[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024204841A1 - Method for improving releasability of regenerated pellets, and coated regenerated pellets - Google Patents

Method for improving releasability of regenerated pellets, and coated regenerated pellets Download PDF

Info

Publication number
WO2024204841A1
WO2024204841A1 PCT/JP2024/013423 JP2024013423W WO2024204841A1 WO 2024204841 A1 WO2024204841 A1 WO 2024204841A1 JP 2024013423 W JP2024013423 W JP 2024013423W WO 2024204841 A1 WO2024204841 A1 WO 2024204841A1
Authority
WO
WIPO (PCT)
Prior art keywords
pellets
compound
polyarylene sulfide
recycled
sulfide resin
Prior art date
Application number
PCT/JP2024/013423
Other languages
French (fr)
Japanese (ja)
Inventor
竜也 金塚
達也 川崎
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Publication of WO2024204841A1 publication Critical patent/WO2024204841A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/06Recovery or working-up of waste materials of polymers without chemical reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes

Definitions

  • the present invention relates to a method for improving the releasability of recycled pellets, and to coated recycled pellets.
  • Patent Document 1 In order to build a sustainable recycling-based society, technologies for recycling and utilizing plastic waste are being considered (for example, Patent Document 1).
  • Polyarylene sulfide resins are excellent in heat resistance, mechanical properties, chemical resistance, dimensional stability, and flame retardancy, and are therefore widely used in electrical and electronic equipment component materials, automotive component materials, chemical equipment component materials, etc. Therefore, recycling and utilizing materials containing polyarylene sulfide resins can help build a sustainable recycling-oriented society.
  • pellet-shaped resin material when molding a resin material containing a polyarylene sulfide resin, a method of injection molding or extrusion molding a pellet-shaped resin material (hereinafter also simply referred to as "pellets") can generally be adopted.
  • a method for obtaining pellets for example, a method of mixing a polyarylene sulfide resin with other components such as an inorganic filler as necessary, melt-kneading and extruding the mixture with a single-screw or twin-screw extruder to obtain pellets can be adopted.
  • recycled products molded products or items discharged after a long time residence in a cylinder during molding
  • recycled products molded products or items discharged after a long time residence in a cylinder during molding
  • the recycled pellets may have decomposition of the matrix polymer, deterioration of additives, and fineness of fillers due to shearing when crushing the recycled products and heat history due to having been through one or more molding processes. In that case, there may be changes in fluidity, crystallinity, polarity, etc. compared to virgin materials that have not been through a molding process.
  • the release agent may be unevenly distributed in the mixture due to segregation of the recycled pellets and the release agent during the raw material supply process, which may cause uneven release properties.
  • mold deposits are likely to occur during molding of the recycled pellets, which may result in mold contamination.
  • the objective of the present disclosure is to provide a method for improving the releasability of recycled pellets from a mold, and to provide coated recycled pellets that have excellent releasability from a mold. More specifically, the objective is to provide a recycled polyarylene sulfide resin composition that has excellent releasability from a mold while suppressing the occurrence of mold deposits during molding, and a method for producing the same.
  • a method for improving the releasability of recycled pellets containing a polyarylene sulfide resin comprising coating at least a portion of the surface of pellets (Q) containing a polyarylene sulfide resin with a compound (A) containing one or more selected from (A-1) an olefin resin having a melt viscosity of 0.1 to 8.0 Pa ⁇ s at 140°C, (A-2) a fatty acid derivative, and (A-3) a silicone-based compound, wherein the total amount of coating with compound (A) is 0.04 to 3.0 parts by mass per 100 parts by mass of pellets (Q) containing a polyarylene sulfide resin.
  • a use of compound (A) for improving the releasability of recycled pellets containing a polyarylene sulfide resin A use of compound (A), which comprises coating at least a portion of the surface of pellets (Q) containing a polyarylene sulfide resin with compound (A) containing one or more selected from (A-1) an olefin resin having a melt viscosity of 0.1 to 8.0 Pa ⁇ s at 140°C, (A-2) a fatty acid derivative, and (A-3) a silicone-based compound, wherein the total coating amount of compound (A) is 0.04 to 3.0 parts by mass per 100 parts by mass of pellets (Q) containing a polyarylene sulfide resin.
  • the coated recycled pellet (Y) according to any one of [5] to [7], wherein the recycled pellet (X) containing a polyarylene sulfide resin contains an elastomer having a reactive functional group, and the compound (A) contains (A-1) an olefin resin having a melt viscosity of 0.1 to 8.0 Pa ⁇ s at 140°C in an amount of 95 mass% or more relative to the total amount of the compound (A).
  • Compound (A) is in the form of a powder, flake or granule;
  • the coating step includes contacting the regenerated pellet (X) containing a polyarylene sulfide resin with a liquid compound (A).
  • a compound (A) Prior to coating, a compound (A) is selected, Selecting the compound (A), In the case where the recycled pellets (X) containing a polyarylene sulfide resin contain an elastomer having a reactive functional group in an amount of 1% by mass or more based on the total amount of the recycled pellets (X) containing a polyarylene sulfide resin, select (A-1) a compound (A) containing an olefin resin having a melt viscosity at 140°C of 0.1 to 8.0 Pa ⁇ s in a total amount of 95% by mass or more based on the total amount of the compound (A), In the case where the recycled pellets (X) containing a polyarylene sulfide resin do not contain an elastomer having a reactive functional group, or the content of the elastomer having a reactive functional group is less than 1 mass% relative to the total amount of the recycled pellets (X) containing a polyarylene sulfide resin
  • a polyarylene sulfide resin composition (Z) comprising the coated recycled pellets (Y) according to any one of [5] to [10] and virgin pellets (V) containing a polyarylene sulfide resin.
  • the present invention provides a method for improving the releasability of recycled pellets from a mold, and coated recycled pellets with excellent releasability from a mold. More specifically, it provides a recycled polyarylene sulfide resin composition and a method for producing the same that have excellent releasability from a mold while suppressing the generation of mold deposits during molding.
  • FIG. 1 is a diagram illustrating a double cylindrical test piece for measuring mold release resistance during molding, where (a) is a top view, (b) is a bottom view, (c) is a perspective view, and (d) is a dimensional drawing.
  • FIG. 2 is a schematic diagram of a molded body used when evaluating mold deposits, the upper side being a top view and the lower side being a cross-sectional view.
  • the method for improving the releasability of recycled pellets is a method for improving the releasability of recycled pellets containing a polyarylene sulfide resin, and includes coating at least a portion of the surface of pellets (Q) containing a polyarylene sulfide resin with compound (A) containing one or more selected from (A-1) an olefin resin having a melt viscosity of 0.1 to 8.0 Pa ⁇ s at 140°C, (A-2) a fatty acid derivative, and (A-3) a silicone-based compound, and the total coating amount of compound (A) is 0.04 to 3.0 parts by mass per 100 parts by mass of pellets (Q) containing a polyarylene sulfide resin.
  • “Improving releasability” means that the releasability from a mold during molding of the recycled pellets is increased compared to when the pellets are not coated with compound (A).
  • the method for improving releasability is preferably a method for improving releasability from a mold while suppressing the occurrence of mold deposits during molding.
  • “recycling” means that an article such as a molded body (a recycled article) is crushed and recycled as a raw material for use in the manufacture of a molded body, and “recycled pellets” means that the crushed material obtained is melted and then pelletized.
  • the article to be recycled may be a molded product, or may be one that is discharged after being retained in a cylinder for a long time during molding.
  • defective products generated during the manufacturing process of molded products, parts other than the product obtained during injection molding (e.g., runners, sprues, etc.), unused products, and lumps of polyethylene sulfide resin material used for purging during molding may be mentioned.
  • coating means that at least a part of the surface of the pellet is covered with compound (A), and may include compound (A) adhering or adhering to a part of the surface of the pellet, and compound (A) spreading in a layer to cover a part of the surface.
  • adhered or adhering may include a state in which solid (e.g., powdery) compound (A) is adhered by electrostatic force or the like, or a state in which a part of solid compound (A) is melted and the remaining part remains solid, and the melted part is adhered to the surface of the pellet.
  • recycled pellets containing polyarylene sulfide resin refers to pellets that are produced by crushing an article (recycled product) containing polyarylene sulfide resin or a polyarylene sulfide resin composition and regenerating it as a raw material for use in manufacturing a molded product.
  • the shape of the recycled pellets is not particularly limited, and they can be any shape, such as cylindrical (approximately cylindrical), spherical, etc.
  • pellets (Q) containing polyarylene sulfide resin may be virgin pellets or recycled pellets.
  • pellets (Q) may be virgin pellets (Q1)
  • at least a part of the surface of the virgin pellets (Q1) containing polyarylene sulfide resin is coated with the compound (A) described below to form coated virgin pellets (Q1a).
  • the total amount of coating with the compound (A) is 0.04 to 3.0 parts by mass per 100 parts by mass of the virgin pellets (Q1).
  • the resulting coated virgin pellets (Q1a) are once molded into a molded body (or discharged after a long residence in the cylinder during molding), and are then crushed and repelletized to form recycled pellets.
  • the coated virgin pellets (Q1a) have excellent releasability from a mold when first molded, and also have excellent releasability from a mold when molded, even when they are subsequently formed into recycled pellets.
  • the pellet (Q) is a recycled pellet (Q2)
  • at least a part of the surface of the recycled pellet (Q2) containing a polyarylene sulfide resin is coated with a compound (A) described later to obtain a coated recycled pellet (Q2a).
  • the total amount of coating with the compound (A) is 0.04 to 3.0 parts by mass per 100 parts by mass of the recycled pellet (Q2).
  • the recycled pellet (Q2) is a pelletized product obtained by crushing an article containing a polyarylene sulfide resin (i.e., an article using a polyarylene sulfide resin or a resin composition containing a polyarylene sulfide resin).
  • the coated recycled pellet (Q2a) has excellent releasability from a mold even when molded again as a recycled pellet.
  • the shape of the pellet (Q) is not particularly limited, and can be any shape, such as a cylindrical shape (approximately cylindrical shape) or a spherical shape.
  • the coated regenerated pellet (Q2a) in this embodiment corresponds to the coated regenerated pellet (Y) in the third embodiment described later, and the regenerated pellet (Q2) corresponds to the regenerated pellet (X) constituting the coated regenerated pellet (Y).
  • the pellets (Q) containing the polyarylene sulfide resin are preferably recycled pellets (Q2) of an article containing a polyarylene sulfide resin (i.e., an article containing a polyarylene sulfide resin and/or a polyarylene sulfide resin composition).
  • the use of the compound (A) according to the present disclosure is a use of the compound (A) for improving the demolding property during injection molding of recycled pellets containing a polyarylene sulfide resin
  • the method includes coating at least a portion of the surface of pellets (Q) containing a polyarylene sulfide resin with compound (A) containing one or more selected from (A-1) an olefin resin having a melt viscosity of 0.1 to 8.0 Pa ⁇ s at 140° C., (A-2) a fatty acid derivative, and (A-3) a silicone-based compound, and the total coating amount of compound (A) is 0.04 to 3.0 parts by mass per 100 parts by mass of pellets (Q).
  • the pellets containing the polyarylene sulfide resin are recycled pellets of an article containing the polyarylene sulfide resin (i.e., an article containing a polyarylene sulfide resin and/or a polyarylene sulfide resin composition). Details of the types and amounts of the "polyarylene sulfide resin" and “compound (A)", as well as the coating method, are the same as those described in the section on the coated recycled pellets (Y) and their production method described below.
  • the coated recycled pellet (Y) is a recycled pellet (X) (hereinafter, simply referred to as "pellet (X)”) containing a polyarylene sulfide resin, at least a part of the surface of which is coated with a compound (A), and the total amount of the compound (A) coated is 0.04 to 3.0 parts by mass per 100 parts by mass of the recycled pellet (X).
  • pellet (X) a recycled pellet containing a polyarylene sulfide resin, at least a part of the surface of which is coated with a compound (A), and the total amount of the compound (A) coated is 0.04 to 3.0 parts by mass per 100 parts by mass of the recycled pellet (X).
  • the coated recycled pellet can be used for molding alone or as a mixed pellet with a virgin material, and this makes it possible to reduce the number of times a release agent is applied to a mold during molding even when the content of the coated recycled pellet (Y) is high (the proportion of the coated recycled pellet is 50% or more). As a result, the amount of the recycled material used can be increased and the work efficiency can be improved. In addition, since the mold releasability from the mold is excellent even when a molded product having a large contact area with the mold is manufactured, the choice of shapes of parts to which the recycled material can be applied can be expanded.
  • the recycled pellet (X) in this embodiment can also be used as the pellet (Q) described in the section on the method for improving releasability according to the first embodiment and the use of the compound (A) according to the second embodiment, and the coated recycled pellet (Y) has the same structure as the coated recycled pellet (Q2a) in the first embodiment.
  • the recycled pellets (X) are recycled pellets containing a polyarylene sulfide resin, and are pellets that are produced by crushing an article containing a polyarylene sulfide resin (i.e., an article containing a polyarylene sulfide resin or a polyarylene sulfide resin composition (recycled product)) and regenerating it as a raw material for use in the manufacture of a molded body.
  • the recycled article may be a molded product, as described above, or may be one that is discharged after being retained in a cylinder for a long time during molding.
  • the shape of the pellets is not particularly limited, and can be any shape, such as a cylindrical shape (approximately cylindrical shape) or a spherical shape.
  • the recycled pellets (X) may be pellets of a resin-containing material recycled from molded products of virgin pellets containing polyarylene sulfide resin, or may be pellets recycled from molded products of recycled materials (recycled pellets) containing polyarylene sulfide resin.
  • Virgin pellets have never been through a molding process, and therefore do not have a thermal history from molding.
  • recycled pellets have a thermal history of being heated at high temperatures during the manufacturing stage of the recycled product.
  • the polyarylene sulfide resin is a resin having a repeating unit represented by the following general formula (I). -(Ar-S)-...(I) (wherein Ar represents an arylene group).
  • the arylene group is not particularly limited, but examples thereof include p-phenylene group, m-phenylene group, o-phenylene group, substituted phenylene group, p,p'-diphenylenesulfone group, p,p'-biphenylene group, p,p'-diphenylene ether group, p,p'-diphenylenecarbonyl group, and naphthalene group.
  • Polyarylene sulfide resins can be homopolymers using the same repeating units among the repeating units shown in the above general formula (I), as well as copolymers containing different types of repeating units.
  • homopolymers those having p-phenylene sulfide groups as repeating units, which have p-phenylene groups as arylene groups, are preferred. This is because homopolymers having p-phenylene sulfide groups as repeating units have extremely high heat resistance, and exhibit high strength, high rigidity, and high dimensional stability over a wide temperature range. By using such homopolymers, molded articles with extremely excellent physical properties can be obtained.
  • a combination of two or more different arylene sulfide groups among the above-mentioned arylene group-containing arylene sulfide groups can be used.
  • a combination containing a p-phenylene sulfide group and an m-phenylene sulfide group is preferred from the viewpoint of obtaining a molded product with high physical properties such as heat resistance, moldability, and mechanical properties.
  • a polymer containing 70 mol% or more of p-phenylene sulfide groups is more preferred, and a polymer containing 80 mol% or more is even more preferred.
  • the polyarylene sulfide resin having phenylene sulfide groups is a polyphenylene sulfide resin (PPS resin).
  • Polyarylene sulfide resins are generally known to have a substantially linear molecular structure with no branching or crosslinking, and a structure with branching or crosslinking, depending on the manufacturing method. In one embodiment, from the viewpoint of improving the toughness of the molded product, it is more preferable that the resin does not contain a structure with a crosslinking structure.
  • the melt viscosity of the recycled pellets (X) is not limited as long as it does not impair the effects of the present disclosure, and the melt viscosity measured at 310° C. and a shear rate of 1200 sec ⁇ 1 may be 5 to 300 Pa ⁇ s, or 8 to 250 Pa ⁇ s.
  • the recycled pellets (X) may contain other components contained in the recycled product.
  • the content of polyarylene sulfide resin in the recycled pellets (X) is preferably 30 to 99 mass% and more preferably 50 to 95 mass% based on the total amount of the recycled pellets (X).
  • the content of polyarylene sulfide resin in the thermoplastic resin (excluding elastomer) contained in the recycled pellets (X) is preferably 80 to 100 mass% and more preferably 90 to 100 mass% based on the total amount of the thermoplastic resin (excluding elastomer).
  • recycled pellets (X) may contain include, for example, elastomers, organic or inorganic fillers, release agents, and other additives that are generally added to thermoplastic resins (for example, flame retardants, colorants such as dyes and pigments, stabilizers such as antioxidants and UV absorbers, lubricants, crystallization accelerators, crystal nucleating agents, etc.).
  • thermoplastic resins for example, flame retardants, colorants such as dyes and pigments, stabilizers such as antioxidants and UV absorbers, lubricants, crystallization accelerators, crystal nucleating agents, etc.
  • the elastomer examples include olefin-based elastomers, styrene-based elastomers, polyester-based elastomers, etc., which may be grafted. It is preferable to include one or more selected from these, and it is more preferable to include an olefin-based elastomer.
  • the elastomer may be an elastomer having a reactive functional group, such as an acid-modified elastomer modified with an acid or an acid anhydride, such as (meth)acrylic acid or maleic anhydride; an elastomer using a copolymerizable monomer having a glycidyl group or an epoxy group (such as glycidyl (meth)acrylate); or an epoxy-modified elastomer obtained by epoxidizing the unsaturated bond of an elastomer.
  • a reactive functional group such as an acid-modified elastomer modified with an acid or an acid anhydride, such as (meth)acrylic acid or maleic anhydride
  • an elastomer using a copolymerizable monomer having a glycidyl group or an epoxy group such as glycidyl (meth)acrylate
  • Olefin-based elastomers include copolymers of ⁇ -olefins and copolymerizable monomers.
  • the ⁇ -olefin is preferably one or more selected from ⁇ -olefins having 2 to 13 carbon atoms (e.g., ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, etc.).
  • copolymers of ⁇ -olefins and copolymerizable monomers include, but are not limited to, ⁇ -olefin-unsaturated carboxylic acid alkyl ester copolymers, and olefin-based copolymers containing structural units derived from ⁇ -olefins and structural units derived from glycidyl esters of ⁇ , ⁇ -unsaturated acids.
  • glycidyl esters of ⁇ , ⁇ -unsaturated acids include, but are not limited to, acrylic acid glycidyl ester, methacrylic acid glycidyl ester, and ethacrylic acid glycidyl ester.
  • olefin-based elastomers include ethylene propylene rubber (EPR), ethylene-glycidyl methacrylate copolymer (E-GMA), ethylene-glycidyl methacrylate-methyl acrylate copolymer (E-GMA-MA), etc.
  • EPR ethylene propylene rubber
  • E-GMA ethylene-glycidyl methacrylate copolymer
  • E-GMA-MA ethylene-glycidyl methacrylate-methyl acrylate copolymer
  • the olefin-based elastomer may be contained alone or in combination of two or more kinds.
  • styrene-based elastomers include block copolymers consisting of a polymer block mainly made of a vinyl aromatic compound such as styrene and a polymer block mainly made of a non-hydrogenated and/or hydrogenated conjugated diene compound.
  • preferred styrene-based elastomers include styrene-butadiene rubber (SBR) and styrene-ethylene-butylene-styrene block copolymer (SEBS).
  • SBR styrene-butadiene rubber
  • SEBS styrene-ethylene-butylene-styrene block copolymer
  • the styrene-based elastomer may also be a modified copolymer into which a functional group (epoxy group, carboxyl group, acid anhydride group, etc.) has been introduced.
  • modified copolymers include epoxidized styrene-diene copolymers in which the unsaturated bond of the diene has been epoxidized (e.g., epoxidized styrene-diene-styrene block copolymers or hydrogenated polymers thereof).
  • the styrene-based elastomer may be contained alone or in combination of two or more types.
  • polyester-based elastomers include block copolymers in which aromatic polyesters such as polyethylene terephthalate and polybutylene terephthalate serve as hard segments, and polyethers such as polyethylene glycol and polytetramethylene glycol, or aliphatic polyesters such as polyethylene adipate, polybutylene adipate, and polycaprolactone serve as soft segments.
  • aromatic polyesters such as polyethylene terephthalate and polybutylene terephthalate
  • polyethers such as polyethylene glycol and polytetramethylene glycol
  • aliphatic polyesters such as polyethylene adipate, polybutylene adipate, and polycaprolactone serve as soft segments.
  • the polyester-based elastomers may be used alone or in combination of two or more types.
  • Elastomers are sometimes mixed with virgin materials to improve impact resistance, etc., but in recycled pellets, at least a part of the chemical structure may change due to shearing when crushing the recycled product or heat history due to having been through one or more molding processes, which may cause deterioration of releasability from a mold.
  • the elastomer has a reactive functional group, the releasability from a mold may be further deteriorated when molding a recycled material containing a polyarylene sulfide resin.
  • the recycled pellets (X) may contain an elastomer (especially an elastomer having a reactive functional group), it is possible to improve the releasability from a mold during molding.
  • the recycled pellets (X) may contain an elastomer having a reactive functional group.
  • the recycled pellets (X) may not contain an elastomer having a reactive functional group, or the content of the elastomer may be less than 5 mass%, less than 1 mass%, or less than 0.01 mass% relative to the total amount of the recycled pellets (X).
  • reactive functional group refers to a functional group that has a high affinity (reactivity) with metal materials at the melting temperature of the resin.
  • reactive functional groups include glycidyl groups, epoxy groups, carboxyl groups, hydroxyl groups, acid anhydride groups, salts of carboxyl groups, carboxylate groups, amide groups, amino groups, isocyanate groups, isothiocyanate groups, acetoxy groups, silanol groups, alkoxysilane groups, alkynyl groups, oxazoline groups, thiol groups, and sulfonic acid groups.
  • the elastomer may include an olefin-based elastomer, a styrene-based elastomer, or a polyester-based elastomer that includes one or more groups selected from a glycidyl group, an epoxy group, a carboxyl group, a hydroxyl group, an acid anhydride group, a salt of a carboxyl group, a carboxylate ester group, an amide group, and an amino group, an isocyanate group, an isothiocyanate group, an acetoxy group, a silanol group, an alkoxysilane group, an alkynyl group, an oxazoline group, a thiol group, and a sulfonic acid group.
  • a glycidyl group an epoxy group, a carboxyl group, a hydroxyl group, an acid anhydride group, a salt of a carboxyl group, a carboxylate ester group, an
  • the recycled pellets (X) may contain, as an elastomer having a reactive functional group, one or more selected from an olefin-based elastomer containing a structural unit derived from an ⁇ -olefin and a structural unit derived from a glycidyl ester of an ⁇ , ⁇ -unsaturated acid, and a styrene-based elastomer containing an epoxidized styrene-diene copolymer in which the unsaturated bond of the diene has been epoxidized.
  • the recycled pellets (X) may include an elastomer that includes structural units derived from an ⁇ -olefin and structural units derived from a glycidyl ester of an ⁇ , ⁇ -unsaturated acid. In one embodiment, the recycled pellets (X) may include an elastomer that includes a glycidyl ester of methacrylic acid.
  • the content of the reactive functional group may be 0.1 to 10 mass% of the total amount of the elastomer, or may be 0.5 to 8 mass%.
  • the content of the reactive functional group can be calculated from the manufacturer's catalog value of the copolymer composition and the molecular weight of the functional group.
  • the content of the elastomer is preferably 1% by mass or more, more preferably 1 to 20% by mass, and even more preferably 2 to 15% by mass, based on the total amount of the recycled pellets (X).
  • the recycled pellets (X) may contain an elastomer having a reactive functional group in an amount of 1% by mass or more, 2% by mass or more, or 3 to 10% by mass, based on the total amount of the recycled pellets (X).
  • the elastomer content can be less than 1 mass % relative to the total amount of recycled pellets (X), can be less than 0.8 mass %, or can be 0 mass %.
  • Organic or inorganic fillers include fibrous fillers such as high-melting point organic fibrous substances such as glass fiber, carbon fiber, zinc oxide fiber, titanium oxide fiber, wollastonite, silica fiber, silica-alumina fiber, alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber, boron fiber, potassium titanate fiber, stainless steel fiber, aluminum fiber, titanium fiber, copper fiber, brass fiber, polyamide, high molecular weight polyethylene, aramid, fluororesin, polyester resin, and acrylic resin; carbon black, graphite, silica, quartz powder, and glass beads.
  • fibrous fillers such as high-melting point organic fibrous substances such as glass fiber, carbon fiber, zinc oxide fiber, titanium oxide fiber, wollastonite, silica fiber, silica-alumina fiber, alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber, boron fiber, potassium titanate fiber, stainless steel fiber, aluminum
  • milled glass fiber glass balloons, glass powder, talc (granular), silicates such as calcium silicate, aluminum silicate, and diatomaceous earth, metal oxides such as iron oxide, titanium oxide, zinc oxide, and alumina (granular), metal carbonates such as calcium carbonate and magnesium carbonate, metal sulfates such as calcium sulfate and barium sulfate, and other powdered and granular fillers such as silicon carbide, silicon nitride, boron nitride, and various metal powders; plate-shaped fillers such as mica, glass flakes, talc (plate-shaped), mica, kaolin, clay, alumina (plate-shaped), and various metal foils; and the like. In terms of mechanical strength, heat resistance, and the like, it is preferable to contain an inorganic filler.
  • silicates such as calcium silicate, aluminum silicate, and diatomaceous earth
  • metal oxides such as iron oxide, titanium oxide, zinc oxide, and alumina (granular)
  • the content of the organic or inorganic filler in the recycled pellets (X) is preferably 10 to 70% by mass, more preferably 15 to 65% by mass, and even more preferably 20 to 60% by mass.
  • the recycled pellets (X) may contain a release agent.
  • the release agent contained in the recycled pellets (X) is not particularly limited as long as it is a generally available one, and examples thereof include fatty acid esters, fatty acid metal salts, fatty acid amides, low molecular weight polyolefins, and the like.
  • it may be a fatty acid ester of pentaerythritol (e.g., pentaerythritol tetrastearate).
  • the content of the release agent is preferably 0.04 to 3.0% by mass, more preferably 0.07 to 2.5% by mass, and even more preferably 0.1 to 2.0% by mass in the total amount of the recycled pellets (X).
  • the release agent in the recycled pellets (X) is present in a state kneaded into the pellets, and can be distinguished from a specific compound (A) described later.
  • the compound (A) can be extracted by washing the recycled pellets (X) with an organic solvent such as acetone or chloroform and dissolving the compound (A) on the surface in the solvent, as described later, but the release agent kneaded into the pellets cannot be extracted by this method.
  • the method for producing the recycled pellets (X) is not limited, and examples thereof include a method in which a molded product of a polyarylene sulfide resin (preferably a molded product of a virgin polyarylene sulfide resin) is crushed using a known crusher, the crushed product is melt-kneaded and extruded using a conventionally known single-screw or twin-screw extruder, etc., and cut into pellets.
  • the melt-kneading temperature is a temperature equal to or higher than the melting point of the polyarylene sulfide resin contained in the recycled pellets (X), and is usually 280 to 360°C, and preferably 290 to 350°C.
  • the average particle size of the pulverized product is not limited, and for example, the volume-based cumulative 50% diameter (D50) measured by a laser diffraction scattering method is preferably 0.3 to 20 mm, more preferably 0.4 to 15 mm, even more preferably 1 to 10 mm, and still more preferably 1 to 3 mm.
  • D50 volume-based cumulative 50% diameter
  • the recycled products that are the raw material for the recycled pellets (X) include, for example, defective products generated during the manufacturing process of molded products, parts other than the product obtained during injection molding (e.g., runners, sprues, etc.), unused products, and chunks of polyethylene sulfide resin material used for purging during molding, and it is preferable that the recycled products include one or more selected from these.
  • the recycled products may be injection molded products.
  • Compound (A) At least a part of the surface of the recycled pellet (X) containing a polyarylene sulfide resin is coated with the compound (A).
  • the "coating” means that at least a part of the surface of the pellet is covered with the compound (A), and may include the compound (A) adhering or adhering to a part of the surface of the pellet, and the compound (A) spreading in a layer form to cover a part of the surface.
  • the "adhering or adhering” may include a state in which the solid (e.g., powdery) compound (A) is attached by electrostatic force or the like, or a state in which a part of the solid compound (A) is melted and the remaining part remains solid and is adhered to the surface of the pellet at the melted part. From the viewpoint of preventing uneven distribution of the compound (A) during the raw material supply process during molding and thus making it difficult for unevenness to occur in the mold releasability, it is preferable that at least a part (more preferably the entirety) of the surface of the pellet (X) containing a polyarylene sulfide resin is coated with the compound (A) in the form of a layer.
  • That at least a portion of the surface of the recycled pellet (X) is covered with the compound (A) can be confirmed by directly measuring the pellet by an ATR method or the like, or by washing the pellet with an organic solvent such as acetone or chloroform, dissolving the compound (A) on the surface in the solvent, extracting the compound (A) adhering to the surface, and subjecting it to FT-IR measurement, or the like.
  • an organic solvent such as acetone or chloroform
  • the recycled pellet (X) is preferably continuously covered with the compound (A) on at least a part of the surface from the viewpoint of preventing uneven distribution of the compound (A) during the raw material supply process during molding and preventing unevenness in the release property.
  • the recycled pellet (X) is preferably formed with a layer or thin film (hereinafter collectively referred to as a "layer") of the compound (A) on at least a part of the surface from the viewpoint of preventing uneven distribution of the compound (A) during the raw material supply process during molding and preventing unevenness in the release property.
  • the layer of the compound (A) is preferably formed with a spread on at least a part of the surface of the recycled pellet (X) from the viewpoint of preventing uneven distribution of the compound (A) during the raw material supply process during molding and preventing unevenness in the release property.
  • the compound (A) is preferably fixed to at least a part of the surface of the recycled pellet (X) from the viewpoint of preventing uneven distribution of the compound (A) during the raw material supply process during molding and thus preventing unevenness in the mold releasability.
  • "fixed" means that the pellet and at least a part of the compound (A) are fused together.
  • compound (A) may be an organic substance that is solid or liquid at room temperature (20 to 25°C).
  • compound (A) may be an organic substance that is solid at room temperature (20 to 25°C) and has a melting point of 50 to 135°C (preferably 55 to 130°C, more preferably 70 to 125°C, 90 to 120°C).
  • the melting point is a value measured according to the DSC method (method described in JIS K7121).
  • room temperature (20 to 25°C) preferably means 25°C.
  • Examples of the compound (A) include (A-1) an olefin resin having a melt viscosity of 0.1 to 8.0 Pa ⁇ s at 140°C (hereinafter also referred to as "(A-1) olefin resin"), (A-2) a fatty acid derivative, and (A-3) a silicone-based compound, and it is preferable to include at least one selected from these.
  • the content of one or more selected from (A-1) an olefin resin having a melt viscosity at 140°C of 0.1 to 8.0 Pa s, (A-2) a fatty acid derivative, and (A-3) a silicone-based compound is preferably 95 mass% or more in total, and more preferably 98 mass% or more in total, based on the total amount of compound (A). It is even more preferable that compound (A) consists of one or more selected from these.
  • Examples of the olefin resin (A-1) having a melt viscosity at 140°C of 0.1 to 8.0 Pa ⁇ s include polyolefin resins having a degree of polymerization of about 500 to 1000 and 1 to 10 (preferably 1 to 4) carbon atoms, and specific examples include polyethylene resins, polypropylene resins, and ethylene-olefin copolymers having a degree of polymerization of 500 to 1000.
  • These olefin resins (A-1) may be used alone or in combination of two or more. Of these, it is preferable that the resin contains a polyethylene resin and/or a polypropylene resin, and it is more preferable that the resin contains a polyethylene resin.
  • the melt viscosity of the (A-1) olefin resin at 140°C is 0.1 to 8.0 Pa ⁇ s, preferably 0.5 to 7.0 Pa ⁇ s, more preferably 1.0 to 6.5 Pa ⁇ s, and particularly preferably 2.0 to 6.0 Pa ⁇ s.
  • the (A-1) olefin resin with a melt viscosity of 0.1 to 8.0 Pa ⁇ s at 140°C has good dispersibility when coating pellets, and is easily coated uniformly over the entire pellet. As a result, it is easy to obtain a good effect of improving releasability.
  • melt viscosity at 140°C can be measured using a B-type viscometer (for example, "RB-80H” manufactured by Toki Sangyo Co., Ltd.) based on JIS K7117.
  • the (A-2) fatty acid derivative is a substitute of a saturated fatty acid and/or an unsaturated fatty acid having at least one carboxyl group, or a compound obtained by a chemical reaction between a saturated fatty acid and/or an unsaturated fatty acid and another compound.
  • Examples of the (A-2) fatty acid derivative include fatty acid salts, fatty acid esters, fatty acid amides, etc., and it is preferable to include one or more selected from these.
  • fatty acid salts include fatty acid metal salts, such as lithium salts, calcium salts, magnesium salts, zinc salts, and aluminum salts of fatty acids (preferably saturated or unsaturated C8-35 fatty acids, more preferably saturated or unsaturated C10-20 fatty acids).
  • fatty acid metal salts such as lithium salts, calcium salts, magnesium salts, zinc salts, and aluminum salts of fatty acids (preferably saturated or unsaturated C8-35 fatty acids, more preferably saturated or unsaturated C10-20 fatty acids).
  • saturated or unsaturated C8-35 fatty acids include saturated fatty acids such as lauric acid (dodecanoic acid), isodecanoic acid, tridecanoic acid, myristic acid (tetradecanoic acid), pentadecylic acid, palmitic acid (hexadecanoic acid), margaric acid (heptadecanoic acid), stearic acid (octadecanoic acid), isostearic acid, tuberculostearic acid (nonadecanoic acid), 2-hydroxystearic acid, arachidic acid (icosanoic acid), behenic acid (docosanoic acid), lignoceric acid (tetradocosanoic acid), cerotic acid (hexadocosanoic acid), montanic acid (octadocosanoic acid), and melissic acid.
  • saturated fatty acids such as lauric acid (dodecanoic acid), isodecan
  • unsaturated fatty acids such as myristoleic acid (tetradecenoic acid), palmitoleic acid (hexadecenoic acid), oleic acid (cis-9-octadecenoic acid), elaidic acid (trans-9-octadecenoic acid), ricinoleic acid (octadecadienoic acid), vaccenic acid (cis-11-octadecenoic acid), linoleic acid (octadecadienoic acid), linolenic acid (9,11,13-octadecatrienoic acid), elestearic acid (9,11,13-octadecatrienoic acid), gadoleic acid (icosanoic acid), erucic acid (docosanoic acid), and nervonic acid (tetradocosanoic acid).
  • myristoleic acid tetradecenoic acid
  • palmitoleic acid he
  • fatty acid metal salts may be used alone or in combination of two or more.
  • zinc salts, calcium salts, or aluminum salts of fatty acids having less than 22 carbon atoms, such as lauric acid, myristic acid, palmitic acid, stearic acid, and oleic acid are preferred, and calcium stearate and magnesium stearate are more preferred.
  • fatty acid esters include esters of aliphatic alcohols and fatty acids, and preferred are esters of polyhydric alcohols and fatty acids.
  • polyhydric alcohols include glycol, polyglycol, glycerin, polyglycerin, propylene glycol, pentaerythritol, sorbitol, mannitol, etc.
  • fatty acids include saturated or unsaturated C8-35 fatty acids (preferably C10-20 fatty acids), and examples of such fatty acids include those described above for the fatty acid metal salts. These fatty acid esters may be used alone or in combination of two or more.
  • esters of one or more selected from glycol, propylene glycol, and pentaerythritol and one or more fatty acids selected from fatty acids having less than 22 carbon atoms such as lauric acid, myristic acid, palmitic acid, stearic acid, and oleic acid are preferred, and pentaerythritol stearates such as pentaerythritol tristearate and pentaerythritol tetrastearate are more preferred.
  • fatty acid amides include C8-35 fatty acid amides, alkylene fatty acid amides, etc.
  • C8-35 fatty acid amides include oleic acid amide, stearic acid amide, erucic acid amide, behenic acid amide, ethylene bisstearic acid amide, ethylene bisoleic acid amide, ethylene biserucic acid amide, ethylene bislauric acid amide, etc.
  • alkylene fatty acid amides include methylene bisstearic acid amide, ethylene bisstearic acid amide, etc. These fatty acid amides may be used alone or in combination of two or more. Among these, ethylene bisstearic acid amide is more preferred from the viewpoints of cost and availability.
  • silicone-based compound (A-3) examples include silicone oil and silicone resin.
  • the silicone-based compound (A-3) may be used alone or in combination of two or more types. Among these, silicone oil is more preferred from the standpoint of price and availability.
  • the inventors' research has revealed that when recycled pellets (X) containing polyarylene sulfide resin contain an elastomer having a reactive functional group, the releasability can be further improved by selecting and using, from among the above compounds (A), (A-1) a compound (A) that has a high content of (or is made of) an olefin resin with a melt viscosity of 0.1 to 8.0 Pa ⁇ s at 140°C.
  • the compound (A) when the recycled pellets (X) contain an elastomer having a reactive functional group (preferably the content of the elastomer having a reactive functional group is preferably 1% by mass or more, more preferably 3 to 10% by mass, based on the total amount of the recycled pellets (X)), from the viewpoint of further improving releasability, the compound (A) preferably contains (A-1) an olefin resin having a melt viscosity of 0.1 to 8.0 Pa ⁇ s at 140°C, more preferably contains (A-1) an olefin resin having a melt viscosity of 0.1 to 8.0 Pa ⁇ s at 140°C in an amount of 95% by mass or more, or 98% by mass or more, based on the total amount of the compound (A), and further preferably consists of (A-1) an olefin resin having a melt viscosity of 0.1 to 8.0 Pa ⁇ s at 140°C.
  • the recycled pellets (X) when the recycled pellets (X) contain an elastomer having a reactive functional group (preferably the content of the elastomer having a reactive functional group is preferably 1% by mass or more, more preferably 3 to 10% by mass, based on the total amount of the recycled pellets (X)), it is preferable that the compound (A) contains (A-1) olefin resin having a melt viscosity of 0.1 to 8.0 Pa ⁇ s at 140°C in an amount of 95% by mass or more based on the total amount of the compound (A), and does not contain (A-2) fatty acid derivatives and (A-3) silicone-based compounds, or the content of (A-2) fatty acid derivatives and (A-3) silicone-based compounds is less than 5% by mass in total based on the total amount of the compound (A).
  • the compound (A) contains (A-1) olefin resin having a melt viscosity of 0.1 to 8.0 Pa ⁇ s at 140°C in an amount of 95%
  • the recycled pellets (X) contain an elastomer that includes structural units derived from an ⁇ -olefin and structural units derived from a glycidyl ester of an ⁇ , ⁇ -unsaturated acid, and the compound (A) contains 95% by mass or more (A-1) of an olefin resin having a melt viscosity of 0.1 to 8.0 Pa ⁇ s at 140°C relative to the total amount of the compound (A) (preferably 98% by mass or more, and more preferably (A-1) of an olefin resin having a melt viscosity of 0.1 to 8.0 Pa ⁇ s at 140°C).
  • the compound (A) may contain one or more selected from the above-mentioned (A-1) olefin resin having a melt viscosity of 0.1 to 8.0 Pa ⁇ s at 140°C, (A-2) fatty acid derivative, and (A-3) silicone-based compound, and from the viewpoint of easier improvement of releasability, it is preferable that the compound (A) contains one or more selected from (A-1) olefin resin having a melt viscosity of 0.1 to 8.0 Pa ⁇ s at 140°C, and (A-2) fatty acid ester.
  • the total coating amount of the compound (A) is 0.04 to 3.0 parts by mass relative to 100 parts by mass of the recycled pellet (X), preferably 0.07 to 2.5 parts by mass, more preferably 0.1 to 2.0 parts by mass, even more preferably 0.1 to 1.0 parts by mass, and particularly preferably 0.1 to 0.5 parts by mass.
  • 0.04 parts by mass or more relative to 100 parts by mass of the recycled pellet (X) it is possible to improve the releasability from the mold when molding the coated recycled pellet (Y).
  • the total coating amount of the compound (A) may be 0.1 parts by mass, 0.2 parts by mass, or 0.3 parts by mass in the range of 0.04 to 3.0 parts by mass relative to 100 parts by mass of the recycled pellet (X), and may be a range with these as the upper and/or lower limits.
  • the coated recycled pellets (Y) may contain additives as necessary.
  • the additives may include the same components as those that may be contained in the above-mentioned recycled pellets (X).
  • the coated regenerated pellets (Y) In the coated regenerated pellets (Y), at least a portion of the surface of the regenerated pellets (X) is coated with the compound (A), so that the compound (A) is uniformly dispersed in the aggregate of the coated regenerated pellets (Y), and excellent releasability can be realized.
  • the coated regenerated pellets (Y) have a ratio [R Y /R X ] of the release resistance value (R Y ) of the coated regenerated pellets (Y) to the release resistance value (R X ) of the uncoated regenerated pellets ( X ) that are not coated with compound ( A ) is preferably less than 0.98, more preferably 0.95 or less.
  • the demolding resistance values (R Y ) and (R X ) are double cylinder demolding resistance values, and refer to the resistance when the double cylinder molded product shown in FIG. 1 is demolded from the mold.
  • Fig. 1(a) is a top view of the double cylindrical molded product
  • Fig. 1(b) is a bottom view of the double cylindrical molded product
  • Fig. 1(c) is a perspective view of the double cylindrical molded product
  • Fig. 1(d) is a dimensional drawing of the double cylindrical molded product, the dimensions in Fig. 1(a) and (d) being in mm.
  • the gate size of the double cylindrical molded product is 5 mm x 2.5 mm.
  • the double cylindrical molded product shown in Figure 1 has a double cylindrical shape with a first cylinder 1 on the inside and a second cylinder 2 on the outside, and the first cylinder 1 and second cylinder 2 are connected at four points by a 4 mm shaft.
  • the first cylinder 1 has a height of 20 mm, an outer diameter of 18 mm, and an inner diameter of 9 mm
  • the second cylinder 2 has a height of 40 mm, an outer diameter of 40 mm, and an inner diameter of 30 mm.
  • the thickness of the side of the first cylinder 1 is 4.5 mm
  • the thickness of the bottom and side of the second cylinder 2 is 5 mm.
  • the second cylinder 2 is a bottomed cylinder, but has an opening at the part of the first cylinder 1.
  • the coated regenerated pellets (Y) preferably have a mold deposit of 100 ⁇ g or less, more preferably 90 ⁇ g or less, and even more preferably 80 ⁇ g or less, measured under the following conditions.
  • a molded article having the dimensions and shape shown in Figure 2 is molded continuously for 4 hours (1000 times).
  • the total weight of the vent and cavity parts removed from the mold is measured before and after the continuous molding.
  • the change in the total weight of the vent and cavity parts before and after the continuous molding is calculated as the weight ( ⁇ g) of the matter adhering to the mold.
  • Injection molding machine FANUC ROBOSHOT S2000i30A Cylinder temperature: 340°C Injection time: 2 seconds Cooling time: 10 seconds Mold temperature: 140°C
  • the coated recycled pellets (Y) can be suitably used as resin pellets for injection molding or resin pellets for extrusion molding.
  • the method for producing the coated regenerated pellets (Y) includes coating at least a part of the surface of the regenerated pellets (X) with the compound (A) (hereinafter also referred to as the "coating step"), and the total amount of the compound (A) is 0.04 to 3.0 parts by mass per 100 parts by mass of the regenerated pellets (X).
  • the coating step includes coating at least a part of the surface of the regenerated pellets (X) with the compound (A) (hereinafter also referred to as the "coating step"), and the total amount of the compound (A) is 0.04 to 3.0 parts by mass per 100 parts by mass of the regenerated pellets (X).
  • the total amount of compound (A) is 0.04 to 3.0 parts by mass relative to 100 parts by mass of recycled pellets (X), preferably 0.07 to 2.5 parts by mass, more preferably 0.1 to 2.0 parts by mass, even more preferably 0.1 to 1.0 parts by mass, and particularly preferably 0.1 to 0.5 parts by mass.
  • 0.04 parts by mass or more relative to 100 parts by mass of recycled pellets (X) it is possible to improve the releasability from the mold when molding the coated recycled pellets (Y).
  • 3.0 parts by mass or less it is possible to suppress the occurrence of mold deposits.
  • the types of compound (A) are as described above.
  • compound (A) contains one or more selected from (A-1) an olefin resin having a melt viscosity of 0.1 to 8.0 Pa ⁇ s at 140°C, (A-2) a fatty acid derivative, and (A-3) a silicone-based compound.
  • coating process In the coating step, at least a part of the surface of the recycled pellets (X) is coated with the compound (A).
  • the coating method include a method of contacting the recycled pellets (X) with a solid or liquid compound (A) at a temperature equal to or higher than the melting point of the compound (A) (hereinafter referred to as "coating method (1)"), and a method of contacting the recycled pellets (X) with a liquid compound (A) (hereinafter referred to as “coating method (2)").
  • the coating method (1) is a method of contacting the recycled pellets (X) with the compound (A) at a temperature equal to or higher than the melting point of the compound (A).
  • the coating method (1) is preferably a method of contacting the recycled pellets (X) with the solid or liquid compound (A) at a temperature equal to or higher than the melting point of the compound (A) and equal to or lower than the melting point (Tm1) (°C) of the polyarylene sulfide resin contained in the recycled pellets (X).
  • Tm1 melting point of the compound (A) is a value measured according to the DSC method (method described in JIS K7121).
  • the melting point of the polyarylene sulfide resin contained in the recycled pellets (X) is the melting point Tm1 measured by a differential scanning calorimeter, and is the peak top temperature of the endothermic peak of the 1st RUN observed when heated (1st RUN) from room temperature at a heating rate of 10°C/min according to a method based on JIS K7121.
  • the melting point of the compound (A) is preferably 50 to 135° C., more preferably 55 to 130° C., even more preferably 70 to 125° C., and most preferably 90 to 120° C.
  • the melting point is a value measured according to a DSC method (the method described in JIS K7121).
  • the temperature at which the recycled pellets (X) are brought into contact with the compound (A) may be, for example, 80 to 160°C, or 100 to 140°C.
  • the contact time is not limited and may be, for example, 5 minutes or more, or 3 to 8 hours.
  • the contacting method is not limited, and the recycled pellets (X) and the compound (A) can be contacted with each other in a known dryer such as an air circulation dryer while heating or after heating, preferably while stirring.
  • the contacting may be mixing the recycled pellets (X) and the compound (A).
  • the coating step can be performed by coating method (1) in a step of drying the recycled pellets (X) at a temperature equal to or higher than the melting point of compound (A), or immediately after the drying step, in a state in which the temperature of the recycled pellets (X) is equal to or higher than the melting point (°C) of compound (A).
  • the heat from the drying step can be effectively utilized for coating.
  • the compound (A) used in the coating method (1) may be a solid or liquid at room temperature (20 to 25°C), and is preferably a solid.
  • the compound (A) is a solid, it is easy to handle. Even if the compound (A) is a solid, since it comes into contact with the recycled pellets (X) at a temperature equal to or higher than the melting point of the compound (A), the compound (A) melts and can wet and spread over at least a portion of the surface of the recycled pellets (X). As a result, at least a portion of the surface of the recycled pellets (X) can be coated.
  • the compound (A) is preferably in a powder, flake, or granular form.
  • the method for producing the coated recycled pellets (Y) can be configured such that the compound (A) is in a powder, flake or granular form, and includes contacting the recycled pellets (X) with the compound (A) at a temperature equal to or higher than the melting point of the compound (A).
  • the coating method (2) is a method of contacting the regenerated pellets (X) with a liquid compound (A).
  • the liquid compound (A) may be a liquid compound (A) at room temperature (20 to 25°C), or may be a liquid compound (A) obtained by heating a solid compound (A) at room temperature (20 to 25°C) to a melting point or higher. It may also be a liquid compound (A) obtained by dissolving a solid compound (A) at room temperature (20 to 25°C) in a solvent.
  • a liquid compound (A) it is not necessary to heat the regenerated pellets (X) in the coating process.
  • the method of contacting is not limited, and examples include a method of applying liquid compound (A) to the surface of recycled pellets (X) by coating, spraying, etc., and a method of stirring and mixing recycled pellets (X) and liquid compound (A).
  • the coating process it is preferable to cool the obtained coated recycled pellets (Y) to preferably room temperature (e.g., 25°C) to 80°C, more preferably room temperature to 40°C, to fix the surface coating layer (or the coated area).
  • room temperature e.g., 25°C
  • 80°C 80°C
  • room temperature to 40°C room temperature
  • the cooling method is not limited, and may be left to cool, blowing air, etc.
  • the method for producing the coated recycled pellets (Y) may include selecting the compound (A) prior to coating.
  • the compound (A) can be selected and used to further improve the releasability by selecting (A-1) a compound (A) having a high content of (or consisting of) an olefin resin having a melt viscosity of 0.1 to 8.0 Pa ⁇ s at 140°C.
  • selecting compound (A) comprises: In the case where the recycled pellets (X) contain an elastomer having a reactive functional group in an amount of 1% by mass or more (preferably 2% by mass or more, more preferably 3 to 10% by mass) based on the total amount of the recycled pellets (X), (A-1) a compound (A) containing an olefin resin having a melt viscosity of 0.1 to 8.0 Pa ⁇ s at 140°C is selected, preferably a compound (A) containing a C1-4 olefin resin such as a polyethylene resin, an ethylene copolymer, or a polypropylene resin is selected; When the recycled pellets (X) do not contain an elastomer having a reactive functional group, or the content of the elastomer having a reactive functional group is less than 1 mass%, preferably less than 0.8 mass%, relative to the total amount of the recycled pellets (X), a compound (A) is selected that contains a total of 95 mass% or more
  • the coated recycled pellets (Y) can be molded and processed by known methods such as injection molding, irregular shape/solidification extrusion processing, press molding, spinning processing, etc.
  • the coated recycled pellets (Y) have excellent releasability from a mold, so that the number of times a mold release agent is applied to the mold during molding can be reduced.
  • the mold release property is excellent, so that the options for the shape of the part can be expanded.
  • the method for producing a molded product containing the coated recycled pellets (Y) includes continuously injecting or extruding the above-mentioned coated recycled pellets (Y) into a mold together with other thermoplastic resins and additives as necessary, and applying a release agent to the mold, and the number of times that the release agent is applied to the mold may be once for every 10 or more injections or extrusions.
  • the release agent to be applied to the mold is not limited, and can be selected from known release agents.
  • coated recycled pellets (Y) have excellent releasability from the mold, so even when injection molding or extrusion molding a molded product with a large contact area with the mold, the number of times that release agent needs to be applied to the mold can be reduced.
  • the coated recycled pellets (Y) described above can be mixed with other thermoplastic resins as necessary and used as molding materials.
  • other thermoplastic resins include virgin pellets containing polyarylene sulfide resins, and preferably virgin pellets containing polyarylene sulfide resins.
  • the polyarylene sulfide resin composition (Z) preferably contains coated recycled pellets (Y) and virgin pellets (V) containing polyarylene sulfide resin (hereinafter also simply referred to as "virgin pellets (V)").
  • V polyarylene sulfide resin
  • the content of the coated recycled pellets (Y) is preferably 50% by mass or more, more preferably 50 to 99.99% by mass, and even more preferably 60 to 100% by mass, of the total amount of the coated recycled pellets (Y) and the virgin pellets (V) containing polyarylene sulfide resin.
  • the polyarylene sulfide resin composition (Z) has excellent releasability from a mold even when the content of the coated recycled pellets (Y) is high.
  • the polyarylene sulfide resin contained in the virgin pellet (V) can be exemplified by the same ones as those described in the above-mentioned section on the recycled pellet (X), and from the viewpoint of quality control, etc., it is preferable that the composition is the same as that of the polyarylene sulfide resin in the recycled pellet (X).
  • the term virgin pellet (V) can include virgin polyarylene sulfide resin and its composition.
  • the virgin pellet (V), like the recycled pellet (X), can contain other components such as elastomers, organic or inorganic fillers, release agents, and other additives generally added to thermoplastic resins (e.g., flame retardants, colorants such as dyes and pigments, stabilizers such as antioxidants and ultraviolet absorbers, lubricants, crystallization promoters, crystal nucleating agents, etc.). Details of the other components are as described above. In one embodiment, from the viewpoint of quality control, etc., it is preferable that the virgin pellets (V) have the same composition as the recycled pellets (X) (for example, the type and content of additives are the same) with respect to components other than the polyarylene sulfide resin.
  • the virgin pellets (V) when the recycled pellets (X) do not contain an elastomer having a reactive functional group, it is preferable that the virgin pellets (V) also do not contain an elastomer having a reactive functional group. In this case, the compound (A) may or may not be contained. When the compound (A) is contained, the type is not limited. In another embodiment, when the recycled pellets (X) contain an elastomer having a reactive functional group, it is preferable that the virgin pellets (V) also contain an elastomer having a reactive functional group, and it is more preferable that the type and content of the elastomer are the same.
  • the virgin pellets (V) contain the compound (A), and it is more preferable to select an olefin resin (A-1) having a melt viscosity at 140 ° C. of 0.1 to 8.0 Pa ⁇ s.
  • the melt viscosity of the virgin pellets (V) is not particularly limited as long as it is within a range that does not impair the effects of the present disclosure. From the viewpoint of the balance between mechanical properties and fluidity, the melt viscosity measured at 310° C. and a shear rate of 1200 sec ⁇ 1 is preferably 300 Pa s or less, more preferably 250 Pa s or less.
  • the method for producing the polyarylene sulfide resin composition (Z) is not limited, and the coated recycled pellets (Y) and other thermoplastic resins (preferably virgin pellets containing polyarylene sulfide resin) may be dry blended, or may be melt-kneaded using a conventional melt-kneading device such as a single-screw or twin-screw extruder, or may be mixed in the hopper (material supply member) of an injection molding machine.
  • a conventional melt-kneading device such as a single-screw or twin-screw extruder
  • the method for producing a molded article containing the polyarylene sulfide resin composition (Z) can be carried out in the same manner as the method for producing a molded article containing the coated recycled pellets (Y) described above.
  • the polyarylene sulfide resin composition (Z) can be suitably used as a resin composition for injection molding or a resin composition for extrusion molding.
  • Recycled PPS pellets (X1) An injection-molded product of a resin composition containing 65 mass% polyphenylene sulfide resin (manufactured by Kureha Corporation, Fortron (registered trademark) KPS), 30 mass% glass fiber, and 4 mass% elastomer (composition: E-GMA-MA (glycidyl methacrylate content: 3 mass%)), with the remainder being additives, was pulverized using a mechanical pulverizer to obtain a pulverized product, which was melt-kneaded and extruded at 320°C using a twin-screw extruder to obtain recycled PPS pellets (X1).
  • Recycled PPS pellets (X2) An injection-molded product of a resin composition (containing no elastomer component) containing 69% by mass of polyphenylene sulfide resin (manufactured by Kureha Corporation, Fortron (registered trademark) KPS), 30% by mass of glass fiber, and the remainder being additives, was pulverized using a mechanical pulverizer. The pulverized product was melt-kneaded and extruded at 320°C using a twin-screw extruder to obtain recycled PPS pellets (X2).
  • PPS virgin pellets (X3) Pellets of a resin composition (virgin material having the same composition as the resin composition used in the PPS recycled pellets (X1)) containing 65 mass % of polyphenylene sulfide resin (Fortron (registered trademark) KPS, manufactured by Kureha Corporation), 30 mass % of glass fiber, 4 mass % of elastomer (composition: E-GMA-MA (glycidyl methacrylate content: 3 mass %)), and the remainder of additives, were used as PPS virgin pellets (X3).
  • Compound (A1) Polyethylene resin (manufactured by Sanyo Chemical Industries, Ltd., “Sanwax 161-P", granular, melting point 103°C, melt viscosity at 140°C 4.3 Pa ⁇ s)
  • the melting points of compound (A1) and compound (A2) and the melt viscosity of compound (A1) at 140° C. were measured by the following methods.
  • the melting point (Tm) was measured by the DSC method (method described in JIS K7121) using a DSC device (differential scanning calorimeter, DSC-Q1000, manufactured by TA Instruments) under conditions of a nitrogen atmosphere and a temperature rise rate of 10° C./min. (Viscosity at 140° C.) The viscosity was measured at 140° C. using a Brookfield viscometer ("RB-80H” manufactured by Toki Sangyo Co., Ltd.) in accordance with JIS K7117 (1999).
  • Examples 1 to 4 3 kg of crushed PPS recycled pellets (X1) or (X2) shown in Table 1 was placed in a metal container (30 cm x 60 cm x 15 cm), compound (A1) was added in the ratio shown in Table 1, and the mixture was dried at 140°C for 3 hours in a blower dryer and then cooled to room temperature. The mixture was then stirred (dispersed) in a mixer to obtain coated recycled pellets. Compound (A1) was dissolved and added in the drying process. In the obtained coated recycled pellets, at least a portion of the surface of the PPS recycled pellets (X1) or (X2) was coated with compound (A1).
  • Example 5 3 kg of crushed PPS recycled pellets (X1) were placed in a metal container (30 cm x 60 cm x 15 cm), and compound (A2) was added in the proportions shown in Table 2. The mixture was dried in a blower dryer at 140°C for 3 hours and then cooled to room temperature. The mixture was then stirred (dispersed) in a mixer to obtain coated recycled pellets. Compound (A2) was dissolved and added in the drying process. In the obtained coated recycled pellets, at least a portion of the surface of the PPS recycled pellets (X1) was coated with compound (A2).
  • Example 6 3 kg of PPS virgin pellets (X3) were placed in a metal container (30 cm x 60 cm x 15 cm), 6 g of compound (A1) was added, and the mixture was dried in a blower dryer at 140°C for 3 hours, and then cooled to room temperature. The mixture was then stirred (dispersed) in a mixer to obtain coated pellets. Compound (A1) was dissolved and added in the drying process. In the obtained coated pellets, at least a part of the surface of the PPS virgin pellets (X3) was coated with compound (A1). The injection-molded product of the obtained coated pellets was pulverized by a mechanical pulverizer, and the pulverized product was melt-kneaded and extruded at 320° C. by a twin-screw extruder to obtain recycled PPS pellets (X3).
  • the release resistance values of Examples 1 to 3 and Comparative Examples 3 and 4 were taken as R Y
  • the release resistance value of Comparative Example 1 was taken as R X
  • the ratio of R Y to R X , [R Y /R X ] was calculated.
  • the release resistance values of Example 4 and Comparative Example 5 were taken as R Y
  • the release resistance value of Comparative Example 2 was taken as R X
  • the ratio of R Y to R X , [R Y /R X ] was calculated.
  • the results are shown in Table 1.
  • Injection molding machine FANUC ROBOSHOT S2000i30A Cylinder temperature: 340°C Injection time: 2 seconds Cooling time: 10 seconds Mold temperature: 140°C
  • the amount of mold adhesion is 100 ⁇ g or less, there is an effect of suppressing mold deposits, when it is 90 ⁇ g or less, there is an excellent effect of suppressing mold deposits, and when it is 80 ⁇ g or less, there is an even better effect of suppressing mold deposits.
  • the pellets of Examples 1 to 3 in which at least a portion of the surface of the PPS recycled pellets (X1) is coated with compound (A1) have a smaller release resistance than the PPS recycled pellets (X1) of Comparative Example 1, and the ratio of the release resistance value to the release resistance value (R X ) of the pellet not coated with compound (A1) (PPS recycled pellets (X1) of Comparative Example 1) [R Y /R X ] is less than 0.98, improving the releasability from the mold.
  • the pellets of Example 4 in which at least a portion of the surface of the PPS recycled pellets (X2) is coated with compound (A1) have a smaller release resistance than the PPS recycled pellets (X2) of Comparative Example 2, and the ratio of the release resistance value to the release resistance value (R X ) of the pellet not coated with compound (A1) (PPS recycled pellets (X2) of Comparative Example 1) [R Y /R X ] is less than 0.98, improving the releasability from the mold.
  • At least a portion of the surface of the PPS recycled pellets (X1) or (X2) is coated with compound (A) by contacting the PPS recycled pellets (X1) or (X2) at a temperature equal to or higher than the melting point of compound (A1).
  • the resulting coated recycled pellets have a release resistance ratio [R Y /R X ] of less than 0.98 to the release resistance (R X ) of a pellet not coated with compound (A), thereby further improving releasability.
  • the pellets of Example 5 in which at least a portion of the surface of the recycled PPS pellets (X1) is coated with compound (A2), have a smaller release resistance than the recycled PPS pellets (X1) of Comparative Example 1, and the ratio of the release resistance value to the release resistance value (R X ) of the pellets not coated with compound (A2) (recycled PPS pellets (X1) of Comparative Example 1) [R Y /R X ] is less than 0.98, thereby improving releasability from the mold.
  • the PPS recycled pellets (X3) of Example 6 which were produced from virgin PPS pellets (X3) having at least a portion of their surface coated with compound (A1), had a lower release resistance than the PPS recycled pellets (X1) of Comparative Example 1, even though the recycled pellets were not coated with compound (A1) during production. Furthermore, the ratio of the release resistance value to the release resistance value (R X ) of the pellets not coated with compound (A1) (recycled PPS pellets (X1) of Comparative Example 1) [R Y /R X ] was less than 0.98, and the releasability from the mold was improved.
  • Example 2 Comparing Example 2 with Example 5, when using a recycled material (X1) containing an elastomer having a reactive functional group, by using as compound (A) a compound (A) containing an olefin resin having a melt viscosity at 140°C of 0.1 to 8.0 Pa ⁇ s, the ratio of the release resistance values [R Y /R X ] becomes smaller, and better releasability can be achieved.
  • the PPS recycled pellets of the examples had a mold deposit of 80 g or less, and were more effective at suppressing mold deposits.
  • the PPS recycled pellets of Comparative Example 7 had a mold deposit of more than 100 g, resulting in a large amount of mold deposits.
  • the method of improving the demoldability of recycled pellets disclosed herein can improve the demoldability from a mold when using recycled pellets for molding, thereby increasing productivity and having industrial applicability.
  • the coated recycled pellets of the present disclosure have excellent releasability from a mold and can therefore be suitably used as resin pellets for injection molding or resin pellets for extrusion molding, and have industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided are: a method for improving the releasability of regenerated pellets from a mold; and coated regenerated resin pellets excellent in releasability from a mold. The method is for improving the releasability of regenerated pellets containing a polyarylene sulfide resin, the method including: coating at least a portion of the surfaces of pellets containing a polyarylene sulfide resin with a compound (A) that includes at least one selected from: (A-1) an olefin resin having a melt viscosity of 0.1 to 8.0 Pa·s at 140°C; (A-2) a fatty acid derivative; and (A-3) a silicone-based compound. The total amount of compound (A) coating is 0.04 to 3.0 parts by mass relative to 100 parts by mass of the pellets (Q).

Description

再生ペレットの離型性を向上させる方法、及び被覆再生ペレットMethod for improving releasability of recycled pellets, and coated recycled pellets

 本発明は、再生ペレットの離型性を向上させる方法、及び被覆再生ペレットに関する。 The present invention relates to a method for improving the releasability of recycled pellets, and to coated recycled pellets.

 持続可能な循環型社会の構築に向け、プラスチック廃棄物をリサイクルして活用する技術が検討されている(例えば、特許文献1)。
 ポリアリーレンスルフィド樹脂は、耐熱性、機械的物性、耐化学薬品性、寸法安定性、難燃性に優れていることから、電気・電子機器部品材料、自動車部品材料、化学機器部品材料等に広く使用されている。そのため、ポリアリーレンスルフィド樹脂を含む材料をリサイクルして活用することで持続可能な循環型社会を構築するための一助となり得る。
In order to build a sustainable recycling-based society, technologies for recycling and utilizing plastic waste are being considered (for example, Patent Document 1).
Polyarylene sulfide resins are excellent in heat resistance, mechanical properties, chemical resistance, dimensional stability, and flame retardancy, and are therefore widely used in electrical and electronic equipment component materials, automotive component materials, chemical equipment component materials, etc. Therefore, recycling and utilizing materials containing polyarylene sulfide resins can help build a sustainable recycling-oriented society.

特開2022-103152号公報JP 2022-103152 A

 ところで、ポリアリーレンスルフィド樹脂を含む樹脂材料を成形する場合、一般的に、ペレット状の樹脂材料(以下、単に「ペレット」ともいう)を射出成形、又は押出成形する方法を採用できる。また、ペレットを得る方法としては、例えば、ポリアリーレンスルフィド樹脂と、必要に応じて無機充填剤等のその他の成分とを混合して、一軸又は二軸の押出機により溶融混練して押出し、ペレットを得る方法等を採用できる。
 ポリアリーレンスルフィド樹脂を含む材料をリサイクルする場合、成形品や成形時にシリンダー内に長時間滞留された後に排出された物品(以下、まとめて「被リサイクル品」ともいう)を、粉砕後に再度ペレット状にした再生ペレット(以下、「リペレット」ともいう)を用いて成形することが行われている。しかしながら、再生ペレットは、被リサイクル品を粉砕する際のせん断や、成形工程を1回以上経ていることによる熱履歴によって、マトリックスポリマーの分解、添加剤の劣化、及び充填剤の微細化等が起こっている場合がある。その場合は、成形工程を経ていないバージン材と比較して、流動性、結晶性、又は極性等に変化が生じている場合がある。このような再生ペレットを単独で又はバージン材との混合ペレットとして成形に用いると、バージン材のみを用いた場合よりも金型からの離型性が悪化する場合がある。離型性の悪化を防ぐために再生ペレットの使用量を減らすと再生用材料を少量ずつしか有効利用することができない。一方、成形時に使用する金型に離型剤を塗布することによって離型性を高める方法もあるが、再生ペレットの混合割合が高い場合や、金型との接触面積が大きい成形品を射出成形する場合は、金型に離型剤を塗布する回数が多くなり、作業効率が悪化してしまうことがあった。さらに、成形時に再生ペレットを離型剤との混合物として原料供給部に供給することによって離型性を高める方法も考えられる。しかし、原料供給の過程で再生ペレットと離型剤とが偏析することにより離型剤が混合物中で偏在してしまうことがあり、その場合は離型性にムラが生じる。
 また、再生用材料に追加の成分を配合すると、その成分の種類や配合量によっては再生ペレットの成形にモールドデポジット(MD)が発生しやすく、金型汚れが生じてしまうことがある。
Incidentally, when molding a resin material containing a polyarylene sulfide resin, a method of injection molding or extrusion molding a pellet-shaped resin material (hereinafter also simply referred to as "pellets") can generally be adopted. In addition, as a method for obtaining pellets, for example, a method of mixing a polyarylene sulfide resin with other components such as an inorganic filler as necessary, melt-kneading and extruding the mixture with a single-screw or twin-screw extruder to obtain pellets can be adopted.
When recycling materials containing polyarylene sulfide resin, molded products or items discharged after a long time residence in a cylinder during molding (hereinafter collectively referred to as "recycled products") are crushed and then re-pelletized to form recycled pellets (hereinafter also referred to as "repellet"). However, the recycled pellets may have decomposition of the matrix polymer, deterioration of additives, and fineness of fillers due to shearing when crushing the recycled products and heat history due to having been through one or more molding processes. In that case, there may be changes in fluidity, crystallinity, polarity, etc. compared to virgin materials that have not been through a molding process. When such recycled pellets are used alone or as mixed pellets with virgin materials for molding, the releasability from the mold may be worse than when only virgin materials are used. If the amount of recycled pellets used is reduced to prevent the deterioration of releasability, only a small amount of recycled material can be effectively used. On the other hand, there is a method of improving the mold releasability by applying a release agent to the mold used during molding, but when the mixing ratio of recycled pellets is high or when injection molding a molded product with a large contact area with the mold, the release agent must be applied to the mold many times, which may result in poor work efficiency. In addition, there is also a method of improving the mold releasability by supplying the recycled pellets as a mixture with the release agent to the raw material supply section during molding. However, the release agent may be unevenly distributed in the mixture due to segregation of the recycled pellets and the release agent during the raw material supply process, which may cause uneven release properties.
Furthermore, when additional components are added to the recycled material, depending on the type and amount of the components, mold deposits (MD) are likely to occur during molding of the recycled pellets, which may result in mold contamination.

 本開示は、再生ペレットの金型からの離型性を向上させる方法、及び金型からの離型性に優れた被覆再生ペレットを提供することを課題とする。詳しくは、成形時のモールドデポジットの発生を抑制しつつ、金型からの離型性に優れた再生ポリアリーレンスルフィド樹脂組成物及びその製造方法を提供することを課題とする。 The objective of the present disclosure is to provide a method for improving the releasability of recycled pellets from a mold, and to provide coated recycled pellets that have excellent releasability from a mold. More specifically, the objective is to provide a recycled polyarylene sulfide resin composition that has excellent releasability from a mold while suppressing the occurrence of mold deposits during molding, and a method for producing the same.

 本開示は、以下の各態様を有する。
 [1]ポリアリーレンスルフィド樹脂を含む再生ペレットの離型性を向上させる方法であり、
 ポリアリーレンスルフィド樹脂を含むペレット(Q)の表面の少なくとも一部を、(A-1)140℃における溶融粘度が0.1~8.0Pa・sであるオレフィン樹脂、(A-2)脂肪酸誘導体、及び(A-3)シリコーン系化合物から選択される1以上を含む化合物(A)で被覆することを含み、化合物(A)による総被覆量が、ポリアリーレンスルフィド樹脂を含むペレット(Q)100質量部に対して0.04~3.0質量部である、再生ペレットの離型性を向上させる方法。
 [2]ポリアリーレンスルフィド樹脂を含むペレット(Q)が、ポリアリーレンスルフィド樹脂及び/又はポリアリーレンスルフィド樹脂組成物を含む物品の再生ペレット(Q2)である、[1]に記載の方法。
 [3]ポリアリーレンスルフィド樹脂を含む再生ペレットの離型性を向上させるための化合物(A)の使用であって、
 ポリアリーレンスルフィド樹脂を含むペレット(Q)の表面の少なくとも一部を、(A-1)140℃における溶融粘度が0.1~8.0Pa・sであるオレフィン樹脂、(A-2)脂肪酸誘導体、及び(A-3)シリコーン系化合物から選択される1以上を含む化合物(A)で被覆することを含み、化合物(A)の総被覆量が、ポリアリーレンスルフィド樹脂を含むペレット(Q)100質量部に対して0.04~3.0質量部である、化合物(A)の使用。
 [4]ポリアリーレンスルフィド樹脂を含むペレット(Q)が、ポリアリーレンスルフィド樹脂及び/又はポリアリーレンスルフィド樹脂組成物を含む物品の再生ペレット(Q2)である、[3]に記載の使用。
 [5]ポリアリーレンスルフィド樹脂を含む再生ペレット(X)の表面の少なくとも一部が、(A-1)140℃における溶融粘度が0.1~8.0Pa・sであるオレフィン樹脂、(A-2)脂肪酸誘導体、及び(A-3)シリコーン系化合物から選択される1以上を含む化合物(A)で被覆されており、化合物(A)の総被覆量が、再生ペレット(X)100質量部に対して0.04~3.0質量部である、被覆再生ペレット(Y)。
 [6]被覆再生ペレット(Y)の離型抵抗値(R)の、化合物(A)で被覆されていない未被覆のポリアリーレンスルフィド樹脂を含む再生ペレット(X)の離型抵抗値(R)に対する比の値[R/R]が0.98未満である、[5]に記載の被覆再生ペレット(Y)。
 [7]ポリアリーレンスルフィド樹脂を含む再生ペレット(X)が、反応性官能基を有するエラストマーを、ポリアリーレンスルフィド樹脂を含む再生ペレット(X)の総量に対して1質量%以上含む、[5]又は[6]に記載の被覆再生ペレット(Y)。
 [8]ポリアリーレンスルフィド樹脂を含む再生ペレット(X)が、α-オレフィン由来の構成単位とα,β-不飽和酸のグリシジルエステル由来の構成単位とを含むエラストマーを含む、[5]から[7]のいずれかに記載の被覆再生ペレット(Y)。
[9]ポリアリーレンスルフィド樹脂を含む再生ペレット(X)が、反応性官能基を有するエラストマーを含み、かつ、化合物(A)が、(A-1)140℃における溶融粘度が0.1~8.0Pa・sであるオレフィン樹脂を化合物(A)の総量に対して95質量%以上含む、[5]から[7]のいずれかに記載の被覆再生ペレット(Y)。
 [10] ポリアリーレンスルフィド樹脂を含む再生ペレット(X)が、反応性官能基を有するエラストマーを含まない、又は反応性官能基を有するエラストマーの含有量がポリアリーレンスルフィド樹脂を含む再生ペレット(X)の総量に対して1質量%未満である、[5]又は[6]に記載の被覆再生ペレット(Y)。
 [11]被覆再生ペレット(Y)の製造方法であり、
 ポリアリーレンスルフィド樹脂を含む再生ペレット(X)の表面の少なくとも一部を、(A-1)140℃における溶融粘度が0.1~8.0Pa・sであるオレフィン樹脂、(A-2)脂肪酸誘導体、及び(A-3)シリコーン系化合物から選択される1以上を含む化合物(A)で被覆することを含み、
 化合物(A)の総配合量が、再生ペレット(X)100質量部に対して0.04~3.0質量部である、被覆再生ペレット(Y)の製造方法。
 [12]化合物(A)が、パウダー状、フレーク状又は顆粒状であり、
 被覆することが、ポリアリーレンスルフィド樹脂を含む再生ペレット(X)と化合物(A)とを、化合物(A)の融点以上の温度で接触させることを含む、[11]に記載の被覆再生ペレット(Y)の製造方法。
 [13]被覆することが、ポリアリーレンスルフィド樹脂を含む再生ペレット(X)と液体の化合物(A)とを接触させることを含む、[11]に記載の被覆再生ペレット(Y)の製造方法。
 [14]被覆することに先立ち、化合物(A)を選択することを含み、
 化合物(A)を選択することが、
 ポリアリーレンスルフィド樹脂を含む再生ペレット(X)が、反応性官能基を有するエラストマーを、ポリアリーレンスルフィド樹脂を含む再生ペレット(X)の総量に対して1質量%以上含む場合は、化合物(A)中の(A-1)140℃における溶融粘度が0.1~8.0Pa・sであるオレフィン樹脂を化合物(A)の総量に対して合計95質量%以上含む化合物(A)を選択し、
 ポリアリーレンスルフィド樹脂を含む再生ペレット(X)が、反応性官能基を有するエラストマーを含まない、又は反応性官能基を有するエラストマーの含有量がポリアリーレンスルフィド樹脂を含む再生ペレット(X)の総量に対して1質量%未満である場合は、(A-1)140℃における溶融粘度が0.1~8.0Pa・sであるオレフィン樹脂、(A-2)脂肪酸誘導体、及び(A-3)シリコーン系化合物から選択される1以上を化合物(A)の総量に対して合計95質量%以上含む化合物(A)を選択する、[11]から[13]のいずれかに記載の被覆再生ペレット(Y)の製造方法。
 [15][5]から[10]のいずれかに記載の被覆再生ペレット(Y)と、ポリアリーレンスルフィド樹脂を含むバージンペレット(V)とを含む、ポリアリーレンスルフィド樹脂組成物(Z)。
 [16]被覆再生ペレット(Y)の含有量が、被覆再生ペレット(Y)及びポリアリーレンスルフィド樹脂を含むバージンペレット(V)の総量に対して50質量%以上である、[15]に記載のポリアリーレンスルフィド樹脂組成物(Z)。
The present disclosure has the following aspects.
[1] A method for improving the releasability of recycled pellets containing a polyarylene sulfide resin,
A method for improving the releasability of recycled pellets, comprising coating at least a portion of the surface of pellets (Q) containing a polyarylene sulfide resin with a compound (A) containing one or more selected from (A-1) an olefin resin having a melt viscosity of 0.1 to 8.0 Pa·s at 140°C, (A-2) a fatty acid derivative, and (A-3) a silicone-based compound, wherein the total amount of coating with compound (A) is 0.04 to 3.0 parts by mass per 100 parts by mass of pellets (Q) containing a polyarylene sulfide resin.
[2] The method according to [1], wherein the pellets (Q) containing a polyarylene sulfide resin are recycled pellets (Q2) of an article containing a polyarylene sulfide resin and/or a polyarylene sulfide resin composition.
[3] Use of a compound (A) for improving the releasability of recycled pellets containing a polyarylene sulfide resin,
A use of compound (A), which comprises coating at least a portion of the surface of pellets (Q) containing a polyarylene sulfide resin with compound (A) containing one or more selected from (A-1) an olefin resin having a melt viscosity of 0.1 to 8.0 Pa·s at 140°C, (A-2) a fatty acid derivative, and (A-3) a silicone-based compound, wherein the total coating amount of compound (A) is 0.04 to 3.0 parts by mass per 100 parts by mass of pellets (Q) containing a polyarylene sulfide resin.
[4] The use according to [3], wherein the pellets (Q) containing a polyarylene sulfide resin are recycled pellets (Q2) of an article containing a polyarylene sulfide resin and/or a polyarylene sulfide resin composition.
[5] Coated recycled pellets (Y), in which at least a portion of the surface of recycled pellets (X) containing a polyarylene sulfide resin is coated with a compound (A) containing one or more selected from (A-1) an olefin resin having a melt viscosity of 0.1 to 8.0 Pa·s at 140°C, (A-2) a fatty acid derivative, and (A-3) a silicone-based compound, and the total coating amount of compound (A) is 0.04 to 3.0 parts by mass per 100 parts by mass of the recycled pellets (X).
[6] The coated regenerated pellet (Y) according to [5], wherein the ratio [R Y /R X ] of the release resistance value (R Y ) of the coated regenerated pellet (Y) to the release resistance value (R X ) of the regenerated pellet ( X ) containing an uncoated polyarylene sulfide resin that is not coated with the compound (A) is less than 0.98.
[7] The coated recycled pellets (Y) according to [5] or [6], wherein the recycled pellets (X) containing a polyarylene sulfide resin contain an elastomer having a reactive functional group in an amount of 1 mass% or more based on the total amount of the recycled pellets (X) containing a polyarylene sulfide resin.
[8] The coated recycled pellet (Y) according to any one of [5] to [7], wherein the recycled pellet (X) containing a polyarylene sulfide resin contains an elastomer containing a structural unit derived from an α-olefin and a structural unit derived from a glycidyl ester of an α,β-unsaturated acid.
[9] The coated recycled pellet (Y) according to any one of [5] to [7], wherein the recycled pellet (X) containing a polyarylene sulfide resin contains an elastomer having a reactive functional group, and the compound (A) contains (A-1) an olefin resin having a melt viscosity of 0.1 to 8.0 Pa·s at 140°C in an amount of 95 mass% or more relative to the total amount of the compound (A).
[10] The coated recycled pellets (Y) according to [5] or [6], wherein the recycled pellets (X) containing a polyarylene sulfide resin do not contain an elastomer having a reactive functional group, or the content of the elastomer having a reactive functional group is less than 1 mass% based on the total amount of the recycled pellets (X) containing a polyarylene sulfide resin.
[11] A method for producing coated regenerated pellets (Y),
The method includes coating at least a portion of the surface of the recycled pellets (X) containing a polyarylene sulfide resin with a compound (A) containing one or more selected from (A-1) an olefin resin having a melt viscosity of 0.1 to 8.0 Pa·s at 140°C, (A-2) a fatty acid derivative, and (A-3) a silicone-based compound;
A method for producing coated regenerated pellets (Y), wherein the total amount of compound (A) is 0.04 to 3.0 parts by mass per 100 parts by mass of the regenerated pellets (X).
[12] Compound (A) is in the form of a powder, flake or granule;
The method for producing the coated regenerated pellet (Y) according to [11], wherein the coating step includes contacting the regenerated pellet (X) containing a polyarylene sulfide resin with the compound (A) at a temperature equal to or higher than the melting point of the compound (A).
[13] The method for producing the coated regenerated pellet (Y) according to [11], wherein the coating step includes contacting the regenerated pellet (X) containing a polyarylene sulfide resin with a liquid compound (A).
[14] Prior to coating, a compound (A) is selected,
Selecting the compound (A),
In the case where the recycled pellets (X) containing a polyarylene sulfide resin contain an elastomer having a reactive functional group in an amount of 1% by mass or more based on the total amount of the recycled pellets (X) containing a polyarylene sulfide resin, select (A-1) a compound (A) containing an olefin resin having a melt viscosity at 140°C of 0.1 to 8.0 Pa·s in a total amount of 95% by mass or more based on the total amount of the compound (A),
In the case where the recycled pellets (X) containing a polyarylene sulfide resin do not contain an elastomer having a reactive functional group, or the content of the elastomer having a reactive functional group is less than 1 mass% relative to the total amount of the recycled pellets (X) containing a polyarylene sulfide resin, the method for producing coated recycled pellets (Y) according to any one of [11] to [13] is selected from compound (A) containing one or more selected from (A-1) an olefin resin having a melt viscosity at 140°C of 0.1 to 8.0 Pa·s, (A-2) a fatty acid derivative, and (A-3) a silicone-based compound in a total amount of 95 mass% or more relative to the total amount of compound (A).
[15] A polyarylene sulfide resin composition (Z) comprising the coated recycled pellets (Y) according to any one of [5] to [10] and virgin pellets (V) containing a polyarylene sulfide resin.
[16] The polyarylene sulfide resin composition (Z) according to [15], wherein the content of the coated recycled pellets (Y) is 50 mass% or more based on the total amount of the coated recycled pellets (Y) and the virgin pellets (V) containing a polyarylene sulfide resin.

 本発明によれば、再生ペレットの金型からの離型性を向上させる方法、及び金型からの離型性に優れた被覆再生ペレットを提供することができる。詳しくは、成形時のモールドデポジットの発生を抑制しつつ、金型からの離型性に優れた再生ポリアリーレンスルフィド樹脂組成物及びその製造方法を提供することができる。 The present invention provides a method for improving the releasability of recycled pellets from a mold, and coated recycled pellets with excellent releasability from a mold. More specifically, it provides a recycled polyarylene sulfide resin composition and a method for producing the same that have excellent releasability from a mold while suppressing the generation of mold deposits during molding.

図1は、成形時の離型抵抗を測定するための二重円筒状の試験片を説明する図であり、(a)は上面図、(b)は底面図、(c)は斜視図、及び(d)は寸法図である。FIG. 1 is a diagram illustrating a double cylindrical test piece for measuring mold release resistance during molding, where (a) is a top view, (b) is a bottom view, (c) is a perspective view, and (d) is a dimensional drawing. 図2は、金型付着物の評価を行う際に使用する成形体の模式図であり、上側が上面図であり、下側が測面図である。FIG. 2 is a schematic diagram of a molded body used when evaluating mold deposits, the upper side being a top view and the lower side being a cross-sectional view.

 以下、本開示の一実施形態について詳細に説明するが、本開示の範囲はここで説明する一実施形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲で種々の変更ができる。本明細書に開示された各々の態様は、本明細書に開示された他のいかなる特徴とも組み合わせることができる。また、特定のパラメータについて、複数の上限値及び下限値が記載されている場合、これらの上限値及び下限値の内、任意の上限値と下限値とを組合せて好適な数値範囲とすることができる。数値範囲を示す「X~Y」との表現は、「X以上Y以下」であることを意味している。一実施形態について記載した特定の説明が他の実施形態についても当てはまる場合には、他の実施形態においてはその説明を省略している場合がある。 Below, one embodiment of the present disclosure will be described in detail, but the scope of the present disclosure is not limited to the embodiment described here, and various modifications can be made without departing from the spirit of the present disclosure. Each aspect disclosed in this specification can be combined with any other feature disclosed in this specification. In addition, when multiple upper and lower limit values are described for a specific parameter, any upper and lower limit values can be combined to form a suitable numerical range. The expression "X to Y" indicating a numerical range means "X or more and Y or less." When a specific description described for one embodiment also applies to other embodiments, that description may be omitted in other embodiments.

[第1実施形態:離型性の向上方法]
 本開示に係る再生ペレットの離型性を向上させる方法は、ポリアリーレンスルフィド樹脂を含む再生ペレットの離型性を向上させる方法であり、ポリアリーレンスルフィド樹脂を含むペレット(Q)の表面の少なくとも一部を、(A-1)140℃における溶融粘度が0.1~8.0Pa・sであるオレフィン樹脂、(A-2)脂肪酸誘導体、及び(A-3)シリコーン系化合物から選択される1以上を含む化合物(A)で被覆することを含み、化合物(A)による総被覆量が、ポリアリーレンスルフィド樹脂を含むペレット(Q)100質量部に対して0.04~3.0質量部である。
[First embodiment: Method for improving releasability]
The method for improving the releasability of recycled pellets according to the present disclosure is a method for improving the releasability of recycled pellets containing a polyarylene sulfide resin, and includes coating at least a portion of the surface of pellets (Q) containing a polyarylene sulfide resin with compound (A) containing one or more selected from (A-1) an olefin resin having a melt viscosity of 0.1 to 8.0 Pa·s at 140°C, (A-2) a fatty acid derivative, and (A-3) a silicone-based compound, and the total coating amount of compound (A) is 0.04 to 3.0 parts by mass per 100 parts by mass of pellets (Q) containing a polyarylene sulfide resin.

 「離型性を向上させる」とは、再生ペレットの成形時の金型からの離型性が、化合物(A)で被覆されていない場合よりも高められることを意味している。一実施形態において、離型性の向上方法は、成形時のモールドデポジットの発生を抑制しつつ、金型からの離型性を向上させる方法であることが好ましい。
 本明細書において、「再生」は、成形体等の物品(被リサイクル品)を粉砕して成形体の製造に用いる原料として再生させることを意味しており、「再生ペレット」は、得られた粉砕物を溶融させてからペレット状にしたものを意味している。これに対して、成形体の製造に使用していない原料(成形工程を経ていない原料)のことを「バージン材」といい、ペレット状のものを「バージンペレット」という。再生される物品(被リサイクル品)は、成形品であってもよく、成形時にシリンダー内に長時間滞留させた後排出されたものであってもよい。例えば、成形品の製造過程で発生した不良品、射出成形時に得られる製品以外の部分(例えば、ランナー、スプルー等)、未使用製品、成形時においてパージに使用したポリーレンスルフィド樹脂材料の塊等が挙げられる。
 本明細書において、「被覆」は、ペレットの表面の少なくとも一部が化合物(A)で覆われていればよく、ペレットの表面の一部に化合物(A)が付着又は固着していること、及び化合物(A)が層状に広がって表面の一部を覆っていることを含み得る。「付着又は固着」には、固体状(例えば粉末状)の化合物(A)が静電気力等で付着している状態や、固体状の化合物(A)の一部が融解し、残りの部分は固体状のままで、融解した部分においてペレットの表面に固着していることを含み得る。
"Improving releasability" means that the releasability from a mold during molding of the recycled pellets is increased compared to when the pellets are not coated with compound (A). In one embodiment, the method for improving releasability is preferably a method for improving releasability from a mold while suppressing the occurrence of mold deposits during molding.
In this specification, "recycling" means that an article such as a molded body (a recycled article) is crushed and recycled as a raw material for use in the manufacture of a molded body, and "recycled pellets" means that the crushed material obtained is melted and then pelletized. In contrast, raw materials not used in the manufacture of a molded body (raw materials that have not undergone a molding process) are called "virgin materials," and pelletized materials are called "virgin pellets." The article to be recycled (recycled article) may be a molded product, or may be one that is discharged after being retained in a cylinder for a long time during molding. For example, defective products generated during the manufacturing process of molded products, parts other than the product obtained during injection molding (e.g., runners, sprues, etc.), unused products, and lumps of polyethylene sulfide resin material used for purging during molding may be mentioned.
In this specification, "coating" means that at least a part of the surface of the pellet is covered with compound (A), and may include compound (A) adhering or adhering to a part of the surface of the pellet, and compound (A) spreading in a layer to cover a part of the surface. "Adhering or adhering" may include a state in which solid (e.g., powdery) compound (A) is adhered by electrostatic force or the like, or a state in which a part of solid compound (A) is melted and the remaining part remains solid, and the melted part is adhered to the surface of the pellet.

 本開示において、「ポリアリーレンスルフィド樹脂を含む再生ペレット」(以下、単に「再生ペレット」ともいう)は、ポリアリーレンスルフィド樹脂又はポリアリーレンスルフィド樹脂組成物を含む物品(被リサイクル品)を粉砕して成形体の製造に用いる原料として再生させたペレットを意味する。再生ペレットの形状は特に限定されず、円柱状(略円柱状)、球形状等、任意の形状とすることができる。 In this disclosure, "recycled pellets containing polyarylene sulfide resin" (hereinafter also simply referred to as "recycled pellets") refers to pellets that are produced by crushing an article (recycled product) containing polyarylene sulfide resin or a polyarylene sulfide resin composition and regenerating it as a raw material for use in manufacturing a molded product. The shape of the recycled pellets is not particularly limited, and they can be any shape, such as cylindrical (approximately cylindrical), spherical, etc.

 ポリアリーレンスルフィド樹脂を含むペレット(Q)(以下、単に「ペレット(Q)」ともいう)は、バージンペレットでもよく、再生ペレットであってもよい。ペレット(Q)がバージンペレット(Q1)である場合は、ポリアリーレンスルフィド樹脂を含むバージンペレット(Q1)の表面の少なくとも一部を、後述する化合物(A)で被覆して被覆バージンペレット(Q1a)とする。この場合においても、化合物(A)による総被覆量は、バージンペレット(Q1)100質量部に対して0.04~3.0質量部である。得られる被覆バージンペレット(Q1a)は、一旦成形体とされた後(又は成形時にシリンダー内に長時間滞留後に排出された後)、粉砕されリペレットされることにより再生ペレットになる。被覆バージンペレット(Q1a)は、最初に成形される際にも金型からの離型性に優れているが、その後再生ペレットとなった場合においても、成形される際に金型からの離型性に優れている。 The pellets (Q) containing polyarylene sulfide resin (hereinafter also simply referred to as "pellets (Q)") may be virgin pellets or recycled pellets. When the pellets (Q) are virgin pellets (Q1), at least a part of the surface of the virgin pellets (Q1) containing polyarylene sulfide resin is coated with the compound (A) described below to form coated virgin pellets (Q1a). In this case, the total amount of coating with the compound (A) is 0.04 to 3.0 parts by mass per 100 parts by mass of the virgin pellets (Q1). The resulting coated virgin pellets (Q1a) are once molded into a molded body (or discharged after a long residence in the cylinder during molding), and are then crushed and repelletized to form recycled pellets. The coated virgin pellets (Q1a) have excellent releasability from a mold when first molded, and also have excellent releasability from a mold when molded, even when they are subsequently formed into recycled pellets.

 ペレット(Q)が再生ペレット(Q2)である場合は、ポリアリーレンスルフィド樹脂を含む再生ペレット(Q2)の表面の少なくとも一部を、後述する化合物(A)で被覆して被覆再生ペレット(Q2a)とする。この場合においても、化合物(A)による総被覆量は、再生ペレット(Q2)100質量部に対して0.04~3.0質量部である。再生ペレット(Q2)は、ポリアリーレンスルフィド樹脂を含む物品(つまり、ポリアリーレンスルフィド樹脂又はポリアリーレンスルフィド樹脂を含む樹脂組成物を用いた物品)を粉砕してペレット状にしたものである。被覆再生ペレット(Q2a)は、再び、再生ペレットとして成形される場合においても、金型からの離型性に優れている。ペレット(Q)の形状は特に限定されず、円柱状(略円柱状)、球形状等、任意の形状とすることができる。この実施形態における被覆再生ペレット(Q2a)は、後述する第3実施形態における被覆再生ペレット(Y)に相当するものであり、再生ペレット(Q2)は、被覆再生ペレット(Y)を構成する再生ペレット(X)に相当するものである。
 一実施形態において、ポリアリーレンスルフィド樹脂を含むペレット(Q)が、ポリアリーレンスルフィド樹脂を含む物品(つまり、ポリアリーレンスルフィド樹脂及び/又はポリアリーレンスルフィド樹脂組成物を含む物品)の再生ペレット(Q2)であることが好ましい。
When the pellet (Q) is a recycled pellet (Q2), at least a part of the surface of the recycled pellet (Q2) containing a polyarylene sulfide resin is coated with a compound (A) described later to obtain a coated recycled pellet (Q2a). In this case, the total amount of coating with the compound (A) is 0.04 to 3.0 parts by mass per 100 parts by mass of the recycled pellet (Q2). The recycled pellet (Q2) is a pelletized product obtained by crushing an article containing a polyarylene sulfide resin (i.e., an article using a polyarylene sulfide resin or a resin composition containing a polyarylene sulfide resin). The coated recycled pellet (Q2a) has excellent releasability from a mold even when molded again as a recycled pellet. The shape of the pellet (Q) is not particularly limited, and can be any shape, such as a cylindrical shape (approximately cylindrical shape) or a spherical shape. The coated regenerated pellet (Q2a) in this embodiment corresponds to the coated regenerated pellet (Y) in the third embodiment described later, and the regenerated pellet (Q2) corresponds to the regenerated pellet (X) constituting the coated regenerated pellet (Y).
In one embodiment, the pellets (Q) containing the polyarylene sulfide resin are preferably recycled pellets (Q2) of an article containing a polyarylene sulfide resin (i.e., an article containing a polyarylene sulfide resin and/or a polyarylene sulfide resin composition).

 「ポリアリーレンスルフィド樹脂」、「化合物(A)」の種類及び配合量の詳細、及び被覆方法等については、後述する第3実施形態における被覆再生ペレット(Y)及びその製造方法の項における記載と同じである。 Details of the types and amounts of the "polyarylene sulfide resin" and "compound (A)," as well as the coating method, are the same as those described in the section on the coated recycled pellets (Y) and their manufacturing method in the third embodiment described below.

[第2実施形態:化合物(A)の使用]
 本開示に係る化合物(A)の使用は、ポリアリーレンスルフィド樹脂を含む再生ペレットの射出成形時の離型性を向上させるための化合物(A)の使用であって、
 ポリアリーレンスルフィド樹脂を含むペレット(Q)の表面の少なくとも一部を、(A-1)140℃における溶融粘度が0.1~8.0Pa・sであるオレフィン樹脂、(A-2)脂肪酸誘導体、及び(A-3)シリコーン系化合物から選択される1以上を含む化合物(A)で被覆することを含み、化合物(A)の総被覆量が、ペレット(Q)100質量部に対して0.04~3.0質量部である。
 一実施形態において、ポリアリーレンスルフィド樹脂を含むペレットが、ポリアリーレンスルフィド樹脂を含む物品(つまり、ポリアリーレンスルフィド樹脂及び/又はポリアリーレンスルフィド樹脂組成物を含む物品)の再生ペレットであることが好ましい。
 「ポリアリーレンスルフィド樹脂」、「化合物(A)」の種類及び配合量の詳細、及び被覆方法等については、後述する被覆再生ペレット(Y)及びその製造方法の項における記載と同じである。
[Second embodiment: Use of compound (A)]
The use of the compound (A) according to the present disclosure is a use of the compound (A) for improving the demolding property during injection molding of recycled pellets containing a polyarylene sulfide resin,
The method includes coating at least a portion of the surface of pellets (Q) containing a polyarylene sulfide resin with compound (A) containing one or more selected from (A-1) an olefin resin having a melt viscosity of 0.1 to 8.0 Pa·s at 140° C., (A-2) a fatty acid derivative, and (A-3) a silicone-based compound, and the total coating amount of compound (A) is 0.04 to 3.0 parts by mass per 100 parts by mass of pellets (Q).
In one embodiment, it is preferred that the pellets containing the polyarylene sulfide resin are recycled pellets of an article containing the polyarylene sulfide resin (i.e., an article containing a polyarylene sulfide resin and/or a polyarylene sulfide resin composition).
Details of the types and amounts of the "polyarylene sulfide resin" and "compound (A)", as well as the coating method, are the same as those described in the section on the coated recycled pellets (Y) and their production method described below.

[第3実施形態:被覆再生ペレット(Y)]
 本開示に係る被覆再生ペレット(Y)は、ポリアリーレンスルフィド樹脂を含む再生ペレット(X)(以下、単に「ペレット(X)」ともいう)の表面の少なくとも一部が化合物(A)で被覆されており、化合物(A)の総被覆量が、再生ペレット(X)100質量部に対して0.04~3.0質量部である。上記構成を有することによって、金型からの離型性に優れた被覆再生ペレットにすることができる。被覆再生ペレットは、単独で又はバージン材との混合ペレットとして成形に用いることができるが、これにより、被覆再生ペレット(Y)の含有量が多い場合(被覆再生ペレットの割合が50%以上)でも、成形時に金型に離型剤を塗布する回数を少なくすることができる。その結果、再生用材料の利用量を増やし、かつ作業効率を高めることができる。また、金型との接触面積が大きい成形品を製造する場合でも金型からの離型性が優れているので、再生用材料を適用できる部品の形状の選択肢を広げることができる。なお、この実施形態における再生ペレット(X)は、第1実施形態に係る離型性の向上方法、及び第2実施形態に係る化合物(A)の使用の項において述べたペレット(Q)としても使用可能なものであり、被覆再生ペレット(Y)は、第1実施形態における被覆再生ペレット(Q2a)と同じ構成を有している。
[Third embodiment: Coated recycled pellets (Y)]
The coated recycled pellet (Y) according to the present disclosure is a recycled pellet (X) (hereinafter, simply referred to as "pellet (X)") containing a polyarylene sulfide resin, at least a part of the surface of which is coated with a compound (A), and the total amount of the compound (A) coated is 0.04 to 3.0 parts by mass per 100 parts by mass of the recycled pellet (X). By having the above-mentioned configuration, a coated recycled pellet having excellent releasability from a mold can be obtained. The coated recycled pellet can be used for molding alone or as a mixed pellet with a virgin material, and this makes it possible to reduce the number of times a release agent is applied to a mold during molding even when the content of the coated recycled pellet (Y) is high (the proportion of the coated recycled pellet is 50% or more). As a result, the amount of the recycled material used can be increased and the work efficiency can be improved. In addition, since the mold releasability from the mold is excellent even when a molded product having a large contact area with the mold is manufactured, the choice of shapes of parts to which the recycled material can be applied can be expanded. In addition, the recycled pellet (X) in this embodiment can also be used as the pellet (Q) described in the section on the method for improving releasability according to the first embodiment and the use of the compound (A) according to the second embodiment, and the coated recycled pellet (Y) has the same structure as the coated recycled pellet (Q2a) in the first embodiment.

(再生ペレット(X))
 再生ペレット(X)は、ポリアリーレンスルフィド樹脂を含む再生ペレットであり、ポリアリーレンスルフィド樹脂を含む物品(つまり、ポリアリーレンスルフィド樹脂又はポリアリーレンスルフィド樹脂組成物を含む物品(被リサイクル品))を粉砕して成形体の製造に用いる原料として再生させたペレットである。再生される物品は、上記と同様に、成形品であってもよく、成形時にシリンダー内に長時間滞留させた後排出されたものであってもよい。例えば、成形品の製造過程で発生した不良品、射出成形時に得られる製品以外の部分(例えば、ランナー、スプルー等)、未使用製品、成形時においてパージに使用したポリーレンスルフィド樹脂材料の塊等が挙げられる。ペレットの形状は特に限定されず、円柱状(略円柱状)、球形状等、任意の形状とすることができる。
(Recycled pellets (X))
The recycled pellets (X) are recycled pellets containing a polyarylene sulfide resin, and are pellets that are produced by crushing an article containing a polyarylene sulfide resin (i.e., an article containing a polyarylene sulfide resin or a polyarylene sulfide resin composition (recycled product)) and regenerating it as a raw material for use in the manufacture of a molded body. The recycled article may be a molded product, as described above, or may be one that is discharged after being retained in a cylinder for a long time during molding. For example, defective products generated during the manufacturing process of molded products, parts other than the product obtained during injection molding (e.g., runners, sprues, etc.), unused products, and lumps of polyarylene sulfide resin material used for purging during molding can be mentioned. The shape of the pellets is not particularly limited, and can be any shape, such as a cylindrical shape (approximately cylindrical shape) or a spherical shape.

 一実施形態において、再生ペレット(X)は、ポリアリーレンスルフィド樹脂を含むバージンペレットの成形品をリサイクルした樹脂含有材料のペレットであってよく、ポリアリーレンスルフィド樹脂を含む再生材(再生ペレット)の成形品等を再度リサイクルしたペレットであってよい。バージンペレットは、一度も成形工程を経ていないので、成形時の熱履歴を有していない。これに対して、再生ペレットは、被リサイクル品の製造段階において高温で加熱された熱履歴を有している。 In one embodiment, the recycled pellets (X) may be pellets of a resin-containing material recycled from molded products of virgin pellets containing polyarylene sulfide resin, or may be pellets recycled from molded products of recycled materials (recycled pellets) containing polyarylene sulfide resin. Virgin pellets have never been through a molding process, and therefore do not have a thermal history from molding. In contrast, recycled pellets have a thermal history of being heated at high temperatures during the manufacturing stage of the recycled product.

 ポリアリーレンスルフィド樹脂は、以下の一般式(I)で示される繰り返し単位を有する樹脂である。
 -(Ar-S)-  ・・・(I)
 (但し、Arは、アリーレン基を示す。)
The polyarylene sulfide resin is a resin having a repeating unit represented by the following general formula (I).
-(Ar-S)-...(I)
(wherein Ar represents an arylene group).

 アリーレン基は、特に限定されないが、例えば、p-フェニレン基、m-フェニレン基、o-フェニレン基、置換フェニレン基、p,p’-ジフェニレンスルフォン基、p,p’-ビフェニレン基、p,p’-ジフェニレンエーテル基、p,p’-ジフェニレンカルボニル基、ナフタレン基等を挙げることができる。 The arylene group is not particularly limited, but examples thereof include p-phenylene group, m-phenylene group, o-phenylene group, substituted phenylene group, p,p'-diphenylenesulfone group, p,p'-biphenylene group, p,p'-diphenylene ether group, p,p'-diphenylenecarbonyl group, and naphthalene group.

 ポリアリーレンスルフィド樹脂は、上記一般式(I)で示される繰り返し単位の中で、同一の繰り返し単位を用いたホモポリマーの他、異種の繰り返し単位を含むコポリマーとすることができる。ホモポリマーとしては、アリーレン基としてp-フェニレン基を有する、p-フェニレンスルフィド基を繰り返し単位とするものが好ましい。p-フェニレンスルフィド基を繰り返し単位とするホモポリマーは、極めて高い耐熱性を持ち、広範な温度領域で高強度、高剛性、さらに高い寸法安定性を示すからである。このようなホモポリマーを用いることで非常に優れた物性を備える成形体を得ることができる。 Polyarylene sulfide resins can be homopolymers using the same repeating units among the repeating units shown in the above general formula (I), as well as copolymers containing different types of repeating units. As homopolymers, those having p-phenylene sulfide groups as repeating units, which have p-phenylene groups as arylene groups, are preferred. This is because homopolymers having p-phenylene sulfide groups as repeating units have extremely high heat resistance, and exhibit high strength, high rigidity, and high dimensional stability over a wide temperature range. By using such homopolymers, molded articles with extremely excellent physical properties can be obtained.

 コポリマーとしては、上記のアリーレン基を含むアリーレンスルフィド基の中で異なる2種以上のアリーレンスルフィド基の組み合わせが使用できる。これらの中では、p-フェニレンスルフィド基とm-フェニレンスルフィド基とを含む組み合わせが、耐熱性、成形性、機械的特性等の高い物性を備える成形体を得るという観点から好ましい。p-フェニレンスルフィド基を70mol%以上含むポリマーがより好ましく、80mol%以上含むポリマーがさらに好ましい。なお、フェニレンスルフィド基を有するポリアリーレンスルフィド樹脂は、ポリフェニレンスルフィド樹脂(PPS樹脂)である。 As the copolymer, a combination of two or more different arylene sulfide groups among the above-mentioned arylene group-containing arylene sulfide groups can be used. Among these, a combination containing a p-phenylene sulfide group and an m-phenylene sulfide group is preferred from the viewpoint of obtaining a molded product with high physical properties such as heat resistance, moldability, and mechanical properties. A polymer containing 70 mol% or more of p-phenylene sulfide groups is more preferred, and a polymer containing 80 mol% or more is even more preferred. The polyarylene sulfide resin having phenylene sulfide groups is a polyphenylene sulfide resin (PPS resin).

 ポリアリーレンスルフィド樹脂は、一般にその製造方法により、実質的に線状で分岐や架橋構造を有しない分子構造のものと、分岐や架橋を有する構造のものが知られている。一実施形態において、成形品の靭性向上の観点から、架橋構造を有する構造を含まないことがより好ましい。 Polyarylene sulfide resins are generally known to have a substantially linear molecular structure with no branching or crosslinking, and a structure with branching or crosslinking, depending on the manufacturing method. In one embodiment, from the viewpoint of improving the toughness of the molded product, it is more preferable that the resin does not contain a structure with a crosslinking structure.

 再生ペレット(X)の溶融粘度は、本開示の効果を阻害しない範囲で限定されず、310℃及びせん断速度1200sec-1で測定した溶融粘度が、5~300Pa・sであってよく、8~250Pa・sであってよい。 The melt viscosity of the recycled pellets (X) is not limited as long as it does not impair the effects of the present disclosure, and the melt viscosity measured at 310° C. and a shear rate of 1200 sec −1 may be 5 to 300 Pa·s, or 8 to 250 Pa·s.

 再生ペレット(X)は、被リサイクル品が含有するその他の成分を含み得る。一実施形態において、再生ペレット(X)中のポリアリーレンスルフィド樹脂の含有量は、再生ペレット(X)の総量に対して30~99質量%が好ましく、50~95質量%がより好ましい。一実施形態において、再生ペレット(X)に含まれる熱可塑性樹脂(エラストマーを除く)中のポリアリーレンスルフィド樹脂の含有量は、熱可塑性樹脂(エラストマーを除く)の総量に対して80~100質量%が好ましく、90~100質量%がより好ましい。 The recycled pellets (X) may contain other components contained in the recycled product. In one embodiment, the content of polyarylene sulfide resin in the recycled pellets (X) is preferably 30 to 99 mass% and more preferably 50 to 95 mass% based on the total amount of the recycled pellets (X). In one embodiment, the content of polyarylene sulfide resin in the thermoplastic resin (excluding elastomer) contained in the recycled pellets (X) is preferably 80 to 100 mass% and more preferably 90 to 100 mass% based on the total amount of the thermoplastic resin (excluding elastomer).

 再生ペレット(X)が含み得るその他の成分としては、例えば、エラストマー、有機又は無機充填剤、離型剤、一般に熱可塑性樹脂に添加されるその他の添加剤(例えば、難燃剤、染料や顔料等の着色剤、酸化防止剤や紫外線吸収剤等の安定剤、潤滑剤、結晶化促進剤、結晶核剤等)が挙げられる。 Other components that the recycled pellets (X) may contain include, for example, elastomers, organic or inorganic fillers, release agents, and other additives that are generally added to thermoplastic resins (for example, flame retardants, colorants such as dyes and pigments, stabilizers such as antioxidants and UV absorbers, lubricants, crystallization accelerators, crystal nucleating agents, etc.).

 エラストマーとしては、グラフト化されていてもよい、オレフィン系エラストマー、スチレン系エラストマー、ポリエステル系エラストマー等が挙げられ、これらから選択される1以上を含むことが好ましく、オレフィン系エラストマーを含むことがより好ましい。 Examples of the elastomer include olefin-based elastomers, styrene-based elastomers, polyester-based elastomers, etc., which may be grafted. It is preferable to include one or more selected from these, and it is more preferable to include an olefin-based elastomer.

 エラストマーは、(メタ)アクリル酸、無水マレイン酸等の酸又は酸無水物で変性された酸変性エラストマー;グリシジル基やエポキシ基を有する共重合性モノマー(グリシジル(メタ)アクリレートなど)を用いたエラストマー;エラストマーの不飽和結合をエポキシ化して得られたエポキシ変性エラストマー;等の反応性官能基を有するエラストマーであってもよい。 The elastomer may be an elastomer having a reactive functional group, such as an acid-modified elastomer modified with an acid or an acid anhydride, such as (meth)acrylic acid or maleic anhydride; an elastomer using a copolymerizable monomer having a glycidyl group or an epoxy group (such as glycidyl (meth)acrylate); or an epoxy-modified elastomer obtained by epoxidizing the unsaturated bond of an elastomer.

 オレフィン系エラストマーとしては、α-オレフィンの共重合体の他、α-オレフィンと共重合性単量体との共重合体が挙げられる。α-オレフィンとしては、炭素原子数が2~13であるα-オレフィン(例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン等)から選ばれる1以上が好ましい。α-オレフィンと共重合性単量体との共重合体としては、α-オレフィン-不飽和カルボン酸アルキルエステル共重合体、α-オレフィン由来の構成単位とα,β-不飽和酸のグリシジルエステル由来の構成単位とを含むオレフィン系共重合体等が例示されるがこれらに限定されない。α,β-不飽和酸のグリシジルエステルとしては、例えば、アクリル酸グリシジルエステル、メタクリル酸グリシジルエステル、エタクリル酸グリシジルエステル等が挙げられるがこれらに限定されない。オレフィン系エラストマーの好ましい具体例としては、例えば、エチレンプロピレンゴム(EPR)、エチレン-グリシジルメタクリレート共重合体(E-GMA)、エチレン-グリシジルメタクリレート-アクリル酸メチル共重合体(E-GMA-MA)等が挙げられる。オレフィン系エラストマーは、1種単独で含まれていてもよく、2種以上が併用されていてもよい。 Olefin-based elastomers include copolymers of α-olefins and copolymerizable monomers. The α-olefin is preferably one or more selected from α-olefins having 2 to 13 carbon atoms (e.g., ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, etc.). Examples of copolymers of α-olefins and copolymerizable monomers include, but are not limited to, α-olefin-unsaturated carboxylic acid alkyl ester copolymers, and olefin-based copolymers containing structural units derived from α-olefins and structural units derived from glycidyl esters of α,β-unsaturated acids. Examples of glycidyl esters of α,β-unsaturated acids include, but are not limited to, acrylic acid glycidyl ester, methacrylic acid glycidyl ester, and ethacrylic acid glycidyl ester. Preferred specific examples of olefin-based elastomers include ethylene propylene rubber (EPR), ethylene-glycidyl methacrylate copolymer (E-GMA), ethylene-glycidyl methacrylate-methyl acrylate copolymer (E-GMA-MA), etc. The olefin-based elastomer may be contained alone or in combination of two or more kinds.

 スチレン系エラストマーとしては、スチレン等のビニル芳香族化合物を主体とする重合体ブロックと未水素化及び/又は水素化した共役ジエン化合物を主体とする重合体ブロックとからなるブロック共重合体等が挙げられる。スチレン系エラストマーの好ましい具体例としては、例えば、スチレンブタジエンゴム(SBR)、スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS)等が挙げられる。また、スチレン系エラストマーは、官能基(エポキシ基、カルボキシル基、酸無水物基など)が導入された変性共重合体であってもよい。変性共重合体としては、例えば、ジエンの不飽和結合がエポキシ化されたエポキシ化スチレン-ジエン共重合体(例えば、エポキシ化スチレン-ジエン-スチレンブロック共重合体又はその水素添加重合体等が挙げられる。スチレン系エラストマーは、1種単独で含まれていてもよく、2種以上が併用されていてもよい。 Examples of styrene-based elastomers include block copolymers consisting of a polymer block mainly made of a vinyl aromatic compound such as styrene and a polymer block mainly made of a non-hydrogenated and/or hydrogenated conjugated diene compound. Specific examples of preferred styrene-based elastomers include styrene-butadiene rubber (SBR) and styrene-ethylene-butylene-styrene block copolymer (SEBS). The styrene-based elastomer may also be a modified copolymer into which a functional group (epoxy group, carboxyl group, acid anhydride group, etc.) has been introduced. Examples of modified copolymers include epoxidized styrene-diene copolymers in which the unsaturated bond of the diene has been epoxidized (e.g., epoxidized styrene-diene-styrene block copolymers or hydrogenated polymers thereof). The styrene-based elastomer may be contained alone or in combination of two or more types.

 ポリエステル系エラストマーとしては、ポリエチレンテレフタレートやポリブチレンテレフタレート等の芳香族ポリエステルをハードセグメントとし、ポリエチレングリコールやポリテトラメチレングリコール等のポリエーテル、又はポリエチレンアジペート、ポリブチレンアジペート、ポリカプロラクトン等の脂肪族ポリエステルをソフトセグメントとするブロック共重合体等が挙げられる。ポリエステル系エラストマーは、1種単独で含まれていてもよく、2種以上が併用されていてもよい。 Examples of polyester-based elastomers include block copolymers in which aromatic polyesters such as polyethylene terephthalate and polybutylene terephthalate serve as hard segments, and polyethers such as polyethylene glycol and polytetramethylene glycol, or aliphatic polyesters such as polyethylene adipate, polybutylene adipate, and polycaprolactone serve as soft segments. The polyester-based elastomers may be used alone or in combination of two or more types.

 エラストマーは、衝撃性改善等のためにバージン材に配合されることがあるが、再生ペレットにおいては、被リサイクル品を粉砕する際のせん断や、成形工程を1回以上経ていることによる熱履歴によって少なくとも一部の化学構造が変化する場合があり、金型からの離型性を悪化させる要因となり得る。特に、エラストマーが反応性官能基を有する場合、ポリアリーレンスルフィド樹脂を含む再生用材料を成形する際に、金型からの離型性がより悪化することがある。しかし、本開示に係る被覆再生ペレット(Y)によれば、再生ペレット(X)がエラストマー(特に反応性官能基を有するエラストマー)を含んでいる場合であっても、成形時の金型からの離型性を高めることができる。一実施形態において、再生ペレット(X)は、反応性官能基を有するエラストマーを含んでいてよい。別の実施形態において、再生ペレット(X)は、反応性官能基を有するエラストマーを含まない、又はその含有量が再生ペレット(X)の総量に対して5質量%未満であってよく、1質量%未満であってよく、0.01質量%未満であってもよい。 Elastomers are sometimes mixed with virgin materials to improve impact resistance, etc., but in recycled pellets, at least a part of the chemical structure may change due to shearing when crushing the recycled product or heat history due to having been through one or more molding processes, which may cause deterioration of releasability from a mold. In particular, when the elastomer has a reactive functional group, the releasability from a mold may be further deteriorated when molding a recycled material containing a polyarylene sulfide resin. However, according to the coated recycled pellets (Y) of the present disclosure, even if the recycled pellets (X) contain an elastomer (especially an elastomer having a reactive functional group), it is possible to improve the releasability from a mold during molding. In one embodiment, the recycled pellets (X) may contain an elastomer having a reactive functional group. In another embodiment, the recycled pellets (X) may not contain an elastomer having a reactive functional group, or the content of the elastomer may be less than 5 mass%, less than 1 mass%, or less than 0.01 mass% relative to the total amount of the recycled pellets (X).

 「反応性官能基」とは、ここでは樹脂の溶融温度において金属素材(金属材料)との親和性(反応性)が高い性質を有する官能基を意味する。反応性官能基としては、グリシジル基、エポキシ基、カルボキシル基、水酸基、酸無水物基、カルボキシル基の塩、カルボン酸エステル基、アミド基、及びアミノ基、イソシアネート基、イソチオシアネート基、アセトキシ基、シラノール基、アルコキシシラン基、アルキニル基、オキサゾリン基、チオール基、スルホン酸基等が挙げられる。一実施形態において、エラストマーは、グリシジル基、エポキシ基、カルボキシル基、水酸基、酸無水物基、カルボキシル基の塩、カルボン酸エステル基、アミド基、及びアミノ基、イソシアネート基、イソチオシアネート基、アセトキシ基、シラノール基、アルコキシシラン基、アルキニル基、オキサゾリン基、チオール基、スルホン酸基から選択される1以上を含む、オレフィン系エラストマー、スチレン系エラストマー、又はポリエステル系エラストマーを含んでいてよい。 The term "reactive functional group" used here refers to a functional group that has a high affinity (reactivity) with metal materials at the melting temperature of the resin. Examples of reactive functional groups include glycidyl groups, epoxy groups, carboxyl groups, hydroxyl groups, acid anhydride groups, salts of carboxyl groups, carboxylate groups, amide groups, amino groups, isocyanate groups, isothiocyanate groups, acetoxy groups, silanol groups, alkoxysilane groups, alkynyl groups, oxazoline groups, thiol groups, and sulfonic acid groups. In one embodiment, the elastomer may include an olefin-based elastomer, a styrene-based elastomer, or a polyester-based elastomer that includes one or more groups selected from a glycidyl group, an epoxy group, a carboxyl group, a hydroxyl group, an acid anhydride group, a salt of a carboxyl group, a carboxylate ester group, an amide group, and an amino group, an isocyanate group, an isothiocyanate group, an acetoxy group, a silanol group, an alkoxysilane group, an alkynyl group, an oxazoline group, a thiol group, and a sulfonic acid group.

 一実施形態において、再生ペレット(X)は、反応性官能基を有するエラストマーとして、α-オレフィン由来の構成単位とα,β-不飽和酸のグリシジルエステル由来の構成単位とを含むオレフィン系エラストマー、及びジエンの不飽和結合がエポキシ化されたエポキシ化スチレン-ジエン共重合体を含むスチレン系エラストマーから選択される1以上を含んでいてよい。 In one embodiment, the recycled pellets (X) may contain, as an elastomer having a reactive functional group, one or more selected from an olefin-based elastomer containing a structural unit derived from an α-olefin and a structural unit derived from a glycidyl ester of an α,β-unsaturated acid, and a styrene-based elastomer containing an epoxidized styrene-diene copolymer in which the unsaturated bond of the diene has been epoxidized.

 一実施形態において、再生ペレット(X)は、α-オレフィン由来の構成単位とα,β-不飽和酸のグリシジルエステル由来の構成単位とを含むエラストマーを含んでいてよい。一実施形態において、再生ペレット(X)は、メタクリル酸グリシジルエステルを含むエラストマーを含んでいてよい。 In one embodiment, the recycled pellets (X) may include an elastomer that includes structural units derived from an α-olefin and structural units derived from a glycidyl ester of an α,β-unsaturated acid. In one embodiment, the recycled pellets (X) may include an elastomer that includes a glycidyl ester of methacrylic acid.

 一実施形態において、エラストマーが反応性官能基を有する場合、反応性官能基の含有量は、エラストマーの総量中に0.1~10質量%であってよく、0.5~8質量%であってよい。反応性官能基の含有量は、共重合体組成のメーカーカタログ値と官能基の分子量とから算出することができる。 In one embodiment, when the elastomer has a reactive functional group, the content of the reactive functional group may be 0.1 to 10 mass% of the total amount of the elastomer, or may be 0.5 to 8 mass%. The content of the reactive functional group can be calculated from the manufacturer's catalog value of the copolymer composition and the molecular weight of the functional group.

 一実施形態において、エラストマーの含有量は、再生ペレット(X)の総量に対して1質量%以上が好ましく、1~20質量%がより好ましく、2~15質量%がさらに好ましい。一実施形態において、再生ペレット(X)は、反応性官能基を有するエラストマーを、再生ペレット(X)の総量に対して1質量%以上、2質量%以上、又は3~10質量%含んでいてよい。 In one embodiment, the content of the elastomer is preferably 1% by mass or more, more preferably 1 to 20% by mass, and even more preferably 2 to 15% by mass, based on the total amount of the recycled pellets (X). In one embodiment, the recycled pellets (X) may contain an elastomer having a reactive functional group in an amount of 1% by mass or more, 2% by mass or more, or 3 to 10% by mass, based on the total amount of the recycled pellets (X).

 別の実施形態において、エラストマーの含有量は、再生ペレット(X)の総量に対して1質量%未満とすることができ、0.8質量%未満とすることもでき、0質量%とすることもできる。 In another embodiment, the elastomer content can be less than 1 mass % relative to the total amount of recycled pellets (X), can be less than 0.8 mass %, or can be 0 mass %.

 有機又は無機充填剤としては、ガラス繊維、カーボン繊維、酸化亜鉛繊維、酸化チタン繊維、ウォラストナイト、シリカ繊維、シリカ・アルミナ繊維、アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化ケイ素繊維、硼素繊維、チタン酸カリ繊維、ステンレス繊維、アルミニウム繊維、チタン繊維、銅繊維、真鍮繊維、ポリアミド、高分子量ポリエチレン、アラミド、フッ素樹脂、ポリエステル樹脂、アクリル樹脂等の高融点有機質繊維状物質等の繊維状充填剤;カーボンブラック、黒鉛、シリカ、石英粉末、ガラスビーズ、ミルドガラスファイバー、ガラスバルーン、ガラス粉、タルク(粒状)、珪酸カルシウム、珪酸アルミニウム、珪藻土等のケイ酸塩、酸化鉄、酸化チタン、酸化亜鉛、アルミナ(粒状)等の金属酸化物、炭酸カルシウム、炭酸マグネシウム等の金属炭酸塩、硫酸カルシウム、硫酸バリウム等の金属硫酸塩、その他炭化ケイ素、窒化ケイ素、窒化ホウ素、各種金属粉末等の粉粒状充填剤;マイカ、ガラスフレーク、タルク(板状)、マイカ、カオリン、クレイ、アルミナ(板状)、各種の金属箔等の板状充填剤;等が挙げられる。機械的強度、耐熱性等の点において、無機充填剤を含むことが好ましい。 Organic or inorganic fillers include fibrous fillers such as high-melting point organic fibrous substances such as glass fiber, carbon fiber, zinc oxide fiber, titanium oxide fiber, wollastonite, silica fiber, silica-alumina fiber, alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber, boron fiber, potassium titanate fiber, stainless steel fiber, aluminum fiber, titanium fiber, copper fiber, brass fiber, polyamide, high molecular weight polyethylene, aramid, fluororesin, polyester resin, and acrylic resin; carbon black, graphite, silica, quartz powder, and glass beads. , milled glass fiber, glass balloons, glass powder, talc (granular), silicates such as calcium silicate, aluminum silicate, and diatomaceous earth, metal oxides such as iron oxide, titanium oxide, zinc oxide, and alumina (granular), metal carbonates such as calcium carbonate and magnesium carbonate, metal sulfates such as calcium sulfate and barium sulfate, and other powdered and granular fillers such as silicon carbide, silicon nitride, boron nitride, and various metal powders; plate-shaped fillers such as mica, glass flakes, talc (plate-shaped), mica, kaolin, clay, alumina (plate-shaped), and various metal foils; and the like. In terms of mechanical strength, heat resistance, and the like, it is preferable to contain an inorganic filler.

 有機又は無機充填剤の含有量は、再生ペレット(X)中に10~70質量%が好ましく、15~65質量%がより好ましく、20~60質量%がさらに好ましい。 The content of the organic or inorganic filler in the recycled pellets (X) is preferably 10 to 70% by mass, more preferably 15 to 65% by mass, and even more preferably 20 to 60% by mass.

 再生ペレット(X)は、離型剤を含んでいてよい。再生ペレット(X)に含まれる離型剤は、一般的に入手可能なものであれば、特に限定されるものではなく、例えば、脂肪酸エステル、脂肪酸金属塩、脂肪酸アミド、低分子量ポリオレフィン等が挙げられ、例えば、ペンタエリスリトールの脂肪酸エステル(例えば、ペンタエリスリトールテトラステアレート)であってよい。
 再生ペレット(X)が離型剤を含有する場合、離型剤の含有量は、再生ペレット(X)の総量中に0.04~3.0質量%が好ましく、0.07~2.5質量%がより好ましく、0.1~2.0質量%がさらに好ましい。再生ペレット(X)中の離型剤は、ペレット内に練り込まれた状態で存在する点において、後述する所定の化合物(A)とは区別することができる。例えば、化合物(A)は、後述するように、再生ペレット(X)をアセトン、クロロホルムなどの有機溶媒で洗浄し、表面の化合物(A)を溶媒に溶解させることで抽出可能であるが、ペレット内に練り込まれた離型剤はこの方法では抽出されない。
The recycled pellets (X) may contain a release agent. The release agent contained in the recycled pellets (X) is not particularly limited as long as it is a generally available one, and examples thereof include fatty acid esters, fatty acid metal salts, fatty acid amides, low molecular weight polyolefins, and the like. For example, it may be a fatty acid ester of pentaerythritol (e.g., pentaerythritol tetrastearate).
When the recycled pellets (X) contain a release agent, the content of the release agent is preferably 0.04 to 3.0% by mass, more preferably 0.07 to 2.5% by mass, and even more preferably 0.1 to 2.0% by mass in the total amount of the recycled pellets (X). The release agent in the recycled pellets (X) is present in a state kneaded into the pellets, and can be distinguished from a specific compound (A) described later. For example, the compound (A) can be extracted by washing the recycled pellets (X) with an organic solvent such as acetone or chloroform and dissolving the compound (A) on the surface in the solvent, as described later, but the release agent kneaded into the pellets cannot be extracted by this method.

 再生ペレット(X)の製造方法は、限定されず、例えば、ポリアリーレンスルフィド樹脂の成形品(好ましくはバージンポリアリーレンスルフィド樹脂の成形品)を公知の粉砕機を使用して粉砕した粉砕物を、従来公知の1軸又は2軸押出機等を用いて溶融混練して押出し、ペレット状にカットする方法が挙げられる。溶融混練温度は、再生ペレット(X)に含まれるポリアリーレンスルフィド樹脂の融点以上の温度であり、通常、280~360℃であり、290~350℃が好ましい。
 粉砕物の平均粒子径は、限定されず、例えば、レーザー回折散乱法による体積基準累積50%径(D50)が、0.3~20mmが好ましく、0.4~15mmがより好ましく、1~10mmがさらに好ましく、1~3mmがより好ましい。
The method for producing the recycled pellets (X) is not limited, and examples thereof include a method in which a molded product of a polyarylene sulfide resin (preferably a molded product of a virgin polyarylene sulfide resin) is crushed using a known crusher, the crushed product is melt-kneaded and extruded using a conventionally known single-screw or twin-screw extruder, etc., and cut into pellets. The melt-kneading temperature is a temperature equal to or higher than the melting point of the polyarylene sulfide resin contained in the recycled pellets (X), and is usually 280 to 360°C, and preferably 290 to 350°C.
The average particle size of the pulverized product is not limited, and for example, the volume-based cumulative 50% diameter (D50) measured by a laser diffraction scattering method is preferably 0.3 to 20 mm, more preferably 0.4 to 15 mm, even more preferably 1 to 10 mm, and still more preferably 1 to 3 mm.

 再生ペレット(X)の原料となる被リサイクル品としては、例えば、成形品の製造過程で発生した不良品、射出成形時に得られる製品以外の部分(例えば、ランナー、スプルー等)、未使用製品、成形時においてパージに使用したポリーレンスルフィド樹脂材料の塊等が挙げられ、これらから選択される1以上を含むことが好ましい。一実施形態において、被リサイクル品は、射出成形品であり得る。 The recycled products that are the raw material for the recycled pellets (X) include, for example, defective products generated during the manufacturing process of molded products, parts other than the product obtained during injection molding (e.g., runners, sprues, etc.), unused products, and chunks of polyethylene sulfide resin material used for purging during molding, and it is preferable that the recycled products include one or more selected from these. In one embodiment, the recycled products may be injection molded products.

(化合物(A))
 ポリアリーレンスルフィド樹脂を含む再生ペレット(X)は、表面の少なくとも一部が化合物(A)で被覆されている。再生ペレット(X)の表面の少なくとも一部が化合物(A)で被覆されていることにより、金型からの離型性に優れた被覆再生ペレット(Y)にすることができる。上記したように、「被覆」は、ペレットの表面の少なくとも一部が化合物(A)で覆われていればよく、ペレットの表面の一部に化合物(A)が付着又は固着していること、及び化合物(A)が層状に広がって表面の一部を覆っていることを含み得る。「付着又は固着」には、固体状(例えば粉末状)の化合物(A)が静電気力等で付着している状態や、固体状の化合物(A)の一部が融解し、残りの部分は固体状のままで、融解した部分においてペレットの表面に固着していることを含み得る。
 成形時の原料供給過程で化合物(A)が偏在することを防いで離型性にムラが生じにくくする観点から、ポリアリーレンスルフィド樹脂を含むペレット(X)の表面の少なくとも一部(より好ましくは全体)に、化合物(A)が層状にコーティングされていることが好ましい。
 再生ペレット(X)の表面の少なくとも一部が化合物(A)で被覆されていることは、ペレットを直接ATR法等で測定する、あるいは、アセトン、クロロホルムなどの有機溶媒で洗浄し、表面の化合物(A)を溶媒に溶解させることで、表面に付着した化合物(A)を抽出して、そのFT-IR測定をする等により確認することができる。
(Compound (A))
At least a part of the surface of the recycled pellet (X) containing a polyarylene sulfide resin is coated with the compound (A). By coating at least a part of the surface of the recycled pellet (X) with the compound (A), it is possible to obtain a coated recycled pellet (Y) having excellent releasability from a mold. As described above, the "coating" means that at least a part of the surface of the pellet is covered with the compound (A), and may include the compound (A) adhering or adhering to a part of the surface of the pellet, and the compound (A) spreading in a layer form to cover a part of the surface. The "adhering or adhering" may include a state in which the solid (e.g., powdery) compound (A) is attached by electrostatic force or the like, or a state in which a part of the solid compound (A) is melted and the remaining part remains solid and is adhered to the surface of the pellet at the melted part.
From the viewpoint of preventing uneven distribution of the compound (A) during the raw material supply process during molding and thus making it difficult for unevenness to occur in the mold releasability, it is preferable that at least a part (more preferably the entirety) of the surface of the pellet (X) containing a polyarylene sulfide resin is coated with the compound (A) in the form of a layer.
That at least a portion of the surface of the recycled pellet (X) is covered with the compound (A) can be confirmed by directly measuring the pellet by an ATR method or the like, or by washing the pellet with an organic solvent such as acetone or chloroform, dissolving the compound (A) on the surface in the solvent, extracting the compound (A) adhering to the surface, and subjecting it to FT-IR measurement, or the like.

 一実施形態において、再生ペレット(X)は、成形時の原料供給過程で化合物(A)が偏在することを防いで離型性にムラが生じにくくする観点から、表面の少なくとも一部が化合物(A)で連続的に覆われていることが好ましい。一実施形態において、再生ペレット(X)は、成形時の原料供給過程で化合物(A)が偏在することを防いで離型性にムラが生じにくくする観点から、表面の少なくとも一部に、化合物(A)の層又は薄膜(以下、まとめて「層」という)が形成されていることが好ましい。一実施形態において、化合物(A)の層は、成形時の原料供給過程で化合物(A)が偏在することを防いで離型性にムラが生じにくくする観点から、再生ペレット(X)の表面の少なくとも一部に、広がりを持って形成されていることが好ましい。
 一実施形態において、化合物(A)は、成形時の原料供給過程で化合物(A)が偏在することを防いで離型性にムラが生じにくくする観点から、再生ペレット(X)の表面の少なくとも一部に固着されていることが好ましい。上記したように「固着されている」は、ペレットと化合物(A)の少なくとも一部とが融着していることを意味している。
In one embodiment, the recycled pellet (X) is preferably continuously covered with the compound (A) on at least a part of the surface from the viewpoint of preventing uneven distribution of the compound (A) during the raw material supply process during molding and preventing unevenness in the release property. In one embodiment, the recycled pellet (X) is preferably formed with a layer or thin film (hereinafter collectively referred to as a "layer") of the compound (A) on at least a part of the surface from the viewpoint of preventing uneven distribution of the compound (A) during the raw material supply process during molding and preventing unevenness in the release property. In one embodiment, the layer of the compound (A) is preferably formed with a spread on at least a part of the surface of the recycled pellet (X) from the viewpoint of preventing uneven distribution of the compound (A) during the raw material supply process during molding and preventing unevenness in the release property.
In one embodiment, the compound (A) is preferably fixed to at least a part of the surface of the recycled pellet (X) from the viewpoint of preventing uneven distribution of the compound (A) during the raw material supply process during molding and thus preventing unevenness in the mold releasability. As described above, "fixed" means that the pellet and at least a part of the compound (A) are fused together.

 一実施形態において、化合物(A)は、常温(20~25℃)で固体又は液体の有機物であり得る。別の実施形態において、化合物(A)は、常温(20~25℃)で固体であり、かつ融点が50~135℃(好ましくは55~130℃、より好ましくは70~125℃、90~120℃)である有機物であり得る。融点は、DSC法(JISK7121記載の方法)に従って測定した値とする。本明細書において、常温(20~25℃)は、好ましくは25℃を意味する。 In one embodiment, compound (A) may be an organic substance that is solid or liquid at room temperature (20 to 25°C). In another embodiment, compound (A) may be an organic substance that is solid at room temperature (20 to 25°C) and has a melting point of 50 to 135°C (preferably 55 to 130°C, more preferably 70 to 125°C, 90 to 120°C). The melting point is a value measured according to the DSC method (method described in JIS K7121). In this specification, room temperature (20 to 25°C) preferably means 25°C.

 化合物(A)としては、(A-1)140℃における溶融粘度が0.1~8.0Pa・sであるオレフィン樹脂(以下、「(A-1)オレフィン樹脂」ともいう)、(A-2)脂肪酸誘導体、及び(A-3)シリコーン系化合物等が挙げられ、これらから選択される1以上を含むことが好ましい。 Examples of the compound (A) include (A-1) an olefin resin having a melt viscosity of 0.1 to 8.0 Pa·s at 140°C (hereinafter also referred to as "(A-1) olefin resin"), (A-2) a fatty acid derivative, and (A-3) a silicone-based compound, and it is preferable to include at least one selected from these.

 一実施形態において、(A-1)140℃における溶融粘度が0.1~8.0Pa・sであるオレフィン樹脂、(A-2)脂肪酸誘導体、及び(A-3)シリコーン系化合物から選択される1以上の含有量は、化合物(A)の総量に対して、合計95質量%以上が好ましく、合計98質量%以上がより好ましく、化合物(A)がこれらから選択される1以上からなることがさらに好ましい。
 (A-1)140℃における溶融粘度が0.1~8.0Pa・sであるオレフィン樹脂としては、例えば、重合度が500~1000程度の、炭素原子数が1~10(好ましくは1~4)のポリオレフィン樹脂が挙げられ、具体的には例えば、重合度が500~1000の、ポリエチレン樹脂、ポリプロピレン樹脂、エチレン-オレフィン共重合体等が挙げられる。これら(A-1)オレフィン樹脂は、1種単独で用いてもよく、2種以上を併用してもよい。このうち、ポリエチレン樹脂及び/又はポリプロピレン樹脂を含むことが好ましく、ポリエチレン樹脂を含むことがより好ましい。
In one embodiment, the content of one or more selected from (A-1) an olefin resin having a melt viscosity at 140°C of 0.1 to 8.0 Pa s, (A-2) a fatty acid derivative, and (A-3) a silicone-based compound is preferably 95 mass% or more in total, and more preferably 98 mass% or more in total, based on the total amount of compound (A). It is even more preferable that compound (A) consists of one or more selected from these.
Examples of the olefin resin (A-1) having a melt viscosity at 140°C of 0.1 to 8.0 Pa·s include polyolefin resins having a degree of polymerization of about 500 to 1000 and 1 to 10 (preferably 1 to 4) carbon atoms, and specific examples include polyethylene resins, polypropylene resins, and ethylene-olefin copolymers having a degree of polymerization of 500 to 1000. These olefin resins (A-1) may be used alone or in combination of two or more. Of these, it is preferable that the resin contains a polyethylene resin and/or a polypropylene resin, and it is more preferable that the resin contains a polyethylene resin.

 (A-1)オレフィン樹脂の140℃における溶融粘度は、0.1~8.0Pa・sであり、好ましくは0.5~7.0Pa・sであり、より好ましくは1.0~6.5Pa・sであり、特に好ましくは2.0~6.0Pa・sである。(A-1)140℃における溶融粘度が0.1~8.0Pa・sであるオレフィン樹脂は、ペレットを被覆する際に分散性がよく、ペレット全体へ均一にコーティングしされやすい。その結果、良好な離型性向上効果が得られやすい。また、成形時に(A-1)オレフィン樹脂が分解され難いので、(A-1)オレフィン樹脂に由来する揮発成分を低減しやすく、モールドデポジット(MD)を低減することができる。140℃における溶融粘度は、JISK7117に基づいて、B型粘度計(例えば東機産業(株)製「RB-80H」)により測定することができる。 The melt viscosity of the (A-1) olefin resin at 140°C is 0.1 to 8.0 Pa·s, preferably 0.5 to 7.0 Pa·s, more preferably 1.0 to 6.5 Pa·s, and particularly preferably 2.0 to 6.0 Pa·s. The (A-1) olefin resin with a melt viscosity of 0.1 to 8.0 Pa·s at 140°C has good dispersibility when coating pellets, and is easily coated uniformly over the entire pellet. As a result, it is easy to obtain a good effect of improving releasability. In addition, since the (A-1) olefin resin is not easily decomposed during molding, it is easy to reduce volatile components derived from the (A-1) olefin resin, and mold deposits (MD) can be reduced. The melt viscosity at 140°C can be measured using a B-type viscometer (for example, "RB-80H" manufactured by Toki Sangyo Co., Ltd.) based on JIS K7117.

 (A-2)脂肪酸誘導体は、カルボキシル基を少なくとも一つ有する、飽和脂肪酸及び/又は不飽和脂肪酸の置換体、あるいは飽和脂肪酸及び/又は不飽和脂肪酸とその他の化合物との化学反応によって得られた化合物である。(A-2)脂肪酸誘導体としては、脂肪酸塩、脂肪酸エステル、脂肪酸アミド等が挙げられ、これらから選択される1以上を含むことが好ましい。 The (A-2) fatty acid derivative is a substitute of a saturated fatty acid and/or an unsaturated fatty acid having at least one carboxyl group, or a compound obtained by a chemical reaction between a saturated fatty acid and/or an unsaturated fatty acid and another compound. Examples of the (A-2) fatty acid derivative include fatty acid salts, fatty acid esters, fatty acid amides, etc., and it is preferable to include one or more selected from these.

 脂肪酸塩としては、脂肪酸金属塩が挙げられ、例えば、脂肪酸(好ましくは飽和又は不飽和のC8-35脂肪酸、より好ましくは飽和又は不飽和のC10-20脂肪酸)のリチウム塩、カルシウム塩、マグネシウム塩、亜鉛塩、及びアルミニウム塩等が挙げられる。
 飽和又は不飽和のC8-35脂肪酸としては、ラウリン酸(ドデカン酸)、イソデカン酸、トリデシル酸、ミリスチン酸(テトラデカン酸)、ペンタデシル酸、パルミチン酸(ヘキサデカン酸)、マルガリン酸(ヘプタデカン酸)、ステアリン酸(オクタデカン酸)、イソステアリン酸、ツベルクロステアリン酸(ノナデカン酸)、2-ヒドロキシステアリン酸、アラキジン酸(イコサン酸)、ベヘン酸(ドコサン酸)、リグノセリン酸(テトラドコサン酸)、セロチン酸(ヘキサドコサン酸)、モンタン酸(オクタドコサン酸)、メリシン酸等の飽和脂肪酸;ミリストレイン酸(テトラデセン酸)、パルミトレイン酸(ヘキサデセン酸)、オレイン酸(cis-9-オクタデセン酸)、エライジン酸(trans-9-オクタデセン酸)、リシノール酸(オクタデカジエン酸)、バクセン酸(cis-11-オクタデセン酸)、リノール酸(オクタデカジエン酸)、リノレン酸(9,11,13-オクタデカトリエン酸)、エレステアリン酸(9,11,13-オクタデカトリエン酸)、ガドレイン酸(イコサン酸)、エルカ酸(ドコサン酸)、ネルボン酸(テトラドコサン酸)等の不飽和脂肪酸等が挙げられる。
 これら脂肪酸金属塩は、1種単独で用いてもよく、2種以上を併用してもよい。このうち、価格と供給性の観点からは、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸等の炭素数22未満の脂肪酸の亜鉛塩、カルシウム塩、又はアルミニウム塩が好ましく、ステアリン酸カルシウム、ステアリン酸マグネシウムがより好ましい。
Examples of fatty acid salts include fatty acid metal salts, such as lithium salts, calcium salts, magnesium salts, zinc salts, and aluminum salts of fatty acids (preferably saturated or unsaturated C8-35 fatty acids, more preferably saturated or unsaturated C10-20 fatty acids).
Examples of saturated or unsaturated C8-35 fatty acids include saturated fatty acids such as lauric acid (dodecanoic acid), isodecanoic acid, tridecanoic acid, myristic acid (tetradecanoic acid), pentadecylic acid, palmitic acid (hexadecanoic acid), margaric acid (heptadecanoic acid), stearic acid (octadecanoic acid), isostearic acid, tuberculostearic acid (nonadecanoic acid), 2-hydroxystearic acid, arachidic acid (icosanoic acid), behenic acid (docosanoic acid), lignoceric acid (tetradocosanoic acid), cerotic acid (hexadocosanoic acid), montanic acid (octadocosanoic acid), and melissic acid. unsaturated fatty acids such as myristoleic acid (tetradecenoic acid), palmitoleic acid (hexadecenoic acid), oleic acid (cis-9-octadecenoic acid), elaidic acid (trans-9-octadecenoic acid), ricinoleic acid (octadecadienoic acid), vaccenic acid (cis-11-octadecenoic acid), linoleic acid (octadecadienoic acid), linolenic acid (9,11,13-octadecatrienoic acid), elestearic acid (9,11,13-octadecatrienoic acid), gadoleic acid (icosanoic acid), erucic acid (docosanoic acid), and nervonic acid (tetradocosanoic acid).
These fatty acid metal salts may be used alone or in combination of two or more. Among them, from the viewpoint of cost and availability, zinc salts, calcium salts, or aluminum salts of fatty acids having less than 22 carbon atoms, such as lauric acid, myristic acid, palmitic acid, stearic acid, and oleic acid, are preferred, and calcium stearate and magnesium stearate are more preferred.

 脂肪酸エステルとしては、脂肪族アルコールと脂肪酸とのエステルが挙げられ、多価アルコールと脂肪酸とのエステルが好ましい。多価アルコールとしては、グリコール、ポリグリコール、グリセリン、ポリグリセリン、プロピレングリコール、ペンタエリスリトール、ソルビトール、マンニトール等が挙げられる。脂肪酸としては、飽和又は不飽和のC8-35脂肪酸(好ましくはC10-20脂肪酸)が挙げられ、上記脂肪酸金属塩について述べた脂肪酸が例示される。
 これら脂肪酸エステルは、1種単独で用いてもよく、2種以上を併用してもよい。このうち、価格と供給性の観点からは、グリコール、プロピレングリコール、ペンタエリスリトールから選択される1以上と、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、及びオレイン酸等の炭素数22未満の脂肪酸から選択される1以上の脂肪酸とのエステルが好ましく、ペンタエリスリトールトリステアレート及びペンタエリスリトールテトラステアレート等のペンタエリスリトールステアレートを含むことがより好ましい。
Examples of fatty acid esters include esters of aliphatic alcohols and fatty acids, and preferred are esters of polyhydric alcohols and fatty acids. Examples of polyhydric alcohols include glycol, polyglycol, glycerin, polyglycerin, propylene glycol, pentaerythritol, sorbitol, mannitol, etc. Examples of fatty acids include saturated or unsaturated C8-35 fatty acids (preferably C10-20 fatty acids), and examples of such fatty acids include those described above for the fatty acid metal salts.
These fatty acid esters may be used alone or in combination of two or more. Among them, from the viewpoint of cost and availability, esters of one or more selected from glycol, propylene glycol, and pentaerythritol and one or more fatty acids selected from fatty acids having less than 22 carbon atoms such as lauric acid, myristic acid, palmitic acid, stearic acid, and oleic acid are preferred, and pentaerythritol stearates such as pentaerythritol tristearate and pentaerythritol tetrastearate are more preferred.

 脂肪酸アミドとしては、例えば、C8-35脂肪酸アミド、アルキレン脂肪酸アミド等が挙げられる。C8-35脂肪酸アミドとしては、例えば、オレイン酸アミド、ステアリン酸アミド、エルカ酸アミド、ベヘン酸アミド、エチレンビスステアリン酸アミド、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、エチレンビスラウリル酸アミド等が挙げられる。アルキレン脂肪酸アミドとしては、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド等が挙げられる。
 これら脂肪酸アミドは、1種単独で用いてもよく、2種以上を併用してもよい。このうち、価格と供給性の観点からは、エチレンビスステアリン酸アミドがより好ましい。
Examples of fatty acid amides include C8-35 fatty acid amides, alkylene fatty acid amides, etc. Examples of C8-35 fatty acid amides include oleic acid amide, stearic acid amide, erucic acid amide, behenic acid amide, ethylene bisstearic acid amide, ethylene bisoleic acid amide, ethylene biserucic acid amide, ethylene bislauric acid amide, etc. Examples of alkylene fatty acid amides include methylene bisstearic acid amide, ethylene bisstearic acid amide, etc.
These fatty acid amides may be used alone or in combination of two or more. Among these, ethylene bisstearic acid amide is more preferred from the viewpoints of cost and availability.

 (A-3)シリコーン系化合物としては、例えば、シリコーンオイル、シリコーン樹脂等が挙げられる。(A-3)シリコーン系化合物は、1種単独で用いてもよく、2種以上を併用してもよい。このうち、価格と供給性の観点からは、シリコーンオイルがより好ましい。 Examples of the silicone-based compound (A-3) include silicone oil and silicone resin. The silicone-based compound (A-3) may be used alone or in combination of two or more types. Among these, silicone oil is more preferred from the standpoint of price and availability.

 本発明者の研究により、ポリアリーレンスルフィド樹脂を含む再生ペレット(X)が、反応性官能基を有するエラストマーを含む場合は、上記化合物(A)のうち、(A-1)140℃における溶融粘度が0.1~8.0Pa・sであるオレフィン樹脂の含有量が多い(又は、それからなる)化合物(A)を選択して用いることによって、離型性をより高めることができることが分かった。 The inventors' research has revealed that when recycled pellets (X) containing polyarylene sulfide resin contain an elastomer having a reactive functional group, the releasability can be further improved by selecting and using, from among the above compounds (A), (A-1) a compound (A) that has a high content of (or is made of) an olefin resin with a melt viscosity of 0.1 to 8.0 Pa·s at 140°C.

 一実施形態において、再生ペレット(X)が反応性官能基を有するエラストマーを含む(好ましくは反応性官能基を有するエラストマーの含有量が再生ペレット(X)の総量に対して、好ましくは1質量%以上、より好ましくは3~10質量%である)場合は、離型性をより高める観点から、化合物(A)は、(A-1)140℃における溶融粘度が0.1~8.0Pa・sであるオレフィン樹脂を含むことが好ましく、(A-1)140℃における溶融粘度が0.1~8.0Pa・sであるオレフィン樹脂を化合物(A)の総量に対して95質量%以上、又は98質量%以上含むことがより好ましく、(A-1)140℃における溶融粘度が0.1~8.0Pa・sであるオレフィン樹脂からなることがさらに好ましい。 In one embodiment, when the recycled pellets (X) contain an elastomer having a reactive functional group (preferably the content of the elastomer having a reactive functional group is preferably 1% by mass or more, more preferably 3 to 10% by mass, based on the total amount of the recycled pellets (X)), from the viewpoint of further improving releasability, the compound (A) preferably contains (A-1) an olefin resin having a melt viscosity of 0.1 to 8.0 Pa·s at 140°C, more preferably contains (A-1) an olefin resin having a melt viscosity of 0.1 to 8.0 Pa·s at 140°C in an amount of 95% by mass or more, or 98% by mass or more, based on the total amount of the compound (A), and further preferably consists of (A-1) an olefin resin having a melt viscosity of 0.1 to 8.0 Pa·s at 140°C.

 一実施形態において、再生ペレット(X)が反応性官能基を有するエラストマーを含む(好ましくは反応性官能基を有するエラストマーの含有量が再生ペレット(X)の総量に対して、好ましくは1質量%以上、より好ましくは3~10質量%である)場合は、化合物(A)は、(A-1)140℃における溶融粘度が0.1~8.0Pa・sであるオレフィン樹脂を化合物(A)の総量に対して95質量%以上含み、かつ、(A-2)脂肪酸誘導体及び(A-3)シリコーン系化合物を含まない、又は(A-2)脂肪酸誘導体及び(A-3)シリコーン系化合物の含有量が化合物(A)の総量に対して合計5質量%未満であることが好ましい。 In one embodiment, when the recycled pellets (X) contain an elastomer having a reactive functional group (preferably the content of the elastomer having a reactive functional group is preferably 1% by mass or more, more preferably 3 to 10% by mass, based on the total amount of the recycled pellets (X)), it is preferable that the compound (A) contains (A-1) olefin resin having a melt viscosity of 0.1 to 8.0 Pa·s at 140°C in an amount of 95% by mass or more based on the total amount of the compound (A), and does not contain (A-2) fatty acid derivatives and (A-3) silicone-based compounds, or the content of (A-2) fatty acid derivatives and (A-3) silicone-based compounds is less than 5% by mass in total based on the total amount of the compound (A).

 一実施形態において、再生ペレット(X)は、α-オレフィン由来の構成単位とα,β-不飽和酸のグリシジルエステル由来の構成単位とを含むエラストマーを含み、かつ、化合物(A)が、(A-1)140℃における溶融粘度が0.1~8.0Pa・sであるオレフィン樹脂を化合物(A)の総量に対して95質量%以上含む(好ましくは98質量%以上含み、より好ましくは(A-1)140℃における溶融粘度が0.1~8.0Pa・sであるオレフィン樹脂からなる)ように構成することができる。 In one embodiment, the recycled pellets (X) contain an elastomer that includes structural units derived from an α-olefin and structural units derived from a glycidyl ester of an α,β-unsaturated acid, and the compound (A) contains 95% by mass or more (A-1) of an olefin resin having a melt viscosity of 0.1 to 8.0 Pa·s at 140°C relative to the total amount of the compound (A) (preferably 98% by mass or more, and more preferably (A-1) of an olefin resin having a melt viscosity of 0.1 to 8.0 Pa·s at 140°C).

 別の実施形態において、再生ペレット(X)が反応性官能基を有するエラストマーを含まない、又は反応性官能基を有するエラストマーの含有量が再生ペレット(X)の総量に対して1質量%未満、好ましくは0.8質量%未満である場合は、化合物(A)は、上記した(A-1)140℃における溶融粘度が0.1~8.0Pa・sであるオレフィン樹脂、(A-2)脂肪酸誘導体、及び(A-3)シリコーン系化合物から選択される1以上を含んでいてよく、離型性をより高め易い観点から、(A-1)140℃における溶融粘度が0.1~8.0Pa・sであるオレフィン樹脂、及び(A-2)脂肪酸エステルから選択される1以上を含むことが好ましい。 In another embodiment, when the recycled pellets (X) do not contain an elastomer having a reactive functional group, or the content of the elastomer having a reactive functional group is less than 1 mass %, preferably less than 0.8 mass %, relative to the total amount of the recycled pellets (X), the compound (A) may contain one or more selected from the above-mentioned (A-1) olefin resin having a melt viscosity of 0.1 to 8.0 Pa·s at 140°C, (A-2) fatty acid derivative, and (A-3) silicone-based compound, and from the viewpoint of easier improvement of releasability, it is preferable that the compound (A) contains one or more selected from (A-1) olefin resin having a melt viscosity of 0.1 to 8.0 Pa·s at 140°C, and (A-2) fatty acid ester.

(被覆量)
 化合物(A)の総被覆量は、再生ペレット(X)100質量部に対して0.04~3.0質量部であり、0.07~2.5質量部が好ましく、0.1~2.0質量部がより好ましく、0.1~1.0質量部がさらに好ましく、0.1~0.5質量部が特に好ましい。再生ペレット(X)100質量部に対して0.04質量部以上にすることにより、被覆再生ペレット(Y)を成形する際の金型からの離型性を高めることができる。3.0質量部以下にすることにより、モールドデポジット(MD)の発生を抑制することができる。化合物(A)の総被覆量は、再生ペレット(X)100質量部に対して0.04~3.0質量部の範囲において、0.1質量部であってもよく、0.2質量部であってもよく、0.3質量部であってもよく、これらを上限値及び/又は下限値とする範囲であってもよい。
(Coating amount)
The total coating amount of the compound (A) is 0.04 to 3.0 parts by mass relative to 100 parts by mass of the recycled pellet (X), preferably 0.07 to 2.5 parts by mass, more preferably 0.1 to 2.0 parts by mass, even more preferably 0.1 to 1.0 parts by mass, and particularly preferably 0.1 to 0.5 parts by mass. By making it 0.04 parts by mass or more relative to 100 parts by mass of the recycled pellet (X), it is possible to improve the releasability from the mold when molding the coated recycled pellet (Y). By making it 3.0 parts by mass or less, it is possible to suppress the occurrence of mold deposits (MD). The total coating amount of the compound (A) may be 0.1 parts by mass, 0.2 parts by mass, or 0.3 parts by mass in the range of 0.04 to 3.0 parts by mass relative to 100 parts by mass of the recycled pellet (X), and may be a range with these as the upper and/or lower limits.

(その他の添加剤)
 被覆再生ペレット(Y)は、必要に応じて添加剤を含んでいてよい。添加剤としては、上記した再生ペレット(X)が含み得るその他の成分と同じ成分が挙げられる。
(Other additives)
The coated recycled pellets (Y) may contain additives as necessary. The additives may include the same components as those that may be contained in the above-mentioned recycled pellets (X).

 被覆再生ペレット(Y)は、再生ペレット(X)の表面の少なくとも一部が化合物(A)で被覆されているので、化合物(A)が被覆再生ペレット(Y)の集合体中に均一に分散されており、優れた離型性を実現することができる。
 一実施形態において、被覆再生ペレット(Y)は、被覆再生ペレット(Y)の離型抵抗値(R)の、化合物(A)で被覆されていない未被覆の再生ペレット(X)の離型抵抗値(R)に対する比の値[R/R]が、好ましくは0.98未満であり、より好ましくは0.95以下である。
In the coated regenerated pellets (Y), at least a portion of the surface of the regenerated pellets (X) is coated with the compound (A), so that the compound (A) is uniformly dispersed in the aggregate of the coated regenerated pellets (Y), and excellent releasability can be realized.
In one embodiment, the coated regenerated pellets (Y) have a ratio [R Y /R X ] of the release resistance value (R Y ) of the coated regenerated pellets (Y) to the release resistance value (R X ) of the uncoated regenerated pellets ( X ) that are not coated with compound ( A ) is preferably less than 0.98, more preferably 0.95 or less.

(離型抵抗)
 離型抵抗値(R)、(R)は、二重円筒離型抵抗値であり、図1に示す二重円筒状の成形品を金型から離型する際の抵抗を意味する。
 図1(a)は、二重円筒状の成形品の上面図、図1(b)は二重円筒状の成形品の底面図であり、図1(c)は二重円筒状の成形品の斜視図であり、図1(d)は二重円筒状の成形品の寸法図であり、図1(a)及び(d)中の寸法の単位は「mm」である。また、当該二重円筒状の成形品のゲートサイズは5mm×2.5mmである。
(Release resistance)
The demolding resistance values (R Y ) and (R X ) are double cylinder demolding resistance values, and refer to the resistance when the double cylinder molded product shown in FIG. 1 is demolded from the mold.
Fig. 1(a) is a top view of the double cylindrical molded product, Fig. 1(b) is a bottom view of the double cylindrical molded product, Fig. 1(c) is a perspective view of the double cylindrical molded product, and Fig. 1(d) is a dimensional drawing of the double cylindrical molded product, the dimensions in Fig. 1(a) and (d) being in mm. The gate size of the double cylindrical molded product is 5 mm x 2.5 mm.

 図1に示す二重円筒状の成形品は、第1の円筒体1を内側に、第2の円筒体2を外側にした二重円筒状を有しており、第1の円筒体1及び第2の円筒体2は、4mmの軸で4か所において接続されている。また、第1の円筒体1の、高さは20mm、外径は18mm、内径は9mm、第2の円筒体2の、高さは40mm、外径は40mm、内径は30mmであり、第1の円筒体1の側面部の厚さは4.5mm、第2の円筒体2の底部及び側面部の厚さは5mmである。なお、第2の円筒体2は有底円筒体であるが、第1の円筒体1の部分において開口となっている。 The double cylindrical molded product shown in Figure 1 has a double cylindrical shape with a first cylinder 1 on the inside and a second cylinder 2 on the outside, and the first cylinder 1 and second cylinder 2 are connected at four points by a 4 mm shaft. The first cylinder 1 has a height of 20 mm, an outer diameter of 18 mm, and an inner diameter of 9 mm, while the second cylinder 2 has a height of 40 mm, an outer diameter of 40 mm, and an inner diameter of 30 mm. The thickness of the side of the first cylinder 1 is 4.5 mm, and the thickness of the bottom and side of the second cylinder 2 is 5 mm. The second cylinder 2 is a bottomed cylinder, but has an opening at the part of the first cylinder 1.

(金型付着物)
 一実施形態において、被覆再生ペレット(Y)は、以下の条件で測定される金型付着物が、100μg以下であることが好ましく、90μg以下であることがより好ましく、80μg以下であることがさらに好ましい。
 下記の射出成形機及び条件で、図2に示す寸法及び形状を有する成形体を4時間連続成形(1000回)する。連続成形前後で、金型から取り外したベント部及びキャビティ部の総重量を測定する。連続成形前後のベント部及びキャビティ部の総重量の変化量を、金型への付着物の重量(μg)として算出する。
  射出成形機:FANUC ROBOSHOT S2000i30A
  シリンダー温度:340℃
  射出時間:2秒
  冷却時間:10秒
  金型温度:140℃
(Mold adhesion)
In one embodiment, the coated regenerated pellets (Y) preferably have a mold deposit of 100 μg or less, more preferably 90 μg or less, and even more preferably 80 μg or less, measured under the following conditions.
Using the injection molding machine and conditions below, a molded article having the dimensions and shape shown in Figure 2 is molded continuously for 4 hours (1000 times). The total weight of the vent and cavity parts removed from the mold is measured before and after the continuous molding. The change in the total weight of the vent and cavity parts before and after the continuous molding is calculated as the weight (μg) of the matter adhering to the mold.
Injection molding machine: FANUC ROBOSHOT S2000i30A
Cylinder temperature: 340°C
Injection time: 2 seconds Cooling time: 10 seconds Mold temperature: 140°C

(用途)
 被覆再生ペレット(Y)は、射出成形用樹脂ペレット、又は押出成形用樹脂ペレットとして好適に用いることができる。
(Application)
The coated recycled pellets (Y) can be suitably used as resin pellets for injection molding or resin pellets for extrusion molding.

[第4実施形態:被覆再生ペレット(Y)の製造方法]
 本実施形態に係る被覆再生ペレット(Y)の製造方法は、再生ペレット(X)の表面の少なくとも一部を化合物(A)で被覆すること、(以下「被覆工程」ともいう)を含み、化合物(A)の総配合量が、再生ペレット(X)100質量部に対して0.04~3.0質量部である。再生ペレット(X)、化合物(A)及び添加剤、並びにそれらの配合量に関する上記記載は、ここでも当てはまる。
[Fourth embodiment: Manufacturing method of coated regenerated pellets (Y)]
The method for producing the coated regenerated pellets (Y) according to this embodiment includes coating at least a part of the surface of the regenerated pellets (X) with the compound (A) (hereinafter also referred to as the "coating step"), and the total amount of the compound (A) is 0.04 to 3.0 parts by mass per 100 parts by mass of the regenerated pellets (X). The above descriptions regarding the regenerated pellets (X), the compound (A) and the additives, and the amounts of them to be blended, also apply here.

 化合物(A)の総配合量は、再生ペレット(X)100質量部に対して0.04~3.0質量部であり、0.07~2.5質量部が好ましく、0.1~2.0質量部がより好ましく、0.1~1.0質量部がさらに好ましく、0.1~0.5質量部が特に好ましい。再生ペレット(X)100質量部に対して0.04質量部以上配合することにより、被覆再生ペレット(Y)を成形する際の金型からの離型性を高めることができる。3.0質量部以下配合することにより、モールドデポジットの発生を抑制することができる。化合物(A)の種類は、上記のとおりである。一実施形態において、化合物(A)が、(A-1)140℃における溶融粘度が0.1~8.0Pa・sであるオレフィン樹脂、(A-2)脂肪酸誘導体、及び(A-3)シリコーン系化合物から選択される1以上を含むことが好ましい。 The total amount of compound (A) is 0.04 to 3.0 parts by mass relative to 100 parts by mass of recycled pellets (X), preferably 0.07 to 2.5 parts by mass, more preferably 0.1 to 2.0 parts by mass, even more preferably 0.1 to 1.0 parts by mass, and particularly preferably 0.1 to 0.5 parts by mass. By blending 0.04 parts by mass or more relative to 100 parts by mass of recycled pellets (X), it is possible to improve the releasability from the mold when molding the coated recycled pellets (Y). By blending 3.0 parts by mass or less, it is possible to suppress the occurrence of mold deposits. The types of compound (A) are as described above. In one embodiment, it is preferable that compound (A) contains one or more selected from (A-1) an olefin resin having a melt viscosity of 0.1 to 8.0 Pa·s at 140°C, (A-2) a fatty acid derivative, and (A-3) a silicone-based compound.

(被覆工程)
 被覆工程では、再生ペレット(X)の表面の少なくとも一部を化合物(A)で被覆する。被覆方法としては、例えば、再生ペレット(X)と固体又は液体の化合物(A)とを、化合物(A)の融点以上の温度で接触させる方法(以下、「被覆方法(1)」という)、及び再生ペレット(X)と液体の化合物(A)とを接触させる方法(以下、「被覆方法(2)という」等が挙げられる。
(Coating process)
In the coating step, at least a part of the surface of the recycled pellets (X) is coated with the compound (A). Examples of the coating method include a method of contacting the recycled pellets (X) with a solid or liquid compound (A) at a temperature equal to or higher than the melting point of the compound (A) (hereinafter referred to as "coating method (1)"), and a method of contacting the recycled pellets (X) with a liquid compound (A) (hereinafter referred to as "coating method (2)").

(被覆方法(1))
 被覆方法(1)は、再生ペレット(X)と化合物(A)とを、化合物(A)の融点以上の温度で接触させる方法である。一実施形態において、被覆方法(1)は、化合物(A)の融点以上、かつ再生ペレット(X)に含まれるポリアリーレンスルフィド樹脂の融点(Tm1)(℃)以下の温度で再生ペレット(X)と固体又は液体の化合物(A)とを接触させる方法であることが好ましい。本開示において、化合物(A)の融点は、DSC法(JISK7121記載の方法)に従って測定した値とする。再生ペレット(X)に含まれるポリアリーレンスルフィド樹脂の融点は、示差走査熱量計で測定される融点Tm1であり、JISK7121に基づいた方法により、室温から10℃/分の昇温速度で加熱(1stRUN)した際に観測される1stRUNの吸熱ピークにおけるピークトップの温度とする。
 一実施形態において、被覆が容易となる観点から、化合物(A)の融点は、好ましくは50~135℃であり、より好ましくは55℃~130℃であり、更に好ましくは70~125℃であり、最も好ましくは90~120℃である。融点は、DSC法(JISK7121記載の方法)に従って測定した値とする。
(Coating method (1))
The coating method (1) is a method of contacting the recycled pellets (X) with the compound (A) at a temperature equal to or higher than the melting point of the compound (A). In one embodiment, the coating method (1) is preferably a method of contacting the recycled pellets (X) with the solid or liquid compound (A) at a temperature equal to or higher than the melting point of the compound (A) and equal to or lower than the melting point (Tm1) (°C) of the polyarylene sulfide resin contained in the recycled pellets (X). In the present disclosure, the melting point of the compound (A) is a value measured according to the DSC method (method described in JIS K7121). The melting point of the polyarylene sulfide resin contained in the recycled pellets (X) is the melting point Tm1 measured by a differential scanning calorimeter, and is the peak top temperature of the endothermic peak of the 1st RUN observed when heated (1st RUN) from room temperature at a heating rate of 10°C/min according to a method based on JIS K7121.
In one embodiment, from the viewpoint of facilitating coating, the melting point of the compound (A) is preferably 50 to 135° C., more preferably 55 to 130° C., even more preferably 70 to 125° C., and most preferably 90 to 120° C. The melting point is a value measured according to a DSC method (the method described in JIS K7121).

 被覆方法(1)において、再生ペレット(X)と化合物(A)とを接触させる際の温度は、例えば、80~160℃、又は100~140℃であってよい。接触させる時間は、限定されず、例えば、5分以上、又は3~8時間であってよい。 In the coating method (1), the temperature at which the recycled pellets (X) are brought into contact with the compound (A) may be, for example, 80 to 160°C, or 100 to 140°C. The contact time is not limited and may be, for example, 5 minutes or more, or 3 to 8 hours.

 接触させる方法は、限定されず、空気循環型乾燥機等の公知の乾燥機等で、加熱しながら、又は加熱した後に、好ましくは撹拌しながら、再生ペレット(X)と化合物(A)とを接触させることができる。一実施形態において、接触させることは、再生ペレット(X)と化合物(A)とを混合することであってよい。 The contacting method is not limited, and the recycled pellets (X) and the compound (A) can be contacted with each other in a known dryer such as an air circulation dryer while heating or after heating, preferably while stirring. In one embodiment, the contacting may be mixing the recycled pellets (X) and the compound (A).

 一般的に、樹脂ペレットを用いて成形品を製造する際に、原料となる樹脂ペレットを事前に乾燥させる工程を有していることが多い。一実施形態において、被覆工程は、再生ペレット(X)を化合物(A)の融点以上の温度で乾燥させる工程において、又は乾燥させる工程の直後であって再生ペレット(X)の温度が化合物(A)の融点(℃)以上の温度である状態において、被覆方法(1)により行うことができる。再生ペレット(X)を乾燥させる工程において(又は乾燥させる工程の直後に)被覆工程を行うことによって、乾燥工程の熱を有効利用して被覆することができる。 Generally, when producing a molded product using resin pellets, a step of drying the raw material resin pellets is often included in advance. In one embodiment, the coating step can be performed by coating method (1) in a step of drying the recycled pellets (X) at a temperature equal to or higher than the melting point of compound (A), or immediately after the drying step, in a state in which the temperature of the recycled pellets (X) is equal to or higher than the melting point (°C) of compound (A). By performing the coating step in the step of drying the recycled pellets (X) (or immediately after the drying step), the heat from the drying step can be effectively utilized for coating.

 被覆方法(1)において用いる化合物(A)は、常温(20~25℃)で固体又は液体であってよく、固体であることが好ましい。化合物(A)が固体である場合は、取り扱いが容易となる。化合物(A)が固体である場合でも、化合物(A)融点以上の温度で再生ペレット(X)と接触されるので、化合物(A)は溶け、再生ペレット(X)の表面の少なくとも一部に濡れ広がることができる。その結果、再生ペレット(X)の表面の少なくとも一部を被覆することができる。一実施形態において、化合物(A)は、パウダー状、フレーク状又は顆粒状であることが好ましい。 The compound (A) used in the coating method (1) may be a solid or liquid at room temperature (20 to 25°C), and is preferably a solid. When the compound (A) is a solid, it is easy to handle. Even if the compound (A) is a solid, since it comes into contact with the recycled pellets (X) at a temperature equal to or higher than the melting point of the compound (A), the compound (A) melts and can wet and spread over at least a portion of the surface of the recycled pellets (X). As a result, at least a portion of the surface of the recycled pellets (X) can be coated. In one embodiment, the compound (A) is preferably in a powder, flake, or granular form.

 一実施形態において、被覆再生ペレット(Y)の製造方法は、化合物(A)が、パウダー状、フレーク状又は顆粒状であり、再生ペレット(X)と化合物(A)とを、化合物(A)の融点以上の温度で接触させることを含むように構成することができる。 In one embodiment, the method for producing the coated recycled pellets (Y) can be configured such that the compound (A) is in a powder, flake or granular form, and includes contacting the recycled pellets (X) with the compound (A) at a temperature equal to or higher than the melting point of the compound (A).

(被覆方法(2))
 被覆方法(2)は、再生ペレット(X)に液体の化合物(A)を接触させる方法である。液体の化合物(A)は、常温(20~25℃)で液体の化合物(A)であってよく、常温(20~25℃)で固体の化合物(A)を融点以上に加熱して得られる液体の化合物(A)であってもよい。また、常温(20~25℃)で固体の化合物(A)を溶媒に溶かして得られる液体の化合物(A)であってもよい。液体の化合物(A)を用いることによって、被覆工程において再生ペレット(X)を加熱する必要がない。
(Coating method (2))
The coating method (2) is a method of contacting the regenerated pellets (X) with a liquid compound (A). The liquid compound (A) may be a liquid compound (A) at room temperature (20 to 25°C), or may be a liquid compound (A) obtained by heating a solid compound (A) at room temperature (20 to 25°C) to a melting point or higher. It may also be a liquid compound (A) obtained by dissolving a solid compound (A) at room temperature (20 to 25°C) in a solvent. By using a liquid compound (A), it is not necessary to heat the regenerated pellets (X) in the coating process.

 接触させる方法は、限定されず、再生ペレット(X)の表面に、液体の化合物(A)を塗布、スプレー等により適用する方法、再生ペレット(X)と液体の化合物(A)とを撹拌して混合する方法等が挙げられる。 The method of contacting is not limited, and examples include a method of applying liquid compound (A) to the surface of recycled pellets (X) by coating, spraying, etc., and a method of stirring and mixing recycled pellets (X) and liquid compound (A).

 被覆工程の後、得られた被覆再生ペレット(Y)を、好ましくは室温(例えば25℃)~80℃、より好ましくは室温~40℃に冷却させて、表面の被覆層(又は被覆箇所)を固着させることが好ましい。被覆層を固着させることによって、化合物が均一に分散した状態を維持することができ、安定的な離型性の改善が可能となる。冷却方法は、限定されず、放冷、送風等であってよい。 After the coating process, it is preferable to cool the obtained coated recycled pellets (Y) to preferably room temperature (e.g., 25°C) to 80°C, more preferably room temperature to 40°C, to fix the surface coating layer (or the coated area). By fixing the coating layer, the compound can be maintained in a uniformly dispersed state, and stable release properties can be improved. The cooling method is not limited, and may be left to cool, blowing air, etc.

(化合物(A)の選択工程)
 被覆再生ペレット(Y)の製造方法は、被覆することに先立ち、化合物(A)を選択することを含んでいてよい。上記したように、再生ペレット(X)が、反応性官能基を有するエラストマーを含む場合は、化合物(A)は、(A-1)140℃における溶融粘度が0.1~8.0Pa・sであるオレフィン樹脂の含有量が多い(又は、それからなる)化合物(A)を選択して用いることによって、離型性をより高めることができる。
(Compound (A) Selection Step)
The method for producing the coated recycled pellets (Y) may include selecting the compound (A) prior to coating. As described above, when the recycled pellets (X) contain an elastomer having a reactive functional group, the compound (A) can be selected and used to further improve the releasability by selecting (A-1) a compound (A) having a high content of (or consisting of) an olefin resin having a melt viscosity of 0.1 to 8.0 Pa·s at 140°C.

 一実施形態において、化合物(A)を選択することは、
 再生ペレット(X)が、反応性官能基を有するエラストマーを再生ペレット(X)の総量に対して1質量%以上(好ましくは2質量%以上、より好ましくは3~10質量%)含む場合は、(A-1)140℃における溶融粘度が0.1~8.0Pa・sであるオレフィン樹脂を含む化合物(A)を選択し、好ましくはポリエチレン樹脂、エチレン共重合体、ポリプロピレン樹脂等のC1-4オレフィン系樹脂を含む化合物(A)を選択し、
 再生ペレット(X)が、反応性官能基を有するエラストマーを含まない、又は反応性官能基を有するエラストマーの含有量が再生ペレット(X)の総量に対して1質量%未満、好ましくは0.8質量%未満である場合は、(A-1)140℃における溶融粘度が0.1~8.0Pa・sであるオレフィン樹脂、(A-2)脂肪酸誘導体、及び(A-3)シリコーン系化合物から選択される1以上を化合物(A)の総量に対して合計95質量%以上含む(好ましくはこれらから選択される1以上からなる)、化合物(A)を選択し、好ましくは(A-1)140℃における溶融粘度が0.1~8.0Pa・sであるオレフィン樹脂、及び(A-2)脂肪酸エステルから選択される1以上を含む化合物(A)を選択し、より好ましくはポリエチレン樹脂、エチレン共重合体、ポリプロピレン樹脂等のC1-4オレフィン系樹脂;及び、ペンタエリスリトールトリステアレート、ペンタエリスリトールテトラステアレート等のC8-35脂肪酸エステル;から選ばれる1以上を含む化合物(A)を選択する。
In one embodiment, selecting compound (A) comprises:
In the case where the recycled pellets (X) contain an elastomer having a reactive functional group in an amount of 1% by mass or more (preferably 2% by mass or more, more preferably 3 to 10% by mass) based on the total amount of the recycled pellets (X), (A-1) a compound (A) containing an olefin resin having a melt viscosity of 0.1 to 8.0 Pa·s at 140°C is selected, preferably a compound (A) containing a C1-4 olefin resin such as a polyethylene resin, an ethylene copolymer, or a polypropylene resin is selected;
When the recycled pellets (X) do not contain an elastomer having a reactive functional group, or the content of the elastomer having a reactive functional group is less than 1 mass%, preferably less than 0.8 mass%, relative to the total amount of the recycled pellets (X), a compound (A) is selected that contains a total of 95 mass% or more of one or more selected from (A-1) an olefin resin having a melt viscosity at 140°C of 0.1 to 8.0 Pa·s, (A-2) a fatty acid derivative, and (A-3) a silicone-based compound, relative to the total amount of the compound (A) (preferably consisting of one or more selected from these), preferably a compound (A) containing one or more selected from (A-1) an olefin resin having a melt viscosity at 140°C of 0.1 to 8.0 Pa·s, and (A-2) a fatty acid ester, more preferably a compound (A) containing one or more selected from a C1-4 olefin-based resin such as a polyethylene resin, an ethylene copolymer, or a polypropylene resin; and a C8-35 fatty acid ester such as pentaerythritol tristearate or pentaerythritol tetrastearate.

[第5実施形態:被覆再生ペレット(Y)を含む成形品の製造方法]
 被覆再生ペレット(Y)は、公知の射出成形、異形・固化押出加工、プレス成形、紡糸加工等の方法によって成形・加工することができる。被覆再生ペレット(Y)は、金型からの離型性に優れるので、成形時の金型への離型剤の塗布回数を減らすことができる。また、金型との接触面積が大きい成形品を製造する場合でも金型からの離型性が優れているので、部品の形状の選択肢を広げることができる。
[Fifth embodiment: Manufacturing method of molded article containing coated recycled pellets (Y)]
The coated recycled pellets (Y) can be molded and processed by known methods such as injection molding, irregular shape/solidification extrusion processing, press molding, spinning processing, etc. The coated recycled pellets (Y) have excellent releasability from a mold, so that the number of times a mold release agent is applied to the mold during molding can be reduced. In addition, even when a molded product with a large contact area with the mold is manufactured, the mold release property is excellent, so that the options for the shape of the part can be expanded.

 一実施形態において、被覆再生ペレット(Y)を含む成形品の製造方法は、上記した被覆再生ペレット(Y)を、必要に応じて他の熱可塑性樹脂及び添加剤とともに、金型内に連続式で射出する又は押出すこと、及び金型へ離型剤を塗布することを含み、金型へ離型剤を塗布する回数が10回以上射出する又は押出す毎に1回であってよい。金型に塗布する離型剤は、限定されず、公知の離型剤から選択して用いることができる。 In one embodiment, the method for producing a molded product containing the coated recycled pellets (Y) includes continuously injecting or extruding the above-mentioned coated recycled pellets (Y) into a mold together with other thermoplastic resins and additives as necessary, and applying a release agent to the mold, and the number of times that the release agent is applied to the mold may be once for every 10 or more injections or extrusions. The release agent to be applied to the mold is not limited, and can be selected from known release agents.

 被覆再生ペレット(Y)は、金型からの離型性に優れるので、金型との接触面積が大きい成形品を射出成形又は押出成形する場合でも、金型への離型剤の塗布回数を減らすことができる。 The coated recycled pellets (Y) have excellent releasability from the mold, so even when injection molding or extrusion molding a molded product with a large contact area with the mold, the number of times that release agent needs to be applied to the mold can be reduced.

[第6実施形態:ポリアリーレンスルフィド樹脂組成物(Z)]
 上記した被覆再生ペレット(Y)は、必要に応じて、他の熱可塑性樹脂と混合して成形材料として用いることができる。他の熱可塑性樹脂としては、ポリアリーレンスルフィド樹脂を含むバージンペレット等が挙げられ、好ましくはポリアリーレンスルフィド樹脂を含むバージンペレットを含む。
[Sixth embodiment: Polyarylene sulfide resin composition (Z)]
The coated recycled pellets (Y) described above can be mixed with other thermoplastic resins as necessary and used as molding materials. Examples of other thermoplastic resins include virgin pellets containing polyarylene sulfide resins, and preferably virgin pellets containing polyarylene sulfide resins.

 一実施形態において、ポリアリーレンスルフィド樹脂組成物(Z)は、被覆再生ペレット(Y)とポリアリーレンスルフィド樹脂を含むバージンペレット(V)(以下、単に「バージンペレット(V)」ともいう)とを含むことが好ましい。被覆再生ペレット(Y)を含むことによって、再生用材料を有効活用し、かつ金型からの離型性に優れた樹脂組成物にすることができる。バージンペレット(V)を含むことによって、ポリアリーレンスルフィド樹脂の優れた物性を補強することができる。 In one embodiment, the polyarylene sulfide resin composition (Z) preferably contains coated recycled pellets (Y) and virgin pellets (V) containing polyarylene sulfide resin (hereinafter also simply referred to as "virgin pellets (V)"). By containing the coated recycled pellets (Y), it is possible to effectively utilize the recycled material and obtain a resin composition with excellent releasability from a mold. By containing the virgin pellets (V), it is possible to reinforce the excellent physical properties of the polyarylene sulfide resin.

 被覆再生ペレット(Y)の含有量は、被覆再生ペレット(Y)及びポリアリーレンスルフィド樹脂を含むバージンペレット(V)の総量中に50質量%以上であることが好ましく、50~99.99質量%がより好ましく、60~100質量%がさらに好ましい。ポリアリーレンスルフィド樹脂組成物(Z)は、被覆再生ペレット(Y)の含有量が高い場合でも、金型からの離型性に優れている。 The content of the coated recycled pellets (Y) is preferably 50% by mass or more, more preferably 50 to 99.99% by mass, and even more preferably 60 to 100% by mass, of the total amount of the coated recycled pellets (Y) and the virgin pellets (V) containing polyarylene sulfide resin. The polyarylene sulfide resin composition (Z) has excellent releasability from a mold even when the content of the coated recycled pellets (Y) is high.

 バージンペレット(V)に含まれるポリアリーレンスルフィド樹脂としては、上記した再生ペレット(X)の項において記載したものと同じものを例示でき、品質管理等の観点から、再生ペレット(X)中のポリアリーレンスルフィド樹脂と同じ組成であることが好ましい。バージンペレット(V)との用語には、バージンポリアリーレンスルフィド樹脂及びその組成物が含まれ得る。バージンペレット(V)は、再生ペレット(X)と同様に、エラストマー、有機又は無機充填剤、離型剤、一般に熱可塑性樹脂に添加されるその他の添加剤(例えば、難燃剤、染料や顔料等の着色剤、酸化防止剤や紫外線吸収剤等の安定剤、潤滑剤、結晶化促進剤、結晶核剤等)等のその他の成分を含むことができる。その他の成分についての詳細は、上記のとおりである。
 一実施形態において、品質管理等の観点から、バージンペレット(V)は、ポリアリーレンスルフィド樹脂以外の成分についても、再生ペレット(X)と同じ組成(例えば、添加剤の種類及び含有量が同じ)であることが好ましい。一実施形態において、再生ペレット(X)が反応性官能基を有するエラストマーを含有しない場合は、バージンペレット(V)も反応性官能基を有するエラストマーを含有しないことが好ましい。この場合において、化合物(A)は含んでいてもよく、含んでいなくてもよい。化合物(A)を含む場合は、その種類は限定されない。別の実施形態において、再生ペレット(X)が反応性官能基を有するエラストマーを含有する場合は、バージンペレット(V)も反応性官能基を有するエラストマーを含有することが好ましく、エラストマーの種類及び含有量が同じであることがより好ましい。この場合において、バージンペレット(V)は、化合物(A)を含むことが好ましく、(A-1)140℃における溶融粘度が0.1~8.0Pa・sであるオレフィン樹脂を選択することがより好ましい。
The polyarylene sulfide resin contained in the virgin pellet (V) can be exemplified by the same ones as those described in the above-mentioned section on the recycled pellet (X), and from the viewpoint of quality control, etc., it is preferable that the composition is the same as that of the polyarylene sulfide resin in the recycled pellet (X). The term virgin pellet (V) can include virgin polyarylene sulfide resin and its composition. The virgin pellet (V), like the recycled pellet (X), can contain other components such as elastomers, organic or inorganic fillers, release agents, and other additives generally added to thermoplastic resins (e.g., flame retardants, colorants such as dyes and pigments, stabilizers such as antioxidants and ultraviolet absorbers, lubricants, crystallization promoters, crystal nucleating agents, etc.). Details of the other components are as described above.
In one embodiment, from the viewpoint of quality control, etc., it is preferable that the virgin pellets (V) have the same composition as the recycled pellets (X) (for example, the type and content of additives are the same) with respect to components other than the polyarylene sulfide resin. In one embodiment, when the recycled pellets (X) do not contain an elastomer having a reactive functional group, it is preferable that the virgin pellets (V) also do not contain an elastomer having a reactive functional group. In this case, the compound (A) may or may not be contained. When the compound (A) is contained, the type is not limited. In another embodiment, when the recycled pellets (X) contain an elastomer having a reactive functional group, it is preferable that the virgin pellets (V) also contain an elastomer having a reactive functional group, and it is more preferable that the type and content of the elastomer are the same. In this case, it is preferable that the virgin pellets (V) contain the compound (A), and it is more preferable to select an olefin resin (A-1) having a melt viscosity at 140 ° C. of 0.1 to 8.0 Pa · s.

 バージンペレット(V)の溶融粘度は、本開示の効果を損ねない範囲であれば特に限定されないが、機械的物性と流動性のバランスの観点から、310℃及びせん断速度1200sec-1で測定した溶融粘度が、300Pa・s以下が好ましく、250Pa・s以下がより好ましい。 The melt viscosity of the virgin pellets (V) is not particularly limited as long as it is within a range that does not impair the effects of the present disclosure. From the viewpoint of the balance between mechanical properties and fluidity, the melt viscosity measured at 310° C. and a shear rate of 1200 sec −1 is preferably 300 Pa s or less, more preferably 250 Pa s or less.

 ポリアリーレンスルフィド樹脂組成物(Z)の製造方法は、限定されず、被覆再生ペレット(Y)と他の熱可塑性樹脂(好ましくはポリアリーレンスルフィド樹脂を含むバージンペレット)とを、ドライブレンドしてもよく、従来公知の1軸又は2軸押出機等の溶融混練装置を用いて溶融混練してもよいし、射出成形機のホッパー(材料供給部材)内で混合してもよい。 The method for producing the polyarylene sulfide resin composition (Z) is not limited, and the coated recycled pellets (Y) and other thermoplastic resins (preferably virgin pellets containing polyarylene sulfide resin) may be dry blended, or may be melt-kneaded using a conventional melt-kneading device such as a single-screw or twin-screw extruder, or may be mixed in the hopper (material supply member) of an injection molding machine.

 ポリアリーレンスルフィド樹脂組成物(Z)を含む成形品の製造方法は、上記した被覆再生ペレット(Y)を含む成形品の製造方法と同様にして行うことができる。 The method for producing a molded article containing the polyarylene sulfide resin composition (Z) can be carried out in the same manner as the method for producing a molded article containing the coated recycled pellets (Y) described above.

(用途)
 ポリアリーレンスルフィド樹脂組成物(Z)は、射出成形用樹脂組成物、又は押出成形用樹脂組成物として好適に用いることができる。
(Application)
The polyarylene sulfide resin composition (Z) can be suitably used as a resin composition for injection molding or a resin composition for extrusion molding.

 以下に実施例を示して本発明を更に具体的に説明するが、これらの実施例により本発明の解釈が限定されるものではない。 The present invention will be explained in more detail below with reference to examples, but the interpretation of the present invention is not limited to these examples.

[材料]
(PPS再生ペレット(X1))
 ポリフェニレンスルフィド樹脂((株)クレハ製、フォートロン(登録商標)KPS)65質量%、ガラス繊維30質量%、及びエラストマー(組成:E-GMA-MA(グリシジルメタクルレート含有量:3質量%))4質量%、残量は添加剤を含む樹脂組成物の射出成形品を、機械式粉砕機により粉砕して得た粉砕物を、2軸押出機を用いて320℃で溶融混練して押出し、PPS再生ペレット(X1)を得た。
[material]
(Recycled PPS pellets (X1))
An injection-molded product of a resin composition containing 65 mass% polyphenylene sulfide resin (manufactured by Kureha Corporation, Fortron (registered trademark) KPS), 30 mass% glass fiber, and 4 mass% elastomer (composition: E-GMA-MA (glycidyl methacrylate content: 3 mass%)), with the remainder being additives, was pulverized using a mechanical pulverizer to obtain a pulverized product, which was melt-kneaded and extruded at 320°C using a twin-screw extruder to obtain recycled PPS pellets (X1).

(PPS再生ペレット(X2))
 ポリフェニレンスルフィド樹脂((株)クレハ製、フォートロン(登録商標)KPS)69質量%、及びガラス繊維30質量%、残量は添加剤を含む樹脂組成物(エラストマー成分を含有しない)の射出成形品を、機械式粉砕機により粉砕して得た粉砕物を、2軸押出機を用いて320℃で溶融混練して押出し、PPS再生ペレット(X2)を得た。
(Recycled PPS pellets (X2))
An injection-molded product of a resin composition (containing no elastomer component) containing 69% by mass of polyphenylene sulfide resin (manufactured by Kureha Corporation, Fortron (registered trademark) KPS), 30% by mass of glass fiber, and the remainder being additives, was pulverized using a mechanical pulverizer. The pulverized product was melt-kneaded and extruded at 320°C using a twin-screw extruder to obtain recycled PPS pellets (X2).

(PPSバージンペレット(X3))
 ポリフェニレンスルフィド樹脂((株)クレハ製、フォートロン(登録商標)KPS)65質量%、ガラス繊維30質量%、及びエラストマー(組成:E-GMA-MA(グリシジルメタクルレート含有量:3質量%))4質量%、残量は添加剤を含む樹脂組成物(PPS再生ペレット(X1)で用いた樹脂組成物と同じ組成のバージン材)のペレットをPPSバージンペレット(X3)とした。
(PPS virgin pellets (X3))
Pellets of a resin composition (virgin material having the same composition as the resin composition used in the PPS recycled pellets (X1)) containing 65 mass % of polyphenylene sulfide resin (Fortron (registered trademark) KPS, manufactured by Kureha Corporation), 30 mass % of glass fiber, 4 mass % of elastomer (composition: E-GMA-MA (glycidyl methacrylate content: 3 mass %)), and the remainder of additives, were used as PPS virgin pellets (X3).

 化合物(A1):ポリエチレン樹脂(三洋化成工業(株)製、「サンワックス161-P」、顆粒状、融点103℃、140℃における溶融粘度4.3Pa・s
 化合物(A2):ペンタエリスリトールステアリン酸エステル(日油(株)社製、「ユニスターH476」、融点63℃
 なお、化合物(A1)及び化合物(A2)の融点、並びに化合物(A1)の140℃における溶融粘度は、以下の方法で測定した。
(融点)
 DSC装置(TA  Instrument社製、示差走査熱量計、DSC-Q1000)を用いて、融点(Tm)を、DSC法(JISK7121記載の方法)によって、窒素雰囲気下、昇温速度10℃/分の条件で測定した。
(140℃での粘度)
 JISK7117(1999年)に準拠し、B型粘度計(東機産業(株)製「RB-80H」)を用いて140℃での粘度を測定した。
Compound (A1): Polyethylene resin (manufactured by Sanyo Chemical Industries, Ltd., "Sanwax 161-P", granular, melting point 103°C, melt viscosity at 140°C 4.3 Pa·s)
Compound (A2): Pentaerythritol stearate (manufactured by NOF Corporation, "Unistar H476", melting point 63°C)
The melting points of compound (A1) and compound (A2) and the melt viscosity of compound (A1) at 140° C. were measured by the following methods.
(Melting Point)
The melting point (Tm) was measured by the DSC method (method described in JIS K7121) using a DSC device (differential scanning calorimeter, DSC-Q1000, manufactured by TA Instruments) under conditions of a nitrogen atmosphere and a temperature rise rate of 10° C./min.
(Viscosity at 140° C.)
The viscosity was measured at 140° C. using a Brookfield viscometer ("RB-80H" manufactured by Toki Sangyo Co., Ltd.) in accordance with JIS K7117 (1999).

[実施例1~4]
 表1に記載のPPS再生ペレット(X1)、又は(X2)の3kgの粉砕材を金属製容器(30cm×60cm×15cm)に入れ、表1に記載の割合になるよう化合物(A1)を添加し、送風乾燥機で140℃、3時間乾燥させた後、室温まで冷却させた。その後、ミキサーで攪拌(分散)させて被覆再生ペレットを得た。乾燥工程において化合物(A1)は溶解され添加された。得られた被覆再生ペレットにおいて、PPS再生ペレット(X1)、又は(X2)の表面の少なくとも一部が化合物(A1)により被覆されていた。
[Examples 1 to 4]
3 kg of crushed PPS recycled pellets (X1) or (X2) shown in Table 1 was placed in a metal container (30 cm x 60 cm x 15 cm), compound (A1) was added in the ratio shown in Table 1, and the mixture was dried at 140°C for 3 hours in a blower dryer and then cooled to room temperature. The mixture was then stirred (dispersed) in a mixer to obtain coated recycled pellets. Compound (A1) was dissolved and added in the drying process. In the obtained coated recycled pellets, at least a portion of the surface of the PPS recycled pellets (X1) or (X2) was coated with compound (A1).

[実施例5]
 PPS再生ペレット(X1)の3kgの粉砕材を金属製容器(30cm×60cm×15cm)に入れ、表2に記載の割合になるよう化合物(A2)を添加し、送風乾燥機で140℃、3時間乾燥させた後、室温まで冷却させた。その後、ミキサーで攪拌(分散)させて被覆再生ペレットを得た。乾燥工程において化合物(A2)は溶解され添加された。得られた被覆再生ペレットにおいて、PPS再生ペレット(X1)の表面の少なくとも一部が化合物(A2)により被覆されていた。
[Example 5]
3 kg of crushed PPS recycled pellets (X1) were placed in a metal container (30 cm x 60 cm x 15 cm), and compound (A2) was added in the proportions shown in Table 2. The mixture was dried in a blower dryer at 140°C for 3 hours and then cooled to room temperature. The mixture was then stirred (dispersed) in a mixer to obtain coated recycled pellets. Compound (A2) was dissolved and added in the drying process. In the obtained coated recycled pellets, at least a portion of the surface of the PPS recycled pellets (X1) was coated with compound (A2).

[実施例6]
 PPSバージンペレット(X3)3kgを金属製容器(30cm×60cm×15cm)に入れ、化合物(A1)を6g添加し、送風乾燥機で140℃、3時間乾燥させた後、室温まで冷却させた。その後、ミキサーで攪拌(分散)させて被覆ペレットを得た。乾燥工程において化合物(A1)は溶解され添加された。得られた被覆ペレットにおいて、PPSバージンペレット(X3)の表面の少なくとも一部が化合物(A1)により被覆されていた。
 得られた被覆ペレットの射出成形品を、機械式粉砕機により粉砕して得た粉砕物を、2軸押出機を用いて320℃で溶融混練して押出し、PPS再生ペレット(X3)を得た。
[Example 6]
3 kg of PPS virgin pellets (X3) were placed in a metal container (30 cm x 60 cm x 15 cm), 6 g of compound (A1) was added, and the mixture was dried in a blower dryer at 140°C for 3 hours, and then cooled to room temperature. The mixture was then stirred (dispersed) in a mixer to obtain coated pellets. Compound (A1) was dissolved and added in the drying process. In the obtained coated pellets, at least a part of the surface of the PPS virgin pellets (X3) was coated with compound (A1).
The injection-molded product of the obtained coated pellets was pulverized by a mechanical pulverizer, and the pulverized product was melt-kneaded and extruded at 320° C. by a twin-screw extruder to obtain recycled PPS pellets (X3).

[比較例1]
 PPS再生ペレット(X1)を化合物(A)のコーティングなしで用いた。
[Comparative Example 1]
The PPS regenerated pellets (X1) were used without coating with compound (A).

[比較例2]
 PPS再生ペレット(X2)を化合物(A)のコーティングなしで用いた。
[Comparative Example 2]
The PPS regenerated pellets (X2) were used without coating with compound (A).

[比較例3~5]
 表1に記載のPPS再生ペレット(X1)、又は(X2)の3kgの粉砕材を金属製容器(30cm×60cm×15cm)に入れ、送風乾燥機で140℃、3時間乾燥させた後、室温まで冷却させた。表1に記載の割合になるよう化合物(A1)を添加し、その後、ミキサーで攪拌(分散)させた。この方法において、化合物(A1)は固体状態で添加された。ペレットの表面を目視したところ、ペレット表面には化合物(A)は付着していなかった。
[Comparative Examples 3 to 5]
3 kg of crushed PPS recycled pellets (X1) or (X2) shown in Table 1 was placed in a metal container (30 cm x 60 cm x 15 cm), dried in a blower dryer at 140°C for 3 hours, and then cooled to room temperature. Compound (A1) was added in the proportion shown in Table 1, and then stirred (dispersed) in a mixer. In this method, compound (A1) was added in a solid state. When the surface of the pellets was visually observed, compound (A) was not attached to the pellet surface.

[比較例6、7]
 PPS再生ペレット(X1)の3kgの粉砕材を金属製容器(30cm×60cm×15cm)に入れ、表2に記載の割合になるよう化合物(A1)を添加し、送風乾燥機で140℃、3時間乾燥させた後、室温まで冷却させた。その後、ミキサーで攪拌(分散)させて被覆再生ペレットを得た。乾燥工程において化合物(A1)は溶解され添加された。得られた被覆再生ペレットにおいて、PPS再生ペレット(X1)の表面の少なくとも一部が化合物(A1)により被覆されていた。
[Comparative Examples 6 and 7]
3 kg of crushed PPS recycled pellets (X1) were placed in a metal container (30 cm x 60 cm x 15 cm), and compound (A1) was added in the proportions shown in Table 2. The mixture was dried in a blower dryer at 140°C for 3 hours and then cooled to room temperature. The mixture was then stirred (dispersed) in a mixer to obtain coated recycled pellets. Compound (A1) was dissolved and added in the drying process. In the obtained coated recycled pellets, at least a portion of the surface of the PPS recycled pellets (X1) was coated with compound (A1).

[離型抵抗]
 実施例及び比較例のペレットを用いて、以下の方法で離型抵抗を測定した。結果を表1に示す。
 射出成形機を用いて下記の条件で図1に示す二重円筒形の成形品を成形し、成形片(試験片)を金型から押出す時の力を測定し、測定値を離型抵抗値とした。なお、射出成形の際には、ホッパー内にホッパーキャパシティー量を供給し(つまり、継ぎ足しせず1回の供給量で)、その80質量%消費時の離型抵抗を測定した。
  圧力センサー:日本キスラー(株)製「間接式型内センサー」(型式:9221A)
  射出成形機:東芝機械(株)製「EC60Ni1.5A」
  シリンダー温度:320℃
  射出時間:12秒
  冷却時間:45秒
  金型温度:150℃
[Mold release resistance]
The pellets of the examples and comparative examples were used to measure the release resistance by the following method. The results are shown in Table 1.
A double cylindrical molded product as shown in Fig. 1 was molded under the following conditions using an injection molding machine, and the force when the molded piece (test piece) was extruded from the mold was measured, and the measured value was taken as the demolding resistance. During injection molding, the hopper capacity amount was supplied to the hopper (i.e., the amount supplied at one time without topping up), and the demolding resistance was measured when 80% by mass was consumed.
Pressure sensor: "Indirect type in-mold sensor" (model: 9221A) manufactured by Kistler Japan Ltd.
Injection molding machine: Toshiba Machine Co., Ltd. "EC60Ni1.5A"
Cylinder temperature: 320°C
Injection time: 12 seconds Cooling time: 45 seconds Mold temperature: 150°C

 実施例1~3、及び比較例3、4の離型抵抗値をRとし、比較例1の離型抵抗値をRとして、Rに対するRの比の値[R/R]を算出した。同様に、実施例4及び比較例5の離型抵抗値をRとし、比較例2の離型抵抗値をRとして、Rに対するRの比の値[R/R]を算出した。結果を表1に示す。[R/R]が1.0未満である場合、化合物(A1)で被覆されていない樹脂よりも離型性が向上してはいるが、[R/R]が0.98以上である場合は離型性が未だ十分ではない。
 実施例5、6及び比較例6、7の離型抵抗値をRとし、比較例1の離型抵抗値をRとして、Rに対するRの比の値[R/R]を算出した。結果を表2に示す。
The release resistance values of Examples 1 to 3 and Comparative Examples 3 and 4 were taken as R Y , and the release resistance value of Comparative Example 1 was taken as R X , and the ratio of R Y to R X , [R Y /R X ], was calculated. Similarly, the release resistance values of Example 4 and Comparative Example 5 were taken as R Y , and the release resistance value of Comparative Example 2 was taken as R X , and the ratio of R Y to R X , [R Y /R X ], was calculated. The results are shown in Table 1. When [R Y /R X ] is less than 1.0, the release property is improved compared to a resin not coated with compound (A1), but when [R Y /R X ] is 0.98 or more, the release property is still insufficient.
The release resistance values of Examples 5 and 6 and Comparative Examples 6 and 7 were taken as R Y , and the release resistance value of Comparative Example 1 was taken as R X , and the ratio of R Y to R X [R Y /R X ] was calculated. The results are shown in Table 2.

[金型付着物の評価]
 実施例及び比較例のペレットを用いて、以下の方法で金型付着物を測定した。結果を表1、2に示す。
 ベント部とキャビティ部とが脱着式の入れ子方式の金型を使用した。各リペレット材を用いて、下記の射出成形機及び条件で、図2に示す寸法及び形状を有する成形体を4時間連続成形(1000回)した。連続成形前後で、金型から取り外したベント部及びキャビティ部の総重量を測定した。連続成形前後のベント部及びキャビティ部の総重量の変化量を、金型への付着物の重量(μg)として算出した。
  射出成形機:FANUC ROBOSHOT S2000i30A
  シリンダー温度:340℃
  射出時間:2秒
  冷却時間:10秒
  金型温度:140℃
 金型付着物が、100μg以下である場合はモールドデポジットを抑制する効果があり、90μg以下である場合はモールドデポジットを抑制する効果が優れており、80μg以下である場合はモールドデポジットを抑制する効果がより優れている。
[Evaluation of Mold Adhesion]
The pellets of the examples and comparative examples were used to measure the amount of material adhering to a mold by the following method. The results are shown in Tables 1 and 2.
A nested mold with removable vent and cavity parts was used. Using each repellet material, molded bodies having the dimensions and shapes shown in Figure 2 were continuously molded for 4 hours (1000 times) using the following injection molding machine and conditions. The total weight of the vent and cavity parts removed from the mold was measured before and after the continuous molding. The change in the total weight of the vent and cavity parts before and after the continuous molding was calculated as the weight (μg) of the matter adhering to the mold.
Injection molding machine: FANUC ROBOSHOT S2000i30A
Cylinder temperature: 340°C
Injection time: 2 seconds Cooling time: 10 seconds Mold temperature: 140°C
When the amount of mold adhesion is 100 μg or less, there is an effect of suppressing mold deposits, when it is 90 μg or less, there is an excellent effect of suppressing mold deposits, and when it is 80 μg or less, there is an even better effect of suppressing mold deposits.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

 表1に示すように、PPS再生ペレット(X1)の表面の少なくとも一部が化合物(A1)で被覆されている実施例1~3のペレットは、比較例1のPPS再生ペレット(X1)よりも離型抵抗が小さくなっており、かつ化合物(A1)で被覆されていないペレット(比較例1のPPS再生ペレット(X1))の離型抵抗値(R)に対する離型抵抗値の比の値[R/R]が0.98未満以下となっており、金型からの離型性が向上している。PPS再生ペレット(X2)の表面の少なくとも一部が化合物(A1)で被覆されている実施例4のペレットは、比較例2のPPS再生ペレット(X2)よりも離型抵抗が小さくなっており、かつ化合物(A1)で被覆されていないペレット(比較例1のPPS再生ペレット(X2))の離型抵抗値(R)に対する離型抵抗値の比の値[R/R]が0.98未満以下となっており、金型からの離型性が向上している。
 実施例1~4に示すように、化合物(A1)の融点以上の温度でPPS再生ペレット(X1)又は(X2)に接触させることにより、PPS再生ペレット(X1)又は(X2)の表面の少なくとも一部が化合物(A)で被覆される。得られた被覆再生ペレットは、化合物(A)で被覆されていないペレットの離型抵抗値(R)に対する離型抵抗値の比の値[R/R]が0.98未満となり、離型性をより向上させることができる。
 比較例3~5に示すように、成形時に化合物(A)を配合した場合であっても、PPS再生ペレットの表面に付着していない場合は、成形時に化合物(A)が偏析してしまい離型性の向上効果が十分に得られない。
As shown in Table 1, the pellets of Examples 1 to 3 in which at least a portion of the surface of the PPS recycled pellets (X1) is coated with compound (A1) have a smaller release resistance than the PPS recycled pellets (X1) of Comparative Example 1, and the ratio of the release resistance value to the release resistance value (R X ) of the pellet not coated with compound (A1) (PPS recycled pellets (X1) of Comparative Example 1) [R Y /R X ] is less than 0.98, improving the releasability from the mold. The pellets of Example 4 in which at least a portion of the surface of the PPS recycled pellets (X2) is coated with compound (A1) have a smaller release resistance than the PPS recycled pellets (X2) of Comparative Example 2, and the ratio of the release resistance value to the release resistance value (R X ) of the pellet not coated with compound (A1) (PPS recycled pellets (X2) of Comparative Example 1) [R Y /R X ] is less than 0.98, improving the releasability from the mold.
As shown in Examples 1 to 4, at least a portion of the surface of the PPS recycled pellets (X1) or (X2) is coated with compound (A) by contacting the PPS recycled pellets (X1) or (X2) at a temperature equal to or higher than the melting point of compound (A1). The resulting coated recycled pellets have a release resistance ratio [R Y /R X ] of less than 0.98 to the release resistance (R X ) of a pellet not coated with compound (A), thereby further improving releasability.
As shown in Comparative Examples 3 to 5, even when compound (A) is blended during molding, if compound (A) is not attached to the surface of the PPS recycled pellets, compound (A) segregates during molding, and the effect of improving releasability is not sufficiently obtained.

 表2に示すように、PPS再生ペレット(X1)の表面の少なくとも一部が化合物(A2)で被覆されている実施例5のペレットは、比較例1のPPS再生ペレット(X1)よりも離型抵抗が小さくなっており、かつ化合物(A2)で被覆されていないペレット(比較例1のPPS再生ペレット(X1))の離型抵抗値(R)に対する離型抵抗値の比の値[R/R]が0.98未満以下となっており、金型からの離型性が向上している。
 また、PPSバージンペレット(X3)の表面の少なくとも一部が化合物(A1)で被覆されているペレットから作製した実施例6のPPS再生ペレット(X3)は、再生ペレット作製時に化合物(A1)で被覆しなくても、比較例1のPPS再生ペレット(X1)よりも離型抵抗が小さくなっており、かつ化合物(A1)で被覆されていないペレット(比較例1のPPS再生ペレット(X1))の離型抵抗値(R)に対する離型抵抗値の比の値[R/R]が0.98未満以下となっており、金型からの離型性が向上している。
 実施例2と実施例5との対比から、反応性官能基を有するエラストマーを含む再生用材料(X1)を用いた場合においては、化合物(A)として140℃における溶融粘度が0.1~8.0Pa・sであるオレフィン樹脂を含む化合物(A)を用いることにより、離型抵抗値の比の値[R/R]がより小さくなり、より優れた離型性を実現することができる。
 比較例6に示すように、PPS再生ペレットの表面に化合物(A1)が付着している場合であっても、その配合量が少ない場合は、化合物(A1)で被覆されていないペレットの離型抵抗値(R)に対する離型抵抗値の比の値[R/R]が0.98を超えており、金型からの離型性が十分ではない。
As shown in Table 2, the pellets of Example 5, in which at least a portion of the surface of the recycled PPS pellets (X1) is coated with compound (A2), have a smaller release resistance than the recycled PPS pellets (X1) of Comparative Example 1, and the ratio of the release resistance value to the release resistance value (R X ) of the pellets not coated with compound (A2) (recycled PPS pellets (X1) of Comparative Example 1) [R Y /R X ] is less than 0.98, thereby improving releasability from the mold.
Furthermore, the PPS recycled pellets (X3) of Example 6, which were produced from virgin PPS pellets (X3) having at least a portion of their surface coated with compound (A1), had a lower release resistance than the PPS recycled pellets (X1) of Comparative Example 1, even though the recycled pellets were not coated with compound (A1) during production. Furthermore, the ratio of the release resistance value to the release resistance value (R X ) of the pellets not coated with compound (A1) (recycled PPS pellets (X1) of Comparative Example 1) [R Y /R X ] was less than 0.98, and the releasability from the mold was improved.
Comparing Example 2 with Example 5, when using a recycled material (X1) containing an elastomer having a reactive functional group, by using as compound (A) a compound (A) containing an olefin resin having a melt viscosity at 140°C of 0.1 to 8.0 Pa·s, the ratio of the release resistance values [R Y /R X ] becomes smaller, and better releasability can be achieved.
As shown in Comparative Example 6, even when the compound (A1) is attached to the surface of the PPS recycled pellets, if the amount of the compound (A1) added is small, the ratio of the release resistance value (R Y /R X ) to the release resistance value (R X ) of the pellets not covered with the compound (A1) exceeds 0.98, and the releasability from the mold is insufficient.

 表1、2に示すように、実施例のPPS再生ペレットは、金型付着物が80g以下であり、モールドデポジットを抑制する効果がより優れている。これに対して、比較例7のPPS再生ペレットは、金型付着物が100gを超えており、モールドデポジットが多く発生する結果となった。 As shown in Tables 1 and 2, the PPS recycled pellets of the examples had a mold deposit of 80 g or less, and were more effective at suppressing mold deposits. In contrast, the PPS recycled pellets of Comparative Example 7 had a mold deposit of more than 100 g, resulting in a large amount of mold deposits.

 本開示の再生ペレットの離型性を向上させる方法は、再生ペレットを用いて成形する際に金型からの離型性を高めることができるので、生産性を高めることができ、産業上の利用可能性を有している。
 本開示の被覆再生ペレットは、金型からの離型性に優れているので、射出成形用樹脂ペレット、又は押出成形用樹脂ペレットとして好適に用いることができ、産業上の利用可能性を有している。
The method of improving the demoldability of recycled pellets disclosed herein can improve the demoldability from a mold when using recycled pellets for molding, thereby increasing productivity and having industrial applicability.
The coated recycled pellets of the present disclosure have excellent releasability from a mold and can therefore be suitably used as resin pellets for injection molding or resin pellets for extrusion molding, and have industrial applicability.

Claims (16)

 ポリアリーレンスルフィド樹脂を含む再生ペレットの離型性を向上させる方法であり、
 ポリアリーレンスルフィド樹脂を含むペレット(Q)の表面の少なくとも一部を、(A-1)140℃における溶融粘度が0.1~8.0Pa・sであるオレフィン樹脂、(A-2)脂肪酸誘導体、及び(A-3)シリコーン系化合物から選択される1以上を含む化合物(A)で被覆することを含み、化合物(A)による総被覆量が、ポリアリーレンスルフィド樹脂を含むペレット(Q)100質量部に対して0.04~3.0質量部である、再生ペレットの離型性を向上させる方法。
A method for improving the releasability of recycled pellets containing a polyarylene sulfide resin, comprising:
A method for improving the releasability of recycled pellets, comprising coating at least a portion of the surface of pellets (Q) containing a polyarylene sulfide resin with a compound (A) containing one or more selected from (A-1) an olefin resin having a melt viscosity of 0.1 to 8.0 Pa·s at 140°C, (A-2) a fatty acid derivative, and (A-3) a silicone-based compound, wherein the total amount of coating with compound (A) is 0.04 to 3.0 parts by mass per 100 parts by mass of pellets (Q) containing a polyarylene sulfide resin.
 ポリアリーレンスルフィド樹脂を含むペレット(Q)が、ポリアリーレンスルフィド樹脂を含む物品の再生ペレット(Q2)である、請求項1に記載の方法。 The method according to claim 1, wherein the pellets (Q) containing the polyarylene sulfide resin are recycled pellets (Q2) of an article containing a polyarylene sulfide resin.  ポリアリーレンスルフィド樹脂を含む再生ペレットの離型性を向上させるための化合物(A)の使用であって、
 ポリアリーレンスルフィド樹脂を含むペレット(Q)の表面の少なくとも一部を、(A-1)140℃における溶融粘度が0.1~8.0Pa・sであるオレフィン樹脂、(A-2)脂肪酸誘導体、及び(A-3)シリコーン系化合物から選択される1以上を含む化合物(A)で被覆することを含み、化合物(A)の総被覆量が、ポリアリーレンスルフィド樹脂を含むペレット(Q)100質量部に対して0.04~3.0質量部である、化合物(A)の使用。
Use of a compound (A) for improving the mold release properties of recycled pellets containing a polyarylene sulfide resin, comprising:
A use of compound (A), which comprises coating at least a portion of the surface of pellets (Q) containing a polyarylene sulfide resin with compound (A) containing one or more selected from (A-1) an olefin resin having a melt viscosity of 0.1 to 8.0 Pa·s at 140°C, (A-2) a fatty acid derivative, and (A-3) a silicone-based compound, wherein the total coating amount of compound (A) is 0.04 to 3.0 parts by mass per 100 parts by mass of pellets (Q) containing a polyarylene sulfide resin.
 ポリアリーレンスルフィド樹脂を含むペレット(Q)が、ポリアリーレンスルフィド樹脂を含む物品の再生ペレット(Q2)である、請求項3に記載の使用。 The use according to claim 3, wherein the pellets (Q) containing polyarylene sulfide resin are recycled pellets (Q2) of an article containing polyarylene sulfide resin.  ポリアリーレンスルフィド樹脂を含む再生ペレット(X)の表面の少なくとも一部が、(A-1)140℃における溶融粘度が0.1~8.0Pa・sであるオレフィン樹脂、(A-2)脂肪酸誘導体、及び(A-3)シリコーン系化合物から選択される1以上を含む化合物(A)で被覆されており、化合物(A)の総被覆量が、再生ペレット(X)100質量部に対して0.04~3.0質量部である、被覆再生ペレット(Y)。 Coated recycled pellets (Y) in which at least a portion of the surface of recycled pellets (X) containing polyarylene sulfide resin is coated with compound (A) containing one or more selected from (A-1) an olefin resin having a melt viscosity of 0.1 to 8.0 Pa·s at 140°C, (A-2) a fatty acid derivative, and (A-3) a silicone-based compound, and the total coating amount of compound (A) is 0.04 to 3.0 parts by mass per 100 parts by mass of recycled pellets (X).  被覆再生ペレット(Y)の離型抵抗値(R)の、化合物(A)で被覆されていない未被覆のポリアリーレンスルフィド樹脂を含む再生ペレット(X)の離型抵抗値(R)に対する比の値[R/R]が0.98未満である、請求項5に記載の被覆再生ペレット(Y)。 The coated regenerated pellet (Y) according to claim 5, wherein the ratio [R Y /R X ] of the release resistance value (R Y ) of the coated regenerated pellet ( Y ) to the release resistance value (R X ) of a regenerated pellet ( X ) containing an uncoated polyarylene sulfide resin not coated with the compound (A) is less than 0.98.  ポリアリーレンスルフィド樹脂を含む再生ペレット(X)が、反応性官能基を有するエラストマーを、ポリアリーレンスルフィド樹脂を含む再生ペレット(X)の総量に対して1質量%以上含む、請求項5又は6に記載の被覆再生ペレット(Y)。 The coated recycled pellets (Y) according to claim 5 or 6, wherein the recycled pellets (X) containing polyarylene sulfide resin contain an elastomer having a reactive functional group in an amount of 1% by mass or more based on the total amount of the recycled pellets (X) containing polyarylene sulfide resin.  ポリアリーレンスルフィド樹脂を含む再生ペレット(X)が、α-オレフィン由来の構成単位とα,β-不飽和酸のグリシジルエステル由来の構成単位とを含むエラストマーを含む、請求項5又は6に記載の被覆再生ペレット(Y)。 The coated recycled pellets (Y) according to claim 5 or 6, wherein the recycled pellets (X) containing a polyarylene sulfide resin contain an elastomer containing structural units derived from an α-olefin and structural units derived from a glycidyl ester of an α,β-unsaturated acid.  ポリアリーレンスルフィド樹脂を含む再生ペレット(X)が、反応性官能基を有するエラストマーを含み、かつ、化合物(A)が、(A-1)140℃における溶融粘度が0.1~8.0Pa・sであるオレフィン樹脂を化合物(A)の総量に対して95質量%以上含む、請求項5又は6に記載の被覆再生ペレット(Y)。 The coated recycled pellets (Y) according to claim 5 or 6, wherein the recycled pellets (X) containing a polyarylene sulfide resin contain an elastomer having a reactive functional group, and the compound (A) contains (A-1) an olefin resin having a melt viscosity of 0.1 to 8.0 Pa·s at 140°C in an amount of 95 mass% or more relative to the total amount of the compound (A).  ポリアリーレンスルフィド樹脂を含む再生ペレット(X)が、反応性官能基を有するエラストマーを含まない、又は反応性官能基を有するエラストマーの含有量がポリアリーレンスルフィド樹脂を含む再生ペレット(X)の総量に対して1質量%未満である、請求項5又は6に記載の被覆再生ペレット(Y)。 The coated recycled pellets (Y) according to claim 5 or 6, wherein the recycled pellets (X) containing polyarylene sulfide resin do not contain an elastomer having a reactive functional group, or the content of the elastomer having a reactive functional group is less than 1 mass% relative to the total amount of the recycled pellets (X) containing polyarylene sulfide resin.  被覆再生ペレット(Y)の製造方法であり、
 ポリアリーレンスルフィド樹脂を含む再生ペレット(X)の表面の少なくとも一部を、(A-1)140℃における溶融粘度が0.1~8.0Pa・sであるオレフィン樹脂、(A-2)脂肪酸誘導体、及び(A-3)シリコーン系化合物から選択される1以上を含む化合物(A)で被覆することを含み、
 化合物(A)の総配合量が、再生ペレット(X)100質量部に対して0.04~3.0質量部である、被覆再生ペレット(Y)の製造方法。
A method for producing coated recycled pellets (Y),
The method includes coating at least a portion of the surface of the recycled pellets (X) containing a polyarylene sulfide resin with a compound (A) containing one or more selected from (A-1) an olefin resin having a melt viscosity of 0.1 to 8.0 Pa·s at 140°C, (A-2) a fatty acid derivative, and (A-3) a silicone-based compound;
A method for producing coated regenerated pellets (Y), wherein the total amount of compound (A) is 0.04 to 3.0 parts by mass per 100 parts by mass of the regenerated pellets (X).
 化合物(A)が、パウダー状、フレーク状又は顆粒状であり、
 被覆することが、ポリアリーレンスルフィド樹脂を含む再生ペレット(X)と化合物(A)とを、化合物(A)の融点以上の温度で接触させることを含む、請求項11に記載の被覆再生ペレット(Y)の製造方法。
The compound (A) is in the form of a powder, flake or granule,
The method for producing the coated recycled pellets (Y) according to claim 11, wherein the coating step comprises contacting the recycled pellets (X) containing a polyarylene sulfide resin with the compound (A) at a temperature equal to or higher than the melting point of the compound (A).
 被覆することが、ポリアリーレンスルフィド樹脂を含む再生ペレット(X)と液体の化合物(A)とを接触させることを含む、請求項11に記載の被覆再生ペレット(Y)の製造方法。 The method for producing the coated regenerated pellets (Y) according to claim 11, wherein the coating step includes contacting the regenerated pellets (X) containing a polyarylene sulfide resin with a liquid compound (A).  被覆することに先立ち、化合物(A)を選択することを含み、
 化合物(A)を選択することが、
 ポリアリーレンスルフィド樹脂を含む再生ペレット(X)が、反応性官能基を有するエラストマーを、ポリアリーレンスルフィド樹脂を含む再生ペレット(X)の総量に対して1質量%以上含む場合は、化合物(A)中の(A-1)140℃における溶融粘度が0.1~8.0Pa・sであるオレフィン樹脂を化合物(A)の総量に対して合計95質量%以上含む化合物(A)を選択し、
 ポリアリーレンスルフィド樹脂を含む再生ペレット(X)が、反応性官能基を有するエラストマーを含まない、又は反応性官能基を有するエラストマーの含有量がポリアリーレンスルフィド樹脂を含む再生ペレット(X)の総量に対して1質量%未満である場合は、(A-1)140℃における溶融粘度が0.1~8.0Pa・sであるオレフィン樹脂、(A-2)脂肪酸誘導体、及び(A-3)シリコーン系化合物から選択される1以上を化合物(A)の総量に対して合計95質量%以上含む化合物(A)を選択する、請求項11から13のいずれか一項に記載の被覆再生ペレット(Y)の製造方法。
prior to coating, selecting a compound (A),
Selecting the compound (A),
In the case where the recycled pellets (X) containing a polyarylene sulfide resin contain an elastomer having a reactive functional group in an amount of 1% by mass or more based on the total amount of the recycled pellets (X) containing a polyarylene sulfide resin, (A-1) in the compound (A) is selected, which contains an olefin resin having a melt viscosity of 0.1 to 8.0 Pa·s at 140°C in a total amount of 95% by mass or more based on the total amount of the compound (A);
In the case where the recycled pellets (X) containing a polyarylene sulfide resin do not contain an elastomer having a reactive functional group, or the content of the elastomer having a reactive functional group is less than 1 mass% relative to the total amount of the recycled pellets (X) containing a polyarylene sulfide resin, the method for producing coated recycled pellets (Y) according to any one of claims 11 to 13 is selected from (A-1) an olefin resin having a melt viscosity at 140 ° C. of 0.1 to 8.0 Pa · s, (A-2) a fatty acid derivative, and (A-3) a silicone-based compound, and the compound (A) contains one or more of these in total at 95 mass % or more relative to the total amount of the compound (A).
 請求項5又は6に記載の被覆再生ペレット(Y)と、ポリアリーレンスルフィド樹脂を含むバージンペレット(V)とを含む、ポリアリーレンスルフィド樹脂組成物(Z)。 A polyarylene sulfide resin composition (Z) comprising the coated recycled pellets (Y) according to claim 5 or 6 and virgin pellets (V) containing a polyarylene sulfide resin.  被覆再生ペレット(Y)の含有量が、被覆再生ペレット(Y)及びポリアリーレンスルフィド樹脂を含むバージンペレット(V)の総量に対して50質量%以上である、請求項15に記載のポリアリーレンスルフィド樹脂組成物(Z)。 The polyarylene sulfide resin composition (Z) according to claim 15, wherein the content of the coated recycled pellets (Y) is 50 mass% or more based on the total amount of the coated recycled pellets (Y) and the virgin pellets (V) containing the polyarylene sulfide resin.
PCT/JP2024/013423 2023-03-31 2024-04-01 Method for improving releasability of regenerated pellets, and coated regenerated pellets WO2024204841A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023059563 2023-03-31
JP2023-059563 2023-03-31

Publications (1)

Publication Number Publication Date
WO2024204841A1 true WO2024204841A1 (en) 2024-10-03

Family

ID=92906149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/013423 WO2024204841A1 (en) 2023-03-31 2024-04-01 Method for improving releasability of regenerated pellets, and coated regenerated pellets

Country Status (1)

Country Link
WO (1) WO2024204841A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025094875A1 (en) * 2023-10-31 2025-05-08 ポリプラスチックス株式会社 Method for producing recycled polyarylene sulfide resin composition, and recycled polyarylene sulfide resin composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04353524A (en) * 1991-05-30 1992-12-08 Dainippon Ink & Chem Inc Thermoplastic resin molding material and its production
JP2004169027A (en) * 2002-11-08 2004-06-17 Asahi Kasei Chemicals Corp Method for producing thermoplastic resin pellets containing additives
JP2006022326A (en) * 2004-06-09 2006-01-26 Toray Ind Inc Preparation process of polyphenylenesulfide resin composition
JP2016188327A (en) * 2015-03-30 2016-11-04 住友精化株式会社 Self-adhesion preventive agent
WO2016185856A1 (en) * 2015-05-15 2016-11-24 Dic株式会社 Polyarylene sulfide dispersion, fine particles, method for producing polyarylene sulfide dispersion, and method for producing fine particles
JP2022165484A (en) * 2021-04-20 2022-11-01 東ソー株式会社 Gaskets for lithium-ion batteries
JP2023015622A (en) * 2021-07-20 2023-02-01 Dic株式会社 Polyarylene sulfide-based resin composition and biaxially oriented film using the same, laminate, and circuit board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04353524A (en) * 1991-05-30 1992-12-08 Dainippon Ink & Chem Inc Thermoplastic resin molding material and its production
JP2004169027A (en) * 2002-11-08 2004-06-17 Asahi Kasei Chemicals Corp Method for producing thermoplastic resin pellets containing additives
JP2006022326A (en) * 2004-06-09 2006-01-26 Toray Ind Inc Preparation process of polyphenylenesulfide resin composition
JP2016188327A (en) * 2015-03-30 2016-11-04 住友精化株式会社 Self-adhesion preventive agent
WO2016185856A1 (en) * 2015-05-15 2016-11-24 Dic株式会社 Polyarylene sulfide dispersion, fine particles, method for producing polyarylene sulfide dispersion, and method for producing fine particles
JP2022165484A (en) * 2021-04-20 2022-11-01 東ソー株式会社 Gaskets for lithium-ion batteries
JP2023015622A (en) * 2021-07-20 2023-02-01 Dic株式会社 Polyarylene sulfide-based resin composition and biaxially oriented film using the same, laminate, and circuit board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025094875A1 (en) * 2023-10-31 2025-05-08 ポリプラスチックス株式会社 Method for producing recycled polyarylene sulfide resin composition, and recycled polyarylene sulfide resin composition

Similar Documents

Publication Publication Date Title
WO2024204841A1 (en) Method for improving releasability of regenerated pellets, and coated regenerated pellets
JP4800366B2 (en) Resin composition pellet containing fibrous inorganic filler
US20220289916A1 (en) Recycled polymer compositions and methods thereof
WO2024204840A1 (en) Recycled polyarylene sulfide resin composition and method for producing same
KR102695568B1 (en) Resin composition
JP4357930B2 (en) Method for producing thermoplastic resin pellets containing additives
US20100207497A1 (en) Injection-molded article of an organic fiber-reinforced polylactic acid resin
JP4885185B2 (en) Propylene polymer composition molded body production method
JP2004169027A5 (en)
JP4885184B2 (en) Propylene polymer composition molded body production method
US8883279B2 (en) Fluid-assisted injection molded articles and process
KR101812367B1 (en) Wholly aromatic liquid crystalline polyester resin compound with excellent releasing property and measurability and method for preparing the same
KR20140021682A (en) Thermoplastic elastomers moldable under low shear conditions
WO2023068186A1 (en) Polyarylene sulfide composition and method for producing same
WO2025094876A1 (en) Coated recycled material and method for producing same
EP2426173B1 (en) Wholly aromatic liquid crystal polyester resin compound having improved mould-release properties, and a production method therefor
JP2004168056A5 (en)
JP7112797B2 (en) Cleaning agents for molding machines
JP7315179B2 (en) Cleaning agents for molding machines
JP6408945B2 (en) Recycling method and material for thermoplastic resin waste with coating film
WO2022153945A1 (en) Liquid crystal polyester composition, method for producing liquid crystal polyester composition, and method for producing injection molded article
JPS63264667A (en) Aromatic polysulfone resin molding material
KR101602240B1 (en) Thermoplastic elastomer composition of enhancing abrasion resistance, marking preventing function, tear strength and net weight using the supercritical injection foaming molding and method for manufacturing thereof
JP4390529B2 (en) Method for producing additive-containing thermoplastic resin pellets
JP2004168056A (en) Method for producing thermoplastic resin pellets containing additives

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24780933

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2025511729

Country of ref document: JP