[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024092415A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2024092415A1
WO2024092415A1 PCT/CN2022/128662 CN2022128662W WO2024092415A1 WO 2024092415 A1 WO2024092415 A1 WO 2024092415A1 CN 2022128662 W CN2022128662 W CN 2022128662W WO 2024092415 A1 WO2024092415 A1 WO 2024092415A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
layer
layers
communication device
code streams
Prior art date
Application number
PCT/CN2022/128662
Other languages
English (en)
French (fr)
Inventor
李佳徽
马梦瑶
陈雁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202280101218.9A priority Critical patent/CN120092421A/zh
Priority to PCT/CN2022/128662 priority patent/WO2024092415A1/zh
Publication of WO2024092415A1 publication Critical patent/WO2024092415A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Definitions

  • the present application relates to the field of communication technology, and in particular to a communication method and device.
  • UEP unequal error protection
  • the current UEP is mainly adapted to the multiple-input multiple-output (MIMO) technology. It adapts to the transmission quality requirements of different MIMO streams by configuring different modulation and coding schemes (MCS) for different MIMO streams. It only considers the transmission quality requirements of the MIMO stream granularity, but does not consider the transmission quality requirements of a single data. It is not very flexible and is not applicable to non-MIMO scenarios.
  • MIMO multiple-input multiple-output
  • the present application provides a communication method and device, which can improve the flexibility and transmission performance of data transmission by performing UEP layered transmission on data to be transmitted, and support UEP transmission of data in non-MIMO scenarios.
  • an embodiment of the present application provides a communication method, which can be executed by a first communication device, the method comprising: performing layered processing on first data to obtain N layers of data, where N is an integer greater than or equal to 2; receiving modulation and coding indication information from a second communication device, the modulation and coding indication information being used to indicate an MCS corresponding to each layer of data in P layer data, the P layer data belonging to N layer data, the MCS corresponding to each layer of data in the P layer data being determined according to the order of source contribution of the layer of data in the P layer data, and a mapping strategy between the source contribution order and the MCS, wherein the source contribution of each layer of data in the P layer data is used to indicate the deviation caused to the first data when the layer of data is missing, and P is less than or equal to N; according to the MCS corresponding to each layer of data in the P layer data, encoding and modulating the P layer data respectively to obtain P code streams; sending N code streams to the second communication device, the N code streams
  • the first communication device may be a terminal device, or a component of a terminal device (such as a processor, a chip, or a chip system, etc.), or a device used in conjunction with a terminal device, etc.
  • the second communication device may be a network device, or a component of a network device (such as a processor, a chip, or a chip system, etc.), or a device used in conjunction with a network device, etc.
  • the first communication device may be a terminal device, or a component of a terminal device, or a device used in conjunction with a terminal device, etc.
  • the second communication device may be a terminal device different from the first communication device, or a component of a terminal device, or a device used in conjunction with a terminal device, etc.
  • the first data is processed in layers to obtain N layers of data, including: determining a first layering method associated with the first data type according to a first data type of the first data and an association between the data type and the layering method; and processing the first data in layers according to the first layering method to obtain N layers of data.
  • the deviation caused to the first data when each layer of data in the P layers of data is missing includes: one or more of a mean square error, a normalized mean square error, an imaging error, a positioning error, and an inference error caused to the first data when each layer of data in the P layers of data is missing.
  • the first data can be layered accordingly according to the data type of the first data, and a corresponding deviation calculation method can be adopted, which can flexibly adapt to data of different data types, and is conducive to improving transmission performance.
  • the MCS corresponding to each layer of data in the P layer data is determined according to the ranking of the source contribution of the layer of data in the P layer data, and the mapping strategy between the source contribution ranking and the MCS, including: the MCS corresponding to each layer of data in the P layer data is determined according to the channel state information between the second communication device, the ranking of the source contribution of the layer of data in the P layer data, and the mapping strategy between the channel state information and the source contribution ranking and the MCS.
  • the channel state information between the first communication device and the second communication device may also be considered to further improve the reliability of transmission.
  • the method also includes: sending data length information of each layer of data in N layers of data to a second communication device; receiving resource configuration information from the second communication device, the resource configuration information being used to configure M transmission blocks TB for transmitting the N layers of data, where M is an integer greater than or equal to 1; sending N code streams to the second communication device, including: sending N code streams to the second communication device on M TBs.
  • the data length information of each layer of data in the N layers of data is reported to the second communication device, so that the second communication device can determine the resources required for the transmission of N code streams corresponding to the N layers of data based on the data length information and MCS of each layer of data in the N layers of data, and then accurately configure resources for the transmission of the N layers of data, which can improve resource utilization and reduce resource waste.
  • N code streams are sent to the second communication device on M TBs, including: dividing the N code streams into O groups of code streams according to the sizes of the N code streams, so that the difference in data amount between the O groups of code streams is minimized; and sending the O groups of code streams to the second communication device via O transmission streams on the M TBs.
  • the method further includes: receiving layer number indication information from a second communication device, the layer number indication information being used to indicate N; or, determining N based on a UEP requirement for transmitting the first data.
  • the MCS corresponding to any two layers of data in the P layer data satisfies: the code rate of the MCS corresponding to the A layer data is less than or equal to the code rate of the MCS corresponding to the B layer data; and/or, the modulation order of the MCS corresponding to the A layer data is less than or equal to the modulation order of the MCS corresponding to the B layer data; wherein the A layer data is the layer data corresponding to the larger signal source contribution of the two layers of data, and the B layer data is the layer data corresponding to the smaller signal source contribution of the two layers of data.
  • the layered data corresponding to the larger source contribution can adopt a smaller code rate and/or modulation order compared with the layered data corresponding to the smaller source contribution, which is beneficial to improve the robustness of the layered data transmission corresponding to the larger source contribution and ensure the transmission performance.
  • an embodiment of the present application provides a communication method, which can be executed by a second communication device, and the method includes: obtaining a source contribution of each layer of data in the P-layer data of the first data to be sent by the first communication device, wherein the source contribution of each layer of data in the P-layer data is used to indicate the deviation caused to the first data when the layer of data is missing; sending modulation and coding indication information to the first communication device, the modulation and coding indication information is used to indicate the MCS corresponding to each layer of data in the P-layer data, wherein the MCS corresponding to each layer of data in the P-layer data is determined according to the order of the source contribution of the layer of data in the P-layer data, and the mapping strategy between the source contribution order and the MCS.
  • the first communication device may be a terminal device, or a component of a terminal device (such as a processor, a chip, or a chip system, etc.), or a device used in conjunction with a terminal device, etc.
  • the second communication device may be a network device, or a component of a network device (such as a processor, a chip, or a chip system, etc.), or a device used in conjunction with a network device, etc.
  • the first communication device may be a terminal device, or a component of a terminal device, or a device used in conjunction with a terminal device, etc.
  • the second communication device may be a terminal device different from the first communication device, or a component of a terminal device, or a device used in conjunction with a terminal device, etc.
  • the method also includes: receiving N code streams from a first communication device, the N code streams corresponding to N layers of data of the first data, the N layers of data including P layer data, the N code streams including P code streams corresponding to the P layer data and N-P code streams corresponding to N-P layer data excluding the P layer data in the N layer data, N is an integer greater than or equal to 2, and P is less than or equal to N; demodulating and decoding the N code streams to obtain N layers of data, wherein the P code streams corresponding to the P layer data in the N code streams are demodulated and decoded according to the MCS corresponding to each layer of data in the P layer data; and reconstructing the N layers of data to obtain the first data.
  • obtaining a source contribution of each layer of data in P layers of data to be sent by a first communication device includes: receiving source characteristic information from the first communication device, the source characteristic information including a source contribution of each layer of data in the P layers of data.
  • the deviation caused to the first data when each layer of data in the P layers of data is missing includes: one or more of the mean square error, normalized mean square error, imaging error, positioning error, and inference error caused to the first data when each layer of data in the P layers of data is missing.
  • the MCS corresponding to each layer of data in the P layer data is determined according to the ranking of the source contribution of the layer of data in the P layer data, and the mapping strategy between the source contribution ranking and the MCS, including: the MCS corresponding to each layer of data in the P layer data is determined according to the channel state information between the first communication device, the ranking of the source contribution of the layer of data in the P layer data, and the mapping strategy between the channel state information and the source contribution ranking and the MCS.
  • the method also includes: receiving data length information of each layer of data in N layers of data from the first communication device; determining the size of N code streams corresponding to the N layers of data according to the data length information of each layer of data in the N layers of data, and the MCS corresponding to each layer of data in the P layer data in the N layers of data and the MCS corresponding to the N-P layer data; determining M transmission blocks TB for transmitting the N layer of data according to the size of the N code streams corresponding to the N layer of data and the number of transmission streams O for transmitting the N layer of data, where M and O are integers greater than or equal to 1; sending resource configuration information to the first communication device, the resource configuration information being used to configure the M TBs; receiving N code streams from the first communication device, including: receiving the N code streams from the first communication device on the M TBs.
  • M TBs for transmitting N-layer data are determined according to the sizes of N code streams corresponding to the N-layer data and the number O of transmission streams for transmitting the N-layer data, including: dividing the N code streams into O groups of code streams according to the sizes of the N code streams corresponding to the N-layer data so that the difference in data amount between the O groups of code streams is minimized; and determining the M TBs for transmitting the N-layer data according to the data amount of a group of code streams with the largest data amount in the O groups of code streams.
  • the method also includes: determining N according to a UEP requirement for the first communication device to transmit the first data; and sending layer number indication information to the first communication device, where the layer number indication information is used to indicate N.
  • the MCS corresponding to any two layers of data in the P layer data satisfies: the code rate of the MCS corresponding to the A layer data is less than or equal to the code rate of the MCS corresponding to the B layer data; and/or, the modulation order of the MCS corresponding to the A layer data is less than or equal to the modulation order of the MCS corresponding to the B layer data; wherein the A layer data is the layer data corresponding to the larger signal source contribution of the two layers of data, and the B layer data is the layer data corresponding to the smaller signal source contribution of the two layers of data.
  • an embodiment of the present application provides a communication method, which can be executed by a first communication device, and the method includes: receiving modulation and coding indication information from a second communication device, the modulation and coding indication information being used to indicate the MCS corresponding to each layer of data in N layers of data to be sent by the second communication device; receiving N code streams corresponding to the N layers of data from the second communication device; according to the MCS corresponding to each layer of data in the N layers of data, demodulating and decoding the N code streams respectively to obtain N layers of data; and reconstructing the N layers of data to obtain first data.
  • the first communication device may be a terminal device, or a component of a terminal device (such as a processor, a chip, or a chip system, etc.), or a device used in conjunction with a terminal device, etc.
  • the second communication device may be a network device, or a component of a network device (such as a processor, a chip, or a chip system, etc.), or a device used in conjunction with a network device, etc.
  • the first communication device may be a terminal device, or a component of a terminal device, or a device used in conjunction with a terminal device, etc.
  • the second communication device may be a terminal device different from the first communication device, or a component of a terminal device, or a device used in conjunction with a terminal device, etc.
  • the method also includes: receiving resource configuration information from a second communication device, the resource configuration information being used to configure M transmission blocks TB for transmitting N layers of data, where M is an integer greater than or equal to 1; receiving N code streams corresponding to the N layers of data from the second communication device, including: receiving N code streams from the second communication device on M TBs.
  • the MCS corresponding to any two layers of data in N layers of data satisfies: the code rate of the MCS corresponding to the A layer data is less than or equal to the code rate of the MCS corresponding to the B layer data; and/or, the modulation order of the MCS corresponding to the A layer data is less than or equal to the modulation order of the MCS corresponding to the B layer data; wherein the A layer data is the layer data corresponding to the larger signal source contribution of the two layers of data, and the B layer data is the layer data corresponding to the smaller signal source contribution of the two layers of data.
  • an embodiment of the present application provides a communication method, which can be executed by a second communication device, and the method includes: performing layered processing on first data to obtain N layers of data, where N is an integer greater than or equal to 2; obtaining a source contribution of each layer of data in the N layers of data, wherein the source contribution of each layer of data in the N layers of data is used to indicate the deviation caused to the first data when the layer of data is missing; sending modulation and coding indication information to the first communication device, the modulation and coding indication information is used to indicate the MCS corresponding to each layer of data in the N layers of data, wherein the MCS corresponding to each layer of data in the N layers of data is determined according to the order of the source contribution of each layer of data in the N layers of data, and the mapping strategy between the source contribution order and the MCS; according to the MCS corresponding to each layer of data in the N layers of data, respectively encode and modulate the N layers of data to obtain N code streams; and send the N code streams to the first communication
  • the first data is processed in layers to obtain N layers of data, including: determining a first layering method associated with the first data type according to a first data type of the first data and an association between the data type and the layering method; and processing the first data in layers according to the first layering method to obtain N layers of data.
  • the deviation caused to the first data when each layer of data in the N layers of data is missing includes: one or more of the mean square error, normalized mean square error, imaging error, positioning error, and inference error caused to the first data when each layer of data in the N layers of data is missing.
  • the method also includes: determining the size of N code streams corresponding to the N layers of data based on data length information of each layer of data in the N layers of data and the MCS corresponding to each layer of data in the N layers of data; determining M TBs for transmitting the N layers of data based on the size of the N code streams corresponding to the N layers of data and the number of transmission streams O for transmitting the N layers of data, where M and O are integers greater than or equal to 1; sending resource configuration information to the first communication device, the resource configuration information being used to configure the M TBs; sending N code streams to the first communication device, including: sending N code streams to the second communication device on the M TBs.
  • N code streams are sent to the first communication device on M TBs, including: dividing the N code streams into O groups of code streams according to the sizes of the N code streams, so that the difference in data amount between the O groups of code streams is minimized; and sending the O groups of code streams to the first communication device via O transmission streams on the M TBs.
  • the MCS corresponding to each layer of data in the N layers of data is determined according to the order of the source contribution of each layer of data in the N layers of data and the mapping strategy between the source contribution order and the MCS, including: determining the MCS corresponding to each layer of data in the N layers of data according to the channel state information between the first communication device, the order of the source contribution of each layer of data in the N layers of data, and the mapping strategy between the channel state information and the source contribution order and the MCS.
  • the MCS corresponding to any two layers of data in N layers of data satisfies: the code rate of the MCS corresponding to the A layer data is less than or equal to the code rate of the MCS corresponding to the B layer data; and/or, the modulation order of the MCS corresponding to the A layer data is less than or equal to the modulation order of the MCS corresponding to the B layer data; wherein the A layer data is the layer data corresponding to the larger signal source contribution of the two layers of data, and the B layer data is the layer data corresponding to the smaller signal source contribution of the two layers of data.
  • an embodiment of the present application provides a communication device, which has the function of implementing the method in the first aspect or the third aspect, and the function can be implemented by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions, such as an interface unit and a processing unit.
  • the device may be a chip or an integrated circuit.
  • the device includes a memory and a processor, the memory is used to store instructions executed by the processor, and when the instructions are executed by the processor, the device can execute the method of the first aspect or the third aspect mentioned above.
  • the device may be a complete terminal device.
  • an embodiment of the present application provides a communication device, which has the function of implementing the method in the second aspect or the fourth aspect, and the function can be implemented by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions, such as an interface unit and a processing unit.
  • the device may be a chip or an integrated circuit.
  • the device includes a memory and a processor, the memory is used to store instructions executed by the processor, and when the instructions are executed by the processor, the device can execute the method of the second aspect or the fourth aspect mentioned above.
  • the device may be a complete network device or a complete terminal device.
  • an embodiment of the present application provides a communication device, which includes an interface circuit and a processor, and the processor and the interface circuit are coupled to each other.
  • the processor is used to implement the method of the first aspect or the third aspect through a logic circuit or an execution instruction.
  • the interface circuit is used to receive a signal from other communication devices outside the communication device and transmit it to the processor or send a signal from the processor to other communication devices outside the communication device. It can be understood that the interface circuit can be a transceiver or a transceiver or a transceiver or an input-output interface.
  • the communication device may further include a memory for storing instructions executed by the processor or storing input data required by the processor to execute instructions or storing data generated after the processor executes instructions.
  • the memory may be a physically independent unit or may be coupled to the processor, or the processor may include the memory.
  • an embodiment of the present application provides a communication device, which includes an interface circuit and a processor, and the processor and the interface circuit are coupled to each other.
  • the processor is used to implement the method of the second aspect or the fourth aspect through a logic circuit or an execution instruction.
  • the interface circuit is used to receive a signal from other communication devices outside the communication device and transmit it to the processor or send a signal from the processor to other communication devices outside the communication device. It is understandable that the interface circuit can be a transceiver or a transceiver or a transceiver or an input-output interface.
  • the communication device may further include a memory for storing instructions executed by the processor or storing input data required by the processor to execute instructions or storing data generated after the processor executes instructions.
  • the memory may be a physically independent unit or may be coupled to the processor, or the processor may include the memory.
  • an embodiment of the present application provides a communication system, which includes a first communication device and a second communication device.
  • the first communication device can implement the method of the first aspect above, and the second communication device can implement the method of the second aspect above; or the first communication device can implement the method of the third aspect above, and the second communication device can implement the method of the fourth aspect above.
  • an embodiment of the present application provides a computer-readable storage medium, in which a computer program or instructions are stored.
  • a computer program or instructions are stored.
  • the method of the first aspect, the second aspect, the third aspect, or the fourth aspect mentioned above can be implemented.
  • the embodiments of the present application also provide a computer program product, including a computer program or instructions, which, when executed by a processor, can implement the method of the first aspect, the second aspect, the third aspect, or the fourth aspect mentioned above.
  • an embodiment of the present application also provides a chip system, which includes: a processor and a memory, the processor is coupled to the memory, the memory is used to store programs or instructions, and when the program or instructions are executed by the processor, the method of the first aspect or the second aspect or the third aspect or the fourth aspect mentioned above can be implemented.
  • FIG1 is a schematic diagram of the architecture of a communication system provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of a communication method according to an embodiment of the present application.
  • FIG3 is a schematic diagram of a layered method provided in an embodiment of the present application.
  • FIG4 is a schematic diagram of information source characteristic information provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of code block division provided in an embodiment of the present application.
  • FIG6 is a schematic diagram of a transport block combination provided in an embodiment of the present application.
  • FIG7 is a second schematic diagram of a communication method provided in an embodiment of the present application.
  • FIG8 is a schematic diagram of a communication device structure according to an embodiment of the present application.
  • FIG. 9 is a second schematic diagram of the structure of the communication device provided in an embodiment of the present application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, such as: global system of mobile communication (GSM) system, code division multiple access (CDMA) system, wideband code division multiple access (WCDMA) system, general packet radio service (GPRS), long term evolution (LTE) system, LTE frequency division duplex (FDD) system, LTE time division duplex (TDD) system, universal mobile telecommunication system (UMTS), worldwide interoperability for microwave access (WiMAX) communication system, fifth generation (5G) mobile communication system or new radio (NR), etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • LTE LTE frequency division duplex
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • the technical solution provided in the present application can also be applied to future communication systems, such as the sixth generation mobile communication system
  • the architecture of the communication system used in the embodiment of the present application can be shown in FIG1 , and the communication system includes a wireless access network 100 and a core network 200.
  • the communication system may also include the Internet 300.
  • the wireless access network 100 may include at least one network device, such as 110a and 110b in FIG1 , and may also include at least one terminal device, such as 120a-120j in FIG1 .
  • 110a is a base station
  • 110b is a micro station
  • 120a, 120e, 120f and 120j are mobile phones
  • 120b is a car
  • 120c is a gas station
  • 120d is a home access point (HAP) arranged indoors or outdoors
  • 120g is a laptop
  • 120h is a printer
  • 120i is a drone.
  • the same terminal device or network device may provide different functions in different application scenarios.
  • mobile phones 120a, 120e, 120f, and 120j there are mobile phones 120a, 120e, 120f, and 120j.
  • Mobile phone 120a can access base station 110a, connect to car 120b, communicate directly with mobile phone 120e, and access HAP.
  • Mobile phone 120b can access HAP and communicate directly with mobile phone 120a.
  • Mobile phone 120f can be connected as micro station 110b, connect to laptop computer 120g, connect to printer 120h, and mobile phone 120j can control drone 120i.
  • the terminal device is connected to the network device, and the network device is connected to the core network.
  • the core network device and the network device can be independent and different physical devices, or the functions of the core network device and the logical functions of the network device can be integrated on the same physical device, or the functions of some core network devices and some network devices can be integrated on one physical device.
  • Terminal devices and network devices can be connected to each other by wire or wireless.
  • Figure 1 is only a schematic diagram, and the communication system can also include other devices, such as wireless relay devices and wireless backhaul devices, which are not drawn in Figure 1.
  • Network equipment also known as wireless access network equipment, may be a base station (base station), evolved NodeB (eNodeB), transmission reception point (TRP), next generation NodeB (gNB) in the fifth generation (5G) mobile communication system, base station in future mobile communication system or access node in WiFi system, etc.; it may also be a module or unit that completes part of the functions of a base station, for example, it may be a centralized unit (CU) or a distributed unit (DU).
  • the CU completes the functions of the radio resource control protocol and the packet data convergence layer protocol (PDCP) of the base station, and can also complete the function of the service data adaptation protocol (SDAP);
  • the DU completes the functions of the radio link control layer and the medium access control (MAC) layer of the base station, and can also complete the functions of part of the physical layer or all of the physical layer.
  • 3GPP 3rd Generation Partnership Project
  • the network device can be a macro base station (such as 110a in Figure 1), a micro base station or an indoor station (such as 110b in Figure 1), or a relay node or a donor node.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the network device.
  • the terminal device may also be referred to as a terminal, user equipment (UE), mobile station, mobile terminal, etc.
  • the terminal device can be widely used in various scenarios, for example, D2D, vehicle to everything (V2X) communication, machine-type communication (MTC), Internet of Things (IOT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, etc.
  • the terminal device may be a mobile phone, a tablet computer, a computer with wireless transceiver function, a wearable device, a vehicle, a drone, a helicopter, an airplane, a ship, a robot, a mechanical arm, a smart home device, etc.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal device.
  • the network equipment and terminal equipment can be fixed or movable.
  • the network equipment and terminal equipment can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on the water surface; they can also be deployed on aircraft, balloons and artificial satellites in the air.
  • the embodiments of the present application do not limit the application scenarios of the network equipment and terminal equipment.
  • the helicopter or drone 120i in FIG. 1 can be configured as a mobile network device.
  • the terminal device 120i For the terminal devices 120j that access the wireless access network 100 through 120i, the terminal device 120i is a network device; but for the network device 110a, 120i is a terminal device, that is, 110a and 120i communicate through the wireless air interface protocol.
  • 110a and 120i can also communicate through the interface protocol between network devices.
  • relative to 110a, 120i is also a network device. Therefore, network devices and terminal devices can be collectively referred to as communication devices.
  • 110a and 110b in FIG. 1 can be referred to as communication devices with network device functions
  • 120a-120j in FIG. 1 can be referred to as communication devices with terminal device functions.
  • Network devices and terminal devices, network devices and network devices, and terminal devices and terminal devices may communicate through authorized spectrum, unauthorized spectrum, or both; may communicate through spectrum below 6 gigahertz (GHz), spectrum above 6 GHz, or spectrum below 6 GHz and spectrum above 6 GHz.
  • GHz gigahertz
  • the embodiments of the present application do not limit the spectrum resources used for wireless communication.
  • the functions of the network device may also be performed by a module (such as a chip) in the network device, or by a control subsystem including the network device function.
  • the control subsystem including the network device function here may be a control center in the above-mentioned application scenarios such as smart grid, industrial control, smart transportation, smart city, etc.
  • the functions of the terminal device may also be performed by a module (such as a chip or a modem) in the terminal device, or by a device including the terminal device function.
  • the UEP solution can be used to configure different MCSs for different MIMO streams to adapt to the transmission quality requirements of different MIMO streams.
  • Type 1 perception data and Type 2 perception data are transmitted through MIMO stream 1 and MIMO stream 2 respectively.
  • MCS can be configured for MIMO stream 1 and MIMO stream 2 to adapt to the transmission quality requirements of different MIMO streams.
  • this solution only considers the transmission quality requirements of the stream granularity, but does not consider the transmission quality requirements of the data. It is not very flexible and is not applicable to non-MIMO scenarios.
  • the present application provides a communication method and device, which can improve the flexibility and transmission performance of data transmission by performing UEP layered transmission on the data to be transmitted, and support UEP transmission of data in non-MIMO scenarios.
  • first and second mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the size, content, order, timing, priority or importance of multiple objects.
  • a first communication device and a second communication device do not mean that the priority or importance of the two communication devices is different.
  • the number of nouns means “singular noun or plural noun", that is, “one or more”.
  • At least one means one or more
  • plural means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can mean: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
  • the character "/” generally indicates that the previous and next associated objects are in an “or” relationship.
  • A/B means: A or B.
  • “At least one of the following" or similar expressions refers to any combination of these items, including any combination of single or plural items.
  • At least one of a, b, or c means: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c can be single or multiple.
  • Figure 2 is a schematic diagram of a communication method provided by an embodiment of the present application.
  • Figure 2 uses a network device and a terminal device as an example to illustrate the method, but the present application does not limit the execution subject of the method.
  • the network device in Figure 2 may also be a second communication device, which may be a network device, or a component of a network device (such as a processor, a chip, or a chip system, etc.), or a device used in conjunction with a network device;
  • the terminal device in Figure 2 may also be a first communication device, which may be a terminal device, or a component of a terminal device (such as a processor, a chip, or a chip system, etc.), or a device used in conjunction with a terminal device.
  • the method includes:
  • S201 The terminal device performs layered processing on the first data to obtain N layers of data, where N is an integer greater than or equal to 2.
  • the terminal device may perform layered processing on the first data according to the required number of UEP layers N and the amount of data by using an average partitioning method, a random partitioning method, etc., to obtain N layers of data, that is, to obtain N layered data.
  • the terminal device may also perform compression processing on the obtained N layers of data respectively.
  • the required number of UEP layers N can be predefined by the protocol or pre-configured to the terminal device by the network device, and can also be determined by the terminal device according to the UEP requirements of the terminal device to transmit the first data, or determined by the network device according to the UEP requirements of the terminal device to transmit the first data, and indicated to the terminal device through layer number indication information. This application does not limit this.
  • the required number of UEP layers N is determined by the terminal device according to the UEP demand for the terminal device to transmit the first data as an example, referring to Table 1, the corresponding relationship between the data volume (X) and the UEP demand (i.e., the number of UEP layers) as shown in Table 1 can be pre-configured in the terminal device.
  • the corresponding number of UEP layers is 2; when the data volume of the first data is greater than or equal to the data volume threshold 2 and less than the data volume threshold 3, the corresponding number of UEP layers is 3; when the data volume of the first data is greater than or equal to the data volume threshold 3 and less than the data volume threshold 4, the corresponding number of UEP layers is 4; ...; when the data volume of the first data is greater than or equal to the data volume threshold Z-1 and less than the data volume threshold Z, the corresponding number of UEP layers is Z.
  • Z is the maximum possible number of UEP layers, that is, the maximum value that N can take.
  • the data volume of the first data is less than the data volume threshold 1, it can be reverted to the non-layered mode, that is, the terminal device does not perform UEP layered transmission on the first data.
  • the association between the data type and the layering method can also be saved in the terminal device.
  • the terminal device When the terminal device performs layered processing on the first data, it can also determine the first layering method associated with the first data type based on the first data type of the first data, and use the first layering method associated with the first data type to perform layered processing on the first data to obtain N layers of data.
  • the network device can indicate or configure it to the terminal device through signaling such as radio resource control (RRC) sent to the terminal device.
  • RRC radio resource control
  • an information element (IE) of the physical layer data type (PHYData-DataType) field can be set in the RRC signaling to indicate different data types.
  • the data types that the PHYData-DataType field can indicate include but are not limited to the following types:
  • Sensing Signal the original sensing signal, which can be in the form of a real or complex signal
  • 3D dense point cloud signal (DensePointCloudSignal): a complete point cloud signal with a value at each spatial position;
  • AI/ML signal (AIMLSignal): The signal sent by AI/ML when performing inference or training.
  • the stratification method that can be used in addition to stratification by average division, random division, etc. according to the amount of data, can also be transformed by stratification (also known as transform coefficient grouping), quantization coefficient bit stratification (also known as quantization coefficient bit grouping), quality stratification, etc.
  • stratification also known as transform coefficient grouping
  • quantization coefficient bit stratification also known as quantization coefficient bit grouping
  • quality stratification etc.
  • the data when using transform coefficient stratification, can be first subjected to one or more of discrete cosine transform (discrete cosine transform, DCT), discrete wavelet transform (discrete wavelet transformation, DWT), discrete Fourier transform (discrete fourier transform, DFT) and other transformations, and the transformed data can be stratified according to the low-frequency coefficient-high-frequency coefficient method ( Figure 3 is divided into 4 layers as an example); when using quantization coefficient bit stratification, stratification can be performed on the basis of the quantized coefficients, such as dividing multiple columns of quantized coefficients into a set number of layers according to the high and low bits of the bits ( Figure 3 is divided into 4 layers as an example); when using quality stratification, the original data (such as the first data) can first be stratified according to a lower quality 1.
  • DCT discrete cosine transform
  • DWT discrete wavelet transform
  • DFT discrete Fourier transform
  • the original data is compressed and reconstructed to obtain reconstructed data 1, and then the residual is calculated between the original data and the reconstructed data 1 to obtain residual data 1, and the residual data 1 is compressed and reconstructed according to quality 2 to obtain reconstructed residual data 1, where quality 2 is better than quality 1 (for example, the quantization coefficient of quality 2 is smaller than the quantization coefficient of quality 1 by adjusting the size of the quantization coefficient in the compression parameter). Then, the residual data 1 is calculated between the reconstructed residual data 1 and the reconstructed residual data 1 to obtain residual data 2, and the residual data 2 is compressed and reconstructed according to quality 3 to obtain reconstructed residual data 2, where quality 3 is better than quality 2.
  • the residual data 2 is calculated between the reconstructed residual data 2 and the reconstructed residual data 2 to obtain residual data 3, and the residual data 3 is compressed according to quality 4 to obtain reconstructed residual data 3, where quality 4 is better than quality 3.
  • the layering method associated with the perception signal can be transformation coefficient layering or quantization coefficient bit layering, etc.
  • the terminal device can perform Fourier, spatial domain transform and other preprocessing on the first data (i.e., the perception signal), and then perform discrete cosine, wavelet and other transforms, and quantize the transformed coefficients, and finally perform layered processing based on the quantization coefficients, for example: layered processing according to high and low frequency coefficients to achieve layered transformation coefficients of the first data, or layered processing according to high and low bits to achieve layered quantization coefficient bits of the first data, etc.
  • the layering method associated with the imaging signal may be transformation coefficient layering or quantization coefficient bit layering, etc.
  • the terminal device may perform discrete cosine, wavelet, and other transformations on the first data (i.e., the imaging signal), and quantize the transformed coefficients, and finally perform layering operations based on the quantization coefficients, for example: performing layered processing according to high and low frequency coefficients to achieve layering of the transformation coefficients of the first data, or performing layered processing according to high and low bits of the bits to achieve layering of the quantization coefficient bits of the first data, etc.
  • the stratification method associated with the 3D dense point cloud signal may be quality stratification, etc.
  • the data type of the first data is a 3D dense point cloud signal
  • the three dimensions are length, width, and height, respectively.
  • the terminal device may compress the two-dimensional data (corresponding to length and width) of each height of the first data (i.e., the 3D dense point cloud signal), respectively, complete the stratification operation (such as quality stratification) during the compression process, and may introduce predictive coding to the two-dimensional data of adjacent heights, such as performing differential coding operations, thereby reducing data redundancy to a certain extent.
  • the layered method associated with the 3D sparse point cloud signal may be quantization coefficient bit layering or quality layering, etc.
  • the terminal device may use a quadtree, octree or other transformation combined with quantization and entropy coding to compress it, and introduce a layered operation during quantization, such as quantization coefficient bit layering or quality layering, etc.
  • the hierarchical method associated with the AI/ML signal can be quantization coefficient bit stratification or quality stratification, etc.
  • the terminal device can use a predefined codebook combined with quantization, entropy coding, etc. for compression, and introduce hierarchical operations during quantization, such as quantization coefficient bit stratification or quality stratification.
  • the terminal device may also determine the first layered mode to be applied for layered processing of the first data based on the instruction of the network device. For example: the network device may indicate the first layered mode to be applied for layered processing of the first data through RRC or other signaling sent to the terminal device.
  • the layered mode (LayerMode) field may be set in the RRC or other signaling to indicate the first layered mode to be applied for layered processing of the first data.
  • the number of UEP layers N is configured or indicated by the network device
  • the number of layers (LayerNum) field may also be set in the RRC or other signaling sent by the network device to the terminal device to indicate the number of UEP layers N.
  • the network device sends modulation and coding indication information to the terminal device, where the modulation and coding indication information is used to indicate the MCS corresponding to each layer of data in the P layer data, and the terminal device receives the modulation and coding indication information accordingly.
  • the MCS corresponding to each layer of data in the P layer data is determined according to the ranking of the source contribution of the layer of data in the P layer data, and the mapping strategy between the source contribution ranking and the MCS.
  • P layer data belongs to N layer data, and the source contribution of each layer of data in the P layer data is used to indicate the deviation caused to the first data when the layer of data is missing, and P is less than or equal to N.
  • the terminal device can determine the source contribution of each layer of data in the N-layer data of the first data, and then send the source contribution of the P-layer data therein to the network device through the source characteristic information, etc.
  • the terminal device can determine it according to the deviation caused to the first data when the layer of data is missing. For example: for the source contribution of each layer of data in the N-layer data, the terminal device can use the mean square error (MSE) or normalized mean square error (NMSE) of the first data with the missing layer of data relative to the complete first data as the source contribution of the layer of data.
  • MSE mean square error
  • NMSE normalized mean square error
  • the first data is recorded as Y
  • the reconstructed data obtained by missing the n-th layer data is recorded as Y'n
  • the mean square error corresponding to the n-th layer data can be obtained as
  • L represents the length of the first data (such as the number of bits, the number of coefficients in the data, etc.).
  • the terminal device may also adopt a corresponding method for determining the source contribution according to the data type of the first data, so as to more realistically reflect the importance of each layer of data of the first data.
  • the source contribution of each layer of data may be determined based on the deviations such as the mean square error or the normalized mean square error brought to the first data when the data of this layer is missing;
  • the data type of the first data is an imaging signal, it may be determined not only based on the deviations such as the mean square error or the normalized mean square error brought to the first data when the data of this layer is missing, but also based on the imaging error brought to the first data when the data of this layer is missing;
  • the data type of the first data is a 3D dense point cloud signal, it may be determined not only based on the deviations such as the mean square error or the normalized mean square error brought to the first data when the data of this layer is missing, but also based on the imaging error brought to the first data
  • the data type of the first data when the data type of the first data is a 3D sparse point cloud signal, it can be determined not only based on the mean square error, normalized mean square error and other deviations brought to the first data when the layer of data is missing, but also based on the positioning error brought to the first data when the layer of data is missing;
  • the data type of the first data is an AI/ML signal
  • the method for determining the contribution of the information source can also be indicated or configured by the network device by sending RRC or other signaling to the terminal device.
  • the layer importance (LayerImportance) field can be set in RRC or other signaling to indicate the method for determining the contribution of the information source, such as using mean square error.
  • the terminal device may send the information source contribution of each layer of data in the P layers of data to the network device through the information source characteristic information.
  • P may be equal to N, that is, the information source characteristic information sent by the terminal device to the network device may include the information source contribution of each layer of data in N layers of data.
  • P may also be smaller than N, that is, the source characteristic information sent by the terminal device to the network device may include the source contribution of some layers of data in the N layers of data.
  • a source contribution threshold value predefined by the protocol or preconfigured by the network device may be saved in the terminal device.
  • the terminal device For N layers of data, the terminal device only sends the source contribution of each layer of data in the P layer data in the N layers of data whose corresponding source contribution is greater than the source contribution threshold value to the network device through the source characteristic information.
  • a reporting ratio S predefined by the protocol or preconfigured by the network device may be saved in the terminal device.
  • the source contribution of each layer of data in the P-layer data sent by the terminal device to the network device can be the original source contribution of each layer of data in the P-layer data without quantization, or the quantized source contribution of each layer of data in the P-layer data (such as the source contribution after quantization to the interval of 1-10, or the source contribution after rounding, etc.), or the ranking of the source contribution of each layer of data in the P-layer data in the P-layer data (for example, the ranking of the source contribution of each layer of data in the P-layer data in the P-layer data is determined according to the order of the source contribution of the P-layer data from large to small, etc.).
  • the source characteristic information sent by the terminal device to the network device may include, in addition to the source contribution (C) of each layer of data in the P layer of data in the N layers of data, also the data length information (L) of each layer of data in the N layers of data.
  • the source characteristic information may include N+P+1 parameters, wherein the parameter bitmap includes N bits for indicating the P-layer data in the N-layer data that has transmitted the source contribution, and the bitmap is 1011...1, indicating that the source characteristic information includes the source contribution of the first layer data (i.e., the first layer data), the third layer data (i.e., the third layer data), the fourth layer data (i.e., the fourth layer data), ... the Nth layer data (i.e., the Nth layer data), a total of P layers of data.
  • the parameter bitmap includes N bits for indicating the P-layer data in the N-layer data that has transmitted the source contribution
  • the bitmap is 1011...1, indicating that the source characteristic information includes the source contribution of the first layer data (i.e., the first layer data), the third layer data (i.e., the third layer data), the fourth layer data (i.e., the fourth layer data), ... the Nth layer data (i.e., the Nth layer data), a total
  • the N parameters L 1 , L 2 ..., L N represent the data length information of the first, second, ..., N layers of data (such as the number of bytes or the number of code blocks of a specific length (such as the number of 512-bit code blocks)), and the P parameters C 1 , C 3 , ... C N represent the source contribution of the first, third, ..., N layers of data.
  • the source contribution related to the layer data is not sent.
  • the second layer data only the data length information (L 2 ) is reported, and the source contribution (C 2 ) is not reported.
  • the network device can not only obtain the source contribution of each layer of data in the P layer data of the first data to be sent by the terminal device through the source characteristic information reported by the terminal device, but can also use other methods to obtain the source contribution of each layer of data in the P layer data of the first data to be sent by the terminal device.
  • the network device schedules the terminal device to send multiple data within a period of time through downlink control information (DCI), and the types of the data are usually the same or similar.
  • DCI downlink control information
  • the terminal device can divide the multiple data into the same number of layers, and only send the source contribution of each layer of data in the P layer data of the data to the network device before the first data in the time period is sent to the network device.
  • the network device can use the previous configuration of the source contribution of each layer of data in the P layer data for subsequent data (such as the first data) in the time period.
  • the network device can also use the configuration of the source contribution of each layer of data in the P layer data reported by other terminal devices as the source contribution of each layer of data in the P layer data of the terminal device.
  • one or more mapping tables of source contribution ranking and MCS can be maintained in the network device, and the terminal device and the network device can negotiate the mapping table of source contribution ranking and MCS to be used, or the mapping table of source contribution ranking and MCS to be used can be determined by the network device.
  • the MCS corresponding to each layer of data in the P layer data can be determined according to the ranking of the source contribution of each layer of data in the P layer data in the P layer data (such as ranking from large to small).
  • the value of Z can be determined based on the maximum number of desirable layers supported by the network device and the terminal device.
  • the layered data with a source contribution ranking of 1 in the 4-layer data corresponds to MCS 1
  • the layered data with a source contribution ranking of 2 corresponds to MCS 2
  • the layered data with a source contribution ranking of 3 corresponds to MCS 3
  • the layered data with a source contribution ranking of 4 corresponds to MCS 4 .
  • one or more mapping tables of channel state information and source contribution ranking and MCS may be maintained in the network device, and the terminal device and the network device may negotiate the mapping table of channel state information and source contribution ranking and MCS to be used, or the network device may determine the mapping table of channel state information and source contribution ranking and MCS to be used.
  • the MCS corresponding to each layer of data in the P layer data may be determined according to the channel state information between the network device and the terminal device and the ranking of the source contribution of each layer of data in the P layer data in the P layer data.
  • the channel state information may be one or more of signal-to-noise ratio (SNR), reference signal receiving quality (RSRQ), bit error ratio (BER), etc.
  • the mapping table of the channel state information and source contribution ranking and MCS used is shown in Table 3. According to the column where the source contribution ranking is located and the SNR interval to which the SNR between the network device and the terminal device belongs, a unique MCS can be determined. Among them, SNR interval 1 , SNR interval 2 , SNR interval 3 , ..., SNR interval D do not overlap.
  • the MCS corresponding to the layer of data can be determined to be MCS 1,1 ; if the SNR between the network device and the terminal device belongs to SNR interval 1 , and the source contribution of a certain layer of data is ranked 2 in the P layer data, then the MCS corresponding to the layer of data can be determined to be MCS 1,2 , and so on.
  • the MCS corresponding to the layer data (i.e., MCS 1,1 ) is a modulation coding scheme with a code rate (Rate) of 1/2 and a modulation order of 4; if the SNR between the network device and the terminal device belongs to SNR interval 1 and the source contribution of the layered data is ranked 2 in the P layer data, the MCS corresponding to the layer data (i.e., MCS 1,2 ) is a modulation coding scheme with a Rate of 17/32 and a modulation order of 4; ...; if the SNR between the network device and the terminal device belongs to SNR interval 4 and the source contribution of the layered data is ranked 8 in the P layer data, the MCS corresponding to the layer data (i.e., MCS 4,8 ) is a modulation coding scheme with a Rate of 25/32 and
  • Mod represents the number of modulation bits (i.e., the number of bits that each modulation symbol can represent).
  • the number of bits that each code element modulation symbol of QPSK, 8QAM, 16QAM, 32QAM and other code types can represent are 2, 3, 4, and 5, respectively, and the modulation orders corresponding to these code types are 4, 8, 16, and 32, respectively;
  • Rate represents the preset code rate.
  • the same modulation Mod that is, the same modulation order, can be used for each layer of data, and only the code rate (Rate) can be used to distinguish them:
  • the code rate of the nth layer of data in the P layer is Rate n .
  • Rate n is the ⁇ -th power of the information source contribution of the n-th layer data in the P-layer data
  • L n is the data length of the n-th layer data in the P-layer data
  • is the adjustment factor
  • ⁇ >0 is the preset bit rate.
  • the determined MCS corresponding to any two layers of data in the P layer data satisfies: the code rate of the MCS corresponding to the A layer data is less than or equal to the code rate of the MCS corresponding to the B layer data; and/or, the modulation order of the MCS corresponding to the A layer data is less than or equal to the modulation order of the MCS corresponding to the B layer data; wherein the A layer data is the layer data corresponding to the larger source contribution in the two layers of data, and the B layer data is the layer data corresponding to the smaller source contribution in the two layers of data.
  • mapping table of the source contribution ranking and MCS the mapping table of the channel state information and the source contribution ranking and MCS, etc., satisfy the same channel state (or do not consider the channel state), as the source contribution of the layer data increases in order from large to small, the corresponding MCS modulation order and/or code rate presents an increasing trend, so that the layer data corresponding to the larger source contribution can use a smaller code rate and/or modulation order than the layer data corresponding to the smaller source contribution, to obtain stronger transmission robustness and ensure transmission performance.
  • the terminal device encodes and modulates the P-layer data respectively according to the MCS corresponding to each layer of data in the P-layer data to obtain P code streams.
  • the terminal device sends N code streams to the network device.
  • the network device receives the N code streams, where the N code streams include P code streams and N-P code streams corresponding to N-P layer data except the P layer data in the N layer data.
  • the network device After the network device determines the MCS corresponding to each layer of data in the P layer data, it can send modulation and coding indication information for indicating the MCS corresponding to each layer of data in the P layer data to the terminal device, indicating the MCS used by each layer of data in the P layer data of the terminal device.
  • the terminal device After the terminal device receives the MCS corresponding to each layer of data in the P layer data, it can encode and modulate the P layer data respectively according to the MCS corresponding to each layer of data in the P layer data (such as code rate, modulation order), and obtain P code streams.
  • the MCS used by the N-P layer data can be pre-configured or agreed upon in the network device and the terminal device by means of protocol pre-definition or network device indication, for example, an MCS used by the N-P layer data can be pre-configured; or it can be pre-agreed that the N-P layer data uses the MCS corresponding to the first layer data in the P layer data, or the MCS corresponding to the Pth layer data in the P layer data, etc.
  • the terminal device can also encode and modulate the N-P layer data respectively according to the MCS used by the N-P layer data to obtain N-P code streams.
  • the terminal device can send the N code streams to the network device, such as sending the N code streams to the network device on the uplink shared channel, and correspondingly, the network device receives the N code streams from the terminal device.
  • S205 The network device demodulates and decodes the N code streams to obtain N layers of data.
  • S206 The network device reconstructs the N-layer data to obtain first data.
  • the P layer data can be demodulated and decoded according to the MCS corresponding to each layer of data in the P layer data; for the N-P code streams corresponding to the N-P layer data other than the P layer data, the N-P code streams can be demodulated and decoded according to the MCS used by the N-P layer data to obtain the N-P layer data.
  • the network device can reconstruct the N layer data to obtain the first data. For example, the N layer data can be spliced according to the position of each layer of data in the N layer data (or the number of layers in the N layer data) to obtain the first data.
  • the network device can also determine the code stream size corresponding to each layer of data based on the data length information and the corresponding MCS corresponding to each layer of data in the N layers of data, and then determine the switching point of each code stream, thereby demodulating and decoding the N code streams.
  • the network device can configure transmission resources (such as transport blocks (TB)) for the terminal device according to the optional minimum code stream and the minimum modulation order (or the minimum number of modulation bits) so that the terminal device has sufficient resources to send N code streams.
  • the network device in order to improve resource utilization, can also determine the size of the N code streams corresponding to the N-layer data according to the data length information of each layer of data in the N-layer data, and the MCS corresponding to each layer of data in the P-layer data in the N-layer data and the MCS corresponding to the N-P-layer data; and determine the M TBs for transmitting the N-layer data (that is, the N code streams corresponding to the N-layer data) according to the size of the N code streams and the number of transmission streams O for transmitting the N-layer data, where M and O are integers greater than or equal to 1.
  • the network device can estimate the number of transmission resources (i.e., the number of symbols) of each layer: wherein n represents the nth layer of data in N layers of data, and MCSn , Raten , Modn represent the MCS corresponding to the nth layer of data in N layers of data, as well as the code rate and the number of modulation bits.
  • ⁇ Ln represents the bit length increase caused by cyclic redundancy check (CRC) checking, zero padding, etc.
  • CRC cyclic redundancy check
  • K cb,n which may be different for each layer
  • Mod n can be determined according to the modulation order. For example, the modulation orders of QPSK, 8QAM, 16QAM, 32QAM are 4, 8, 16, 32 respectively, and the corresponding number of bits that each modulation symbol can represent is 2, 3, 4, 5 respectively.
  • the CB size of each layer of N-layer data can be predefined by the protocol or configured by the network device.
  • the total number of transmission resources (that is, the size of N code streams) is The network device can estimate the required TB symbol length L tb and the number M based on the currently available number of resources Res avi , that is, the maximum TB supported (the maximum TB can be determined based on the product of the number of consecutive time slots supported, the number of RBs in each slot, the number of symbols in each RB, and the number of transmission layers).
  • the network device After determining the required M TBs, the network device indicates the resource configuration information to the terminal device, such as indicating the number of M TBs and the symbol length to the terminal device.
  • the terminal device can divide each layer of data into one or more CBs according to the size of each layer of CB, and pad the unfilled CBs with 0, perform coding and modulation according to the MCS corresponding to each layer of the divided CBs, obtain the code stream corresponding to each layer, and then fill the coded and modulated code streams of each layer into M TBs according to the configured M (taking 2 as an example).
  • TB1 includes resources of code stream 1 (Res 1 ), resources of code stream 2 (Res 2 ) and part of the resources of code stream 3 (Res 3,1 ), and TB2 includes the remaining resources of code stream 3 (Res 3,2 ) and resources of code stream 4 (Res 4 ).
  • the network device may divide the N code streams into O groups of code streams according to the size of the N code streams corresponding to the N-layer data, so that the difference in data volume between the O groups of code streams is minimized, for example, all possible grouping methods for dividing the N code streams into the O groups of code streams are traversed, and the grouping method with the smallest difference in data volume between the O groups of code streams (which may also be less than a threshold) is selected; according to the data volume size of a group of code streams with the largest data volume in the O groups of code streams, M TBs for transmitting the N-layer data are determined.
  • the terminal device may also divide the N code streams into O groups of code streams according to the size of the N code streams corresponding to the N-layer data, so that the difference in data volume between the O groups of code streams is minimized; and the O groups of code streams are respectively sent to the network device through O transmission streams on M TBs.
  • the channel state information (such as SNR) of one transmission stream can be selected randomly or according to a certain strategy (such as selecting the maximum value or the minimum value) as the channel state information between the network device and the terminal device.
  • the O groups of code streams can be divided and the MCS of each layer of data can be configured according to the channel state information of each transmission stream and the source contribution ranking of the P layer data.
  • the following example describes that there are 4 layers of data (denoted as layer data 1, ..., layer data 4 according to the source contribution from high to low), 2 transmission streams, and the SNR of transmission stream 1 (denoted as SNR Rx,1 ) is greater than the received SNR of transmission stream 2 (denoted as SNR Rx,2 ).
  • the most important layer data is preferentially sent using the transmission resources of transmission stream 1, and the other layer data are sent using the transmission resources of transmission stream 2.
  • MCS group 1 corresponding to layer data 1-4 is selected according to SNR Rx, 1 (i.e., the MCS group consisting of the MCS corresponding to layer data 1-4 is determined according to SNR Rx,1 combined with the source contribution ranking of layer data 1-4), and MCS group 2 corresponding to layer data 1-4 is selected according to SNR Rx,2 (i.e., the MCS group consisting of the MCS corresponding to layer data 1-4 is determined according to SNR Rx,2 combined with the source contribution ranking of layer data 1-4).
  • Two groups of MCS are selected in total.
  • the number of transmission resources Res 1,1 -Res 1,4 corresponding to layer data 1-4 when MCS group 1 is applied and the number of transmission resources Res 2,1 -Res 2,4 corresponding to layer data 1-4 when MCS group 2 is applied are estimated, corresponding to transmission stream 1 and transmission stream 2 respectively;
  • Transport stream allocation There are three allocation methods: transport stream 1 (layer 1 data) & stream 2 (layer 2-4 data), transport stream 1 (layer 1, 2) & transport stream 2 (layer 3, 4), and transport stream 1 (layer 1-3) & transport stream 2 (layer 4 data).
  • the transport resource occupancy under these three allocation methods is calculated as follows:
  • the network device may select the MCS of each layer of data corresponding to the minimum value among Diff 1 -Diff 3 and the configuration mode of the code stream grouping (or sub-transmission stream), so as to make the transmission resource lengths of the two transmission streams closest.
  • FIG. 7 is a schematic diagram of another communication method provided in an embodiment of the present application. The method includes:
  • S701 The network device performs layered processing on first data to obtain N layers of data, where N is an integer greater than or equal to 2.
  • the network device sends modulation and coding indication information to the terminal device, where the modulation and coding indication information is used to indicate the MCS corresponding to each layer of data in N layers of data.
  • the terminal device receives the modulation and coding indication information from the network device.
  • the MCS corresponding to each layer of data in the N layers of data is determined according to the order of the source contribution of each layer of data in the N layers of data, and the mapping strategy between the source contribution order and the MCS.
  • the source contribution of each layer of data in the N layers of data is used to indicate the deviation caused to the first data when the data of this layer is missing.
  • the network device encodes and modulates the N layers of data respectively according to the MCS corresponding to each layer of data in the N layers of data to obtain N code streams.
  • the network device sends N code streams to the network device, and correspondingly, the network device receives the N code streams.
  • S705 The terminal device demodulates and decodes the N code streams to obtain N layers of data.
  • S706 The terminal device reconstructs N layers of data to obtain first data.
  • steps S701-S706 is similar to the principle of the implementation of steps S201-S206.
  • the specific implementation can refer to the introduction of S201-S206 and will not be repeated here.
  • the above is an introduction to the communication method provided by the present application, taking the first communication device as a terminal device, the second communication device as a network device, and the transmission of the first data between the terminal device and the network device as an example. It can be understood that in some implementations, the above first communication device is a terminal device, and the second communication device can also be a terminal device different from the first communication device.
  • the communication method provided in the embodiment of the present application can also be applied to the transmission of the first data between terminal devices.
  • the first communication device such as a terminal device
  • the second communication device such as a network device
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed in the form of hardware or computer software driving hardware depends on the specific application scenario and design constraints of the technical solution.
  • Figures 8 and 9 are schematic diagrams of the structures of possible communication devices provided by embodiments of the present application. These communication devices can be used to implement the functions of the first communication device (such as a terminal device) and the second communication device (such as a network device) in the above method embodiments, and thus can also achieve the beneficial effects of the above method embodiments.
  • the communication device can be a terminal device or a network device, and can also be a module (such as a chip) applied to a terminal device or a network device.
  • the communication device 800 includes a processing unit 810 and an interface unit 820, wherein the interface unit 820 may also be a transceiver unit or an input/output interface.
  • the communication device 800 may be used to implement the functions of the first communication device (such as a terminal device) and the second communication device (such as a network device) in the method embodiment shown in FIG2 or FIG7 above.
  • the communication device 800 When the communication device 800 is used to implement the function of the first communication device (such as terminal equipment) in the method embodiment shown in FIG. 2:
  • the processing unit 810 is used to perform layered processing on the first data to obtain N layers of data, where N is an integer greater than or equal to 2;
  • the interface unit 820 is used to receive modulation and coding indication information from the second communication device, where the modulation and coding indication information is used to indicate the MCS corresponding to each layer of data in the P layer data, where the P layer data belongs to the N layer data, and the MCS corresponding to each layer of data in the P layer data is determined according to the order of the source contribution of the layer of data in the P layer data, and the mapping strategy between the source contribution order and the MCS, wherein the source contribution of each layer of data in the P layer data is used to indicate the deviation caused to the first data when the layer of data is missing, and P is less than or equal to N;
  • the processing unit 810 is further used to encode and modulate the P layer data respectively according to the MCS corresponding to each layer of data in the P layer data to obtain P code streams; the interface unit 820 is further used to send N code streams to the second communication device, the N code streams including the P code streams and N-P code streams corresponding to the N-P layer data in the N layer data except the P layer data.
  • the interface unit 820 is further used to send information source characteristic information to the second communication device, where the information source characteristic information includes the information source contribution of each layer of data in the P layer data.
  • the processing unit 810 when the processing unit 810 performs layered processing on the first data to obtain N layers of data, it is specifically used to determine a first layering method associated with the first data type based on the first data type of the first data and the association between the data type and the layering method; and performs layered processing on the first data according to the first layering method to obtain N layers of data.
  • the deviation caused to the first data when each layer of data in the P layers of data is missing includes: one or more of the mean square error, normalized mean square error, imaging error, positioning error, and inference error caused to the first data when each layer of data in the P layers of data is missing.
  • the MCS corresponding to each layer of data in the P layer data is determined according to the ranking of the source contribution of the layer of data in the P layer data, and a mapping strategy between the source contribution ranking and the MCS, including: the MCS corresponding to each layer of data in the P layer data is determined according to the channel state information between the second communication device, the ranking of the source contribution of the layer of data in the P layer data, and a mapping strategy between the channel state information and the source contribution ranking and the MCS.
  • the interface unit 820 is further configured to send data length information of each layer of data in the N layers of data to the second communication device; and receive resource configuration information from the second communication device, where the resource configuration information is used to configure M transmission TBs for transmitting the N layers of data, where M is an integer greater than or equal to 1;
  • the interface unit 820 When the interface unit 820 sends N code streams to the second communication device, it is specifically configured to send the N code streams to the second communication device on M TBs.
  • the interface unit 820 when the number O of transmission streams transmitting N layers of data is greater than or equal to 2, when the interface unit 820 sends N code streams to the second communication device on M TBs, it is specifically used to divide the N code streams into O groups of code streams according to the sizes of the N code streams, so that the difference in data amount between the O groups of code streams is minimized; and the O groups of code streams are sent to the second communication device through O transmission streams on M TBs.
  • the interface unit 820 is further used to receive layer number indication information from the second communication device, where the layer number indication information is used to indicate N; or, the processing unit 810 is further used to determine N based on unequal error protection UEP requirements for transmitting the first data.
  • the MCS corresponding to any two layers of data in the P layer data satisfies: the code rate of the MCS corresponding to the A layer data is less than or equal to the code rate of the MCS corresponding to the B layer data; and/or, the modulation order of the MCS corresponding to the A layer data is less than or equal to the modulation order of the MCS corresponding to the B layer data; wherein the A layer data is the layer data corresponding to the larger signal source contribution of the two layers of data, and the B layer data is the layer data corresponding to the smaller signal source contribution of the two layers of data.
  • the communication device 800 When the communication device 800 is used to implement the function of the second communication device (such as a network device) in the method embodiment shown in FIG. 2:
  • the processing unit 810 is used to obtain the source contribution of each layer of data in the P-layer data of the first data to be sent by the first communication device, wherein the source contribution of each layer of data in the P-layer data is used to indicate the deviation caused to the first data when the layer of data is missing; and determine modulation and coding indication information, the modulation and coding indication information is used to indicate the modulation and coding scheme MCS corresponding to each layer of data in the P-layer data, wherein the MCS corresponding to each layer of data in the P-layer data is determined according to the order of the source contribution of the layer of data in the P-layer data, and the mapping strategy between the source contribution order and the MCS;
  • the interface unit 820 is configured to send modulation and coding indication information to the first communication device.
  • the interface unit 820 is further used to receive N code streams from the first communication device, the N code streams corresponding to N layers of data of the first data, the N layers of data including P layers of data, the N code streams including P code streams corresponding to the P layers of data and N-P code streams corresponding to N-P layers of data other than the P layers of data in the N layers of data, N is an integer greater than or equal to 2, and P is less than or equal to N; the processing unit 810 is further used to demodulate and decode the N code streams to obtain N layers of data, wherein the P code streams in the N code streams corresponding to the P layers of data are demodulated and decoded according to the MCS corresponding to each layer of data in the P layers of data; and to reconstruct the N layers of data to obtain the first data.
  • the processing unit 810 when the processing unit 810 obtains the source contribution of each layer of data in the P layer data of the first data to be sent by the first communication device, it is specifically used to receive source characteristic information from the first communication device through the interface unit 820, and the source characteristic information includes the source contribution of each layer of data in the P layer data.
  • the deviation caused to the first data when each layer of data in the P layers of data is missing includes: one or more of the mean square error, normalized mean square error, imaging error, positioning error, and inference error caused to the first data when each layer of data in the P layers of data is missing.
  • the MCS corresponding to each layer of data in the P layer data is determined according to the ranking of the source contribution of the layer of data in the P layer data, and a mapping strategy between the source contribution ranking and the MCS, including: the MCS corresponding to each layer of data in the P layer data is determined according to the channel state information between the first communication device, the ranking of the source contribution of the layer of data in the P layer data, and a mapping strategy between the channel state information and the source contribution ranking and the MCS.
  • the interface unit 820 is further used to receive data length information of each layer of data in the N layers of data from the first communication device; the processing unit 810 is further used to determine the size of N code streams corresponding to the N layers of data according to the data length information of each layer of data in the N layers of data, and the MCS corresponding to each layer of data in the P layer data in the N layers of data and the MCS corresponding to the N-P layer data; and determine M transport blocks TB for transmitting the N layers of data according to the size of the N code streams corresponding to the N layers of data and the number of transport streams O for transmitting the N layers of data, where M and O are integers greater than or equal to 1;
  • the interface unit 820 is further used to send resource configuration information to the first communication device, where the resource configuration information is used to configure M TBs; when the interface unit 820 receives N code streams from the first communication device, it is specifically used to receive N code streams from the first communication device on M TBs.
  • the processing unit 810 determines the M TBs for transmitting the N-layer data according to the sizes of the N code streams corresponding to the N-layer data and the number O of transmission streams for transmitting the N-layer data
  • the processing unit 810 is specifically configured to divide the N code streams into O groups of code streams according to the sizes of the N code streams corresponding to the N-layer data, so that the difference in data amounts between the O groups of code streams is minimized; and determine the M TBs for transmitting the N-layer data according to the data amount size of a group of code streams with the largest data amount in the O groups of code streams.
  • the processing unit 810 is further used to determine N according to the unequal error protection UEP requirement of the first data transmitted by the first communication device; the interface unit 820 is further used to send layer number indication information to the first communication device, and the layer number indication information is used to indicate N.
  • the MCS corresponding to any two layers of data in the P layer data satisfies: the code rate of the MCS corresponding to the A layer data is less than or equal to the code rate of the MCS corresponding to the B layer data; and/or, the modulation order of the MCS corresponding to the A layer data is less than or equal to the modulation order of the MCS corresponding to the B layer data; wherein the A layer data is the layer data corresponding to the larger signal source contribution of the two layers of data, and the B layer data is the layer data corresponding to the smaller signal source contribution of the two layers of data.
  • the communication device 800 When the communication device 800 is used to implement the function of the first communication device (such as terminal equipment) in the method embodiment shown in FIG7:
  • the interface unit 820 is used to receive modulation and coding indication information from the second communication device, where the modulation and coding indication information is used to indicate the MCS corresponding to each layer of data in the N layers of data to be sent by the second communication device; and to receive N code streams corresponding to the N layers of data from the second communication device; the processing unit 810 is used to demodulate and decode the N code streams respectively according to the MCS corresponding to each layer of data in the N layers of data to obtain N layers of data; and reconstruct the N layers of data to obtain first data.
  • the interface unit 820 is also used to receive resource configuration information from the second communication device, the resource configuration information is used to configure M TBs for transmitting N layers of data, where M is an integer greater than or equal to 1; when the interface unit 820 receives N code streams corresponding to the N layers of data from the second communication device, it is specifically used to: receive N code streams from the second communication device on M TBs.
  • the MCS corresponding to any two layers of data in N layers of data satisfies: the code rate of the MCS corresponding to the A layer data is less than or equal to the code rate of the MCS corresponding to the B layer data; and/or, the modulation order of the MCS corresponding to the A layer data is less than or equal to the modulation order of the MCS corresponding to the B layer data; wherein the A layer data is the layer data corresponding to the larger signal source contribution of the two layers of data, and the B layer data is the layer data corresponding to the smaller signal source contribution of the two layers of data.
  • the communication device 800 When the communication device 800 is used to implement the function of the second communication device (such as a network device) in the method embodiment shown in FIG. 7:
  • the processing unit 810 is configured to perform layered processing on the first data to obtain N layers of data, where N is an integer greater than or equal to 2; and obtain a source contribution of each layer of data in the N layers of data, wherein the source contribution of each layer of data in the N layers of data is used to indicate a deviation caused to the first data when the layer of data is missing;
  • the interface unit 820 is used to send modulation and coding indication information to the first communication device, where the modulation and coding indication information is used to indicate the MCS corresponding to each layer of data in the N layers of data, wherein the MCS corresponding to each layer of data in the N layers of data is determined according to the order of the source contribution of each layer of data in the N layers of data in the N layers of data, and the mapping strategy between the source contribution order and the MCS;
  • the processing unit 810 is further used to encode and modulate the N layers of data respectively according to the MCS corresponding to each layer of data in the N layers of data to obtain N code streams; the interface unit 820 is further used to send the N code streams to the first communication device.
  • the interface unit 820 when the interface unit 820 performs layered processing on the first data to obtain N layers of data, it is specifically used to determine a first layering mode associated with the first data type based on a first data type of the first data and an association between the data type and the layering mode; and performs layered processing on the first data according to the first layering mode to obtain N layers of data.
  • the deviation caused to the first data when each layer of data in the N layers of data is missing includes: one or more of the mean square error, normalized mean square error, imaging error, positioning error, and inference error caused to the first data when each layer of data in the N layers of data is missing.
  • the processing unit 810 is further used to determine the size of N code streams corresponding to the N layers of data according to the data length information of each layer of data in the N layers of data and the MCS corresponding to each layer of data in the N layers of data; determine M TBs for transmitting the N layers of data according to the size of the N code streams corresponding to the N layers of data and the number of transmission streams O for transmitting the N layers of data, where M and O are integers greater than or equal to 1; the interface unit 820 is further used to send resource configuration information to the first communication device, the resource configuration information is used to configure the M TBs; when the interface unit 820 sends N code streams to the first communication device, it is specifically used to send N code streams to the second communication device on the M TBs.
  • the interface unit 820 when the number O of transmission streams transmitting N layers of data is greater than or equal to 2, when the interface unit 820 sends N code streams to the first communication device on M TBs, it is specifically used to divide the N code streams into O groups of code streams according to the sizes of the N code streams, so that the difference in data amount between the O groups of code streams is minimized; and the O groups of code streams are sent to the first communication device through O transmission streams on M TBs.
  • the MCS corresponding to each layer of data in the N layers of data is determined according to the order of the source contribution of each layer of data in the N layers of data and the mapping strategy between the source contribution order and the MCS, including: determining the MCS corresponding to each layer of data in the N layers of data according to the channel state information between the first communication device, the order of the source contribution of each layer of data in the N layers of data, and the mapping strategy between the channel state information and the source contribution order and the MCS.
  • the MCS corresponding to any two layers of data in N layers of data satisfies: the code rate of the MCS corresponding to the A layer data is less than or equal to the code rate of the MCS corresponding to the B layer data; and/or, the modulation order of the MCS corresponding to the A layer data is less than or equal to the modulation order of the MCS corresponding to the B layer data; wherein the A layer data is the layer data corresponding to the larger signal source contribution of the two layers of data, and the B layer data is the layer data corresponding to the smaller signal source contribution of the two layers of data.
  • the present application also provides a communication device 900, including a processor 910 and an interface circuit 920.
  • the processor 910 and the interface circuit 920 are coupled to each other.
  • the interface circuit 920 can be a transceiver, an input-output interface, an input interface, an output interface, a communication interface, etc.
