[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1985 Aug 1;162(2):729–744. doi: 10.1084/jem.162.2.729

Pilus- gonococcal variants. Evidence for multiple forms of piliation control

PMCID: PMC2187738  PMID: 2410533

Abstract

Pilus+ to pilus- transitions of gonococci (Gc) that involve rearrangement of pilin gene DNA yield the P-n phenotype, which is incapable of reversion (to pilus+). Reversion to pilus+ is found for nonpiliated Gc that have undergone no apparent pilin gene rearrangement. Among the reverting, nonpiliated Gc, two distinct phenotypes (P-rp- and P-rp+) occur and are differentiated according to their synthesis (or lack) of pilin subunits; both P-rp- and P-rp+ Gc contain pilin-specific mRNA. The occurrence of these different pilus- phenotypes strongly suggests that several mechanisms can account for changes in the piliation status of Gc; one of these involves pilin gene rearrangement but the others apparently operate at posttranscriptional levels. Reverting pilus- Gc may have a pathogenic advantage in being able to reversibly alter their host cell adherence-promoting surface properties through high frequency transitions in piliation status.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbour A. G., Tessier S. L., Stoenner H. G. Variable major proteins of Borrellia hermsii. J Exp Med. 1982 Nov 1;156(5):1312–1324. doi: 10.1084/jem.156.5.1312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brinton C. C., Jr The structure, function, synthesis and genetic control of bacterial pili and a molecular model for DNA and RNA transport in gram negative bacteria. Trans N Y Acad Sci. 1965 Jun;27(8):1003–1054. doi: 10.1111/j.2164-0947.1965.tb02342.x. [DOI] [PubMed] [Google Scholar]
  3. Buchanan T. M., Swanson J., Holmes K. K., Kraus S. J., Gotschlich E. C. Quantitative determination of antibody to gonococcal pili. Changes in antibody levels with gonococcal infection. J Clin Invest. 1973 Nov;52(11):2896–2909. doi: 10.1172/JCI107486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gaastra W., de Graaf F. K. Host-specific fimbrial adhesins of noninvasive enterotoxigenic Escherichia coli strains. Microbiol Rev. 1982 Jun;46(2):129–161. doi: 10.1128/mr.46.2.129-161.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hitchcock P. J., Brown T. M., Corwin D., Hayes S. F., Olszewski A., Todd W. J. Morphology of three strains of contagious equine metritis organism. Infect Immun. 1985 Apr;48(1):94–108. doi: 10.1128/iai.48.1.94-108.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. James J. F., Swanson J. Piliation of gonococci in vivo. J Infect Dis. 1978 Jan;137(1):94–96. doi: 10.1093/infdis/137.1.94. [DOI] [PubMed] [Google Scholar]
  7. KELLOGG D. S., Jr, PEACOCK W. L., Jr, DEACON W. E., BROWN L., PIRKLE D. I. NEISSERIA GONORRHOEAE. I. VIRULENCE GENETICALLY LINKED TO CLONAL VARIATION. J Bacteriol. 1963 Jun;85:1274–1279. doi: 10.1128/jb.85.6.1274-1279.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kellogg D. S., Jr, Cohen I. R., Norins L. C., Schroeter A. L., Reising G. Neisseria gonorrhoeae. II. Colonial variation and pathogenicity during 35 months in vitro. J Bacteriol. 1968 Sep;96(3):596–605. doi: 10.1128/jb.96.3.596-605.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Meyer T. F., Billyard E., Haas R., Storzbach S., So M. Pilus genes of Neisseria gonorrheae: chromosomal organization and DNA sequence. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6110–6114. doi: 10.1073/pnas.81.19.6110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Meyer T. F., Mlawer N., So M. Pilus expression in Neisseria gonorrhoeae involves chromosomal rearrangement. Cell. 1982 Aug;30(1):45–52. doi: 10.1016/0092-8674(82)90010-1. [DOI] [PubMed] [Google Scholar]
  11. Norgren M., Normark S., Lark D., O'Hanley P., Schoolnik G., Falkow S., Svanborg-Edén C., Båga M., Uhlin B. E. Mutations in E coli cistrons affecting adhesion to human cells do not abolish Pap pili fiber formation. EMBO J. 1984 May;3(5):1159–1165. doi: 10.1002/j.1460-2075.1984.tb01945.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Segal E., Billyard E., So M., Storzbach S., Meyer T. F. Role of chromosomal rearrangement in N. gonorrhoeae pilus phase variation. Cell. 1985 Feb;40(2):293–300. doi: 10.1016/0092-8674(85)90143-6. [DOI] [PubMed] [Google Scholar]
  13. Sparling P. F., Yobs A. R. Colonial morphology of Neisseria gonorrhoeae isolated from males and females. J Bacteriol. 1967 Jan;93(1):513–513. doi: 10.1128/jb.93.1.513-.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Swanson J., Barrera O. Gonococcal pilus subunit size heterogeneity correlates with transitions in colony piliation phenotype, not with changes in colony opacity. J Exp Med. 1983 Nov 1;158(5):1459–1472. doi: 10.1084/jem.158.5.1459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Swanson J. Studies on gonococcus infection. IV. Pili: their role in attachment of gonococci to tissue culture cells. J Exp Med. 1973 Mar 1;137(3):571–589. doi: 10.1084/jem.137.3.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tyeryar F. J., Jr, Quan A. L., Rene A. A., Weiss E. Phase transition of gonococci in mammalian cell cultures. Infect Immun. 1974 Dec;10(6):1401–1411. doi: 10.1128/iai.10.6.1401-1411.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES