WO2023189621A1 - マルチコア光ファイバ - Google Patents
マルチコア光ファイバ Download PDFInfo
- Publication number
- WO2023189621A1 WO2023189621A1 PCT/JP2023/010165 JP2023010165W WO2023189621A1 WO 2023189621 A1 WO2023189621 A1 WO 2023189621A1 JP 2023010165 W JP2023010165 W JP 2023010165W WO 2023189621 A1 WO2023189621 A1 WO 2023189621A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refractive index
- core
- cladding
- optical fiber
- high refractive
- Prior art date
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 44
- 238000005253 cladding Methods 0.000 claims abstract description 89
- 239000011521 glass Substances 0.000 claims abstract description 29
- 239000011248 coating agent Substances 0.000 claims abstract description 13
- 238000000576 coating method Methods 0.000 claims abstract description 13
- 239000011347 resin Substances 0.000 claims abstract description 13
- 229920005989 resin Polymers 0.000 claims abstract description 13
- 239000003550 marker Substances 0.000 claims description 48
- 230000002093 peripheral effect Effects 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 abstract description 10
- 239000000835 fiber Substances 0.000 description 23
- 230000001902 propagating effect Effects 0.000 description 12
- 238000005452 bending Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/036—Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
Definitions
- MCF multi-core optical fiber
- Patent Document 1 and Patent Document 2 disclose MCFs having multiple cores with different refractive indexes. By arranging a plurality of cores with different refractive indexes in the cladding in this way, mode coupling between the cores is suppressed, and as a result, noise mixing into the signal light propagating within each core is suppressed.
- the MCF of the present disclosure includes a glass optical fiber and a resin coating.
- a glass optical fiber has a plurality of cores each extending along a fiber axis that is a central axis, a cladding surrounding the plurality of cores, and a mode leakage adjustment structure.
- the plurality of cores include a first core having a high refractive index (hereinafter referred to as a "high refractive index core”) and a second core having a refractive index lower than the refractive index of the high refractive index core (hereinafter referred to as a "low refractive index core"). (referred to as "rate core”).
- the refractive index of the cladding is lower than the refractive index of any of the cores.
- the resin coating is provided on the outer peripheral surface of the glass optical fiber. Further, on the cross section of the MCF perpendicular to the central axis, the arrangement of the centers of the plurality of portions having a refractive index different from the refractive index of the cladding has no rotational symmetry with respect to the center of the cross section.
- the multiple portions include multiple cores. Further, the mode leakage adjustment structure functions to reduce the difference between the cutoff wavelength of the higher order mode remaining in the low refractive index core and the cutoff wavelength of the higher order mode remaining in the high refractive index core.
- FIG. 1 is a diagram for explaining an example of the structure of an MCF according to the present disclosure.
- FIG. 2 is a diagram for explaining the fiber characteristics of the MCF according to the present disclosure together with a comparative example.
- FIG. 3 is a diagram for explaining various examples of cross-sectional structures of MCFs according to the present disclosure.
- the present disclosure has been made in order to solve the above-mentioned problems, and aims to provide an MCF having a structure that allows both the adoption of a plurality of cores with different refractive indexes and the suppression of manufacturing costs. It is said that
- the MCF of the present disclosure is (1) Includes a glass optical fiber and a resin coating.
- a glass optical fiber has a plurality of cores each extending along a fiber axis that is a central axis, a cladding surrounding the plurality of cores, and a mode leakage adjustment structure.
- the plurality of cores include a high refractive index core as a first core, and a low refractive index core as a second core having a refractive index lower than the refractive index of the high refractive index core.
- the refractive index of the cladding is lower than the refractive index of any of the cores.
- the resin coating is provided on the outer peripheral surface of the glass optical fiber.
- the arrangement of the centers of the plurality of portions having a refractive index different from the refractive index of the cladding has no rotational symmetry with respect to the center of the cross section.
- the multiple portions include multiple cores.
- the mode leakage adjustment structure functions to reduce the difference between the cutoff wavelength of the higher order mode remaining in the low refractive index core and the cutoff wavelength of the higher order mode remaining in the high refractive index core.
- the mode leakage adjustment structure may employ a first structure defined by placement of a high refractive index marker within the cladding.
- high refractive index markers extend along the plurality of cores and have a refractive index higher than the refractive index of the cladding.
- the center of the high refractive index marker is arranged at a position where the distance to the center of the high refractive index core among the plurality of cores is shorter than the distance to the center of the low refractive index core.
- the higher-order mode propagating through the high-refractive index core and the mode propagating through the high-refractive index marker It becomes possible to promote mode coupling and increase leakage of higher order modes of the high refractive index core.
- the V value regarding the high refractive index marker at the wavelength ⁇ may be 2.405 or less. In this case as well, it is possible to confine higher-order modes leaked from the high refractive index core while maintaining the original function of the high refractive index marker.
- V (2 ⁇ / ⁇ ) ⁇ r ⁇ (n marker 2 -n clad 2 ) 1/2 ...(1)
- (2 ⁇ / ⁇ ) is the wavenumber of light with wavelength ⁇ in vacuum
- r is the radius of the high refractive index marker
- n marker is the refractive index of the high refractive index marker
- n clad is the cladding is the refractive index of
- the cladding is provided on the inner cladding surrounding the plurality of cores and the high refractive index marker, and the outer peripheral surface of the inner cladding. and an outer cladding having a refractive index higher than the refractive index of the inner cladding.
- the refractive index of the cladding is defined by the refractive index of the outer cladding, and the diameter of the cladding matches the outer diameter of the outer cladding.
- Adopting such a double cladding structure increases the leakage of higher-order modes propagating through multiple cores and the leakage of modes propagating through high-index markers, while reducing the bending loss of fundamental modes propagating through multiple cores. remains low. This allows for increased manufacturing tolerances.
- a low refractive index marker having a lower refractive index than the cladding is used, and the center of the low refractive index marker is aligned to the center of the low refractive index core among the plurality of cores. It may be arranged at a position where the distance is shorter than the distance to the center of the high refractive index core. In this case as well, manufacturing tolerance can be expanded.
- the wavelength ⁇ may be the shortest wavelength of the signal light transmitted to the plurality of cores in the MCF of the present disclosure, and is typically 1530 nm.
- the mode leakage adjustment structure is defined by a double clad structure adopted for the cladding and a core arrangement in which a plurality of cores are shifted along a direction perpendicular to the central axis.
- a second structure may also be adopted.
- the double cladding structure includes an inner cladding that surrounds the plurality of cores and has an outer diameter D, and a double cladding structure that is provided on the outer peripheral surface of the inner cladding and has a refractive index higher than that of the inner cladding. and an outer cladding having a refractive index.
- the refractive index of the outer cladding is defined as the refractive index of the cladding.
- the core arrangement that defines the second structure has a low refractive index relative to the reference positions of the high refractive index core and the low refractive index core whose centers are located equidistant from the inner peripheral surface of the outer cladding on the cross section of the MCF.
- the centers of the high refractive index core and/or the low refractive index core are shifted by ⁇ x along a line perpendicular to the central axis so that the high refractive index core is closer to the inner peripheral surface of the outer cladding than the index core.
- the ratio ⁇ x/D of the shift amount ⁇ x of the high refractive index core and/or the low refractive index core to the outer diameter D of the inner cladding is 0. 01 (1% expressed as a percentage). It becomes possible to effectively suppress an increase in cutoff wavelength in a high refractive index core and/or to effectively suppress an increase in bending loss in a low refractive index core.
- the inner cladding has a refractive index extending along the plurality of cores and having a refractive index higher than the refractive index of the inner cladding.
- a refractive index marker may be provided, and the center of the high refractive index marker is located at a position where the distance to the center of the high refractive index core is shorter than the distance to the center of the low refractive index core. In this case, even when a high refractive index core is arranged within the inner cladding, it becomes possible to easily specify the orientation of the core arrangement.
- a low refractive index marker having a refractive index lower than that of the inner cladding is provided, and the distance between the center of the low refractive index marker and the center of the low refractive index core is the high refractive index marker. It may be placed at a position that is shorter than the distance to the center of the core. In this case as well, it becomes possible to easily specify the orientation of the core arrangement.
- FIG. 1 is a diagram for explaining an example of the structure of an MCF (multi-core optical fiber) according to the present disclosure (denoted as "optical fiber” in FIG. 1).
- fiber structure in FIG. 1
- cross-sectional structure in FIG. 1
- refractive index profile 150 showing the refractive index of each part along the line L shown in the middle part of FIG.
- the MCF 100 shown in the upper part of FIG. 1 and the middle part of FIG. 1 includes a glass optical fiber 110 and a resin coating 140 provided on the outer peripheral surface of the glass optical fiber 110.
- Embodiment 1 to which the first structure of the mode leakage adjustment structure is applied is shown in the upper part of FIG. 1 and the middle part of FIG. 1 as an example.
- Glass optical fiber 110 includes two cores, a cladding 120, and a mode leakage adjustment structure.
- One of the two cores is a high refractive index core 111 and the other is a low refractive index core 112 having a refractive index lower than the refractive index of the high refractive index core 111.
- the relative refractive index difference between the low refractive index core 112 and the high refractive index core 111 may be ⁇ 0.01% or less, or ⁇ 0.02% or less. This causes a difference in the effective refractive index of the waveguide mode of each core in the extended state of the optical fiber, thereby suppressing crosstalk. Furthermore, the relative refractive index of the low refractive index core 112 relative to the high refractive index core 111 may be -0.05% or more. This suppresses an increase in transmission loss due to mode coupling between the fundamental mode of one core and the higher-order mode of the other core.
- the high refractive index core 111 and the low refractive index core 112 are arranged with the fiber axis AX, which is the central axis of the MCF 100, interposed therebetween, and each extends along the fiber axis AX. Three or more cores may be applied to the MCF 100.
- the mode leakage adjustment structure functions to increase leakage of higher-order mode light remaining inside the high refractive index core 111.
- a high refractive index marker 130 is provided in the cladding 120 as the first structure of the mode leakage adjustment structure.
- the high refractive index marker 130 extends along the two cores and has a refractive index higher than the refractive index of the cladding 120. Further, the center of the high refractive index marker 130 is arranged at a position where the distance to the center of the high refractive index core 111 is shorter than the distance to the center of the low refractive index core 112.
- the high refractive index marker 130 While maintaining the original function of the high refractive index marker 130, that is, the function of enabling visual recognition and specifying the orientation of the core arrangement by the difference in refractive index with the surrounding cladding, the high refractive index marker 130 propagating through the high refractive index core 111 Increasing the mode coupling between the order modes and modes propagating through the high index marker 130 allows for increased leakage of higher order modes propagating through the high index core.
- the ratio of the distance to the center of the high refractive index core 111 to the distance to the center of the low refractive index core 112 may be 3% or more, or 6% or more.
- the V value (see equation (1)) regarding the high refractive index marker 130 at the wavelength ⁇ may be 2.405 or less. In this case as well, it becomes possible to increase leakage of higher-order modes propagating through the high refractive index core while maintaining the marker's original function.
- the wavelength ⁇ is the shortest wavelength of the signal light transmitted to the plurality of cores in the MCF of the present disclosure, and is typically 1530 nm.
- the element arrangement on the end face of the glass optical fiber 110 specifically, a high refractive index core 111 having a refractive index different from the refractive index of the cladding 120.
- the low refractive index core 112 and the high refractive index marker 130 have no rotational symmetry with respect to the center of the end face where the end face and the fiber axis AX intersect. This means that the arrangement of elements on the end face of the glass optical fiber 110 constitutes a planar figure with one-fold rotational symmetry.
- the element arrangement consisting only of the high refractive index core 111 and the low refractive index core 112 becomes a two-fold rotationally symmetric planar figure, but the element arrangement further including the high refractive index marker 130 loses rotational symmetry.
- the MCF 100 includes a refractive index profile 150 as shown in the lower part of FIG. Note that the solid line indicates the refractive index profile 150 of the first embodiment of the MCF 100, and the broken line indicates the refractive index profile of the second embodiment of the MCF 100, which is an example having the mode leakage adjustment structure of the second structure.
- the high refractive index core 111 core number 1, hereinafter the same
- the low refractive index core 112 core number 2, the same hereinafter
- the high refractive index marker 130 has a refractive index lower than the refractive index n 2 of the low refractive index core 112 and higher than the refractive index n C of the cladding 120.
- FIG. 2 is a diagram for explaining the fiber characteristics of the MCF according to the present disclosure together with a comparative example (denoted as "fiber characteristics" in FIG. 2).
- the upper part of FIG. 2 (indicated as “comparative example” in FIG. 2) shows the cross-sectional structure of MCF600 according to the comparative example and the fiber characteristics (hereinafter referred to as "cutoff wavelength") regarding the cutoff wavelength ⁇ c of the higher-order mode remaining in each core. "Off-wavelength characteristics”) are shown.
- the middle part of FIG. 2 (denoted as "Embodiment 1" in FIG. 2), the cross-sectional structure and cutoff wavelength characteristics of the MCF 100A (100) according to Embodiment 1 are shown.
- FIG. 2 shows the cross-sectional structure and cutoff wavelength characteristics of the MCF 100B according to Embodiment 2. Note that each fiber cross section shown in FIG. 2 corresponds to a fiber cross section taken along the line II shown in the upper part of FIG. In addition, in the column of "fiber properties", the left side is written as “cross-sectional structure”, and the right side is written as "cutoff wavelength ( ⁇ c) characteristics”.
- the MCF 600 according to the comparative example shown in the upper part of FIG. 2 is a two-core MCF.
- This MCF 600 includes a glass optical fiber 610 and a resin coating 640.
- Glass optical fiber 610 includes a high refractive index core 611, a low refractive index core 612, and a cladding 620.
- the center position of the high refractive index core 611 and the center position of the low refractive index core 612 are both separated by a distance d from the fiber axis AX.
- the core arrangement defined by the center of the core 612 constitutes a planar figure with two-fold rotational symmetry.
- High refractive index core 611 and low refractive index core 612 are optically distinguishable components.
- the high refractive index core 611 and the low refractive index core 612 can be distinguished by the difference in brightness observed when light is irradiated from the side.
- cladding 620 has a unitary structure.
- the MCF 600 having such a structure has cutoff wavelength characteristics as shown in the upper part of FIG. That is, since a higher order mode remains inside the high refractive index core 611, the cutoff wavelength ⁇ 1 of the high refractive index core 611 indicated by core number 1 is the cutoff wavelength ⁇ 1 of the low refractive index core 612 indicated by core number 2. It is longer than the off wavelength ⁇ 2 .
- the MCF 100A according to the first embodiment is a two-core MCF and has the above-described first structure as a mode leakage adjustment structure. That is, the structure of the MCF 100A is the same as the MCF 100 shown in the upper part of FIG. 1 and the middle part of FIG. 1, and includes a glass optical fiber 110A corresponding to the glass optical fiber 110 and a resin coating 140.
- the glass optical fiber 110A includes a high refractive index core 111, a low refractive index core 112, a cladding 120, and a first structure of a mode leakage adjustment structure.
- a first structure of the mode leakage adjustment structure is realized by a high refractive index marker 130 provided at a predetermined position within the cladding 120.
- the center of the high refractive index marker 130 is arranged at a position where the distance d 1 to the center of the high refractive index core 111 is shorter than the distance d 2 to the center of the low refractive index core 112 .
- the V value (see formula (1)) regarding the high refractive index marker 130 at the wavelength ⁇ is 2.405 or less.
- the MCF 100B is a two-core MCF and has a second structure as a mode leakage adjustment structure. That is, the MCF 100B includes a glass optical fiber 110B and a resin coating 140. Glass optical fiber 110B includes a high refractive index core 111, a low refractive index core 112, a cladding 120, and a second structure of a mode leakage adjustment structure.
- the second structure of the mode leakage adjustment structure is realized by a double clad structure of the clad 120 and a core arrangement shift structure consisting of a high refractive index core 111 and a low refractive index core 112.
- the double clad structure of the clad 120 is composed of an inner clad 121 and an outer clad 122 having an outer diameter D.
- the inner cladding 121 has a refractive index n 3 and surrounds the high refractive index core 111 and the low refractive index core 112, as shown by the broken line in the lower part of FIG.
- the outer cladding 122 is provided on the outer peripheral surface of the inner cladding 121 and has a refractive index n C higher than the refractive index n 3 of the inner cladding 121 .
- the center positions of the high refractive index core 111 and the low refractive index core 112 are set in a straight line passing through the fiber axis AX such that the high refractive index core 111 is closer to the inner peripheral surface of the outer cladding 122 than the low refractive index core 112. is shifted by ⁇ x from the reference position along.
- the reference positions of the high refractive index core 111 and the low refractive index core 112 are indicated by broken-line circles in the lower part of FIG. That is, the reference position 111a of the high refractive index core 111 and the reference position 112a of the low refractive index core 112 are both separated by a distance d from the fiber axis AX.
- the ratio ⁇ x/D of the shift amount ⁇ x of the high refractive index core 111 and the low refractive index core 112 to the outer diameter D of the inner cladding 121 may be larger than 0.01 (1% expressed as a percentage), and may be 0. It may be larger than .02 (2% expressed as a percentage). This attenuates the higher-order modes of the high-index core more effectively than the higher-order modes of the low-index core, and distinguishes between the high- and low-index cores based on their distance from the core center. can do.
- the high refractive index marker 130 is arranged at a position closer to the high refractive index core 111 than the low refractive index core 112.
- the average refractive index of the cladding 120 relative to the high refractive index core 111 increases, and the cutoff wavelength is suppressed from becoming longer.
- the high refractive index core 111 is arranged closer to the outer cladding 122 than the low refractive index core 112.
- the cutoff wavelength of the high refractive index core 111 indicated by core number 1 is suppressed from becoming longer, and the cutoff wavelength of the low refractive index core 112 indicated by core number 2 is increased, and as shown in FIG.
- the cutoff wavelength of the high refractive index core 111 and the cutoff wavelength of the low refractive index core 112 are both intermediate values between ⁇ 2 and ⁇ 1 .
- FIG. 3 is a diagram for explaining various examples of the cross-sectional structure of the MCF according to the present disclosure (referred to as "cross-sectional structure" in FIG. 3).
- pattern 1 (2 cores)
- MCF100A 100
- MCF100B MCF100B
- FIG. 3 the cross-sectional structures of MCF 100C according to the first embodiment and the MCF 100D according to the second embodiment are shown as four-core MCFs.
- FIG. 3 is a diagram for explaining various examples of the cross-sectional structure of the MCF according to the present disclosure (referred to as "cross-sectional structure" in FIG. 3).
- pattern 1 (2 cores) the cross-sectional structures of MCF100A (100) according to Embodiment 1 and MCF100B according to Embodiment 2
- the cross-sectional structures of the MCF 100C according to the first embodiment and the MCF 100D according to the second embodiment are shown as four-core MCFs.
- FIG. 3 the cross-sectional structures of the MCF 100C according
- the MCF 100A according to the first embodiment and the MCF 100B according to the second embodiment shown in the upper part of FIG. 3 are both two-core MCFs, and have the same cross-sectional structure as the examples shown in the middle part of FIG. 2 and the lower part of FIG. have
- the MCF 100C is a four-core MCF and has a first structure as a mode leakage adjustment structure. That is, the MCF 100C includes a glass optical fiber 110C and a resin coating 140.
- the glass optical fiber 110C includes high refractive index cores 111 and 113, low refractive index cores 112 and 114, a cladding 120, and a first structure of a mode leakage adjustment structure.
- the distances from the fiber axis AX to the centers of the four cores are the same.
- a first structure of the mode leakage adjustment structure is realized by a high refractive index marker 130 provided at a predetermined position within the cladding 120.
- the center of the high refractive index marker 130 is located closer to the high refractive index cores 111 and 113 than the low refractive index cores 112 and 114. Further, the distance from the center of the high refractive index marker 130 to the center of the high refractive index core 111 is the same as the distance from the center of the high refractive index marker 130 to the center of the high refractive index core 113.
- the MCF 100D according to the second embodiment shown in the middle part of FIG. 3 is a four-core MCF and has a second structure as a mode leakage adjustment structure. That is, the MCF 100D includes a glass optical fiber 110D and a resin coating 140. Glass optical fiber 110D includes high refractive index cores 111 and 113, low refractive index cores 112 and 114, a cladding 120, and a second structure of a mode leakage adjustment structure.
- the second structure of the mode leakage adjustment structure is defined by the double clad structure of the cladding 120 and the shifted structure of the four cores.
- the double cladding structure of the cladding 120 is composed of an inner cladding 121 having a refractive index n 3 and an outer diameter D, and an outer cladding 122 having a refractive index n C (>n 3 ).
- the high refractive index cores 111, 113 and the low refractive index core 112 are arranged so that the high refractive index cores 111, 113 are closer to the inner wall surface of the outer cladding 122 than the low refractive index cores 112, 114. , 114 are shifted by ⁇ x from the reference positions 111a, 112a, 113a, and 114a, respectively ( ⁇ x/D>1%).
- the MCF 100E according to the first embodiment shown in the lower part of FIG. 3 is a two-core MCF, and like the MCF 100A, has a first structure as a mode leakage adjustment structure.
- the glass optical fiber 110E of the MCF 100E differs from the glass optical fiber 110A of the MCF 100A in that the clad 120 has a double clad structure. In the case of such a configuration, compared to the case of the MCF 100A, it becomes possible to leak more high-order modes remaining in the high refractive index core 111.
- the MCF 100F according to the second embodiment shown in the lower part of FIG. 3 is a four-core MCF, and like the MCF 100D, has a second structure as a mode leakage adjustment structure.
- the glass optical fiber 110F of MCF100F has a high refractive index marker 130 arranged in the inner cladding 121 in addition to the high refractive index cores 111 and 113 and the low refractive index cores 112 and 114, and the glass optical fiber 110F of MCF100D This is different from fiber 110D. Even in the case of such a configuration, it is possible to leak more high-order modes remaining in the high refractive index core 111 than in the case of the MCF100D.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
Description
本願は、2022年3月30日に出願された日本特許出願第2022-055331号による優先権を主張するものであり、その内容に依拠すると共に、その全体を参照して本明細書に組み込む。
発明者らは、上述の従来技術について検討した結果、以下のような課題を発見した。すなわち、従来のMCFでは、屈折率の異なる複数のコアを採用することで、コア間の伝送品質のばらつきが大きくなっていた。具体的に、高屈折率コアは、カットオフ波長が長くなることにより高次モードが残留しやすくなる。一方、低屈折率コアは、高屈折率コアと比較して高次モードは残留しにくいが基底モードの曲げ損失が高くなる傾向がある。このような高屈折率コアと低屈折率コアの双方の品質劣化を抑制するためには厳しい製造トレランスが必要となるため、MCFの製造コストが高くなるという課題があった。
本開示のMCFによれば、屈折率の異なる複数のコアが採用された構成において製造トレランスを拡大することによる製造コストの効果的な抑制が可能になる。
最初に本開示の実施形態の内容をそれぞれ個別に列挙して説明する。
(1)ガラス光ファイバと、樹脂被覆と、を備える。ガラス光ファイバは、中心軸であるファイバ軸に沿ってそれぞれ伸びた複数のコアと、複数のコアを取り囲むクラッドと、モード漏洩調整構造と、を有する。複数のコアは、第一コアとして高屈折率コアと、高屈折率コアの屈折率よりも低い屈折率を有する第二コアとして低屈折率コアと、を含む。クラッドの屈折率は、全コアのうちいずれのコアの屈折率よりも低い。樹脂被覆は、ガラス光ファイバの外周面上に設けられている。また、中心軸に直交したMCFの断面上において、クラッドの屈折率と異なる屈折率を有する複数の部分の中心の配置は、断面の中心に対して回転対称性がない。複数の部分は、複数のコアを含む。さらに、モード漏洩調整構造は、低屈折率コア内に残留する高次モードのカットオフ波長と高屈折率コア内に残留する高次モードのカットオフ波長の差を小さくするよう機能する。
V=(2π/λ)・r・(nmarker 2-nclad 2)1/2 …(1)
で定義される。ここで、(2π/λ)は波長λの光の真空中での波数であり、rは高屈折率マーカーの半径であり、nmarkerは高屈折率マーカーの屈折率であり、ncladはクラッドの屈折率である。
以下、本開示のMCFの具体的な構造を、添付図面を参照しながら詳細に説明する。なお、本開示は、これらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。また、図面の説明において同一の要素には同一符号を付して重複する説明を省略する。
110、110A、110B、110C、110D、110E、110F…ガラス光ファイバ
111、113…高屈折率コア
112、114…低屈折率コア
111a、112a、113a、114a…基準位置
120…クラッド
121…内側クラッド
122…外側クラッド
130…高屈折率マーカー
140…樹脂被覆
150…屈折率プロファイル
AX…ファイバ軸
L…線
λ1、λ2…カットオフ波長
Δx…シフト量
Claims (8)
- 中心軸に沿ってそれぞれ伸びた複数のコアと、前記複数のコアを取り囲むクラッドと、を有し、前記複数のコアが高屈折率を有する第一コアと前記第一コアの屈折率よりも低い屈折率を有する第二コアとを含むガラス光ファイバと、
前記ガラス光ファイバの外周面上に設けられた樹脂被覆と、
を備えたマルチコア光ファイバであって、
前記中心軸に直交した前記マルチコア光ファイバの断面上において、前記クラッドの屈折率と異なる屈折率を有する複数の部分の中心の配置は、前記断面の中心に対して回転対称性がなく、
前記第二コア内に残留する高次モードのカットオフ波長と前記第一コア内に残留する高次モードのカットオフ波長の差を小さくするモード漏洩調整構造を更に備えた、
マルチコア光ファイバ。 - 前記モード漏洩調整構造は、前記複数のコアに沿って伸びるとともに前記クラッドの屈折率よりも高い屈折率を有する高屈折率マーカーを含み、
前記高屈折率マーカーの中心は、前記クラッド内の前記第一コアの中心までの距離が前記第二コアの中心までの距離よりも短くなる位置に配置されている、
請求項1に記載のマルチコア光ファイバ。 - 波長λでの前記高屈折率マーカーに関するV値は、2.405以下である、
請求項2に記載のマルチコア光ファイバ。 - 前記クラッドは、前記複数のコアおよび前記高屈折率マーカーを取り囲む内側クラッドと、前記内側クラッドの外周面上に設けられるとともに前記内側クラッドの屈折率よりも高い屈折率を有する外側クラッドと、を含む、
請求項2または請求項3に記載のマルチコア光ファイバ。 - 前記波長λは、伝送される信号光の最短波長である、
請求項3に記載のマルチコア光ファイバ。 - 前記モード漏洩調整構造は、
前記複数のコアを取り囲み外径Dを有する内側クラッドと、前記内側クラッドの外周面上に設けられ、前記内側クラッドの屈折率よりも高い屈折率を有する外側クラッドと、により構成された前記クラッドの二重クラッド構造と、
前記断面上において、前記外側クラッドの内周面から等距離に中心が位置する前記第一コアおよび前記第二コアの基準位置に対して、前記第二コアよりも前記第一コアが前記外側クラッドの内周面に近くなるように前記第一コアおよび第二コアの中心が前記中心軸と直交する線に沿ってΔxだけシフトされたコア配置と、
を含む、
請求項1に記載のマルチコア光ファイバ。 - 前記内側クラッドの外径Dに対する前記第一コアおよび前記第二コアのシフト量Δxの比Δx/Dは、0.01よりも大きい、
請求項6に記載のマルチコア光ファイバ。 - 前記複数のコアに沿って伸びるとともに前記外側クラッドの屈折率よりも高い屈折率を有するマーカーを含み、
前記マーカーの中心は、前記第一コアの中心までの距離が前記第二コアの中心までの距離よりも短くなる位置に配置されている、
請求項6または請求項7に記載のマルチコア光ファイバ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202380019969.0A CN118647910A (zh) | 2022-03-30 | 2023-03-15 | 多芯光纤 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022055331 | 2022-03-30 | ||
JP2022-055331 | 2022-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023189621A1 true WO2023189621A1 (ja) | 2023-10-05 |
Family
ID=88201656
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/010165 WO2023189621A1 (ja) | 2022-03-30 | 2023-03-15 | マルチコア光ファイバ |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN118647910A (ja) |
WO (1) | WO2023189621A1 (ja) |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011209702A (ja) * | 2010-03-10 | 2011-10-20 | Sumitomo Electric Ind Ltd | マルチコア光ファイバ |
WO2012026473A1 (ja) * | 2010-08-24 | 2012-03-01 | 国立大学法人横浜国立大学 | マルチコアファイバおよびマルチコアファイバのコアの配置方法 |
JP2012168453A (ja) * | 2011-02-16 | 2012-09-06 | Hitachi Cable Ltd | マルチコア光ファイバ及びマルチコア光ファイバの製造方法並びにマルチコア光ファイバ同士の接続方法 |
WO2012121027A1 (ja) * | 2011-03-04 | 2012-09-13 | 株式会社フジクラ | マルチコアファイバ、及び、それを用いたマルチコアファイバの接続方法 |
JP2013033865A (ja) * | 2011-08-02 | 2013-02-14 | Mitsubishi Cable Ind Ltd | 光ファイバおよび光ファイバの製造方法 |
WO2013027776A1 (ja) | 2011-08-25 | 2013-02-28 | 国立大学法人横浜国立大学 | マルチコアファイバおよびマルチコアファイバのコアの配置方法 |
CN104035166A (zh) * | 2014-05-23 | 2014-09-10 | 武汉锐科光纤激光器技术有限责任公司 | 基于多芯光纤的高功率激光合束器 |
JP2014197094A (ja) * | 2013-03-29 | 2014-10-16 | 住友電気工業株式会社 | マルチコア光ファイバ |
WO2020217939A1 (ja) * | 2019-04-25 | 2020-10-29 | 日本電信電話株式会社 | マルチコア光ファイバ及び設計方法 |
JP2021012226A (ja) | 2019-07-03 | 2021-02-04 | 住友電気工業株式会社 | マルチコア光ファイバ |
WO2021131976A1 (ja) * | 2019-12-26 | 2021-07-01 | 株式会社フジクラ | マルチコアファイバ、光ファイバケーブル、及び光コネクタ |
JP2022055331A (ja) | 2020-09-28 | 2022-04-07 | 三菱ケミカル株式会社 | 画像表示用導光板 |
WO2022085534A1 (ja) * | 2020-10-23 | 2022-04-28 | 住友電気工業株式会社 | マルチコア光ファイバ |
-
2023
- 2023-03-15 WO PCT/JP2023/010165 patent/WO2023189621A1/ja active Application Filing
- 2023-03-15 CN CN202380019969.0A patent/CN118647910A/zh active Pending
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011209702A (ja) * | 2010-03-10 | 2011-10-20 | Sumitomo Electric Ind Ltd | マルチコア光ファイバ |
WO2012026473A1 (ja) * | 2010-08-24 | 2012-03-01 | 国立大学法人横浜国立大学 | マルチコアファイバおよびマルチコアファイバのコアの配置方法 |
JP2012168453A (ja) * | 2011-02-16 | 2012-09-06 | Hitachi Cable Ltd | マルチコア光ファイバ及びマルチコア光ファイバの製造方法並びにマルチコア光ファイバ同士の接続方法 |
WO2012121027A1 (ja) * | 2011-03-04 | 2012-09-13 | 株式会社フジクラ | マルチコアファイバ、及び、それを用いたマルチコアファイバの接続方法 |
JP2013033865A (ja) * | 2011-08-02 | 2013-02-14 | Mitsubishi Cable Ind Ltd | 光ファイバおよび光ファイバの製造方法 |
WO2013027776A1 (ja) | 2011-08-25 | 2013-02-28 | 国立大学法人横浜国立大学 | マルチコアファイバおよびマルチコアファイバのコアの配置方法 |
JP2014197094A (ja) * | 2013-03-29 | 2014-10-16 | 住友電気工業株式会社 | マルチコア光ファイバ |
CN104035166A (zh) * | 2014-05-23 | 2014-09-10 | 武汉锐科光纤激光器技术有限责任公司 | 基于多芯光纤的高功率激光合束器 |
WO2020217939A1 (ja) * | 2019-04-25 | 2020-10-29 | 日本電信電話株式会社 | マルチコア光ファイバ及び設計方法 |
JP2021012226A (ja) | 2019-07-03 | 2021-02-04 | 住友電気工業株式会社 | マルチコア光ファイバ |
WO2021131976A1 (ja) * | 2019-12-26 | 2021-07-01 | 株式会社フジクラ | マルチコアファイバ、光ファイバケーブル、及び光コネクタ |
JP2022055331A (ja) | 2020-09-28 | 2022-04-07 | 三菱ケミカル株式会社 | 画像表示用導光板 |
WO2022085534A1 (ja) * | 2020-10-23 | 2022-04-28 | 住友電気工業株式会社 | マルチコア光ファイバ |
Also Published As
Publication number | Publication date |
---|---|
CN118647910A (zh) | 2024-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6177994B2 (ja) | マルチコアファイバ | |
JP6722271B2 (ja) | マルチコアファイバ | |
JP5916525B2 (ja) | マルチコアファイバ | |
WO2011024808A1 (ja) | マルチコアファイバ | |
US8805146B2 (en) | Multicore optical fiber | |
JP5855351B2 (ja) | マルチコアファイバ | |
JP6532748B2 (ja) | マルチコアファイバ | |
US20120134637A1 (en) | Multi-core optical fiber and method of manufacturing the same | |
CN112180498A (zh) | 多芯光纤 | |
US20150234120A1 (en) | Optical device | |
US11675121B2 (en) | Multi-core optical fiber and multi-core optical fiber cable | |
JP5771025B2 (ja) | マルチコアファイバ | |
KR102638033B1 (ko) | 광파이버 | |
WO2013108524A1 (ja) | マルチコアファイバ | |
WO2014156412A1 (ja) | マルチコア光ファイバ | |
WO2022034662A1 (ja) | マルチコア光ファイバ及び設計方法 | |
JP2014010266A (ja) | マルチコアファイバ | |
US20240288627A1 (en) | Multi-core optical fiber and multi-core optical fiber cable | |
CN111007590B (zh) | 模分复用所用的弱耦合少模光纤和相应的光学传输系统 | |
US9057813B2 (en) | Optical fiber | |
JP2007094363A (ja) | 光ファイバおよび光伝送媒体 | |
WO2017130487A1 (ja) | マルチコアファイバ | |
WO2023189621A1 (ja) | マルチコア光ファイバ | |
WO2018168170A1 (ja) | マルチコアファイバ | |
WO2022097639A1 (ja) | マルチコア光ファイバ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23779639 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024511767 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202380019969.0 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023779639 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2023779639 Country of ref document: EP Effective date: 20241030 |