[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Genetics logoLink to Genetics
. 1995 Feb;139(2):697–711. doi: 10.1093/genetics/139.2.697

Flamenco, a Gene Controlling the Gypsy Retrovirus of Drosophila Melanogaster

N Prud'homme 1, M Gans 1, M Masson 1, C Terzian 1, A Bucheton 1
PMCID: PMC1206375  PMID: 7713426

Abstract

Gypsy is an endogenous retrovirus of Drosophila melanogaster. It is stable and does not transpose with detectable frequencies in most Drosophila strains. However, we have characterized unstable strains, known as MG, in which it transposes at high frequency. These stocks contain more copies of gypsy than usual stocks. Transposition results in mutations in several genes such as ovo and cut. They are stable and are due to gypsy insertions. Integrations into the ovo(D1) female sterile-dominant mutation result in a null allele of the gene and occurrence of fertile females. This phenomenon, known as the ovo(D1) reversion assay, can be used to quantitate gypsy activity. We have shown that the properties of MG strains result from mutation of a host gene that we called flamenco (flam). It has a strict maternal effect on gypsy mobilization: transposition occurs at high frequency only in the germ line of the progeny of females homozygous for mutations of the gene. It is located at position 65.9 (20A1-3) on the X chromosome. The mutant allele present in MG strains is essentially recessive. Flamenco seems to control the infective properties of gypsy.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bayev A. A., Jr, Lyubomirskaya N. V., Dzhumagaliev E. B., Ananiev E. V., Amiantova I. G., Ilyin Y. V. Structural organization of transposable element mdg4 from Drosophila melanogaster and a nucleotide sequence of its long terminal repeats. Nucleic Acids Res. 1984 Apr 25;12(8):3707–3723. doi: 10.1093/nar/12.8.3707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brosseau G E, Nicoletti B, Grell E H, Lindsley D L. Production of Altered Y Chromosomes Bearing Specific Sections of the X Chromosome in Drosophila. Genetics. 1961 Mar;46(3):339–346. doi: 10.1093/genetics/46.3.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chovnick A., Finnertty V., Schalet A., Duck P. Studies on genetic organization in higher organisms. I. Analysis of a complex gene in Drosophila melanogaster. Genetics. 1969 May;62(1):145–160. doi: 10.1093/genetics/62.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Freund R., Meselson M. Long terminal repeat nucleotide sequence and specific insertion of the gypsy transposon. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4462–4464. doi: 10.1073/pnas.81.14.4462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gans M., Audit C., Masson M. Isolation and characterization of sex-linked female-sterile mutants in Drosophila melanogaster. Genetics. 1975 Dec;81(4):683–704. doi: 10.1093/genetics/81.4.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gardner M. B., Kozak C. A., O'Brien S. J. The Lake Casitas wild mouse: evolving genetic resistance to retroviral disease. Trends Genet. 1991 Jan;7(1):22–27. doi: 10.1016/0168-9525(91)90017-k. [DOI] [PubMed] [Google Scholar]
  7. Gorska-Flipot I., Huang M., Cantin M., Rassart E., Massé G., Jolicoeur P. U3 long terminal repeat-mediated induction of intracellular immunity by a murine retrovirus: a novel model of latency for retroviruses. J Virol. 1992 Dec;66(12):7201–7210. doi: 10.1128/jvi.66.12.7201-7210.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Green M. M., Yamamoto M. T., Miklos G. L. Genetic instability in Drosophila melanogaster: cytogenetic analysis of MR-induced X-chromosome deficiencies. Proc Natl Acad Sci U S A. 1987 Jul;84(13):4533–4537. doi: 10.1073/pnas.84.13.4533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jack J. W. Molecular organization of the cut locus of Drosophila melanogaster. Cell. 1985 Oct;42(3):869–876. doi: 10.1016/0092-8674(85)90283-1. [DOI] [PubMed] [Google Scholar]
  10. Jolicoeur P. The Fv-1 gene of the mouse and its control of murine leukemia virus replication. Curr Top Microbiol Immunol. 1979;86:67–122. doi: 10.1007/978-3-642-67341-2_3. [DOI] [PubMed] [Google Scholar]
  11. Kim A. I., Belyaeva E. S., Aslanian M. M. Autonomous transposition of gypsy mobile elements and genetic instability in Drosophila melanogaster. Mol Gen Genet. 1990 Nov;224(2):303–308. doi: 10.1007/BF00271566. [DOI] [PubMed] [Google Scholar]
  12. Kim A. I., Lyubomirskaya N. V., Belyaeva E. S., Shostack N. G., Ilyin Y. V. The introduction of a transpositionally active copy of retrotransposon GYPSY into the Stable Strain of Drosophila melanogaster causes genetic instability. Mol Gen Genet. 1994 Feb;242(4):472–477. doi: 10.1007/BF00281799. [DOI] [PubMed] [Google Scholar]
  13. Kim A., Terzian C., Santamaria P., Pélisson A., Purd'homme N., Bucheton A. Retroviruses in invertebrates: the gypsy retrotransposon is apparently an infectious retrovirus of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1285–1289. doi: 10.1073/pnas.91.4.1285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kuhn D. T., Woods D. F., Andrew D. J. Deletion analysis of the tumorous-head (tuh-3) gene in Drosophila melanogaster. Genetics. 1981 Sep;99(1):99–107. doi: 10.1093/genetics/99.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Levy D. E., Lerner R. A., Wilson M. C. The Gv-1 locus coordinately regulates the expression of multiple endogenous murine retroviruses. Cell. 1985 May;41(1):289–299. doi: 10.1016/0092-8674(85)90082-0. [DOI] [PubMed] [Google Scholar]
  16. Lifschytz E., Falk R. Fine structure analysis of a chromosome segment in Drosophila melanogaster. Analysis of x-ray-induced lethals. Mutat Res. 1968 Sep-Oct;6(2):235–244. doi: 10.1016/0027-5107(68)90039-0. [DOI] [PubMed] [Google Scholar]
  17. Lifschytz E., Falk R. Fine structure analysis of a chromosome segment in Drosophila melanogaster: analysis of ethyl methanesulphonate-induced lethals. Mutat Res. 1969 Jul-Aug;8(1):147–155. doi: 10.1016/0027-5107(69)90149-3. [DOI] [PubMed] [Google Scholar]
  18. Miklos G. L., Yamamoto M. T., Davies J., Pirrotta V. Microcloning reveals a high frequency of repetitive sequences characteristic of chromosome 4 and the beta-heterochromatin of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2051–2055. doi: 10.1073/pnas.85.7.2051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Modolell J., Bender W., Meselson M. Drosophila melanogaster mutations suppressible by the suppressor of Hairy-wing are insertions of a 7.3-kilobase mobile element. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1678–1682. doi: 10.1073/pnas.80.6.1678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mével-Ninio M., Mariol M. C., Gans M. Mobilization of the gypsy and copia retrotransposons in Drosophila melanogaster induces reversion of the ovo dominant female-sterile mutations: molecular analysis of revertant alleles. EMBO J. 1989 May;8(5):1549–1558. doi: 10.1002/j.1460-2075.1989.tb03539.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Peifer M., Bender W. Sequences of the gypsy transposon of Drosophila necessary for its effects on adjacent genes. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9650–9654. doi: 10.1073/pnas.85.24.9650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pélisson A., Song S. U., Prud'homme N., Smith P. A., Bucheton A., Corces V. G. Gypsy transposition correlates with the production of a retroviral envelope-like protein under the tissue-specific control of the Drosophila flamenco gene. EMBO J. 1994 Sep 15;13(18):4401–4411. doi: 10.1002/j.1460-2075.1994.tb06760.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rahman R., Lindsley D. L. Male-sterilizing interactions between duplications and deficiencies for proximal X-chromosome material in Drosophila melanogaster. Genetics. 1981 Sep;99(1):49–64. doi: 10.1093/genetics/99.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rutledge B. J., Mortin M. A., Schwarz E., Thierry-Mieg D., Meselson M. Genetic interactions of modifier genes and modifiable alleles in Drosophila melanogaster. Genetics. 1988 Jun;119(2):391–397. doi: 10.1093/genetics/119.2.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schalet A., Lefevre G., Jr The localization of "ordinary" sex-linked genes in section 20 of the polytene X chromosome of Drosophila melanogaster. Chromosoma. 1973 Nov 21;44(2):183–202. doi: 10.1007/BF00329116. [DOI] [PubMed] [Google Scholar]
  26. Sheen F., Lim J. K., Simmons M. J. Genetic instability in Drosophila melanogaster mediated by hobo transposable elements. Genetics. 1993 Feb;133(2):315–334. doi: 10.1093/genetics/133.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Song S. U., Gerasimova T., Kurkulos M., Boeke J. D., Corces V. G. An env-like protein encoded by a Drosophila retroelement: evidence that gypsy is an infectious retrovirus. Genes Dev. 1994 Sep 1;8(17):2046–2057. doi: 10.1101/gad.8.17.2046. [DOI] [PubMed] [Google Scholar]
  28. Vaury C., Bucheton A., Pelisson A. The beta heterochromatic sequences flanking the I elements are themselves defective transposable elements. Chromosoma. 1989 Sep;98(3):215–224. doi: 10.1007/BF00329686. [DOI] [PubMed] [Google Scholar]
  29. Yamamoto M. T., Mitchelson A., Tudor M., O'Hare K., Davies J. A., Miklos G. L. Molecular and cytogenetic analysis of the heterochromatin-euchromatin junction region of the Drosophila melanogaster X chromosome using cloned DNA sequences. Genetics. 1990 Aug;125(4):821–832. doi: 10.1093/genetics/125.4.821. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES