[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Feb;61(2):788–792. doi: 10.1128/aem.61.2.788-792.1995

Detection and characterization of lactose-utilizing Lactococcus spp. in natural ecosystems.

N Klijn 1, A H Weerkamp 1, W M de Vos 1
PMCID: PMC167339  PMID: 7574616

Abstract

The presence of lactose-utilizing Lactococcus species in nondairy environments was studied by using identification methods based on PCR amplification and (sub)species-specific probes derived from 16S rRNA sequences. Environmental isolates from samples taken on cattle farms and in the waste flow of a cheese production plant were first identified to the genus level, using a Lactococcus genus-specific probe. Isolates which showed a positive signal with this probe were further identified to the (sub)species level. Lactococcus lactis isolates were also characterized at the phenotypic level for the ability to hydrolyze arginine, to ferment citrate, and to produce proteases and bacteriocins. With specific PCR amplifications, the presence of sequences related to citP, coding for citrate permease; prtP, coding for protease; and nisA or nisZ, the structural genes for production of nisin A or nisin Z, respectively, was verified. By these methods, it was possible to isolate lactococci from various environmental sources, such as soil, effluent water, and the skin of cattle. The strains of L. lactis isolated differed in a number of properties, such as the ability to hydrolyze arginine or the absence of citP-related sequences, from those found in industrial starter cultures. The results indicate that the majority of the industrially produced lactococci do not survive outside the dairy environment, although natural niches are available. However, from those niches strains with the potential to be developed into novel starter cultures may be isolated.

Full Text

The Full Text of this article is available as a PDF (294.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Casanova J. L., Pannetier C., Jaulin C., Kourilsky P. Optimal conditions for directly sequencing double-stranded PCR products with sequenase. Nucleic Acids Res. 1990 Jul 11;18(13):4028–4028. doi: 10.1093/nar/18.13.4028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Collins M. D., Farrow J. A., Phillips B. A., Kandler O. Streptococcus garvieae sp. nov. and Streptococcus plantarum sp. nov. J Gen Microbiol. 1983 Nov;129(11):3427–3431. doi: 10.1099/00221287-129-11-3427. [DOI] [PubMed] [Google Scholar]
  3. David S., van der Rest M. E., Driessen A. J., Simons G., de Vos W. M. Nucleotide sequence and expression in Escherichia coli of the Lactococcus lactis citrate permease gene. J Bacteriol. 1990 Oct;172(10):5789–5794. doi: 10.1128/jb.172.10.5789-5794.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Elliott J. A., Collins M. D., Pigott N. E., Facklam R. R. Differentiation of Lactococcus lactis and Lactococcus garvieae from humans by comparison of whole-cell protein patterns. J Clin Microbiol. 1991 Dec;29(12):2731–2734. doi: 10.1128/jcm.29.12.2731-2734.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Exterkate F. A., Alting A. C., Bruinenberg P. G. Diversity of cell envelope proteinase specificity among strains of Lactococcus lactis and its relationship to charge characteristics of the substrate-binding region. Appl Environ Microbiol. 1993 Nov;59(11):3640–3647. doi: 10.1128/aem.59.11.3640-3647.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Godon J. J., Delorme C., Ehrlich S. D., Renault P. Divergence of Genomic Sequences between Lactococcus lactis subsp. lactis and Lactococcus lactis subsp. cremoris. Appl Environ Microbiol. 1992 Dec;58(12):4045–4047. doi: 10.1128/aem.58.12.4045-4047.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hugenholtz J., Splint R., Konings W. N., Veldkamp H. Selection of Protease-Positive and Protease-Negative Variants of Streptococcus cremoris. Appl Environ Microbiol. 1987 Feb;53(2):309–314. doi: 10.1128/aem.53.2.309-314.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Klijn N., Weerkamp A. H., de Vos W. M. Identification of mesophilic lactic acid bacteria by using polymerase chain reaction-amplified variable regions of 16S rRNA and specific DNA probes. Appl Environ Microbiol. 1991 Nov;57(11):3390–3393. doi: 10.1128/aem.57.11.3390-3393.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mulders J. W., Boerrigter I. J., Rollema H. S., Siezen R. J., de Vos W. M. Identification and characterization of the lantibiotic nisin Z, a natural nisin variant. Eur J Biochem. 1991 Nov 1;201(3):581–584. doi: 10.1111/j.1432-1033.1991.tb16317.x. [DOI] [PubMed] [Google Scholar]
  10. Neefs J. M., Van de Peer Y., Hendriks L., De Wachter R. Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res. 1990 Apr 25;18 (Suppl):2237–2317. doi: 10.1093/nar/18.suppl.2237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Salama M. S., Sandine W. E., Giovannoni S. J. Isolation of Lactococcus lactis subsp. cremoris from nature by colony hybridization with rRNA probes. Appl Environ Microbiol. 1993 Nov;59(11):3941–3945. doi: 10.1128/aem.59.11.3941-3945.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Salama M., Sandine W., Giovannoni S. Development and application of oligonucleotide probes for identification of Lactococcus lactis subsp. cremoris. Appl Environ Microbiol. 1991 May;57(5):1313–1318. doi: 10.1128/aem.57.5.1313-1318.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schultz J. E., Breznak J. A. Heterotrophic bacteria present in hindguts of wood-eating termites [Reticulitermes flavipes (Kollar)]. Appl Environ Microbiol. 1978 May;35(5):930–936. doi: 10.1128/aem.35.5.930-936.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Stark P., Sherman J. M. Concerning the Habitat of Streptococcus lactis. J Bacteriol. 1935 Dec;30(6):639–646. doi: 10.1128/jb.30.6.639-646.1935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Terzaghi B. E., Sandine W. E. Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol. 1975 Jun;29(6):807–813. doi: 10.1128/am.29.6.807-813.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Vos P., Simons G., Siezen R. J., de Vos W. M. Primary structure and organization of the gene for a procaryotic, cell envelope-located serine proteinase. J Biol Chem. 1989 Aug 15;264(23):13579–13585. [PubMed] [Google Scholar]
  17. Williams A. M., Collins M. D. Molecular taxonomic studies on Streptococcus uberis types I and II. Description of Streptococcus parauberis sp. nov. J Appl Bacteriol. 1990 May;68(5):485–490. doi: 10.1111/j.1365-2672.1990.tb02900.x. [DOI] [PubMed] [Google Scholar]
  18. Williams A. M., Fryer J. L., Collins M. D. Lactococcus piscium sp. nov. a new Lactococcus species from salmonid fish. FEMS Microbiol Lett. 1990 Mar 1;56(1-2):109–113. doi: 10.1016/0378-1097(90)90134-c. [DOI] [PubMed] [Google Scholar]
  19. de Vos W. M., Mulders J. W., Siezen R. J., Hugenholtz J., Kuipers O. P. Properties of nisin Z and distribution of its gene, nisZ, in Lactococcus lactis. Appl Environ Microbiol. 1993 Jan;59(1):213–218. doi: 10.1128/aem.59.1.213-218.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES