10.1093/genetics/67.4.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  612. Van Pouderoyen G., Mazumdar S., Hunt N. I., Hill A. O., Canters G. W. The introduction of a negative charge into the hydrophobic patch of Pseudomonas aeruginosa azurin affects the electron self-exchange rate and the electrochemistry. Eur J Biochem. 1994 Jun 1;222(2):583–588. doi: 10.1111/j.1432-1033.1994.tb18900.x. [DOI] [PubMed] [Google Scholar]
  613. Van Spanning R. J., De Boer A. P., Reijnders W. N., Spiro S., Westerhoff H. V., Stouthamer A. H., Van der Oost J. Nitrite and nitric oxide reduction in Paracoccus denitrificans is under the control of NNR, a regulatory protein that belongs to the FNR family of transcriptional activators. FEBS Lett. 1995 Feb 27;360(2):151–154. doi: 10.1016/0014-5793(95)00091-m. [DOI] [PubMed] [Google Scholar]
  614. Van Spanning R. J., De Boer A. P., Reijnders W. N., Westerhoff H. V., Stouthamer A. H., Van Der Oost J. FnrP and NNR of Paracoccus denitrificans are both members of the FNR family of transcriptional activators but have distinct roles in respiratory adaptation in response to oxygen limitation. Mol Microbiol. 1997 Mar;23(5):893–907. doi: 10.1046/j.1365-2958.1997.2801638.x. [DOI] [PubMed] [Google Scholar]
  615. Van Spanning R. J., Wansell C., Harms N., Oltmann L. F., Stouthamer A. H. Mutagenesis of the gene encoding cytochrome c550 of Paracoccus denitrificans and analysis of the resultant physiological effects. J Bacteriol. 1990 Jun;172(6):3534–3534. doi: 10.1128/jb.172.6.3534.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  616. Van Spanning R. J., de Boer A. P., Reijnders W. N., De Gier J. W., Delorme C. O., Stouthamer A. H., Westerhoff H. V., Harms N., van der Oost J. Regulation of oxidative phosphorylation: the flexible respiratory network of Paracoccus denitrificans. J Bioenerg Biomembr. 1995 Oct;27(5):499–512. doi: 10.1007/BF02110190. [DOI] [PubMed] [Google Scholar]
  617. Vandamme P., Falsen E., Rossau R., Hoste B., Segers P., Tytgat R., De Ley J. Revision of Campylobacter, Helicobacter, and Wolinella taxonomy: emendation of generic descriptions and proposal of Arcobacter gen. nov. Int J Syst Bacteriol. 1991 Jan;41(1):88–103. doi: 10.1099/00207713-41-1-88. [DOI] [PubMed] [Google Scholar]
  618. Vanderkooi J. M., Wright W. W., Erecinska M. Nitric oxide diffusion coefficients in solutions, proteins and membranes determined by phosphorescence. Biochim Biophys Acta. 1994 Aug 17;1207(2):249–254. doi: 10.1016/0167-4838(94)00073-5. [DOI] [PubMed] [Google Scholar]
  619. Verplaetse J., Van Tornout P., Defreyn G., Witters R., Lontie R. The reaction of nitrogen monoxide and of nitrite with deoxyhaemocyanin and methaemocyanin of Helix pomatia. Eur J Biochem. 1979 Apr 2;95(2):327–331. doi: 10.1111/j.1432-1033.1979.tb12969.x. [DOI] [PubMed] [Google Scholar]
  620. Viale A. M., Kobayashi H., Akazawa T. Expressed genes for plant-type ribulose 1,5-bisphosphate carboxylase/oxygenase in the photosynthetic bacterium Chromatium vinosum, which possesses two complete sets of the genes. J Bacteriol. 1989 May;171(5):2391–2400. doi: 10.1128/jb.171.5.2391-2400.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  621. Viebrock A., Zumft W. G. Molecular cloning, heterologous expression, and primary structure of the structural gene for the copper enzyme nitrous oxide reductase from denitrifying Pseudomonas stutzeri. J Bacteriol. 1988 Oct;170(10):4658–4668. doi: 10.1128/jb.170.10.4658-4668.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  622. Viebrock A., Zumft W. G. Physical mapping of transposon Tn5 insertions defines a gene cluster functional in nitrous oxide respiration by Pseudomonas stutzeri. J Bacteriol. 1987 Oct;169(10):4577–4580. doi: 10.1128/jb.169.10.4577-4580.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  623. Vignais P. M., Terech A., Meyer C. M., Henry M. F. Isolation and characterization of a protein with cyanide-sensitive superoxide dismutase activity from the prokaryote, Paracoccus denitrificans. Biochim Biophys Acta. 1982 Mar 4;701(3):305–317. doi: 10.1016/0167-4838(82)90233-3. [DOI] [PubMed] [Google Scholar]
  624. Vijgenboom E., Busch J. E., Canters G. W. In vivo studies disprove an obligatory role of azurin in denitrification in Pseudomonas aeruginosa and show that azu expression is under control of rpoS and ANR. Microbiology. 1997 Sep;143(Pt 9):2853–2863. doi: 10.1099/00221287-143-9-2853. [DOI] [PubMed] [Google Scholar]
  625. Vorholt JA, Hafenbradl D, Stetter KO, Thauer RK. Pathways of autotrophic CO2 fixation and of dissimilatory nitrate reduction to N2O in Ferroglobus placidus. Arch Microbiol. 1997 Jan 29;167(1):19–23. doi: 10.1007/s002030050411. [DOI] [PubMed] [Google Scholar]
  626. Vosswinkel R., Neidt I., Bothe H. The production and utilization of nitric oxide by a new, denitrifying strain of Pseudomonas aeruginosa. Arch Microbiol. 1991;156(1):62–69. doi: 10.1007/BF00418189. [DOI] [PubMed] [Google Scholar]
  627. Völkl P., Huber R., Drobner E., Rachel R., Burggraf S., Trincone A., Stetter K. O. Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Appl Environ Microbiol. 1993 Sep;59(9):2918–2926. doi: 10.1128/aem.59.9.2918-2926.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  628. Walkenhorst H. M., Hemschemeier S. K., Eichenlaub R. Molecular analysis of the molybdate uptake operon, modABCD, of Escherichia coli and modR, a regulatory gene. Microbiol Res. 1995 Nov;150(4):347–361. doi: 10.1016/S0944-5013(11)80016-9. [DOI] [PubMed] [Google Scholar]
  629. Walker M. S., DeMoss J. A. NarL-phosphate must bind to multiple upstream sites to activate transcription from the narG promoter of Escherichia coli. Mol Microbiol. 1994 Nov;14(4):633–641. doi: 10.1111/j.1365-2958.1994.tb01302.x. [DOI] [PubMed] [Google Scholar]
  630. Walsh T. A., Johnson M. K., Greenwood C., Barber D., Springall J. P., Thomson A. J. Some magnetic properties of Pseudomonas cytochrome oxidase. Biochem J. 1979 Jan 1;177(1):29–39. doi: 10.1042/bj1770029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  631. Wang G., Angermüller S., Klipp W. Characterization of Rhodobacter capsulatus genes encoding a molybdenum transport system and putative molybdenum-pterin-binding proteins. J Bacteriol. 1993 May;175(10):3031–3042. doi: 10.1128/jb.175.10.3031-3042.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  632. Warrelmann J., Eitinger M., Schwartz E., Römermann D., Friedrich B. Nucleotide sequence of the rpoN (hno) gene region of Alcaligenes eutrophus: evidence for a conserved gene cluster. Arch Microbiol. 1992;158(2):107–114. doi: 10.1007/BF00245213. [DOI] [PubMed] [Google Scholar]
  633. Warren M. J., Bolt E. L., Roessner C. A., Scott A. I., Spencer J. B., Woodcock S. C. Gene dissection demonstrates that the Escherichia coli cysG gene encodes a multifunctional protein. Biochem J. 1994 Sep 15;302(Pt 3):837–844. doi: 10.1042/bj3020837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  634. Weeg-Aerssens E., Wu W. S., Ye R. W., Tiedje J. M., Chang C. K. Purification of cytochrome cd1 nitrite reductase from Pseudomonas stutzeri JM300 and reconstitution with native and synthetic heme d1. J Biol Chem. 1991 Apr 25;266(12):7496–7502. [PubMed] [Google Scholar]
  635. Wehrfritz J. M., Reilly A., Spiro S., Richardson D. J. Purification of hydroxylamine oxidase from Thiosphaera pantotropha. Identification of electron acceptors that couple heterotrophic nitrification to aerobic denitrification. FEBS Lett. 1993 Dec 6;335(2):246–250. doi: 10.1016/0014-5793(93)80739-h. [DOI] [PubMed] [Google Scholar]
  636. Wei X. Q., Charles I. G., Smith A., Ure J., Feng G. J., Huang F. P., Xu D., Muller W., Moncada S., Liew F. Y. Altered immune responses in mice lacking inducible nitric oxide synthase. Nature. 1995 Jun 1;375(6530):408–411. doi: 10.1038/375408a0. [DOI] [PubMed] [Google Scholar]
  637. Werber M. M., Mevarech M. Induction of a dissimilatory reduction pathway of nitrate in Halobacterium of the Dead Sea. A possible role for the 2 Fe-ferredoxin isolated from this organism. Arch Biochem Biophys. 1978 Feb;186(1):60–65. doi: 10.1016/0003-9861(78)90463-0. [DOI] [PubMed] [Google Scholar]
  638. Wharton D. C., Gudat J. C., Gibson Q. H. Cytochrome oxidase from Pseudomonas aeruginosa. I. Reaction with copper protein. Biochim Biophys Acta. 1973 Apr 5;292(3):611–620. doi: 10.1016/0005-2728(73)90009-1. [DOI] [PubMed] [Google Scholar]
  639. Wientjes F. B., Kolk A. H., Nanninga N., Van T'Riet J. Respiratory nitrate reductase: its localization in the cytoplasmic membrane of Klebsiella aerogenes and Bacillus licheniformis. Eur J Biochem. 1979 Mar 15;95(1):61–67. doi: 10.1111/j.1432-1033.1979.tb12939.x. [DOI] [PubMed] [Google Scholar]
  640. Willems A., Falsen E., Pot B., Jantzen E., Hoste B., Vandamme P., Gillis M., Kersters K., De Ley J. Acidovorax, a new genus for Pseudomonas facilis, Pseudomonas delafieldii, E. Falsen (EF) group 13, EF group 16, and several clinical isolates, with the species Acidovorax facilis comb. nov., Acidovorax delafieldii comb. nov., and Acidovorax temperans sp. nov. Int J Syst Bacteriol. 1990 Oct;40(4):384–398. doi: 10.1099/00207713-40-4-384. [DOI] [PubMed] [Google Scholar]
  641. Willems A., Goor M., Thielemans S., Gillis M., Kersters K., De Ley J. Transfer of several phytopathogenic Pseudomonas species to Acidovorax as Acidovorax avenae subsp. avenae subsp. nov., comb. nov., Acidovorax avenae subsp. citrulli, Acidovorax avenae subsp. cattleyae, and Acidovorax konjaci. Int J Syst Bacteriol. 1992 Jan;42(1):107–119. doi: 10.1099/00207713-42-1-107. [DOI] [PubMed] [Google Scholar]
  642. Williams P. A., Fülöp V., Garman E. F., Saunders N. F., Ferguson S. J., Hajdu J. Haem-ligand switching during catalysis in crystals of a nitrogen-cycle enzyme. Nature. 1997 Sep 25;389(6649):406–412. doi: 10.1038/38775. [DOI] [PubMed] [Google Scholar]
  643. Williams P. A., Fülöp V., Leung Y. C., Chan C., Moir J. W., Howlett G., Ferguson S. J., Radford S. E., Hajdu J. Pseudospecific docking surfaces on electron transfer proteins as illustrated by pseudoazurin, cytochrome c550 and cytochrome cd1 nitrite reductase. Nat Struct Biol. 1995 Nov;2(11):975–982. doi: 10.1038/nsb1195-975. [DOI] [PubMed] [Google Scholar]
  644. Williams S. B., Stewart V. Nitrate- and nitrite-sensing protein NarX of Escherichia coli K-12: mutational analysis of the amino-terminal tail and first transmembrane segment. J Bacteriol. 1997 Feb;179(3):721–729. doi: 10.1128/jb.179.3.721-729.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  645. Wilmanns M., Lappalainen P., Kelly M., Sauer-Eriksson E., Saraste M. Crystal structure of the membrane-exposed domain from a respiratory quinol oxidase complex with an engineered dinuclear copper center. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):11955–11959. doi: 10.1073/pnas.92.26.11955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  646. Wing H. J., Williams S. M., Busby S. J. Spacing requirements for transcription activation by Escherichia coli FNR protein. J Bacteriol. 1995 Dec;177(23):6704–6710. doi: 10.1128/jb.177.23.6704-6710.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  647. Wink D. A., Kasprzak K. S., Maragos C. M., Elespuru R. K., Misra M., Dunams T. M., Cebula T. A., Koch W. H., Andrews A. W., Allen J. S. DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science. 1991 Nov 15;254(5034):1001–1003. doi: 10.1126/science.1948068. [DOI] [PubMed] [Google Scholar]
  648. Wink D. A., Laval J. The Fpg protein, a DNA repair enzyme, is inhibited by the biomediator nitric oxide in vitro and in vivo. Carcinogenesis. 1994 Oct;15(10):2125–2129. doi: 10.1093/carcin/15.10.2125. [DOI] [PubMed] [Google Scholar]
  649. Winteler H. V., Haas D. The homologous regulators ANR of Pseudomonas aeruginosa and FNR of Escherichia coli have overlapping but distinct specificities for anaerobically inducible promoters. Microbiology. 1996 Mar;142(Pt 3):685–693. doi: 10.1099/13500872-142-3-685. [DOI] [PubMed] [Google Scholar]
  650. Witt H., Ludwig B. Isolation, analysis, and deletion of the gene coding for subunit IV of cytochrome c oxidase in Paracoccus denitrificans. J Biol Chem. 1997 Feb 28;272(9):5514–5517. doi: 10.1074/jbc.272.9.5514. [DOI] [PubMed] [Google Scholar]
  651. Witt H., Zickermann V., Ludwig B. Site-directed mutagenesis of cytochrome c oxidase reveals two acidic residues involved in the binding of cytochrome c. Biochim Biophys Acta. 1995 Jun 1;1230(1-2):74–76. doi: 10.1016/0005-2728(95)00050-s. [DOI] [PubMed] [Google Scholar]
  652. Woese C. R., Kandler O., Wheelis M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4576–4579. doi: 10.1073/pnas.87.12.4576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  653. Wood P. M. Periplasmic location of the terminal reductase in nitrite respiration. FEBS Lett. 1978 Aug 15;92(2):214–218. doi: 10.1016/0014-5793(78)80757-1. [DOI] [PubMed] [Google Scholar]
  654. Wu Q., Knowles R. Cellular regulation of nitrate uptake in denitrifying Flexibacter canadensis. Can J Microbiol. 1994 Jul;40(7):576–582. doi: 10.1139/m94-092. [DOI] [PubMed] [Google Scholar]
  655. Wu S., Moreno-Sanchez R., Rottenberg H. Involvement of cytochrome c oxidase subunit III in energy coupling. Biochemistry. 1995 Dec 19;34(50):16298–16305. doi: 10.1021/bi00050a009. [DOI] [PubMed] [Google Scholar]
  656. Wuebbens M. M., Rajagopalan K. V. Investigation of the early steps of molybdopterin biosynthesis in Escherichia coli through the use of in vivo labeling studies. J Biol Chem. 1995 Jan 20;270(3):1082–1087. doi: 10.1074/jbc.270.3.1082. [DOI] [PubMed] [Google Scholar]
  657. Wuebbens M. M., Rajagopalan K. V. Structural characterization of a molybdopterin precursor. J Biol Chem. 1993 Jun 25;268(18):13493–13498. [PubMed] [Google Scholar]
  658. Wülfing C., Plückthun A. Protein folding in the periplasm of Escherichia coli. Mol Microbiol. 1994 Jun;12(5):685–692. doi: 10.1111/j.1365-2958.1994.tb01056.x. [DOI] [PubMed] [Google Scholar]
  659. Xu K., Elliott T. Cloning, DNA sequence, and complementation analysis of the Salmonella typhimurium hemN gene encoding a putative oxygen-independent coproporphyrinogen III oxidase. J Bacteriol. 1994 Jun;176(11):3196–3203. doi: 10.1128/jb.176.11.3196-3203.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  660. YAMANAKA T., KIJIMOTO S., OKUNUKI K. Biological significance of Pseudomonas cytochrome oxidase in Pseudomonas aeruginosa. J Biochem. 1963 May;53:416–421. doi: 10.1093/oxfordjournals.jbchem.a127716. [DOI] [PubMed] [Google Scholar]
  661. YAMANAKA T., KIJIMOTO S., OKUNUKI K., KUSAI K. Preparation of crystalline Pseudomonas cytochrome oxidase and some of its properties. Nature. 1962 May 26;194:759–760. doi: 10.1038/194759a0. [DOI] [PubMed] [Google Scholar]
  662. YAMANAKA T., OTA A., OKUNUKI K. A nitrite reducing system reconstructed with purified cytochrome components of Pseudomonas aeruginosa. Biochim Biophys Acta. 1961 Oct 28;53:294–308. doi: 10.1016/0006-3002(61)90442-5. [DOI] [PubMed] [Google Scholar]
  663. Yabuuchi E., Kosako Y., Oyaizu H., Yano I., Hotta H., Hashimoto Y., Ezaki T., Arakawa M. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol. 1992;36(12):1251–1275. doi: 10.1111/j.1348-0421.1992.tb02129.x. [DOI] [PubMed] [Google Scholar]
  664. Yabuuchi E., Kosako Y., Yano I., Hotta H., Nishiuchi Y. Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. Nov.: Proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. Nov., Ralstonia solanacearum (Smith 1896) comb. Nov. and Ralstonia eutropha (Davis 1969) comb. Nov. Microbiol Immunol. 1995;39(11):897–904. doi: 10.1111/j.1348-0421.1995.tb03275.x. [DOI] [PubMed] [Google Scholar]
  665. Yamamoto K., Uozumi T., Beppu T. The blue copper protein gene of Alcaligenes faecalis S-6 directs secretion of blue copper protein from Escherichia coli cells. J Bacteriol. 1987 Dec;169(12):5648–5652. doi: 10.1128/jb.169.12.5648-5652.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  666. Yamazaki T., Oyanagi H., Fujiwara T., Fukumori Y. Nitrite reductase from the magnetotactic bacterium Magnetospirillum magnetotacticum. A novel cytochrome cd1 with Fe(II):nitrite oxidoreductase activity. Eur J Biochem. 1995 Oct 15;233(2):665–671. doi: 10.1111/j.1432-1033.1995.665_2.x. [DOI] [PubMed] [Google Scholar]
  667. Yang C. H., Azad H. R., Cooksey D. A. A chromosomal locus required for copper resistance, competitive fitness, and cytochrome c biogenesis in Pseudomonas fluorescens. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7315–7320. doi: 10.1073/pnas.93.14.7315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  668. Yang T. Tetramethyl-p-phenylenediamine oxidase of Pseudomonas aeruginosa. Eur J Biochem. 1982 Jan;121(2):335–341. doi: 10.1111/j.1432-1033.1982.tb05791.x. [DOI] [PubMed] [Google Scholar]
  669. Yap-Bondoc F., Bondoc L. L., Timkovich R., Baker D. C., Hebbler A. C-methylation occurs during the biosynthesis of heme d1. J Biol Chem. 1990 Aug 15;265(23):13498–13500. [PubMed] [Google Scholar]
  670. Ye R. W., Arunakumari A., Averill B. A., Tiedje J. M. Mutants of Pseudomonas fluorescens deficient in dissimilatory nitrite reduction are also altered in nitric oxide reduction. J Bacteriol. 1992 Apr;174(8):2560–2564. doi: 10.1128/jb.174.8.2560-2564.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  671. Ye R. W., Averill B. A., Tiedje J. M. Characterization of Tn5 mutants deficient in dissimilatory nitrite reduction in Pseudomonas sp. strain G-179, which contains a copper nitrite reductase. J Bacteriol. 1992 Oct;174(20):6653–6658. doi: 10.1128/jb.174.20.6653-6658.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  672. Ye R. W., Averill B. A., Tiedje J. M. Denitrification: production and consumption of nitric oxide. Appl Environ Microbiol. 1994 Apr;60(4):1053–1058. doi: 10.1128/aem.60.4.1053-1058.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  673. Ye R. W., Fries M. R., Bezborodnikov S. G., Averill B. A., Tiedje J. M. Characterization of the structural gene encoding a copper-containing nitrite reductase and homology of this gene to DNA of other denitrifiers. Appl Environ Microbiol. 1993 Jan;59(1):250–254. doi: 10.1128/aem.59.1.250-254.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  674. Ye R. W., Haas D., Ka J. O., Krishnapillai V., Zimmermann A., Baird C., Tiedje J. M. Anaerobic activation of the entire denitrification pathway in Pseudomonas aeruginosa requires Anr, an analog of Fnr. J Bacteriol. 1995 Jun;177(12):3606–3609. doi: 10.1128/jb.177.12.3606-3609.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  675. Ye R. W., Toro-Suarez I., Tiedje J. M., Averill B. A. H218O isotope exchange studies on the mechanism of reduction of nitric oxide and nitrite to nitrous oxide by denitrifying bacteria. Evidence for an electrophilic nitrosyl during reduction of nitric oxide. J Biol Chem. 1991 Jul 15;266(20):12848–12851. [PubMed] [Google Scholar]
  676. Yokoyama K., Hayashi N. R., Arai H., Chung S. Y., Igarashi Y., Kodama T. Genes encoding RubisCO in Pseudomonas hydrogenothermophila are followed by a novel cbbQ gene similar to nirQ of the denitrification gene cluster from Pseudomonas species. Gene. 1995 Feb 3;153(1):75–79. doi: 10.1016/0378-1119(94)00808-6. [DOI] [PubMed] [Google Scholar]
  677. Yoneyama H., Nakae T. Protein C (OprC) of the outer membrane of Pseudomonas aeruginosa is a copper-regulated channel protein. Microbiology. 1996 Aug;142(Pt 8):2137–2144. doi: 10.1099/13500872-142-8-2137. [DOI] [PubMed] [Google Scholar]
  678. Yoshida M., Amano T. A common topology of proteins catalyzing ATP-triggered reactions. FEBS Lett. 1995 Feb 6;359(1):1–5. doi: 10.1016/0014-5793(94)01438-7. [DOI] [PubMed] [Google Scholar]
  679. Yoshimura T., Iwasaki H., Shidara S., Suzuki S., Nakahara A., Matsubara T. Nitric oxide complex of cytochrome c' in cells of denitrifying bacteria. J Biochem. 1988 Jun;103(6):1016–1019. doi: 10.1093/oxfordjournals.jbchem.a122372. [DOI] [PubMed] [Google Scholar]
  680. Yoshinari T., Knowles R. Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria. Biochem Biophys Res Commun. 1976 Apr 5;69(3):705–710. doi: 10.1016/0006-291x(76)90932-3. [DOI] [PubMed] [Google Scholar]
  681. Yoshinari T. N2O reduction by Vibrio succinogenes. Appl Environ Microbiol. 1980 Jan;39(1):81–84. doi: 10.1128/aem.39.1.81-84.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  682. Yung Y. L., McElroy M. B. Fixation of nitrogen in the prebiotic atmosphere. Science. 1979 Mar 9;203(4384):1002–1004. doi: 10.1126/science.203.4384.1002. [DOI] [PubMed] [Google Scholar]
  683. ZOBELL C. E., OPPENHEIMER C. H. Some effects of hydrostatic pressure on the multiplication and morphology of marine bacteria. J Bacteriol. 1950 Dec;60(6):771–781. doi: 10.1128/jb.60.6.771-781.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  684. Zafiriou O. C., Hanley Q. S., Snyder G. Nitric oxide and nitrous oxide production and cycling during dissimilatory nitrite reduction by Pseudomonas perfectomarina. J Biol Chem. 1989 Apr 5;264(10):5694–5699. [PubMed] [Google Scholar]
  685. Zannoni D. The respiratory chains of pathogenic pseudomonads. Biochim Biophys Acta. 1989 Aug 3;975(3):299–316. doi: 10.1016/s0005-2728(89)80337-8. [DOI] [PubMed] [Google Scholar]
  686. Zeilstra-Ryalls J. H., Kaplan S. Aerobic and anaerobic regulation in Rhodobacter sphaeroides 2.4.1: the role of the fnrL gene. J Bacteriol. 1995 Nov;177(22):6422–6431. doi: 10.1128/jb.177.22.6422-6431.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  687. Zeilstra-Ryalls J. H., Kaplan S. Control of hemA expression in Rhodobacter sphaeroides 2.4.1: regulation through alterations in the cellular redox state. J Bacteriol. 1996 Feb;178(4):985–993. doi: 10.1128/jb.178.4.985-993.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  688. Zennaro E., Ciabatti I., Cutruzzola F., D'Alessandro R., Silvestrini M. C. The nitrite reductase gene of Pseudomonas aeruginosa: effect of growth conditions on the expression and construction of a mutant by gene disruption. FEMS Microbiol Lett. 1993 May 15;109(2-3):243–250. doi: 10.1016/0378-1097(93)90027-y. [DOI] [PubMed] [Google Scholar]
  689. Zhang C. S., Hollocher T. C., Kolodziej A. F., Orme-Johnson W. H. Electron paramagnetic resonance observations on the cytochrome c-containing nitrous oxide reductase from Wolinella succinogenes. J Biol Chem. 1991 Feb 5;266(4):2199–2202. [PubMed] [Google Scholar]
  690. Zhang X., DeMoss J. A. Structure modification induced in the narG promoter by binding of integration host factor and NARL-P. J Bacteriol. 1996 Jul;178(13):3971–3973. doi: 10.1128/jb.178.13.3971-3973.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  691. Zhou J., Fries M. R., Chee-Sanford J. C., Tiedje J. M. Phylogenetic analyses of a new group of denitrifiers capable of anaerobic growth of toluene and description of Azoarcus tolulyticus sp. nov. Int J Syst Bacteriol. 1995 Jul;45(3):500–506. doi: 10.1099/00207713-45-3-500. [DOI] [PubMed] [Google Scholar]
  692. Zickermann V., Wittershagen A., Kolbesen B. O., Ludwig B. Transformation of the CuA redox site in cytochrome c oxidase into a mononuclear copper center. Biochemistry. 1997 Mar 18;36(11):3232–3236. doi: 10.1021/bi962040e. [DOI] [PubMed] [Google Scholar]
  693. Zimmermann A., Reimmann C., Galimand M., Haas D. Anaerobic growth and cyanide synthesis of Pseudomonas aeruginosa depend on anr, a regulatory gene homologous with fnr of Escherichia coli. Mol Microbiol. 1991 Jun;5(6):1483–1490. doi: 10.1111/j.1365-2958.1991.tb00794.x. [DOI] [PubMed] [Google Scholar]
  694. Zumft W. G., Braun C., Cuypers H. Nitric oxide reductase from Pseudomonas stutzeri. Primary structure and gene organization of a novel bacterial cytochrome bc complex. Eur J Biochem. 1994 Jan 15;219(1-2):481–490. doi: 10.1111/j.1432-1033.1994.tb19962.x. [DOI] [PubMed] [Google Scholar]
  695. Zumft W. G., Dreusch A., Löchelt S., Cuypers H., Friedrich B., Schneider B. Derived amino acid sequences of the nosZ gene (respiratory N2O reductase) from Alcaligenes eutrophus, Pseudomonas aeruginosa and Pseudomonas stutzeri reveal potential copper-binding residues. Implications for the CuA site of N2O reductase and cytochrome-c oxidase. Eur J Biochem. 1992 Aug 15;208(1):31–40. doi: 10.1111/j.1432-1033.1992.tb17156.x. [DOI] [PubMed] [Google Scholar]
  696. Zumft W. G., Döhler K., Körner H. Isolation and characterization of transposon Tn5-induced mutants of Pseudomonas perfectomarina defective in nitrous oxide respiration. J Bacteriol. 1985 Sep;163(3):918–924. doi: 10.1128/jb.163.3.918-924.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  697. Zumft W. G., Döhler K., Körner H., Löchelt S., Viebrock A., Frunzke K. Defects in cytochrome cd1-dependent nitrite respiration of transposon Tn5-induced mutants from Pseudomonas stutzeri. Arch Microbiol. 1988;149(6):492–498. doi: 10.1007/BF00446750. [DOI] [PubMed] [Google Scholar]
  698. Zumft W. G., Frunzke K. Discrimination of ascorbate-dependent nonenzymatic and enzymatic, membrane-bound reduction of nitric oxide in denitrifying Pseudomonas perfectomarinus. Biochim Biophys Acta. 1982 Sep 15;681(3):459–468. doi: 10.1016/0005-2728(82)90188-8. [DOI] [PubMed] [Google Scholar]
  699. Zumft W. G., Gotzmann D. J., Kroneck P. M. Type 1, blue copper proteins constitute a respiratory nitrite-reducing system in Pseudomonas aureofaciens. Eur J Biochem. 1987 Oct 15;168(2):301–307. doi: 10.1111/j.1432-1033.1987.tb13421.x. [DOI] [PubMed] [Google Scholar]
  700. Zumft W. G., Körner H. Enzyme diversity and mosaic gene organization in denitrification. Antonie Van Leeuwenhoek. 1997 Feb;71(1-2):43–58. doi: 10.1023/a:1000112008026. [DOI] [PubMed] [Google Scholar]
  701. Zumft W. G. The biological role of nitric oxide in bacteria. Arch Microbiol. 1993;160(4):253–264. doi: 10.1007/BF00292074. [DOI] [PubMed] [Google Scholar]
  702. Zumft W. G., Vega J. M. Reduction of nitrite to nitrous oxide by a cytoplasmic membrane fraction from the marine denitrifier Pseudomonas perfectomarinus. Biochim Biophys Acta. 1979 Dec 6;548(3):484–499. doi: 10.1016/0005-2728(79)90060-4. [DOI] [PubMed] [Google Scholar]
  703. Zumft W. G., Viebrock-Sambale A., Braun C. Nitrous oxide reductase from denitrifying Pseudomonas stutzeri. Genes for copper-processing and properties of the deduced products, including a new member of the family of ATP/GTP-binding proteins. Eur J Biochem. 1990 Sep 24;192(3):591–599. doi: 10.1111/j.1432-1033.1990.tb19265.x. [DOI] [PubMed] [Google Scholar]
  704. de Boer A. P., Reijnders W. N., Kuenen J. G., Stouthamer A. H., van Spanning R. J. Isolation, sequencing and mutational analysis of a gene cluster involved in nitrite reduction in Paracoccus denitrificans. Antonie Van Leeuwenhoek. 1994;66(1-3):111–127. doi: 10.1007/BF00871635. [DOI] [PubMed] [Google Scholar]
  705. de Boer A. P., van der Oost J., Reijnders W. N., Westerhoff H. V., Stouthamer A. H., van Spanning R. J. Mutational analysis of the nor gene cluster which encodes nitric-oxide reductase from Paracoccus denitrificans. Eur J Biochem. 1996 Dec 15;242(3):592–600. doi: 10.1111/j.1432-1033.1996.0592r.x. [DOI] [PubMed] [Google Scholar]
  706. de Gier J. W., Schepper M., Reijnders W. N., van Dyck S. J., Slotboom D. J., Warne A., Saraste M., Krab K., Finel M., Stouthamer A. H. Structural and functional analysis of aa3-type and cbb3-type cytochrome c oxidases of Paracoccus denitrificans reveals significant differences in proton-pump design. Mol Microbiol. 1996 Jun;20(6):1247–1260. doi: 10.1111/j.1365-2958.1996.tb02644.x. [DOI] [PubMed] [Google Scholar]
  707. deRojas-Walker T., Tamir S., Ji H., Wishnok J. S., Tannenbaum S. R. Nitric oxide induces oxidative damage in addition to deamination in macrophage DNA. Chem Res Toxicol. 1995 Apr-May;8(3):473–477. doi: 10.1021/tx00045a020. [DOI] [PubMed] [Google Scholar]
  708. van 't Riet J., Wientjes F. B., van Doorn J., Planta R. J. Purification and characterization of the respiratory nitrate reductase of Bacillus licheniformis. Biochim Biophys Acta. 1979 Feb 26;576(2):347–360. doi: 10.1016/0005-2795(79)90410-0. [DOI] [PubMed] [Google Scholar]
  709. van Hartingsveldt J., Stouthamer A. H. Mapping and characerization of mutants of Pseudomonas aeruginosa affected in nitrate respiration in aerobic or anaerobic growth. J Gen Microbiol. 1973 Jan;74(1):97–106. doi: 10.1099/00221287-74-1-97. [DOI] [PubMed] [Google Scholar]
  710. van de Graaf A. A., Mulder A., de Bruijn P., Jetten M. S., Robertson L. A., Kuenen J. G. Anaerobic oxidation of ammonium is a biologically mediated process. Appl Environ Microbiol. 1995 Apr;61(4):1246–1251. doi: 10.1128/aem.61.4.1246-1251.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  711. van de Kamp M., Hali F. C., Rosato N., Agro A. F., Canters G. W. Purification and characterization of a non-reconstitutable azurin, obtained by heterologous expression of the Pseudomonas aeruginosa azu gene in Escherichia coli. Biochim Biophys Acta. 1990 Sep 19;1019(3):283–292. doi: 10.1016/0005-2728(90)90206-j. [DOI] [PubMed] [Google Scholar]
  712. van de Kamp M., Silvestrini M. C., Brunori M., Van Beeumen J., Hali F. C., Canters G. W. Involvement of the hydrophobic patch of azurin in the electron-transfer reactions with cytochrome C551 and nitrite reductase. Eur J Biochem. 1990 Nov 26;194(1):109–118. doi: 10.1111/j.1432-1033.1990.tb19434.x. [DOI] [PubMed] [Google Scholar]
  713. van der Oost J., Lappalainen P., Musacchio A., Warne A., Lemieux L., Rumbley J., Gennis R. B., Aasa R., Pascher T., Malmström B. G. Restoration of a lost metal-binding site: construction of two different copper sites into a subunit of the E. coli cytochrome o quinol oxidase complex. EMBO J. 1992 Sep;11(9):3209–3217. doi: 10.1002/j.1460-2075.1992.tb05398.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  714. van der Oost J., Nederkoorn P. H., Stouthamer A. H., Westerhoff H. V., van Spanning R. J. An alternative model for haem ligation in nitrate reductase and analogous respiratory cytochrome b complexes. Mol Microbiol. 1996 Oct;22(1):193–196. doi: 10.1111/j.1365-2958.1996.tb02667.x. [DOI] [PubMed] [Google Scholar]
  715. van der Oost J., de Boer A. P., de Gier J. W., Zumft W. G., Stouthamer A. H., van Spanning R. J. The heme-copper oxidase family consists of three distinct types of terminal oxidases and is related to nitric oxide reductase. FEMS Microbiol Lett. 1994 Aug 1;121(1):1–9. doi: 10.1111/j.1574-6968.1994.tb07067.x. [DOI] [PubMed] [Google Scholar]
  716. von Wachenfeldt C., de Vries S., van der Oost J. The CuAsite of the caa3-type oxidase of Bacillus subtilis is a mixed-valence binuclear copper centre. FEBS Lett. 1994 Feb 28;340(1-2):109–113. doi: 10.1016/0014-5793(94)80182-7. [DOI] [PubMed] [Google Scholar]

Articles from Microbiology and Molecular Biology Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES