[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024167357A1 - Method for operating multipath-related ue in ue-to-ue relay in wireless communication system - Google Patents

Method for operating multipath-related ue in ue-to-ue relay in wireless communication system Download PDF

Info

Publication number
WO2024167357A1
WO2024167357A1 PCT/KR2024/001952 KR2024001952W WO2024167357A1 WO 2024167357 A1 WO2024167357 A1 WO 2024167357A1 KR 2024001952 W KR2024001952 W KR 2024001952W WO 2024167357 A1 WO2024167357 A1 WO 2024167357A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
relay
remote
indirect
direct
Prior art date
Application number
PCT/KR2024/001952
Other languages
French (fr)
Korean (ko)
Inventor
백서영
박기원
이승민
황대성
이영대
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2024167357A1 publication Critical patent/WO2024167357A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/22Manipulation of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • the following description relates to a wireless communication system, and more specifically, to an operation method and device of a source remote UE, etc., related to multipath in a UE-to-UE relay.
  • 5G Radio Access Technologies
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • WiFi Wireless Fidelity
  • 5G 5th Generation
  • the three major requirement areas of 5G are (1) Enhanced Mobile Broadband (eMBB), (2) Massive Machine Type Communication (mMTC), and (3) Ultra-reliable and Low Latency Communications (URLLC).
  • eMBB Enhanced Mobile Broadband
  • mMTC Massive Machine Type Communication
  • URLLC Ultra-reliable and Low Latency Communications
  • KPI Key Performance Indicator
  • 5G supports these various use cases in a flexible and reliable manner.
  • eMBB goes far beyond basic mobile Internet access, covering rich interactive tasks, media and entertainment applications in the cloud or augmented reality.
  • Data is one of the key drivers of 5G, and for the first time in the 5G era, we may not see dedicated voice services.
  • voice is expected to be handled as an application simply using the data connection provided by the communication system.
  • the main reasons for the increased traffic volume are the increase in content size and the increase in the number of applications requiring high data rates.
  • Streaming services audio and video
  • interactive video and mobile Internet connectivity will become more prevalent as more devices are connected to the Internet. Many of these applications require always-on connectivity to push real-time information and notifications to users. Cloud storage and applications are rapidly growing on mobile communication platforms, and this can be applied to both work and entertainment.
  • cloud storage is a particular use case that is driving the growth of uplink data rates.
  • 5G is also used for remote work in the cloud, requiring much lower end-to-end latency to maintain a good user experience when tactile interfaces are used.
  • Entertainment For example, cloud gaming and video streaming are other key factors driving the demand for mobile broadband capabilities. Entertainment is essential on smartphones and tablets anywhere, including in high-mobility environments such as trains, cars, and airplanes.
  • Another use case is augmented reality and information retrieval for entertainment.
  • augmented reality requires very low latency and instantaneous data volumes.
  • URLLC encompasses new services that will transform industries through ultra-reliable/available low-latency links, such as remote control of critical infrastructure and self-driving vehicles. Reliability and latency levels are essential for smart grid control, industrial automation, robotics, and drone control and coordination.
  • 5G can complement fiber-to-the-home (FTTH) and cable-based broadband (or DOCSIS) by delivering streams rated at hundreds of megabits per second to gigabits per second. These high speeds are required to deliver television at resolutions of 4K and beyond (6K, 8K and beyond), as well as virtual and augmented reality.
  • Virtual Reality (VR) and Augmented Reality (AR) applications include near-immersive sporting events. Certain applications may require special network configurations. For example, VR gaming may require gaming companies to integrate their core servers with the network operator’s edge network servers to minimize latency.
  • Automotive is expected to be a major new driver for 5G, with many use cases for mobile communications in vehicles. For example, entertainment for passengers requires simultaneous high-capacity and high-mobility mobile broadband, as future users will continue to expect high-quality connectivity regardless of their location and speed.
  • Another application in the automotive sector is an augmented reality dashboard, which displays information superimposed on what the driver sees through the windshield, identifying objects in the dark and telling the driver about their distance and movement.
  • wireless modules will enable communication between vehicles, information exchange between vehicles and supporting infrastructure, and information exchange between vehicles and other connected devices (e.g. devices accompanied by pedestrians).
  • Safety systems can guide drivers to alternative courses of action to drive more safely, thus reducing the risk of accidents.
  • the next step will be remotely controlled or self-driven vehicles, which will require highly reliable and very fast communication between different self-driving vehicles and between vehicles and infrastructure.
  • self-driving cars will perform all driving activities, leaving drivers to focus only on traffic anomalies that the car itself cannot identify.
  • the technical requirements for self-driving cars will require ultra-low latency and ultra-high reliability to increase traffic safety to levels that humans cannot achieve.
  • Smart cities and smart homes will be embedded with dense wireless sensor networks.
  • a distributed network of intelligent sensors will identify conditions for cost- and energy-efficient maintenance of a city or home.
  • a similar setup can be done for each home.
  • Temperature sensors, window and heating controllers, burglar alarms, and appliances are all connected wirelessly. Many of these sensors are typically low data rates, low power, and low cost. However, for example, real-time HD video may be required for certain types of devices for surveillance.
  • Smart grids interconnect these sensors using digital information and communication technologies to collect information and act on it. This information can include the actions of suppliers and consumers, allowing smart grids to improve efficiency, reliability, economy, sustainability of production, and distribution of fuels such as electricity in an automated manner. Smart grids can also be viewed as another sensor network with low latency.
  • Telecommunication systems can support telemedicine, which provides clinical care from a distance. This can help reduce distance barriers and improve access to health services that are not always available in remote rural areas. It can also be used to save lives in critical care and emergency situations.
  • Mobile-based wireless sensor networks can provide remote monitoring and sensors for parameters such as heart rate and blood pressure.
  • Wireless and mobile communications are becoming increasingly important in industrial applications. Wiring is expensive to install and maintain. Therefore, the possibility of replacing cables with reconfigurable wireless links is an attractive opportunity for many industries. However, achieving this requires that wireless connections operate with similar delay, reliability and capacity as cables, and that their management is simplified. Low latency and very low error probability are the new requirements that need to be connected with 5G.
  • Logistics and freight tracking are important use cases for mobile communications, enabling tracking of inventory and packages from anywhere using location-based information systems. Logistics and freight tracking use cases typically require low data rates but require wide range and reliable location information.
  • a wireless communication system is a multiple access system that supports communication with multiple users by sharing available system resources (e.g., bandwidth, transmission power, etc.).
  • multiple access systems include a CDMA (code division multiple access) system, an FDMA (frequency division multiple access) system, a TDMA (time division multiple access) system, an OFDMA (orthogonal frequency division multiple access) system, an SC-FDMA (single carrier frequency division multiple access) system, and an MC-FDMA (multi carrier frequency division multiple access) system.
  • SL refers to a communication method that establishes a direct link between user equipment (UE) to directly exchange voice or data between terminals without going through a base station (BS).
  • UE user equipment
  • BS base station
  • SL is being considered as a solution to address the burden on base stations due to rapidly increasing data traffic.
  • V2X vehicle-to-everything refers to a communication technology that exchanges information with other vehicles, pedestrians, and objects with built-in infrastructure through wired/wireless communication.
  • V2X can be divided into four types: V2V (vehicle-to-vehicle), V2I (vehicle-to-infrastructure), V2N (vehicle-to-network), and V2P (vehicle-to-pedestrian).
  • V2X communication can be provided through the PC5 interface and/or the Uu interface.
  • Figure 1 is a diagram for explaining and comparing V2X communication based on RAT prior to NR and V2X communication based on NR.
  • V2X messages may include location information, dynamic information, attribute information, etc.
  • a terminal may transmit a CAM of a periodic message type and/or a DENM of an event triggered message type to another terminal.
  • CAM may include basic vehicle information such as vehicle dynamic status information such as direction and speed, vehicle static data such as dimensions, exterior lighting status, and route history.
  • the terminal may broadcast CAM, and the latency of the CAM may be less than 100ms.
  • the terminal may generate DENM and transmit it to other terminals.
  • all vehicles within the transmission range of the terminal may receive CAM and/or DENM.
  • DENM may have a higher priority than CAM.
  • V2X scenarios have been proposed in NR in relation to V2X communication.
  • various V2X scenarios may include vehicle platooning, advanced driving, extended sensors, and remote driving.
  • vehicles can dynamically form a group and move together. For example, in order to perform platoon operations based on vehicle platooning, vehicles belonging to the group can receive periodic data from the lead vehicle. For example, vehicles belonging to the group can use the periodic data to reduce or increase the gap between vehicles.
  • the vehicles can be semi-autonomous or fully automated.
  • each vehicle can adjust its trajectories or maneuvers based on data acquired from local sensors of nearby vehicles and/or nearby logical entities.
  • each vehicle can share driving intentions with nearby vehicles.
  • raw data or processed data, or live video data acquired through local sensors can be exchanged between vehicles, logical entities, pedestrian terminals, and/or V2X application servers.
  • the vehicle can perceive the environment better than it can perceive using its own sensors.
  • a remote driver or V2X application can operate or control the remote vehicle.
  • cloud computing-based driving can be used to operate or control the remote vehicle.
  • access to a cloud-based back-end service platform can be considered for remote driving.
  • the present disclosure addresses a technical problem of an operation method and device of a source remote UE involved in multipath in a UE-to-UE relay.
  • One embodiment is a method for operating a source remote UE (User Equipment) in a UE-to-UE relay in a wireless communication system, the method including: the source remote UE establishing a direct link with a target remote UE; the source remote UE establishing an end-to-end link, corresponding to an indirect link, with the target remote UE through a relay UE; the source remote UE activating at least one of the direct link and the indirect link; and the source remote UE transmitting a message to the target remote UE through the activated link, wherein an upper layer of the source remote UE notifies an AS layer of a first ID set including a first SRC ID and a first DST ID used for the indirect link together with a second ID set including a second SRC ID and a second DST ID related to the direct link.
  • a source remote UE User Equipment
  • a source remote UE in a UE-to-UE relay comprises at least one processor; and at least one computer memory operably connected to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform operations, the operations comprising: establishing a direct link with a target remote UE; establishing an end-to-end link with the target remote UE, via the relay UE, corresponding to an indirect link; activating at least one of the direct link and the indirect link; and transmitting a message to the target remote UE via the activated link, wherein an upper layer of the source remote UE notifies an AS layer of a first set of IDs including a first SRC ID and a first DST ID used for the indirect link together with a second set of IDs including a second SRC ID and a second DST ID associated with the direct link.
  • One embodiment is a non-volatile computer-readable storage medium storing at least one computer program comprising instructions that, when executed by at least one processor, cause the at least one processor to perform operations for a source remote UE, the operations comprising: establishing a direct link with a target remote UE; establishing an end-to-end link with the target remote UE, via a relay UE, the end-to-end link corresponding to an indirect link; activating at least one of the direct link and the indirect link; and transmitting a message to the target remote UE via the activated link, wherein an upper layer of the source remote UE notifies an AS layer of a first set of IDs including a first SRC ID, a first DST ID used for the indirect link, together with a second set of IDs including a second SRC ID, a second DST ID associated with the direct link.
  • the above source remote UE may consider the indirect link corresponding to the first ID set and the direct link corresponding to the second ID set as links connected to the same target remote UE.
  • Activation of at least one of the above direct link and indirect link can be performed based on RSRP (Reference Signals Received Power).
  • RSRP Reference Signals Received Power
  • the above direct link and indirect link may be allowed to be activated simultaneously regardless of the primary RLC entity.
  • the method may further include: the source remote UE selecting the relay UE associated with the addition of the indirect link; and the source remote UE establishing an SL connection with the relay UE.
  • the above source remote UE can consider that multi-path is established based on receiving a response to RRCReconfigurationSidelink transmitted through the indirect link through the direct link.
  • the source remote UE can arbitrarily deactivate either an RLC entity existing in the direct path or an RLC entity existing in the indirect path.
  • the above RSRP threshold value may be determined by a higher layer of the source remote UE.
  • the threshold for the above indirect path and the threshold for the direct path may be different.
  • the source remote UE can transmit a message through both the RLC entity existing in the direct path and the RLC entity existing in the indirect path.
  • the source remote UE can transmit a message through a path whose signal strength is greater than or equal to the RSRP threshold.
  • multi-path operation is possible in U2U operation according to the above embodiment.
  • efficient path activation/deactivation is possible when PDCP duplication is allowed. By increasing data reliability and transmitting packets using only one path when channel conditions are good, transmission resources can be used dynamically and efficiently.
  • Figure 1 is a diagram for explaining and comparing V2X communication based on RAT prior to NR and V2X communication based on NR.
  • FIG. 2 illustrates the structure of an LTE system according to one embodiment of the present disclosure.
  • FIG. 3 illustrates a radio protocol architecture for a user plane and a control plane according to an embodiment of the present disclosure.
  • FIG. 4 illustrates the structure of an NR system according to one embodiment of the present disclosure.
  • FIG. 5 illustrates a functional partition between NG-RAN and 5GC according to one embodiment of the present disclosure.
  • Figure 6 shows the structure of a radio frame of NR to which the embodiment(s) can be applied.
  • FIG. 7 illustrates a slot structure of an NR frame according to one embodiment of the present disclosure.
  • FIG. 8 illustrates a radio protocol architecture for SL communication according to one embodiment of the present disclosure.
  • FIG. 9 illustrates a radio protocol architecture for SL communication according to one embodiment of the present disclosure.
  • FIG. 10 illustrates a synchronization source or synchronization reference of V2X according to one embodiment of the present disclosure.
  • FIG. 11 illustrates a procedure for a terminal to perform V2X or SL communication depending on a transmission mode according to one embodiment of the present disclosure.
  • FIG. 12 illustrates a procedure for a terminal to perform path switching according to one embodiment of the present disclosure.
  • Figure 13 illustrates a direct to indirect path transition.
  • Figures 14 and 15 are diagrams for explaining UE-to-UE Relay Selection.
  • Figure 16 illustrates a protocol stack in a UE-to-UE relay.
  • Figure 17 is a diagram related to packet duplication.
  • FIGS 18 to 22 are drawings for explaining one embodiment.
  • FIGS 23 to 29 illustrate various devices to which the embodiments can be applied.
  • “/” and “,” should be interpreted as representing “and/or”.
  • “A/B” can mean “A and/or B”.
  • “A, B” can mean “A and/or B”.
  • “A/B/C” can mean “at least one of A, B, and/or C”.
  • “A, B, C” can mean “at least one of A, B, and/or C”.
  • “or” should be interpreted as meaning “and/or.”
  • “A or B” can include “only A,” “only B,” and/or “both A and B.”
  • “or” should be interpreted as meaning “additionally or alternatively.”
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA can be implemented with wireless technologies such as UTRA (universal terrestrial radio access) or CDMA2000.
  • TDMA can be implemented with wireless technologies such as GSM (global system for mobile communications)/GPRS (general packet radio service)/EDGE (enhanced data rates for GSM evolution).
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA can be implemented with wireless technologies such as IEEE (institute of electrical and electronics engineers) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA (evolved UTRA).
  • IEEE 802.16m is an evolution of IEEE 802.16e, providing backward compatibility with systems based on IEEE 802.16e.
  • UTRA is part of UMTS (universal mobile telecommunications system).
  • 3GPP (3rd generation partnership project) LTE (long term evolution) is a part of E-UMTS (evolved UMTS) that uses E-UTRA (evolved-UMTS terrestrial radio access), employing OFDMA in the downlink and SC-FDMA in the uplink.
  • LTE-A (advanced) is an evolution of 3GPP LTE.
  • 5G NR is a new clean-slate type mobile communication system that is the successor technology to LTE-A and has the characteristics of high performance, low latency, and high availability. 5G NR can utilize all available spectrum resources, from low frequency bands below 1 GHz to intermediate frequency bands between 1 GHz and 10 GHz, and high frequency (millimeter wave) bands above 24 GHz.
  • FIG. 2 illustrates the structure of an LTE system according to one embodiment of the present disclosure. This may be called an Evolved-UMTS Terrestrial Radio Access Network (E-UTRAN), or a Long Term Evolution (LTE)/LTE-A system.
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • the E-UTRAN includes a base station (20) that provides a control plane and a user plane to a terminal (10).
  • the terminal (10) may be fixed or mobile, and may be called by other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), a mobile terminal (MT), a wireless device, etc.
  • the base station (20) refers to a fixed station that communicates with the terminal (10), and may be called by other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, etc.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point etc.
  • Base stations (20) can be connected to each other through the X2 interface.
  • the base station (20) is connected to an EPC (Evolved Packet Core, 30) through the S1 interface, more specifically, to an MME (Mobility Management Entity) through the S1-MME and to an S-GW (Serving Gateway) through the S1-U.
  • EPC Evolved Packet Core, 30
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • EPC (30) consists of MME, S-GW, and P-GW (Packet Data Network-Gateway).
  • MME has terminal connection information or terminal capability information, and this information is mainly used for terminal mobility management.
  • S-GW is a gateway with E-UTRAN as an end point
  • P-GW is a gateway with PDN (Packet Data Network) as an end point.
  • the layers of the Radio Interface Protocol between the terminal and the network can be divided into L1 (the first layer), L2 (the second layer), and L3 (the third layer) based on the three lower layers of the Open System Interconnection (OSI) standard model, which is widely known in communication systems.
  • OSI Open System Interconnection
  • the physical layer belonging to the first layer provides an information transfer service using a physical channel
  • the RRC (Radio Resource Control) layer located in the third layer controls radio resources between the terminal and the network.
  • the RRC layer exchanges RRC messages between the terminal and the base station.
  • FIG. 3(a) illustrates a radio protocol architecture for a user plane according to an embodiment of the present disclosure.
  • FIG. 3(b) illustrates a wireless protocol structure for a control plane according to an embodiment of the present disclosure.
  • the user plane is a protocol stack for transmitting user data
  • the control plane is a protocol stack for transmitting control signals.
  • the physical layer provides information transmission services to the upper layer using a physical channel.
  • the physical layer is connected to the upper layer, the Medium Access Control (MAC) layer, through a transport channel.
  • Data moves between the MAC layer and the physical layer through the transport channel.
  • the transport channel is classified according to how and with what characteristics data is transmitted through the wireless interface.
  • the physical channel can be modulated using the OFDM (Orthogonal Frequency Division Multiplexing) method and utilizes time and frequency as radio resources.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the MAC layer provides services to the upper layer, the radio link control (RLC) layer, through logical channels.
  • the MAC layer provides a mapping function from multiple logical channels to multiple transport channels.
  • the MAC layer provides a logical channel multiplexing function by mapping from multiple logical channels to a single transport channel.
  • the MAC sublayer provides data transmission services on logical channels.
  • the RLC layer performs concatenation, segmentation, and reassembly of RLC SDUs (Serving Data Units).
  • RLC SDUs Server Data Units
  • the RLC layer provides three operation modes: Transparent Mode (TM), Unacknowledged Mode (UM), and Acknowledged Mode (AM).
  • TM Transparent Mode
  • UM Unacknowledged Mode
  • AM Acknowledged Mode
  • AM RLC provides error correction through automatic repeat request (ARQ).
  • the RRC (Radio Resource Control) layer is defined only in the control plane.
  • the RRC layer is responsible for controlling logical channels, transport channels, and physical channels in relation to the configuration, re-configuration, and release of radio bearers.
  • RB refers to a logical path provided by the first layer (physical layer or PHY layer) and the second layer (MAC layer, RLC layer, PDCP (Packet Data Convergence Protocol) layer) for data transmission between the terminal and the network.
  • the functions of the PDCP layer in the user plane include forwarding of user data, header compression, and ciphering.
  • the functions of the PDCP layer in the control plane include forwarding of control plane data and ciphering/integrity protection.
  • Establishing an RB means the process of specifying the characteristics of the radio protocol layer and channel to provide a specific service, and setting each specific parameter and operation method.
  • RB can be divided into two types: SRB (Signaling Radio Bearer) and DRB (Data Radio Bearer).
  • SRB is used as a channel to transmit RRC messages in the control plane
  • DRB is used as a channel to transmit user data in the user plane.
  • the terminal When an RRC connection is established between the RRC layer of the terminal and the RRC layer of the E-UTRAN, the terminal is in the RRC_CONNECTED state, otherwise it is in the RRC_IDLE state.
  • RRC_CONNECTED When an RRC connection is established between the RRC layer of the terminal and the RRC layer of the E-UTRAN, the terminal is in the RRC_CONNECTED state, otherwise it is in the RRC_IDLE state.
  • an RRC_INACTIVE state is additionally defined, and a terminal in the RRC_INACTIVE state can release the connection with the base station while maintaining the connection with the core network.
  • Downlink transmission channels that transmit data from a network to a terminal include the BCH (Broadcast Channel) that transmits system information, and the downlink SCH (Shared Channel) that transmits user traffic or control messages. Traffic or control messages of downlink multicast or broadcast services may be transmitted through the downlink SCH, or may be transmitted through a separate downlink MCH (Multicast Channel). Meanwhile, uplink transmission channels that transmit data from a terminal to a network include the RACH (Random Access Channel) that transmits initial control messages, and the uplink SCH (Shared Channel) that transmits user traffic or control messages.
  • RACH Random Access Channel
  • Logical channels that are located above the transport channel and are mapped to the transport channel include the Broadcast Control Channel (BCCH), Paging Control Channel (PCCH), Common Control Channel (CCCH), Multicast Control Channel (MCCH), and Multicast Traffic Channel (MTCH).
  • BCCH Broadcast Control Channel
  • PCCH Paging Control Channel
  • CCCH Common Control Channel
  • MCCH Multicast Control Channel
  • MTCH Multicast Traffic Channel
  • a physical channel consists of multiple OFDM symbols in the time domain and multiple sub-carriers in the frequency domain.
  • One sub-frame consists of multiple OFDM symbols in the time domain.
  • a resource block is a resource allocation unit and consists of multiple OFDM symbols and multiple sub-carriers.
  • each subframe can use specific sub-carriers of specific OFDM symbols (e.g., the first OFDM symbol) of the corresponding subframe for the Physical Downlink Control Channel (PDCCH), i.e., the L1/L2 control channel.
  • PDCCH Physical Downlink Control Channel
  • a Transmission Time Interval is a unit time of subframe transmission.
  • FIG. 4 illustrates the structure of an NR system according to one embodiment of the present disclosure.
  • the NG-RAN may include a gNB (next generation-Node B) and/or eNB that provide user plane and control plane protocol termination to the UE.
  • FIG. 4 exemplifies a case including only a gNB.
  • the gNB and the eNB are connected to each other via an Xn interface.
  • the gNB and the eNB are connected to a 5th generation core network (5G Core Network: 5GC) via an NG interface. More specifically, they are connected to an access and mobility management function (AMF) via an NG-C interface, and to a user plane function (UPF) via an NG-U interface.
  • AMF access and mobility management function
  • UPF user plane function
  • FIG. 5 illustrates a functional partition between NG-RAN and 5GC according to one embodiment of the present disclosure.
  • the gNB can provide functions such as inter-cell radio resource management (Inter Cell RRM), radio bearer management (RB control), connection mobility control (Connection Mobility Control), radio admission control (Radio Admission Control), measurement configuration & provision, and dynamic resource allocation.
  • the AMF can provide functions such as NAS (Non Access Stratum) security and idle state mobility processing.
  • the UPF can provide functions such as mobility anchoring and PDU (Protocol Data Unit) processing.
  • the SMF Session Management Function
  • Figure 6 shows the structure of a radio frame of NR to which the embodiment(s) can be applied.
  • a radio frame can be used in uplink and downlink transmission in NR.
  • a radio frame has a length of 10 ms and can be defined as two 5 ms half-frames (Half-Frames, HF).
  • a half-frame can include five 1 ms subframes (Subframes, SF).
  • a subframe can be divided into one or more slots, and the number of slots in a subframe can be determined according to the subcarrier spacing (SCS).
  • SCS subcarrier spacing
  • Each slot can include 12 or 14 OFDM (A) symbols according to the cyclic prefix (CP).
  • each slot can contain 14 symbols.
  • each slot can contain 12 symbols.
  • the symbols can contain OFDM symbols (or CP-OFDM symbols), SC-FDMA symbols (or DFT-s-OFDM symbols).
  • Table 1 below shows the number of symbols per slot ( ⁇ ) depending on the SCS setting ( ⁇ ) when normal CP is used. ), number of slots per frame ( ) and the number of slots per subframe ( ) is an example.
  • Table 2 illustrates the number of symbols per slot, the number of slots per frame, and the number of slots per subframe according to SCS when extended CP is used.
  • OFDM(A) numerology e.g., SCS, CP length, etc.
  • OFDM(A) numerology e.g., SCS, CP length, etc.
  • the (absolute time) section of a time resource e.g., subframe, slot, or TTI
  • TU Time Unit
  • multiple numerologies or SCS can be supported to support various 5G services. For example, when the SCS is 15 kHz, wide area in traditional cellular bands can be supported, and when the SCS is 30 kHz/60 kHz, dense-urban, lower latency and wider carrier bandwidth can be supported. When the SCS is 60 kHz or higher, a bandwidth greater than 24.25 GHz can be supported to overcome phase noise.
  • the NR frequency band can be defined by two types of frequency ranges.
  • the two types of frequency ranges can be FR1 and FR2.
  • the numerical value of the frequency range can be changed, and for example, the two types of frequency ranges can be as shown in Table 3 below.
  • FR1 can mean “sub 6GHz range”
  • FR2 can mean “above 6GHz range” and can be called millimeter wave (mmW).
  • mmW millimeter wave
  • FR1 can include a band of 410 MHz to 7125 MHz as shown in Table 4 below. That is, FR1 can include a frequency band of 6 GHz (or 5850, 5900, 5925 MHz, etc.) or higher.
  • the frequency band of 6 GHz (or 5850, 5900, 5925 MHz, etc.) or higher included in FR1 can include an unlicensed band.
  • the unlicensed band can be used for various purposes, for example, it can be used for communication for vehicles (e.g., autonomous driving).
  • FIG. 7 illustrates a slot structure of an NR frame according to one embodiment of the present disclosure.
  • a slot includes multiple symbols in the time domain.
  • one slot may include 14 symbols, but in the case of an extended CP, one slot may include 12 symbols.
  • one slot may include 7 symbols, but in the case of an extended CP, one slot may include 6 symbols.
  • a carrier includes a plurality of subcarriers in the frequency domain.
  • An RB Resource Block
  • An RB Resource Block
  • a BWP Bandwidth Part
  • P Physical Resource Block
  • a carrier can include at most N (for example, 5) BWPs.
  • Data communication can be performed through activated BWPs.
  • Each element can be referred to as a Resource Element (RE) in the resource grid, and one complex symbol can be mapped.
  • RE Resource Element
  • the wireless interface between terminals or between terminals and a network may be composed of an L1 layer, an L2 layer, and an L3 layer.
  • the L1 layer may mean a physical layer.
  • the L2 layer may mean at least one of a MAC layer, an RLC layer, a PDCP layer, and an SDAP layer.
  • the L3 layer may mean an RRC layer.
  • V2X or SL (sidelink) communication is explained.
  • FIG. 8 illustrates a radio protocol architecture for SL communication according to an embodiment of the present disclosure. Specifically, (a) of FIG. 8 illustrates a user plane protocol stack of LTE, and (b) of FIG. 8 illustrates a control plane protocol stack of LTE.
  • FIG. 9 illustrates a radio protocol architecture for SL communication according to an embodiment of the present disclosure. Specifically, (a) of FIG. 9 illustrates a user plane protocol stack of NR, and (b) of FIG. 9 illustrates a control plane protocol stack of NR.
  • FIG. 10 illustrates a synchronization source or synchronization reference of V2X according to one embodiment of the present disclosure.
  • a terminal in V2X, can be directly synchronized to GNSS (global navigation satellite systems), or can be indirectly synchronized to GNSS through a terminal (within network coverage or out of network coverage) that is directly synchronized to GNSS.
  • GNSS global navigation satellite systems
  • the terminal can calculate the DFN and subframe number using UTC (Coordinated Universal Time) and a (pre-)configured DFN offset.
  • the terminal may be directly synchronized to the base station, or may be synchronized to another terminal that is time/frequency synchronized to the base station.
  • the base station may be an eNB or a gNB.
  • the terminal may receive synchronization information provided by the base station and be directly synchronized to the base station. Thereafter, the terminal may provide the synchronization information to other adjacent terminals.
  • the terminal may follow the cell associated with the frequency (if it is within cell coverage at the frequency), the primary cell, or the serving cell (if it is outside cell coverage at the frequency) for synchronization and downlink measurement.
  • a base station may provide synchronization settings for a carrier used for V2X or SL communication.
  • the terminal may follow the synchronization settings received from the base station. If the terminal does not detect any cell on the carrier used for the V2X or SL communication and does not receive synchronization settings from the serving cell, the terminal may follow the preset synchronization settings.
  • the terminal may be synchronized to another terminal that has not obtained synchronization information directly or indirectly from the base station or GNSS.
  • the synchronization source and preference may be preset for the terminal.
  • the synchronization source and preference may be set via a control message provided by the base station.
  • SL synchronization source can be associated with a synchronization priority.
  • the relationship between synchronization source and synchronization priority can be defined as in Table 5 or Table 6.
  • Table 5 or Table 6 is only an example, and the relationship between synchronization source and synchronization priority can be defined in various forms.
  • P0 may mean the highest priority
  • P6 may mean the lowest priority
  • the base station may include at least one of a gNB or an eNB.
  • GNSS-based synchronization or base station-based synchronization can be (pre-)configured.
  • the terminal can derive its transmission timing from the available synchronization reference with the highest priority.
  • SL synchronization signal Sidelink Synchronization Signal, SLSS
  • SLSS Segment Synchronization Signal
  • SLSS is an SL-specific sequence and may include a Primary Sidelink Synchronization Signal (PSSS) and a Secondary Sidelink Synchronization Signal (SSSS).
  • PSSS Primary Sidelink Synchronization Signal
  • SSSS Secondary Sidelink Synchronization Signal
  • the PSSS may be referred to as a Sidelink Primary Synchronization Signal (S-PSS)
  • S-SSS Sidelink Secondary Synchronization Signal
  • S-SSS Sidelink Secondary Synchronization Signal
  • length-127 M-sequences may be used for the S-PSS
  • length-127 Gold sequences may be used for the S-SSS.
  • a terminal may detect an initial signal (signal detection) and acquire synchronization using the S-PSS.
  • the terminal may acquire detailed synchronization and detect a synchronization signal ID using the S-PSS and the S-SSS.
  • PSBCH Physical Sidelink Broadcast Channel
  • PSBCH Physical Sidelink Broadcast Channel
  • the basic information may be information related to SLSS, duplex mode (DM), TDD UL/DL (Time Division Duplex Uplink/Downlink) configuration, resource pool related information, type of application related to SLSS, subframe offset, broadcast information, etc.
  • the payload size of PSBCH may be 56 bits including a 24-bit CRC.
  • the S-PSS, S-SSS and PSBCH may be included in a block format supporting periodic transmission (e.g., SL SS (Synchronization Signal)/PSBCH block, hereinafter referred to as S-SSB (Sidelink-Synchronization Signal Block)).
  • the S-SSB may have the same numerology (i.e., SCS and CP length) as the PSCCH (Physical Sidelink Control Channel)/PSSCH (Physical Sidelink Shared Channel) in a carrier, and the transmission bandwidth may be within a (pre-)configured SL BWP (Sidelink BWP).
  • the bandwidth of the S-SSB may be 11 RB (Resource Block).
  • the PSBCH may span 11 RBs.
  • the frequency location of the S-SSB may be (pre-)configured. Therefore, the terminal does not need to perform hypothesis detection in frequency to discover the S-SSB in the carrier.
  • the transmitting terminal may transmit one or more S-SSBs to a receiving terminal within one S-SSB transmission period according to the SCS.
  • the number of S-SSBs that the transmitting terminal transmits to the receiving terminal within one S-SSB transmission period may be pre-configured or configured for the transmitting terminal.
  • the S-SSB transmission period may be 160 ms.
  • an S-SSB transmission period of 160 ms may be supported for all SCSs.
  • the transmitting terminal can transmit one or two S-SSBs to the receiving terminal within one S-SSB transmission period.
  • the transmitting terminal can transmit one or two S-SSBs to the receiving terminal within one S-SSB transmission period.
  • the transmitting terminal can transmit one, two, or four S-SSBs to the receiving terminal within one S-SSB transmission period.
  • FIG. 11 illustrates a procedure for a terminal to perform V2X or SL communication according to a transmission mode according to an embodiment of the present disclosure.
  • the embodiment of FIG. 11 can be combined with various embodiments of the present disclosure.
  • the transmission mode may be referred to as a mode or a resource allocation mode.
  • the transmission mode in LTE may be referred to as an LTE transmission mode
  • the transmission mode in NR may be referred to as an NR resource allocation mode.
  • (a) of Fig. 11 represents a terminal operation related to LTE transmission mode 1 or LTE transmission mode 3.
  • (a) of Fig. 11 represents a terminal operation related to NR resource allocation mode 1.
  • LTE transmission mode 1 can be applied to general SL communication
  • LTE transmission mode 3 can be applied to V2X communication.
  • (b) of Fig. 11 represents terminal operation related to LTE transmission mode 2 or LTE transmission mode 4.
  • (b) of Fig. 11 represents terminal operation related to NR resource allocation mode 2.
  • the base station may schedule SL resources to be used by the terminal for SL transmission.
  • the base station may transmit information related to SL resources and/or information related to UL resources to the first terminal.
  • the UL resources may include PUCCH resources and/or PUSCH resources.
  • the UL resources may be resources for reporting SL HARQ feedback to the base station.
  • the first terminal may receive information related to a DG (dynamic grant) resource and/or information related to a CG (configured grant) resource from the base station.
  • the CG resource may include a CG type 1 resource or a CG type 2 resource.
  • the DG resource may be a resource that the base station configures/allocates to the first terminal via DCI (downlink control information).
  • the CG resource may be a (periodic) resource that the base station configures/allocates to the first terminal via DCI and/or an RRC message.
  • the base station may transmit an RRC message including information related to the CG resource to the first terminal.
  • the base station may transmit an RRC message including information related to the CG resource to the first terminal, and the base station may transmit DCI related to activation or release of the CG resource to the first terminal.
  • the first terminal may transmit a PSCCH (e.g., Sidelink Control Information (SCI) or 1st-stage SCI) to the second terminal based on the resource scheduling.
  • a PSCCH e.g., Sidelink Control Information (SCI) or 1st-stage SCI
  • the first terminal may transmit a PSSCH (e.g., 2nd-stage SCI, MAC PDU, data, etc.) related to the PSCCH to the second terminal.
  • the first terminal may receive a PSFCH related to the PSCCH/PSSCH from the second terminal.
  • HARQ feedback information e.g., NACK information or ACK information
  • the first terminal may transmit/report HARQ feedback information to the base station via PUCCH or PUSCH.
  • the HARQ feedback information reported to the base station may be information that the first terminal generates based on the HARQ feedback information received from the second terminal.
  • the HARQ feedback information reported to the base station may be information that the first terminal generates based on a rule set in advance.
  • the DCI may be DCI for scheduling of SL.
  • the format of the DCI may be DCI format 3_0 or DCI format 3_1. Table 7 shows an example of DCI for scheduling of SL.
  • a terminal may determine an SL transmission resource within an SL resource set by a base station/network or a preset SL resource.
  • the set SL resource or the preset SL resource may be a resource pool.
  • the terminal may autonomously select or schedule resources for SL transmission.
  • the terminal may perform SL communication by selecting a resource by itself within the set resource pool.
  • the terminal may perform sensing and resource (re)selection procedures to select a resource by itself within a selection window.
  • the sensing may be performed on a subchannel basis.
  • a first terminal that has selected a resource by itself within a resource pool may transmit a PSCCH (e.g., SCI (Sidelink Control Information) or 1st-stage SCI) to a second terminal using the resource.
  • a PSCCH e.g., SCI (Sidelink Control Information) or 1st-stage SCI
  • the first terminal can transmit a PSSCH (e.g., 2nd-stage SCI, MAC PDU, data, etc.) related to the PSCCH to the second terminal.
  • the first terminal can receive a PSFCH related to the PSCCH/PSSCH from the second terminal.
  • the first terminal may transmit an SCI to the second terminal on the PSCCH.
  • the first terminal may transmit two consecutive SCIs (e.g., 2-stage SCIs) to the second terminal on the PSCCH and/or the PSSCH.
  • the second terminal may decode the two consecutive SCIs (e.g., 2-stage SCIs) to receive the PSSCH from the first terminal.
  • the SCI transmitted on the PSCCH may be referred to as a 1st SCI, a 1st SCI, a 1st-stage SCI, or a 1st-stage SCI format
  • the SCI transmitted on the PSSCH may be referred to as a 2nd SCI, a 2nd SCI, a 2nd-stage SCI, or a 2nd-stage SCI format
  • a 1st-stage SCI format may include SCI format 1-A
  • a 2nd-stage SCI format may include SCI format 2-A and/or SCI format 2-B.
  • Table 8 shows an example of a 1st-stage SCI format.
  • Table 9 shows an example of the 2nd-stage SCI format.
  • the first terminal can receive PSFCH based on Table 10.
  • the first terminal and the second terminal can determine PSFCH resources based on Table 10, and the second terminal can transmit HARQ feedback to the first terminal using the PSFCH resources.
  • the first terminal may transmit SL HARQ feedback to the base station through PUCCH and/or PUSCH based on Table 11.
  • Table 12 is a disclosure related to selection and reselection of a sidelink relay UE in 3GPP TS 36.331.
  • the disclosure of Table 12 is used as prior art of the present disclosure, and for necessary details related thereto, refer to 3GPP TS 36.331.
  • Figure 12 shows the connection management and the procedure for path switching from direct to indirect as captured in the TR document (3GPP TR 38.836) related to Rel-17 NR SL.
  • the remote UE needs to establish its own PDU session/DRB with the network before transmitting user plane data.
  • the PC5-RRC aspect PC5 unicast link establishment procedure of Rel-16 NR V2X can be reused to establish a secure unicast link between the remote UE and the relay UE for L2 UE-to-Network relaying before the remote UE establishes a Uu RRC connection with the network via the relay UE.
  • the PC5 L2 configuration for transmission between the remote UE and the UE-to-Network Relay UE can be based on the RLC/MAC configuration defined in the standard.
  • the establishment of Uu SRB1/SRB2 and DRB of the remote UE follows the legacy Uu configuration procedure for L2 UE-to-Network Relay.
  • the high-level connection setup procedure illustrated in Figure 12 applies to L2 UE-to-Network Relay.
  • the Remote and Relay UE can perform a discovery procedure and establish a PC5-RRC connection at step S1201 based on the existing Rel-16 procedure.
  • the remote UE can send the first RRC message (i.e., RRCSetupRequest) to establish connection with the gNB via the Relay UE using the default L2 configuration of PC5.
  • the gNB responds (S1203) to the remote UE with an RRCSetup message.
  • the RRCSetup delivery to the remote UE uses the default configuration of PC5. If the Relay UE is not started in RRC_CONNECTED, it needs to perform its own connection setup upon receiving the message for the default L2 configuration of PC5. Details for the Relay UE to deliver the RRCSetupRequest/RRCSetup message to the remote UE at this step can be discussed in the WI step.
  • step S1204 the gNB and the Relay UE perform a relay channel setup procedure via Uu.
  • the Relay/Remote UE sets up an RLC channel to relay SRB1 to the remote UE via PC5. This step prepares a relay channel for SRB1.
  • a remote UE SRB1 message (e.g., RRCSetupComplete message) is transmitted to the gNB through the relay UE using the SRB1 relay channel over PC5. And the remote UE is RRC connected over Uu.
  • step S1206 the remote UE and the gNB establish security according to legacy procedures and the security message is delivered through the Relay UE.
  • step S1210 the gNB sets up an additional RLC channel between the gNB and the Relay UE for traffic relay.
  • the Relay/Remote UE sets up an additional RLC channel between the Remote UE and the Relay UE for traffic relay.
  • the gNB sends RRCReconfiguration to the Remote UE through the Relay UE to set up the Relay SRB2/DRB.
  • the Remote UE sends RRCReconfigurationComplete to the gNB through the Relay UE in response.
  • RRC reconfiguration and RRC disconnection procedures can reuse legacy RRC procedures with message content/configuration design left in the WI phase.
  • RRC connection re-establishment and RRC connection resumption procedures can reuse existing RRC procedures as a baseline by considering the connection establishment procedure of the above L2 UE-to-Network Relay to handle relay-specific parts along with message content/configuration design. Message content/configuration can be defined later.
  • Figure 13 illustrates a direct to indirect path transition.
  • the procedure of Figure 13 can be used when a remote UE transitions to an indirect Relay UE for service continuity of L2 UE-to-Network Relay.
  • the remote UE measures/discovers candidate relay UEs, and then reports one or more candidate relay UEs.
  • the remote UE may filter appropriate relay UEs that meet higher layer criteria when reporting.
  • the report may include ID and SL RSRP information of the relay UE, where details related to PC5 measurement may be determined later.
  • step S1302 the gNB decides to switch to the target relay UE and the target (re)configuration is optionally transmitted to the relay UE.
  • the RRC reconfiguration message to the remote UE may include the ID of the target relay UE, the target Uu, and the PC5 configuration.
  • step S1305 if the connection is not yet established, the remote UE establishes a PC5 connection with the target relay UE.
  • step S1306 the remote UE feeds back RRCReconfigurationComplete to the gNB through the target path using the target configuration provided in RRCReconfiguration.
  • step S1307 the data path is switched.
  • Tables 13 to 16 are 3GPP technical reports related to UE-to-UE Relay Selection and are used as prior art in the present disclosure.
  • Fig. 14 in Table 14 and Fig. 15 in Table 16 correspond to Fig. 14 and Fig. 15, respectively.
  • UE-to-UE relay discovery and selection is integrated into Model B direct discovery procedure.
  • a new field is proposed to be added in the Direct Communication Request or the Solicitation message to indicate whether relays can be used in the communication.
  • the field can be called relay_indication.
  • a UE wants to broadcast a Direct Communication Request or a Solicitation message, it indicates in the message whether a UE-to-UE relay could be used. For Release 17, it is assumed that the value of the indication is restricted to single hop.
  • a UE-to-UE relay When a UE-to-UE relay receives a Direct Communication Request or a Solicitation message with the relay_indication set, then it shall decide whether to forward the message (ie modify the message and broadcast it in its proximity), according to eg Relay Service Code if there is any, Application ID, authorization policy (eg relay for specific ProSe Service), the current traffic load of the relay, the radio conditions between the source UE and the relay UE, etc. It may exist a situation where multiple UE-to-UE relays can be used to reach the target UE or the target UE may also directly receive the Direct Communication Request or Solicitation message from the source UE.
  • eg Relay Service Code if there is any, Application ID, authorization policy (eg relay for specific ProSe Service), the current traffic load of the relay, the radio conditions between the source UE and the relay UE, etc. It may exist a situation where multiple UE-to-UE relays can be used to reach the target UE or the target UE may also
  • the target UE may choose which one to reply according to eg signal strength, local policy (eg traffic load of the UE-to-UE relays), Relay Service Code if there is any or operator policies (eg always prefer direct communication or only use some specific UE-to-UE relays).
  • the source UE may receive the responses from multiple UE-to-UE relays and may also from the target UE directly, the source UE chooses the communication path according to eg signal strength or operator policies (eg always prefer direct communication or only use some specific UE-to-UE relays).
  • UE-to-UE relay discovery and selection is integrated into the unicast link establishment procedure (Alternative 1)
  • Fig 14 illustrates the procedure of the proposed method. 0.
  • UEs are authorized to use the service provided by the UE-to-UE relays.
  • UE-to-UE relays are authorized to provide service of relaying traffic among UEs.
  • the authorization and the parameter provisioning can use solutions for KI#8, eg Sol#36.
  • the authorization can be done when UEs/relays are registered to the network.
  • Security related parameters may be provisioned so that a UE and a relay can verify the authorization with each other if needed. 1.
  • UE-1 wants to establish unicast communication with UE-2 and the communication can be either through direct link with UE-2 or via a UE-to-UE relay. Then UE-1 broadcasts Direct Communication Request with relay_indication enabled. The message will be received by relay-1, relay-2. The message may also be received by UE-2 if it is in the proximity of UE-1.
  • UE-1 includes source UE info, target UE info, Application ID, as well as Relay Service Code if there is any. If UE-1 does not want relay to be involved in the communication, then it will made relay_indication disabled.
  • the data type of relay_indication can be determined in Stage 3. Details of Direct Communication Request/Accept messages will be determined in stage 3. 2.
  • Relay-1 and relay-2 decide to participate in the procedure.
  • a relay broadcasts the Direct Communication Request message, it includes source UE info, target UE info and Relay UE info (eg Relay UE ID) in the message and use Relay's L2 address as the source Layer-2 ID.
  • the Relay maintains association between the source UE information (eg source UE L2 ID) and the new Direct Communication Request.
  • UE-2 receives the Direct Communication Requests from relay-1 and relay-2.
  • UE-2 may also receive Direct Communication Request message directly from the UE-1 if the UE-2 is in the communication range of UE-1.
  • UE-2 chooses relay-1 and replies with Direct Communication Accept message.
  • UE-2 directly receives the Direct Communication Request from UE-1, it may choose to setup a direct communication link by sending the Direct Communication Accept message directly to UE-1.
  • a UE-to-UE relay retrieves the source UE information stored in step 2 and sends the Direct Communication Accept message to the source UE with its Relay UE info added in the message.
  • UE-1 and UE-2 have respectively setup the PC5 links with the chosen UE-to-UE relay.
  • NOTE 2 The security establishment between the UE1 and Relay-1, and between Relay-1 and UE-2 are performed before the Relay-1 and UE-2 send Direct Communication Accept message. Details of the authentication/security establishment procedure are determined by SA WG3. The security establishment procedure can be skipped if there already exists a PC5 link between the source (or target) UE and the relay which can be used for relaying the traffic. 5.
  • UE-1 receives the Direct Communication Accept message from relay-1.
  • UE-1 chooses path according to eg policies (eg always choose direct path if it is possible), signal strength, etc.
  • UE-1 receives Direct Communication Accept / Response message request accept directly from UE-2, it may choose to setup a direct PC5 L2 link with UE-2 as described in clause 6.3.3 of TS 23.287 [5], then step 6 is skipped. 6a.
  • UE-1 and UE-2 finish setting up the communication link via the chosen UE-to-UE relay.
  • the link setup information may vary depending on the type of relay, eg L2 or L3 relaying. Then UE-1 and UE-2 can communicate via the relay.
  • the addresses can be either assigned by the relay or by the UE itself (eg link-local IP address) as defined in clause 6.3.3 of TS 23.287 [5]. 6b.
  • the source and target UE can setup an end-to-end PC5 link via the relay.
  • UE-1 sends a unicast E2E Direct Communication Request message to UE-2 via the Relay-1, and UE-2 responds with a unicast E2E Direct Communication Accept message to UE-1 via the Relay-1.
  • Relay-1 transfers the messages based on the identity information of UE-1/UE-2 in the Adaptation Layer.
  • UE-to-UE relay discovery and selection is integrated into Model B direct discovery procedure (Alternative 2) Depicted in Fig 15 is the procedure for UE-UE Relay discovery Model B, and the discovery/selection procedure is separated from hop by hop and end-to-end link establishment.
  • UE-1 broadcasts discovery solicitation message carrying UE-1 info, target UE info (UE-2), Application ID, Relay Service Code if any, the UE-1 can also indicate relay_indication enabled.
  • the candidate Relay UE-R broadcasts discovery solicitation carrying UE-1 info, UE-R info, Target UE info.
  • the Relay UE-R uses Relay's L2 address as the source Layer-2 ID.
  • the target UE-2 responds the discovery message.
  • UE-2 receives discovery solicitation message in step 1, then UE-2 responds discovery response in step 3b with UE-1 info, UE-2 info. If not and UE-2 receives discovery solicitation in step 2, then UE-2 responds discovery response message in step 3a with UE-1 info, UE-R info, UE-2 info. 4. On reception of discovery response in step 3a, UE-R sends discovery response with UE-1 info, UE-R info, UE-2 info. If more than one candidate Relay UEs responding discovery response message, UE-1 can select one Relay UE based on eg implementation or link qualification. 5. The source and target UE may need to setup PC5 links with the relay before communicating with each other.
  • Step 5a can be skipped if there already exists a PC5 link between the UE-1 and UE-R which can be used for relaying.
  • Step 5b can be skipped if there already exists a PC5 link between the UE-2 and UE-R which can be used for relaying.
  • 6a Same as step 6a described in clause 6.8.2.1. 6b.
  • the E2E unicast Direct Communication Request message is sent from UE1 to the selected Relay via the per-hop link (established in steps 5a) and the Adaptation layer info identifying the peer UE (UE3 ) as the destination.
  • the UE-to-UE Relay transfers the E2E messages based on the identity information of peer UE in the Adaptation Layer.
  • the initiator (UE1) knows the Adaptation layer info identifying the peer UE (UE3) after a discovery procedure. UE3 responds with E2E unicast Direct Communication Accept message in the same way.
  • UE1 For the Layer 2 UE-to-UE Relay case, whether step5b is performed before step 6b or triggered during step 6b will be decided at normative phase.
  • UE 2 How Relay-1 can transfer the messages based on the identity information of UE-1/UE-2 in the Adaptatin Layer requires cooperation with RAN2 during the normative phase. 6.8.3 Impacts on services, entities and interfaces UE impacts to support new Relay related functions.
  • Fig. 16(a) illustrates a user plane protocol stack for an L2 UE-to-UE relay
  • Fig. 16(b) illustrates a control plane protocol stack for an L2 UE-to-UE relay.
  • L2 UE-to-UE Relay architecture the protocol stacks are similar to L2 UE-to-Network Relay other than the fact that the termination points are two Remote UEs.
  • the protocol stacks for the user plane and control plane of L2 UE-to-UE Relay architecture are described in Figure 5.5.1-1 and Figure 5.5.1-2.
  • An adaptation layer is supported over the second PC5 link (ie the PC5 link between Relay UE and Destination UE) for L2 UE-to-UE Relay.
  • the adaptation layer is put over RLC sublayer for both CP and UP over the second PC5 link.
  • the sidelink SDAP/PDCP and RRC are terminated between two Remote UEs, while RLC, MAC and PHY are terminated in each PC5 link.
  • first hop of L2 UE-to-UE Relay - The N:1 mapping is supported by first hop PC5 adaptation layer between Remote UE SL Radio Bearers and first hop PC5 RLC channels for relaying.
  • the adaptation layer over first PC5 hop between Source Remote UE and Relay UE supports to identify traffic destined to different Destination Remote UEs.
  • the second hop PC5 adaptation layer can be used to support bearer mapping between the ingress RLC channels over first PC5 hop and egress RLC channels over second PC5 hop at Relay UE.
  • - PC5 Adaptation layer supports the N:1 bearer mapping between multiple ingress PC5 RLC channels over first PC5 hop and one egress PC5 RLC channel over second PC5 hop and supports the Remote UE identification function.
  • L2 UE-to-UE Relay - The identity information of Remote UE end-to-end Radio Bearer is included in the adaptation layer in first and second PC5 hop.
  • the identity information of Source Remote UE and/or the identity information of Destination Remote UE are candidate information to be included in the adaptation layer, which are to be decided in WI phase.
  • LCP Restrictions With LCP restrictions in MAC, RRC can restrict the mapping of a logical channel to a subset of the configured cells, numerologies, PUSCH transmission durations, configured grant configurations and control whether a logical channel can utilize the resources allocated by a Type 1 Configured Grant (see clause 10.3) or whether a logical channel can utilize dynamic grants indicating a certain physical priority level. With such restrictions, it then becomes possible to reserve, for instance, the numerology with the largest subcarrier spacing and/or shortest PUSCH transmission duration for URLLC services. Furthermore, RRC can associate logical channels with different SR configurations, for instance, to provide more frequent SR opportunities to URLLC services.
  • PDCP control PDUs are not duplicated and always submitted to the primary RLC entity.
  • RRC When configuring duplication for a DRB, RRC also sets the state of PDCP duplication (either activated or deactivated) at the time of (re-)configuration. After the configuration, the PDCP duplication state can then be dynamically controlled by means of a MAC control element and in DC, the UE applies the MAC CE commands regardless of their origin (MCG or SCG).
  • MCG Mobility Management Entity
  • a MAC CE can be used to dynamically control whether each of the configured secondary RLC entities for a DRB should be activated or deactivated, ie which of the RLC entities shall be used for duplicate transmission.
  • Primary RLC entity cannot be deactivated.
  • duplication is deactivated for a DRB, all secondary RLC entities associated to this DRB are deactivated.
  • a secondary RLC entity is deactivated, it is not re-established, the HARQ buffers are not flushed, and the transmitting PDCP entity should indicate to the secondary RLC entity to discard all duplicated PDCP PDUs.
  • NG-RAN When activating duplication for a DRB, NG-RAN should ensure that at least one serving cell is activated for each logical channel associated with an activated RLC entity of the DRB; and when the deactivation of SCells leaves no serving cells activated for a logical channel of the DRB, NG-RAN should ensure that duplication is also deactivated for the RLC entity associated with the logical channel.
  • duplication When duplication is activated, the original PDCP PDU and the corresponding duplicate(s) shall not be transmitted on the same carrier.
  • the logical channels of a radio bearer configured with duplication can either belong to the same MAC entity (referred to as CA duplication) or to different ones (referred to as DC duplication).
  • CA duplication can also be configured in either or both of the MAC entities together with DC duplication when duplication over more than two RLC entities is configured for the radio bearer.
  • logical channel mapping restrictions are used in a MAC entity to ensure that the different logical channels of a radio bearer in the MAC entity are not sent on the same carrier.
  • CA duplication is configured for an SRB, one of the logical channels associated to the SRB is mapped to SpCell.
  • CA duplication When CA duplication is deactivated for a DRB in a MAC entity (ie none or only one of RLC entities of the DRB in the MAC entity remains activated), the logical channel mapping restrictions of the logical channels of the DRB are lifted for as long as CA duplication remains deactivated for the DRB in the MAC entity.
  • the PDCP entity When an RLC entity acknowledges the transmission of a PDCP PDU, the PDCP entity shall indicate to the other RLC entity(ies) to discard it.
  • CA duplication when an RLC entity restricted to only SCell(s) reaches the maximum number of retransmissions for a PDCP PDU, the UE informs the gNB but does not trigger RLF.
  • a UE-to-UE relay may also require operations similar to those of the current multi-path U2N relay. Similar to the operation of the current multi-path U2N relay UE, a remote UE performing UE-to-UE relay operation may also have a direct link and an indirect link in order to increase the reliability of the U2U relay operation. Therefore, the following disclosure of the present invention proposes matters that can be considered when multi-path U2U is applied to the UE-to-UE relay operation.
  • the source remote UE may be called a U2U remote UE
  • the target remote UE may be called a peer U2U remote UE
  • the relay UE may be called a U2U relay UE.
  • a source remote UE can establish a direct link with a target remote UE.
  • the source remote UE can establish an end-to-end link, corresponding to an indirect link, with the target remote UE via a relay UE. Thereafter, the source remote UE can activate at least one of the direct link and the indirect link. The source remote UE can transmit a message to the target remote UE via the activated link.
  • the upper layer of the source remote UE can inform the AS layer of a first ID set including a first SRC ID and a first DST ID used for the indirect link, together with a second ID set including a second SRC ID and a second DST ID related to the direct link. Accordingly, the source remote UE can consider the indirect link corresponding to the first ID set and the direct link corresponding to the second ID set as links connecting to the same target remote UE.
  • the upper layer of the source remote UE can set the SRC/DST UE ID to be used for the indirect link (wherein the DST ID is the SRC ID of the Relay/target remote UE) and the SRC/DST L2 ID to be used for the direct link to different values and inform the AS layer of this.
  • the source remote UE may need to know that the direct link and the indirect link are links connecting to the same target remote UE. Therefore, when the upper layer informs the AS layer of the SRC L2 ID or the DST L2 ID (of the direct/indirect link), it can indicate that the corresponding L2 IDs are associated with each other.
  • At least one of the activations of the above direct link and indirect link may be performed based on RSRP (Reference Signals Received Power).
  • Split bearer may also be applied to multi-path UE-to-UE operation.
  • a packet may be duplicated in the PDCP layer and transmitted through the direct path and the indirect path.
  • the activation/deactivation of the RLC entity in the SL is determined by the source remote UE (and/or the target remote UE). This is different from the activation/deactivation of the RLC entity in the CA/DC (Carrier aggregation/Dual Connectivity) operation, which follows the configuration of the gNB.
  • CA/DC Carrier aggregation/Dual Connectivity
  • the method may further include that the source remote UE selects the relay UE associated with the addition of the indirect link, and the source remote UE establishes an SL connection with the relay UE.
  • the source remote UE may consider that multi-path is established based on receiving a response to RRCReconfigurationSidelink transmitted through the indirect link through the direct link.
  • addition of an indirect path in a state where a direct path exists may be performed by the following procedure.
  • the source remote UE selects a relay UE for UE2UE relay operation.
  • the source remote UE and the selected relay UE establish an SL connection (1st-hop), and the relay UE and the target remote UE also establish an SL connection (2nd-hop).
  • the source remote UE and the target remote UE may establish an SL connection for setting up an end-to-end bearer through the relay UE through the indirect link. Since this is a process in which multi-path is established, the response to the RRCReconfigurationSidelink message transmitted from the source remote UE to the target remote UE via the relay UE may be made via the direct link. That is, if the source remote UE receives a response (RRCReconfigurationCompleteSidelink) message to the RRCReconfigurationSidelink transmitted via the indirect link via the direct link, the source remote UE may consider that multi-path is established.
  • RRCReconfigurationCompleteSidelink response
  • the source remote UE may set up RRCReconfiguration through the direct link, and in response, the RRCReconfigurationComplete message may be sent through the previously set up indirect link.
  • the upper layer of the source remote UE can indicate whether PDCP duplication is performed on a per-bearer (and/or per-PQI) basis. If PDCP duplication is indicated on a per-PQI basis, duplication can be processed as activated for a bearer that includes at least one PQI for which PQI duplication is activated. This is because multiple PQIs can be multiplexed and transmitted on a single bearer.
  • the method for the source remote UE to dynamically determine activation/deactivation of the RLC entity at the AS layer can be as follows:
  • the source remote UE can arbitrarily deactivate either an RLC entity existing in the direct path or an RLC entity existing in the indirect path.
  • the source remote UE can arbitrarily deactivate either an RLC entity existing in the direct path or an RLC entity existing in the indirect path. Or, if a primary RLC entity is determined, the secondary RLC entity is deactivated.
  • whether to deactivate a certain RLC entity may be determined by a higher layer of the source remote UE.
  • the RSRP threshold value may be determined by a higher layer of the source remote UE, and the threshold for the indirect path and the threshold for the direct path may be different. That is, the RSRP threshold value can be a value set by the upper layer of the source remote UE, and can be a value that takes QoS into account.
  • the threshold for the indirect path and the threshold for the direct path can be different. When determining the RSRP value of the indirect path, it can be selected as a value that considers not only the RSRP between the source remote UE and the relay UE, but also the RSRP between the relay UE and the target remote UE. In addition, this threshold value can be a value that is set differently depending on the SL bearer that the source remote UE wants to transmit.
  • the source remote UE can transmit a message through both an RLC entity existing in the direct path and an RLC entity existing in the indirect path. That is, when the RSRP thresholds of the direct path (the bearer existing in) and the indirect path (the bearer existing in) are less than or equal to a reference value, the source remote UE can transmit a message through both an RLC entity existing in the direct path and an RLC entity existing in the indirect path. That is, both direct/indirect RLC entities are activated.
  • the source remote UE can transmit a message through a path whose signal strength is higher than or equal to the RSRP threshold. That is, if the signal strength of either the direct path or the indirect path is lower than or equal to the threshold (the threshold value may be applied differently depending on the bearer), the source remote UE transmits data through a path whose signal strength is higher than or equal to the threshold.
  • the upper layer of the source remote UE when the upper layer of the source remote UE sends the source L2 ID (SRC_A) and the target L2 ID (DST_A) to the AS layer, it can notify another source ID (SRC_B) and target L2 ID (DST_B) associated therewith.
  • the ⁇ SRC_A, DST_A ⁇ set can be a value used for communication between the source remote UE and the relay UE
  • the ⁇ SRC_B, DST_B ⁇ set can be a value used for communication between the source remote UE and the target remote UE.
  • the SRAP header includes any value (and/or both values) of the ⁇ SRC_B, DST_B ⁇ set, and at this time, the value used in the AS layer (e.g., MAC/PHY layer) can be the ⁇ SRC_A, DST_A ⁇ set value.
  • the AS layer e.g., MAC/PHY layer
  • SRC_A and SRC_B can be the same value. If the values of SRC_A and SRC_B are the same, the upper layer of the remote UE can forward only one DST_B (L2 ID of the target remote UE) associated with ⁇ SRC_A, DST_A ⁇ set to the AS layer.
  • a source remote UE that wants to set up split bearer may include split bearer-related configuration when transmitting an RRCReconfigurationSidelink message through the direct/indirect path.
  • the target remote UE transmits an RRCReconfigurationCompleteSidelink message in response, the split bearer is considered to have been set up and can be operated.
  • a source remote UE can configure a measurement report to a target remote UE. If the source remote UE and the target remote UE have an indirect link, measurement for the (not yet established) direct link can be configured. That is, the target remote UE can be configured to measure the direct link with the source remote UE. In this case, the value measured by the target remote UE can be a message that the source remote UE transmits to the relay UE. Therefore, when the source remote UE configures the measurement to the target remote UE, it can inform the L2 ID of the source remote UE and the L2 ID of the relay UE. This is because the target remote UE may not know the L2 ID of the source remote UE and the L2 ID of the relay UE that it needs to measure. In this case, the target remote UE that has received the measurement configuration can overhear a message between the source remote UE and the relay UE (signal strength for data transmitted from the source remote UE and received by the relay UE) and measure the signal strength.
  • the target remote UE may transmit a MAC CE to the source remote UE, recommending activation/deactivation of the RLC entity, in a way that the source remote UE dynamically determines activation/deactivation of the RLC entity at the AS layer.
  • the MAC CE can be transmitted over both (or either) the direct and indirect paths.
  • the RLF can be reported through another available path.
  • the remote UE can report an RLF (cause value: direct path RLF) through the indirect link.
  • RLF return value: direct path RLF
  • the remote UE can report it through the direct path (cause value: indirect path RLF).
  • the remote UE receives a notification from the relay UE that an RLF occurs between the relay UE and a peer remote UE, it can report it through the direct path (cause value: indirect path RLF from receiving notification).
  • a source remote UE comprises at least one processor; and at least one computer memory operably connected to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform operations, the operations comprising: establishing a direct link with a target remote UE; establishing an end-to-end link with the target remote UE, via a relay UE, corresponding to an indirect link; activating at least one of the direct link and the indirect link; and transmitting a message to the target remote UE via the activated link, wherein an upper layer of the source remote UE can notify an AS layer of a first ID set including a first SRC ID, a first DST ID used for the indirect link, together with a second ID set including a second SRC ID, a second DST ID associated with the direct link.
  • a non-volatile computer-readable storage medium storing at least one computer program comprising instructions that, when executed by at least one processor, cause the at least one processor to perform operations for a source remote UE, the operations comprising: establishing a direct link with a target remote UE; establishing an end-to-end link with the target remote UE, via a relay UE, corresponding to an indirect link; activating at least one of the direct link and the indirect link; and transmitting a message to the target remote UE via the activated link, wherein an upper layer of the source remote UE can notify an AS layer of a first ID set including a first SRC ID and a first DST ID used for the indirect link together with a second ID set including a second SRC ID and a second DST ID associated with the direct link.
  • multi-path operation is possible in U2U operation.
  • efficient path activation/deactivation is possible when PDCP duplication is allowed. Therefore, by increasing data reliability and transmitting packets using only one path when channel conditions are good, transmission resources can be used dynamically and efficiently.
  • the relay UE can be extended to gNB, IAB-node, etc.
  • the source remote UE can be cross-interpreted as the target remote UE, and the target remote UE can be cross-interpreted as the source remote UE. (For example, both can correspond to end-remote-UE)
  • Fig. 23 illustrates a communication system (1) applied to the present disclosure.
  • a communication system (1) applied to the present disclosure includes a wireless device, a base station, and a network.
  • the wireless device means a device that performs communication using a wireless access technology (e.g., 5G NR (New RAT), LTE (Long Term Evolution)) and may be referred to as a communication/wireless/5G device.
  • the wireless device may include a robot (100a), a vehicle (100b-1, 100b-2), an XR (eXtended Reality) device (100c), a hand-held device (100d), a home appliance (100e), an IoT (Internet of Thing) device (100f), and an AI device/server (400).
  • the vehicle may include a vehicle equipped with a wireless communication function, an autonomous vehicle, a vehicle capable of performing vehicle-to-vehicle communication, etc.
  • the vehicle may include an Unmanned Aerial Vehicle (UAV) (e.g., a drone).
  • UAV Unmanned Aerial Vehicle
  • XR devices include AR (Augmented Reality)/VR (Virtual Reality)/MR (Mixed Reality) devices and can be implemented in the form of HMD (Head-Mounted Device), HUD (Head-Up Display) installed in a vehicle, television, smartphone, computer, wearable device, home appliance, digital signage, vehicle, robot, etc.
  • HMD Head-Mounted Device
  • HUD Head-Up Display
  • Portable devices can include smartphone, smart pad, wearable device (e.g., smart watch, smart glass), computer (e.g., laptop, etc.).
  • Home appliances can include TV, refrigerator, washing machine, etc.
  • IoT devices can include sensors, smart meters, etc.
  • base stations and networks can also be implemented as wireless devices, and a specific wireless device (200a) can act as a base station/network node to other wireless devices.
  • Wireless devices (100a to 100f) can be connected to a network (300) via a base station (200). Artificial Intelligence (AI) technology can be applied to the wireless devices (100a to 100f), and the wireless devices (100a to 100f) can be connected to an AI server (400) via the network (300).
  • the network (300) can be configured using a 3G network, a 4G (e.g., LTE) network, a 5G (e.g., NR) network, etc.
  • the wireless devices (100a to 100f) can communicate with each other via the base station (200)/network (300), but can also communicate directly (e.g., sidelink communication) without going through the base station/network.
  • vehicles can communicate directly (e.g. V2V (Vehicle to Vehicle)/V2X (Vehicle to everything) communication).
  • IoT devices e.g., sensors
  • IoT devices can communicate directly with other IoT devices (e.g., sensors) or other wireless devices (100a to 100f).
  • Wireless communication/connection can be established between wireless devices (100a to 100f)/base stations (200), and base stations (200)/base stations (200).
  • the wireless communication/connection can be achieved through various wireless access technologies (e.g., 5G NR) such as uplink/downlink communication (150a), sidelink communication (150b) (or, D2D communication), and communication between base stations (150c) (e.g., relay, IAB (Integrated Access Backhaul)).
  • 5G NR wireless access technologies
  • a wireless device and a base station/wireless device, and a base station and a base station can transmit/receive wireless signals to/from each other.
  • the wireless communication/connection can transmit/receive signals through various physical channels.
  • various configuration information setting processes for transmitting/receiving wireless signals various signal processing processes (e.g., channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.), and resource allocation processes can be performed based on various proposals of the present disclosure.
  • FIG. 24 illustrates a wireless device applicable to the present disclosure.
  • the first wireless device (100) and the second wireless device (200) can transmit and receive wireless signals through various wireless access technologies (e.g., LTE, NR).
  • ⁇ the first wireless device (100), the second wireless device (200) ⁇ can correspond to ⁇ the wireless device (100x), the base station (200) ⁇ and/or ⁇ the wireless device (100x), the wireless device (100x) ⁇ of FIG. 23.
  • a first wireless device (100) includes one or more processors (102) and one or more memories (104), and may additionally include one or more transceivers (106) and/or one or more antennas (108).
  • the processor (102) controls the memories (104) and/or the transceivers (106), and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this document.
  • the processor (102) may process information in the memory (104) to generate first information/signal, and then transmit a wireless signal including the first information/signal via the transceiver (106).
  • the processor (102) may receive a wireless signal including second information/signal via the transceiver (106), and then store information obtained from signal processing of the second information/signal in the memory (104).
  • the memory (104) may be connected to the processor (102) and may store various information related to the operation of the processor (102). For example, the memory (104) may perform some or all of the processes controlled by the processor (102), or may store software codes including instructions for performing the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed in this document.
  • the processor (102) and the memory (104) may be part of a communication modem/circuit/chip designed to implement wireless communication technology (e.g., LTE, NR).
  • the transceiver (106) may be connected to the processor (102) and may transmit and/or receive wireless signals via one or more antennas (108).
  • the transceiver (106) may include a transmitter and/or a receiver.
  • the transceiver (106) may be used interchangeably with an RF (Radio Frequency) unit.
  • a wireless device may also mean a communication modem/circuit/chip.
  • the second wireless device (200) includes one or more processors (202), one or more memories (204), and may additionally include one or more transceivers (206) and/or one or more antennas (208).
  • the processor (202) may be configured to control the memories (204) and/or the transceivers (206), and implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this document. For example, the processor (202) may process information in the memory (204) to generate third information/signals, and then transmit a wireless signal including the third information/signals via the transceivers (206). Additionally, the processor (202) may receive a wireless signal including fourth information/signals via the transceivers (206), and then store information obtained from signal processing of the fourth information/signals in the memory (204).
  • the memory (204) may be connected to the processor (202) and may store various information related to the operation of the processor (202). For example, the memory (204) may perform some or all of the processes controlled by the processor (202), or may store software codes including instructions for performing the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed in the present document.
  • the processor (202) and the memory (204) may be part of a communication modem/circuit/chip designed to implement wireless communication technology (e.g., LTE, NR).
  • the transceiver (206) may be connected to the processor (202) and may transmit and/or receive wireless signals via one or more antennas (208).
  • the transceiver (206) may include a transmitter and/or a receiver.
  • the transceiver (206) may be used interchangeably with an RF unit.
  • a wireless device may also mean a communication modem/circuit/chip.
  • one or more protocol layers may be implemented by one or more processors (102, 202).
  • processors (102, 202) may implement one or more layers (e.g., functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
  • processors (102, 202) may generate one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed in this document.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • One or more processors (102, 202) may generate messages, control information, data, or information according to the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed in this document.
  • One or more processors (102, 202) can generate signals (e.g., baseband signals) comprising PDUs, SDUs, messages, control information, data or information according to the functions, procedures, suggestions and/or methodologies disclosed herein, and provide the signals to one or more transceivers (106, 206).
  • One or more processors (102, 202) can receive signals (e.g., baseband signals) from one or more transceivers (106, 206) and obtain PDUs, SDUs, messages, control information, data or information according to the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein.
  • signals e.g., baseband signals
  • the one or more processors (102, 202) may be referred to as a controller, a microcontroller, a microprocessor, or a microcomputer.
  • the one or more processors (102, 202) may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this document may be implemented using firmware or software, and the firmware or software may be implemented to include modules, procedures, functions, etc.
  • the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed in this document may be implemented using firmware or software configured to perform one or more of the following: included in one or more processors (102, 202), or stored in one or more memories (104, 204) and driven by one or more of the processors (102, 202).
  • the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed in this document may be implemented using firmware or software in the form of codes, instructions and/or sets of instructions.
  • One or more memories (104, 204) may be coupled to one or more processors (102, 202) and may store various forms of data, signals, messages, information, programs, codes, instructions and/or commands.
  • the one or more memories (104, 204) may be comprised of ROM, RAM, EPROM, flash memory, hard drives, registers, cache memory, computer readable storage media and/or combinations thereof.
  • the one or more memories (104, 204) may be located internally and/or externally to the one or more processors (102, 202). Additionally, the one or more memories (104, 204) may be coupled to the one or more processors (102, 202) via various technologies, such as wired or wireless connections.
  • One or more transceivers (106, 206) can transmit user data, control information, wireless signals/channels, etc., as described in the methods and/or flowcharts of this document, to one or more other devices.
  • One or more transceivers (106, 206) can receive user data, control information, wireless signals/channels, etc., as described in the descriptions, functions, procedures, suggestions, methods and/or flowcharts of this document, from one or more other devices.
  • one or more transceivers (106, 206) can be coupled to one or more processors (102, 202) and can transmit and receive wireless signals.
  • one or more processors (102, 202) can control one or more transceivers (106, 206) to transmit user data, control information, or wireless signals to one or more other devices. Additionally, one or more processors (102, 202) may control one or more transceivers (106, 206) to receive user data, control information, or wireless signals from one or more other devices.
  • one or more transceivers (106, 206) may be coupled to one or more antennas (108, 208), and one or more transceivers (106, 206) may be configured to transmit and receive user data, control information, wireless signals/channels, and the like, as referred to in the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed herein, via one or more antennas (108, 208).
  • one or more antennas may be multiple physical antennas, or multiple logical antennas (e.g., antenna ports).
  • One or more transceivers (106, 206) may convert received user data, control information, wireless signals/channels, etc.
  • One or more transceivers (106, 206) may convert processed user data, control information, wireless signals/channels, etc. from baseband signals to RF band signals using one or more processors (102, 202).
  • one or more transceivers (106, 206) may include an (analog) oscillator and/or filter.
  • Fig. 25 illustrates a vehicle or autonomous vehicle to which the present disclosure applies.
  • the vehicle or autonomous vehicle may be implemented as a mobile robot, a car, a train, a manned/unmanned aerial vehicle (AV), a ship, etc.
  • AV manned/unmanned aerial vehicle
  • a vehicle or autonomous vehicle may include an antenna unit (108), a communication unit (110), a control unit (120), a driving unit (140a), a power supply unit (140b), a sensor unit (140c), and an autonomous driving unit (140d).
  • the antenna unit (108) may be configured as a part of the communication unit (110).
  • the communication unit (110) can transmit and receive signals (e.g., data, control signals, etc.) with external devices such as other vehicles, base stations (e.g., base stations, road side units, etc.), servers, etc.
  • the control unit (120) can control elements of the vehicle or autonomous vehicle (100) to perform various operations.
  • the control unit (120) can include an ECU (Electronic Control Unit).
  • the drive unit (140a) can drive the vehicle or autonomous vehicle (100) on the ground.
  • the drive unit (140a) can include an engine, a motor, a power train, wheels, brakes, a steering device, etc.
  • the power supply unit (140b) supplies power to the vehicle or autonomous vehicle (100) and can include a wired/wireless charging circuit, a battery, etc.
  • the sensor unit (140c) can obtain vehicle status, surrounding environment information, user information, etc.
  • the sensor unit (140c) may include an IMU (inertial measurement unit) sensor, a collision sensor, a wheel sensor, a speed sensor, an incline sensor, a weight detection sensor, a heading sensor, a position module, a vehicle forward/backward sensor, a battery sensor, a fuel sensor, a tire sensor, a steering sensor, a temperature sensor, a humidity sensor, an ultrasonic sensor, a light sensor, a pedal position sensor, etc.
  • IMU intial measurement unit
  • the autonomous driving unit (140d) may implement a technology for maintaining a driving lane, a technology for automatically controlling speed such as adaptive cruise control, a technology for automatically driving along a set path, a technology for automatically setting a path and driving when a destination is set, etc.
  • the communication unit (110) can receive map data, traffic information data, etc. from an external server.
  • the autonomous driving unit (140d) can generate an autonomous driving route and a driving plan based on the acquired data.
  • the control unit (120) can control the driving unit (140a) so that the vehicle or autonomous vehicle (100) moves along the autonomous driving route according to the driving plan (e.g., speed/direction control).
  • the communication unit (110) can irregularly/periodically acquire the latest traffic information data from an external server and can acquire surrounding traffic information data from surrounding vehicles.
  • the sensor unit (140c) can acquire vehicle status and surrounding environment information during autonomous driving.
  • the autonomous driving unit (140d) can update the autonomous driving route and driving plan based on the newly acquired data/information.
  • the communication unit (110) can transmit information on the vehicle location, autonomous driving route, driving plan, etc. to an external server.
  • External servers can predict traffic information data in advance using AI technology, etc. based on information collected from vehicles or autonomous vehicles, and provide the predicted traffic information data to vehicles or autonomous vehicles.
  • Fig. 26 illustrates a vehicle to which the present disclosure applies.
  • the vehicle may also be implemented as a means of transportation, a train, an aircraft, a ship, etc.
  • the vehicle (100) may include a communication unit (110), a control unit (120), a memory unit (130), an input/output unit (140a), and a position measurement unit (140b).
  • the communication unit (110) can transmit and receive signals (e.g., data, control signals, etc.) with other vehicles or external devices such as base stations.
  • the control unit (120) can control components of the vehicle (100) to perform various operations.
  • the memory unit (130) can store data/parameters/programs/codes/commands that support various functions of the vehicle (100).
  • the input/output unit (140a) can output AR/VR objects based on information in the memory unit (130).
  • the input/output unit (140a) can include a HUD.
  • the position measurement unit (140b) can obtain position information of the vehicle (100).
  • the position information can include absolute position information of the vehicle (100), position information within a driving line, acceleration information, position information with respect to surrounding vehicles, etc.
  • the position measurement unit (140b) can include GPS and various sensors.
  • the communication unit (110) of the vehicle (100) can receive map information, traffic information, etc. from an external server and store them in the memory unit (130).
  • the location measurement unit (140b) can obtain vehicle location information through GPS and various sensors and store them in the memory unit (130).
  • the control unit (120) can generate a virtual object based on the map information, traffic information, vehicle location information, etc., and the input/output unit (140a) can display the generated virtual object on the vehicle window (1410, 1420).
  • the control unit (120) can determine whether the vehicle (100) is being driven normally within the driving line based on the vehicle location information.
  • control unit (120) can display a warning on the vehicle window through the input/output unit (140a). In addition, the control unit (120) can broadcast a warning message regarding driving abnormalities to surrounding vehicles through the communication unit (110). Depending on the situation, the control unit (120) can transmit vehicle location information and information regarding driving/vehicle abnormalities to relevant organizations through the communication unit (110).
  • Fig. 27 illustrates an XR device applicable to the present disclosure.
  • the XR device may be implemented as an HMD, a HUD (Head-Up Display) equipped in a vehicle, a television, a smartphone, a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, etc.
  • HMD Head-Up Display
  • the XR device (100a) may include a communication unit (110), a control unit (120), a memory unit (130), an input/output unit (140a), a sensor unit (140b), and a power supply unit (140c).
  • the communication unit (110) can transmit and receive signals (e.g., media data, control signals, etc.) with external devices such as other wireless devices, portable devices, or media servers.
  • the media data can include videos, images, sounds, etc.
  • the control unit (120) can control components of the XR device (100a) to perform various operations.
  • the control unit (120) can be configured to control and/or perform procedures such as video/image acquisition, (video/image) encoding, metadata generation and processing, etc.
  • the memory unit (130) can store data/parameters/programs/codes/commands required for driving the XR device (100a)/generation of XR objects.
  • the input/output unit (140a) can obtain control information, data, etc.
  • the input/output unit (140a) can include a camera, a microphone, a user input unit, a display unit, a speaker, and/or a haptic module.
  • the sensor unit (140b) can obtain the XR device status, surrounding environment information, user information, etc.
  • the sensor unit (140b) can include a proximity sensor, a light sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an RGB sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, a light sensor, a microphone, and/or a radar, etc.
  • the power supply unit (140c) supplies power to the XR device (100a) and can include a wired/wireless charging circuit, a battery, etc.
  • the memory unit (130) of the XR device (100a) may include information (e.g., data, etc.) required for creating an XR object (e.g., AR/VR/MR object).
  • the input/output unit (140a) may obtain a command to operate the XR device (100a) from a user, and the control unit (120) may operate the XR device (100a) according to the user's operating command. For example, when a user attempts to watch a movie, news, etc. through the XR device (100a), the control unit (120) may transmit content request information to another device (e.g., a mobile device (100b)) or a media server through the communication unit (130).
  • another device e.g., a mobile device (100b)
  • a media server e.g., a media server
  • the communication unit (130) may download/stream content such as a movie or news from another device (e.g., a mobile device (100b)) or a media server to the memory unit (130).
  • the control unit (120) controls and/or performs procedures such as video/image acquisition, (video/image) encoding, and metadata generation/processing for content, and can generate/output an XR object based on information about surrounding space or real objects acquired through the input/output unit (140a)/sensor unit (140b).
  • the XR device (100a) is wirelessly connected to the mobile device (100b) through the communication unit (110), and the operation of the XR device (100a) can be controlled by the mobile device (100b).
  • the mobile device (100b) can act as a controller for the XR device (100a).
  • the XR device (100a) can obtain three-dimensional position information of the mobile device (100b), and then generate and output an XR object corresponding to the mobile device (100b).
  • Fig. 28 illustrates a robot applicable to the present disclosure. Robots can be classified into industrial, medical, household, military, etc., depending on the purpose or field of use.
  • the robot (100) may include a communication unit (110), a control unit (120), a memory unit (130), an input/output unit (140a), a sensor unit (140b), and a driving unit (140c).
  • the communication unit (110) can transmit and receive signals (e.g., driving information, control signals, etc.) with external devices such as other wireless devices, other robots, or control servers.
  • the control unit (120) can control components of the robot (100) to perform various operations.
  • the memory unit (130) can store data/parameters/programs/codes/commands that support various functions of the robot (100).
  • the input/output unit (140a) can obtain information from the outside of the robot (100) and output information to the outside of the robot (100).
  • the input/output unit (140a) can include a camera, a microphone, a user input unit, a display unit, a speaker, and/or a haptic module.
  • the sensor unit (140b) can obtain internal information of the robot (100), surrounding environment information, user information, etc.
  • the sensor unit (140b) may include a proximity sensor, an illuminance sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, a light sensor, a microphone, a radar, etc.
  • the driving unit (140c) may perform various physical operations, such as moving a robot joint. In addition, the driving unit (140c) may allow the robot (100) to drive on the ground or fly in the air.
  • the driving unit (140c) may include an actuator, a motor, wheels, brakes, a propeller, etc.
  • Fig. 29 illustrates an AI device applicable to the present disclosure.
  • the AI device may be implemented as a fixed device or a movable device, such as a TV, a projector, a smartphone, a PC, a laptop, a digital broadcasting terminal, a tablet PC, a wearable device, a set-top box (STB), a radio, a washing machine, a refrigerator, a digital signage, a robot, a vehicle, etc.
  • the AI device (100) may include a communication unit (110), a control unit (120), a memory unit (130), an input/output unit (140a/140b), a learning processor unit (140c), and a sensor unit (140d).
  • the communication unit (110) can transmit and receive wired and wireless signals (e.g., sensor information, user input, learning models, control signals, etc.) with external devices such as other AI devices (e.g., 100x, 200, 400 of FIG. 23) or AI servers (e.g., 400 of FIG. 23) using wired and wireless communication technology.
  • the communication unit (110) can transmit information in the memory unit (130) to the external device or transfer a signal received from the external device to the memory unit (130).
  • the control unit (120) may determine at least one executable operation of the AI device (100) based on information determined or generated using a data analysis algorithm or a machine learning algorithm. Then, the control unit (120) may control components of the AI device (100) to perform the determined operation. For example, the control unit (120) may request, search, receive, or utilize data of the learning processor unit (140c) or the memory unit (130), and control components of the AI device (100) to perform a predicted operation or an operation determined to be desirable among at least one executable operation.
  • control unit (120) may collect history information including operation contents of the AI device (100) or user feedback on the operation, and store the information in the memory unit (130) or the learning processor unit (140c), or transmit the information to an external device such as an AI server (FIG. 23, 400).
  • the collected history information may be used to update a learning model.
  • the memory unit (130) can store data that supports various functions of the AI device (100).
  • the memory unit (130) can store data obtained from the input unit (140a), data obtained from the communication unit (110), output data of the learning processor unit (140c), and data obtained from the sensing unit (140).
  • the memory unit (130) can store control information and/or software codes necessary for the operation/execution of the control unit (120).
  • the input unit (140a) can obtain various types of data from the outside of the AI device (100).
  • the input unit (140a) can obtain learning data for model learning, and input data to which the learning model is to be applied.
  • the input unit (140a) may include a camera, a microphone, and/or a user input unit.
  • the output unit (140b) may generate output related to vision, hearing, or touch.
  • the output unit (140b) may include a display unit, a speaker, and/or a haptic module.
  • the sensing unit (140) may obtain at least one of internal information of the AI device (100), surrounding environment information of the AI device (100), and user information using various sensors.
  • the sensing unit (140) may include a proximity sensor, an illuminance sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an RGB sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, a light sensor, a microphone, and/or a radar.
  • the learning processor unit (140c) can train a model composed of an artificial neural network using learning data.
  • the learning processor unit (140c) can perform AI processing together with the learning processor unit of the AI server (Fig. 23, 400).
  • the learning processor unit (140c) can process information received from an external device through the communication unit (110) and/or information stored in the memory unit (130).
  • the output value of the learning processor unit (140c) can be transmitted to an external device through the communication unit (110) and/or stored in the memory unit (130).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

According to an embodiment, a method for operating a source remote user equipment (UE) in a UE-to-UE relay in a wireless communication system comprises steps in which the source remote UE: establishes a direct link with a target remote UE; establishes an end-to-end link, corresponding to an indirect link, with the target remote UE via a relay UE; activates at least one of the direct link or the indirect link; and transmits a message to the target remote UE via the activated link, wherein an upper layer of the source remote UE notifies an AS layer of both a first ID set, including a first SRC ID and a first DST ID used for the indirect link, and a second ID set, including a second SRC ID and a second DST ID related to the direct link.

Description

무선통신시스템에서 UE-TO-UE 릴레이에서 멀티패스에 관련된 UE의 동작 방법Method of operation of UE related to multipath in UE-TO-UE relay in wireless communication system
이하의 설명은 무선 통신 시스템에 대한 것으로, 보다 상세하게는 UE-to-UE 릴레이에서 멀티패스에 관련된 소스 리모트 UE 등의 동작 방법 및 장치이다. The following description relates to a wireless communication system, and more specifically, to an operation method and device of a source remote UE, etc., related to multipath in a UE-to-UE relay.
무선 통신 시스템에서는 LTE, LTE-A, WiFi 등의 다양한 RAT(Radio Access Technology)이 사용되고 있으며, 5G 도 여기에 포함된다. 5G의 세 가지 주요 요구 사항 영역은 (1) 개선된 모바일 광대역 (Enhanced Mobile Broadband, eMBB) 영역, (2) 다량의 머신 타입 통신 (massive Machine Type Communication, mMTC) 영역 및 (3) 초-신뢰 및 저 지연 통신 (Ultra-reliable and Low Latency Communications, URLLC) 영역을 포함한다. 일부 사용 예(Use Case)는 최적화를 위해 다수의 영역들이 요구될 수 있고, 다른 사용 예는 단지 하나의 핵심 성능 지표 (Key Performance Indicator, KPI)에만 포커싱될 수 있다. 5G는 이러한 다양한 사용 예들을 유연하고 신뢰할 수 있는 방법으로 지원하는 것이다. In wireless communication systems, various RATs (Radio Access Technologies), such as LTE, LTE-A, and WiFi, are used, and 5G is also included. The three major requirement areas of 5G are (1) Enhanced Mobile Broadband (eMBB), (2) Massive Machine Type Communication (mMTC), and (3) Ultra-reliable and Low Latency Communications (URLLC). Some use cases may require multiple areas for optimization, while other use cases may focus on only one Key Performance Indicator (KPI). 5G supports these various use cases in a flexible and reliable manner.
eMBB는 기본적인 모바일 인터넷 액세스를 훨씬 능가하게 하며, 풍부한 양방향 작업, 클라우드 또는 증강 현실에서 미디어 및 엔터테인먼트 애플리케이션을 커버한다. 데이터는 5G의 핵심 동력 중 하나이며, 5G 시대에서 처음으로 전용 음성 서비스를 볼 수 없을 수 있다. 5G에서, 음성은 단순히 통신 시스템에 의해 제공되는 데이터 연결을 사용하여 응용 프로그램으로서 처리될 것이 기대된다. 증가된 트래픽 양(volume)을 위한 주요 원인들은 콘텐츠 크기의 증가 및 높은 데이터 전송률을 요구하는 애플리케이션 수의 증가이다. 스트리밍 서비스 (오디오 및 비디오), 대화형 비디오 및 모바일 인터넷 연결은 더 많은 장치가 인터넷에 연결될수록 더 널리 사용될 것이다. 이러한 많은 응용 프로그램들은 사용자에게 실시간 정보 및 알림을 푸쉬하기 위해 항상 켜져 있는 연결성이 필요하다. 클라우드 스토리지 및 애플리케이션은 모바일 통신 플랫폼에서 급속히 증가하고 있으며, 이것은 업무 및 엔터테인먼트 모두에 적용될 수 있다. 그리고, 클라우드 스토리지는 상향링크 데이터 전송률의 성장을 견인하는 특별한 사용 예이다. 5G는 또한 클라우드의 원격 업무에도 사용되며, 촉각 인터페이스가 사용될 때 우수한 사용자 경험을 유지하도록 훨씬 더 낮은 단-대-단(end-to-end) 지연을 요구한다. 엔터테인먼트 예를 들어, 클라우드 게임 및 비디오 스트리밍은 모바일 광대역 능력에 대한 요구를 증가시키는 또 다른 핵심 요소이다. 엔터테인먼트는 기차, 차 및 비행기와 같은 높은 이동성 환경을 포함하는 어떤 곳에서든지 스마트폰 및 태블릿에서 필수적이다. 또 다른 사용 예는 엔터테인먼트를 위한 증강 현실 및 정보 검색이다. 여기서, 증강 현실은 매우 낮은 지연과 순간적인 데이터 양을 필요로 한다.eMBB goes far beyond basic mobile Internet access, covering rich interactive tasks, media and entertainment applications in the cloud or augmented reality. Data is one of the key drivers of 5G, and for the first time in the 5G era, we may not see dedicated voice services. In 5G, voice is expected to be handled as an application simply using the data connection provided by the communication system. The main reasons for the increased traffic volume are the increase in content size and the increase in the number of applications requiring high data rates. Streaming services (audio and video), interactive video and mobile Internet connectivity will become more prevalent as more devices are connected to the Internet. Many of these applications require always-on connectivity to push real-time information and notifications to users. Cloud storage and applications are rapidly growing on mobile communication platforms, and this can be applied to both work and entertainment. And cloud storage is a particular use case that is driving the growth of uplink data rates. 5G is also used for remote work in the cloud, requiring much lower end-to-end latency to maintain a good user experience when tactile interfaces are used. Entertainment For example, cloud gaming and video streaming are other key factors driving the demand for mobile broadband capabilities. Entertainment is essential on smartphones and tablets anywhere, including in high-mobility environments such as trains, cars, and airplanes. Another use case is augmented reality and information retrieval for entertainment. Here, augmented reality requires very low latency and instantaneous data volumes.
또한, 가장 많이 예상되는 5G 사용 예 중 하나는 모든 분야에서 임베디드 센서를 원활하게 연결할 수 있는 기능 즉, mMTC에 관한 것이다. 2020년까지 잠재적인 IoT 장치들은 204 억 개에 이를 것으로 예측된다. 산업 IoT는 5G가 스마트 도시, 자산 추적(asset tracking), 스마트 유틸리티, 농업 및 보안 인프라를 가능하게 하는 주요 역할을 수행하는 영역 중 하나이다.Also, one of the most anticipated 5G use cases is mMTC, the ability to seamlessly connect embedded sensors across all sectors. It is predicted that there will be 20.4 billion potential IoT devices by 2020. Industrial IoT is one area where 5G will play a key role in enabling smart cities, asset tracking, smart utilities, agriculture, and security infrastructure.
URLLC는 주요 인프라의 원격 제어 및 자체-구동 차량(self-driving vehicle)과 같은 초 신뢰 / 이용 가능한 지연이 적은 링크를 통해 산업을 변화시킬 새로운 서비스를 포함한다. 신뢰성과 지연의 수준은 스마트 그리드 제어, 산업 자동화, 로봇 공학, 드론 제어 및 조정에 필수적이다.URLLC encompasses new services that will transform industries through ultra-reliable/available low-latency links, such as remote control of critical infrastructure and self-driving vehicles. Reliability and latency levels are essential for smart grid control, industrial automation, robotics, and drone control and coordination.
다음으로, 다수의 사용 예들에 대해 보다 구체적으로 살펴본다.Next, let's look at a number of use cases in more detail.
5G는 초당 수백 메가 비트에서 초당 기가 비트로 평가되는 스트림을 제공하는 수단으로 FTTH (fiber-to-the-home) 및 케이블 기반 광대역 (또는 DOCSIS)을 보완할 수 있다. 이러한 빠른 속도는 가상 현실과 증강 현실뿐 아니라 4K 이상(6K, 8K 및 그 이상)의 해상도로 TV를 전달하는데 요구된다. VR(Virtual Reality) 및 AR(Augmented Reality) 애플리케이션들은 거의 몰입형(immersive) 스포츠 경기를 포함한다. 특정 응용 프로그램은 특별한 네트워크 설정이 요구될 수 있다. 예를 들어, VR 게임의 경우, 게임 회사들이 지연을 최소화하기 위해 코어 서버를 네트워크 오퍼레이터의 에지 네트워크 서버와 통합해야 할 수 있다.5G can complement fiber-to-the-home (FTTH) and cable-based broadband (or DOCSIS) by delivering streams rated at hundreds of megabits per second to gigabits per second. These high speeds are required to deliver television at resolutions of 4K and beyond (6K, 8K and beyond), as well as virtual and augmented reality. Virtual Reality (VR) and Augmented Reality (AR) applications include near-immersive sporting events. Certain applications may require special network configurations. For example, VR gaming may require gaming companies to integrate their core servers with the network operator’s edge network servers to minimize latency.
자동차(Automotive)는 차량에 대한 이동 통신을 위한 많은 사용 예들과 함께 5G에 있어 중요한 새로운 동력이 될 것으로 예상된다. 예를 들어, 승객을 위한 엔터테인먼트는 동시의 높은 용량과 높은 이동성 모바일 광대역을 요구한다. 그 이유는 미래의 사용자는 그들의 위치 및 속도와 관계 없이 고품질의 연결을 계속해서 기대하기 때문이다. 자동차 분야의 다른 활용 예는 증강 현실 대시보드이다. 이는 운전자가 앞면 창을 통해 보고 있는 것 위에 어둠 속에서 물체를 식별하고, 물체의 거리와 움직임에 대해 운전자에게 말해주는 정보를 겹쳐서 디스플레이 한다. 미래에, 무선 모듈은 차량들 간의 통신, 차량과 지원하는 인프라구조 사이에서 정보 교환 및 자동차와 다른 연결된 디바이스들(예를 들어, 보행자에 의해 수반되는 디바이스들) 사이에서 정보 교환을 가능하게 한다. 안전 시스템은 운전자가 보다 안전한 운전을 할 수 있도록 행동의 대체 코스들을 안내하여 사고의 위험을 낮출 수 있게 한다. 다음 단계는 원격 조종되거나 자체 운전 차량(self-driven vehicle)이 될 것이다. 이는 서로 다른 자체 운전 차량들 사이 및 자동차와 인프라 사이에서 매우 신뢰성이 있고, 매우 빠른 통신을 요구한다. 미래에, 자체 운전 차량이 모든 운전 활동을 수행하고, 운전자는 차량 자체가 식별할 수 없는 교통 이상에만 집중하도록 할 것이다. 자체 운전 차량의 기술적 요구 사항은 트래픽 안전을 사람이 달성할 수 없을 정도의 수준까지 증가하도록 초 저 지연과 초고속 신뢰성을 요구한다.Automotive is expected to be a major new driver for 5G, with many use cases for mobile communications in vehicles. For example, entertainment for passengers requires simultaneous high-capacity and high-mobility mobile broadband, as future users will continue to expect high-quality connectivity regardless of their location and speed. Another application in the automotive sector is an augmented reality dashboard, which displays information superimposed on what the driver sees through the windshield, identifying objects in the dark and telling the driver about their distance and movement. In the future, wireless modules will enable communication between vehicles, information exchange between vehicles and supporting infrastructure, and information exchange between vehicles and other connected devices (e.g. devices accompanied by pedestrians). Safety systems can guide drivers to alternative courses of action to drive more safely, thus reducing the risk of accidents. The next step will be remotely controlled or self-driven vehicles, which will require highly reliable and very fast communication between different self-driving vehicles and between vehicles and infrastructure. In the future, self-driving cars will perform all driving activities, leaving drivers to focus only on traffic anomalies that the car itself cannot identify. The technical requirements for self-driving cars will require ultra-low latency and ultra-high reliability to increase traffic safety to levels that humans cannot achieve.
스마트 사회(smart society)로서 언급되는 스마트 도시와 스마트 홈은 고밀도 무선 센서 네트워크로 임베디드될 것이다. 지능형 센서의 분산 네트워크는 도시 또는 집의 비용 및 에너지-효율적인 유지에 대한 조건을 식별할 것이다. 유사한 설정이 각 가정을 위해 수행될 수 있다. 온도 센서, 창 및 난방 컨트롤러, 도난 경보기 및 가전 제품들은 모두 무선으로 연결된다. 이러한 센서들 중 많은 것들이 전형적으로 낮은 데이터 전송 속도, 저전력 및 저비용이다. 하지만, 예를 들어, 실시간 HD 비디오는 감시를 위해 특정 타입의 장치에서 요구될 수 있다.Smart cities and smart homes, referred to as smart societies, will be embedded with dense wireless sensor networks. A distributed network of intelligent sensors will identify conditions for cost- and energy-efficient maintenance of a city or home. A similar setup can be done for each home. Temperature sensors, window and heating controllers, burglar alarms, and appliances are all connected wirelessly. Many of these sensors are typically low data rates, low power, and low cost. However, for example, real-time HD video may be required for certain types of devices for surveillance.
열 또는 가스를 포함한 에너지의 소비 및 분배는 고도로 분산화되고 있어, 분산 센서 네트워크의 자동화된 제어가 요구된다. 스마트 그리드는 정보를 수집하고 이에 따라 행동하도록 디지털 정보 및 통신 기술을 사용하여 이런 센서들을 상호 연결한다. 이 정보는 공급 업체와 소비자의 행동을 포함할 수 있으므로, 스마트 그리드가 효율성, 신뢰성, 경제성, 생산의 지속 가능성 및 자동화된 방식으로 전기와 같은 연료들의 분배를 개선하도록 할 수 있다. 스마트 그리드는 지연이 적은 다른 센서 네트워크로 볼 수도 있다.The consumption and distribution of energy, including heat or gas, is becoming highly decentralized, requiring automated control of distributed sensor networks. Smart grids interconnect these sensors using digital information and communication technologies to collect information and act on it. This information can include the actions of suppliers and consumers, allowing smart grids to improve efficiency, reliability, economy, sustainability of production, and distribution of fuels such as electricity in an automated manner. Smart grids can also be viewed as another sensor network with low latency.
건강 부문은 이동 통신의 혜택을 누릴 수 있는 많은 응용 프로그램을 보유하고 있다. 통신 시스템은 멀리 떨어진 곳에서 임상 진료를 제공하는 원격 진료를 지원할 수 있다. 이는 거리에 대한 장벽을 줄이는데 도움을 주고, 거리가 먼 농촌에서 지속적으로 이용하지 못하는 의료 서비스들로의 접근을 개선시킬 수 있다. 이는 또한 중요한 진료 및 응급 상황에서 생명을 구하기 위해 사용된다. 이동 통신 기반의 무선 센서 네트워크는 심박수 및 혈압과 같은 파라미터들에 대한 원격 모니터링 및 센서들을 제공할 수 있다.The health sector has many applications that can benefit from mobile communications. Telecommunication systems can support telemedicine, which provides clinical care from a distance. This can help reduce distance barriers and improve access to health services that are not always available in remote rural areas. It can also be used to save lives in critical care and emergency situations. Mobile-based wireless sensor networks can provide remote monitoring and sensors for parameters such as heart rate and blood pressure.
무선 및 모바일 통신은 산업 응용 분야에서 점차 중요해지고 있다. 배선은 설치 및 유지 비용이 높다. 따라서, 케이블을 재구성할 수 있는 무선 링크들로의 교체 가능성은 많은 산업 분야에서 매력적인 기회이다. 그러나, 이를 달성하는 것은 무선 연결이 케이블과 비슷한 지연, 신뢰성 및 용량으로 동작하는 것과, 그 관리가 단순화될 것이 요구된다. 낮은 지연과 매우 낮은 오류 확률은 5G로 연결될 필요가 있는 새로운 요구 사항이다.Wireless and mobile communications are becoming increasingly important in industrial applications. Wiring is expensive to install and maintain. Therefore, the possibility of replacing cables with reconfigurable wireless links is an attractive opportunity for many industries. However, achieving this requires that wireless connections operate with similar delay, reliability and capacity as cables, and that their management is simplified. Low latency and very low error probability are the new requirements that need to be connected with 5G.
물류(logistics) 및 화물 추적(freight tracking)은 위치 기반 정보 시스템을 사용하여 어디에서든지 인벤토리(inventory) 및 패키지의 추적을 가능하게 하는 이동 통신에 대한 중요한 사용 예이다. 물류 및 화물 추적의 사용 예는 전형적으로 낮은 데이터 속도를 요구하지만 넓은 범위와 신뢰성 있는 위치 정보가 필요하다.Logistics and freight tracking are important use cases for mobile communications, enabling tracking of inventory and packages from anywhere using location-based information systems. Logistics and freight tracking use cases typically require low data rates but require wide range and reliable location information.
무선 통신 시스템은 가용한 시스템 자원(예를 들어, 대역폭, 전송 전력 등)을 공유하여 다중 사용자와의 통신을 지원하는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다.A wireless communication system is a multiple access system that supports communication with multiple users by sharing available system resources (e.g., bandwidth, transmission power, etc.). Examples of multiple access systems include a CDMA (code division multiple access) system, an FDMA (frequency division multiple access) system, a TDMA (time division multiple access) system, an OFDMA (orthogonal frequency division multiple access) system, an SC-FDMA (single carrier frequency division multiple access) system, and an MC-FDMA (multi carrier frequency division multiple access) system.
사이드링크(sidelink, SL)란 단말(User Equipment, UE)들 간에 직접적인 링크를 설정하여, 기지국(Base Station, BS)을 거치지 않고, 단말 간에 음성 또는 데이터 등을 직접 주고 받는 통신 방식을 말한다. SL는 급속도로 증가하는 데이터 트래픽에 따른 기지국의 부담을 해결할 수 있는 하나의 방안으로서 고려되고 있다.Sidelink (SL) refers to a communication method that establishes a direct link between user equipment (UE) to directly exchange voice or data between terminals without going through a base station (BS). SL is being considered as a solution to address the burden on base stations due to rapidly increasing data traffic.
V2X(vehicle-to-everything)는 유/무선 통신을 통해 다른 차량, 보행자, 인프라가 구축된 사물 등과 정보를 교환하는 통신 기술을 의미한다. V2X는 V2V(vehicle-to-vehicle), V2I(vehicle-to-infrastructure), V2N(vehicle-to- network) 및 V2P(vehicle-to-pedestrian)와 같은 4 가지 유형으로 구분될 수 있다. V2X 통신은 PC5 인터페이스 및/또는 Uu 인터페이스를 통해 제공될 수 있다.V2X (vehicle-to-everything) refers to a communication technology that exchanges information with other vehicles, pedestrians, and objects with built-in infrastructure through wired/wireless communication. V2X can be divided into four types: V2V (vehicle-to-vehicle), V2I (vehicle-to-infrastructure), V2N (vehicle-to-network), and V2P (vehicle-to-pedestrian). V2X communication can be provided through the PC5 interface and/or the Uu interface.
한편, 더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라, 기존의 무선 액세스 기술(Radio Access Technology, RAT)에 비해 향상된 모바일 광대역 (mobile broadband) 통신에 대한 필요성이 대두되고 있다. 이에 따라, 신뢰도(reliability) 및 지연(latency)에 민감한 서비스 또는 단말을 고려한 통신 시스템이 논의되고 있는데, 개선된 이동 광대역 통신, 매시브 MTC(Machine Type Communication), URLLC(Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 무선 접속 기술을 새로운 RAT(new radio access technology) 또는 NR(new radio)이라 칭할 수 있다. NR에서도 V2X(vehicle-to-everything) 통신이 지원될 수 있다.Meanwhile, as more and more communication devices require greater communication capacity, there is a growing need for improved mobile broadband communication over existing Radio Access Technology (RAT). Accordingly, communication systems that consider services or terminals sensitive to reliability and latency are being discussed, and the next-generation radio access technology that considers improved mobile broadband communication, massive MTC (Machine Type Communication), URLLC (Ultra-Reliable and Low Latency Communication), etc. can be called new RAT (new radio access technology) or NR (new radio). V2X (vehicle-to-everything) communication can also be supported in NR.
도 1은 NR 이전의 RAT에 기반한 V2X 통신과 NR에 기반한 V2X 통신을 비교하여 설명하기 위한 도면이다.Figure 1 is a diagram for explaining and comparing V2X communication based on RAT prior to NR and V2X communication based on NR.
V2X 통신과 관련하여, NR 이전의 RAT에서는 BSM(Basic Safety Message), CAM(Cooperative Awareness Message), DENM(Decentralized Environmental Notification Message)과 같은 V2X 메시지를 기반으로, 안전 서비스(safety service)를 제공하는 방안이 주로 논의되었다. V2X 메시지는, 위치 정보, 동적 정보, 속성 정보 등을 포함할 수 있다. 예를 들어, 단말은 주기적인 메시지(periodic message) 타입의 CAM, 및/또는 이벤트 트리거 메시지(event triggered message) 타입의 DENM을 다른 단말에게 전송할 수 있다.In relation to V2X communication, in RATs prior to NR, methods for providing safety services based on V2X messages such as BSM (Basic Safety Message), CAM (Cooperative Awareness Message), and DENM (Decentralized Environmental Notification Message) have been mainly discussed. V2X messages may include location information, dynamic information, attribute information, etc. For example, a terminal may transmit a CAM of a periodic message type and/or a DENM of an event triggered message type to another terminal.
예를 들어, CAM은 방향 및 속도와 같은 차량의 동적 상태 정보, 치수와 같은 차량 정적 데이터, 외부 조명 상태, 경로 내역 등 기본 차량 정보를 포함할 수 있다. 예를 들어, 단말은 CAM을 방송할 수 있으며, CAM의 지연(latency)은 100ms보다 작을 수 있다. 예를 들어, 차량의 고장, 사고 등의 돌발적인 상황이 발행하는 경우, 단말은 DENM을 생성하여 다른 단말에게 전송할 수 있다. 예를 들어, 단말의 전송 범위 내에 있는 모든 차량은 CAM 및/또는 DENM을 수신할 수 있다. 이 경우, DENM은 CAM 보다 높은 우선 순위를 가질 수 있다.For example, CAM may include basic vehicle information such as vehicle dynamic status information such as direction and speed, vehicle static data such as dimensions, exterior lighting status, and route history. For example, the terminal may broadcast CAM, and the latency of the CAM may be less than 100ms. For example, when an emergency situation such as a vehicle breakdown or an accident occurs, the terminal may generate DENM and transmit it to other terminals. For example, all vehicles within the transmission range of the terminal may receive CAM and/or DENM. In this case, DENM may have a higher priority than CAM.
이후, V2X 통신과 관련하여, 다양한 V2X 시나리오들이 NR에서 제시되고 있다. 예를 들어, 다양한 V2X 시나리오들은, 차량 플래투닝(vehicle platooning), 향상된 드라이빙(advanced driving), 확장된 센서들(extended sensors), 리모트 드라이빙(remote driving) 등을 포함할 수 있다. Since then, various V2X scenarios have been proposed in NR in relation to V2X communication. For example, various V2X scenarios may include vehicle platooning, advanced driving, extended sensors, and remote driving.
예를 들어, 차량 플래투닝을 기반으로, 차량들은 동적으로 그룹을 형성하여 함께 이동할 수 있다. 예를 들어, 차량 플래투닝에 기반한 플라툰 동작들(platoon operations)을 수행하기 위해, 상기 그룹에 속하는 차량들은 선두 차량으로부터 주기적인 데이터를 수신할 수 있다. 예를 들어, 상기 그룹에 속하는 차량들은 주기적인 데이터를 이용하여, 차량들 사이의 간격을 줄이거나 넓힐 수 있다. For example, based on vehicle platooning, vehicles can dynamically form a group and move together. For example, in order to perform platoon operations based on vehicle platooning, vehicles belonging to the group can receive periodic data from the lead vehicle. For example, vehicles belonging to the group can use the periodic data to reduce or increase the gap between vehicles.
예를 들어, 향상된 드라이빙을 기반으로, 차량은 반자동화 또는 완전 자동화될 수 있다. 예를 들어, 각 차량은 근접 차량 및/또는 근접 로지컬 엔티티(logical entity)의 로컬 센서(local sensor)에서 획득된 데이터를 기반으로, 궤도(trajectories) 또는 기동(maneuvers)을 조정할 수 있다. 또한, 예를 들어, 각 차량은 근접한 차량들과 드라이빙 인텐션(driving intention)을 상호 공유할 수 있다. For example, based on improved driving, the vehicles can be semi-autonomous or fully automated. For example, each vehicle can adjust its trajectories or maneuvers based on data acquired from local sensors of nearby vehicles and/or nearby logical entities. Also, for example, each vehicle can share driving intentions with nearby vehicles.
예를 들어, 확장 센서들을 기반으로, 로컬 센서들을 통해 획득된 로 데이터(raw data) 또는 처리된 데이터(processed data), 또는 라이브 비디오 데이터(live video data)는 차량, 로지컬 엔티티, 보행자들의 단말 및/또는 V2X 응용 서버 간에 상호 교환될 수 있다. 따라서, 예를 들어, 차량은 자체 센서를 이용하여 감지할 수 있는 환경 보다 향상된 환경을 인식할 수 있다. For example, based on the extended sensors, raw data or processed data, or live video data acquired through local sensors can be exchanged between vehicles, logical entities, pedestrian terminals, and/or V2X application servers. Thus, for example, the vehicle can perceive the environment better than it can perceive using its own sensors.
예를 들어, 리모트 드라이빙을 기반으로, 운전을 하지 못하는 사람 또는 위험한 환경에 위치한 리모트 차량을 위해, 리모트 드라이버 또는 V2X 애플리케이션은 상기 리모트 차량을 동작 또는 제어할 수 있다. 예를 들어, 대중 교통과 같이 경로를 예측할 수 있는 경우, 클라우드 컴퓨팅 기반의 드라이빙이 상기 리모트 차량의 동작 또는 제어에 이용될 수 있다. 또한, 예를 들어, 클라우드 기반의 백엔드 서비스 플랫폼(cloud-based back-end service platform)에 대한 액세스가 리모트 드라이빙을 위해 고려될 수 있다.For example, based on remote driving, for a person who cannot drive or a remote vehicle located in a dangerous environment, a remote driver or V2X application can operate or control the remote vehicle. For example, in the case of predictable paths such as public transportation, cloud computing-based driving can be used to operate or control the remote vehicle. In addition, for example, access to a cloud-based back-end service platform can be considered for remote driving.
한편, 차량 플래투닝, 향상된 드라이빙, 확장된 센서들, 리모트 드라이빙 등 다양한 V2X 시나리오들에 대한 서비스 요구사항(service requirements)들을 구체화하는 방안이 NR에 기반한 V2X 통신에서 논의되고 있다.Meanwhile, a method to specify service requirements for various V2X scenarios, such as vehicle platooning, enhanced driving, expanded sensors, and remote driving, is being discussed in NR-based V2X communications.
본 개시는 UE-to-UE 릴레이에서 멀티패스에 관련된 소스 리모트 UE의 동작 방법 및 장치를 기술적 과제로 한다.The present disclosure addresses a technical problem of an operation method and device of a source remote UE involved in multipath in a UE-to-UE relay.
일 실시예는, 무선통신시스템에서 UE-to-UE 릴레이에서 소스 리모트 UE(User Equipment)의 동작 방법에 있어서, 상기 소스 리모트 UE가 타겟 리모트 UE와 direct link를 수립; 상기 소스 리모트 UE가 릴레이 UE를 통해, indirect link에 해당하는, 상기 타겟 리모트 UE와의 end-to-end link를 수립; 상기 소스 리모트 UE가 상기 direct link와 indirect link 중 적어도 하나 이상을 activation; 상기 소스 리모트 UE가 상기 activation된 link를 통해 상기 타겟 리모트 UE로 메시지를 전송을 포함하며, 상기 소스 리모트 UE의 upper layer는 AS layer에 상기 indirect link에 사용되는 제1 SRC ID, 제1 DST ID를 포함하는 제1 ID 세트를 상기 direct link에 관련된 제2 SRC ID, 제2 DST ID를 포함하는 제2 ID 세트와 함께 알려주는, 방법이다.One embodiment is a method for operating a source remote UE (User Equipment) in a UE-to-UE relay in a wireless communication system, the method including: the source remote UE establishing a direct link with a target remote UE; the source remote UE establishing an end-to-end link, corresponding to an indirect link, with the target remote UE through a relay UE; the source remote UE activating at least one of the direct link and the indirect link; and the source remote UE transmitting a message to the target remote UE through the activated link, wherein an upper layer of the source remote UE notifies an AS layer of a first ID set including a first SRC ID and a first DST ID used for the indirect link together with a second ID set including a second SRC ID and a second DST ID related to the direct link.
일 실시예는, 무선통신시스템에서, UE-to-UE 릴레이에서 소스 리모트 UE에 있어서, 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하게 연결될 수 있고, 실행될 때 상기 적어도 하나의 프로세서로 하여금 동작들을 수행하게 하는 명령들을 저장하는 적어도 하나의 컴퓨터 메모리를 포함하며, 상기 동작들은, 타겟 리모트 UE와 direct link를 수립; 릴레이 UE를 통해, indirect link에 해당하는, 상기 타겟 리모트 UE와의 end-to-end link를 수립; 상기 direct link와 indirect link 중 적어도 하나 이상을 activation; 상기 activation된 link를 통해 상기 타겟 리모트 UE로 메시지를 전송을 포함하며, 상기 소스 리모트 UE의 upper layer는 AS layer에 상기 indirect link에 사용되는 제1 SRC ID, 제1 DST ID를 포함하는 제1 ID 세트를 상기 direct link에 관련된 제2 SRC ID, 제2 DST ID를 포함하는 제2 ID 세트와 함께 알려주는, 소스 리모트 UE이다One embodiment is a wireless communication system, wherein a source remote UE in a UE-to-UE relay comprises at least one processor; and at least one computer memory operably connected to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform operations, the operations comprising: establishing a direct link with a target remote UE; establishing an end-to-end link with the target remote UE, via the relay UE, corresponding to an indirect link; activating at least one of the direct link and the indirect link; and transmitting a message to the target remote UE via the activated link, wherein an upper layer of the source remote UE notifies an AS layer of a first set of IDs including a first SRC ID and a first DST ID used for the indirect link together with a second set of IDs including a second SRC ID and a second DST ID associated with the direct link.
일 실시예는, 적어도 하나의 프로세서에 의해 실행될 때, 적어도 하나의 프로세서가 소스 리모트 UE를 위한 동작들을 수행하게 하는 명령을 포함하는 적어도 하나의 컴퓨터 프로그램을 저장하는 비휘발성 컴퓨터 판독 가능 저장 매체에 있어서, 상기 동작들은, 타겟 리모트 UE와 direct link를 수립; 릴레이 UE를 통해, indirect link에 해당하는, 상기 타겟 리모트 UE와의 end-to-end link를 수립; 상기 direct link와 indirect link 중 적어도 하나 이상을 activation; 상기 activation된 link를 통해 상기 타겟 리모트 UE로 메시지를 전송을 포함하며, 상기 소스 리모트 UE의 upper layer는 AS layer에 상기 indirect link에 사용되는 제1 SRC ID, 제1 DST ID를 포함하는 제1 ID 세트를 상기 direct link에 관련된 제2 SRC ID, 제2 DST ID를 포함하는 제2 ID 세트와 함께 알려주는, 저장 매체이다.One embodiment is a non-volatile computer-readable storage medium storing at least one computer program comprising instructions that, when executed by at least one processor, cause the at least one processor to perform operations for a source remote UE, the operations comprising: establishing a direct link with a target remote UE; establishing an end-to-end link with the target remote UE, via a relay UE, the end-to-end link corresponding to an indirect link; activating at least one of the direct link and the indirect link; and transmitting a message to the target remote UE via the activated link, wherein an upper layer of the source remote UE notifies an AS layer of a first set of IDs including a first SRC ID, a first DST ID used for the indirect link, together with a second set of IDs including a second SRC ID, a second DST ID associated with the direct link.
상기 소스 리모트 UE는 상기 제1 ID 세트에 해당하는 indirect link와 상기 제2 ID 세트에 해당하는 상기 direct link는 동일한 타겟 리모트 UE와 연결되는 link로 간주할 수 있다.The above source remote UE may consider the indirect link corresponding to the first ID set and the direct link corresponding to the second ID set as links connected to the same target remote UE.
상기 direct link와 indirect link 중 적어도 하나 이상의 activation은 RSRP (Reference Signals Received Power)에 기초하여 수행될 수 있다.Activation of at least one of the above direct link and indirect link can be performed based on RSRP (Reference Signals Received Power).
상기 direct link와 indirect link는 primary RLC entity 와 무관하게 동시 activation 이 허용되는 것일 수 있다.The above direct link and indirect link may be allowed to be activated simultaneously regardless of the primary RLC entity.
상기 방법은, 상기 소스 리모트 UE가 상기 indirect link의 addition과 관련된 상기 릴레이 UE를 선택; 상기 소스 리모트 UE가 상기 릴레이 UE와 SL 연결을 수립을 더 포함할 수 있다.The method may further include: the source remote UE selecting the relay UE associated with the addition of the indirect link; and the source remote UE establishing an SL connection with the relay UE.
상기 소스 리모트 UE는 상기 indirect link를 통해 전송한 RRCReconfigurationSidelink에 대한 응답을 상기 direct link를 통해 수신한 것에 기초하여, multi-path가 성립되었다고 간주할 수 있다.The above source remote UE can consider that multi-path is established based on receiving a response to RRCReconfigurationSidelink transmitted through the indirect link through the direct link.
상기 direct path에 관련된 bearer와 상기 indirect path에 관련된 bearer의 RSRP threshold가 기준 값 이상인 것에 기초하여, 상기 소스 리모트 UE는 direct path에 존재하는 RLC entity와 indirect path에 존재하는 RLC entity 중 어느 하나의 entity를 임의로 deactivation시킬 수 있다.Based on the RSRP threshold of the bearer related to the direct path and the bearer related to the indirect path being equal to or greater than a reference value, the source remote UE can arbitrarily deactivate either an RLC entity existing in the direct path or an RLC entity existing in the indirect path.
상기 RSRP threshold 값은 상기 소스 리모트 UE의 상위 레이어가 결정한 것일 수 있다.The above RSRP threshold value may be determined by a higher layer of the source remote UE.
상기 indirect path를 위한 threshold와 direct path를 위한 threshold는 상이한 것일 수 있다.The threshold for the above indirect path and the threshold for the direct path may be different.
상기 direct path에 관련된 bearer와 상기 indirect path에 관련된 bearer의 상기 RSRP threshold가 기준 값 이하인 것에 기초하여, 상기 소스 리모트 UE는 direct path에 존재하는 RLC entity와 indirect path에 존재하는 RLC entity 모두를 통해서 메시지를 전송할 수 있다.Based on the RSRP threshold of the bearer related to the direct path and the bearer related to the indirect path being less than or equal to a reference value, the source remote UE can transmit a message through both the RLC entity existing in the direct path and the RLC entity existing in the indirect path.
상기 direct path의 신호 세기 또는 상기 indirect path의 신호 세기 중 어느 하나가 상기 RSRP threshold 이하인 것에 기초하여, 상기 소스 리모트 UE는 신호 세기가 상기 RSRP threshold 이상인 path를 통해 메시지를 전송할 수 있다.Based on whether either the signal strength of the direct path or the signal strength of the indirect path is less than or equal to the RSRP threshold, the source remote UE can transmit a message through a path whose signal strength is greater than or equal to the RSRP threshold.
일 실시예에 의하면, 상기 실시예에 의할 경우, U2U 동작에서 multi-path 동작이 가능하다. 또한, PDCP duplication이 허용되었을 때 효율적인 path의 activation/deactivation이 가능하다. 데이터의 reliability를 높이면서 채널 상황이 좋을 때는 하나의 path만 사용하여 패킷을 전송하도록 함으로써 dynamic 하게 전송 자원을 효율적으로 사용할 수 있다.In one embodiment, multi-path operation is possible in U2U operation according to the above embodiment. In addition, efficient path activation/deactivation is possible when PDCP duplication is allowed. By increasing data reliability and transmitting packets using only one path when channel conditions are good, transmission resources can be used dynamically and efficiently.
본 명세서에 첨부되는 도면은 실시예(들)에 대한 이해를 제공하기 위한 것으로서 다양한 실시형태들을 나타내고 명세서의 기재와 함께 원리를 설명하기 위한 것이다. The drawings attached to this specification are intended to provide an understanding of the embodiments and to illustrate various embodiments and, together with the description of the specification, to explain the principles.
도 1은 NR 이전의 RAT에 기반한 V2X 통신과 NR에 기반한 V2X 통신을 비교하여 설명하기 위한 도면이다.Figure 1 is a diagram for explaining and comparing V2X communication based on RAT prior to NR and V2X communication based on NR.
도 2는 본 개시의 일 실시 예에 따른, LTE 시스템의 구조를 나타낸다.FIG. 2 illustrates the structure of an LTE system according to one embodiment of the present disclosure.
도 3은 본 개시의 일 실시 예에 따른, 사용자 평면(user plane), 제어 평면(control plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸다. FIG. 3 illustrates a radio protocol architecture for a user plane and a control plane according to an embodiment of the present disclosure.
도 4는 본 개시의 일 실시 예에 따른, NR 시스템의 구조를 나타낸다.FIG. 4 illustrates the structure of an NR system according to one embodiment of the present disclosure.
도 5는 본 개시의 일 실시 예에 따른, NG-RAN과 5GC 간의 기능적 분할을 나타낸다.FIG. 5 illustrates a functional partition between NG-RAN and 5GC according to one embodiment of the present disclosure.
도 6은 실시예(들)이 적용될 수 있는 NR의 무선 프레임의 구조를 나타낸다.Figure 6 shows the structure of a radio frame of NR to which the embodiment(s) can be applied.
도 7은 본 개시의 일 실시 예에 따른, NR 프레임의 슬롯 구조를 나타낸다.FIG. 7 illustrates a slot structure of an NR frame according to one embodiment of the present disclosure.
도 8은 본 개시의 일 실시 예에 따른, SL 통신을 위한 무선 프로토콜 구조(radio protocol architecture)를 나타낸다.FIG. 8 illustrates a radio protocol architecture for SL communication according to one embodiment of the present disclosure.
도 9는 본 개시의 일 실시 예에 따른, SL 통신을 위한 무선 프로토콜 구조(radio protocol architecture)를 나타낸다.FIG. 9 illustrates a radio protocol architecture for SL communication according to one embodiment of the present disclosure.
도 10은 본 개시의 일 실시 예에 따른, V2X의 동기화 소스 또는 동기화 기준(synchronization reference)을 나타낸다.FIG. 10 illustrates a synchronization source or synchronization reference of V2X according to one embodiment of the present disclosure.
도 11은 본 개시의 일 실시 예에 따라, 단말이 전송 모드에 따라 V2X 또는 SL 통신을 수행하는 절차를 나타낸다.FIG. 11 illustrates a procedure for a terminal to perform V2X or SL communication depending on a transmission mode according to one embodiment of the present disclosure.
도 12는 본 개시의 일 실시 예에 따라, 단말이 path switching을 수행하는 절차를 나타낸다.FIG. 12 illustrates a procedure for a terminal to perform path switching according to one embodiment of the present disclosure.
도 13은 direct to indirect path 전환을 예시한다.Figure 13 illustrates a direct to indirect path transition.
도 14 내지 도 15는 UE-to-UE Relay Selection를 설명하기 위한 도면이다.Figures 14 and 15 are diagrams for explaining UE-to-UE Relay Selection.
도 16은 UE-to-UE 릴레이에서 프로토콜 스택을 예시한다.Figure 16 illustrates a protocol stack in a UE-to-UE relay.
도 17은 Packet duplication에 관련된 도면이다.Figure 17 is a diagram related to packet duplication.
도 18 내지 도 22는 일 실시예를 설명하기 위한 도면이다.Figures 18 to 22 are drawings for explaining one embodiment.
도 23 내지 도 29는 실시예(들)이 적용될 수 있는 다양한 장치를 설명하는 면이다.Figures 23 to 29 illustrate various devices to which the embodiments can be applied.
본 개시의 다양한 실시 예에서, “/” 및 “,”는 “및/또는”을 나타내는 것으로 해석되어야 한다. 예를 들어, “A/B”는 “A 및/또는 B”를 의미할 수 있다. 나아가, “A, B”는 “A 및/또는 B”를 의미할 수 있다. 나아가, “A/B/C”는 “A, B 및/또는 C 중 적어도 어느 하나”를 의미할 수 있다. 나아가, “A, B, C”는 “A, B 및/또는 C 중 적어도 어느 하나”를 의미할 수 있다.In various embodiments of the present disclosure, “/” and “,” should be interpreted as representing “and/or”. For example, “A/B” can mean “A and/or B”. Furthermore, “A, B” can mean “A and/or B”. Furthermore, “A/B/C” can mean “at least one of A, B, and/or C”. Furthermore, “A, B, C” can mean “at least one of A, B, and/or C”.
본 개시의 다양한 실시 예에서, “또는”은 “및/또는”을 나타내는 것으로 해석되어야 한다. 예를 들어, “A 또는 B”는 “오직 A”, “오직 B”, 및/또는 “A 및 B 모두”를 포함할 수 있다. 다시 말해, “또는”은 “부가적으로 또는 대안적으로”를 나타내는 것으로 해석되어야 한다.In various embodiments of the present disclosure, “or” should be interpreted as meaning “and/or.” For example, “A or B” can include “only A,” “only B,” and/or “both A and B.” In other words, “or” should be interpreted as meaning “additionally or alternatively.”
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 통신 시스템에 사용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE(institute of electrical and electronics engineers) 802.11(Wi-Fi), IEEE 802.16(WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. IEEE 802.16m은 IEEE 802.16e의 진화로, IEEE 802.16e에 기반한 시스템과의 하위 호환성(backward compatibility)를 제공한다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA(evolved-UMTS terrestrial radio access)를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다. The following technology can be used in various wireless communication systems, such as CDMA (code division multiple access), FDMA (frequency division multiple access), TDMA (time division multiple access), OFDMA (orthogonal frequency division multiple access), and SC-FDMA (single carrier frequency division multiple access). CDMA can be implemented with wireless technologies such as UTRA (universal terrestrial radio access) or CDMA2000. TDMA can be implemented with wireless technologies such as GSM (global system for mobile communications)/GPRS (general packet radio service)/EDGE (enhanced data rates for GSM evolution). OFDMA can be implemented with wireless technologies such as IEEE (institute of electrical and electronics engineers) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA (evolved UTRA). IEEE 802.16m is an evolution of IEEE 802.16e, providing backward compatibility with systems based on IEEE 802.16e. UTRA is part of UMTS (universal mobile telecommunications system). 3GPP (3rd generation partnership project) LTE (long term evolution) is a part of E-UMTS (evolved UMTS) that uses E-UTRA (evolved-UMTS terrestrial radio access), employing OFDMA in the downlink and SC-FDMA in the uplink. LTE-A (advanced) is an evolution of 3GPP LTE.
5G NR은 LTE-A의 후속 기술로서, 고성능, 저지연, 고가용성 등의 특성을 가지는 새로운 Clean-slate 형태의 이동 통신 시스템이다. 5G NR은 1GHz 미만의 저주파 대역에서부터 1GHz~10GHz의 중간 주파 대역, 24GHz 이상의 고주파(밀리미터파) 대역 등 사용 가능한 모든 스펙트럼 자원을 활용할 수 있다.5G NR is a new clean-slate type mobile communication system that is the successor technology to LTE-A and has the characteristics of high performance, low latency, and high availability. 5G NR can utilize all available spectrum resources, from low frequency bands below 1 GHz to intermediate frequency bands between 1 GHz and 10 GHz, and high frequency (millimeter wave) bands above 24 GHz.
설명을 명확하게 하기 위해, LTE-A 또는 5G NR을 위주로 기술하지만 본 개시의 일 실시 예에 따른 기술적 사상이 이에 제한되는 것은 아니다.For clarity of explanation, the description will focus on LTE-A or 5G NR, but the technical ideas according to one embodiment of the present disclosure are not limited thereto.
도 2는 본 개시의 일 실시 예에 따른, LTE 시스템의 구조를 나타낸다. 이는 E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network), 또는 LTE(Long Term Evolution)/LTE-A 시스템이라고 불릴 수 있다.FIG. 2 illustrates the structure of an LTE system according to one embodiment of the present disclosure. This may be called an Evolved-UMTS Terrestrial Radio Access Network (E-UTRAN), or a Long Term Evolution (LTE)/LTE-A system.
도 2를 참조하면, E-UTRAN은 단말(10)에게 제어 평면(control plane)과 사용자 평면(user plane)을 제공하는 기지국(20)을 포함한다. 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), MT(Mobile Terminal), 무선기기(Wireless Device) 등 다른 용어로 불릴 수 있다. 기지국(20)은 단말(10)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.Referring to FIG. 2, the E-UTRAN includes a base station (20) that provides a control plane and a user plane to a terminal (10). The terminal (10) may be fixed or mobile, and may be called by other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), a mobile terminal (MT), a wireless device, etc. The base station (20) refers to a fixed station that communicates with the terminal (10), and may be called by other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, etc.
기지국(20)들은 X2 인터페이스를 통하여 서로 연결될 수 있다. 기지국(20)은 S1 인터페이스를 통해 EPC(Evolved Packet Core, 30), 보다 상세하게는 S1-MME를 통해 MME(Mobility Management Entity)와 S1-U를 통해 S-GW(Serving Gateway)와 연결된다. Base stations (20) can be connected to each other through the X2 interface. The base station (20) is connected to an EPC (Evolved Packet Core, 30) through the S1 interface, more specifically, to an MME (Mobility Management Entity) through the S1-MME and to an S-GW (Serving Gateway) through the S1-U.
EPC(30)는 MME, S-GW 및 P-GW(Packet Data Network-Gateway)로 구성된다. MME는 단말의 접속 정보나 단말의 능력에 관한 정보를 가지고 있으며, 이러한 정보는 단말의 이동성 관리에 주로 사용된다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이며, P-GW는 PDN(Packet Date Network)을 종단점으로 갖는 게이트웨이이다.EPC (30) consists of MME, S-GW, and P-GW (Packet Data Network-Gateway). MME has terminal connection information or terminal capability information, and this information is mainly used for terminal mobility management. S-GW is a gateway with E-UTRAN as an end point, and P-GW is a gateway with PDN (Packet Data Network) as an end point.
단말과 네트워크 사이의 무선인터페이스 프로토콜(Radio Interface Protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection, OSI) 기준 모델의 하위 3개 계층을 바탕으로 L1 (제 1 계층), L2 (제 2 계층), L3(제 3 계층)로 구분될 수 있다. 이 중에서 제 1 계층에 속하는 물리 계층은 물리 채널(Physical Channel)을 이용한 정보전송서비스(Information Transfer Service)를 제공하며, 제 3 계층에 위치하는 RRC(Radio Resource Control) 계층은 단말과 네트워크 간에 무선 자원을 제어하는 역할을 수행한다. 이를 위해 RRC 계층은 단말과 기지국 간 RRC 메시지를 교환한다.The layers of the Radio Interface Protocol between the terminal and the network can be divided into L1 (the first layer), L2 (the second layer), and L3 (the third layer) based on the three lower layers of the Open System Interconnection (OSI) standard model, which is widely known in communication systems. Among these, the physical layer belonging to the first layer provides an information transfer service using a physical channel, and the RRC (Radio Resource Control) layer located in the third layer controls radio resources between the terminal and the network. To this end, the RRC layer exchanges RRC messages between the terminal and the base station.
도 3(a)는 본 개시의 일 실시 예에 따른, 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸다. FIG. 3(a) illustrates a radio protocol architecture for a user plane according to an embodiment of the present disclosure.
도 3(b)은 본 개시의 일 실시 예에 따른, 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸다. 사용자 평면은 사용자 데이터 전송을 위한 프로토콜 스택(protocol stack)이고, 제어 평면은 제어신호 전송을 위한 프로토콜 스택이다. FIG. 3(b) illustrates a wireless protocol structure for a control plane according to an embodiment of the present disclosure. The user plane is a protocol stack for transmitting user data, and the control plane is a protocol stack for transmitting control signals.
도 3(a) 및 A3을 참조하면, 물리 계층(physical layer)은 물리 채널을 이용하여 상위 계층에게 정보 전송 서비스를 제공한다. 물리 계층은 상위 계층인 MAC(Medium Access Control) 계층과는 전송 채널(transport channel)을 통해 연결되어 있다. 전송 채널을 통해 MAC 계층과 물리 계층 사이로 데이터가 이동한다. 전송 채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다.Referring to Figure 3(a) and A3, the physical layer provides information transmission services to the upper layer using a physical channel. The physical layer is connected to the upper layer, the Medium Access Control (MAC) layer, through a transport channel. Data moves between the MAC layer and the physical layer through the transport channel. The transport channel is classified according to how and with what characteristics data is transmitted through the wireless interface.
서로 다른 물리계층 사이, 즉 송신기와 수신기의 물리 계층 사이는 물리 채널을 통해 데이터가 이동한다. 상기 물리 채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조될 수 있고, 시간과 주파수를 무선 자원으로 활용한다.Data is transferred between different physical layers, that is, between the physical layers of the transmitter and receiver, through a physical channel. The physical channel can be modulated using the OFDM (Orthogonal Frequency Division Multiplexing) method and utilizes time and frequency as radio resources.
MAC 계층은 논리 채널(logical channel)을 통해 상위 계층인 RLC(radio link control) 계층에게 서비스를 제공한다. MAC 계층은 복수의 논리 채널에서 복수의 전송 채널로의 맵핑 기능을 제공한다. 또한, MAC 계층은 복수의 논리 채널에서 단수의 전송 채널로의 맵핑에 의한 논리 채널 다중화 기능을 제공한다. MAC 부 계층은 논리 채널상의 데이터 전송 서비스를 제공한다.The MAC layer provides services to the upper layer, the radio link control (RLC) layer, through logical channels. The MAC layer provides a mapping function from multiple logical channels to multiple transport channels. In addition, the MAC layer provides a logical channel multiplexing function by mapping from multiple logical channels to a single transport channel. The MAC sublayer provides data transmission services on logical channels.
RLC 계층은 RLC SDU(Serving Data Unit)의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)을 수행한다. 무선 베어러(Radio Bearer, RB)가 요구하는 다양한 QoS(Quality of Service)를 보장하기 위해, RLC 계층은 투명모드(Transparent Mode, TM), 비확인 모드(Unacknowledged Mode, UM) 및 확인모드(Acknowledged Mode, AM)의 세 가지의 동작모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다. The RLC layer performs concatenation, segmentation, and reassembly of RLC SDUs (Serving Data Units). In order to guarantee various QoS (Quality of Service) required by Radio Bearers (RBs), the RLC layer provides three operation modes: Transparent Mode (TM), Unacknowledged Mode (UM), and Acknowledged Mode (AM). AM RLC provides error correction through automatic repeat request (ARQ).
RRC(Radio Resource Control) 계층은 제어 평면에서만 정의된다. RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. RB는 단말과 네트워크간의 데이터 전달을 위해 제 1 계층(physical 계층 또는 PHY 계층) 및 제 2 계층(MAC 계층, RLC 계층, PDCP(Packet Data Convergence Protocol) 계층)에 의해 제공되는 논리적 경로를 의미한다. The RRC (Radio Resource Control) layer is defined only in the control plane. The RRC layer is responsible for controlling logical channels, transport channels, and physical channels in relation to the configuration, re-configuration, and release of radio bearers. RB refers to a logical path provided by the first layer (physical layer or PHY layer) and the second layer (MAC layer, RLC layer, PDCP (Packet Data Convergence Protocol) layer) for data transmission between the terminal and the network.
사용자 평면에서의 PDCP 계층의 기능은 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)를 포함한다. 제어 평면에서의 PDCP 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결성 보호(integrity protection)를 포함한다.The functions of the PDCP layer in the user plane include forwarding of user data, header compression, and ciphering. The functions of the PDCP layer in the control plane include forwarding of control plane data and ciphering/integrity protection.
RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 다시 SRB(Signaling Radio Bearer)와 DRB(Data Radio Bearer) 두 가지로 나누어 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.Establishing an RB means the process of specifying the characteristics of the radio protocol layer and channel to provide a specific service, and setting each specific parameter and operation method. RB can be divided into two types: SRB (Signaling Radio Bearer) and DRB (Data Radio Bearer). SRB is used as a channel to transmit RRC messages in the control plane, and DRB is used as a channel to transmit user data in the user plane.
단말의 RRC 계층과 E-UTRAN의 RRC 계층 사이에 RRC 연결(RRC connection)이 확립되면, 단말은 RRC_CONNECTED 상태에 있게 되고, 그렇지 못할 경우 RRC_IDLE 상태에 있게 된다. NR의 경우, RRC_INACTIVE 상태가 추가로 정의되었으며, RRC_INACTIVE 상태의 단말은 코어 네트워크와의 연결을 유지하는 반면 기지국과의 연결을 해지(release)할 수 있다.When an RRC connection is established between the RRC layer of the terminal and the RRC layer of the E-UTRAN, the terminal is in the RRC_CONNECTED state, otherwise it is in the RRC_IDLE state. For NR, an RRC_INACTIVE state is additionally defined, and a terminal in the RRC_INACTIVE state can release the connection with the base station while maintaining the connection with the core network.
네트워크에서 단말로 데이터를 전송하는 하향링크 전송 채널로는 시스템 정보를 전송하는 BCH(Broadcast Channel)과 그 이외에 사용자 트래픽이나 제어 메시지를 전송하는 하향링크 SCH(Shared Channel)이 있다. 하향링크 멀티캐스트 또는 브로드캐스트 서비스의 트래픽 또는 제어메시지의 경우 하향링크 SCH를 통해 전송될 수도 있고, 또는 별도의 하향링크 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향링크 전송 채널로는 초기 제어메시지를 전송하는 RACH(Random Access Channel)와 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 상향링크 SCH(Shared Channel)가 있다.Downlink transmission channels that transmit data from a network to a terminal include the BCH (Broadcast Channel) that transmits system information, and the downlink SCH (Shared Channel) that transmits user traffic or control messages. Traffic or control messages of downlink multicast or broadcast services may be transmitted through the downlink SCH, or may be transmitted through a separate downlink MCH (Multicast Channel). Meanwhile, uplink transmission channels that transmit data from a terminal to a network include the RACH (Random Access Channel) that transmits initial control messages, and the uplink SCH (Shared Channel) that transmits user traffic or control messages.
전송 채널 상위에 있으며, 전송 채널에 맵핑되는 논리 채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.Logical channels that are located above the transport channel and are mapped to the transport channel include the Broadcast Control Channel (BCCH), Paging Control Channel (PCCH), Common Control Channel (CCCH), Multicast Control Channel (MCCH), and Multicast Traffic Channel (MTCH).
물리 채널(Physical Channel)은 시간 영역에서 여러 개의 OFDM 심벌과 주파수 영역에서 여러 개의 부반송파(sub-carrier)로 구성된다. 하나의 서브프레임(sub-frame)은 시간 영역에서 복수의 OFDM 심벌(symbol)들로 구성된다. 자원 블록은 자원 할당 단위로, 복수의 OFDM 심벌들과 복수의 부반송파(sub-carrier)들로 구성된다. 또한 각 서브프레임은 PDCCH(Physical Downlink Control Channel) 즉, L1/L2 제어 채널을 위해 해당 서브프레임의 특정 OFDM 심벌들(예, 첫 번째 OFDM 심볼)의 특정 부반송파들을 이용할 수 있다. TTI(Transmission Time Interval)는 서브프레임 전송의 단위시간이다.A physical channel consists of multiple OFDM symbols in the time domain and multiple sub-carriers in the frequency domain. One sub-frame consists of multiple OFDM symbols in the time domain. A resource block is a resource allocation unit and consists of multiple OFDM symbols and multiple sub-carriers. In addition, each subframe can use specific sub-carriers of specific OFDM symbols (e.g., the first OFDM symbol) of the corresponding subframe for the Physical Downlink Control Channel (PDCCH), i.e., the L1/L2 control channel. A Transmission Time Interval (TTI) is a unit time of subframe transmission.
도 4는 본 개시의 일 실시 예에 따른, NR 시스템의 구조를 나타낸다.FIG. 4 illustrates the structure of an NR system according to one embodiment of the present disclosure.
도 4를 참조하면, NG-RAN(Next Generation - Radio Access Network)은 단말에게 사용자 평면 및 제어 평면 프로토콜 종단(termination)을 제공하는 gNB(next generation-Node B) 및/또는 eNB를 포함할 수 있다. 도 4에서는 gNB만을 포함하는 경우를 예시한다. gNB 및 eNB는 상호 간에 Xn 인터페이스로 연결되어 있다. gNB 및 eNB는 5세대 코어 네트워크(5G Core Network: 5GC)와 NG 인터페이스를 통해 연결되어 있다. 보다 구체적으로, AMF(access and mobility management function)과는 NG-C 인터페이스를 통해 연결되고, UPF(user plane function)과는 NG-U 인터페이스를 통해 연결된다. Referring to FIG. 4, the NG-RAN (Next Generation - Radio Access Network) may include a gNB (next generation-Node B) and/or eNB that provide user plane and control plane protocol termination to the UE. FIG. 4 exemplifies a case including only a gNB. The gNB and the eNB are connected to each other via an Xn interface. The gNB and the eNB are connected to a 5th generation core network (5G Core Network: 5GC) via an NG interface. More specifically, they are connected to an access and mobility management function (AMF) via an NG-C interface, and to a user plane function (UPF) via an NG-U interface.
도 5는 본 개시의 일 실시 예에 따른, NG-RAN과 5GC 간의 기능적 분할을 나타낸다.FIG. 5 illustrates a functional partition between NG-RAN and 5GC according to one embodiment of the present disclosure.
도 5를 참조하면, gNB는 인터 셀 간의 무선 자원 관리(Inter Cell RRM), 무선 베어러 관리(RB control), 연결 이동성 제어(Connection Mobility Control), 무선 허용 제어(Radio Admission Control), 측정 설정 및 제공(Measurement configuration & Provision), 동적 자원 할당(dynamic resource allocation) 등의 기능을 제공할 수 있다. AMF는 NAS(Non Access Stratum) 보안, 아이들 상태 이동성 처리 등의 기능을 제공할 수 있다. UPF는 이동성 앵커링(Mobility Anchoring), PDU(Protocol Data Unit) 처리 등의 기능을 제공할 수 있다. SMF(Session Management Function)는 단말 IP(Internet Protocol) 주소 할당, PDU 세션 제어 등의 기능을 제공할 수 있다.Referring to FIG. 5, the gNB can provide functions such as inter-cell radio resource management (Inter Cell RRM), radio bearer management (RB control), connection mobility control (Connection Mobility Control), radio admission control (Radio Admission Control), measurement configuration & provision, and dynamic resource allocation. The AMF can provide functions such as NAS (Non Access Stratum) security and idle state mobility processing. The UPF can provide functions such as mobility anchoring and PDU (Protocol Data Unit) processing. The SMF (Session Management Function) can provide functions such as terminal IP (Internet Protocol) address allocation and PDU session control.
도 6은 실시예(들)이 적용될 수 있는 NR의 무선 프레임의 구조를 나타낸다.Figure 6 shows the structure of a radio frame of NR to which the embodiment(s) can be applied.
도 6을 참조하면, NR에서 상향링크 및 하향링크 전송에서 무선 프레임을 사용할 수 있다. 무선 프레임은 10ms의 길이를 가지며, 2개의 5ms 하프-프레임(Half-Frame, HF)으로 정의될 수 있다. 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)을 포함할 수 있다. 서브프레임은 하나 이상의 슬롯으로 분할될 수 있으며, 서브프레임 내 슬롯 개수는 부반송파 간격(Subcarrier Spacing, SCS)에 따라 결정될 수 있다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(A) 심볼을 포함할 수 있다. Referring to FIG. 6, a radio frame can be used in uplink and downlink transmission in NR. A radio frame has a length of 10 ms and can be defined as two 5 ms half-frames (Half-Frames, HF). A half-frame can include five 1 ms subframes (Subframes, SF). A subframe can be divided into one or more slots, and the number of slots in a subframe can be determined according to the subcarrier spacing (SCS). Each slot can include 12 or 14 OFDM (A) symbols according to the cyclic prefix (CP).
노멀 CP(normal CP)가 사용되는 경우, 각 슬롯은 14개의 심볼을 포함할 수 있다. 확장 CP가 사용되는 경우, 각 슬롯은 12개의 심볼을 포함할 수 있다. 여기서, 심볼은 OFDM 심볼 (또는, CP-OFDM 심볼), SC-FDMA 심볼 (또는, DFT-s-OFDM 심볼)을 포함할 수 있다.When normal CP is used, each slot can contain 14 symbols. When extended CP is used, each slot can contain 12 symbols. Here, the symbols can contain OFDM symbols (or CP-OFDM symbols), SC-FDMA symbols (or DFT-s-OFDM symbols).
다음 표 1은 노멀 CP가 사용되는 경우, SCS 설정(μ)에 따라 슬롯 별 심볼의 개수(
Figure PCTKR2024001952-appb-img-000001
), 프레임 별 슬롯의 개수(
Figure PCTKR2024001952-appb-img-000002
)와 서브프레임 별 슬롯의 개수(
Figure PCTKR2024001952-appb-img-000003
)를 예시한다.
Table 1 below shows the number of symbols per slot (μ) depending on the SCS setting (μ) when normal CP is used.
Figure PCTKR2024001952-appb-img-000001
), number of slots per frame (
Figure PCTKR2024001952-appb-img-000002
) and the number of slots per subframe (
Figure PCTKR2024001952-appb-img-000003
) is an example.
Figure PCTKR2024001952-appb-img-000004
Figure PCTKR2024001952-appb-img-000004
표 2는 확장 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수를 예시한다.Table 2 illustrates the number of symbols per slot, the number of slots per frame, and the number of slots per subframe according to SCS when extended CP is used.
Figure PCTKR2024001952-appb-img-000005
Figure PCTKR2024001952-appb-img-000005
NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들간에 OFDM(A) 뉴머놀로지(numerology)(예, SCS, CP 길이 등)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, 서브프레임, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다. In an NR system, OFDM(A) numerology (e.g., SCS, CP length, etc.) may be set differently between multiple cells that are merged into one terminal. Accordingly, the (absolute time) section of a time resource (e.g., subframe, slot, or TTI) (conveniently, collectively called TU (Time Unit)) consisting of the same number of symbols may be set differently between the merged cells.
NR에서, 다양한 5G 서비스들을 지원하기 위한 다수의 뉴머놀로지(numerology) 또는 SCS가 지원될 수 있다. 예를 들어, SCS가 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)이 지원될 수 있고, SCS가 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 지연(lower latency) 및 더 넓은 캐리어 대역폭(wider carrier bandwidth)이 지원될 수 있다. SCS가 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)을 극복하기 위해 24.25GHz보다 큰 대역폭이 지원될 수 있다.In NR, multiple numerologies or SCS can be supported to support various 5G services. For example, when the SCS is 15 kHz, wide area in traditional cellular bands can be supported, and when the SCS is 30 kHz/60 kHz, dense-urban, lower latency and wider carrier bandwidth can be supported. When the SCS is 60 kHz or higher, a bandwidth greater than 24.25 GHz can be supported to overcome phase noise.
NR 주파수 밴드(frequency band)는 두 가지 타입의 주파수 범위(frequency range)로 정의될 수 있다. 상기 두 가지 타입의 주파수 범위는 FR1 및 FR2일 수 있다. 주파수 범위의 수치는 변경될 수 있으며, 예를 들어, 상기 두 가지 타입의 주파수 범위는 하기 표 3과 같을 수 있다. NR 시스템에서 사용되는 주파수 범위 중 FR1은 “sub 6GHz range”를 의미할 수 있고, FR2는 “above 6GHz range”를 의미할 수 있고 밀리미터 웨이브(millimeter wave, mmW)로 불릴 수 있다.The NR frequency band can be defined by two types of frequency ranges. The two types of frequency ranges can be FR1 and FR2. The numerical value of the frequency range can be changed, and for example, the two types of frequency ranges can be as shown in Table 3 below. Among the frequency ranges used in the NR system, FR1 can mean “sub 6GHz range”, and FR2 can mean “above 6GHz range” and can be called millimeter wave (mmW).
Figure PCTKR2024001952-appb-img-000006
Figure PCTKR2024001952-appb-img-000006
상술한 바와 같이, NR 시스템의 주파수 범위의 수치는 변경될 수 있다. 예를 들어, FR1은 하기 표 4와 같이 410MHz 내지 7125MHz의 대역을 포함할 수 있다. 즉, FR1은 6GHz (또는 5850, 5900, 5925 MHz 등) 이상의 주파수 대역을 포함할 수 있다. 예를 들어, FR1 내에서 포함되는 6GHz (또는 5850, 5900, 5925 MHz 등) 이상의 주파수 대역은 비면허 대역(unlicensed band)을 포함할 수 있다. 비면허 대역은 다양한 용도로 사용될 수 있고, 예를 들어 차량을 위한 통신(예를 들어, 자율주행)을 위해 사용될 수 있다.As described above, the numerical value of the frequency range of the NR system can be changed. For example, FR1 can include a band of 410 MHz to 7125 MHz as shown in Table 4 below. That is, FR1 can include a frequency band of 6 GHz (or 5850, 5900, 5925 MHz, etc.) or higher. For example, the frequency band of 6 GHz (or 5850, 5900, 5925 MHz, etc.) or higher included in FR1 can include an unlicensed band. The unlicensed band can be used for various purposes, for example, it can be used for communication for vehicles (e.g., autonomous driving).
Figure PCTKR2024001952-appb-img-000007
Figure PCTKR2024001952-appb-img-000007
도 7은 본 개시의 일 실시 예에 따른, NR 프레임의 슬롯 구조를 나타낸다.FIG. 7 illustrates a slot structure of an NR frame according to one embodiment of the present disclosure.
도 7을 참조하면, 슬롯은 시간 영역에서 복수의 심볼들을 포함한다. 예를 들어, 노멀 CP의 경우 하나의 슬롯이 14개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 12개의 심볼을 포함할 수 있다. 또는 노멀 CP의 경우 하나의 슬롯이 7개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 6개의 심볼을 포함할 수 있다.Referring to Fig. 7, a slot includes multiple symbols in the time domain. For example, in the case of a normal CP, one slot may include 14 symbols, but in the case of an extended CP, one slot may include 12 symbols. Or, in the case of a normal CP, one slot may include 7 symbols, but in the case of an extended CP, one slot may include 6 symbols.
반송파는 주파수 영역에서 복수의 부반송파들을 포함한다. RB(Resource Block)는 주파수 영역에서 복수(예를 들어, 12)의 연속한 부반송파로 정의될 수 있다. BWP(Bandwidth Part)는 주파수 영역에서 복수의 연속한 (P)RB((Physical) Resource Block)로 정의될 수 있으며, 하나의 뉴머놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예를 들어, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행될 수 있다. 각각의 요소는 자원 그리드에서 자원요소(Resource Element, RE)로 지칭될 수 있고, 하나의 복소 심볼이 맵핑될 수 있다.A carrier includes a plurality of subcarriers in the frequency domain. An RB (Resource Block) can be defined as a plurality (for example, 12) of consecutive subcarriers in the frequency domain. A BWP (Bandwidth Part) can be defined as a plurality of consecutive (P)RBs ((Physical) Resource Blocks) in the frequency domain and can correspond to one numerology (for example, SCS, CP length, etc.). A carrier can include at most N (for example, 5) BWPs. Data communication can be performed through activated BWPs. Each element can be referred to as a Resource Element (RE) in the resource grid, and one complex symbol can be mapped.
한편, 단말과 단말 간 무선 인터페이스 또는 단말과 네트워크 간 무선 인터페이스는 L1 계층, L2 계층 및 L3 계층으로 구성될 수 있다. 본 개시의 다양한 실시 예에서, L1 계층은 물리(physical) 계층을 의미할 수 있다. 또한, 예를 들어, L2 계층은 MAC 계층, RLC 계층, PDCP 계층 및 SDAP 계층 중 적어도 하나를 의미할 수 있다. 또한, 예를 들어, L3 계층은 RRC 계층을 의미할 수 있다.Meanwhile, the wireless interface between terminals or between terminals and a network may be composed of an L1 layer, an L2 layer, and an L3 layer. In various embodiments of the present disclosure, the L1 layer may mean a physical layer. In addition, for example, the L2 layer may mean at least one of a MAC layer, an RLC layer, a PDCP layer, and an SDAP layer. In addition, for example, the L3 layer may mean an RRC layer.
이하, V2X 또는 SL(sidelink) 통신에 대하여 설명한다.Below, V2X or SL (sidelink) communication is explained.
도 8은 본 개시의 일 실시 예에 따른, SL 통신을 위한 무선 프로토콜 구조(radio protocol architecture)를 나타낸다. 구체적으로, 도 8의 (a)는 LTE의 사용자 평면 프로토콜 스택을 나타내고, 도 8의 (b)는 LTE의 제어 평면 프로토콜 스택을 나타낸다.FIG. 8 illustrates a radio protocol architecture for SL communication according to an embodiment of the present disclosure. Specifically, (a) of FIG. 8 illustrates a user plane protocol stack of LTE, and (b) of FIG. 8 illustrates a control plane protocol stack of LTE.
도 9는 본 개시의 일 실시 예에 따른, SL 통신을 위한 무선 프로토콜 구조(radio protocol architecture)를 나타낸다. 구체적으로, 도 9의 (a)는 NR의 사용자 평면 프로토콜 스택을 나타내고, 도 9의 (b)는 NR의 제어 평면 프로토콜 스택을 나타낸다.FIG. 9 illustrates a radio protocol architecture for SL communication according to an embodiment of the present disclosure. Specifically, (a) of FIG. 9 illustrates a user plane protocol stack of NR, and (b) of FIG. 9 illustrates a control plane protocol stack of NR.
도 10은 본 개시의 일 실시 예에 따른, V2X의 동기화 소스(synchronization source) 또는 동기화 기준(synchronization reference)을 나타낸다.FIG. 10 illustrates a synchronization source or synchronization reference of V2X according to one embodiment of the present disclosure.
도 10을 참조하면, V2X에서, 단말은 GNSS(global navigation satellite systems)에 직접적으로 동기화 되거나, 또는 GNSS에 직접적으로 동기화된 (네트워크 커버리지 내의 또는 네트워크 커버리지 밖의) 단말을 통해 비간접적으로 GNSS에 동기화 될 수 있다. GNSS가 동기화 소스로 설정된 경우, 단말은 UTC(Coordinated Universal Time) 및 (미리) 설정된 DFN(Direct Frame Number) 오프셋을 사용하여 DFN 및 서브프레임 번호를 계산할 수 있다. Referring to Fig. 10, in V2X, a terminal can be directly synchronized to GNSS (global navigation satellite systems), or can be indirectly synchronized to GNSS through a terminal (within network coverage or out of network coverage) that is directly synchronized to GNSS. When GNSS is set as a synchronization source, the terminal can calculate the DFN and subframe number using UTC (Coordinated Universal Time) and a (pre-)configured DFN offset.
또는, 단말은 기지국에 직접 동기화되거나, 기지국에 시간/주파수 동기화된 다른 단말에게 동기화될 수 있다. 예를 들어, 상기 기지국은 eNB 또는 gNB일 수 있다. 예를 들어, 단말이 네트워크 커버리지 내에 있는 경우, 상기 단말은 기지국이 제공하는 동기화 정보를 수신하고, 상기 기지국에 직접 동기화될 수 있다. 그 후, 상기 단말은 동기화 정보를 인접한 다른 단말에게 제공할 수 있다. 기지국 타이밍이 동기화 기준으로 설정된 경우, 단말은 동기화 및 하향링크 측정을 위해 해당 주파수에 연관된 셀(상기 주파수에서 셀 커버리지 내에 있는 경우), 프라이머리 셀 또는 서빙 셀(상기 주파수에서 셀 커버리지 바깥에 있는 경우)을 따를 수 있다.Alternatively, the terminal may be directly synchronized to the base station, or may be synchronized to another terminal that is time/frequency synchronized to the base station. For example, the base station may be an eNB or a gNB. For example, when the terminal is within network coverage, the terminal may receive synchronization information provided by the base station and be directly synchronized to the base station. Thereafter, the terminal may provide the synchronization information to other adjacent terminals. When the base station timing is set as the synchronization criterion, the terminal may follow the cell associated with the frequency (if it is within cell coverage at the frequency), the primary cell, or the serving cell (if it is outside cell coverage at the frequency) for synchronization and downlink measurement.
기지국(예를 들어, 서빙 셀)은 V2X 또는 SL 통신에 사용되는 반송파에 대한 동기화 설정을 제공할 수 있다. 이 경우, 단말은 상기 기지국으로부터 수신한 동기화 설정을 따를 수 있다. 만약, 단말이 상기 V2X 또는 SL 통신에 사용되는 반송파에서 어떤 셀도 검출하지 못했고, 서빙 셀로부터 동기화 설정도 수신하지 못했다면, 상기 단말은 미리 설정된 동기화 설정을 따를 수 있다.A base station (e.g., a serving cell) may provide synchronization settings for a carrier used for V2X or SL communication. In this case, the terminal may follow the synchronization settings received from the base station. If the terminal does not detect any cell on the carrier used for the V2X or SL communication and does not receive synchronization settings from the serving cell, the terminal may follow the preset synchronization settings.
또는, 단말은 기지국이나 GNSS로부터 직접 또는 간접적으로 동기화 정보를 획득하지 못한 다른 단말에게 동기화될 수도 있다. 동기화 소스 및 선호도는 단말에게 미리 설정될 수 있다. 또는, 동기화 소스 및 선호도는 기지국에 의하여 제공되는 제어 메시지를 통해 설정될 수 있다.Alternatively, the terminal may be synchronized to another terminal that has not obtained synchronization information directly or indirectly from the base station or GNSS. The synchronization source and preference may be preset for the terminal. Alternatively, the synchronization source and preference may be set via a control message provided by the base station.
SL 동기화 소스는 동기화 우선 순위와 연관될 수 있다. 예를 들어, 동기화 소스와 동기화 우선 순위 사이의 관계는 표 5 또는 표 6과 같이 정의될 수 있다. 표 5 또는 표 6은 일 예에 불과하며, 동기화 소스와 동기화 우선 순위 사이의 관계는 다양한 형태로 정의될 수 있다.SL synchronization source can be associated with a synchronization priority. For example, the relationship between synchronization source and synchronization priority can be defined as in Table 5 or Table 6. Table 5 or Table 6 is only an example, and the relationship between synchronization source and synchronization priority can be defined in various forms.
Figure PCTKR2024001952-appb-img-000008
Figure PCTKR2024001952-appb-img-000008
Figure PCTKR2024001952-appb-img-000009
Figure PCTKR2024001952-appb-img-000009
표 5 또는 표 6에서, P0가 가장 높은 우선 순위를 의미할 수 있고, P6이 가장 낮은 우선순위를 의미할 수 있다. 표 5 또는 표 6에서, 기지국은 gNB 또는 eNB 중 적어도 어느 하나를 포함할 수 있다.In Table 5 or Table 6, P0 may mean the highest priority, and P6 may mean the lowest priority. In Table 5 or Table 6, the base station may include at least one of a gNB or an eNB.
GNSS 기반의 동기화 또는 기지국 기반의 동기화를 사용할지 여부는 (미리) 설정될 수 있다. 싱글-캐리어 동작에서, 단말은 가장 높은 우선 순위를 가지는 이용 가능한 동기화 기준으로부터 상기 단말의 전송 타이밍을 유도할 수 있다.Whether GNSS-based synchronization or base station-based synchronization is used can be (pre-)configured. In single-carrier operation, the terminal can derive its transmission timing from the available synchronization reference with the highest priority.
이하, SL 동기 신호(Sidelink Synchronization Signal, SLSS) 및 동기화 정보에 대해 설명한다.Below, the SL synchronization signal (Sidelink Synchronization Signal, SLSS) and synchronization information are described.
SLSS는 SL 특정적인 시퀀스(sequence)로, PSSS(Primary Sidelink Synchronization Signal)와 SSSS(Secondary Sidelink Synchronization Signal)를 포함할 수 있다. 상기 PSSS는 S-PSS(Sidelink Primary Synchronization Signal)라고 칭할 수 있고, 상기 SSSS는 S-SSS(Sidelink Secondary Synchronization Signal)라고 칭할 수 있다. 예를 들어, 길이-127 M-시퀀스(length-127 M-sequences)가 S-PSS에 대하여 사용될 수 있고, 길이-127 골드-시퀀스(length-127 Gold sequences)가 S-SSS에 대하여 사용될 수 있다. 예를 들어, 단말은 S-PSS를 이용하여 최초 신호를 검출(signal detection)할 수 있고, 동기를 획득할 수 있다. 예를 들어, 단말은 S-PSS 및 S-SSS를 이용하여 세부 동기를 획득할 수 있고, 동기 신호 ID를 검출할 수 있다.SLSS is an SL-specific sequence and may include a Primary Sidelink Synchronization Signal (PSSS) and a Secondary Sidelink Synchronization Signal (SSSS). The PSSS may be referred to as a Sidelink Primary Synchronization Signal (S-PSS), and the SSSS may be referred to as a Sidelink Secondary Synchronization Signal (S-SSS). For example, length-127 M-sequences may be used for the S-PSS, and length-127 Gold sequences may be used for the S-SSS. For example, a terminal may detect an initial signal (signal detection) and acquire synchronization using the S-PSS. For example, the terminal may acquire detailed synchronization and detect a synchronization signal ID using the S-PSS and the S-SSS.
PSBCH(Physical Sidelink Broadcast Channel)는 SL 신호 송수신 전에 단말이 가장 먼저 알아야 하는 기본이 되는 (시스템) 정보가 전송되는 (방송) 채널일 수 있다. 예를 들어, 상기 기본이 되는 정보는 SLSS에 관련된 정보, 듀플렉스 모드(Duplex Mode, DM), TDD UL/DL(Time Division Duplex Uplink/Downlink) 구성, 리소스 풀 관련 정보, SLSS에 관련된 애플리케이션의 종류, 서브프레임 오프셋, 방송 정보 등일 수 있다. 예를 들어, PSBCH 성능의 평가를 위해, NR V2X에서, PSBCH의 페이로드 크기는 24 비트의 CRC를 포함하여 56 비트일 수 있다.PSBCH (Physical Sidelink Broadcast Channel) may be a (broadcast) channel through which basic (system) information that a terminal must know first before transmitting and receiving an SL signal is transmitted. For example, the basic information may be information related to SLSS, duplex mode (DM), TDD UL/DL (Time Division Duplex Uplink/Downlink) configuration, resource pool related information, type of application related to SLSS, subframe offset, broadcast information, etc. For example, in order to evaluate PSBCH performance, in NR V2X, the payload size of PSBCH may be 56 bits including a 24-bit CRC.
S-PSS, S-SSS 및 PSBCH는 주기적 전송을 지원하는 블록 포맷(예를 들어, SL SS(Synchronization Signal)/PSBCH 블록, 이하 S-SSB(Sidelink-Synchronization Signal Block))에 포함될 수 있다. 상기 S-SSB는 캐리어 내의 PSCCH(Physical Sidelink Control Channel)/PSSCH(Physical Sidelink Shared Channel)와 동일한 뉴머놀로지(즉, SCS 및 CP 길이)를 가질 수 있고, 전송 대역폭은 (미리) 설정된 SL BWP(Sidelink BWP) 내에 있을 수 있다. 예를 들어, S-SSB의 대역폭은 11 RB(Resource Block)일 수 있다. 예를 들어, PSBCH는 11 RB에 걸쳐있을 수 있다. 그리고, S-SSB의 주파수 위치는 (미리) 설정될 수 있다. 따라서, 단말은 캐리어에서 S-SSB를 발견하기 위해 주파수에서 가설 검출(hypothesis detection)을 수행할 필요가 없다. The S-PSS, S-SSS and PSBCH may be included in a block format supporting periodic transmission (e.g., SL SS (Synchronization Signal)/PSBCH block, hereinafter referred to as S-SSB (Sidelink-Synchronization Signal Block)). The S-SSB may have the same numerology (i.e., SCS and CP length) as the PSCCH (Physical Sidelink Control Channel)/PSSCH (Physical Sidelink Shared Channel) in a carrier, and the transmission bandwidth may be within a (pre-)configured SL BWP (Sidelink BWP). For example, the bandwidth of the S-SSB may be 11 RB (Resource Block). For example, the PSBCH may span 11 RBs. And, the frequency location of the S-SSB may be (pre-)configured. Therefore, the terminal does not need to perform hypothesis detection in frequency to discover the S-SSB in the carrier.
한편, NR SL 시스템에서, 서로 다른 SCS 및/또는 CP 길이를 가지는 복수의 뉴머놀로지가 지원될 수 있다. 이 때, SCS가 증가함에 따라서, 전송 단말이 S-SSB를 전송하는 시간 자원의 길이가 짧아질 수 있다. 이에 따라, S-SSB의 커버리지(coverage)가 감소할 수 있다. 따라서, S-SSB의 커버리지를 보장하기 위하여, 전송 단말은 SCS에 따라 하나의 S-SSB 전송 주기 내에서 하나 이상의 S-SSB를 수신 단말에게 전송할 수 있다. 예를 들어, 전송 단말이 하나의 S-SSB 전송 주기 내에서 수신 단말에게 전송하는 S-SSB의 개수는 전송 단말에게 사전에 설정되거나(pre-configured), 설정(configured)될 수 있다. 예를 들어, S-SSB 전송 주기는 160ms 일 수 있다. 예를 들어, 모든 SCS에 대하여, 160ms의 S-SSB 전송 주기가 지원될 수 있다. Meanwhile, in the NR SL system, multiple numerologies having different SCS and/or CP lengths may be supported. In this case, as the SCS increases, the length of the time resource for a transmitting terminal to transmit an S-SSB may become shorter. Accordingly, the coverage of the S-SSB may decrease. Therefore, in order to ensure the coverage of the S-SSB, the transmitting terminal may transmit one or more S-SSBs to a receiving terminal within one S-SSB transmission period according to the SCS. For example, the number of S-SSBs that the transmitting terminal transmits to the receiving terminal within one S-SSB transmission period may be pre-configured or configured for the transmitting terminal. For example, the S-SSB transmission period may be 160 ms. For example, an S-SSB transmission period of 160 ms may be supported for all SCSs.
예를 들어, SCS가 FR1에서 15kHz인 경우, 전송 단말은 하나의 S-SSB 전송 주기 내에서 수신 단말에게 1개 또는 2개의 S-SSB를 전송할 수 있다. 예를 들어, SCS가 FR1에서 30kHz인 경우, 전송 단말은 하나의 S-SSB 전송 주기 내에서 수신 단말에게 1개 또는 2개의 S-SSB를 전송할 수 있다. 예를 들어, SCS가 FR1에서 60kHz인 경우, 전송 단말은 하나의 S-SSB 전송 주기 내에서 수신 단말에게 1개, 2개 또는 4개의 S-SSB를 전송할 수 있다.For example, when the SCS is 15 kHz at FR1, the transmitting terminal can transmit one or two S-SSBs to the receiving terminal within one S-SSB transmission period. For example, when the SCS is 30 kHz at FR1, the transmitting terminal can transmit one or two S-SSBs to the receiving terminal within one S-SSB transmission period. For example, when the SCS is 60 kHz at FR1, the transmitting terminal can transmit one, two, or four S-SSBs to the receiving terminal within one S-SSB transmission period.
도 11은 본 개시의 일 실시 예에 따라, 단말이 전송 모드에 따라 V2X 또는 SL 통신을 수행하는 절차를 나타낸다. 도 11의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다. 본 개시의 다양한 실시 예에서, 전송 모드는 모드 또는 자원 할당 모드라고 칭할 수 있다. 이하, 설명의 편의를 위해, LTE에서 전송 모드는 LTE 전송 모드라고 칭할 수 있고, NR에서 전송 모드는 NR 자원 할당 모드라고 칭할 수 있다.FIG. 11 illustrates a procedure for a terminal to perform V2X or SL communication according to a transmission mode according to an embodiment of the present disclosure. The embodiment of FIG. 11 can be combined with various embodiments of the present disclosure. In various embodiments of the present disclosure, the transmission mode may be referred to as a mode or a resource allocation mode. Hereinafter, for convenience of explanation, the transmission mode in LTE may be referred to as an LTE transmission mode, and the transmission mode in NR may be referred to as an NR resource allocation mode.
예를 들어, 도 11의 (a)는 LTE 전송 모드 1 또는 LTE 전송 모드 3과 관련된 단말 동작을 나타낸다. 또는, 예를 들어, 도 11의 (a)는 NR 자원 할당 모드 1과 관련된 단말 동작을 나타낸다. 예를 들어, LTE 전송 모드 1은 일반적인 SL 통신에 적용될 수 있고, LTE 전송 모드 3은 V2X 통신에 적용될 수 있다.For example, (a) of Fig. 11 represents a terminal operation related to LTE transmission mode 1 or LTE transmission mode 3. Or, for example, (a) of Fig. 11 represents a terminal operation related to NR resource allocation mode 1. For example, LTE transmission mode 1 can be applied to general SL communication, and LTE transmission mode 3 can be applied to V2X communication.
예를 들어, 도 11의 (b)는 LTE 전송 모드 2 또는 LTE 전송 모드 4와 관련된 단말 동작을 나타낸다. 또는, 예를 들어, 도 11의 (b)는 NR 자원 할당 모드 2와 관련된 단말 동작을 나타낸다.For example, (b) of Fig. 11 represents terminal operation related to LTE transmission mode 2 or LTE transmission mode 4. Or, for example, (b) of Fig. 11 represents terminal operation related to NR resource allocation mode 2.
도 11의 (a)를 참조하면, LTE 전송 모드 1, LTE 전송 모드 3 또는 NR 자원 할당 모드 1에서, 기지국은 SL 전송을 위해 단말에 의해 사용될 SL 자원을 스케줄링할 수 있다. 예를 들어, 단계 S8000에서, 기지국은 제 1 단말에게 SL 자원과 관련된 정보 및/또는 UL 자원과 관련된 정보를 전송할 수 있다. 예를 들어, 상기 UL 자원은 PUCCH 자원 및/또는 PUSCH 자원을 포함할 수 있다. 예를 들어, 상기 UL 자원은 SL HARQ 피드백을 기지국에게 보고하기 위한 자원일 수 있다.Referring to (a) of FIG. 11, in LTE transmission mode 1, LTE transmission mode 3 or NR resource allocation mode 1, the base station may schedule SL resources to be used by the terminal for SL transmission. For example, in step S8000, the base station may transmit information related to SL resources and/or information related to UL resources to the first terminal. For example, the UL resources may include PUCCH resources and/or PUSCH resources. For example, the UL resources may be resources for reporting SL HARQ feedback to the base station.
예를 들어, 제 1 단말은 DG(dynamic grant) 자원과 관련된 정보 및/또는 CG(configured grant) 자원과 관련된 정보를 기지국으로부터 수신할 수 있다. 예를 들어, CG 자원은 CG 타입 1 자원 또는 CG 타입 2 자원을 포함할 수 있다. 본 명세서에서, DG 자원은, 기지국이 DCI(downlink control information)를 통해서 제 1 단말에게 설정/할당하는 자원일 수 있다. 본 명세서에서, CG 자원은, 기지국이 DCI 및/또는 RRC 메시지를 통해서 제 1 단말에게 설정/할당하는 (주기적인) 자원일 수 있다. 예를 들어, CG 타입 1 자원의 경우, 기지국은 CG 자원과 관련된 정보를 포함하는 RRC 메시지를 제 1 단말에게 전송할 수 있다. 예를 들어, CG 타입 2 자원의 경우, 기지국은 CG 자원과 관련된 정보를 포함하는 RRC 메시지를 제 1 단말에게 전송할 수 있고, 기지국은 CG 자원의 활성화(activation) 또는 해제(release)와 관련된 DCI를 제 1 단말에게 전송할 수 있다.For example, the first terminal may receive information related to a DG (dynamic grant) resource and/or information related to a CG (configured grant) resource from the base station. For example, the CG resource may include a CG type 1 resource or a CG type 2 resource. In this specification, the DG resource may be a resource that the base station configures/allocates to the first terminal via DCI (downlink control information). In this specification, the CG resource may be a (periodic) resource that the base station configures/allocates to the first terminal via DCI and/or an RRC message. For example, in case of a CG type 1 resource, the base station may transmit an RRC message including information related to the CG resource to the first terminal. For example, in case of a CG type 2 resource, the base station may transmit an RRC message including information related to the CG resource to the first terminal, and the base station may transmit DCI related to activation or release of the CG resource to the first terminal.
단계 S8010에서, 제 1 단말은 상기 자원 스케줄링을 기반으로 PSCCH(예, SCI(Sidelink Control Information) 또는 1st-stage SCI)를 제 2 단말에게 전송할 수 있다. 단계 S8020에서, 제 1 단말은 상기 PSCCH와 관련된 PSSCH(예, 2nd-stage SCI, MAC PDU, 데이터 등)를 제 2 단말에게 전송할 수 있다. 단계 S8030에서, 제 1 단말은 PSCCH/PSSCH와 관련된 PSFCH를 제 2 단말로부터 수신할 수 있다. 예를 들어, HARQ 피드백 정보(예, NACK 정보 또는 ACK 정보)가 상기 PSFCH를 통해서 상기 제 2 단말로부터 수신될 수 있다. 단계 S8040에서, 제 1 단말은 HARQ 피드백 정보를 PUCCH 또는 PUSCH를 통해서 기지국에게 전송/보고할 수 있다. 예를 들어, 상기 기지국에게 보고되는 HARQ 피드백 정보는, 상기 제 1 단말이 상기 제 2 단말로부터 수신한 HARQ 피드백 정보를 기반으로 생성(generate)하는 정보일 수 있다. 예를 들어, 상기 기지국에게 보고되는 HARQ 피드백 정보는, 상기 제 1 단말이 사전에 설정된 규칙을 기반으로 생성(generate)하는 정보일 수 있다. 예를 들어, 상기 DCI는 SL의 스케줄링을 위한 DCI일 수 있다. 예를 들어, 상기 DCI의 포맷은 DCI 포맷 3_0 또는 DCI 포맷 3_1일 수 있다. 표 7은 SL의 스케줄링을 위한 DCI의 일 예를 나타낸다.In step S8010, the first terminal may transmit a PSCCH (e.g., Sidelink Control Information (SCI) or 1st-stage SCI) to the second terminal based on the resource scheduling. In step S8020, the first terminal may transmit a PSSCH (e.g., 2nd-stage SCI, MAC PDU, data, etc.) related to the PSCCH to the second terminal. In step S8030, the first terminal may receive a PSFCH related to the PSCCH/PSSCH from the second terminal. For example, HARQ feedback information (e.g., NACK information or ACK information) may be received from the second terminal via the PSFCH. In step S8040, the first terminal may transmit/report HARQ feedback information to the base station via PUCCH or PUSCH. For example, the HARQ feedback information reported to the base station may be information that the first terminal generates based on the HARQ feedback information received from the second terminal. For example, the HARQ feedback information reported to the base station may be information that the first terminal generates based on a rule set in advance. For example, the DCI may be DCI for scheduling of SL. For example, the format of the DCI may be DCI format 3_0 or DCI format 3_1. Table 7 shows an example of DCI for scheduling of SL.
Figure PCTKR2024001952-appb-img-000010
Figure PCTKR2024001952-appb-img-000010
도 11의 (b)를 참조하면, LTE 전송 모드 2, LTE 전송 모드 4 또는 NR 자원 할당 모드 2에서, 단말은 기지국/네트워크에 의해 설정된 SL 자원 또는 미리 설정된 SL 자원 내에서 SL 전송 자원을 결정할 수 있다. 예를 들어, 상기 설정된 SL 자원 또는 미리 설정된 SL 자원은 자원 풀일 수 있다. 예를 들어, 단말은 자율적으로 SL 전송을 위한 자원을 선택 또는 스케줄링할 수 있다. 예를 들어, 단말은 설정된 자원 풀 내에서 자원을 스스로 선택하여, SL 통신을 수행할 수 있다. 예를 들어, 단말은 센싱(sensing) 및 자원 (재)선택 절차를 수행하여, 선택 윈도우 내에서 스스로 자원을 선택할 수 있다. 예를 들어, 상기 센싱은 서브채널 단위로 수행될 수 있다. 예를 들어, 단계 S8010에서, 자원 풀 내에서 자원을 스스로 선택한 제 1 단말은 상기 자원을 사용하여 PSCCH(예, SCI(Sidelink Control Information) 또는 1st-stage SCI)를 제 2 단말에게 전송할 수 있다. 단계 S8020에서, 제 1 단말은 상기 PSCCH와 관련된 PSSCH(예, 2nd-stage SCI, MAC PDU, 데이터 등)를 제 2 단말에게 전송할 수 있다. 단계 S8030에서, 제 1 단말은 PSCCH/PSSCH와 관련된 PSFCH를 제 2 단말로부터 수신할 수 있다. Referring to (b) of FIG. 11, in LTE transmission mode 2, LTE transmission mode 4 or NR resource allocation mode 2, a terminal may determine an SL transmission resource within an SL resource set by a base station/network or a preset SL resource. For example, the set SL resource or the preset SL resource may be a resource pool. For example, the terminal may autonomously select or schedule resources for SL transmission. For example, the terminal may perform SL communication by selecting a resource by itself within the set resource pool. For example, the terminal may perform sensing and resource (re)selection procedures to select a resource by itself within a selection window. For example, the sensing may be performed on a subchannel basis. For example, in step S8010, a first terminal that has selected a resource by itself within a resource pool may transmit a PSCCH (e.g., SCI (Sidelink Control Information) or 1st-stage SCI) to a second terminal using the resource. In step S8020, the first terminal can transmit a PSSCH (e.g., 2nd-stage SCI, MAC PDU, data, etc.) related to the PSCCH to the second terminal. In step S8030, the first terminal can receive a PSFCH related to the PSCCH/PSSCH from the second terminal.
도 11의 (a) 또는 (b)를 참조하면, 예를 들어, 제 1 단말은 PSCCH 상에서 SCI를 제 2 단말에게 전송할 수 있다. 또는, 예를 들어, 제 1 단말은 PSCCH 및/또는 PSSCH 상에서 두 개의 연속적인 SCI(예, 2-stage SCI)를 제 2 단말에게 전송할 수 있다. 이 경우, 제 2 단말은 PSSCH를 제 1 단말로부터 수신하기 위해 두 개의 연속적인 SCI(예, 2-stage SCI)를 디코딩할 수 있다. 본 명세서에서, PSCCH 상에서 전송되는 SCI는 1st SCI, 제 1 SCI, 1st-stage SCI 또는 1st-stage SCI 포맷이라고 칭할 수 있고, PSSCH 상에서 전송되는 SCI는 2nd SCI, 제 2 SCI, 2nd-stage SCI 또는 2nd-stage SCI 포맷이라고 칭할 수 있다. 예를 들어, 1st-stage SCI 포맷은 SCI 포맷 1-A를 포함할 수 있고, 2nd-stage SCI 포맷은 SCI 포맷 2-A 및/또는 SCI 포맷 2-B를 포함할 수 있다. 표 8은 1st-stage SCI 포맷의 일 예를 나타낸다.Referring to (a) or (b) of FIG. 11, for example, the first terminal may transmit an SCI to the second terminal on the PSCCH. Or, for example, the first terminal may transmit two consecutive SCIs (e.g., 2-stage SCIs) to the second terminal on the PSCCH and/or the PSSCH. In this case, the second terminal may decode the two consecutive SCIs (e.g., 2-stage SCIs) to receive the PSSCH from the first terminal. In this specification, the SCI transmitted on the PSCCH may be referred to as a 1st SCI, a 1st SCI, a 1st-stage SCI, or a 1st-stage SCI format, and the SCI transmitted on the PSSCH may be referred to as a 2nd SCI, a 2nd SCI, a 2nd-stage SCI, or a 2nd-stage SCI format. For example, a 1st-stage SCI format may include SCI format 1-A, and a 2nd-stage SCI format may include SCI format 2-A and/or SCI format 2-B. Table 8 shows an example of a 1st-stage SCI format.
Figure PCTKR2024001952-appb-img-000011
Figure PCTKR2024001952-appb-img-000011
표 9는 2nd-stage SCI 포맷의 일 예를 나타낸다.Table 9 shows an example of the 2nd-stage SCI format.
Figure PCTKR2024001952-appb-img-000012
Figure PCTKR2024001952-appb-img-000012
도 11의 (a) 또는 (b)를 참조하면, 단계 S8030에서, 제 1 단말은 표 10을 기반으로 PSFCH를 수신할 수 있다. 예를 들어, 제 1 단말 및 제 2 단말은 표 10을 기반으로 PSFCH 자원을 결정할 수 있고, 제 2 단말은 PSFCH 자원을 사용하여 HARQ 피드백을 제 1 단말에게 전송할 수 있다.Referring to (a) or (b) of FIG. 11, in step S8030, the first terminal can receive PSFCH based on Table 10. For example, the first terminal and the second terminal can determine PSFCH resources based on Table 10, and the second terminal can transmit HARQ feedback to the first terminal using the PSFCH resources.
Figure PCTKR2024001952-appb-img-000013
Figure PCTKR2024001952-appb-img-000013
도 11의 (a)를 참조하면, 단계 S8040에서, 제 1 단말은 표 11를 기반으로, PUCCH 및/또는 PUSCH를 통해서 SL HARQ 피드백을 기지국에게 전송할 수 있다.Referring to (a) of FIG. 11, in step S8040, the first terminal may transmit SL HARQ feedback to the base station through PUCCH and/or PUSCH based on Table 11.
Figure PCTKR2024001952-appb-img-000014
Figure PCTKR2024001952-appb-img-000014
한편, 다음 표 12는 3GPP TS 36.331에서 사이드링크 릴레이 UE의 선택 및 재선택에 관련된 개시내용이다. 표 12의 개시 내용은 본 개시의 종래 기술로써 사용되며, 관련하여 필요한 세부 사항은 3GPP TS 36.331를 참조한다.Meanwhile, the following Table 12 is a disclosure related to selection and reselection of a sidelink relay UE in 3GPP TS 36.331. The disclosure of Table 12 is used as prior art of the present disclosure, and for necessary details related thereto, refer to 3GPP TS 36.331.
Figure PCTKR2024001952-appb-img-000015
Figure PCTKR2024001952-appb-img-000015
도 12는 Rel-17 NR SL에 관련한 TR 문서(3GPP TR 38.836)에 capture되어 있는 connection management와 direct에서 indirect로 path switching 시 procedure를 나타낸다. 리모트 UE는 사용자 평면 데이터 전송 전에 네트워크와 자체 PDU 세션/DRB를 설정할 필요가 있다. Figure 12 shows the connection management and the procedure for path switching from direct to indirect as captured in the TR document (3GPP TR 38.836) related to Rel-17 NR SL. The remote UE needs to establish its own PDU session/DRB with the network before transmitting user plane data.
Rel-16 NR V2X의 PC5-RRC 측면 PC5 유니캐스트 링크 설정 절차는, 리모트 UE가 릴레이 UE를 통해 네트워크와 Uu RRC connection을 수립하기 전에, 리모트 UE가 릴레이 UE사이에 L2 UE-to-Network relaying 를 위해 secure unicast link를 설정하는데 재사용될 수 있다. The PC5-RRC aspect PC5 unicast link establishment procedure of Rel-16 NR V2X can be reused to establish a secure unicast link between the remote UE and the relay UE for L2 UE-to-Network relaying before the remote UE establishes a Uu RRC connection with the network via the relay UE.
in-coverage 및 out-of-coverage 모두에 대해 리모트 UE가 gNB와의 연결 설정을 위한 첫 번째 RRC 메시지를 시작하면, 리모트 UE와 UE-to-Network Relay UE 간의 전송을 위한 PC5 L2 구성은 표준에 정의된 RLC/MAC 구성에 기초할 수 있다. 리모트 UE의 Uu SRB1/SRB2 및 DRB의 수립은 L2 UE-to-Network Relay에 대한 레거시 Uu 구성 절차를 따른다.For both in-coverage and out-of-coverage, when a remote UE initiates the first RRC message to establish connection with the gNB, the PC5 L2 configuration for transmission between the remote UE and the UE-to-Network Relay UE can be based on the RLC/MAC configuration defined in the standard. The establishment of Uu SRB1/SRB2 and DRB of the remote UE follows the legacy Uu configuration procedure for L2 UE-to-Network Relay.
도 12에 도시된 상위 수준 연결 설정 절차는 L2 UE-to-Network Relay에 적용된다.The high-level connection setup procedure illustrated in Figure 12 applies to L2 UE-to-Network Relay.
단계 S1200에서 Remote and Relay UE는 탐색 절차를 수행하고 기존 Rel-16 절차를 기준으로 단계 S1201에서 PC5-RRC 연결을 설정할 수 있다At step S1200, the Remote and Relay UE can perform a discovery procedure and establish a PC5-RRC connection at step S1201 based on the existing Rel-16 procedure.
단계 S1202에서 리모트 UE는 PC5의 기본 L2 구성을 사용하여 Relay UE를 통해 gNB와의 연결 설정을 위한 첫 번째 RRC 메시지(즉, RRCSetupRequest)를 전송할 수 있다. gNB는 RRCSetup 메시지로 리모트 UE에 응답(S1203)한다. 리모트 UE로의 RRCSetup 전달은 PC5의 기본 구성을 사용한다. Relay UE가 RRC_CONNECTED에서 시작되지 않았다면 PC5의 기본 L2 구성에 대한 메시지 수신 시 자체 연결 설정을 수행해야 한다. 이 단계에서 Relay UE가 리모트 UE에 대한 RRCSetupRequest/RRCSetup 메시지를 전달하기 위한 세부사항은 WI 단계에서 논의될 수 있다.In step S1202, the remote UE can send the first RRC message (i.e., RRCSetupRequest) to establish connection with the gNB via the Relay UE using the default L2 configuration of PC5. The gNB responds (S1203) to the remote UE with an RRCSetup message. The RRCSetup delivery to the remote UE uses the default configuration of PC5. If the Relay UE is not started in RRC_CONNECTED, it needs to perform its own connection setup upon receiving the message for the default L2 configuration of PC5. Details for the Relay UE to deliver the RRCSetupRequest/RRCSetup message to the remote UE at this step can be discussed in the WI step.
단계 S1204에서 gNB와 Relay UE는 Uu를 통해 릴레이 채널 설정 절차를 수행한다. gNB의 구성에 따라 Relay/Remote UE는 PC5를 통해 리모트 UE로 SRB1을 릴레이하기 위한 RLC 채널을 설정한다. 이 단계는 SRB1에 대한 릴레이 채널을 준비한다.In step S1204, the gNB and the Relay UE perform a relay channel setup procedure via Uu. Depending on the configuration of the gNB, the Relay/Remote UE sets up an RLC channel to relay SRB1 to the remote UE via PC5. This step prepares a relay channel for SRB1.
단계 S1205에서, 리모트 UE SRB1 메시지(예: RRCSetupComplete 메시지)는 PC5를 통해 SRB1 릴레이 채널을 사용하여 릴레이 UE를 통해 gNB로 전송된다. 그리고 리모트 UE는 Uu를 통해 RRC 연결된다.In step S1205, a remote UE SRB1 message (e.g., RRCSetupComplete message) is transmitted to the gNB through the relay UE using the SRB1 relay channel over PC5. And the remote UE is RRC connected over Uu.
단계 S1206에서, 리모트 UE와 gNB는 레거시 절차에 따라 보안을 설정하고 보안 메시지는 Relay UE를 통해 전달된다.In step S1206, the remote UE and the gNB establish security according to legacy procedures and the security message is delivered through the Relay UE.
단계 S1210에서, gNB는 트래픽 릴레이를 위해 gNB와 Relay UE 사이에 추가 RLC 채널을 설정한다. gNB의 구성에 따라 Relay/Remote UE는 트래픽 릴레이를 위해 리모트 UE와 Relay UE 사이에 추가 RLC 채널을 설정한다. gNB는 릴레이 SRB2/DRB를 설정하기 위해 릴레이 UE를 통해 리모트 UE에 RRCReconfiguration을 전송한다. 리모트 UE는 RRCReconfigurationComplete를 Relay UE를 통해 gNB에 응답으로 전송한다.In step S1210, the gNB sets up an additional RLC channel between the gNB and the Relay UE for traffic relay. Depending on the configuration of the gNB, the Relay/Remote UE sets up an additional RLC channel between the Remote UE and the Relay UE for traffic relay. The gNB sends RRCReconfiguration to the Remote UE through the Relay UE to set up the Relay SRB2/DRB. The Remote UE sends RRCReconfigurationComplete to the gNB through the Relay UE in response.
연결 설정 절차 외에 L2 UE-to-Network 릴레이의 경우:For L2 UE-to-Network relay, in addition to the connection setup procedure:
- RRC 재구성 및 RRC 연결 해제 절차는 WI 단계에 남겨진 메시지 내용/구성 설계와 함께 레거시 RRC 절차를 재사용할 수 있다.- RRC reconfiguration and RRC disconnection procedures can reuse legacy RRC procedures with message content/configuration design left in the WI phase.
- RRC 연결 재설정 및 RRC 연결 재개 절차는 메시지 내용/구성 설계와 함께 릴레이 특정 부분을 처리하기 위해 위의 L2 UE-to-Network Relay의 연결 설정 절차를 고려함으로써 기존 RRC 절차를 베이스라인으로 재사용할 수 있다. 메시지 컨텐트/구성은 추후 정의될 수 있다.- RRC connection re-establishment and RRC connection resumption procedures can reuse existing RRC procedures as a baseline by considering the connection establishment procedure of the above L2 UE-to-Network Relay to handle relay-specific parts along with message content/configuration design. Message content/configuration can be defined later.
도 13은 direct to indirect path 전환을 예시한다. L2 UE-to-Network Relay의 서비스 연속성을 위해 리모트 UE가 indirect Relay UE로 전환하는 경우 도 13의 절차가 사용될 수 있다.Figure 13 illustrates a direct to indirect path transition. The procedure of Figure 13 can be used when a remote UE transitions to an indirect Relay UE for service continuity of L2 UE-to-Network Relay.
도 13을 참조하면, 단계 S1301에서 리모트 UE는 후보 릴레이 UE를 측정/발견한 후 리모트 UE가 하나 또는 여러 개의 후보 릴레이 UE를 보고한다. 리모트 UE는 보고할 때 상위 계층 기준을 충족하는 적절한 릴레이 UE를 필터링할 수 있다. 보고에는 릴레이 UE의 ID 및 SL RSRP 정보가 포함될 수 있으며, 여기서 PC5 측정 관련 세부사항은 추후 결정될 수 있다.Referring to FIG. 13, in step S1301, the remote UE measures/discovers candidate relay UEs, and then reports one or more candidate relay UEs. The remote UE may filter appropriate relay UEs that meet higher layer criteria when reporting. The report may include ID and SL RSRP information of the relay UE, where details related to PC5 measurement may be determined later.
단계 S1302에서, gNB가 타겟 릴레이 UE로 전환하기로 결정하고 타겟 (재)구성((re)configuration)은 선택적으로 릴레이 UE로 전송된다.In step S1302, the gNB decides to switch to the target relay UE and the target (re)configuration is optionally transmitted to the relay UE.
단계 S1304에서, 리모트 UE에 대한 RRC 재구성 메시지는 타겟 릴레이 UE의 ID, 타겟 Uu 및 PC5 구성을 포함할 수 있다.In step S1304, the RRC reconfiguration message to the remote UE may include the ID of the target relay UE, the target Uu, and the PC5 configuration.
단계 S1305에서, 연결이 아직 설정되지 않은 경우 리모트 UE는 타겟 릴레이 UE와 PC5 연결을 설정한다.In step S1305, if the connection is not yet established, the remote UE establishes a PC5 connection with the target relay UE.
단계 S1306에서, 리모트 UE는 RRCReconfiguration에서 제공된 타겟 구성을 사용하여 대상 경로를 통해 gNB에 RRCReconfigurationComplete를 피드백한다.In step S1306, the remote UE feeds back RRCReconfigurationComplete to the gNB through the target path using the target configuration provided in RRCReconfiguration.
단계 S1307에서, 데이터 경로가 전환된다.In step S1307, the data path is switched.
표 13 내지 표 16은 UE-to-UE Relay Selection에 관련된 3GPP technical Report로써, 본 개시 내용의 종래기술로써 사용된다. 표 14에서 Fig. 14, 표 16에서 Fig. 15는 각각 도 14, 도 15에 해당한다.Tables 13 to 16 are 3GPP technical reports related to UE-to-UE Relay Selection and are used as prior art in the present disclosure. Fig. 14 in Table 14 and Fig. 15 in Table 16 correspond to Fig. 14 and Fig. 15, respectively.
6.8 Solution #8: UE-to-UE Relay Selection Without Relay Discovery
6.8.1 Description
When a source UE wants to communicate with a target UE, it will first try to find the target UE by either sending a Direct Communication Request or a Solicitation message with the target UE info. If the source UE cannot reach the target UE directly, it will try to discover a UE-to-UE relay to reach the target UE which may also trigger the relay to discover the target UE. To be more efficient, this solution tries to integrate target UE discovery and UE-to-UE relay discovery and selection together, including two alternatives:
- Alternative 1: UE-to-UE relay discovery and selection can be integrated into the unicast link establishment procedure as described in clause 6.3.3 of TS 23.287 [5].
- Alternative 2: UE-to-UE relay discovery and selection is integrated into Model B direct discovery procedure.
A new field is proposed to be added in the Direct Communication Request or the Solicitation message to indicate whether relays can be used in the communication. The field can be called relay_indication. When a UE wants to broadcast a Direct Communication Request or a Solicitation message, it indicates in the message whether a UE-to-UE relay could be used. For Release 17, it is assumed that the value of the indication is restricted to single hop.
When a UE-to-UE relay receives a Direct Communication Request or a Solicitation message with the relay_indication set, then it shall decide whether to forward the message (i.e. modify the message and broadcast it in its proximity), according to e.g. Relay Service Code if there is any, Application ID, authorization policy (e.g. relay for specific ProSe Service), the current traffic load of the relay, the radio conditions between the source UE and the relay UE, etc.
It may exist a situation where multiple UE-to-UE relays can be used to reach the target UE or the target UE may also directly receive the Direct Communication Request or Solicitation message from the source UE. The target UE may choose which one to reply according to e.g. signal strength, local policy (e.g. traffic load of the UE-to-UE relays), Relay Service Code if there is any or operator policies (e.g. always prefer direct communication or only use some specific UE-to-UE relays).
The source UE may receive the responses from multiple UE-to-UE relays and may also from the target UE directly, the source UE chooses the communication path according to e.g. signal strength or operator policies (e.g. always prefer direct communication or only use some specific UE-to-UE relays).
6.8 Solution #8: UE-to-UE Relay Selection Without Relay Discovery
6.8.1 Description
When a source UE wants to communicate with a target UE, it will first try to find the target UE by either sending a Direct Communication Request or a Solicitation message with the target UE info. If the source UE cannot reach the target UE directly, it will try to discover a UE-to-UE relay to reach the target UE which may also trigger the relay to discover the target UE. To be more efficient, this solution tries to integrate target UE discovery and UE-to-UE relay discovery and selection together, including two alternatives:
- Alternative 1: UE-to-UE relay discovery and selection can be integrated into the unicast link establishment procedure as described in clause 6.3.3 of TS 23.287 [5].
- Alternative 2: UE-to-UE relay discovery and selection is integrated into Model B direct discovery procedure.
A new field is proposed to be added in the Direct Communication Request or the Solicitation message to indicate whether relays can be used in the communication. The field can be called relay_indication. When a UE wants to broadcast a Direct Communication Request or a Solicitation message, it indicates in the message whether a UE-to-UE relay could be used. For Release 17, it is assumed that the value of the indication is restricted to single hop.
When a UE-to-UE relay receives a Direct Communication Request or a Solicitation message with the relay_indication set, then it shall decide whether to forward the message (ie modify the message and broadcast it in its proximity), according to eg Relay Service Code if there is any, Application ID, authorization policy (eg relay for specific ProSe Service), the current traffic load of the relay, the radio conditions between the source UE and the relay UE, etc.
It may exist a situation where multiple UE-to-UE relays can be used to reach the target UE or the target UE may also directly receive the Direct Communication Request or Solicitation message from the source UE. The target UE may choose which one to reply according to eg signal strength, local policy (eg traffic load of the UE-to-UE relays), Relay Service Code if there is any or operator policies (eg always prefer direct communication or only use some specific UE-to-UE relays).
The source UE may receive the responses from multiple UE-to-UE relays and may also from the target UE directly, the source UE chooses the communication path according to eg signal strength or operator policies (eg always prefer direct communication or only use some specific UE-to-UE relays).
6.8.2 Procedures
6.8.2.1 UE-to-UE relay discovery and selection is integrated into the unicast link establishment procedure (Alternative 1)
Fig 14 illustrates the procedure of the proposed method.
0. UEs are authorized to use the service provided by the UE-to-UE relays. UE-to-UE relays are authorized to provide service of relaying traffic among UEs. The authorization and the parameter provisioning can use solutions for KI#8, e.g. Sol#36. The authorization can be done when UEs/relays are registered to the network. Security related parameters may be provisioned so that a UE and a relay can verify the authorization with each other if needed.
1. UE-1 wants to establish unicast communication with UE-2 and the communication can be either through direct link with UE-2 or via a UE-to-UE relay. Then UE-1 broadcasts Direct Communication Request with relay_indication enabled. The message will be received by relay-1, relay-2. The message may also be received by UE-2 if it is in the proximity of UE-1. UE-1 includes source UE info, target UE info, Application ID, as well as Relay Service Code if there is any. If UE-1 does not want relay to be involved in the communication, then it will made relay_indication disabled.
NOTE 1: The data type of relay_indication can be determined in Stage 3. Details of Direct Communication Request/Accept messages will be determined in stage 3.
2. Relay-1 and relay-2 decide to participate in the procedure. They broadcast a new Direct Communication Request message in their proximity without relay_indication enabled. If a relay receives this message, it will just drop it. When a relay broadcasts the Direct Communication Request message, it includes source UE info, target UE info and Relay UE info (e.g. Relay UE ID) in the message and use Relay's L2 address as the source Layer-2 ID. The Relay maintains association between the source UE information (e.g. source UE L2 ID) and the new Direct Communication Request.
3. UE-2 receives the Direct Communication Requests from relay-1 and relay-2. UE-2 may also receive Direct Communication Request message directly from the UE-1 if the UE-2 is in the communication range of UE-1.
4. UE-2 chooses relay-1 and replies with Direct Communication Accept message. If UE-2 directly receives the Direct Communication Request from UE-1, it may choose to setup a direct communication link by sending the Direct Communication Accept message directly to UE-1. After receiving Direct Communication Accept, a UE-to-UE relay retrieves the source UE information stored in step 2 and sends the Direct Communication Accept message to the source UE with its Relay UE info added in the message.
6.8.2 Procedures
6.8.2.1 UE-to-UE relay discovery and selection is integrated into the unicast link establishment procedure (Alternative 1)
Fig 14 illustrates the procedure of the proposed method.
0. UEs are authorized to use the service provided by the UE-to-UE relays. UE-to-UE relays are authorized to provide service of relaying traffic among UEs. The authorization and the parameter provisioning can use solutions for KI#8, eg Sol#36. The authorization can be done when UEs/relays are registered to the network. Security related parameters may be provisioned so that a UE and a relay can verify the authorization with each other if needed.
1. UE-1 wants to establish unicast communication with UE-2 and the communication can be either through direct link with UE-2 or via a UE-to-UE relay. Then UE-1 broadcasts Direct Communication Request with relay_indication enabled. The message will be received by relay-1, relay-2. The message may also be received by UE-2 if it is in the proximity of UE-1. UE-1 includes source UE info, target UE info, Application ID, as well as Relay Service Code if there is any. If UE-1 does not want relay to be involved in the communication, then it will made relay_indication disabled.
NOTE 1: The data type of relay_indication can be determined in Stage 3. Details of Direct Communication Request/Accept messages will be determined in stage 3.
2. Relay-1 and relay-2 decide to participate in the procedure. They broadcast a new Direct Communication Request message in their proximity without relay_indication enabled. If a relay receives this message, it will just drop it. When a relay broadcasts the Direct Communication Request message, it includes source UE info, target UE info and Relay UE info (eg Relay UE ID) in the message and use Relay's L2 address as the source Layer-2 ID. The Relay maintains association between the source UE information (eg source UE L2 ID) and the new Direct Communication Request.
3. UE-2 receives the Direct Communication Requests from relay-1 and relay-2. UE-2 may also receive Direct Communication Request message directly from the UE-1 if the UE-2 is in the communication range of UE-1.
4. UE-2 chooses relay-1 and replies with Direct Communication Accept message. If UE-2 directly receives the Direct Communication Request from UE-1, it may choose to setup a direct communication link by sending the Direct Communication Accept message directly to UE-1. After receiving Direct Communication Accept, a UE-to-UE relay retrieves the source UE information stored in step 2 and sends the Direct Communication Accept message to the source UE with its Relay UE info added in the message.
After step 4, UE-1 and UE-2 have respectively setup the PC5 links with the chosen UE-to-UE relay.
NOTE 2: The security establishment between the UE1 and Relay-1, and between Relay-1 and UE-2 are performed before the Relay-1 and UE-2 send Direct Communication Accept message. Details of the authentication/ security establishment procedure are determined by SA WG3. The security establishment procedure can be skipped if there already exists a PC5 link between the source (or target) UE and the relay which can be used for relaying the traffic.
5. UE-1 receives the Direct Communication Accept message from relay-1. UE-1 chooses path according to e.g. policies (e.g. always choose direct path if it is possible), signal strength, etc. If UE-1 receives Direct Communication Accept / Response message request accept directly from UE-2, it may choose to setup a direct PC5 L2 link with UE-2 as described in clause 6.3.3 of TS 23.287 [5], then step 6 is skipped.
6a. For the L3 UE-to-UE Relay case, UE-1 and UE-2 finish setting up the communication link via the chosen UE-to-UE relay. The link setup information may vary depending on the type of relay, e.g. L2 or L3 relaying. Then UE-1 and UE-2 can communicate via the relay. Regarding IP address allocation for the source/remote UE, the addresses can be either assigned by the relay or by the UE itself (e.g. link-local IP address) as defined in clause 6.3.3 of TS 23.287 [5].
6b. For the Layer 2 UE-to-UE Relay case, the source and target UE can setup an end-to-end PC5 link via the relay. UE-1 sends a unicast E2E Direct Communication Request message to UE-2 via the Relay-1, and UE-2 responds with a unicast E2E Direct Communication Accept message to UE-1 via the Relay-1. Relay-1 transfers the messages based on the identity information of UE-1/UE-2 in the Adaptation Layer.
NOTE 3: How Relay-1 can transfer the messages based on the identity information of UE-1/UE-2 in the Adaptation Layer requires cooperation with RAN2 during the normative phase.
NOTE 4: In order to make a relay or path selection, the source UE can setup a timer after sending out the Direct Communication Request for collecting the corresponding response messages before making a decision. Similarly, the target UE can also setup a timer after receiving the first copy of the Direct Communication Request / message for collecting multiple copies of the message from different paths before making a decision.
NOTE 5: In the first time when a UE receives a message from a UE-to-UE relay, the UE needs to verify if the relay is authorized be a UE-to-UE relay. Similarly, the UE-to-UE relay may also need to verify if the UE is authorized to use the relay service. The verification details and the how to secure the communication between two UEs through a UE-to-UE relay is to be defined by SA WG3.

After step 4, UE-1 and UE-2 have respectively setup the PC5 links with the chosen UE-to-UE relay.
NOTE 2: The security establishment between the UE1 and Relay-1, and between Relay-1 and UE-2 are performed before the Relay-1 and UE-2 send Direct Communication Accept message. Details of the authentication/security establishment procedure are determined by SA WG3. The security establishment procedure can be skipped if there already exists a PC5 link between the source (or target) UE and the relay which can be used for relaying the traffic.
5. UE-1 receives the Direct Communication Accept message from relay-1. UE-1 chooses path according to eg policies (eg always choose direct path if it is possible), signal strength, etc. If UE-1 receives Direct Communication Accept / Response message request accept directly from UE-2, it may choose to setup a direct PC5 L2 link with UE-2 as described in clause 6.3.3 of TS 23.287 [5], then step 6 is skipped.
6a. For the L3 UE-to-UE Relay case, UE-1 and UE-2 finish setting up the communication link via the chosen UE-to-UE relay. The link setup information may vary depending on the type of relay, eg L2 or L3 relaying. Then UE-1 and UE-2 can communicate via the relay. Regarding IP address allocation for the source/remote UE, the addresses can be either assigned by the relay or by the UE itself (eg link-local IP address) as defined in clause 6.3.3 of TS 23.287 [5].
6b. For the Layer 2 UE-to-UE Relay case, the source and target UE can setup an end-to-end PC5 link via the relay. UE-1 sends a unicast E2E Direct Communication Request message to UE-2 via the Relay-1, and UE-2 responds with a unicast E2E Direct Communication Accept message to UE-1 via the Relay-1. Relay-1 transfers the messages based on the identity information of UE-1/UE-2 in the Adaptation Layer.
NOTE 3: How Relay-1 can transfer the messages based on the identity information of UE-1/UE-2 in the Adaptation Layer requires cooperation with RAN2 during the normative phase.
NOTE 4: In order to make a relay or path selection, the source UE can setup a timer after sending out the Direct Communication Request for collecting the corresponding response messages before making a decision. Similarly, the target UE can also setup a timer after receiving the first copy of the Direct Communication Request / message for collecting multiple copies of the message from different paths before making a decision.
NOTE 5: In the first time when a UE receives a message from a UE-to-UE relay, the UE needs to verify if the relay is authorized to be a UE-to-UE relay. Similarly, the UE-to-UE relay may also need to verify if the UE is authorized to use the relay service. The verification details and the how to secure the communication between two UEs through a UE-to-UE relay is to be defined by SA WG3.

6.8.2.2 UE-to-UE relay discovery and selection is integrated into Model B direct discovery procedure (Alternative 2)
Depicted in Fig 15 is the procedure for UE-UE Relay discovery Model B, and the discovery/selection procedure is separated from hop by hop and end-to-end link establishment.
1. UE-1 broadcasts discovery solicitation message carrying UE-1 info, target UE info (UE-2), Application ID, Relay Service Code if any, the UE-1 can also indicate relay_indication enabled.
2. On reception of discovery solicitation, the candidate Relay UE-R broadcasts discovery solicitation carrying UE-1 info, UE-R info, Target UE info. The Relay UE-R uses Relay's L2 address as the source Layer-2 ID.
3. The target UE-2 responds the discovery message. If the UE-2 receives discovery solicitation message in step 1, then UE-2 responds discovery response in step 3b with UE-1 info, UE-2 info. If not and UE-2 receives discovery solicitation in step 2, then UE-2 responds discovery response message in step 3a with UE-1 info, UE-R info, UE-2 info.
4. On reception of discovery response in step 3a, UE-R sends discovery response with UE-1 info, UE-R info, UE-2 info. If more than one candidate Relay UEs responding discovery response message, UE-1 can select one Relay UE based on e.g. implementation or link qualification.
5. The source and target UE may need to setup PC5 links with the relay before communicating with each other. Step 5a can be skipped if there already exists a PC5 link between the UE-1 and UE-R which can be used for relaying. Step 5b can be skipped if there already exists a PC5 link between the UE-2 and UE-R which can be used for relaying.
6a. Same as step 6a described in clause 6.8.2.1.
6b. For the Layer-2 UE-to-UE Relay, the E2E unicast Direct Communication Request message is sent from UE1 to the selected Relay via the per-hop link (established in steps 5a) and the Adaptation layer info identifying the peer UE (UE3) as the destination. The UE-to-UE Relay transfers the E2E messages based on the identity information of peer UE in the Adaptation Layer. The initiator (UE1) knows the Adaptation layer info identifying the peer UE (UE3) after a discovery procedure. UE3 responds with E2E unicast Direct Communication Accept message in the same way.
NOTE 1: For the Layer 2 UE-to-UE Relay case, whether step5b is performed before step 6b or triggered during step 6b will be decided at normative phase.
NOTE 2: How Relay-1 can transfer the messages based on the identity information of UE-1/UE-2 in the Adaptatin Layer requires cooperation with RAN2 during the normative phase.

6.8.3 Impacts on services, entities and interfaces
UE impacts to support new Relay related functions.
6.8.2.2 UE-to-UE relay discovery and selection is integrated into Model B direct discovery procedure (Alternative 2)
Depicted in Fig 15 is the procedure for UE-UE Relay discovery Model B, and the discovery/selection procedure is separated from hop by hop and end-to-end link establishment.
1. UE-1 broadcasts discovery solicitation message carrying UE-1 info, target UE info (UE-2), Application ID, Relay Service Code if any, the UE-1 can also indicate relay_indication enabled.
2. On reception of discovery solicitation, the candidate Relay UE-R broadcasts discovery solicitation carrying UE-1 info, UE-R info, Target UE info. The Relay UE-R uses Relay's L2 address as the source Layer-2 ID.
3. The target UE-2 responds the discovery message. If the UE-2 receives discovery solicitation message in step 1, then UE-2 responds discovery response in step 3b with UE-1 info, UE-2 info. If not and UE-2 receives discovery solicitation in step 2, then UE-2 responds discovery response message in step 3a with UE-1 info, UE-R info, UE-2 info.
4. On reception of discovery response in step 3a, UE-R sends discovery response with UE-1 info, UE-R info, UE-2 info. If more than one candidate Relay UEs responding discovery response message, UE-1 can select one Relay UE based on eg implementation or link qualification.
5. The source and target UE may need to setup PC5 links with the relay before communicating with each other. Step 5a can be skipped if there already exists a PC5 link between the UE-1 and UE-R which can be used for relaying. Step 5b can be skipped if there already exists a PC5 link between the UE-2 and UE-R which can be used for relaying.
6a. Same as step 6a described in clause 6.8.2.1.
6b. For the Layer-2 UE-to-UE Relay, the E2E unicast Direct Communication Request message is sent from UE1 to the selected Relay via the per-hop link (established in steps 5a) and the Adaptation layer info identifying the peer UE (UE3 ) as the destination. The UE-to-UE Relay transfers the E2E messages based on the identity information of peer UE in the Adaptation Layer. The initiator (UE1) knows the Adaptation layer info identifying the peer UE (UE3) after a discovery procedure. UE3 responds with E2E unicast Direct Communication Accept message in the same way.
NOTE 1: For the Layer 2 UE-to-UE Relay case, whether step5b is performed before step 6b or triggered during step 6b will be decided at normative phase.
NOTE 2: How Relay-1 can transfer the messages based on the identity information of UE-1/UE-2 in the Adaptatin Layer requires cooperation with RAN2 during the normative phase.

6.8.3 Impacts on services, entities and interfaces
UE impacts to support new Relay related functions.
다음 표 17은 Layer-2 릴레이의 Architecture 및 Protocol Stack에 대한 도 16에 관련된 설명이다. 도 16(a)는 L2 UE-to-UE 릴레이를 위한 사용자 평면 프로토콜 스택을 도시하고, 도 16(b)는 L2 UE-to-UE 릴레이를 위한 제어 평면 프로토콜 스택을 도시한다.The following Table 17 is a description related to Fig. 16 regarding the Architecture and Protocol Stack of the Layer-2 Relay. Fig. 16(a) illustrates a user plane protocol stack for an L2 UE-to-UE relay, and Fig. 16(b) illustrates a control plane protocol stack for an L2 UE-to-UE relay.
5.5 Layer-2 Relay
5.5.1 Architecture and Protocol Stack
For L2 UE-to-UE Relay architecture, the protocol stacks are similar to L2 UE-to-Network Relay other than the fact that the termination points are two Remote UEs. The protocol stacks for the user plane and control plane of L2 UE-to-UE Relay architecture are described in Figure 5.5.1-1 and Figure 5.5.1-2.
An adaptation layer is supported over the second PC5 link (i.e. the PC5 link between Relay UE and Destination UE) for L2 UE-to-UE Relay. For L2 UE-to-UE Relay, the adaptation layer is put over RLC sublayer for both CP and UP over the second PC5 link. The sidelink SDAP/PDCP and RRC are terminated between two Remote UEs, while RLC, MAC and PHY are terminated in each PC5 link.
For the first hop of L2 UE-to-UE Relay,
- The N:1 mapping is supported by first hop PC5 adaptation layer between Remote UE SL Radio Bearers and first hop PC5 RLC channels for relaying.
- The adaptation layer over first PC5 hop between Source Remote UE and Relay UE supports to identify traffic destined to different Destination Remote UEs.
For the second hop of L2 UE-to-UE Relay,
- The second hop PC5 adaptation layer can be used to support bearer mapping between the ingress RLC channels over first PC5 hop and egress RLC channels over second PC5 hop at Relay UE.
- PC5 Adaptation layer supports the N:1 bearer mapping between multiple ingress PC5 RLC channels over first PC5 hop and one egress PC5 RLC channel over second PC5 hop and supports the Remote UE identification function.
For L2 UE-to-UE Relay,
- The identity information of Remote UE end-to-end Radio Bearer is included in the adaptation layer in first and second PC5 hop.
- In addition, the identity information of Source Remote UE and/or the identity information of Destination Remote UE are candidate information to be included in the adaptation layer, which are to be decided in WI phase.
5.5 Layer-2 Relay
5.5.1 Architecture and Protocol Stack
For L2 UE-to-UE Relay architecture, the protocol stacks are similar to L2 UE-to-Network Relay other than the fact that the termination points are two Remote UEs. The protocol stacks for the user plane and control plane of L2 UE-to-UE Relay architecture are described in Figure 5.5.1-1 and Figure 5.5.1-2.
An adaptation layer is supported over the second PC5 link (ie the PC5 link between Relay UE and Destination UE) for L2 UE-to-UE Relay. For L2 UE-to-UE Relay, the adaptation layer is put over RLC sublayer for both CP and UP over the second PC5 link. The sidelink SDAP/PDCP and RRC are terminated between two Remote UEs, while RLC, MAC and PHY are terminated in each PC5 link.
For the first hop of L2 UE-to-UE Relay,
- The N:1 mapping is supported by first hop PC5 adaptation layer between Remote UE SL Radio Bearers and first hop PC5 RLC channels for relaying.
- The adaptation layer over first PC5 hop between Source Remote UE and Relay UE supports to identify traffic destined to different Destination Remote UEs.
For the second hop of L2 UE-to-UE Relay,
- The second hop PC5 adaptation layer can be used to support bearer mapping between the ingress RLC channels over first PC5 hop and egress RLC channels over second PC5 hop at Relay UE.
- PC5 Adaptation layer supports the N:1 bearer mapping between multiple ingress PC5 RLC channels over first PC5 hop and one egress PC5 RLC channel over second PC5 hop and supports the Remote UE identification function.
For L2 UE-to-UE Relay,
- The identity information of Remote UE end-to-end Radio Bearer is included in the adaptation layer in first and second PC5 hop.
- In addition, the identity information of Source Remote UE and/or the identity information of Destination Remote UE are candidate information to be included in the adaptation layer, which are to be decided in WI phase.
16.1.2 LCP Restrictions
With LCP restrictions in MAC, RRC can restrict the mapping of a logical channel to a subset of the configured cells, numerologies, PUSCH transmission durations, configured grant configurations and control whether a logical channel can utilise the resources allocated by a Type 1 Configured Grant (see clause 10.3) or whether a logical channel can utilise dynamic grants indicating a certain physical priority level. With such restrictions, it then becomes possible to reserve, for instance, the numerology with the largest subcarrier spacing and/or shortest PUSCH transmission duration for URLLC services. Furthermore, RRC can associate logical channels with different SR configurations, for instance, to provide more frequent SR opportunities to URLLC services.
16.1.3 Packet Duplication
When duplication is configured for a radio bearer by RRC, at least one secondary RLC entity is added to the radio bearer to handle the duplicated PDCP PDUs as depicted on Figure 16.1.3-1, where the logical channel corresponding to the primary RLC entity is referred to as the primary logical channel, and the logical channel corresponding to the secondary RLC entity(ies), the secondary logical channel(s). All RLC entities have the same RLC mode. Duplication at PDCP therefore consists in submitting the same PDCP PDUs multiple times: once to each activated RLC entity for the radio bearer. With multiple independent transmission paths, packet duplication therefore increases reliability and reduces latency and is especially beneficial for URLLC services.
NOTE: PDCP control PDUs are not duplicated and always submitted to the primary RLC entity.
When configuring duplication for a DRB, RRC also sets the state of PDCP duplication (either activated or deactivated) at the time of (re-)configuration. After the configuration, the PDCP duplication state can then be dynamically controlled by means of a MAC control element and in DC, the UE applies the MAC CE commands regardless of their origin (MCG or SCG). When duplication is configured for an SRB the state is always active and cannot be dynamically controlled. When configuring duplication for a DRB with more than one secondary RLC entity, RRC also sets the state of each of them (i.e. either activated or deactivated). Subsequently, a MAC CE can be used to dynamically control whether each of the configured secondary RLC entities for a DRB should be activated or deactivated, i.e. which of the RLC entities shall be used for duplicate transmission. Primary RLC entity cannot be deactivated. When duplication is deactivated for a DRB, all secondary RLC entities associated to this DRB are deactivated. When a secondary RLC entity is deactivated, it is not re-established, the HARQ buffers are not flushed, and the transmitting PDCP entity should indicate to the secondary RLC entity to discard all duplicated PDCP PDUs.
When activating duplication for a DRB, NG-RAN should ensure that at least one serving cell is activated for each logical channel associated with an activated RLC entity of the DRB; and when the deactivation of SCells leaves no serving cells activated for a logical channel of the DRB, NG-RAN should ensure that duplication is also deactivated for the RLC entity associated with the logical channel.
When duplication is activated, the original PDCP PDU and the corresponding duplicate(s) shall not be transmitted on the same carrier. The logical channels of a radio bearer configured with duplication can either belong to the same MAC entity (referred to as CA duplication) or to different ones (referred to as DC duplication). CA duplication can also be configured in either or both of the MAC entities together with DC duplication when duplication over more than two RLC entities is configured for the radio bearer. In CA duplication, logical channel mapping restrictions are used in a MAC entity to ensure that the different logical channels of a radio bearer in the MAC entity are not sent on the same carrier. When CA duplication is configured for an SRB, one of the logical channels associated to the SRB is mapped to SpCell.
When CA duplication is deactivated for a DRB in a MAC entity (i.e. none or only one of RLC entities of the DRB in the MAC entity remains activated), the logical channel mapping restrictions of the logical channels of the DRB are lifted for as long as CA duplication remains deactivated for the DRB in the MAC entity.
When an RLC entity acknowledges the transmission of a PDCP PDU, the PDCP entity shall indicate to the other RLC entity(ies) to discard it. In addition, in case of CA duplication, when an RLC entity restricted to only SCell(s) reaches the maximum number of retransmissions for a PDCP PDU, the UE informs the gNB but does not trigger RLF.

16.1.2 LCP Restrictions
With LCP restrictions in MAC, RRC can restrict the mapping of a logical channel to a subset of the configured cells, numerologies, PUSCH transmission durations, configured grant configurations and control whether a logical channel can utilize the resources allocated by a Type 1 Configured Grant (see clause 10.3) or whether a logical channel can utilize dynamic grants indicating a certain physical priority level. With such restrictions, it then becomes possible to reserve, for instance, the numerology with the largest subcarrier spacing and/or shortest PUSCH transmission duration for URLLC services. Furthermore, RRC can associate logical channels with different SR configurations, for instance, to provide more frequent SR opportunities to URLLC services.
16.1.3 Packet Duplication
When duplication is configured for a radio bearer by RRC, at least one secondary RLC entity is added to the radio bearer to handle the duplicated PDCP PDUs as depicted on Figure 16.1.3-1, where the logical channel corresponding to the primary RLC entity is referred to as the primary logical channel, and the logical channel corresponding to the secondary RLC entity(ies), the secondary logical channel(s). All RLC entities have the same RLC mode. Duplication at PDCP therefore consists in submitting the same PDCP PDUs multiple times: once to each activated RLC entity for the radio bearer. With multiple independent transmission paths, packet duplication therefore increases reliability and reduces latency and is especially beneficial for URLLC services.
NOTE: PDCP control PDUs are not duplicated and always submitted to the primary RLC entity.
When configuring duplication for a DRB, RRC also sets the state of PDCP duplication (either activated or deactivated) at the time of (re-)configuration. After the configuration, the PDCP duplication state can then be dynamically controlled by means of a MAC control element and in DC, the UE applies the MAC CE commands regardless of their origin (MCG or SCG). When duplication is configured for an SRB the state is always active and cannot be dynamically controlled. When configuring duplication for a DRB with more than one secondary RLC entity, RRC also sets the state of each of them (ie either activated or deactivated). Subsequently, a MAC CE can be used to dynamically control whether each of the configured secondary RLC entities for a DRB should be activated or deactivated, ie which of the RLC entities shall be used for duplicate transmission. Primary RLC entity cannot be deactivated. When duplication is deactivated for a DRB, all secondary RLC entities associated to this DRB are deactivated. When a secondary RLC entity is deactivated, it is not re-established, the HARQ buffers are not flushed, and the transmitting PDCP entity should indicate to the secondary RLC entity to discard all duplicated PDCP PDUs.
When activating duplication for a DRB, NG-RAN should ensure that at least one serving cell is activated for each logical channel associated with an activated RLC entity of the DRB; and when the deactivation of SCells leaves no serving cells activated for a logical channel of the DRB, NG-RAN should ensure that duplication is also deactivated for the RLC entity associated with the logical channel.
When duplication is activated, the original PDCP PDU and the corresponding duplicate(s) shall not be transmitted on the same carrier. The logical channels of a radio bearer configured with duplication can either belong to the same MAC entity (referred to as CA duplication) or to different ones (referred to as DC duplication). CA duplication can also be configured in either or both of the MAC entities together with DC duplication when duplication over more than two RLC entities is configured for the radio bearer. In CA duplication, logical channel mapping restrictions are used in a MAC entity to ensure that the different logical channels of a radio bearer in the MAC entity are not sent on the same carrier. When CA duplication is configured for an SRB, one of the logical channels associated to the SRB is mapped to SpCell.
When CA duplication is deactivated for a DRB in a MAC entity (ie none or only one of RLC entities of the DRB in the MAC entity remains activated), the logical channel mapping restrictions of the logical channels of the DRB are lifted for as long as CA duplication remains deactivated for the DRB in the MAC entity.
When an RLC entity acknowledges the transmission of a PDCP PDU, the PDCP entity shall indicate to the other RLC entity(ies) to discard it. In addition, in case of CA duplication, when an RLC entity restricted to only SCell(s) reaches the maximum number of retransmissions for a PDCP PDU, the UE informs the gNB but does not trigger RLF.

한편, UE-to-UE relay (U2U relay) 에서도 현재의 Multi-path U2N relay와 유사한 동작이 요구될 수도 있다. 현재의 multi-path U2N 릴레이 UE의 동작과 마찬가지로 U2U relay 동작의 reliability를 높이기 위해 UE-to-UE relay 동작을 하는 리모트 UE도 direct link와 indirect link를 가질 수도 있다. 따라서, 이하 본 발명의 개시에서는 UE-to-UE relay 동작에 multi-path U2U 가 적용되는 경우 고려할 수 있는 사항에 대해서 제안한다.Meanwhile, a UE-to-UE relay (U2U relay) may also require operations similar to those of the current multi-path U2N relay. Similar to the operation of the current multi-path U2N relay UE, a remote UE performing UE-to-UE relay operation may also have a direct link and an indirect link in order to increase the reliability of the U2U relay operation. Therefore, the following disclosure of the present invention proposes matters that can be considered when multi-path U2U is applied to the UE-to-UE relay operation.
이하의 설명에서 소스 리모트 UE는 U2U remote UE, 타겟 리모트 UE는 peer U2U remote UE, 릴레이 UE는 U2U relay UE로 부를 수 있다.In the following description, the source remote UE may be called a U2U remote UE, the target remote UE may be called a peer U2U remote UE, and the relay UE may be called a U2U relay UE.
일 실시예에 의한 소스 리모트 UE는 타겟 리모트 UE와 direct link를 수립할 수 있다. 또한, 상기 소스 리모트 UE는 릴레이 UE를 통해, indirect link에 해당하는, 상기 타겟 리모트 UE와의 end-to-end link를 수립할 수 있다. 이후, 상기 소스 리모트 UE는 상기 direct link와 indirect link 중 적어도 하나 이상을 activation할 수 있다. 상기 소스 리모트 UE는 상기 activation된 link를 통해 상기 타겟 리모트 UE로 메시지를 전송할 수 있다.In one embodiment, a source remote UE can establish a direct link with a target remote UE. In addition, the source remote UE can establish an end-to-end link, corresponding to an indirect link, with the target remote UE via a relay UE. Thereafter, the source remote UE can activate at least one of the direct link and the indirect link. The source remote UE can transmit a message to the target remote UE via the activated link.
상기 소스 리모트 UE의 upper layer는 AS layer에 상기 indirect link에 사용되는 제1 SRC ID, 제1 DST ID를 포함하는 제1 ID 세트를 상기 direct link에 관련된 제2 SRC ID, 제2 DST ID를 포함하는 제2 ID 세트와 함께 알려줄 수 있다. 따라서, 상기 소스 리모트 UE는 상기 제1 ID 세트에 해당하는 indirect link와 상기 제2 ID 세트에 해당하는 상기 direct link는 동일한 타겟 리모트 UE와 연결되는 link로 간주할 수 있다. The upper layer of the source remote UE can inform the AS layer of a first ID set including a first SRC ID and a first DST ID used for the indirect link, together with a second ID set including a second SRC ID and a second DST ID related to the direct link. Accordingly, the source remote UE can consider the indirect link corresponding to the first ID set and the direct link corresponding to the second ID set as links connecting to the same target remote UE.
보다 상세히, 도 18에 예시된 바와 같이 소스 리모트 UE와 타겟 리모트 UE가 direct link와 indirect link를 모두 갖는 경우, 소스 리모트 UE의 상위 layer는 소스 리모트 UE가 indirect link에 사용할 SRC/DST UE ID(이때, DST ID는 Relay/타겟 리모트 UE의 SRC ID)와 direct link에 사용할 SRC/DST L2 ID를 다른 값으로 설정하여 AS layer에 알려줄 수 있다. 그러나 소스 리모트 UE는 direct link와 indirect link가 동일 타겟 리모트 UE와 연결되는 link임을 알 수 있어야 할 수도 있다. 따라서 upper layer는 AS layer에 SRC L2 ID 또는 (direct/indirect link의)DST L2 ID를 알려줄 때 해당 L2 ID가 서로 associated 되어 있음을 indication 할 수 있는 것이다.In more detail, as illustrated in FIG. 18, when a source remote UE and a target remote UE have both a direct link and an indirect link, the upper layer of the source remote UE can set the SRC/DST UE ID to be used for the indirect link (wherein the DST ID is the SRC ID of the Relay/target remote UE) and the SRC/DST L2 ID to be used for the direct link to different values and inform the AS layer of this. However, the source remote UE may need to know that the direct link and the indirect link are links connecting to the same target remote UE. Therefore, when the upper layer informs the AS layer of the SRC L2 ID or the DST L2 ID (of the direct/indirect link), it can indicate that the corresponding L2 IDs are associated with each other.
상기 direct link와 indirect link 중 적어도 하나 이상의 activation은 RSRP (Reference Signals Received Power)에 기초하여 수행될 수 있다. Multi-path UE-to-UE 동작에 있어서도 split bearer가 적용될 수 있다. 도 20에 도시된 바와 같이, PDCP layer에서 packet이 duplication 되어 direct path와 indirect path를 통해서 전송될 수 있다. 이러한 경우, SL에서 RLC entity의 activation/deactivation을 소스 리모트 UE(및/또는 타겟 리모트 UE)가 결정하는 것이다. 이는, CA/DC (Carrier aggregation/Dual Connectivity) 동작에서 RLC entity의 activation/deactivation은 gNB의 configuration을 따르는 것과는 상이한 것이다. 또한 기존 CA/DC 동작에서는 primary RLC entity와 secondary RLC entity가 있으며, primary RLC entity는 deactivation 되지 않는다. 그러나 multi-path UE-to-UE relay 동작에 있어서는 이러한 primary RLC entity 컨셉은 필요 없을 수 있다. 따라서, 둘 다 dynamic 하게 activation/deactivation이 가능할 수 있다. 즉, 상기 direct link와 indirect link는 primary RLC entity 와 무관하게 동시 activation 이 허용되는 것일 수 있다.At least one of the activations of the above direct link and indirect link may be performed based on RSRP (Reference Signals Received Power). Split bearer may also be applied to multi-path UE-to-UE operation. As illustrated in FIG. 20, a packet may be duplicated in the PDCP layer and transmitted through the direct path and the indirect path. In this case, the activation/deactivation of the RLC entity in the SL is determined by the source remote UE (and/or the target remote UE). This is different from the activation/deactivation of the RLC entity in the CA/DC (Carrier aggregation/Dual Connectivity) operation, which follows the configuration of the gNB. In addition, in the existing CA/DC operation, there are primary RLC entities and secondary RLC entities, and the primary RLC entity is not deactivated. However, in the multi-path UE-to-UE relay operation, this primary RLC entity concept may not be necessary. Therefore, both may be dynamically activated/deactivated. That is, the above direct link and indirect link may be allowed to be activated simultaneously regardless of the primary RLC entity.
상기 방법은, 상기 소스 리모트 UE가 상기 indirect link의 addition과 관련된 상기 릴레이 UE를 선택하고, 상기 소스 리모트 UE가 상기 릴레이 UE와 SL 연결을 수립을 더 포함할 수 있다. 상기 소스 리모트 UE는 상기 indirect link를 통해 전송한 RRCReconfigurationSidelink에 대한 응답을 상기 direct link를 통해 수신한 것에 기초하여, multi-path가 성립되었다고 간주할 수 있다. 정리하면, 도 21에 예시된 바와 같은, direct path가 존재하는 상태에서 indirect path를 addition은 다음 절차로 수행될 수 있다. 소스 리모트 UE는 UE2UE relay 동작을 위한 릴레이 UE를 선택한다. 소스 리모트 UE와 선택된 릴레이 UE는 SL connection을 맺고(1st-hop), 릴레이 UE와 타겟 리모트 UE도 SL connection을 맺는다(2nd-hop). 그 후, 소스 리모트 UE와 타겟 리모트 UE는 indirect link를 통해서 end-to-end bearer 설정을 위한 SL connection을 릴레이 UE를 통해서 맺을 수 있다. Multi-path가 설정되는 과정이므로 소스 리모트 UE가 릴레이 UE를 통하여 타겟 리모트 UE로 전송한 RRCReconfigurationSidelink 메시지에 대한 응답은 direct link를 통해서 이루어 질 수도 있다. 즉, direct link로 indirect link로 전송한 RRCReconfigurationSidelink에 대한 응답(RRCReconfigurationCompleteSidelink)메시지를 받은 경우, 소스 리모트 UE는 multi-path가 성립되었다고 간주할 수도 있다.The method may further include that the source remote UE selects the relay UE associated with the addition of the indirect link, and the source remote UE establishes an SL connection with the relay UE. The source remote UE may consider that multi-path is established based on receiving a response to RRCReconfigurationSidelink transmitted through the indirect link through the direct link. In summary, as illustrated in FIG. 21, addition of an indirect path in a state where a direct path exists may be performed by the following procedure. The source remote UE selects a relay UE for UE2UE relay operation. The source remote UE and the selected relay UE establish an SL connection (1st-hop), and the relay UE and the target remote UE also establish an SL connection (2nd-hop). Thereafter, the source remote UE and the target remote UE may establish an SL connection for setting up an end-to-end bearer through the relay UE through the indirect link. Since this is a process in which multi-path is established, the response to the RRCReconfigurationSidelink message transmitted from the source remote UE to the target remote UE via the relay UE may be made via the direct link. That is, if the source remote UE receives a response (RRCReconfigurationCompleteSidelink) message to the RRCReconfigurationSidelink transmitted via the indirect link via the direct link, the source remote UE may consider that multi-path is established.
또는, 도 22에 예시된 바와 같이, indirect link가 있는 상태에서 direct link를 addition하는 경우 소스 리모트 UE는 direct link를 통해서 RRCReconfiguration을 설정하고, 이에 대한 응답으로 RRCReconfigurationComplete message는 기존 설정되어 있는 indirect link를 통해서 이루어 질 수 있다.Alternatively, as illustrated in FIG. 22, when adding a direct link while there is an indirect link, the source remote UE may set up RRCReconfiguration through the direct link, and in response, the RRCReconfigurationComplete message may be sent through the previously set up indirect link.
한편, 앞서 설명되었던 PDCP duplication과 관련하여, 소스 리모트 UE의 상위 layer는 bearer 별로(및/또는 (혹은) PQI 별로) PDCP duplication 여부를 지시할 수 있다. 만약 PQI 별로 PDCP duplication 여부가 지시되는 경우, PQI duplication이 activation 된 PQI가 적어도 하나 포함된 bearer에 대해서는 해당 bearer에 대해 duplication이 activation 되는 것으로 처리될 수 있다. 이는, 여러 PQI가 multiplexing 되어 하나의 bearer로 전송될 수 있기 때문이다.Meanwhile, with respect to the PDCP duplication described above, the upper layer of the source remote UE can indicate whether PDCP duplication is performed on a per-bearer (and/or per-PQI) basis. If PDCP duplication is indicated on a per-PQI basis, duplication can be processed as activated for a bearer that includes at least one PQI for which PQI duplication is activated. This is because multiple PQIs can be multiplexed and transmitted on a single bearer.
PDCP duplication이 허용되었을 때, AS layer에서 소스 리모트 UE가 RLC entity의 activation/deactivation을 dynamic 하게 결정하는 방법은 다음과 같을 수 있다. When PDCP duplication is allowed, the method for the source remote UE to dynamically determine activation/deactivation of the RLC entity at the AS layer can be as follows:
첫째로, 상기 direct path에 관련된 bearer와 상기 indirect path에 관련된 bearer의 RSRP threshold가 기준 값 이상인 것에 기초하여, 상기 소스 리모트 UE는 direct path에 존재하는 RLC entity와 indirect path에 존재하는 RLC entity 중 어느 하나의 entity를 임의로 deactivation시킬 수 있다. 다시 말해, Direct path(에 존재하는 bearer)와 indirect path(에 존재하는 bearer)의 RSRP threshold가 기준 값 이상인 경우 소스 리모트 UE는 direct path에 존재하는 RLC entity와 indirect path에 존재하는 RLC entity 중 어느 하나의 entity를 임의로 deactivation 할 수 있다. 혹은 primary RLC entity가 정해져 있는 경우 secondary RLC entity를 deactivation 한다. 또는 어떤 RLC entity를 deactivation 할지 여부는 상위 layer에서 결정할 수도 있다. 상기 RSRP threshold 값은 상기 소스 리모트 UE의 상위 레이어가 결정한 것일 수 있으며, 상기 indirect path를 위한 threshold와 direct path를 위한 threshold는 상이한 것일 수 있다. 즉, RSRP threshold 값은 소스 리모트 UE의 상위 layer에서 정해주는 값일 수 있으며, QoS가 고려된 값일 수 있다. 또한 indirect path를 위한 threshold와 direct path를 위한 threshold는 다를 수 있다. Indirect path의 RSRP 값을 판단할 때는 소스 리모트 UE와 릴레이 UE사이의 RSRP 뿐 아니라, 릴레이 UE와 타겟 리모트 UE 사이의 RSRP까지 고려한 값으로 선택되어야 할 수 있다. 또한 이러한 threshold 값은 소스 리모트 UE가 전송하고자 하는 SL bearer에 따라서 다르게 설정되는 값일 수 있다.First, based on the RSRP threshold of the bearer related to the direct path and the bearer related to the indirect path being equal to or greater than a reference value, the source remote UE can arbitrarily deactivate either an RLC entity existing in the direct path or an RLC entity existing in the indirect path. In other words, if the RSRP threshold of the direct path (the bearer existing in) and the indirect path (the bearer existing in) are equal to or greater than a reference value, the source remote UE can arbitrarily deactivate either an RLC entity existing in the direct path or an RLC entity existing in the indirect path. Or, if a primary RLC entity is determined, the secondary RLC entity is deactivated. Or, whether to deactivate a certain RLC entity may be determined by a higher layer of the source remote UE. The RSRP threshold value may be determined by a higher layer of the source remote UE, and the threshold for the indirect path and the threshold for the direct path may be different. That is, the RSRP threshold value can be a value set by the upper layer of the source remote UE, and can be a value that takes QoS into account. In addition, the threshold for the indirect path and the threshold for the direct path can be different. When determining the RSRP value of the indirect path, it can be selected as a value that considers not only the RSRP between the source remote UE and the relay UE, but also the RSRP between the relay UE and the target remote UE. In addition, this threshold value can be a value that is set differently depending on the SL bearer that the source remote UE wants to transmit.
둘째로, 상기 direct path에 관련된 bearer와 상기 indirect path에 관련된 bearer의 상기 RSRP threshold가 기준 값 이하인 것에 기초하여, 상기 소스 리모트 UE는 direct path에 존재하는 RLC entity와 indirect path에 존재하는 RLC entity 모두를 통해서 메시지를 전송할 수 있다. 즉, Direct path(에 존재하는 bearer)와 indirect path(에 존재하는 bearer)의 RSRP threshold가 기준 값 이하인 경우 소스 리모트 UE는 direct path에 존재하는 RLC entity와 indirect path에 존재하는 RLC entity 모두를 통해서 메시지를 전송할 수 있다. 즉, direct/indirect RLC entity를 모두 activation 하는 것이다.Second, based on the RSRP thresholds of the bearer related to the direct path and the bearer related to the indirect path being less than or equal to a reference value, the source remote UE can transmit a message through both an RLC entity existing in the direct path and an RLC entity existing in the indirect path. That is, when the RSRP thresholds of the direct path (the bearer existing in) and the indirect path (the bearer existing in) are less than or equal to a reference value, the source remote UE can transmit a message through both an RLC entity existing in the direct path and an RLC entity existing in the indirect path. That is, both direct/indirect RLC entities are activated.
셋째로, 상기 direct path의 신호 세기 또는 상기 indirect path의 신호 세기 중 어느 하나가 상기 RSRP threshold 이하인 것에 기초하여, 상기 소스 리모트 UE는 신호 세기가 상기 RSRP threshold 이상인 path를 통해 메시지를 전송할 수 있다. 즉, Direct path와 indirect path 중 어느 한쪽 path의 신호 세기가 threshold 이하인 경우(threshold 값은 bearer에 따라 다르게 적용될 수 있음), 소스 리모트 UE는 신호 세기가 threshold 이상인 path를 통해서 데이터를 전송한다.Thirdly, based on whether the signal strength of the direct path or the signal strength of the indirect path is lower than or equal to the RSRP threshold, the source remote UE can transmit a message through a path whose signal strength is higher than or equal to the RSRP threshold. That is, if the signal strength of either the direct path or the indirect path is lower than or equal to the threshold (the threshold value may be applied differently depending on the bearer), the source remote UE transmits data through a path whose signal strength is higher than or equal to the threshold.
한편, UE-to-UE 동작에 있어서, 소스 리모트 UE의 상위 layer는 AS layer로 source L2 ID(SRC_A)와 target L2 ID(DST_A)를 내려 줄 때, 이와 associated 된 또 다른 source ID (SRC_B)와 target L2 ID(DST_B)를 알려줄 수 있다. 이때, {SRC_A, DST_A} set은 소스 리모트 UE로부터 릴레이 UE 사이의 통신에 사용되는 값이 될 수 있으며, {SRC_B, DST_B} set은 소스 리모트 UE로부터 타겟 리모트 UE 사이의 통신에 사용되는 값이 될 수 있다. 따라서 소스 리모트 UE가 릴레이 UE로 메시지를 전송할 때, SRAP header에는 {SRC_B, DST_B} set의 어느 값(및/또는 또는 둘 다의 값)이 포함되며, 이때, AS layer(예를 들어, MAC/PHY layer)에서 사용되는 값은 {SRC_A, DST_A} set 값이 될 수 있다. 이때, SRC_A와 SRC_B 는 같은 값이 될 수도 있다. SRC_A와 SRC_B 값이 같은 경우, 리모트 UE의 상위 layer는 {SRC_A, DST_A}set 에 associate 된 하나의 DST_B(타겟 리모트 UE의 L2 ID)만 AS layer로 전달할 수도 있다. Meanwhile, in UE-to-UE operation, when the upper layer of the source remote UE sends the source L2 ID (SRC_A) and the target L2 ID (DST_A) to the AS layer, it can notify another source ID (SRC_B) and target L2 ID (DST_B) associated therewith. At this time, the {SRC_A, DST_A} set can be a value used for communication between the source remote UE and the relay UE, and the {SRC_B, DST_B} set can be a value used for communication between the source remote UE and the target remote UE. Accordingly, when the source remote UE transmits a message to the relay UE, the SRAP header includes any value (and/or both values) of the {SRC_B, DST_B} set, and at this time, the value used in the AS layer (e.g., MAC/PHY layer) can be the {SRC_A, DST_A} set value. At this time, SRC_A and SRC_B can be the same value. If the values of SRC_A and SRC_B are the same, the upper layer of the remote UE can forward only one DST_B (L2 ID of the target remote UE) associated with {SRC_A, DST_A} set to the AS layer.
소스 리모트 UE와 타겟 리모트 UE가 split bearer를 설정하여 사용할 것인지 여부는 상호 negotiation이 필요할 수도 있다. 예를 들어 split bearer를 설정하고자 하는 소스 리모트 UE는 direct/indirect path를 통해 RRCReconfigurationSidelink 메시지를 전송하면서 split bearer 관련 configuration을 포함할 수도 있다. 이 경우 타겟 리모트 UE가 RRCReconfigurationCompleteSidelink 메시지를 응답으로 전송하면 split bearer가 설정된 것으로 간주하고 동작할 수 있다.Whether the source remote UE and the target remote UE will set up and use split bearer may require mutual negotiation. For example, a source remote UE that wants to set up split bearer may include split bearer-related configuration when transmitting an RRCReconfigurationSidelink message through the direct/indirect path. In this case, if the target remote UE transmits an RRCReconfigurationCompleteSidelink message in response, the split bearer is considered to have been set up and can be operated.
소스 리모트 UE는 타겟 리모트 UE에게 measurement report를 configure 할 수 있다. 소스 리모트 UE와 타겟 리모트 UE가 indirect link를 가지고 있는 경우, (아직 맺어지지 않은) direct link를 위한 measurement를 configure 할 수 있다. 즉, 타겟 리모트 UE는 소스 리모트 UE와의 direct link를 measure 하도록 configure 될 수 있다. 이때 타겟 리모트 UE가 measure 하는 값은 소스 리모트 UE가 릴레이 UE에게 전송하는 메시지가 될 수 있다. 따라서, 소스 리모트 UE가 타겟 리모트 UE에게 measurement를 configure 하는 경우, 소스 리모트 UE의 L2 ID와 릴레이 UE의 L2 ID를 알려줄 수도 있다. 타겟 리모트 UE는 measure 해야 하는 소스 리모트 UE의 L2 ID와 릴레이 UE의 L2 ID를 모를 수도 있기 때문이다. 이 경우 measurement configuration을 받은 타겟 리모트 UE는 소스 리모트 UE와 릴레이 UE 사이의 메시지를(소스 리모트 UE에서 전송되어 릴레이 UE로 수신되는 데이터에 대한 신호 세기) overhear 하여 신호 세기를 측정할 수 있다.A source remote UE can configure a measurement report to a target remote UE. If the source remote UE and the target remote UE have an indirect link, measurement for the (not yet established) direct link can be configured. That is, the target remote UE can be configured to measure the direct link with the source remote UE. In this case, the value measured by the target remote UE can be a message that the source remote UE transmits to the relay UE. Therefore, when the source remote UE configures the measurement to the target remote UE, it can inform the L2 ID of the source remote UE and the L2 ID of the relay UE. This is because the target remote UE may not know the L2 ID of the source remote UE and the L2 ID of the relay UE that it needs to measure. In this case, the target remote UE that has received the measurement configuration can overhear a message between the source remote UE and the relay UE (signal strength for data transmitted from the source remote UE and received by the relay UE) and measure the signal strength.
PDCP duplication이 허용되었을 때, AS layer에서 소스 리모트 UE가 RLC entity의 activation/deactivation을 dynamic 하게 결정하는 방법으로 타겟 리모트 UE가 소스 리모트 UE에 RLC entity의 activation/deactivation을 요청(recommend)하는 MAC CE을 전송할 수도 있다. 해당 MAC CE는 direct/indirect path 모두(또는 둘 중 하나)를 통해서 전송 가능하다. When PDCP duplication is allowed, the target remote UE may transmit a MAC CE to the source remote UE, recommending activation/deactivation of the RLC entity, in a way that the source remote UE dynamically determines activation/deactivation of the RLC entity at the AS layer. The MAC CE can be transmitted over both (or either) the direct and indirect paths.
RLF가 발생한 경우 다른 available 한 path를 통해서 RLF를 보고할 수도 있다. Direct path에 RLF가 발생한 경우, 리모트 UE는 indirect link를 통해서 RLF를 report (cause value: direct path RLF)를 수행할 수 있다. 혹은 indirect path에 RLF가 발생한 경우, 예를 들어 리모트 UE가 릴레이 UE와 리모트 UE사이의 RLF를 detect 한 경우 이를 direct path를 통해서 report 할 수 있다 (cause value: indirect path RLF). 혹은, 리모트 UE가 릴레이 UE로부터 릴레이 UE와 peer remote UE사이에 RLF가 발생되었음을 notification 받은 경우, 이를 direct path를 통해서 report 할 수 있다 (cause value: indirect path RLF from receiving notification). When an RLF occurs, the RLF can be reported through another available path. When an RLF occurs on the direct path, the remote UE can report an RLF (cause value: direct path RLF) through the indirect link. Or, when an RLF occurs on the indirect path, for example, when the remote UE detects an RLF between the relay UE and the remote UE, it can report it through the direct path (cause value: indirect path RLF). Or, when the remote UE receives a notification from the relay UE that an RLF occurs between the relay UE and a peer remote UE, it can report it through the direct path (cause value: indirect path RLF from receiving notification).
상술한 설명과 관련하여, 소스 리모트 UE는, 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하게 연결될 수 있고, 실행될 때 상기 적어도 하나의 프로세서로 하여금 동작들을 수행하게 하는 명령들을 저장하는 적어도 하나의 컴퓨터 메모리를 포함하며, 상기 동작들은, 타겟 리모트 UE와 direct link를 수립; 릴레이 UE를 통해, indirect link에 해당하는, 상기 타겟 리모트 UE와의 end-to-end link를 수립; 상기 direct link와 indirect link 중 적어도 하나 이상을 activation; 상기 activation된 link를 통해 상기 타겟 리모트 UE로 메시지를 전송을 포함하며, 상기 소스 리모트 UE의 upper layer는 AS layer에 상기 indirect link에 사용되는 제1 SRC ID, 제1 DST ID를 포함하는 제1 ID 세트를 상기 direct link에 관련된 제2 SRC ID, 제2 DST ID를 포함하는 제2 ID 세트와 함께 알려줄 수 있다.In connection with the above description, a source remote UE comprises at least one processor; and at least one computer memory operably connected to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform operations, the operations comprising: establishing a direct link with a target remote UE; establishing an end-to-end link with the target remote UE, via a relay UE, corresponding to an indirect link; activating at least one of the direct link and the indirect link; and transmitting a message to the target remote UE via the activated link, wherein an upper layer of the source remote UE can notify an AS layer of a first ID set including a first SRC ID, a first DST ID used for the indirect link, together with a second ID set including a second SRC ID, a second DST ID associated with the direct link.
또한, 적어도 하나의 프로세서에 의해 실행될 때, 적어도 하나의 프로세서가 소스 리모트 UE를 위한 동작들을 수행하게 하는 명령을 포함하는 적어도 하나의 컴퓨터 프로그램을 저장하는 비휘발성 컴퓨터 판독 가능 저장 매체에 있어서, 상기 동작들은, 타겟 리모트 UE와 direct link를 수립; 릴레이 UE를 통해, indirect link에 해당하는, 상기 타겟 리모트 UE와의 end-to-end link를 수립; 상기 direct link와 indirect link 중 적어도 하나 이상을 activation; 상기 activation된 link를 통해 상기 타겟 리모트 UE로 메시지를 전송을 포함하며, 상기 소스 리모트 UE의 upper layer는 AS layer에 상기 indirect link에 사용되는 제1 SRC ID, 제1 DST ID를 포함하는 제1 ID 세트를 상기 direct lin k에 관련된 제2 SRC ID, 제2 DST ID를 포함하는 제2 ID 세트와 함께 알려줄 수 있다.Also, a non-volatile computer-readable storage medium storing at least one computer program comprising instructions that, when executed by at least one processor, cause the at least one processor to perform operations for a source remote UE, the operations comprising: establishing a direct link with a target remote UE; establishing an end-to-end link with the target remote UE, via a relay UE, corresponding to an indirect link; activating at least one of the direct link and the indirect link; and transmitting a message to the target remote UE via the activated link, wherein an upper layer of the source remote UE can notify an AS layer of a first ID set including a first SRC ID and a first DST ID used for the indirect link together with a second ID set including a second SRC ID and a second DST ID associated with the direct link.
상기 실시예에 의할 경우, U2U 동작에서 multi-path 동작이 가능하다. 또한, PDCP duplication이 허용되었을 때 효율적인 path의 activation/deactivation이 가능하다. 따라서, 데이터의 reliability를 높이면서 채널 상황이 좋을 때는 하나의 path만 사용하여 패킷을 전송하도록 함으로써 dynamic 하게 전송 자원을 효율적으로 사용할 수 있다.According to the above embodiment, multi-path operation is possible in U2U operation. In addition, efficient path activation/deactivation is possible when PDCP duplication is allowed. Therefore, by increasing data reliability and transmitting packets using only one path when channel conditions are good, transmission resources can be used dynamically and efficiently.
상기 기술에서 릴레이 UE는 gNB, IAB-node 등으로 확장 해석 될 수 있음은 당연하다. 상술한 설명에서 소스 리모트 UE는 타겟 리모트 UE로, 타겟 리모트 UE는 소스 리모트 UE로 교차 해석될 수 있다. (예를 들어, 둘다 end-remote-UE에 해당될 수 있다)In the above description, it is obvious that the relay UE can be extended to gNB, IAB-node, etc. In the above description, the source remote UE can be cross-interpreted as the target remote UE, and the target remote UE can be cross-interpreted as the source remote UE. (For example, both can correspond to end-remote-UE)
본 개시가 적용되는 통신 시스템 예Examples of communication systems to which the present disclosure applies
이로 제한되는 것은 아니지만, 본 문서에 개시된 본 개시의 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.Although not limited thereto, the various descriptions, functions, procedures, proposals, methods, and/or operational flowcharts of the present disclosure disclosed in this document may be applied to various fields requiring wireless communication/connectivity (e.g., 5G) between devices.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다. Hereinafter, more specific examples will be provided with reference to the drawings. In the drawings/descriptions below, the same drawing reference numerals may represent identical or corresponding hardware blocks, software blocks, or functional blocks, unless otherwise described.
도 23은 본 개시에 적용되는 통신 시스템(1)을 예시한다.Fig. 23 illustrates a communication system (1) applied to the present disclosure.
도 23을 참조하면, 본 개시에 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.Referring to FIG. 23, a communication system (1) applied to the present disclosure includes a wireless device, a base station, and a network. Here, the wireless device means a device that performs communication using a wireless access technology (e.g., 5G NR (New RAT), LTE (Long Term Evolution)) and may be referred to as a communication/wireless/5G device. Although not limited thereto, the wireless device may include a robot (100a), a vehicle (100b-1, 100b-2), an XR (eXtended Reality) device (100c), a hand-held device (100d), a home appliance (100e), an IoT (Internet of Thing) device (100f), and an AI device/server (400). For example, the vehicle may include a vehicle equipped with a wireless communication function, an autonomous vehicle, a vehicle capable of performing vehicle-to-vehicle communication, etc. Here, the vehicle may include an Unmanned Aerial Vehicle (UAV) (e.g., a drone). XR devices include AR (Augmented Reality)/VR (Virtual Reality)/MR (Mixed Reality) devices and can be implemented in the form of HMD (Head-Mounted Device), HUD (Head-Up Display) installed in a vehicle, television, smartphone, computer, wearable device, home appliance, digital signage, vehicle, robot, etc. Portable devices can include smartphone, smart pad, wearable device (e.g., smart watch, smart glass), computer (e.g., laptop, etc.). Home appliances can include TV, refrigerator, washing machine, etc. IoT devices can include sensors, smart meters, etc. For example, base stations and networks can also be implemented as wireless devices, and a specific wireless device (200a) can act as a base station/network node to other wireless devices.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.Wireless devices (100a to 100f) can be connected to a network (300) via a base station (200). Artificial Intelligence (AI) technology can be applied to the wireless devices (100a to 100f), and the wireless devices (100a to 100f) can be connected to an AI server (400) via the network (300). The network (300) can be configured using a 3G network, a 4G (e.g., LTE) network, a 5G (e.g., NR) network, etc. The wireless devices (100a to 100f) can communicate with each other via the base station (200)/network (300), but can also communicate directly (e.g., sidelink communication) without going through the base station/network. For example, vehicles (100b-1, 100b-2) can communicate directly (e.g. V2V (Vehicle to Vehicle)/V2X (Vehicle to everything) communication). Also, IoT devices (e.g., sensors) can communicate directly with other IoT devices (e.g., sensors) or other wireless devices (100a to 100f).
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 개시의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.Wireless communication/connection (150a, 150b, 150c) can be established between wireless devices (100a to 100f)/base stations (200), and base stations (200)/base stations (200). Here, the wireless communication/connection can be achieved through various wireless access technologies (e.g., 5G NR) such as uplink/downlink communication (150a), sidelink communication (150b) (or, D2D communication), and communication between base stations (150c) (e.g., relay, IAB (Integrated Access Backhaul)). Through the wireless communication/connection (150a, 150b, 150c), a wireless device and a base station/wireless device, and a base station and a base station can transmit/receive wireless signals to/from each other. For example, the wireless communication/connection (150a, 150b, 150c) can transmit/receive signals through various physical channels. To this end, at least some of various configuration information setting processes for transmitting/receiving wireless signals, various signal processing processes (e.g., channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.), and resource allocation processes can be performed based on various proposals of the present disclosure.
본 개시가 적용되는 무선 기기 예Examples of wireless devices to which this disclosure applies
도 24는 본 개시에 적용될 수 있는 무선 기기를 예시한다.FIG. 24 illustrates a wireless device applicable to the present disclosure.
도 24를 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 23의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.Referring to FIG. 24, the first wireless device (100) and the second wireless device (200) can transmit and receive wireless signals through various wireless access technologies (e.g., LTE, NR). Here, {the first wireless device (100), the second wireless device (200)} can correspond to {the wireless device (100x), the base station (200)} and/or {the wireless device (100x), the wireless device (100x)} of FIG. 23.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.A first wireless device (100) includes one or more processors (102) and one or more memories (104), and may additionally include one or more transceivers (106) and/or one or more antennas (108). The processor (102) controls the memories (104) and/or the transceivers (106), and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this document. For example, the processor (102) may process information in the memory (104) to generate first information/signal, and then transmit a wireless signal including the first information/signal via the transceiver (106). Additionally, the processor (102) may receive a wireless signal including second information/signal via the transceiver (106), and then store information obtained from signal processing of the second information/signal in the memory (104). The memory (104) may be connected to the processor (102) and may store various information related to the operation of the processor (102). For example, the memory (104) may perform some or all of the processes controlled by the processor (102), or may store software codes including instructions for performing the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed in this document. Here, the processor (102) and the memory (104) may be part of a communication modem/circuit/chip designed to implement wireless communication technology (e.g., LTE, NR). The transceiver (106) may be connected to the processor (102) and may transmit and/or receive wireless signals via one or more antennas (108). The transceiver (106) may include a transmitter and/or a receiver. The transceiver (106) may be used interchangeably with an RF (Radio Frequency) unit. In the present disclosure, a wireless device may also mean a communication modem/circuit/chip.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.The second wireless device (200) includes one or more processors (202), one or more memories (204), and may additionally include one or more transceivers (206) and/or one or more antennas (208). The processor (202) may be configured to control the memories (204) and/or the transceivers (206), and implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this document. For example, the processor (202) may process information in the memory (204) to generate third information/signals, and then transmit a wireless signal including the third information/signals via the transceivers (206). Additionally, the processor (202) may receive a wireless signal including fourth information/signals via the transceivers (206), and then store information obtained from signal processing of the fourth information/signals in the memory (204). The memory (204) may be connected to the processor (202) and may store various information related to the operation of the processor (202). For example, the memory (204) may perform some or all of the processes controlled by the processor (202), or may store software codes including instructions for performing the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed in the present document. Here, the processor (202) and the memory (204) may be part of a communication modem/circuit/chip designed to implement wireless communication technology (e.g., LTE, NR). The transceiver (206) may be connected to the processor (202) and may transmit and/or receive wireless signals via one or more antennas (208). The transceiver (206) may include a transmitter and/or a receiver. The transceiver (206) may be used interchangeably with an RF unit. In the present disclosure, a wireless device may also mean a communication modem/circuit/chip.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.Hereinafter, hardware elements of the wireless device (100, 200) will be described in more detail. Although not limited thereto, one or more protocol layers may be implemented by one or more processors (102, 202). For example, one or more processors (102, 202) may implement one or more layers (e.g., functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP). One or more processors (102, 202) may generate one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed in this document. One or more processors (102, 202) may generate messages, control information, data, or information according to the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed in this document. One or more processors (102, 202) can generate signals (e.g., baseband signals) comprising PDUs, SDUs, messages, control information, data or information according to the functions, procedures, suggestions and/or methodologies disclosed herein, and provide the signals to one or more transceivers (106, 206). One or more processors (102, 202) can receive signals (e.g., baseband signals) from one or more transceivers (106, 206) and obtain PDUs, SDUs, messages, control information, data or information according to the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다. The one or more processors (102, 202) may be referred to as a controller, a microcontroller, a microprocessor, or a microcomputer. The one or more processors (102, 202) may be implemented by hardware, firmware, software, or a combination thereof. For example, one or more Application Specific Integrated Circuits (ASICs), one or more Digital Signal Processors (DSPs), one or more Digital Signal Processing Devices (DSPDs), one or more Programmable Logic Devices (PLDs), or one or more Field Programmable Gate Arrays (FPGAs) may be included in the one or more processors (102, 202). The descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this document may be implemented using firmware or software, and the firmware or software may be implemented to include modules, procedures, functions, etc. The descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed in this document may be implemented using firmware or software configured to perform one or more of the following: included in one or more processors (102, 202), or stored in one or more memories (104, 204) and driven by one or more of the processors (102, 202). The descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed in this document may be implemented using firmware or software in the form of codes, instructions and/or sets of instructions.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.One or more memories (104, 204) may be coupled to one or more processors (102, 202) and may store various forms of data, signals, messages, information, programs, codes, instructions and/or commands. The one or more memories (104, 204) may be comprised of ROM, RAM, EPROM, flash memory, hard drives, registers, cache memory, computer readable storage media and/or combinations thereof. The one or more memories (104, 204) may be located internally and/or externally to the one or more processors (102, 202). Additionally, the one or more memories (104, 204) may be coupled to the one or more processors (102, 202) via various technologies, such as wired or wireless connections.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.One or more transceivers (106, 206) can transmit user data, control information, wireless signals/channels, etc., as described in the methods and/or flowcharts of this document, to one or more other devices. One or more transceivers (106, 206) can receive user data, control information, wireless signals/channels, etc., as described in the descriptions, functions, procedures, suggestions, methods and/or flowcharts of this document, from one or more other devices. For example, one or more transceivers (106, 206) can be coupled to one or more processors (102, 202) and can transmit and receive wireless signals. For example, one or more processors (102, 202) can control one or more transceivers (106, 206) to transmit user data, control information, or wireless signals to one or more other devices. Additionally, one or more processors (102, 202) may control one or more transceivers (106, 206) to receive user data, control information, or wireless signals from one or more other devices. Additionally, one or more transceivers (106, 206) may be coupled to one or more antennas (108, 208), and one or more transceivers (106, 206) may be configured to transmit and receive user data, control information, wireless signals/channels, and the like, as referred to in the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed herein, via one or more antennas (108, 208). In this document, one or more antennas may be multiple physical antennas, or multiple logical antennas (e.g., antenna ports). One or more transceivers (106, 206) may convert received user data, control information, wireless signals/channels, etc. from RF band signals to baseband signals in order to process the received user data, control information, wireless signals/channels, etc. using one or more processors (102, 202). One or more transceivers (106, 206) may convert processed user data, control information, wireless signals/channels, etc. from baseband signals to RF band signals using one or more processors (102, 202). For this purpose, one or more transceivers (106, 206) may include an (analog) oscillator and/or filter.
본 개시가 적용되는 차량 또는 자율 주행 차량 예Examples of vehicles or autonomous vehicles to which this disclosure applies
도 25는 본 개시에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.Fig. 25 illustrates a vehicle or autonomous vehicle to which the present disclosure applies. The vehicle or autonomous vehicle may be implemented as a mobile robot, a car, a train, a manned/unmanned aerial vehicle (AV), a ship, etc.
도 25를 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. Referring to FIG. 25, a vehicle or autonomous vehicle (100) may include an antenna unit (108), a communication unit (110), a control unit (120), a driving unit (140a), a power supply unit (140b), a sensor unit (140c), and an autonomous driving unit (140d). The antenna unit (108) may be configured as a part of the communication unit (110).
통신부(110)는 다른 차량, 기지국(e.g. 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.The communication unit (110) can transmit and receive signals (e.g., data, control signals, etc.) with external devices such as other vehicles, base stations (e.g., base stations, road side units, etc.), servers, etc. The control unit (120) can control elements of the vehicle or autonomous vehicle (100) to perform various operations. The control unit (120) can include an ECU (Electronic Control Unit). The drive unit (140a) can drive the vehicle or autonomous vehicle (100) on the ground. The drive unit (140a) can include an engine, a motor, a power train, wheels, brakes, a steering device, etc. The power supply unit (140b) supplies power to the vehicle or autonomous vehicle (100) and can include a wired/wireless charging circuit, a battery, etc. The sensor unit (140c) can obtain vehicle status, surrounding environment information, user information, etc. The sensor unit (140c) may include an IMU (inertial measurement unit) sensor, a collision sensor, a wheel sensor, a speed sensor, an incline sensor, a weight detection sensor, a heading sensor, a position module, a vehicle forward/backward sensor, a battery sensor, a fuel sensor, a tire sensor, a steering sensor, a temperature sensor, a humidity sensor, an ultrasonic sensor, a light sensor, a pedal position sensor, etc. The autonomous driving unit (140d) may implement a technology for maintaining a driving lane, a technology for automatically controlling speed such as adaptive cruise control, a technology for automatically driving along a set path, a technology for automatically setting a path and driving when a destination is set, etc.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.For example, the communication unit (110) can receive map data, traffic information data, etc. from an external server. The autonomous driving unit (140d) can generate an autonomous driving route and a driving plan based on the acquired data. The control unit (120) can control the driving unit (140a) so that the vehicle or autonomous vehicle (100) moves along the autonomous driving route according to the driving plan (e.g., speed/direction control). During autonomous driving, the communication unit (110) can irregularly/periodically acquire the latest traffic information data from an external server and can acquire surrounding traffic information data from surrounding vehicles. In addition, the sensor unit (140c) can acquire vehicle status and surrounding environment information during autonomous driving. The autonomous driving unit (140d) can update the autonomous driving route and driving plan based on the newly acquired data/information. The communication unit (110) can transmit information on the vehicle location, autonomous driving route, driving plan, etc. to an external server. External servers can predict traffic information data in advance using AI technology, etc. based on information collected from vehicles or autonomous vehicles, and provide the predicted traffic information data to vehicles or autonomous vehicles.
본 개시가 적용되는 AR/VR 및 차량 예Examples of AR/VR and vehicles to which this disclosure applies
도 26은 본 개시에 적용되는 차량을 예시한다. 차량은 운송수단, 기차, 비행체, 선박 등으로도 구현될 수 있다.Fig. 26 illustrates a vehicle to which the present disclosure applies. The vehicle may also be implemented as a means of transportation, a train, an aircraft, a ship, etc.
도 26을 참조하면, 차량(100)은 통신부(110), 제어부(120), 메모리부(130), 입출력부(140a) 및 위치 측정부(140b)를 포함할 수 있다. Referring to FIG. 26, the vehicle (100) may include a communication unit (110), a control unit (120), a memory unit (130), an input/output unit (140a), and a position measurement unit (140b).
통신부(110)는 다른 차량, 또는 기지국 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 메모리부(130)는 차량(100)의 다양한 기능을 지원하는 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 입출력부(140a)는 메모리부(130) 내의 정보에 기반하여 AR/VR 오브젝트를 출력할 수 있다. 입출력부(140a)는 HUD를 포함할 수 있다. 위치 측정부(140b)는 차량(100)의 위치 정보를 획득할 수 있다. 위치 정보는 차량(100)의 절대 위치 정보, 주행선 내에서의 위치 정보, 가속도 정보, 주변 차량과의 위치 정보 등을 포함할 수 있다. 위치 측정부(140b)는 GPS 및 다양한 센서들을 포함할 수 있다.The communication unit (110) can transmit and receive signals (e.g., data, control signals, etc.) with other vehicles or external devices such as base stations. The control unit (120) can control components of the vehicle (100) to perform various operations. The memory unit (130) can store data/parameters/programs/codes/commands that support various functions of the vehicle (100). The input/output unit (140a) can output AR/VR objects based on information in the memory unit (130). The input/output unit (140a) can include a HUD. The position measurement unit (140b) can obtain position information of the vehicle (100). The position information can include absolute position information of the vehicle (100), position information within a driving line, acceleration information, position information with respect to surrounding vehicles, etc. The position measurement unit (140b) can include GPS and various sensors.
일 예로, 차량(100)의 통신부(110)는 외부 서버로부터 지도 정보, 교통 정보 등을 수신하여 메모리부(130)에 저장할 수 있다. 위치 측정부(140b)는 GPS 및 다양한 센서를 통하여 차량 위치 정보를 획득하여 메모리부(130)에 저장할 수 있다. 제어부(120)는 지도 정보, 교통 정보 및 차량 위치 정보 등에 기반하여 가상 오브젝트를 생성하고, 입출력부(140a)는 생성된 가상 오브젝트를 차량 내 유리창에 표시할 수 있다(1410, 1420). 또한, 제어부(120)는 차량 위치 정보에 기반하여 차량(100)이 주행선 내에서 정상적으로 운행되고 있는지 판단할 수 있다. 차량(100)이 주행선을 비정상적으로 벗어나는 경우, 제어부(120)는 입출력부(140a)를 통해 차량 내 유리창에 경고를 표시할 수 있다. 또한, 제어부(120)는 통신부(110)를 통해 주변 차량들에게 주행 이상에 관한 경고 메세지를 방송할 수 있다. 상황에 따라, 제어부(120)는 통신부(110)를 통해 관계 기관에게 차량의 위치 정보와, 주행/차량 이상에 관한 정보를 전송할 수 있다. For example, the communication unit (110) of the vehicle (100) can receive map information, traffic information, etc. from an external server and store them in the memory unit (130). The location measurement unit (140b) can obtain vehicle location information through GPS and various sensors and store them in the memory unit (130). The control unit (120) can generate a virtual object based on the map information, traffic information, vehicle location information, etc., and the input/output unit (140a) can display the generated virtual object on the vehicle window (1410, 1420). In addition, the control unit (120) can determine whether the vehicle (100) is being driven normally within the driving line based on the vehicle location information. If the vehicle (100) abnormally deviates from the driving line, the control unit (120) can display a warning on the vehicle window through the input/output unit (140a). In addition, the control unit (120) can broadcast a warning message regarding driving abnormalities to surrounding vehicles through the communication unit (110). Depending on the situation, the control unit (120) can transmit vehicle location information and information regarding driving/vehicle abnormalities to relevant organizations through the communication unit (110).
본 개시가 적용되는 XR 기기 예Examples of XR devices to which this disclosure applies
도 27은 본 개시에 적용되는 XR 기기를 예시한다. XR 기기는 HMD, 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등으로 구현될 수 있다.Fig. 27 illustrates an XR device applicable to the present disclosure. The XR device may be implemented as an HMD, a HUD (Head-Up Display) equipped in a vehicle, a television, a smartphone, a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, etc.
도 27을 참조하면, XR 기기(100a)는 통신부(110), 제어부(120), 메모리부(130), 입출력부(140a), 센서부(140b) 및 전원공급부(140c)를 포함할 수 있다. Referring to FIG. 27, the XR device (100a) may include a communication unit (110), a control unit (120), a memory unit (130), an input/output unit (140a), a sensor unit (140b), and a power supply unit (140c).
통신부(110)는 다른 무선 기기, 휴대 기기, 또는 미디어 서버 등의 외부 기기들과 신호(예, 미디어 데이터, 제어 신호 등)를 송수신할 수 있다. 미디어 데이터는 영상, 이미지, 소리 등을 포함할 수 있다. 제어부(120)는 XR 기기(100a)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 예를 들어, 제어부(120)는 비디오/이미지 획득, (비디오/이미지) 인코딩, 메타데이터 생성 및 처리 등의 절차를 제어 및/또는 수행하도록 구성될 수 있다. 메모리부(130)는 XR 기기(100a)의 구동/XR 오브젝트의 생성에 필요한 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 입출력부(140a)는 외부로부터 제어 정보, 데이터 등을 획득하며, 생성된 XR 오브젝트를 출력할 수 있다. 입출력부(140a)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부, 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다. 센서부(140b)는 XR 기기 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140b)는 근접 센서, 조도 센서, 가속도 센서, 자기 센서, 자이로 센서, 관성 센서, RGB 센서, IR 센서, 지문 인식 센서, 초음파 센서, 광 센서, 마이크로폰 및/또는 레이더 등을 포함할 수 있다. 전원공급부(140c)는 XR 기기(100a)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다.The communication unit (110) can transmit and receive signals (e.g., media data, control signals, etc.) with external devices such as other wireless devices, portable devices, or media servers. The media data can include videos, images, sounds, etc. The control unit (120) can control components of the XR device (100a) to perform various operations. For example, the control unit (120) can be configured to control and/or perform procedures such as video/image acquisition, (video/image) encoding, metadata generation and processing, etc. The memory unit (130) can store data/parameters/programs/codes/commands required for driving the XR device (100a)/generation of XR objects. The input/output unit (140a) can obtain control information, data, etc. from the outside, and output the generated XR object. The input/output unit (140a) can include a camera, a microphone, a user input unit, a display unit, a speaker, and/or a haptic module. The sensor unit (140b) can obtain the XR device status, surrounding environment information, user information, etc. The sensor unit (140b) can include a proximity sensor, a light sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an RGB sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, a light sensor, a microphone, and/or a radar, etc. The power supply unit (140c) supplies power to the XR device (100a) and can include a wired/wireless charging circuit, a battery, etc.
일 예로, XR 기기(100a)의 메모리부(130)는 XR 오브젝트(예, AR/VR/MR 오브젝트)의 생성에 필요한 정보(예, 데이터 등)를 포함할 수 있다. 입출력부(140a)는 사용자로부터 XR 기기(100a)를 조작하는 명령을 회득할 수 있으며, 제어부(120)는 사용자의 구동 명령에 따라 XR 기기(100a)를 구동시킬 수 있다. 예를 들어, 사용자가 XR 기기(100a)를 통해 영화, 뉴스 등을 시청하려고 하는 경우, 제어부(120)는 통신부(130)를 통해 컨텐츠 요청 정보를 다른 기기(예, 휴대 기기(100b)) 또는 미디어 서버에 전송할 수 있다. 통신부(130)는 다른 기기(예, 휴대 기기(100b)) 또는 미디어 서버로부터 영화, 뉴스 등의 컨텐츠를 메모리부(130)로 다운로드/스트리밍 받을 수 있다. 제어부(120)는 컨텐츠에 대해 비디오/이미지 획득, (비디오/이미지) 인코딩, 메타데이터 생성/처리 등의 절차를 제어 및/또는 수행하며, 입출력부(140a)/센서부(140b)를 통해 획득한 주변 공간 또는 현실 오브젝트에 대한 정보에 기반하여 XR 오브젝트를 생성/출력할 수 있다.For example, the memory unit (130) of the XR device (100a) may include information (e.g., data, etc.) required for creating an XR object (e.g., AR/VR/MR object). The input/output unit (140a) may obtain a command to operate the XR device (100a) from a user, and the control unit (120) may operate the XR device (100a) according to the user's operating command. For example, when a user attempts to watch a movie, news, etc. through the XR device (100a), the control unit (120) may transmit content request information to another device (e.g., a mobile device (100b)) or a media server through the communication unit (130). The communication unit (130) may download/stream content such as a movie or news from another device (e.g., a mobile device (100b)) or a media server to the memory unit (130). The control unit (120) controls and/or performs procedures such as video/image acquisition, (video/image) encoding, and metadata generation/processing for content, and can generate/output an XR object based on information about surrounding space or real objects acquired through the input/output unit (140a)/sensor unit (140b).
또한, XR 기기(100a)는 통신부(110)를 통해 휴대 기기(100b)와 무선으로 연결되며, XR 기기(100a)의 동작은 휴대 기기(100b)에 의해 제어될 수 있다. 예를 들어, 휴대 기기(100b)는 XR 기기(100a)에 대한 콘트롤러로 동작할 수 있다. 이를 위해, XR 기기(100a)는 휴대 기기(100b)의 3차원 위치 정보를 획득한 뒤, 휴대 기기(100b)에 대응하는 XR 개체를 생성하여 출력할 수 있다. In addition, the XR device (100a) is wirelessly connected to the mobile device (100b) through the communication unit (110), and the operation of the XR device (100a) can be controlled by the mobile device (100b). For example, the mobile device (100b) can act as a controller for the XR device (100a). To this end, the XR device (100a) can obtain three-dimensional position information of the mobile device (100b), and then generate and output an XR object corresponding to the mobile device (100b).
본 개시가 적용되는 로봇 예Robot examples to which this disclosure applies
도 28은 본 개시에 적용되는 로봇을 예시한다. 로봇은 사용 목적이나 분야에 따라 산업용, 의료용, 가정용, 군사용 등으로 분류될 수 있다.Fig. 28 illustrates a robot applicable to the present disclosure. Robots can be classified into industrial, medical, household, military, etc., depending on the purpose or field of use.
도 28을 참조하면, 로봇(100)은 통신부(110), 제어부(120), 메모리부(130), 입출력부(140a), 센서부(140b) 및 구동부(140c)를 포함할 수 있다. Referring to FIG. 28, the robot (100) may include a communication unit (110), a control unit (120), a memory unit (130), an input/output unit (140a), a sensor unit (140b), and a driving unit (140c).
통신부(110)는 다른 무선 기기, 다른 로봇, 또는 제어 서버 등의 외부 기기들과 신호(예, 구동 정보, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 로봇(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 메모리부(130)는 로봇(100)의 다양한 기능을 지원하는 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 입출력부(140a)는 로봇(100)의 외부로부터 정보를 획득하며, 로봇(100)의 외부로 정보를 출력할 수 있다. 입출력부(140a)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부, 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다. 센서부(140b)는 로봇(100)의 내부 정보, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140b)는 근접 센서, 조도 센서, 가속도 센서, 자기 센서, 자이로 센서, 관성 센서, IR 센서, 지문 인식 센서, 초음파 센서, 광 센서, 마이크로폰, 레이더 등을 포함할 수 있다. 구동부(140c)는 로봇 관절을 움직이는 등의 다양한 물리적 동작을 수행할 수 있다. 또한, 구동부(140c)는 로봇(100)을 지상에서 주행하거나 공중에서 비행하게 할 수 있다. 구동부(140c)는 액츄에이터, 모터, 바퀴, 브레이크, 프로펠러 등을 포함할 수 있다.The communication unit (110) can transmit and receive signals (e.g., driving information, control signals, etc.) with external devices such as other wireless devices, other robots, or control servers. The control unit (120) can control components of the robot (100) to perform various operations. The memory unit (130) can store data/parameters/programs/codes/commands that support various functions of the robot (100). The input/output unit (140a) can obtain information from the outside of the robot (100) and output information to the outside of the robot (100). The input/output unit (140a) can include a camera, a microphone, a user input unit, a display unit, a speaker, and/or a haptic module. The sensor unit (140b) can obtain internal information of the robot (100), surrounding environment information, user information, etc. The sensor unit (140b) may include a proximity sensor, an illuminance sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, a light sensor, a microphone, a radar, etc. The driving unit (140c) may perform various physical operations, such as moving a robot joint. In addition, the driving unit (140c) may allow the robot (100) to drive on the ground or fly in the air. The driving unit (140c) may include an actuator, a motor, wheels, brakes, a propeller, etc.
본 개시가 적용되는 AI 기기 예Examples of AI devices to which this disclosure applies
도 29는 본 개시에 적용되는 AI 기기를 예시한다. AI 기기는 TV, 프로젝터, 스마트폰, PC, 노트북, 디지털방송용 단말기, 태블릿 PC, 웨어러블 장치, 셋톱박스(STB), 라디오, 세탁기, 냉장고, 디지털 사이니지, 로봇, 차량 등과 같은, 고정형 기기 또는 이동 가능한 기기 등으로 구현될 수 있다.Fig. 29 illustrates an AI device applicable to the present disclosure. The AI device may be implemented as a fixed device or a movable device, such as a TV, a projector, a smartphone, a PC, a laptop, a digital broadcasting terminal, a tablet PC, a wearable device, a set-top box (STB), a radio, a washing machine, a refrigerator, a digital signage, a robot, a vehicle, etc.
도 29를 참조하면, AI 기기(100)는 통신부(110), 제어부(120), 메모리부(130), 입/출력부(140a/140b), 러닝 프로세서부(140c) 및 센서부(140d)를 포함할 수 있다. Referring to FIG. 29, the AI device (100) may include a communication unit (110), a control unit (120), a memory unit (130), an input/output unit (140a/140b), a learning processor unit (140c), and a sensor unit (140d).
통신부(110)는 유무선 통신 기술을 이용하여 다른 AI 기기(예, 도 23, 100x, 200, 400)나 AI 서버(예, 도 23의 400) 등의 외부 기기들과 유무선 신호(예, 센서 정보, 사용자 입력, 학습 모델, 제어 신호 등)를 송수신할 수 있다. 이를 위해, 통신부(110)는 메모리부(130) 내의 정보를 외부 기기로 전송하거나, 외부 기기로부터 수신된 신호를 메모리부(130)로 전달할 수 있다.The communication unit (110) can transmit and receive wired and wireless signals (e.g., sensor information, user input, learning models, control signals, etc.) with external devices such as other AI devices (e.g., 100x, 200, 400 of FIG. 23) or AI servers (e.g., 400 of FIG. 23) using wired and wireless communication technology. To this end, the communication unit (110) can transmit information in the memory unit (130) to the external device or transfer a signal received from the external device to the memory unit (130).
제어부(120)는 데이터 분석 알고리즘 또는 머신 러닝 알고리즘을 사용하여 결정되거나 생성된 정보에 기초하여, AI 기기(100)의 적어도 하나의 실행 가능한 동작을 결정할 수 있다. 그리고, 제어부(120)는 AI 기기(100)의 구성 요소들을 제어하여 결정된 동작을 수행할 수 있다. 예를 들어, 제어부(120)는 러닝 프로세서부(140c) 또는 메모리부(130)의 데이터를 요청, 검색, 수신 또는 활용할 수 있고, 적어도 하나의 실행 가능한 동작 중 예측되는 동작이나, 바람직한 것으로 판단되는 동작을 실행하도록 AI 기기(100)의 구성 요소들을 제어할 수 있다. 또한, 제어부(120)는 AI 장치(100)의 동작 내용이나 동작에 대한 사용자의 피드백 등을 포함하는 이력 정보를 수집하여 메모리부(130) 또는 러닝 프로세서부(140c)에 저장하거나, AI 서버(도 23, 400) 등의 외부 장치에 전송할 수 있다. 수집된 이력 정보는 학습 모델을 갱신하는데 이용될 수 있다.The control unit (120) may determine at least one executable operation of the AI device (100) based on information determined or generated using a data analysis algorithm or a machine learning algorithm. Then, the control unit (120) may control components of the AI device (100) to perform the determined operation. For example, the control unit (120) may request, search, receive, or utilize data of the learning processor unit (140c) or the memory unit (130), and control components of the AI device (100) to perform a predicted operation or an operation determined to be desirable among at least one executable operation. In addition, the control unit (120) may collect history information including operation contents of the AI device (100) or user feedback on the operation, and store the information in the memory unit (130) or the learning processor unit (140c), or transmit the information to an external device such as an AI server (FIG. 23, 400). The collected history information may be used to update a learning model.
메모리부(130)는 AI 기기(100)의 다양한 기능을 지원하는 데이터를 저장할 수 있다. 예를 들어, 메모리부(130)는 입력부(140a)로부터 얻은 데이터, 통신부(110)로부터 얻은 데이터, 러닝 프로세서부(140c)의 출력 데이터, 및 센싱부(140)로부터 얻은 데이터를 저장할 수 있다. 또한, 메모리부(130)는 제어부(120)의 동작/실행에 필요한 제어 정보 및/또는 소프트웨어 코드를 저장할 수 있다.The memory unit (130) can store data that supports various functions of the AI device (100). For example, the memory unit (130) can store data obtained from the input unit (140a), data obtained from the communication unit (110), output data of the learning processor unit (140c), and data obtained from the sensing unit (140). In addition, the memory unit (130) can store control information and/or software codes necessary for the operation/execution of the control unit (120).
입력부(140a)는 AI 기기(100)의 외부로부터 다양한 종류의 데이터를 획득할 수 있다. 예를 들어, 입력부(140a)는 모델 학습을 위한 학습 데이터, 및 학습 모델이 적용될 입력 데이터 등을 획득할 수 있다. 입력부(140a)는 카메라, 마이크로폰 및/또는 사용자 입력부 등을 포함할 수 있다. 출력부(140b)는 시각, 청각 또는 촉각 등과 관련된 출력을 발생시킬 수 있다. 출력부(140b)는 디스플레이부, 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다. 센싱부(140)는 다양한 센서들을 이용하여 AI 기기(100)의 내부 정보, AI 기기(100)의 주변 환경 정보 및 사용자 정보 중 적어도 하나를 얻을 수 있다. 센싱부(140)는 근접 센서, 조도 센서, 가속도 센서, 자기 센서, 자이로 센서, 관성 센서, RGB 센서, IR 센서, 지문 인식 센서, 초음파 센서, 광 센서, 마이크로폰 및/또는 레이더 등을 포함할 수 있다.The input unit (140a) can obtain various types of data from the outside of the AI device (100). For example, the input unit (140a) can obtain learning data for model learning, and input data to which the learning model is to be applied. The input unit (140a) may include a camera, a microphone, and/or a user input unit. The output unit (140b) may generate output related to vision, hearing, or touch. The output unit (140b) may include a display unit, a speaker, and/or a haptic module. The sensing unit (140) may obtain at least one of internal information of the AI device (100), surrounding environment information of the AI device (100), and user information using various sensors. The sensing unit (140) may include a proximity sensor, an illuminance sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an RGB sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, a light sensor, a microphone, and/or a radar.
러닝 프로세서부(140c)는 학습 데이터를 이용하여 인공 신경망으로 구성된 모델을 학습시킬 수 있다. 러닝 프로세서부(140c)는 AI 서버(도 23, 400)의 러닝 프로세서부와 함께 AI 프로세싱을 수행할 수 있다. 러닝 프로세서부(140c)는 통신부(110)를 통해 외부 기기로부터 수신된 정보, 및/또는 메모리부(130)에 저장된 정보를 처리할 수 있다. 또한, 러닝 프로세서부(140c)의 출력 값은 통신부(110)를 통해 외부 기기로 전송되거나/되고, 메모리부(130)에 저장될 수 있다.The learning processor unit (140c) can train a model composed of an artificial neural network using learning data. The learning processor unit (140c) can perform AI processing together with the learning processor unit of the AI server (Fig. 23, 400). The learning processor unit (140c) can process information received from an external device through the communication unit (110) and/or information stored in the memory unit (130). In addition, the output value of the learning processor unit (140c) can be transmitted to an external device through the communication unit (110) and/or stored in the memory unit (130).
상술한 바와 같은 실시형태들은 다양한 이동통신 시스템에 적용될 수 있다.The embodiments described above can be applied to various mobile communication systems.

Claims (13)

  1. 무선통신시스템에서 UE-to-UE 릴레이에서 소스 리모트 UE(User Equipment)의 동작 방법에 있어서,In a method for operating a source remote UE (User Equipment) in a UE-to-UE relay in a wireless communication system,
    상기 소스 리모트 UE가 타겟 리모트 UE와 direct link를 수립;The above source remote UE establishes a direct link with the target remote UE;
    상기 소스 리모트 UE가 릴레이 UE를 통해, indirect link에 해당하는, 상기 타겟 리모트 UE와의 end-to-end link를 수립;The above source remote UE establishes an end-to-end link with the target remote UE, corresponding to an indirect link, via the relay UE;
    상기 소스 리모트 UE가 상기 direct link와 indirect link 중 적어도 하나 이상을 activation; The above source remote UE activates at least one of the direct link and the indirect link;
    상기 소스 리모트 UE가 상기 activation된 link를 통해 상기 타겟 리모트 UE로 메시지를 전송;The above source remote UE transmits a message to the target remote UE through the above activated link;
    을 포함하며,Including,
    상기 소스 리모트 UE의 upper layer는 AS layer에 상기 indirect link에 사용되는 제1 SRC ID, 제1 DST ID를 포함하는 제1 ID 세트를 상기 direct link에 관련된 제2 SRC ID, 제2 DST ID를 포함하는 제2 ID 세트와 함께 알려주는, 방법.A method in which the upper layer of the source remote UE notifies the AS layer of a first ID set including a first SRC ID and a first DST ID used for the indirect link, together with a second ID set including a second SRC ID and a second DST ID related to the direct link.
  2. 제1항에 있어서,In the first paragraph,
    상기 소스 리모트 UE는 상기 제1 ID 세트에 해당하는 indirect link와 상기 제2 ID 세트에 해당하는 상기 direct link는 동일한 타겟 리모트 UE와 연결되는 link로 간주하는, 방법.A method in which the source remote UE considers the indirect link corresponding to the first ID set and the direct link corresponding to the second ID set as links connected to the same target remote UE.
  3. 제1항에 있어서,In the first paragraph,
    상기 direct link와 indirect link 중 적어도 하나 이상의 activation은 RSRP (Reference Signals Received Power)에 기초하여 수행되는, 방법.A method wherein at least one of the direct link and the indirect link is activated based on RSRP (Reference Signals Received Power).
  4. 제1항에 있어서,In the first paragraph,
    상기 direct link와 indirect link는 primary RLC entity 와 무관하게 동시 activation 이 허용되는 것인, 방법.A method in which the above direct link and indirect link allow simultaneous activation regardless of the primary RLC entity.
  5. 제1항에 있어서,In the first paragraph,
    상기 방법은,The above method,
    상기 소스 리모트 UE가 상기 indirect link의 addition과 관련된 상기 릴레이 UE를 선택;The above source remote UE selects the relay UE associated with the addition of the indirect link;
    상기 소스 리모트 UE가 상기 릴레이 UE와 SL 연결을 수립;The above source remote UE establishes an SL connection with the above relay UE;
    을 더 포함하는, 방법.A method further comprising:
  6. 제5항에 있어서,In paragraph 5,
    상기 소스 리모트 UE는 상기 indirect link를 통해 전송한 RRCReconfigurationSidelink에 대한 응답을 상기 direct link를 통해 수신한 것에 기초하여, multi-path가 성립되었다고 간주하는, 방법.A method in which the source remote UE considers that multi-path is established based on receiving a response to RRCReconfigurationSidelink transmitted through the indirect link through the direct link.
  7. 제1항에 있어서,In the first paragraph,
    상기 direct path에 관련된 bearer와 상기 indirect path에 관련된 bearer의 RSRP threshold가 기준 값 이상인 것에 기초하여, 상기 소스 리모트 UE는 direct path에 존재하는 RLC entity와 indirect path에 존재하는 RLC entity 중 어느 하나의 entity를 임의로 deactivation시키는, 방법.A method in which the source remote UE randomly deactivates one of an RLC entity existing in the direct path and an RLC entity existing in the indirect path based on the RSRP threshold of the bearer related to the direct path and the bearer related to the indirect path being equal to or greater than a reference value.
  8. 제7항에 있어서,In Article 7,
    상기 RSRP threshold 값은 상기 소스 리모트 UE의 상위 레이어가 결정한 것인, 방법.A method wherein the above RSRP threshold value is determined by a higher layer of the source remote UE.
  9. 제8항에 있어서,In Article 8,
    상기 indirect path를 위한 threshold와 direct path를 위한 threshold는 상이한 것인, 방법.A method wherein the threshold for the indirect path and the threshold for the direct path are different.
  10. 제7항에 있어서,In Article 7,
    상기 direct path에 관련된 bearer와 상기 indirect path에 관련된 bearer의 상기 RSRP threshold가 기준 값 이하인 것에 기초하여, 상기 소스 리모트 UE는 direct path에 존재하는 RLC entity와 indirect path에 존재하는 RLC entity 모두를 통해서 메시지를 전송하는, 방법.A method in which the source remote UE transmits a message through both an RLC entity existing in the direct path and an RLC entity existing in the indirect path, based on the RSRP threshold of a bearer related to the direct path and a bearer related to the indirect path being less than or equal to a reference value.
  11. 제1항에 있어서,In the first paragraph,
    상기 direct path의 신호 세기 또는 상기 indirect path의 신호 세기 중 어느 하나가 상기 RSRP threshold 이하인 것에 기초하여, 상기 소스 리모트 UE는 신호 세기가 상기 RSRP threshold 이상인 path를 통해 메시지를 전송하는, 방법.A method wherein, based on whether either the signal strength of the direct path or the signal strength of the indirect path is lower than or equal to the RSRP threshold, the source remote UE transmits a message through a path whose signal strength is higher than or equal to the RSRP threshold.
  12. 무선통신시스템에서, UE-to-UE 릴레이에서 소스 리모트 UE에 있어서,In a wireless communication system, in a UE-to-UE relay, at a source remote UE,
    적어도 하나의 프로세서; 및at least one processor; and
    상기 적어도 하나의 프로세서에 동작 가능하게 연결될 수 있고, 실행될 때 상기 적어도 하나의 프로세서로 하여금 동작들을 수행하게 하는 명령들을 저장하는 적어도 하나의 컴퓨터 메모리를 포함하며,At least one computer memory operably connected to said at least one processor and storing instructions that, when executed, cause said at least one processor to perform operations;
    상기 동작들은, The above actions are,
    타겟 리모트 UE와 direct link를 수립;Establish a direct link with the target remote UE;
    릴레이 UE를 통해, indirect link에 해당하는, 상기 타겟 리모트 UE와의 end-to-end link를 수립;Establishing an end-to-end link with the target remote UE, corresponding to the indirect link, via the relay UE;
    상기 direct link와 indirect link 중 적어도 하나 이상을 activation; Activate at least one of the above direct links and indirect links;
    상기 activation된 link를 통해 상기 타겟 리모트 UE로 메시지를 전송;Transmit a message to the target remote UE through the activated link;
    을 포함하며,Including,
    상기 소스 리모트 UE의 upper layer는 AS layer에 상기 indirect link에 사용되는 제1 SRC ID, 제1 DST ID를 포함하는 제1 ID 세트를 상기 direct link에 관련된 제2 SRC ID, 제2 DST ID를 포함하는 제2 ID 세트와 함께 알려주는, 소스 리모트 UE.The upper layer of the source remote UE notifies the AS layer of a first ID set including a first SRC ID and a first DST ID used for the indirect link, together with a second ID set including a second SRC ID and a second DST ID related to the direct link.
  13. 적어도 하나의 프로세서에 의해 실행될 때, 적어도 하나의 프로세서가 소스 리모트 UE를 위한 동작들을 수행하게 하는 명령을 포함하는 적어도 하나의 컴퓨터 프로그램을 저장하는 비휘발성 컴퓨터 판독 가능 저장 매체에 있어서,A nonvolatile computer-readable storage medium storing at least one computer program comprising instructions that, when executed by at least one processor, cause the at least one processor to perform operations for a source remote UE,
    상기 동작들은, The above actions are,
    타겟 리모트 UE와 direct link를 수립;Establish a direct link with the target remote UE;
    릴레이 UE를 통해, indirect link에 해당하는, 상기 타겟 리모트 UE와의 end-to-end link를 수립;Establishing an end-to-end link with the target remote UE, corresponding to the indirect link, via the relay UE;
    상기 direct link와 indirect link 중 적어도 하나 이상을 activation; Activate at least one of the above direct links and indirect links;
    상기 activation된 link를 통해 상기 타겟 리모트 UE로 메시지를 전송;Transmit a message to the target remote UE through the activated link;
    을 포함하며,Including,
    상기 소스 리모트 UE의 upper layer는 AS layer에 상기 indirect link에 사용되는 제1 SRC ID, 제1 DST ID를 포함하는 제1 ID 세트를 상기 direct link에 관련된 제2 SRC ID, 제2 DST ID를 포함하는 제2 ID 세트와 함께 알려주는, 저장 매체.A storage medium in which the upper layer of the source remote UE notifies the AS layer of a first ID set including a first SRC ID and a first DST ID used for the indirect link together with a second ID set including a second SRC ID and a second DST ID related to the direct link.
PCT/KR2024/001952 2023-02-09 2024-02-08 Method for operating multipath-related ue in ue-to-ue relay in wireless communication system WO2024167357A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2023-0017480 2023-02-09
KR20230017480 2023-02-09
KR20230023849 2023-02-22
KR10-2023-0023849 2023-02-22
KR20230065185 2023-05-19
KR10-2023-0065185 2023-05-19

Publications (1)

Publication Number Publication Date
WO2024167357A1 true WO2024167357A1 (en) 2024-08-15

Family

ID=92263221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2024/001952 WO2024167357A1 (en) 2023-02-09 2024-02-08 Method for operating multipath-related ue in ue-to-ue relay in wireless communication system

Country Status (1)

Country Link
WO (1) WO2024167357A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220109996A1 (en) * 2020-10-01 2022-04-07 Qualcomm Incorporated Secure communication link establishment for a ue-to-ue relay

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220109996A1 (en) * 2020-10-01 2022-04-07 Qualcomm Incorporated Secure communication link establishment for a ue-to-ue relay

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LIANHAI WU, LENOVO: "Discussion on L2 UE-to-UE relay", 3GPP TSG-RAN WG2 MEETING #120, R2-2212025, 4 November 2022 (2022-11-04), XP052216113 *
LIFENG HAN, SPREADTRUM COMMUNICATIONS: "Service continuity enhancements support for L2 U2N relay", 3GPP TSG-RAN WG2 MEETING #120, R2-2212155, 4 November 2022 (2022-11-04), XP052216239 *
LIN CHEN, ZTE, SANECHIPS: "Discussion on the remaining issues of multi-path relaying", 3GPP TSG-RAN WG2 MEETING #120, R2-2211814, 4 November 2022 (2022-11-04), XP052215918 *
SEOYOUNG BACK, LG ELECTRONICS FRANCE: "Relay (re-)selection and discovery for UE-to-UE relay", 3GPP TSG-RAN WG2 MEETING #120-E, R2-2212519, 4 November 2022 (2022-11-04), XP052216589 *

Similar Documents

Publication Publication Date Title
WO2021085908A1 (en) Method for as configuration-related operation of sidelink ue in wireless communication system
WO2022211582A1 (en) Rrc connection-related operation method of ue in sidelink relay in wireless communication system
WO2021206462A1 (en) Method for operating relay ue related to sidelink relay in wireless communication system
WO2023014157A1 (en) Method for operating remote ue related to path switching and measurement reporting in wireless communication system
WO2022025665A1 (en) Operating method related to selection of relay ue in wireless communication system
WO2021085909A1 (en) Method for operating ue related to pc5 unicast link release in wireless communication system
WO2024167357A1 (en) Method for operating multipath-related ue in ue-to-ue relay in wireless communication system
WO2024177435A1 (en) Method for operating relay ue related to remaining pdb in ue-to-ue relay in wireless communication system
WO2023244090A1 (en) Method for operating ue related to link release of ue-to-ue relay in wireless communication system
WO2023244070A1 (en) Method for operating ue related to direct path switching in ue-to-ue relay in wireless communication system
WO2024162761A1 (en) Method and device for operation related to qos-related configuration and reporting in ue-to-ue relay in wireless communication system
WO2024029888A1 (en) Method for operating relay ue related to bearer configuration in ue-to-ue relay in wireless communication system
WO2024029982A1 (en) Operation method of relay ue related to preferred resources in ue-to-ue relay in wireless communication system
WO2024128828A1 (en) Remote ue operation method related to reporting rlf in direct path or indirect path in wireless communication system
WO2024162787A1 (en) Operation method and device related to measurement and relay selection in ue-to-ue relay in wireless communication system
WO2024029921A1 (en) Operation method of relay ue related to id configuration in ue-to-ue relay in wireless communication system
WO2023244091A1 (en) Method for operating ue related to qos split in ue-to-ue relay in wireless communication system
WO2024172436A1 (en) Method of operating ue involved in beam pairing in sidelink mmwave in wireless communication system
WO2024072139A1 (en) Operating method related to discovery and connection establishment for ue-to-ue relay in wireless communication system
WO2024128717A1 (en) Operation method related to relay selection or reselection in ue-to-ue relay in wireless communication system
WO2024096476A1 (en) Method of operating source remote ue related to measurement reporting configuration of ue-to-ue relay in wireless communication system
WO2024029967A1 (en) Operation method of target relay ue associated with end-to-end bearer configuration in ue-to-ue relay in wireless communication system
WO2024232656A1 (en) Method and apparatus for split qos-related operation of relay ue in ue-to-ue relay in wireless communication system
WO2024167306A1 (en) Operation method of relay ue related to beam failure in multi-path relay in wireless communication system
WO2024167264A1 (en) Operating method of relay ue, which is related to handover of relay ue in multi-path relay, in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24753678

Country of ref document: EP

Kind code of ref document: A1