  • the communication device 900 may also include a memory 930 for storing instructions executed by the processor 910 or storing input data required by the processor 910 to execute instructions or storing data generated after the processor 910 executes instructions.
  • the memory 930 may also be integrated with the processor 910.
  • the processor 910 may be used to implement the function of the processing unit 810
  • the interface circuit 920 may be used to implement the function of the interface unit 820 .
  • the processor in the embodiments of the present application may be a central processing unit (CPU), or other general-purpose processors, digital signal processors (DSP), application specific integrated circuits (ASIC), logic circuits, field programmable gate arrays (FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application can be implemented by hardware, or by a processor executing software instructions.
  • the software instructions can be composed of corresponding software modules, and the software modules can be stored in a random access memory, a flash memory, a read-only memory, a programmable read-only memory, an erasable programmable read-only memory, an electrically erasable programmable read-only memory, a register, a hard disk, a mobile hard disk, a CD-ROM, or any other form of storage medium well known in the art.
  • An exemplary storage medium is coupled to the processor so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium can also be a component of the processor.
  • the processor and the storage medium can be located in an ASIC.
  • the ASIC can be located in a network device or a terminal device.
  • the processor and the storage medium can also be present in a network device or a terminal device as discrete components.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, a network device, a user device or other programmable device.
  • the computer program or instruction may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instruction may be transmitted from one network device, terminal, computer, server or data center to another network device, terminal, computer, server or data center by wired or wireless means.
  • the computer-readable storage medium may be any available medium that a computer can access or a data storage device such as a server or data center that integrates one or more available media.
  • the available medium may be a magnetic medium, for example, a floppy disk, a hard disk, a tape; it may also be an optical medium, for example, a digital video disc; it may also be a semiconductor medium, for example, a solid-state hard disk.
  • the computer-readable storage medium may be a volatile or nonvolatile storage medium, or may include both volatile and nonvolatile types of storage media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Communication Control (AREA)

Abstract

本申请涉及通信技术领域,公开了一种通信方法及装置,能够通过对待传输数据进行UEP分层传输,提高数据传输的灵活性以及传输性能,并支持在非MIMO的场景下的数据UEP传输。该方法包括:对第一数据进行分层处理,得到N层数据,N为大于或等于2的整数;接收来自第二通信装置的调制编码指示信息,调制编码指示信息用于指示P层数据中每层数据对应的MCS,P层数据属于N层数据,P层数据中每层数据对应的MCS,根据该层数据的信源贡献度在P层数据中的排序,以及信源贡献度排序与MCS的映射策略确定;根据P层数据中每层数据对应的MCS,对P层数据分别进行编码调制。

Description

一种通信方法及装置 技术领域
本申请涉及通信技术领域,特别涉及一种通信方法及装置。
背景技术
随着环境感知、成像、人工智能(artificial intelligence,AI)、机器学习(machine learning,ML)等行业的快速发展,激增的数据量对网络传输能力提出了新的挑战。目前为了提高数据传输的性能,一种方式是引入重传机制,在资源允许的情况下进行数据重传,从而使得更多的数据得到正确的传输;另一种方式则是引入不等错误保护(unequal error protection,UEP),也可以称为非均等保护,对相对重要的数据进行更鲁棒的信道保护,以确保在信道质量发生波动的情况下,接收端能够正确解码出这些相对重要的数据。相对于重传机制进行数据重传,UEP具有传输时延更低、资源开销更小的优势,可以更好的适配于感知、成像、AI、ML等数据的实时传输和融合。
然而,目前的UEP主要是适配于多入多出(multiple-input multiple-output,MIMO)技术,通过为不同MIMO流配置不同的调制编码方案(modulation and coding scheme,MCS),来适配不同MIMO流的传输质量需求,仅考虑到MIMO流粒度的传输质量需求,并没有考虑到单一数据的传输质量需求,灵活性不高,并且对于非MIMO的场景也并不适用。
发明内容
本申请提供一种通信方法及装置,能够通过对待传输数据进行UEP分层传输,提高数据传输的灵活性以及传输性能,并支持在非MIMO的场景下的数据UEP传输。
第一方面,本申请实施例提供一种通信方法,该方法可以由第一通信装置执行,该方法包括:对第一数据进行分层处理,得到N层数据,N为大于或等于2的整数;接收来自第二通信装置的调制编码指示信息,调制编码指示信息用于指示P层数据中每层数据对应的MCS,P层数据属于N层数据,P层数据中每层数据对应的MCS,根据该层数据的信源贡献度在P层数据中的排序,以及信源贡献度排序与MCS的映射策略确定,其中,P层数据中每层数据的信源贡献度用于指示该层数据缺失时对第一数据带来的偏差,P小于或等于N;根据P层数据中每层数据对应的MCS,对P层数据分别进行编码调制,得到P个码流;向第二通信装置发送N个码流,N个码流包括P个码流和N层数据中除P层数据之外的N-P层数据对应的N-P个码流。可选地,该方法还包括:向第二通信装置发送信源特性信息,信源特性信息包括P层数据中每层数据的信源贡献度。
上述通信方法中,第一通信装置可以是终端设备、或终端设备的部件(例如处理器、芯片、或芯片系统等)、或者与终端设备匹配使用的装置等。第二通信装置可以是网络设备、或网络设备的部件(例如处理器、芯片、或芯片系统等)、或者与网络设备匹配使用的装置等。或者第一通信装置可以是终端设备、或终端设备的部件、或者与终端设备匹配使用的装置等,第二通信装置为与第一通信装置不同的终端设备、或终端设备的部件、或者与终端设备匹配使用的装置。
采用上述方法,通过对待传输数据进行UEP分层,确定每层数据的信源贡献度,指示 每层数据的重要程度,使能第二通信装置可以基于每层数据的信源贡献度(也即重要程度)为每层数据配置MCS,支持数据内不同数据层采用不同保护程度的MCS,能够满足数据粒度的传输质量需求,提高传输的灵活性和数据整体传输的鲁棒性。并且支持在非MIMO的场景下单传输流对数据的UEP传输,能够提高UEP传输的适用范围。
在一种可能的设计中,将第一数据进行分层处理,得到N层数据,包括:根据第一数据的第一数据类型,以及数据类型与分层方式的关联关系,确定与第一数据类型关联的第一分层方式;根据第一分层方式对第一数据进行分层处理,得到N层数据。
可选地,P层数据中每层数据缺失时对第一数据带来的偏差,包括:P层数据中每层数据缺失时对第一数据带来的均方误差、归一化均方误差、成像误差、定位误差、推理误差中的一项或多项。
上述设计中,能够根据第一数据的数据类型,对第一数据进行相应的分层,并采用相应的偏差计算方式,能够灵活适配不同数据类型的数据,有利于提高传输性能。
在一种可能的设计中,P层数据中每层数据对应的MCS,根据该层数据的信源贡献度在P层数据中的排序,以及信源贡献度排序与MCS的映射策略确定,包括:P层数据中每层数据对应的MCS,根据与第二通信装置之间的信道状态信息、该层数据的信源贡献度在P层数据中的排序,以及信道状态信息和信源贡献度排序与MCS的映射策略确定。
上述设计中,在确定每层数据对应的MCS,还可以考虑第一通信装置与第二通信装置之间的信道状态信息,进一步提高传输的可靠性。
在一种可能的设计中,该方法还包括:向第二通信装置发送N层数据中每层数据的数据长度信息;接收来自第二通信装置的资源配置信息,资源配置信息用于配置传输N层数据的M个传输块TB,M为大于或等于1的整数;向第二通信装置发送N个码流,包括:在M个TB上向第二通信装置发送N个码流。
上述设计中,向第二通信装置上报N层数据中每层数据的数据长度信息,可以使得第二通信装置根据N层数据中每层数据的数据长度信息和MCS,确定N层数据对应的N个码流传输所需的资源,进而为N层数据的传输精准配置资源,能够提高资源的利用率,减少资源浪费。
在一种可能的设计中,当传输N层数据的传输流数量O大于或等于2时,在M个TB上向第二通信装置发送N个码流,包括:根据N个码流的大小,将N个码流划分为O组码流,使O组码流之间的数据量差异最小;在M个TB上通过O个传输流分别向第二通信装置发送O组码流。
上述设计中,通过将N个码流划分为O组码流,使O组码流之间的数据量差异最小,能够均衡O个传输流的负载,提高传输效率。
在一种可能的设计中,该方法还包括:接收来自第二通信装置的层数指示信息,层数指示信息用于指示N;或者,根据传输第一数据的UEP需求,确定N。
在一种可能的设计中,P层数据中任意两层数据对应的MCS满足:A分层数据对应的MCS的码率小于或等于B分层数据对应的MCS的码率;和/或,A分层数据对应的MCS的调制阶数小于或等于B分层数据对应的MCS的调制阶数;其中,A分层数据为两层数据中对应较大信源贡献度的分层数据,B分层数据为两层数据中对应较小信源贡献度的分层数据。
上述设计中,对应较大信源贡献度的分层数据相较于对应较小信源贡献度的分层数据, 可以采用更小的码率和/或调制阶数,有利于提高对应较大信源贡献度的分层数据传输的鲁棒性,保障传输性能。
第二方面,本申请实施例提供一种通信方法,该方法可以由第二通信装置执行,该方法包括:获取第一通信装置待发送的第一数据的P层数据中每层数据的信源贡献度,其中,P层数据中每层数据的信源贡献度用于指示该层数据缺失时对第一数据带来的偏差;向第一通信装置发送调制编码指示信息,调制编码指示信息用于指示P层数据中每层数据对应的MCS,其中,P层数据中每层数据对应的MCS,根据该层数据的信源贡献度在P层数据中的排序,以及信源贡献度排序与MCS的映射策略确定。
上述通信方法中,第一通信装置可以是终端设备、或终端设备的部件(例如处理器、芯片、或芯片系统等)、或者与终端设备匹配使用的装置等。第二通信装置可以是网络设备、或网络设备的部件(例如处理器、芯片、或芯片系统等)、或者与网络设备匹配使用的装置等。或者第一通信装置可以是终端设备、或终端设备的部件、或者与终端设备匹配使用的装置等,第二通信装置为与第一通信装置不同的终端设备、或终端设备的部件、或者与终端设备匹配使用的装置。
在一种可能的设计中,该方法还包括:接收来自第一通信装置的N个码流,N个码流对应第一数据的N层数据,N层数据包括P层数据,N个码流包括P层数据对应的P个码流和N层数据中除P层数据之外N-P层数据对应的N-P个码流,N为大于或等于2的整数,P小于或等于N;对N个码流进行解调解码,得到N层数据,其中N个码流中与P层数据对应的P个码流,根据P层数据中每层数据对应的MCS进行解调解码;对N层数据进行重构,得到第一数据。
在一种可能的设计中,获取第一通信装置待发送的P层数据中每层数据的信源贡献度,包括:接收来自第一通信装置的信源特性信息,信源特性信息包括P层数据中每层数据的信源贡献度。
在一种可能的设计中,P层数据中每层数据缺失时对第一数据带来的偏差,包括:P层数据中每层数据缺失时对第一数据带来的均方误差、归一化均方误差、成像误差、定位误差、推理误差中的一项或多项。
在一种可能的设计中,P层数据中每层数据对应的MCS,根据该层数据的信源贡献度在P层数据中的排序,以及信源贡献度排序与MCS的映射策略确定,包括:P层数据中每层数据对应的MCS,根据与第一通信装置之间的信道状态信息、该层数据的信源贡献度在P层数据中的排序,以及信道状态信息和信源贡献度排序与MCS的映射策略确定。
在一种可能的设计中,该方法还包括:接收来自第一通信装置的N层数据中每层数据的数据长度信息;根据N层数据中每层数据的数据长度信息,以及N层数据中P层数据中每层数据对应的MCS和N-P层数据对应的MCS,确定与N层数据对应的N个码流的大小;根据与N层数据对应的N个码流的大小、传输N层数据的传输流数量O,确定传输N层数据的M个传输块TB,M、O为大于或等于1的整数;向第一通信装置发送资源配置信息,资源配置信息用于配置M个TB;接收来自第一通信装置的N个码流,包括:在M个TB上接收来自第一通信装置的N个码流。
在一种可能的设计中,根据与N层数据对应的N个码流的大小、传输N层数据的传输流数量O,确定传输N层数据的M个TB,包括:根据与N层数据对应的N个码流的大小,将N个码流划分为O组码流,使O组码流之间的数据量差异最小;根据O组码流 中对应数据量最大的一组码流的数据量大小,确定传输N层数据的M个TB。
在一种可能的设计中,该方法还包括:根据第一通信装置传输第一数据的UEP需求,确定N;向第一通信装置发送层数指示信息,层数指示信息用于指示N。
在一种可能的设计中,P层数据中任意两层数据对应的MCS满足:A分层数据对应的MCS的码率小于或等于B分层数据对应的MCS的码率;和/或,A分层数据对应的MCS的调制阶数小于或等于B分层数据对应的MCS的调制阶数;其中,A分层数据为两层数据中对应较大信源贡献度的分层数据,B分层数据为两层数据中对应较小信源贡献度的分层数据。
第三方面,本申请实施例提供一种通信方法,该方法可以由第一通信装置执行,该方法包括:接收来自第二通信装置的调制编码指示信息,调制编码指示信息用于指示第二通信装置待发送的N层数据中每层数据对应的MCS;接收来自第二通信装置的与N层数据对应的N个码流;根据N层数据中每层数据对应的MCS,对N个码流分别进行解调和解码,得到N层数据;对N层数据进行重构,得到第一数据。
上述通信方法中,第一通信装置可以是终端设备、或终端设备的部件(例如处理器、芯片、或芯片系统等)、或者与终端设备匹配使用的装置等。第二通信装置可以是网络设备、或网络设备的部件(例如处理器、芯片、或芯片系统等)、或者与网络设备匹配使用的装置等。或者第一通信装置可以是终端设备、或终端设备的部件、或者与终端设备匹配使用的装置等,第二通信装置为与第一通信装置不同的终端设备、或终端设备的部件、或者与终端设备匹配使用的装置。
在一种可能的设计中,该方法还包括:接收来自第二通信装置的资源配置信息,资源配置信息用于配置传输N层数据的M个传输块TB,M为大于或等于1的整数;接收来自第二通信装置的与N层数据对应的N个码流,包括:在M个TB上接收来自第二通信装置的N个码流。
在一种可能的设计中,N层数据中任意两层数据对应的MCS满足:A分层数据对应的MCS的码率小于或等于B分层数据对应的MCS的码率;和/或,A分层数据对应的MCS的调制阶数小于或等于B分层数据对应的MCS的调制阶数;其中,A分层数据为两层数据中对应较大信源贡献度的分层数据,B分层数据为两层数据中对应较小信源贡献度的分层数据。
第四方面,本申请实施例提供一种通信方法,该方法可以由第二通信装置执行,该方法包括:对第一数据进行分层处理,得到N层数据,N为大于或等于2的整数;获取N层数据中每层数据的信源贡献度,其中N层数据中每层数据的信源贡献度用于指示该层数据缺失时对第一数据带来的偏差;向第一通信装置发送调制编码指示信息,调制编码指示信息用于指示N层数据中每层数据对应的MCS,其中N层数据中每层数据对应的MCS根据N层数据中每层数据的信源贡献度在N层数据中的排序,以及信源贡献度排序与MCS的映射策略确定;根据N层数据中每层数据对应的MCS,对N层数据分别进行编码调制,得到N个码流;向第一通信装置发送N个码流。
在一种可能的设计中,将第一数据进行分层处理,得到N层数据,包括:根据第一数据的第一数据类型,以及数据类型与分层方式的关联关系,确定与第一数据类型关联的第一分层方式;根据第一分层方式对第一数据进行分层处理,得到N层数据。
在一种可能的设计中,N层数据中每层数据缺失时对第一数据带来的偏差,包括:N 层数据中每层数据缺失时对第一数据带来的均方误差、归一化均方误差、成像误差、定位误差、推理误差中的一项或多项。
在一种可能的设计中,该方法还包括:根据N层数据中每层数据的数据长度信息,以及N层数据中每层数据对应的MCS,确定与N层数据对应的N个码流的大小;根据与N层数据对应的N个码流的大小、传输N层数据的传输流数量O,确定传输N层数据的M个TB,M、O为大于或等于1的整数;向第一通信装置发送资源配置信息,资源配置信息用于配置M个TB;向第一通信装置发送N个码流,包括:在M个TB上向第二通信装置发送N个码流。
在一种可能的设计中,当传输N层数据的传输流数量O大于或等于2时,在M个TB上向第一通信装置发送N个码流,包括:根据N个码流的大小,将N个码流划分为O组码流,使O组码流之间的数据量差异最小;在M个TB上通过O个传输流分别向第一通信装置发送O组码流。
在一种可能的设计中,根据N层数据中每层数据的信源贡献度在N层数据中的排序,以及信源贡献度排序与MCS的映射策略,确定N层数据中每层数据对应的MCS,包括:根据与第一通信装置之间的信道状态信息、N层数据中每层数据的信源贡献度在N层数据中的排序,以及信道状态信息和信源贡献度排序与MCS的映射策略,确定N层数据中每层数据对应的MCS。
在一种可能的设计中,N层数据中任意两层数据对应的MCS满足:A分层数据对应的MCS的码率小于或等于B分层数据对应的MCS的码率;和/或,A分层数据对应的MCS的调制阶数小于或等于B分层数据对应的MCS的调制阶数;其中,A分层数据为两层数据中对应较大信源贡献度的分层数据,B分层数据为两层数据中对应较小信源贡献度的分层数据。
第五方面,本申请实施例提供一种通信装置,该装置具有实现上述第一方面或第三方面中方法的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块,比如包括接口单元和处理单元。
在一个可能的设计中,该装置可以是芯片或者集成电路。
在一个可能的设计中,该装置包括存储器和处理器,存储器用于存储所述处理器执行的指令,当指令被处理器执行时,所述装置可以执行上述第一方面或第三方面的方法。
在一个可能的设计中,该装置可以为终端设备整机。
第六方面,本申请实施例提供一种通信装置,该装置具有实现上述第二方面或第四方面中方法的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块,比如包括接口单元和处理单元。
在一个可能的设计中,该装置可以是芯片或者集成电路。
在一个可能的设计中,该装置包括存储器和处理器,存储器用于存储所述处理器执行的指令,当指令被处理器执行时,所述装置可以执行上述第二方面或第四方面的方法。
在一个可能的设计中,该装置可以为网络设备整机或终端设备整机。
第七方面,本申请实施例提供一种通信装置,该通信装置包括接口电路和处理器,处理器和接口电路之间相互耦合。处理器通过逻辑电路或执行指令用于实现上述第一方面或第三方面的方法。接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至处理器或将来自处理器的信号发送给该通信装置之外的其它通信装置。可以理解的是,接 口电路可以为收发器或收发机或收发信机或输入输出接口。
可选的,通信装置还可以包括存储器,用于存储处理器执行的指令或存储处理器运行指令所需要的输入数据或存储处理器运行指令后产生的数据。存储器可以是物理上独立的单元,也可以与处理器耦合,或者处理器包括该存储器。
第八方面,本申请实施例提供一种通信装置,该通信装置包括接口电路和处理器,处理器和接口电路之间相互耦合。处理器通过逻辑电路或执行指令用于实现上述第二方面或第四方面的方法。接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至处理器或将来自处理器的信号发送给该通信装置之外的其它通信装置。可以理解的是,接口电路可以为收发器或收发机或收发信机或输入输出接口。
可选的,通信装置还可以包括存储器,用于存储处理器执行的指令或存储处理器运行指令所需要的输入数据或存储处理器运行指令后产生的数据。存储器可以是物理上独立的单元,也可以与处理器耦合,或者处理器包括该存储器。
第九方面,本申请实施例提供一种通信系统,该通信系统包括第一通信装置和第二通信装置,第一通信装置可以实现上述第一方面的方法,第二通信装置可以实现上述第二方面的方法;或者第一通信装置可以实现上述第三方面的方法,第二通信装置可以实现上述第四方面的方法。
第十方面,本申请实施例提供一种计算机可读存储介质,在存储介质中存储有计算机程序或指令,当计算机程序或指令被处理器执行时,可以实现上述第一方面或第二方面或第三方面或第四方面的方法。
第十一方面,本申请实施例还提供一种计算机程序产品,包括计算机程序或指令,当计算机程序或指令被处理器执行时,可以实现上述第一方面或第二方面或第三方面或第四方面的方法。
第十二方面,本申请实施例还提供一种芯片系统,该芯片系统包括:处理器和存储器,处理器与存储器耦合,存储器用于存储程序或指令,当程序或指令被处理器执行时,可以实现上述第一方面或第二方面或第三方面或第四方面的方法。
上述第二方面至第十二方面所能达到的技术效果请参照上述第一方面所能达到的技术效果,这里不再重复赘述。
附图说明
图1为本申请实施例提供的通信系统的架构示意图;
图2为本申请实施例提供的通信方法示意图之一;
图3为本申请实施例提供的分层方式示意图;
图4为本申请实施例提供的信源特性信息示意图;
图5为本申请实施例提供的码块划分示意图;
图6为本申请实施例提供的传输块组合示意图;
图7为本申请实施例提供的通信方法示意图之二;
图8为本申请实施例提供的通信装置结构示意图之一;
图9为本申请实施例提供的通信装置结构示意图之二。
具体实施方式
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(univeRMal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)移动通信系统或新无线(new radio,NR)等。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统。通信系统还可以是公共陆地移动网(public land mobile network,PLMN)网络、设备到设备(device-to-device,D2D)网络、WiFi网络、机器到机器(machine to machine,M2M)网络、IoT网络或者其他网络。
本申请实施例所应用的通信系统的架构可以如图1所示,该通信系统包括无线接入网100和核心网200,可选的,通信系统还可以包括互联网300。其中,无线接入网100可以包括至少一个网络设备,如图1中的110a和110b,还可以包括至少一个终端设备,如图1中的120a-120j。其中,110a是基站,110b是微站,120a、120e、120f和120j是手机,120b是汽车,120c是加油机,120d是布置在室内或室外的家庭接入节点(home access point,HAP),120g是笔记本电脑,120h是打印机,120i是无人机。其中,同一个终端设备或网络设备,在不同应用场景中可以提供不同的功能。比如,图1中的手机有120a、120e、120f和120j,手机120a可以接入基站110a,连接汽车120b,与手机120e直连通信以及接入到HAP,手机120b可以接入HAP以及与手机120a直连通信,手机120f可以接入为微站110b,连接笔记本电脑120g,连接打印机120h,手机120j可以控制无人机120i。
终端设备与网络设备相连,网络设备与核心网连接。核心网设备与网络设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与网络设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的网络设备的功能。终端设备和终端设备之间以及网络设备和网络设备之间可以通过有线或无线的方式相互连接。图1只是示意图,该通信系统中还可以包括其它设备,例如还可以包括无线中继设备和无线回传设备,在图1中未画出。
网络设备,也可以称为无线接入网设备,可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、第五代(5th generation,5G)移动通信系统中的下一代基站(next generation NodeB,gNB)、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。这里的CU完成基站的无线资源控制协议和分组数据汇聚层协议(packet data convergence protocol,PDCP)的功能,还可以完成业务数据适配协议(service data adaptation protocol,SDAP)的功能;DU完成基站的无线链路控制层和介质访问控制(medium access control,MAC)层的功能,还可以完成部分物理层或全部物理层的功能,有关上述各个协议层的具体描述,可以参考第三代合作伙伴计划(3rd generation partnership project,3GPP)的相关技术规范。网络设备可以是宏基站(如图1中的110a),也可以是微基站或室内站(如图1中的110b),还可以是中继节点或施主节点等。本申请的实施例对网络设备所采用的具体 技术和具体设备形态不做限定。
终端设备也可以称为终端、用户设备(user equipment,UE)、移动台、移动终端等。终端设备可以广泛应用于各种场景,例如,D2D、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端设备可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
网络设备和终端设备可以是固定位置的,也可以是可移动的。网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。
网络设备和终端设备的角色可以是相对的,例如,图1中的直升机或无人机120i可以被配置成移动网络设备,对于那些通过120i接入到无线接入网100的终端设备120j来说,终端设备120i是网络设备;但对于网络设备110a来说,120i是终端设备,即110a与120i之间是通过无线空口协议进行通信的。当然,110a与120i之间也可以是通过网络设备与网络设备之间的接口协议进行通信的,此时,相对于110a来说,120i也是网络设备。因此,网络设备和终端设备都可以统一称为通信装置,图1中的110a和110b可以称为具有网络设备功能的通信装置,图1中的120a-120j可以称为具有终端设备功能的通信装置。
网络设备和终端设备之间、网络设备和网络设备之间、终端设备和终端设备之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信;可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对无线通信所使用的频谱资源不做限定。
在本申请的实施例中,网络设备的功能也可以由网络设备中的模块(如芯片)来执行,也可以由包含有网络设备功能的控制子系统来执行。这里的包含有网络设备功能的控制子系统可以是智能电网、工业控制、智能交通、智慧城市等上述应用场景中的控制中心。终端设备的功能也可以由终端设备中的模块(如芯片或调制解调器)来执行,也可以由包含有终端设备功能的装置来执行。
当前,在物理层进行环境感知、成像、AI/ML计算等已经成为通信系统的潜在技术和新应用场景。未来的移动终端、传感器和基站等设备具备通过电磁信号进行环境感知和成像的能力,从而基于AI/ML等对无线传输环境进行离线或实时的建模与分析,最终实现通信系统性能的显著提升。由于单个设备的计算能力、电池容量以及能够感知到的环境范围较为有限,需要将感知、成像、AI/ML计算的结果回传到远端的中心节点(可能是基站、服务器、云计算中心或算力较强的终端设备等)进行信息的融合。为了应对感知、成像、AI/ML等大量数据的传输需求,可以采用UEP方案,通过为不同MIMO流配置不同的MCS,来适配不同MIMO流的传输质量需求。例如:类型1的感知数据和类型2的感知数据分别通过MIMO流1和MIMO流2传输,可以根据类型1的感知数据和类型2的感知数据的传输质量需求,来为MIMO流1和MIMO流2配置MCS,来适配不同MIMO流的传输质量需求。然而,该方案仅考虑到流粒度的传输质量需求,并没有考虑到数据的传输质量 需求,灵活性不高,并且对于非MIMO的场景也并不适用。
有鉴于此,本申请提供一种通信方法及装置,能够通过对待传输数据进行UEP分层传输,提高数据传输的灵活性以及传输性能,并支持在非MIMO的场景下的数据UEP传输。下面将结合附图,对本申请实施例进行详细描述。
另外,需要理解的是,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。例如,第一通信装置和第二通信装置,并不是表示这两个通信装置对应的优先级或者重要程度等的不同。
本申请实施例中,对于名词的数目,除非特别说明,表示“单数名词或复数名词”,即"一个或多个”。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。例如,A/B,表示:A或B。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。
图2为本申请实施例提供的一种通信方法示意图。图2中以网络设备和终端设备作为执行主体为例来示意该方法,但本申请并不限制该方法的执行主体。例如,图2中的网络设备也可以是第二通信装置,该第二通信装置可以是网络设备、或网络设备的部件(例如处理器、芯片、或芯片系统等),或者和网络设备匹配使用的装置;图2中的终端设备也可以是第一通信装置,该第一通信装置可以是终端设备、或终端设备的部件(例如处理器、芯片、或芯片系统等),或者和终端设备匹配使用的装置。该方法包括:
S201:终端设备对第一数据进行分层处理,得到N层数据,N为大于或等于2的整数。
在一种可能的实施中,终端设备可以根据所需的UEP层数N,按照数据量采用平均划分、随机划分等方式对第一数据进行分层处理,得到N层数据,也即得到N个分层数据。可选地,为了进一步降低数据传输量,提高传输性能,终端设备还可以对得到的N层数据分别进行压缩处理。
其中,对于所需的UEP层数N可以由协议预定义或者网络设备预先配置给终端设备,还可以由终端设备根据终端设备传输第一数据的UEP需求来确定,或者由网络设备根据终端设备传输第一数据的UEP需求来确定,并通过层数指示信息指示给终端设备,本申请对此不作限定。
以所需的UEP层数N由终端设备根据终端设备传输第一数据的UEP需求来确定为例,参照表1所示,在终端设备中可以预先配置有如表1所示的数据量(X)与UEP需求(也即UEP层数)的对应关系,当第一数据的数据量大于等于数据量阈值1、且小于数据量阈值2时,对应的UEP层数为2;当第一数据的数据量大于等于数据量阈值2、且小于数据量阈值3时,对应的UEP层数为3;当第一数据的数据量大于等于数据量阈值3、且小于数据量阈值4时,对应的UEP层数为4;…;当第一数据的数据量大于等于数据量阈值Z-1、且小于数据量阈值Z时,对应的UEP层数为Z。其中Z为最大可取的UEP层数,即N可取的最大值。对于第一数据的数据量小于数据量阈值1的情况,可以回退到不分层模式,即终端设备不对第一数据进行UEP分层传输。
表1
数据量(X) UEP需求(UEP层数)
数据量阈值1≤X<数据量阈值2 2
数据量阈值2≤X<数据量阈值3 3
数据量阈值3≤X<数据量阈值4 4
数据量阈值Z-1≤X<数据量阈值Z Z
在另一种可能的实施中,在终端设备中还可以保存数据类型与分层方式的关联关系,终端设备在对第一数据进行分层处理时,还可以根据第一数据的第一数据类型,确定与第一数据类型关联的第一分层方式,并采用与第一数据类型关联的第一分层方式,对第一数据进行分层处理,得到N层数据。
其中,对于终端设备待传输的第一数据的数据类型,网络设备可以通过向终端设备发送的无线资源控制(radio resource control,RRC)等信令指示或配置给终端设备。其中在RRC等信令中可以设置有物理层数据类型(PHYData-DataType)字段的信息元素(information element,IE),用来指示不同的数据类型。PHYData-DataType字段可以指示的数据类型包括但不限于以下类型:
(1)感知信号(SensingSignal):原始的感知信号,可以是实数或者复数信号的形式;
(2)成像信号(ImagingSignal):原始感知信号经过成像处理后得到的数据;
(3)3D密集点云信号(DensePointCloudSignal):完整的点云信号,每个空间位置均有取值;
(4)3D稀疏点云信号(SparsePointCloudSignal):在密集点云信号的基础上经过稀疏化操作,得到的部分强度较高的信号点;
(5)AI/ML信号(AIMLSignal):AI/ML在进行推理或训练时发送的信号。
在本申请实施例中可以采用的分层方式,除按照数据量采用平均划分、随机划分等方式分层外,还可以采用变换系数分层(也可以称为变换系数分组)、量化系数比特分层(也可以称为量化系数比特分组)、质量分层等方式。参照图3所示的分层方式示意图,采用变换系数分层时,可以先对数据进行离散余弦变换(discrete cosine transform,DCT)、离散小波变换(discrete wavelet transformation,DWT)、离散傅立叶变换(discrete fourier transform,DFT)等变换中一种或多种,并对变换后的数据按照低频系数-高频系数等方式进行分层(图3中以分为4层为例);采用量化系数比特分层时,可以在量化后的系数的基础上进行分层,如将多列量化后的系数按照比特高低位划分为设定数量的分层(图3中以分为4层为例);采用质量分层时,首先可以按照一个较低的质量1对原始数据(如第一数据)进行压缩和重构,得到重构数据1,然后将原始数据与重构数据1求残差后得到残差数据1,并按照质量2对残差数据1进行压缩和重构,得到重构残差数据1,这里质量2优于质量1(如通过压缩参数中的量化系数大小进行调整,质量2的量化系数小于质量1的量化系数),接着将残差数据1与重构残差数据1求残差后得到残差数据2,并按照质量3对残差数据2进行压缩和重构,得到重构残差数据2,这里质量3优于质量2,最后将残差数据2与重构残差数据2求残差后得到残差数据3,并按照质量4对残差数据3进行压缩,得到重构残差数据3,这里质量4优于质量3,通过前述操作可以得到对应于重构数据1、重构残差数据1、重构残差数据2和重构残差数据3的共计4层数据,4层数 据也分别对应于原始数据和3个残差数据(残差数据1-残差数据3)。
示例的:感知信号关联的分层方式可以为变换系数分层或量化系数比特分层等。在第一数据的数据类型为感知信号时,终端设备可以对第一数据(即感知信号)进行傅里叶、空域变换等预处理,然后进行离散余弦、小波等变换,并对变换后的系数进行量化,最后在量化系数的基础上进行分层处理,比如:按照高低频系数进行分层处理实现对第一数据的变换系数分层,或者按照比特高低位进行分层处理实现对第一数据的量化系数比特分层等。
成像信号关联的分层方式可以为变换系数分层或量化系数比特分层等。在第一数据的数据类型为成像信号时,终端设备可以对第一数据(即成像信号)进行离散余弦、小波等变换,并对变换后的系数进行量化,最后在量化系数的基础上进行分层操作,例如:按照高低频系数进行分层处理实现对第一数据的变换系数分层,或者按照比特高低位进行分层处理实现对第一数据的量化系数比特分层等。
3D密集点云信号关联的分层方式可以为质量分层等。在第一数据的数据类型为3D密集点云信号时,三个维度分别为长、宽、高,终端设备可以针对第一数据(即3D密集点云信号)每个高度的二维数据(对应长和宽)分别进行压缩,在压缩的过程中完成分层操作(如质量分层),并可以对相邻高度的二维数据引入预测编码,例如进行差分编码操作,从而一定程度降低数据冗余。
3D稀疏点云信号关联的分层方式可以量化系数比特分层或质量分层等。在第一数据的数据类型为3D稀疏点云信号时,终端设备可以采用四叉树、八叉树等变换结合量化、熵编码的方式进行压缩,并在量化时引入分层操作,如量化系数比特分层或质量分层等。
AI/ML信号关联的分层方式可以量化系数比特分层或质量分层等。在第一数据的数据类型为AI/ML信号时,终端设备可以采用预定义码本结合量化、熵编码等方式进行压缩,并在量化时引入分层操作,如量化系数比特分层或质量分层等。
需要理解的是,终端设备除了根据数据类型与分层方式的关联关系,确定对第一数据进行分层处理应用的第一分层方式外,还可以根据网络设备的指示确定对第一数据进行分层处理时应用的第一分层方式。例如:网络设备可以通过向终端设备发送的RRC等信令指示对第一数据进行分层处理时应用的第一分层方式。其中在RRC等信令中可以设置分层方式(LayerMode)字段来指示对第一数据进行分层处理时应用的第一分层方式。另外,可以理解的是,当UEP层数N由网络设备配置或指示时,在网络设备向终端设备发送的RRC等信令中还可以设置层数(LayerNum)字段用于指示UEP层数N。
S202:网络设备向终端设备发送调制编码指示信息,调制编码指示信息用于指示P层数据中每层数据对应的MCS,相应地,终端设备接收调制编码指示信息。P层数据中每层数据对应的MCS,根据该层数据的信源贡献度在P层数据中的排序,以及信源贡献度排序与MCS的映射策略确定。
其中,P层数据属于N层数据,P层数据中每层数据的信源贡献度用于指示该层数据缺失时对第一数据带来的偏差,P小于或等于N。
在本申请实施例中,对于P层数据中每层数据的信源贡献度,可以由终端设备确定第一数据的N层数据中每层数据的信源贡献度后,通过信源特性信息等将其中的P层数据的信源贡献度发送给网络设备。其中,对于N层数据中每层数据的信源贡献度,终端设备可以根据该层数据缺失时,对第一数据带来的偏差确定。例如:对于N层数据中每层数据的 信源贡献度,终端设备可以将缺失该层数据的第一数据相对于完整的第一数据的均方误差(mean square error,MSE)、或归一化均方误差(normalized mean square error,NMSE)等偏差,作为该层数据的信源贡献度。
作为一种示例,第一数据记为Y,缺失第n层数据得到的重构数据记为Y’ n,则可以得到第n层数据对应的均方误差为
Figure PCTCN2022128662-appb-000001
其中L表示第一数据的长度(如比特数、数据中的系数个数等)。
在一些实施中,终端设备还可以根据第一数据的数据类型,采用相对应的信源贡献度确定方式,以更真实的反映第一数据的每层数据的重要程度。例如:当第一数据的数据类型为感知信号时,每层数据的信源贡献度可以根据该层数据缺失时对第一数据带来的均方误差、或归一化均方误差等偏差确定;当第一数据的数据类型为成像信号时,不仅可以根据该层数据缺失时对第一数据带来的均方误差、或归一化均方误差等偏差确定,还可以根据该层数据缺失时对第一数据带来的成像误差确定;当第一数据的数据类型为3D密集点云信号时,不仅可以根据该层数据缺失时对第一数据带来的均方误差、或归一化均方误差等偏差确定,还可以根据该层数据缺失时对第一数据带来的倒角距离误差等几何特征偏差确定;当第一数据的数据类型为3D稀疏点云信号时,不仅可以根据该层数据缺失时对第一数据带来的均方误差、或归一化均方误差等偏差确定,还可以根据该层数据缺失时对第一数据带来的定位误差确定;当第一数据的数据类型为AI/ML信号时,不仅可以根据该层数据缺失时对第一数据带来的均方误差、或归一化均方误差等偏差确定,还可以根据该层数据缺失时对第一数据带来的推理误差(AI/ML信号对应的AI/ML模型的推理误差)确定。
在一些实现方式中,对于信源贡献度确定方式还可以由网络设备通过向终端设备发送RRC等信令进行指示或配置,例如:在RRC等信令中可以设置图层重要性(LayerImportance)字段来指示信源贡献度确定方式,如采用均方误差等。
确定第一数据N层数据中每层数据的信源贡献度后,终端设备可以通过信源特性信息将其中P层数据中每层数据的信源贡献度发送给网络设备。
在一种可能的实施中,P可以等于N,也即在终端设备向网络设备发送的信源特性信息中可以包括N层数据中每层数据的信源贡献度。
在另一种可能的实施中,P还可以小于N,也即在终端设备向网络设备发送的信源特性信息中可以包括N层数据中部分层数据的信源贡献度。作为一种示例,在终端设备中可以保存有协议预定义或网络设备预配置的信源贡献度阈值,对于N层数据,终端设备仅通过信源特性信息向网络设备发送N层数据中对应信源贡献度大于信源贡献度阈值的P层数据中每层数据的信源贡献度。或者,终端设备中可以保存有协议预定义或网络设备预配置上报比例S,对于N层数据,终端设备可以仅通过信源特性信息向网络设备发送N层数据中信源贡献度较大的P(P=N*S)层数据中每层数据的信源贡献度。
需要理解的是,终端设备向网络设备发送的P层数据中每层数据的信源贡献度,可以是P层数据中每层数据未经量化后的原始信源贡献度,还可以是P层数据中每层数据经量化后的信源贡献度(如量化到1-10的区间后的信源贡献度、或经过四舍五入计算后的信源贡献度等),还可以是P层数据中每层数据的信源贡献度在P层数据中的排序(例如根据P层数据的信源贡献度从大到小的顺序,确定的P层数据中每层数据的信源贡献度在P层数据中的排序等)。
另外,为了便于网络设备后续从来自终端设备的码流中准确恢复出N层数据,在终端 设备向网络设备发送的信源特性信息中除包括N层数据中P层数据中每层数据的信源贡献度(C)外,还可以包括N层数据中每层数据的数据长度信息(L)。
示例的,参照图4所示的信源特性信息示意图,信源特性信息中可以包括N+P+1个参数,其中参数比特位图(bitmap)包括N比特(bits)用于对N层数据中发送了信源贡献度的P层数据进行指示,以bitmap为1011…1表示该信源特性信息中包括N层数据中第1层数据(即第1个分层数据)、第3层数据(即第3个分层数据)、第4层数据(第4个分层数据)、…第N层数据(即第N个分层数据)共P层数据的信源贡献度。N个参数L 1、L 2…、L N表示第1、2、…、N层数据的数据长度信息(如字节数或特定长度码块数(如512bit码块数))、P个参数C 1、C 3、…C N表示第1、3…、N层数据的信源贡献度。对于未上报信源贡献度的分层,该层数据相关的信源贡献度不发送,例如对于第2层数据仅上报数据长度信息(L 2),不上报信源贡献度(C 2)。
可以理解的是,网络设备不仅可以通过终端设备上报的信源特性信息,获取终端设备待发送的第一数据的P层数据中每层数据的信源贡献度。还可以采用其他方式,获取终端设备待发送的第一数据的P层数据中每层数据的信源贡献度。
作为一种示例:网络设备通过下行控制信息(downlink control information,DCI)等在一段时间内调度终端设备发送的多个数据通常类型是相同或相似的,对于一段时间内(如一个上报周期内)终端设备向网络设备发送的多个数据,终端设备可以将多个数据均分成相同的层数,并仅在该时间段内第一个数据向网络设备发送前,向网络设备发送该数据的P层数据中每层数据的信源贡献度,该时间段内的后续数据(如第一数据)网络设备可以沿用之前的P层数据中每层数据的信源贡献度的配置。
或者,如果存在与待发送第一数据的终端设备同小区的其它终端设备,网络设备还可以沿用其它终端设备上报的P层数据中每层数据的信源贡献度的配置,作为该终端设备P层数据中每层数据的信源贡献度。
对于P层数据中每层数据对应的MCS的确定,在一种可能的实现中,在网络设备中可以维护有一张或多张信源贡献度排序与MCS的映射表,终端设备和网络设备可以协商所使用的信源贡献度排序与MCS的映射表,或者由网络设备确定所使用的信源贡献度排序与MCS的映射表。网络设备获取终端设备待发送的第一数据的P层数据中每层数据的信源贡献度后,即可根据P层数据中每层数据的信源贡献度在P层数据中的排序(如从大到小的排序),确定P层数据中各层数据对应的MCS。
示例的:所使用的信源贡献度排序与MCS的映射表如表2所示,每列的信源贡献度排序与该列的MCS所相对应(或映射)。例如:排序1与MCS 1相对应、排序2与MCS 2相对应、…、排序Z与MCS Z相对应。其中Z的值可以根据网络设备和终端设备支持的最大可取层数确定。如果P为4,4层数据中的信源贡献度排序为1的分层数据对应MCS 1,信源贡献度排序为2的分层数据对应MCS 2,信源贡献度排序为3的分层数据对应MCS 3,信源贡献度排序为4的分层数据对应MCS 4
表2
1 2 3 Z
MCS 1 MCS 2 MCS 3 MCS Z
在另一种可能的实现中,在网络设备中还可以维护有一张或多张信道状态信息和信源 贡献度排序与MCS的映射表,终端设备和网络设备可以协商所使用的信道状态信息和信源贡献度排序与MCS的映射表,或者由网络设备确定所使用的信道状态信息和信源贡献度排序与MCS的映射表。网络设备获取终端设备待发送的第一数据的P层数据中每层数据的信源贡献度后,即可根据网络设备与终端设备之间的信道状态信息、P层数据中每层数据的信源贡献度在P层数据中的排序,确定P层数据中各层数据对应的MCS。其中,信道状态信息可以为信噪比(signal-to-noise-ratio,SNR)、参考信号接收质量(reference signal receiving quality,RSRQ)、误码率(bit error ratio,BER)等中的一项或多项。
以信道状态信息为SNR为例,所使用的信道状态信息和信源贡献度排序与MCS的映射表如表3所示,根据信源贡献度排序所在的列、以及网络设备与终端设备之间的SNR所属SNR区间可以唯一确定出一个MCS。其中,SNR区间 1、SNR区间 2、SNR区间 3、…、SNR区间 D不重叠。比如:网络设备与终端设备之间的SNR所属SNR区间 1、某一层数据的信源贡献度在P层数据中的排序为1,则可以确定该层数据对应的MCS为MCS 1,1;网络设备与终端设备之间的SNR所属SNR区间 1、某一层数据的信源贡献度在P层数据中的排序为2,则可以确定该层数据对应的MCS为MCS 1,2等等。
表3
Figure PCTCN2022128662-appb-000002
以D=4、Z=8为例,与信道状态信息和信源贡献度排序映射的MCS具体可以如表4所示。其中,正交相移键控(quadrature phase shift keying,QPSK)表示调制阶数为4(即调制比特数为log2(4)=2)的调制方案、16正交振幅调制(quadrature amplitude modulation,QAM)表示调制阶数为16(即调制比特数为log2(16)=4)的调制方案、32QAM表示调制阶数为32(即调制比特数为log2(32)=5)的调制方案。参照表4所示,如果网络设备与终端设备之间的SNR所属SNR区间 1、分层数据的信源贡献度在P层数据中的排序为1,则该层数据对应的MCS(即MCS 1,1)为码率(Rate)为1/2、调制阶数为4的调制编码方案;如果网络设备与终端设备之间的SNR所属SNR区间 1、分层数据的信源贡献度在P层数据中的排序为2,则该层数据对应的MCS(即MCS 1,2)为Rate为17/32、调制阶数为4的调制编码方案;…;如果网络设备与终端设备之间的SNR所属SNR区间 4、分层数据的信源贡献度在P层数据中的排序为8,则该层数据对应的MCS(即MCS 4,8)为Rate为25/32、调制阶数为32的调制编码方案。
表4
Figure PCTCN2022128662-appb-000003
在另一种可能的实现中,网络设备还可以根据信道状态信息与MCS的映射关系,根据与网络设备之间的信道状态信息,得到对应的MCS=(Rate,Mod),其中Mod表示调制比特数(即每个调制符号能所能代表的比特数),例如QPSK,8QAM,16QAM,32QAM等码型的每个码元调制符号能代表的比特数分别为2,3,4,5,这些码型对应的调制阶数分别是4,8,16,32;Rate表示预设码率。
对于各层数据可以均采用相同调制Mod,也即采用相同的调制阶数,只从码率(Rate)上进行区分:
Figure PCTCN2022128662-appb-000004
其中P层数据中第n层数据的码率为Rate n
Figure PCTCN2022128662-appb-000005
为P层数据中第n层数据的信源贡献度的α次方,L n为P层数据中第n层数据的数据长度,α为调节因子,α>0,Rate表示预设码率。即对信源贡献度越高的数据层,分配更低的码率,进行重点保护,其中α取值越小时,各层的码率差异越小(保护程度越接近);α可以先提前确定一组备选取值集合A={α 12,…,α x},网络设备可以在集合A中选择一个α的取值,还可以通过RRC信令将选择α的取值配置给终端设备,以便终端设备计算各层数据的码率。
需要理解的是,在本申请实施例中,确定出的P层数据中任意两层数据对应的MCS满足:A分层数据对应的MCS的码率小于或等于B分层数据对应的MCS的码率;和/或,A分层数据对应的MCS的调制阶数小于或等于B分层数据对应的MCS的调制阶数;其中,A分层数据为两层数据中对应较大信源贡献度的分层数据,B分层数据为两层数据中对应较小信源贡献度的分层数据。也就是说,上述信源贡献度排序与MCS的映射表、信道状态信息和信源贡献度排序与MCS的映射表等,满足同一信道状态(或不考虑信道状态)的情况下,随着分层数据的信源贡献度按照从大到小的顺序排序的增加,对应的MCS的调制阶数和/或码率呈现增大趋势,以使得对应较大信源贡献度的分层数据相较于对应较小 信源贡献度的分层数据可以采用更小的码率和/或调制阶数,来获取更强的传输鲁棒性,保障传输性能。
S203:终端设备根据P层数据中每层数据对应的MCS,对P层数据分别进行编码调制,得到P个码流。
S204:终端设备向网络设备发送N个码流,相应地,网络设备接收N个码流,N个码流包括P个码流和N层数据中除P层数据之外的N-P层数据对应的N-P个码流。
网络设备确定P层数据中每层数据对应的MCS后,可以向终端设备发送用于指示P层数据中每层数据对应的MCS的调制编码指示信息,指示终端设备P层数据中每层数据所使用的MCS。终端设备接收到P层数据中每层数据对应的MCS后,即可根据P层数据中每层数据对应的MCS(如码率、调制阶数),对P层数据分别进行编码调制,得到P个码流。
对于N层数据中除P层数据之外的N-P层数据,可以通过协议预定义或网络设备指示等方式,预先在网络设备和终端设备配置或约定N-P层数据所使用的MCS,例如可以预先配置一种供N-P层数据使用的MCS;或者预先约定N-P层数据使用P层数据中的第1层数据对应的MCS、或P层数据中的第P层数据对应的MCS等。终端设备还可以根据N-P层数据使用的MCS,对N-P层数据分别进行编码调制得到N-P个码流。
得到N层数据中P层数据对应的P个码流和N层数据中除P层数据之外的N-P层数据对应的N-P个码流,共N个码流后,终端设备可以向网络设备发送N个码流,如在上行共享信道向网络设备发送N个码流,相应地,网络设备接收来自终端设备的N个码流。
S205:网络设备对N个码流进行解调解码,得到N层数据。
S206:网络设备对N层数据进行重构,得到第一数据。
网络设备接收到N个码流后,对于N个码流中与P层数据对应的P个码流,可以根据P层数据中每层数据对应的MCS进行解调解码,得到P层数据;对于除P层数据之外的N-P层数据对应的N-P个码流可以根据N-P层数据使用的MCS,对N-P个码流分别进行解调解码,得到N-P层数据。得到P层数据和N-P层数据之后,网络设备即可对N层数据进行重构,得到第一数据。如根据N层数据中每层数据的位置(或在N层数据中的层数)对N层数据进行拼接,得到第一数据。
需要理解的是,如果终端设备将N个码流拼接在一起发送,网络设备还可以根据N层数据每层数据对应的数据长度信息和对应的MCS,确定每层数据对应的码流大小,进而确定各个码流的切换点,从而对N个码流进行解调解码。
在上述方法中,网络设备可以按照可选的最低的码流和最小的调制阶数(或最小调制比特数)为终端设备配置传输资源(如传输块(transport block,TB)),以便终端设备有足够的资源发送N个码流。在一些实施中,为了提高资源利用率,网络设备还可以根据N层数据中每层数据的数据长度信息,以及N层数据中P层数据中每层数据对应的MCS和N-P层数据对应的MCS,确定与N层数据对应的N个码流的大小;并根据N个码流的大小、传输N层数据的传输流数量O,确定传输N层数据(也即N层数据对应的N个码流的)的M个TB,M、O为大于或等于1的整数。
具体的,得到各层的MCS n=(Rate n,Mod n)之后,网络设备可以估算出每层的传输资源数(即符号数):其中n表示N层数据中的第n层数据,MCS n、Rate n、Mod n表示N层数 据中的第n层数据对应的MCS,以及码率和调制比特数。
Figure PCTCN2022128662-appb-000006
ΔL n表示循环冗余校验码(cyclic redundancy check,CRC)校验、补零等导致的比特长度增加值,在给定CRC长度L crc和码块(code block,CB)比特大小K cb,n(每层可能不同)的情况下,可算出
Figure PCTCN2022128662-appb-000007
Figure PCTCN2022128662-appb-000008
表示向上取整运算。其中Mod n可以根据调制阶数确定,比如QPSK,8QAM,16QAM,32QAM等调制阶数分别是4,8,16,32,对应的每个调制符号能代表的比特数分别为2,3,4,5。N层数据每层数据的CB大小可以通过协议预定义或网络设备配置。
总传输资源数(也即N个码流的大小)为
Figure PCTCN2022128662-appb-000009
网络设备可以根据当前可用的资源数Res avi,也即支持的最大TB(最大TB可以根据支持的连续时隙(slot)数、每个slot的RB数、每个RB的符号数和传输层(layer)数的乘积确定),估算出所需的TB符号长度L tb和数量M。
Figure PCTCN2022128662-appb-000010
确定出计出所需的M个后,网络设备即通过资源配置信息指示给终端设备。如将M个TB的数量、符号长度指示给终端设备。
以N=4为例,如图5所示的CB划分示意图,终端设备可以根据每层CB的大小将每层数据划分为一个或多个CB,并将未填充满的CB进行补(padding)0操作,对于划分后的CB根据每层对应MCS进行编码调制,得到每层对应的码流,然后根据配置的M(以2个为例)TB,将各层编码调制后的码流填充到M个TB上。将图5所示的4层数据(分层数据1-分层数据4)对应的4个码流填充到2个TB(如TB1和TB2)后,可以得到如图6所示的TB组合,其中TB1包括码流1的资源(Res 1)、码流2的资源(Res 2)和码流3的部分资源(Res 3,1),TB2包括码流3的剩余部分资源(Res 3,2)和码流4的资源(Res 4)。
在一些实施中,对于终端设备和网络设备配置了MIMO传输的情况,即终端设备和网络设备之间传输流的数量O大于或等于2时,网络设备可以根据与N层数据对应的N个码流的大小,将N个码流划分为O组码流,使O组码流之间的数据量差异最小,例如遍历将N个码流分为O组码流的所有可能分组方式,选择O组码流之间的数据量差异最小(也可以是小于阈值)的分组方式;根据O组码流中对应数据量最大的一组码流的数据量大小,确定传输N层数据的M个TB。类似的,终端设备也可以根据与N层数据对应的N个码流的大小,将N个码流划分为O组码流,使O组码流之间的数据量差异最小;在M个TB上通过O个传输流分别向网络设备发送O组码流。
在上述实施中,在针对P层数据中每层数据,如果该层数据对应的MCS,根据网络设备与终端设备之间的信道状态信息、该层数据的信源贡献度在P层数据中的排序,以及信道状态信息和信源贡献度排序与MCS的映射策略确定时,如果O个传输流的信道状态信息不同时,可以随机或者按照一定策略(如选择最大值或最小值)等方式,选择一个传输流的信道状态信息(如SNR)作为网络设备与终端设备之间的信道状态信息。
在一些实施中,如果O个传输流的信道状态信息不同时,还可以根据各个传输流的信道状态信息,以及P层数据的信源贡献度排序,来进行O组码流的划分和每层数据MCS的配置。
下面以分4层数据(按照信源贡献度由高到低记作分层数据1、…、分层数据4),2个传输流,传输流1的SNR(记作SNR Rx,1)大于传输流2的接收SNR(记作SNR Rx,2), 优先将最重要的分层数据使用传输流1的传输资源发送,其他分层数据使用传输流2的传输资源发送为例进行介绍。
(1)资源估算,根据信道状态信息和信源贡献度排序与MCS的映射表(如表3),按照SNR Rx,1选定分层数据1-4对应的MCS组1(即按照SNR Rx,1结合分层数据1-4的信源贡献度排序,确定分层数据1-4分别对应的MCS构成的MCS组),按照SNR Rx,2选定分层数据1-4对应的MCS组2(即按照SNR Rx,2结合分层数据1-4的信源贡献度排序,确定分层数据1-4分别对应的MCS构成的MCS组),共选定两组MCS。并根据选定的两组MCS和分层1-4的数据长度,估算出分层数据1-4应用MCS组1时分别对应的传输资源数Res 1,1-Res 1,4,应用MCS组2时分别对应的传输资源数Res 2,1-Res 2,4,分别对应传输流1和传输流2;
(2)传输流分配:一共有3种分配方式——传输流1(分层数据1)&流2(分层数据2-4)、传输流1(分层数据1、2)&传输流2(分层数据3、4)、传输流1(分层数据1-3)&传输流2(分层数据4),计算出这三种分配方式下的传输资源占用如下:
传输流1(分层数据1)&传输流2(分层数据2-4):传输流1资源Res 1,1,传输流2资源Res 2,2+Res 2,3+Res 2,4,两个传输流的资源差异百分比为Diff 1=|1–Res 1,1/(Res 2,2+Res 2,3+Res 2,4)|;
传输流1(分层数据1、2)&传输流2(分层数据3、4):传输流1资源Res 1,1+Res 1,2,传输流2资源Res 2,3+Res 2,4,两个传输流的资源差异百分比为Diff 2=|1–(Res 1,1+Res 1,2)/(Res 2,3+Res 2,4)|;
传输流1(分层数据1)&传输流2(分层数据2~4):传输流1资源Res 1,1+Res 1,2+Res 1,3,传输流2资源Res 2,4,两个传输流的资源差异百分比为Diff 3=|1–(Res 1,1+Res 1,2+Res 1,3)/Res 2,4|;
网络设备可以选择Diff 1-Diff 3中最小值对应的每层数据的MCS和码流分组(或分传输流)的配置方式,从而让两个传输流的传输资源长度最接近。
上述主要从上行数据传输的角度,对待传输的第一数据进行UEP分层传输进行介绍,可以理解的是,对于下行数据传输,也可以采用UEP分层传输。图7为本申请实施例提供的又一种通信方法示意图。该方法包括:
S701:网络设备对第一数据进行分层处理,得到N层数据,N为大于或等于2的整数。
S702:网络设备向终端设备发送调制编码指示信息,调制编码指示信息用于指示N层数据中每层数据对应的MCS,相应地,终端设备接收来自网络设备的调制编码指示信息。
其中,N层数据中每层数据对应的MCS,根据N层数据中每层数据的信源贡献度在N层数据中的排序,以及信源贡献度排序与MCS的映射策略确定,N层数据中每层数据的信源贡献度用于指示该层数据缺失时对第一数据带来的偏差。
S703:网络设备根据N层数据中每层数据对应的MCS,对N层数据分别进行编码调制,得到N个码流。
S704:网络设备向网络设备发送N个码流,相应地,网络设备接收N个码流。
S705:终端设备对N个码流进行解调解码,得到N层数据。
S706:终端设备对N层数据进行重构,得到第一数据。
上述步骤S701-S706的实现,与步骤S201-S206的实现的原理相似,具体实现可以参照S201-S206处的介绍,不再重复赘述。
需要理解的是,上述是以第一通信装置是终端设备、第二通信装置为网络设备,终端设备和网络设备之间进行第一数据的传输为例,对本申请提供的通信方法进行介绍的。可以理解的是,在一些实施中,上述第一通信装置为终端设备,第二通信装置还可以为与第一通信装置不同的终端设备,本申请实施例提供的通信方法,还可以适用于终端设备和终端设备之间进行第一数据的传输。
可以理解的是,为了实现上述实施例中功能,第一通信装置(如终端设备)和第二通信装置(如网络设备)包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图8和图9为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中第一通信装置(如终端设备)和第二通信装置(如网络设备)的功能,因此也能实现上述方法实施例所具备的有益效果。在一种可能的实现中,该通信装置可以是终端设备或网络设备,还可以是应用于终端设备或网络设备的模块(如芯片)。
如图8所示,通信装置800包括处理单元810和接口单元820,其中接口单元820还可以为收发单元或输入输出接口。通信装置800可用于实现上述图2或图7中所示的方法实施例中第一通信装置(如终端设备)和第二通信装置(如网络设备)的功能。
当通信装置800用于实现图2所示的方法实施例中第一通信装置(如终端设备)的功能时:
处理单元810,用于对第一数据进行分层处理,得到N层数据,N为大于或等于2的整数;接口单元820,用于接收来自第二通信装置的调制编码指示信息,调制编码指示信息用于指示P层数据中每层数据对应的MCS,P层数据属于N层数据,P层数据中每层数据对应的MCS,根据该层数据的信源贡献度在P层数据中的排序,以及信源贡献度排序与MCS的映射策略确定,其中,P层数据中每层数据的信源贡献度用于指示该层数据缺失时对第一数据带来的偏差,P小于或等于N;
处理单元810,还用于根据P层数据中每层数据对应的MCS,对P层数据分别进行编码调制,得到P个码流;接口单元820,还用于向第二通信装置发送N个码流,N个码流包括P个码流和N层数据中除P层数据之外的N-P层数据对应的N-P个码流。
在一种可能的设计中,接口单元820,还用于向第二通信装置发送信源特性信息,信源特性信息包括P层数据中每层数据的信源贡献度。
在一种可能的设计中,处理单元810对第一数据进行分层处理,得到N层数据时,具体用于根据第一数据的第一数据类型,以及数据类型与分层方式的关联关系,确定与第一数据类型关联的第一分层方式;根据第一分层方式对第一数据进行分层处理,得到N层数据。
在一种可能的设计中,P层数据中每层数据缺失时对第一数据带来的偏差,包括:P层数据中每层数据缺失时对第一数据带来的均方误差、归一化均方误差、成像误差、定位误差、推理误差中的一项或多项。
在一种可能的设计中,P层数据中每层数据对应的MCS,根据该层数据的信源贡献度在P层数据中的排序,以及信源贡献度排序与MCS的映射策略确定,包括:P层数据中每 层数据对应的MCS,根据与第二通信装置之间的信道状态信息、该层数据的信源贡献度在P层数据中的排序,以及信道状态信息和信源贡献度排序与MCS的映射策略确定。
在一种可能的设计中,接口单元820,还用于向第二通信装置发送N层数据中每层数据的数据长度信息;以及接收来自第二通信装置的资源配置信息,资源配置信息用于配置传输N层数据的M个传TB,M为大于或等于1的整数;
接口单元820向第二通信装置发送N个码流时,具体用于在M个TB上向第二通信装置发送N个码流。
在一种可能的设计中,当传输N层数据的传输流数量O大于或等于2时,接口单元820在M个TB上向第二通信装置发送N个码流时,具体用于根据N个码流的大小,将N个码流划分为O组码流,使O组码流之间的数据量差异最小;在M个TB上通过O个传输流分别向第二通信装置发送O组码流。
在一种可能的设计中,接口单元820,还用于接收来自第二通信装置的层数指示信息,层数指示信息用于指示N;或者,处理单元810,还用于根据传输第一数据的不等错误保护UEP需求,确定N。
在一种可能的设计中,P层数据中任意两层数据对应的MCS满足:A分层数据对应的MCS的码率小于或等于B分层数据对应的MCS的码率;和/或,A分层数据对应的MCS的调制阶数小于或等于B分层数据对应的MCS的调制阶数;其中,A分层数据为两层数据中对应较大信源贡献度的分层数据,B分层数据为两层数据中对应较小信源贡献度的分层数据。
当通信装置800用于实现图2所示的方法实施例中第二通信装置(如网络设备)的功能时:
处理单元810,用于获取第一通信装置待发送的第一数据的P层数据中每层数据的信源贡献度,其中,P层数据中每层数据的信源贡献度用于指示该层数据缺失时对第一数据带来的偏差;以及确定调制编码指示信息,调制编码指示信息用于指示P层数据中每层数据对应的调制编码方案MCS,其中,P层数据中每层数据对应的MCS,根据该层数据的信源贡献度在P层数据中的排序,以及信源贡献度排序与MCS的映射策略确定;
接口单元820,用于向第一通信装置发送调制编码指示信息。
在一种可能的设计中,接口单元820,还用于接收来自第一通信装置的N个码流,N个码流对应第一数据的N层数据,N层数据包括P层数据,N个码流包括P层数据对应的P个码流和N层数据中除P层数据之外N-P层数据对应的N-P个码流,N为大于或等于2的整数,P小于或等于N;处理单元810,还用于对N个码流进行解调解码,得到N层数据,其中N个码流中与P层数据对应的P个码流,根据P层数据中每层数据对应的MCS进行解调解码;以及对N层数据进行重构,得到第一数据。
在一种可能的设计中,处理单元810获取第一通信装置待发送的第一数据的P层数据中每层数据的信源贡献度时,具体用于通过接口单元820接收来自第一通信装置的信源特性信息,信源特性信息包括P层数据中每层数据的信源贡献度。
在一种可能的设计中,P层数据中每层数据缺失时对第一数据带来的偏差,包括:P层数据中每层数据缺失时对第一数据带来的均方误差、归一化均方误差、成像误差、定位误差、推理误差中的一项或多项。
在一种可能的设计中,P层数据中每层数据对应的MCS,根据该层数据的信源贡献度 在P层数据中的排序,以及信源贡献度排序与MCS的映射策略确定,包括:P层数据中每层数据对应的MCS,根据与第一通信装置之间的信道状态信息、该层数据的信源贡献度在P层数据中的排序,以及信道状态信息和信源贡献度排序与MCS的映射策略确定。
在一种可能的设计中,接口单元820,还用于接收来自第一通信装置的N层数据中每层数据的数据长度信息;处理单元810,还用于根据N层数据中每层数据的数据长度信息,以及N层数据中P层数据中每层数据对应的MCS和N-P层数据对应的MCS,确定与N层数据对应的N个码流的大小;以及根据与N层数据对应的N个码流的大小、传输N层数据的传输流数量O,确定传输N层数据的M个传输块TB,M、O为大于或等于1的整数;
接口单元820,还用于向第一通信装置发送资源配置信息,资源配置信息用于配置M个TB;接口单元820接收来自第一通信装置的N个码流时,具体用于在M个TB上接收来自第一通信装置的N个码流。
在一种可能的设计中,处理单元810根据与N层数据对应的N个码流的大小、传输N层数据的传输流数量O,确定传输N层数据的M个TB时,具体用于根据与N层数据对应的N个码流的大小,将N个码流划分为O组码流,使O组码流之间的数据量差异最小;根据O组码流中对应数据量最大的一组码流的数据量大小,确定传输N层数据的M个TB。
在一种可能的设计中,处理单元810,还用于根据第一通信装置传输第一数据的不等错误保护UEP需求,确定N;接口单元820,还用于向第一通信装置发送层数指示信息,层数指示信息用于指示N。
在一种可能的设计中,P层数据中任意两层数据对应的MCS满足:A分层数据对应的MCS的码率小于或等于B分层数据对应的MCS的码率;和/或,A分层数据对应的MCS的调制阶数小于或等于B分层数据对应的MCS的调制阶数;其中,A分层数据为两层数据中对应较大信源贡献度的分层数据,B分层数据为两层数据中对应较小信源贡献度的分层数据。
当通信装置800用于实现图7所示的方法实施例中第一通信装置(如终端设备)的功能时:
接口单元820,用于接收来自第二通信装置的调制编码指示信息,调制编码指示信息用于指示第二通信装置待发送的N层数据中每层数据对应的MCS;以及接收来自第二通信装置的与N层数据对应的N个码流;处理单元810,用于根据N层数据中每层数据对应的MCS,对N个码流分别进行解调和解码,得到N层数据;对N层数据进行重构,得到第一数据。
在一种可能的设计中,接口单元820,还用于接收来自第二通信装置的资源配置信息,资源配置信息用于配置传输N层数据的M个TB,M为大于或等于1的整数;接口单元820接收来自第二通信装置的与N层数据对应的N个码流时,具体用于:在M个TB上接收来自第二通信装置的N个码流。
在一种可能的设计中,N层数据中任意两层数据对应的MCS满足:A分层数据对应的MCS的码率小于或等于B分层数据对应的MCS的码率;和/或,A分层数据对应的MCS的调制阶数小于或等于B分层数据对应的MCS的调制阶数;其中,A分层数据为两层数据中对应较大信源贡献度的分层数据,B分层数据为两层数据中对应较小信源贡献度的分层数据。
当通信装置800用于实现图7所示的方法实施例中第二通信装置(如网络设备)的功能时:
处理单元810,用于对第一数据进行分层处理,得到N层数据,N为大于或等于2的整数;以及获取N层数据中每层数据的信源贡献度,其中N层数据中每层数据的信源贡献度用于指示该层数据缺失时对第一数据带来的偏差;
接口单元820,用于向第一通信装置发送调制编码指示信息,调制编码指示信息用于指示N层数据中每层数据对应的MCS,其中N层数据中每层数据对应的MCS根据N层数据中每层数据的信源贡献度在N层数据中的排序,以及信源贡献度排序与MCS的映射策略确定;
处理单元810,还用于根据N层数据中每层数据对应的MCS,对N层数据分别进行编码调制,得到N个码流;接口单元820,还用于向第一通信装置发送N个码流。
在一种可能的设计中,接口单元820将第一数据进行分层处理,得到N层数据时,具体用于根据第一数据的第一数据类型,以及数据类型与分层方式的关联关系,确定与第一数据类型关联的第一分层方式;根据第一分层方式对第一数据进行分层处理,得到N层数据。
在一种可能的设计中,N层数据中每层数据缺失时对第一数据带来的偏差,包括:N层数据中每层数据缺失时对第一数据带来的均方误差、归一化均方误差、成像误差、定位误差、推理误差中的一项或多项。
在一种可能的设计中,处理单元810,还用于根据N层数据中每层数据的数据长度信息,以及N层数据中每层数据对应的MCS,确定与N层数据对应的N个码流的大小;根据与N层数据对应的N个码流的大小、传输N层数据的传输流数量O,确定传输N层数据的M个TB,M、O为大于或等于1的整数;接口单元820,还用于向第一通信装置发送资源配置信息,资源配置信息用于配置M个TB;接口单元820向第一通信装置发送N个码流时,具体用于在M个TB上向第二通信装置发送N个码流。
在一种可能的设计中,当传输N层数据的传输流数量O大于或等于2时,接口单元820在M个TB上向第一通信装置发送N个码流时,具体用于根据N个码流的大小,将N个码流划分为O组码流,使O组码流之间的数据量差异最小;在M个TB上通过O个传输流分别向第一通信装置发送O组码流。
在一种可能的设计中,根据N层数据中每层数据的信源贡献度在N层数据中的排序,以及信源贡献度排序与MCS的映射策略,确定N层数据中每层数据对应的MCS,包括:根据与第一通信装置之间的信道状态信息、N层数据中每层数据的信源贡献度在N层数据中的排序,以及信道状态信息和信源贡献度排序与MCS的映射策略,确定N层数据中每层数据对应的MCS。
在一种可能的设计中,N层数据中任意两层数据对应的MCS满足:A分层数据对应的MCS的码率小于或等于B分层数据对应的MCS的码率;和/或,A分层数据对应的MCS的调制阶数小于或等于B分层数据对应的MCS的调制阶数;其中,A分层数据为两层数据中对应较大信源贡献度的分层数据,B分层数据为两层数据中对应较小信源贡献度的分层数据。
如图9所示,本申请还提供一种通信装置900,包括处理器910和接口电路920。处理器910和接口电路920之间相互耦合。可以理解的是,接口电路920可以为收发器、输 入输出接口、输入接口、输出接口、通信接口等。可选的,通信装置900还可以包括存储器930,用于存储处理器910执行的指令或存储处理器910运行指令所需要的输入数据或存储处理器910运行指令后产生的数据。可选的,存储器930还可以和处理器910集成在一起。
当通信装置900用于实现图7所示的方法时,处理器910可以用于实现上述处理单元810的功能,接口电路920可以用于实现上述接口单元820的功能。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、逻辑电路、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网络设备、终端、计算机、服务器或数据中心通过有线或无线方式向另一个网络设备、终端、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
另外,需要理解,在本申请实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先 后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (41)

  1. 一种通信方法,其特征在于,包括:
    对第一数据进行分层处理,得到N层数据,所述N为大于或等于2的整数;
    接收来自第二通信装置的调制编码指示信息,所述调制编码指示信息用于指示P层数据中每层数据对应的调制编码方案MCS,所述P层数据属于所述N层数据,所述P层数据中每层数据对应的MCS,根据该层数据的信源贡献度在所述P层数据中的排序,以及信源贡献度排序与MCS的映射策略确定,其中,所述P层数据中每层数据的信源贡献度用于指示该层数据缺失时对所述第一数据带来的偏差,所述P小于或等于所述N;
    根据所述P层数据中每层数据对应的MCS,对所述P层数据分别进行编码调制,得到P个码流;
    向所述第二通信装置发送N个码流,所述N个码流包括所述P个码流和所述N层数据中除所述P层数据之外的N-P层数据对应的N-P个码流。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    向所述第二通信装置发送信源特性信息,所述信源特性信息包括P层数据中每层数据的信源贡献度。
  3. 如权利要求1或2所述的方法,其特征在于,所述将第一数据进行分层处理,得到N层数据,包括:
    根据所述第一数据的第一数据类型,以及数据类型与分层方式的关联关系,确定与所述第一数据类型关联的第一分层方式;
    根据所述第一分层方式对所述第一数据进行分层处理,得到N层数据。
  4. 如权利要求1-3中任一项所述的方法,其特征在于,所述P层数据中每层数据缺失时对所述第一数据带来的偏差,包括:
    所述P层数据中每层数据缺失时对所述第一数据带来的均方误差、归一化均方误差、成像误差、定位误差、推理误差中的一项或多项。
  5. 如权利要求1-4中任一项所述的方法,其特征在于,所述P层数据中每层数据对应的MCS,根据该层数据的信源贡献度在所述P层数据中的排序,以及信源贡献度排序与MCS的映射策略确定,包括:
    所述P层数据中每层数据对应的MCS,根据与第二通信装置之间的信道状态信息、该层数据的信源贡献度在所述P层数据中的排序,以及信道状态信息和信源贡献度排序与MCS的映射策略确定。
  6. 如权利要求1-5中任一项所述的方法,其特征在于,所述方法还包括:
    向所述第二通信装置发送所述N层数据中每层数据的数据长度信息;
    接收来自所述第二通信装置的资源配置信息,所述资源配置信息用于配置传输所述N层数据的M个传输块TB,所述M为大于或等于1的整数;
    所述向所述第二通信装置发送所述N个码流,包括:
    在所述M个TB上向所述第二通信装置发送所述N个码流。
  7. 如权利要求6所述的方法,其特征在于,当传输所述N层数据的传输流数量O大于或等于2时,所述在所述M个TB上向所述第二通信装置发送所述N个码流,包括:
    根据所述N个码流的大小,将所述N个码流划分为O组码流,使所述O组码流之间 的数据量差异最小;
    在所述M个TB上通过O个传输流分别向所述第二通信装置发送所述O组码流。
  8. 如权利要求1-7中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述第二通信装置的层数指示信息,所述层数指示信息用于指示所述N;或者,
    根据传输所述第一数据的不等错误保护UEP需求,确定所述N。
  9. 如权利要求1-8中任一项所述的方法,其特征在于,所述P层数据中任意两层数据对应的MCS满足:
    A分层数据对应的MCS的码率小于或等于B分层数据对应的MCS的码率;和/或,
    A分层数据对应的MCS的调制阶数小于或等于B分层数据对应的MCS的调制阶数;
    其中,所述A分层数据为所述两层数据中对应较大信源贡献度的分层数据,所述B分层数据为所述两层数据中对应较小信源贡献度的分层数据。
  10. 一种通信方法,其特征在于,包括:
    获取第一通信装置待发送的第一数据的P层数据中每层数据的信源贡献度,其中,所述P层数据中每层数据的信源贡献度用于指示该层数据缺失时对所述第一数据带来的偏差;
    向所述第一通信装置发送调制编码指示信息,所述调制编码指示信息用于指示所述P层数据中每层数据对应的调制编码方案MCS,其中,所述P层数据中每层数据对应的MCS,根据该层数据的信源贡献度在所述P层数据中的排序,以及信源贡献度排序与MCS的映射策略确定。
  11. 如权利要求10所述的方法,其特征在于,所述方法还包括:
    接收来自所述第一通信装置的N个码流,所述N个码流对应所述第一数据的N层数据,所述N层数据包括所述P层数据,所述N个码流包括所述P层数据对应的P个码流和所述N层数据中除所述P层数据之外N-P层数据对应的N-P个码流,所述N为大于或等于2的整数,所述P小于或等于所述N;
    对所述N个码流进行解调解码,得到所述N层数据,其中所述N个码流中与所述P层数据对应的所述P个码流,根据所述P层数据中每层数据对应的MCS进行解调解码;
    对所述N层数据进行重构,得到第一数据。
  12. 如权利要求10或11所述的方法,其特征在于,所述获取第一通信装置待发送的P层数据中每层数据的信源贡献度,包括:
    接收来自所述第一通信装置的信源特性信息,所述信源特性信息包括所述P层数据中每层数据的信源贡献度。
  13. 如权利要求10-12中任一项所述的方法,其特征在于,所述P层数据中每层数据缺失时对所述第一数据带来的偏差,包括:
    所述P层数据中每层数据缺失时对所述第一数据带来的均方误差、归一化均方误差、成像误差、定位误差、推理误差中的一项或多项。
  14. 如权利要求10-13中任一项所述的方法,其特征在于,所述P层数据中每层数据对应的MCS,根据该层数据的信源贡献度在所述P层数据中的排序,以及信源贡献度排序与MCS的映射策略确定,包括:
    所述P层数据中每层数据对应的MCS,根据与第一通信装置之间的信道状态信息、该层数据的信源贡献度在所述P层数据中的排序,以及信道状态信息和信源贡献度排序与 MCS的映射策略确定。
  15. 如权利要求11所述的方法,其特征在于,所述方法还包括:
    接收来自所述第一通信装置的所述N层数据中每层数据的数据长度信息;
    根据所述N层数据中每层数据的数据长度信息,以及所述N层数据中所述P层数据中每层数据对应的MCS和所述N-P层数据对应的MCS,确定与所述N层数据对应的N个码流的大小;
    根据与所述N层数据对应的N个码流的大小、传输所述N层数据的传输流数量O,确定传输所述N层数据的M个传输块TB,所述M、所述O为大于或等于1的整数;
    向所述第一通信装置发送资源配置信息,所述资源配置信息用于配置所述M个TB;
    所述接收来自所述第一通信装置的N个码流,包括:
    在所述M个TB上接收来自所述第一通信装置的所述N个码流。
  16. 如权利要求15所述的方法,其特征在于,所述根据与所述N层数据对应的N个码流的大小、传输所述N层数据的传输流数量O,确定传输所述N层数据的M个TB,包括:
    根据与所述N层数据对应的N个码流的大小,将所述N个码流划分为O组码流,使所述O组码流之间的数据量差异最小;
    根据所述O组码流中对应数据量最大的一组码流的数据量大小,确定传输所述N层数据的M个TB。
  17. 如权利要求10-16中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述第一通信装置传输所述第一数据的不等错误保护UEP需求,确定所述N;
    向所述第一通信装置发送层数指示信息,所述层数指示信息用于指示所述N。
  18. 如权利要求10-17中任一项所述的方法,其特征在于,所述P层数据中任意两层数据对应的MCS满足:
    A分层数据对应的MCS的码率小于或等于B分层数据对应的MCS的码率;和/或,
    A分层数据对应的MCS的调制阶数小于或等于B分层数据对应的MCS的调制阶数;
    其中,所述A分层数据为所述两层数据中对应较大信源贡献度的分层数据,所述B分层数据为所述两层数据中对应较小信源贡献度的分层数据。
  19. 一种通信装置,其特征在于,包括接口单元和处理单元;
    处理单元,用于对第一数据进行分层处理,得到N层数据,所述N为大于或等于2的整数;
    接口单元,用于接收来自第二通信装置的调制编码指示信息,所述调制编码指示信息用于指示P层数据中每层数据对应的调制编码方案MCS,所述P层数据属于所述N层数据,所述P层数据中每层数据对应的MCS,根据该层数据的信源贡献度在所述P层数据中的排序,以及信源贡献度排序与MCS的映射策略确定,其中,所述P层数据中每层数据的信源贡献度用于指示该层数据缺失时对所述第一数据带来的偏差,所述P小于或等于所述N;
    所述处理单元,还用于根据所述P层数据中每层数据对应的MCS,对所述P层数据分别进行编码调制,得到P个码流;
    所述接口单元,还用于向所述第二通信装置发送N个码流,所述N个码流包括所述P个码流和所述N层数据中除所述P层数据之外的N-P层数据对应的N-P个码流。
  20. 如权利要求19所述的装置,其特征在于,所述接口单元,还用于向所述第二通信 装置发送信源特性信息,所述信源特性信息包括P层数据中每层数据的信源贡献度。
  21. 如权利要求19或20所述的装置,其特征在于,所述处理单元对第一数据进行分层处理,得到N层数据时,具体用于根据所述第一数据的第一数据类型,以及数据类型与分层方式的关联关系,确定与所述第一数据类型关联的第一分层方式;根据所述第一分层方式对所述第一数据进行分层处理,得到N层数据。
  22. 如权利要求19-21中任一项所述的装置,其特征在于,所述P层数据中每层数据缺失时对所述第一数据带来的偏差,包括:
    所述P层数据中每层数据缺失时对所述第一数据带来的均方误差、归一化均方误差、成像误差、定位误差、推理误差中的一项或多项。
  23. 如权利要求19-22中任一项所述的装置,其特征在于,所述P层数据中每层数据对应的MCS,根据该层数据的信源贡献度在所述P层数据中的排序,以及信源贡献度排序与MCS的映射策略确定,包括:
    所述P层数据中每层数据对应的MCS,根据与第二通信装置之间的信道状态信息、该层数据的信源贡献度在所述P层数据中的排序,以及信道状态信息和信源贡献度排序与MCS的映射策略确定。
  24. 如权利要求19-23中任一项所述的装置,其特征在于,所述接口单元,还用于向所述第二通信装置发送所述N层数据中每层数据的数据长度信息;以及接收来自所述第二通信装置的资源配置信息,所述资源配置信息用于配置传输所述N层数据的M个传输块TB,所述M为大于或等于1的整数;
    所述接口单元向所述第二通信装置发送所述N个码流时,具体用于在所述M个TB上向所述第二通信装置发送所述N个码流。
  25. 如权利要求24所述的装置,其特征在于,当传输所述N层数据的传输流数量O大于或等于2时,所述接口单元在所述M个TB上向所述第二通信装置发送所述N个码流时,具体用于根据所述N个码流的大小,将所述N个码流划分为O组码流,使所述O组码流之间的数据量差异最小;在所述M个TB上通过O个传输流分别向所述第二通信装置发送所述O组码流。
  26. 如权利要求19-25中任一项所述的装置,其特征在于,所述接口单元,还用于接收来自所述第二通信装置的层数指示信息,所述层数指示信息用于指示所述N;或者,
    所述处理单元,还用于根据传输所述第一数据的不等错误保护UEP需求,确定所述N。
  27. 如权利要求19-26中任一项所述的装置,其特征在于,所述P层数据中任意两层数据对应的MCS满足:
    A分层数据对应的MCS的码率小于或等于B分层数据对应的MCS的码率;和/或,
    A分层数据对应的MCS的调制阶数小于或等于B分层数据对应的MCS的调制阶数;
    其中,所述A分层数据为所述两层数据中对应较大信源贡献度的分层数据,所述B分层数据为所述两层数据中对应较小信源贡献度的分层数据。
  28. 一种通信装置,其特征在于,包括接口单元和处理单元;
    所述处理单元,用于获取第一通信装置待发送的第一数据的P层数据中每层数据的信源贡献度,其中,所述P层数据中每层数据的信源贡献度用于指示该层数据缺失时对所述第一数据带来的偏差;
    所述处理单元,用于确定调制编码指示信息,所述调制编码指示信息用于指示所述P 层数据中每层数据对应的调制编码方案MCS,其中,所述P层数据中每层数据对应的MCS,根据该层数据的信源贡献度在所述P层数据中的排序,以及信源贡献度排序与MCS的映射策略确定;
    所述接口单元,用于向所述第一通信装置发送所述调制编码指示信息。
  29. 如权利要求28所述的装置,其特征在于,所述接口单元,还用于接收来自所述第一通信装置的N个码流,所述N个码流对应第一数据的N层数据,所述N层数据包括所述P层数据,所述N个码流包括所述P层数据对应的P个码流和所述N层数据中除所述P层数据之外N-P层数据对应的N-P个码流,所述N为大于或等于2的整数,所述P小于或等于所述N;
    所述处理单元,还用于对所述N个码流进行解调解码,得到所述N层数据,其中所述N个码流中与所述P层数据对应的所述P个码流,根据所述P层数据中每层数据对应的MCS进行解调解码;以及对所述N层数据进行重构,得到第一数据。
  30. 如权利要求28或29所述的装置,其特征在于,所述处理单元获取第一通信装置待发送的第一数据的P层数据中每层数据的信源贡献度时,具体用于通过所述接口单元接收来自所述第一通信装置的信源特性信息,所述信源特性信息包括所述P层数据中每层数据的信源贡献度。
  31. 如权利要求28-30中任一项所述的装置,其特征在于,所述P层数据中每层数据缺失时对所述第一数据带来的偏差,包括:
    所述P层数据中每层数据缺失时对所述第一数据带来的均方误差、归一化均方误差、成像误差、定位误差、推理误差中的一项或多项。
  32. 如权利要求28-31中任一项所述的装置,其特征在于,所述P层数据中每层数据对应的MCS,根据该层数据的信源贡献度在所述P层数据中的排序,以及信源贡献度排序与MCS的映射策略确定,包括:
    所述P层数据中每层数据对应的MCS,根据与第一通信装置之间的信道状态信息、该层数据的信源贡献度在所述P层数据中的排序,以及信道状态信息和信源贡献度排序与MCS的映射策略确定。
  33. 如权利要求29所述的装置,其特征在于,所述接口单元,还用于接收来自所述第一通信装置的所述N层数据中每层数据的数据长度信息;
    所述处理单元,还用于根据所述N层数据中每层数据的数据长度信息,以及所述N层数据中所述P层数据中每层数据对应的MCS和所述N-P层数据对应的MCS,确定与所述N层数据对应的N个码流的大小;以及根据与所述N层数据对应的N个码流的大小、传输所述N层数据的传输流数量O,确定传输所述N层数据的M个传输块TB,所述M、所述O为大于或等于1的整数;
    所述接口单元,还用于向所述第一通信装置发送资源配置信息,所述资源配置信息用于配置所述M个TB;
    所述接口单元接收来自所述第一通信装置的N个码流时,具体用于在所述M个TB上接收来自所述第一通信装置的所述N个码流。
  34. 如权利要求33所述的装置,其特征在于,所述处理单元根据与所述N层数据对应的N个码流的大小、传输所述N层数据的传输流数量O,确定传输所述N层数据的M个TB时,具体用于根据与所述N层数据对应的N个码流的大小,将所述N个码流划分为O 组码流,使所述O组码流之间的数据量差异最小;根据所述O组码流中对应数据量最大的一组码流的数据量大小,确定传输所述N层数据的M个TB。
  35. 如权利要求28-34中任一项所述的装置,其特征在于,所述处理单元,还用于根据所述第一通信装置传输所述第一数据的不等错误保护UEP需求,确定所述N;
    所述接口单元,还用于向所述第一通信装置发送层数指示信息,所述层数指示信息用于指示所述N。
  36. 如权利要求28-35中任一项所述的装置,其特征在于,所述P层数据中任意两层数据对应的MCS满足:
    A分层数据对应的MCS的码率小于或等于B分层数据对应的MCS的码率;和/或,
    A分层数据对应的MCS的调制阶数小于或等于B分层数据对应的MCS的调制阶数;
    其中,所述A分层数据为所述两层数据中对应较大信源贡献度的分层数据,所述B分层数据为所述两层数据中对应较小信源贡献度的分层数据。
  37. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器,或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行指令用于实现如权利要求1-9中任一项所述的方法。
  38. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器,或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行指令用于实现如权利要求10-18中任一项所述的方法。
  39. 一种计算机程序产品,其特征在于,包含指令,当所述指令被处理器执行时,使得如权利要求1-18中任一项所述的方法被实现。
  40. 一种芯片系统,其特征在于,所述芯片系统包括:
    处理器和存储器,所述处理器与所述存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,实现如权利要求1-18中任一项所述的方法。
  41. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令被处理器执行时,使得如权利要求1-18中任一项所述的方法被实现。
PCT/CN2022/128662 2022-10-31 2022-10-31 一种通信方法及装置 WO2024092415A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280101218.9A CN120092421A (zh) 2022-10-31 2022-10-31 一种通信方法及装置
PCT/CN2022/128662 WO2024092415A1 (zh) 2022-10-31 2022-10-31 一种通信方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/128662 WO2024092415A1 (zh) 2022-10-31 2022-10-31 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2024092415A1 true WO2024092415A1 (zh) 2024-05-10

Family

ID=90929280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128662 WO2024092415A1 (zh) 2022-10-31 2022-10-31 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN120092421A (zh)
WO (1) WO2024092415A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101517995A (zh) * 2006-11-07 2009-08-26 三星电子株式会社 用于具有复合帧格式的未压缩视频的无线通信的系统和方法
US20180083746A1 (en) * 2015-04-07 2018-03-22 China Academy Of Telecommunications Technology Method and device for detecting data transmission and received signals
CN107872635A (zh) * 2016-09-26 2018-04-03 三星显示有限公司 用于传输视频的方法和数据发射机
CN109217977A (zh) * 2017-06-30 2019-01-15 株式会社Ntt都科摩 数据发送方法、装置及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101517995A (zh) * 2006-11-07 2009-08-26 三星电子株式会社 用于具有复合帧格式的未压缩视频的无线通信的系统和方法
US20180083746A1 (en) * 2015-04-07 2018-03-22 China Academy Of Telecommunications Technology Method and device for detecting data transmission and received signals
CN107872635A (zh) * 2016-09-26 2018-04-03 三星显示有限公司 用于传输视频的方法和数据发射机
CN109217977A (zh) * 2017-06-30 2019-01-15 株式会社Ntt都科摩 数据发送方法、装置及存储介质

Also Published As

Publication number Publication date
CN120092421A (zh) 2025-06-03

Similar Documents

Publication Publication Date Title
EP4366253A1 (en) Data processing method and apparatus
TW202239152A (zh) 用於神經網路架構的編碼技術
WO2022268064A1 (zh) 数据传输方法及相关装置
WO2018201984A1 (zh) 数据的传输方法和设备
WO2023134363A1 (zh) 编码方法、解码方法和通信装置
CN116647314B (zh) 一种名义包填充值的指示方法、确定方法及通信装置
WO2024092415A1 (zh) 一种通信方法及装置
WO2022213952A1 (zh) 信息传输方法、装置及系统
WO2024011554A1 (en) Techniques for joint probabilistic shaping of multiple bits per modulation constellation
CN119452588A (zh) 多级译码配置的动态报告
WO2024113249A1 (zh) 一种数据处理方法及装置
CN112737728B (zh) 数据处理方法及装置
WO2025086033A1 (en) Analog coding and transmission for semantic communication
US20250167803A1 (en) Data transmission method and apparatus
WO2025086236A1 (en) Retransmission schemes for semantic communication and analog transmission
RU2840719C1 (ru) Способ передачи данных и соответствующее устройство
WO2023274140A1 (zh) 一种传输控制信息的方法和装置
US20250048178A1 (en) Unequal error protection using systematic polar codes
CN115668828B (zh) 通信方法、装置及系统
WO2024254724A1 (en) Constellation decomposition and compound bit-level and symbol-level probabilistic amplitude shaping
WO2025102585A1 (en) Methods, systems, and apparatus for adaptive transport block size determination and code block segmentation
WO2025054883A1 (en) Exponentiation methods for probabilistic amplitude shaping procedures
WO2025102194A1 (zh) 上行传输方法、终端设备和网络设备
CN120186778A (zh) 通信方法及装置
CN119483815A (zh) 信道状态信息上报方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22963735

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE