WO2023182377A1 - High-molecular-weight triarylamine compound and organic electroluminescent element - Google Patents
High-molecular-weight triarylamine compound and organic electroluminescent element Download PDFInfo
- Publication number
- WO2023182377A1 WO2023182377A1 PCT/JP2023/011302 JP2023011302W WO2023182377A1 WO 2023182377 A1 WO2023182377 A1 WO 2023182377A1 JP 2023011302 W JP2023011302 W JP 2023011302W WO 2023182377 A1 WO2023182377 A1 WO 2023182377A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- molecular weight
- high molecular
- weight compound
- structural unit
- Prior art date
Links
- -1 triarylamine compound Chemical class 0.000 title claims description 46
- 150000002605 large molecules Chemical class 0.000 claims abstract description 139
- 239000012044 organic layer Substances 0.000 claims abstract description 64
- 238000002347 injection Methods 0.000 claims abstract description 41
- 239000007924 injection Substances 0.000 claims abstract description 41
- 230000000903 blocking effect Effects 0.000 claims abstract description 37
- 125000005259 triarylamine group Chemical group 0.000 claims abstract description 15
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 claims abstract description 5
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 claims abstract description 3
- 239000010410 layer Substances 0.000 claims description 161
- 230000005525 hole transport Effects 0.000 claims description 44
- 125000004432 carbon atom Chemical group C* 0.000 claims description 27
- 125000000217 alkyl group Chemical group 0.000 claims description 24
- 239000004793 Polystyrene Substances 0.000 claims description 18
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 18
- 229920002223 polystyrene Polymers 0.000 claims description 18
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 14
- 125000003342 alkenyl group Chemical group 0.000 claims description 12
- 125000003545 alkoxy group Chemical group 0.000 claims description 12
- 125000003118 aryl group Chemical group 0.000 claims description 12
- 125000004104 aryloxy group Chemical group 0.000 claims description 12
- 125000000000 cycloalkoxy group Chemical group 0.000 claims description 11
- 125000004431 deuterium atom Chemical group 0.000 claims description 10
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims description 9
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 9
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 9
- 229910052805 deuterium Inorganic materials 0.000 claims description 9
- 125000001153 fluoro group Chemical group F* 0.000 claims description 9
- 125000001072 heteroaryl group Chemical group 0.000 claims description 9
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 9
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 9
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 8
- 229910052801 chlorine Inorganic materials 0.000 claims description 8
- 229910052731 fluorine Inorganic materials 0.000 claims description 8
- 229910052740 iodine Inorganic materials 0.000 claims description 8
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 7
- 125000003277 amino group Chemical group 0.000 claims description 6
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 claims description 5
- 125000001624 naphthyl group Chemical group 0.000 claims description 5
- 125000000641 acridinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3C=C12)* 0.000 claims description 4
- 125000004988 dibenzothienyl group Chemical group C1(=CC=CC=2SC3=C(C21)C=CC=C3)* 0.000 claims description 4
- 125000001820 oxy group Chemical group [*:1]O[*:2] 0.000 claims description 4
- 125000001792 phenanthrenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C=CC12)* 0.000 claims description 4
- 238000004132 cross linking Methods 0.000 claims description 3
- 125000004957 naphthylene group Chemical group 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 56
- 239000010409 thin film Substances 0.000 abstract description 13
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 183
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 67
- 239000000543 intermediate Substances 0.000 description 60
- 238000000576 coating method Methods 0.000 description 35
- 239000000758 substrate Substances 0.000 description 32
- 239000011248 coating agent Substances 0.000 description 29
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 29
- 239000000243 solution Substances 0.000 description 29
- 150000001875 compounds Chemical class 0.000 description 25
- 229910052757 nitrogen Inorganic materials 0.000 description 25
- 239000000126 substance Substances 0.000 description 23
- 230000015572 biosynthetic process Effects 0.000 description 22
- 239000012043 crude product Substances 0.000 description 22
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 21
- 238000006243 chemical reaction Methods 0.000 description 21
- 229920000642 polymer Polymers 0.000 description 21
- 238000007740 vapor deposition Methods 0.000 description 21
- 238000003786 synthesis reaction Methods 0.000 description 20
- 229940126062 Compound A Drugs 0.000 description 19
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 19
- 238000001816 cooling Methods 0.000 description 18
- 229910001873 dinitrogen Inorganic materials 0.000 description 17
- 239000007788 liquid Substances 0.000 description 17
- 238000001914 filtration Methods 0.000 description 16
- 239000000203 mixture Substances 0.000 description 16
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 15
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 15
- 239000011521 glass Substances 0.000 description 15
- 238000000926 separation method Methods 0.000 description 15
- 239000000741 silica gel Substances 0.000 description 15
- 229910002027 silica gel Inorganic materials 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 14
- 238000005160 1H NMR spectroscopy Methods 0.000 description 14
- QARVLSVVCXYDNA-UHFFFAOYSA-N bromobenzene Chemical compound BrC1=CC=CC=C1 QARVLSVVCXYDNA-UHFFFAOYSA-N 0.000 description 14
- HXITXNWTGFUOAU-UHFFFAOYSA-N phenylboronic acid Chemical compound OB(O)C1=CC=CC=C1 HXITXNWTGFUOAU-UHFFFAOYSA-N 0.000 description 14
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 14
- 125000001424 substituent group Chemical group 0.000 description 14
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 14
- 239000010408 film Substances 0.000 description 13
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 12
- 239000000047 product Substances 0.000 description 11
- 238000004528 spin coating Methods 0.000 description 11
- 238000005227 gel permeation chromatography Methods 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- 239000000706 filtrate Substances 0.000 description 9
- 238000005481 NMR spectroscopy Methods 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- LXNAVEXFUKBNMK-UHFFFAOYSA-N palladium(II) acetate Substances [Pd].CC(O)=O.CC(O)=O LXNAVEXFUKBNMK-UHFFFAOYSA-N 0.000 description 8
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 8
- LVTJOONKWUXEFR-FZRMHRINSA-N protoneodioscin Natural products O(C[C@@H](CC[C@]1(O)[C@H](C)[C@@H]2[C@]3(C)[C@H]([C@H]4[C@@H]([C@]5(C)C(=CC4)C[C@@H](O[C@@H]4[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@@H](O)[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@H](CO)O4)CC5)CC3)C[C@@H]2O1)C)[C@H]1[C@H](O)[C@H](O)[C@H](O)[C@@H](CO)O1 LVTJOONKWUXEFR-FZRMHRINSA-N 0.000 description 8
- 238000000746 purification Methods 0.000 description 8
- 238000001179 sorption measurement Methods 0.000 description 8
- IOEJYZSZYUROLN-UHFFFAOYSA-M Sodium diethyldithiocarbamate Chemical compound [Na+].CCN(CC)C([S-])=S IOEJYZSZYUROLN-UHFFFAOYSA-M 0.000 description 7
- IPWKHHSGDUIRAH-UHFFFAOYSA-N bis(pinacolato)diboron Chemical compound O1C(C)(C)C(C)(C)OB1B1OC(C)(C)C(C)(C)O1 IPWKHHSGDUIRAH-UHFFFAOYSA-N 0.000 description 7
- 238000004440 column chromatography Methods 0.000 description 7
- NXQGGXCHGDYOHB-UHFFFAOYSA-L cyclopenta-1,4-dien-1-yl(diphenyl)phosphane;dichloropalladium;iron(2+) Chemical compound [Fe+2].Cl[Pd]Cl.[CH-]1C=CC(P(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1.[CH-]1C=CC(P(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 NXQGGXCHGDYOHB-UHFFFAOYSA-L 0.000 description 7
- 238000001035 drying Methods 0.000 description 7
- 235000011056 potassium acetate Nutrition 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 239000002244 precipitate Substances 0.000 description 7
- 238000010992 reflux Methods 0.000 description 7
- 229910000404 tripotassium phosphate Inorganic materials 0.000 description 7
- 235000019798 tripotassium phosphate Nutrition 0.000 description 7
- COIOYMYWGDAQPM-UHFFFAOYSA-N tris(2-methylphenyl)phosphane Chemical compound CC1=CC=CC=C1P(C=1C(=CC=CC=1)C)C1=CC=CC=C1C COIOYMYWGDAQPM-UHFFFAOYSA-N 0.000 description 7
- JSRLURSZEMLAFO-UHFFFAOYSA-N 1,3-dibromobenzene Chemical compound BrC1=CC=CC(Br)=C1 JSRLURSZEMLAFO-UHFFFAOYSA-N 0.000 description 6
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical class [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 5
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 4
- 239000004327 boric acid Substances 0.000 description 4
- 150000001716 carbazoles Chemical class 0.000 description 4
- 239000011247 coating layer Substances 0.000 description 4
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- MFRIHAYPQRLWNB-UHFFFAOYSA-N sodium tert-butoxide Chemical compound [Na+].CC(C)(C)[O-] MFRIHAYPQRLWNB-UHFFFAOYSA-N 0.000 description 4
- 230000002194 synthesizing effect Effects 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 3
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 3
- 238000003848 UV Light-Curing Methods 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 125000005843 halogen group Chemical group 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 3
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 3
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Substances [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 3
- 150000004322 quinolinols Chemical class 0.000 description 3
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- 239000008096 xylene Substances 0.000 description 3
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 2
- 125000003229 2-methylhexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- AWXGSYPUMWKTBR-UHFFFAOYSA-N 4-carbazol-9-yl-n,n-bis(4-carbazol-9-ylphenyl)aniline Chemical compound C12=CC=CC=C2C2=CC=CC=C2N1C1=CC=C(N(C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=C1 AWXGSYPUMWKTBR-UHFFFAOYSA-N 0.000 description 2
- ZOKIJILZFXPFTO-UHFFFAOYSA-N 4-methyl-n-[4-[1-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]cyclohexyl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C1(CCCCC1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 ZOKIJILZFXPFTO-UHFFFAOYSA-N 0.000 description 2
- VFUDMQLBKNMONU-UHFFFAOYSA-N 9-[4-(4-carbazol-9-ylphenyl)phenyl]carbazole Chemical group C12=CC=CC=C2C2=CC=CC=C2N1C1=CC=C(C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=C1 VFUDMQLBKNMONU-UHFFFAOYSA-N 0.000 description 2
- 101000837344 Homo sapiens T-cell leukemia translocation-altered gene protein Proteins 0.000 description 2
- PCLIMKBDDGJMGD-UHFFFAOYSA-N N-bromosuccinimide Chemical compound BrN1C(=O)CCC1=O PCLIMKBDDGJMGD-UHFFFAOYSA-N 0.000 description 2
- 102100028692 T-cell leukemia translocation-altered gene protein Human genes 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 125000002178 anthracenyl group Chemical group C1(=CC=CC2=CC3=CC=CC=C3C=C12)* 0.000 description 2
- 229940058303 antinematodal benzimidazole derivative Drugs 0.000 description 2
- 239000002635 aromatic organic solvent Substances 0.000 description 2
- 150000001556 benzimidazoles Chemical class 0.000 description 2
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 2
- 125000000499 benzofuranyl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 2
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 2
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 2
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 2
- UFVXQDWNSAGPHN-UHFFFAOYSA-K bis[(2-methylquinolin-8-yl)oxy]-(4-phenylphenoxy)alumane Chemical compound [Al+3].C1=CC=C([O-])C2=NC(C)=CC=C21.C1=CC=C([O-])C2=NC(C)=CC=C21.C1=CC([O-])=CC=C1C1=CC=CC=C1 UFVXQDWNSAGPHN-UHFFFAOYSA-K 0.000 description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 2
- XJHCXCQVJFPJIK-UHFFFAOYSA-M caesium fluoride Chemical compound [F-].[Cs+] XJHCXCQVJFPJIK-UHFFFAOYSA-M 0.000 description 2
- 125000004623 carbolinyl group Chemical group 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 125000003914 fluoranthenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC=C4C1=C23)* 0.000 description 2
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 2
- 125000002541 furyl group Chemical group 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 2
- 125000001041 indolyl group Chemical group 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 2
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 125000005956 isoquinolyl group Chemical group 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000005244 neohexyl group Chemical group [H]C([H])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 150000004866 oxadiazoles Chemical class 0.000 description 2
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 2
- 150000005041 phenanthrolines Chemical class 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- 125000003226 pyrazolyl group Chemical group 0.000 description 2
- 125000001725 pyrenyl group Chemical group 0.000 description 2
- 125000004076 pyridyl group Chemical group 0.000 description 2
- 125000000714 pyrimidinyl group Chemical group 0.000 description 2
- 125000000168 pyrrolyl group Chemical group 0.000 description 2
- 125000005493 quinolyl group Chemical group 0.000 description 2
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical class O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 125000001544 thienyl group Chemical group 0.000 description 2
- 150000003918 triazines Chemical class 0.000 description 2
- 125000004306 triazinyl group Chemical group 0.000 description 2
- 239000013638 trimer Substances 0.000 description 2
- DETFWTCLAIIJRZ-UHFFFAOYSA-N triphenyl-(4-triphenylsilylphenyl)silane Chemical compound C1=CC=CC=C1[Si](C=1C=CC(=CC=1)[Si](C=1C=CC=CC=1)(C=1C=CC=CC=1)C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 DETFWTCLAIIJRZ-UHFFFAOYSA-N 0.000 description 2
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 2
- 125000003960 triphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C3=CC=CC=C3C12)* 0.000 description 2
- BWHDROKFUHTORW-UHFFFAOYSA-N tritert-butylphosphane Chemical compound CC(C)(C)P(C(C)(C)C)C(C)(C)C BWHDROKFUHTORW-UHFFFAOYSA-N 0.000 description 2
- XAEOVQODHLLNKX-UHFFFAOYSA-N (3-aminophenyl)boronic acid;hydrate Chemical compound O.NC1=CC=CC(B(O)O)=C1 XAEOVQODHLLNKX-UHFFFAOYSA-N 0.000 description 1
- PXLYGWXKAVCTPX-UHFFFAOYSA-N 1,2,3,4,5,6-hexamethylidenecyclohexane Chemical class C=C1C(=C)C(=C)C(=C)C(=C)C1=C PXLYGWXKAVCTPX-UHFFFAOYSA-N 0.000 description 1
- UCCUXODGPMAHRL-UHFFFAOYSA-N 1-bromo-4-iodobenzene Chemical compound BrC1=CC=C(I)C=C1 UCCUXODGPMAHRL-UHFFFAOYSA-N 0.000 description 1
- XNCMQRWVMWLODV-UHFFFAOYSA-N 1-phenylbenzimidazole Chemical compound C1=NC2=CC=CC=C2N1C1=CC=CC=C1 XNCMQRWVMWLODV-UHFFFAOYSA-N 0.000 description 1
- ZABORCXHTNWZRV-UHFFFAOYSA-N 10-[4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl]phenoxazine Chemical compound O1C2=CC=CC=C2N(C2=CC=C(C=C2)C2=NC(=NC(=N2)C2=CC=CC=C2)C2=CC=CC=C2)C2=C1C=CC=C2 ZABORCXHTNWZRV-UHFFFAOYSA-N 0.000 description 1
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Natural products C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 1
- PRWATGACIORDEL-UHFFFAOYSA-N 2,4,5,6-tetra(carbazol-9-yl)benzene-1,3-dicarbonitrile Chemical compound C12=CC=CC=C2C2=CC=CC=C2N1C1=C(C#N)C(N2C3=CC=CC=C3C3=CC=CC=C32)=C(N2C3=CC=CC=C3C3=CC=CC=C32)C(N2C3=CC=CC=C3C3=CC=CC=C32)=C1C#N PRWATGACIORDEL-UHFFFAOYSA-N 0.000 description 1
- STTGYIUESPWXOW-UHFFFAOYSA-N 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline Chemical compound C=12C=CC3=C(C=4C=CC=CC=4)C=C(C)N=C3C2=NC(C)=CC=1C1=CC=CC=C1 STTGYIUESPWXOW-UHFFFAOYSA-N 0.000 description 1
- GEQBRULPNIVQPP-UHFFFAOYSA-N 2-[3,5-bis(1-phenylbenzimidazol-2-yl)phenyl]-1-phenylbenzimidazole Chemical compound C1=CC=CC=C1N1C2=CC=CC=C2N=C1C1=CC(C=2N(C3=CC=CC=C3N=2)C=2C=CC=CC=2)=CC(C=2N(C3=CC=CC=C3N=2)C=2C=CC=CC=2)=C1 GEQBRULPNIVQPP-UHFFFAOYSA-N 0.000 description 1
- CTRVHTCLUXFFBD-UHFFFAOYSA-N 2-bromo-7-iodo-9,9-dioctylfluorene Chemical compound C1=C(I)C=C2C(CCCCCCCC)(CCCCCCCC)C3=CC(Br)=CC=C3C2=C1 CTRVHTCLUXFFBD-UHFFFAOYSA-N 0.000 description 1
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 1
- WXNYCQRAJCGMGJ-UHFFFAOYSA-N 2-phenyl-n-(2-phenylphenyl)-n-[4-[4-(2-phenyl-n-(2-phenylphenyl)anilino)phenyl]phenyl]aniline Chemical class C1=CC=CC=C1C1=CC=CC=C1N(C=1C(=CC=CC=1)C=1C=CC=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C(=CC=CC=2)C=2C=CC=CC=2)C=2C(=CC=CC=2)C=2C=CC=CC=2)C=C1 WXNYCQRAJCGMGJ-UHFFFAOYSA-N 0.000 description 1
- VQGHOUODWALEFC-UHFFFAOYSA-N 2-phenylpyridine Chemical compound C1=CC=CC=C1C1=CC=CC=N1 VQGHOUODWALEFC-UHFFFAOYSA-N 0.000 description 1
- GOLORTLGFDVFDW-UHFFFAOYSA-N 3-(1h-benzimidazol-2-yl)-7-(diethylamino)chromen-2-one Chemical compound C1=CC=C2NC(C3=CC4=CC=C(C=C4OC3=O)N(CC)CC)=NC2=C1 GOLORTLGFDVFDW-UHFFFAOYSA-N 0.000 description 1
- OGGKVJMNFFSDEV-UHFFFAOYSA-N 3-methyl-n-[4-[4-(n-(3-methylphenyl)anilino)phenyl]phenyl]-n-phenylaniline Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 OGGKVJMNFFSDEV-UHFFFAOYSA-N 0.000 description 1
- FJXNABNMUQXOHX-UHFFFAOYSA-N 4-(9h-carbazol-1-yl)-n,n-bis[4-(9h-carbazol-1-yl)phenyl]aniline Chemical compound C12=CC=CC=C2NC2=C1C=CC=C2C(C=C1)=CC=C1N(C=1C=CC(=CC=1)C=1C=2NC3=CC=CC=C3C=2C=CC=1)C(C=C1)=CC=C1C1=C2NC3=CC=CC=C3C2=CC=C1 FJXNABNMUQXOHX-UHFFFAOYSA-N 0.000 description 1
- GMHHTGYHERDNLO-UHFFFAOYSA-N 4-bromobicyclo[4.2.0]octa-1(6),2,4-triene Chemical compound BrC1=CC=C2CCC2=C1 GMHHTGYHERDNLO-UHFFFAOYSA-N 0.000 description 1
- 125000004800 4-bromophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1Br 0.000 description 1
- YXHXRBIAIVNCPG-UHFFFAOYSA-N 9-(3,5-dibromophenyl)carbazole Chemical compound BrC1=CC(Br)=CC(N2C3=CC=CC=C3C3=CC=CC=C32)=C1 YXHXRBIAIVNCPG-UHFFFAOYSA-N 0.000 description 1
- MZYDBGLUVPLRKR-UHFFFAOYSA-N 9-(3-carbazol-9-ylphenyl)carbazole Chemical compound C12=CC=CC=C2C2=CC=CC=C2N1C1=CC(N2C3=CC=CC=C3C3=CC=CC=C32)=CC=C1 MZYDBGLUVPLRKR-UHFFFAOYSA-N 0.000 description 1
- FOUNKDBOYUMWNP-UHFFFAOYSA-N 9-[4-[2-(4-carbazol-9-ylphenyl)-2-adamantyl]phenyl]carbazole Chemical compound C12=CC=CC=C2C2=CC=CC=C2N1C(C=C1)=CC=C1C1(C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C(C2)CC3CC1CC2C3 FOUNKDBOYUMWNP-UHFFFAOYSA-N 0.000 description 1
- GFEWJHOBOWFNRV-UHFFFAOYSA-N 9-[4-[9-(4-carbazol-9-ylphenyl)fluoren-9-yl]phenyl]carbazole Chemical compound C12=CC=CC=C2C2=CC=CC=C2N1C(C=C1)=CC=C1C1(C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C2=CC=CC=C2C2=CC=CC=C12 GFEWJHOBOWFNRV-UHFFFAOYSA-N 0.000 description 1
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- RHZIASBPRLPEKR-UHFFFAOYSA-N CC1(OB(OC1(C)C)C1=CC2=C(C=C1)CC2)C Chemical compound CC1(OB(OC1(C)C)C1=CC2=C(C=C1)CC2)C RHZIASBPRLPEKR-UHFFFAOYSA-N 0.000 description 1
- 241000284156 Clerodendrum quadriloculare Species 0.000 description 1
- 229910021595 Copper(I) iodide Inorganic materials 0.000 description 1
- 229910000846 In alloy Inorganic materials 0.000 description 1
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- UMCYTBCCHZRHDX-UHFFFAOYSA-N N,N-bis(4-bromophenyl)-9,9-dioctylfluoren-2-amine Chemical compound CCCCCCCCC1(CCCCCCCC)C2=CC=CC=C2C2=CC=C(C=C12)N(C1=CC=C(Br)C=C1)C1=CC=C(Br)C=C1 UMCYTBCCHZRHDX-UHFFFAOYSA-N 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- FUHDUDFIRJUPIV-UHFFFAOYSA-N [4-[9-(4-carbazol-9-ylphenyl)fluoren-9-yl]phenyl]-triphenylsilane Chemical compound C1=CC=CC=C1[Si](C=1C=CC(=CC=1)C1(C2=CC=CC=C2C2=CC=CC=C21)C=1C=CC(=CC=1)N1C2=CC=CC=C2C2=CC=CC=C21)(C=1C=CC=CC=1)C1=CC=CC=C1 FUHDUDFIRJUPIV-UHFFFAOYSA-N 0.000 description 1
- JHYLKGDXMUDNEO-UHFFFAOYSA-N [Mg].[In] Chemical compound [Mg].[In] JHYLKGDXMUDNEO-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- CUJRVFIICFDLGR-UHFFFAOYSA-N acetylacetonate Chemical compound CC(=O)[CH-]C(C)=O CUJRVFIICFDLGR-UHFFFAOYSA-N 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 125000003670 adamantan-2-yl group Chemical group [H]C1([H])C(C2([H])[H])([H])C([H])([H])C3([H])C([*])([H])C1([H])C([H])([H])C2([H])C3([H])[H] 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 1
- UUESRJFGZMCELZ-UHFFFAOYSA-K aluminum;2-methylquinoline-8-carboxylate;4-phenylphenolate Chemical compound [Al+3].C1=CC([O-])=CC=C1C1=CC=CC=C1.C1=CC=C(C([O-])=O)C2=NC(C)=CC=C21.C1=CC=C(C([O-])=O)C2=NC(C)=CC=C21 UUESRJFGZMCELZ-UHFFFAOYSA-K 0.000 description 1
- 150000001454 anthracenes Chemical class 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 125000003609 aryl vinyl group Chemical group 0.000 description 1
- HFACYLZERDEVSX-UHFFFAOYSA-N benzidine Chemical class C1=CC(N)=CC=C1C1=CC=C(N)C=C1 HFACYLZERDEVSX-UHFFFAOYSA-N 0.000 description 1
- 150000001562 benzopyrans Chemical class 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000010549 co-Evaporation Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 150000004696 coordination complex Chemical group 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- LSXDOTMGLUJQCM-UHFFFAOYSA-M copper(i) iodide Chemical compound I[Cu] LSXDOTMGLUJQCM-UHFFFAOYSA-M 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 125000003113 cycloheptyloxy group Chemical group C1(CCCCCC1)O* 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000002933 cyclohexyloxy group Chemical group C1(CCCCC1)O* 0.000 description 1
- 125000004410 cyclooctyloxy group Chemical group C1(CCCCCCC1)O* 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001887 cyclopentyloxy group Chemical group C1(CCCC1)O* 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 150000004820 halides Chemical group 0.000 description 1
- 230000002140 halogenating effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 125000000555 isopropenyl group Chemical group [H]\C([H])=C(\*)C([H])([H])[H] 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- ANYCDYKKVZQRMR-UHFFFAOYSA-N lithium;quinoline Chemical compound [Li].N1=CC=CC2=CC=CC=C21 ANYCDYKKVZQRMR-UHFFFAOYSA-N 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- SJCKRGFTWFGHGZ-UHFFFAOYSA-N magnesium silver Chemical compound [Mg].[Ag] SJCKRGFTWFGHGZ-UHFFFAOYSA-N 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- KVKFRMCSXWQSNT-UHFFFAOYSA-N n,n'-dimethylethane-1,2-diamine Chemical compound CNCCNC KVKFRMCSXWQSNT-UHFFFAOYSA-N 0.000 description 1
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical compound C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 1
- 125000006608 n-octyloxy group Chemical group 0.000 description 1
- 125000004593 naphthyridinyl group Chemical group N1=C(C=CC2=CC=CN=C12)* 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 150000007978 oxazole derivatives Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- XEXYATIPBLUGSF-UHFFFAOYSA-N phenanthro[9,10-b]pyridine-2,3,4,5,6,7-hexacarbonitrile Chemical group N1=C(C#N)C(C#N)=C(C#N)C2=C(C(C#N)=C(C(C#N)=C3)C#N)C3=C(C=CC=C3)C3=C21 XEXYATIPBLUGSF-UHFFFAOYSA-N 0.000 description 1
- 125000004625 phenanthrolinyl group Chemical group N1=C(C=CC2=CC=C3C=CC=NC3=C12)* 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 150000003220 pyrenes Chemical class 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 229940083082 pyrimidine derivative acting on arteriolar smooth muscle Drugs 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical class [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- YYMBJDOZVAITBP-UHFFFAOYSA-N rubrene Chemical compound C1=CC=CC=C1C(C1=C(C=2C=CC=CC=2)C2=CC=CC=C2C(C=2C=CC=CC=2)=C11)=C(C=CC=C2)C2=C1C1=CC=CC=C1 YYMBJDOZVAITBP-UHFFFAOYSA-N 0.000 description 1
- 150000003967 siloles Chemical class 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 229940042055 systemic antimycotics triazole derivative Drugs 0.000 description 1
- 229920006027 ternary co-polymer Polymers 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 150000004867 thiadiazoles Chemical class 0.000 description 1
- 150000007979 thiazole derivatives Chemical class 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- 125000006617 triphenylamine group Chemical group 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/15—Hole transporting layers
Definitions
- the present invention relates to a high molecular weight compound suitable for an organic electroluminescent device (organic EL device), which is a self-luminous device suitable for various display devices, and the device.
- organic EL device organic electroluminescent device
- organic EL devices are self-luminous devices, they are brighter and have better visibility than liquid crystal devices, allowing for clearer display, and have therefore been actively researched.
- An organic EL element has a structure in which a thin film (organic layer) of an organic compound is sandwiched between an anode and a cathode.
- Methods for forming thin films are broadly classified into vacuum evaporation methods and coating methods.
- the vacuum evaporation method is a method of forming a thin film on a substrate in vacuum, mainly using a low-molecular compound, and is a technology that has already been put into practical use.
- the coating method is a method that mainly uses high molecular weight compounds to form a thin film on a substrate using a solution such as inkjet or printing.It has high material usage efficiency and is suitable for large areas and high definition. This technology will be essential for future large-area organic EL displays.
- Vacuum deposition methods using low-molecular materials have extremely low material usage efficiency, and as the size increases, the shadow mask will bend more, making uniform deposition on large substrates difficult. It also has the problem of high manufacturing costs.
- TFB fluorene polymer
- An object of the present invention is to provide a polymer material that has excellent hole injection and transport performance, has electron blocking ability, and is highly stable in a thin film state.
- Another object of the present invention is to provide an organic EL element that has an organic layer (thin film) formed of the polymeric material, has high luminous efficiency, and has a long life.
- the present inventors focused on the fact that triarylamines containing a terphenyl structure in the molecular main chain have high hole injection and transport ability, and are also expected to have a wide gap.
- triarylamine high molecular weight compounds containing structural units we discovered a high molecular weight compound with a novel structure that has a wide gap, excellent heat resistance, and thin film stability, in addition to hole injection and transport capabilities.
- the present invention has now been completed.
- a repeating unit represented by the following general formula (3) consisting of a triarylamine structural unit represented by the following general formula (1) and a connecting structural unit represented by the general formula (2); , and a thermally crosslinkable structural unit.
- an organic EL element including an organic layer formed using the above-mentioned high molecular weight compound is provided.
- the organic layer is preferably a hole transport layer, an electron blocking layer, a hole injection layer, or a light emitting layer.
- a repeating structural unit represented by the following general formula (3) consisting of a triarylamine structural unit represented by the following general formula (1) and a connecting structural unit represented by the following general formula (2). , a thermally crosslinkable structural unit, and has a weight average molecular weight of 10,000 or more and less than 1,000,000 in terms of polystyrene.
- R 1 each independently represents a hydrogen atom, a deuterium atom, a cyano group, a nitro group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group having 3 to 40 carbon atoms, a cyclo It represents an alkyl group, an alkyloxy group, a cycloalkyloxy group, an alkenyl group, or an aryloxy group.
- R 2 each independently represents an alkyl group, a cycloalkyl group, or an alkyloxy group having 3 to 40 carbon atoms.
- X represents a hydrogen atom, an amino group, a monovalent aryl group, or a monovalent heteroaryl group.
- L represents a divalent phenyl group, and n represents an integer of 0 to 3.
- thermoly crosslinkable structural unit is a structural unit represented by the following general formulas (4-1) to (4-112).
- R is each independently a hydrogen atom, a deuterium atom, a cyano group, a nitro group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or an alkyl group, a cycloalkyl group, or an alkyl group having 3 to 40 carbon atoms. Indicates an oxy group, cycloalkyloxy group, alkenyl group, or aryloxy group.
- R is each independently a hydrogen atom, a deuterium atom, a cyano group, a nitro group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or an alkyl group, a cycloalkyl group, or an alkyl group having 3 to 40 carbon atoms. Indicates an oxy group, cycloalkyloxy group, alkenyl group, or aryloxy group.
- An organic electroluminescent device comprising an organic layer formed using the high molecular weight compound according to any one of [1] to [7].
- the high molecular weight compound of the present invention is composed of a triarylamine structural unit (divalent group) represented by the above-mentioned general formula (1) and a connecting structural unit (bivalent group) represented by general formula (2). It is a polymer containing a repeating structural unit represented by the general formula (3) and a thermally crosslinkable structural unit, and preferably has a weight average molecular weight in terms of polystyrene measured by GPC (gel permeation chromatography). is in the range of 10,000 or more and less than 1,000,000.
- GPC gel permeation chromatography
- the high molecular weight compound of the present invention is (1) Good hole injection characteristics; (2) High hole mobility; (3) wide gap and excellent electron blocking ability; (4) The thin film state is stable; (5) Excellent heat resistance; It has the following characteristics.
- An organic EL device in which an organic layer formed of such a high molecular weight compound, such as a hole transport layer, an electron blocking layer, a hole injection layer, or a light emitting layer, is formed between a pair of electrodes, (1) High luminous efficiency and power efficiency; (2) Low practical driving voltage; (3) Long lifespan; It has the advantage of
- FIG. 1 is a 1 H-NMR chart of high molecular weight compound A synthesized in Example 1.
- FIG. 1 is a 1 H-NMR chart of high molecular weight compound B synthesized in Example 2.
- FIG. 3 is a 1 H-NMR chart of high molecular weight compound C synthesized in Example 3.
- FIG. 3 is a 1 H-NMR chart of high molecular weight compound D synthesized in Example 4.
- FIG. 1 is a 1 H-NMR chart of high molecular weight compound E synthesized in Example 5.
- FIG. 3 is a 1 H-NMR chart of high molecular weight compound F synthesized in Example 6.
- FIG. 3 is a 1 H-NMR chart of high molecular weight compound G synthesized in Example 7.
- FIG. 1 is a 1 H-NMR chart of high molecular weight compound A synthesized in Example 1.
- FIG. 1 is a 1 H-NMR chart of high molecular weight compound B synthesized in Example 2.
- Triarylamine structural unit and linking structural unit are both divalent groups, and are represented by the following general formulas (1) and (2), respectively.
- R 1 is each independently a hydrogen atom, a deuterium atom, a cyano group, a nitro group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a group having 1 to 1 carbon atoms.
- R 1 is each independently a hydrogen atom, a deuterium atom, a cyano group, a nitro group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a group having 1 to 1 carbon atoms.
- alkyl group, alkyloxy group, cycloalkyl group, cycloalkyloxy group, alkenyl group, and aryloxy group represented by R 1 include the following groups.
- alkyl groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, Examples include neopentyl group, n-hexyl group, isohexyl group, neohexyl group, n-heptyl group, isoheptyl group, neoheptyl group, n-octyl group, isooctyl group, neooctyl group, and the like.
- alkyloxy groups (having 1 to 8 carbon atoms) include methyloxy, ethyloxy, n-propyloxy, isopropyloxy, n-butyloxy, tert-butyloxy, n-pentyloxy, n- -hexyloxy group, n-heptyloxy group, n-octyloxy group, etc.
- Examples of the cycloalkyl group (having 5 to 10 carbon atoms) include a cyclopentyl group, a cyclohexyl group, a 1-adamantyl group, a 2-adamantyl group, and the like.
- Examples of the cycloalkyloxy group include cyclopentyloxy group, cyclohexyloxy group, cycloheptyloxy group, cyclooctyloxy group, 1-adamantyloxy group, 2-adamantyloxy group, etc. .
- Examples of the alkenyl group include vinyl group, allyl group, isopropenyl group, and 2-butenyl group.
- Examples of the aryloxy group (having 6 to 10 carbon atoms) include phenyloxy group and tolyloxy group.
- R 1 is preferably a deuterium atom. Synthetically, it is most preferable that a and b are 0.
- R 2 each independently represents an alkyl group, a cycloalkyl group, or an alkyloxy group having 3 to 40 carbon atoms.
- Examples of the alkyl group, cycloalkyl group, and alkyloxy group represented by R 2 include the same groups as those shown for R 1 .
- R 2 is preferably an alkyl group having 3 to 40 carbon atoms, most preferably an n-hexyl group or an n-octyl group, in order to improve solubility. It is.
- X represents a hydrogen atom, an amino group, a monovalent aryl group, or a monovalent heteroaryl group.
- Examples of the monovalent aryl group and monovalent heteroaryl group include the following groups.
- aryl group examples include phenyl group, naphthyl group, anthracenyl group, phenanthrenyl group, fluorenyl group, indenyl group, pyrenyl group, perylenyl group, and fluoranthenyl group.
- heteroaryl groups include pyridyl group, pyrimidinyl group, triazinyl group, furyl group, pyrrolyl group, thienyl group, quinolyl group, isoquinolyl group, benzofuranyl group, benzothienyl group, indolyl group, carbazolyl group, indenocarbazolyl group. group, benzoxazolyl group, benzothiazolyl group, quinoxalinyl group, benzimidazolyl group, pyrazolyl group, dibenzofuranyl group, dibenzothienyl group, naphthyridinyl group, phenanthrolinyl group, acridinyl group, and carbolinyl group.
- the above-mentioned amino group, aryl group, and heteroaryl group may have a substituent.
- Substituents include deuterium atoms, cyano groups, nitro groups, etc.
- Halogen atoms such as fluorine atoms, chlorine atoms, bromine atoms, and iodine atoms;
- Alkyl groups especially those having 1 to 8 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, Neopentyl group, n-hexyl group, isohexyl group, neohexyl group, n-heptyl group, isoheptyl group, neoheptyl group, n-octyl group, isooctyl group, and neooc
- these substituents may further have the substituents exemplified above. Furthermore, it is preferable that these substituents exist independently, but if these substituents exist through a single bond, a methylene group that may have a substituent, an oxygen atom, or a sulfur atom, may be bonded to each other to form a ring.
- X is a hydrogen atom, a diphenylamino group, a phenyl group, a naphthyl group, a dibenzofuranyl group, a dibenzothienyl group, a phenanthrenyl group, a fluorenyl group, a carbazolyl group, an indenocarbazolyl group, or an acridinyl group.
- a hydrogen atom is particularly preferable.
- the above-mentioned aryl group and heteroaryl group may have a phenyl group as a substituent, and this phenyl group may further have a phenyl group as a substituent. That is, taking an aryl group as an example, this aryl group may be a biphenylyl group, a terphenylyl group, or a triphenylenyl group.
- L represents a divalent phenylene group or a naphthylene group
- n represents an integer of 0 to 3.
- n is preferably 0.
- the above L may have a substituent.
- the substituent is the same as the substituent that X described above may have, and these substituents may further have a substituent.
- connecting structural units 1 to 31 in FIGS. 1 to 6 specific examples of the connecting structural units represented by the above-mentioned general formula (2) are shown as structural units 1 to 31 in FIGS. 1 to 6.
- the broken lines indicate bonds to adjacent structural units, and the solid lines with free tips extending from the ring indicate that the free tips are methyl groups. It shows.
- the connecting structural unit used in the present invention is not limited to these structural units.
- the thermally crosslinkable structural unit possessed by the high molecular weight compound of the present invention may be any structural unit that can undergo a thermal crosslinking reaction, but preferable structural units are those represented by the general formulas (4-1) to (4-112).
- the structural unit shown (thermally crosslinkable structural unit 4) is exemplified.
- R is each independently a hydrogen atom, a deuterium atom, a cyano group, a nitro group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a carbon atom.
- alkyl group, cycloalkyl group, alkyloxy group, cycloalkyloxy group, alkenyl group, and aryloxy group represented by R include the same groups as those shown for R 1 .
- thermally crosslinkable structural units 4 those represented by general formulas (4-34), (4-36), (4-37), (4-45), (4-47) and (4-48) Structural units are preferred. Further, in these structural units, a and b are preferably 0.
- the thermally crosslinkable structural unit 4 preferably includes a terphenyl structure in which three benzene rings are connected.
- the high molecular weight compound of the present invention containing From the viewpoint of further enhancing these properties and ensuring film formability, the weight average molecular weight in terms of polystyrene measured by GPC is preferably 10,000 or more and less than 1,000,000, more preferably 10,000. It is in the range of 10,000 or more and less than 200,000, more preferably 10,000 or more and less than 200,000.
- the high molecular weight compound of the present invention preferably contains the thermally crosslinkable structural unit 4 as a thermally crosslinkable structural unit, but the coating property when applied to the formation of an organic layer in an organic EL element by coating, for example,
- the thermally crosslinkable structural unit 4 may be further included in order to ensure adhesion with other layers and durability.
- thermally crosslinkable structural units examples include the structural units represented by the general formulas (5-1) to (5-31) (thermally crosslinkable structural unit 5).
- R in the general formulas (5-1) to (5-31) is the same as R in the general formulas (4-1) to (4-112).
- thermally crosslinkable structural units 5 structural units represented by general formulas (5-5) and (5-7) are preferred. Further, in these structural units, a and b are preferably 0. Although preferred specific examples of the thermally crosslinkable structural unit have been shown, the thermally crosslinkable structural unit used in the present invention is not limited to these structural units.
- the triarylamine structural unit represented by general formula (1) is "structural unit A”
- the connecting structural unit represented by general formula (2) is “structural unit B”
- thermal crosslinking When the structural unit is represented by "structural unit C”, it is preferable that the structural unit A is contained in 1 mol% or more, particularly 20 mol% or more, and the condition is that the structural unit A is contained in such an amount.
- structural unit B preferably contains structural unit B in an amount of 1 mol% or more, particularly 30 to 70 mol%, and further preferably contains structural unit C in an amount of 1 mol% or more, particularly 5 to 20 mol%,
- a ternary copolymer containing structural units A, B, and C that satisfies these conditions is most suitable for forming the organic layer of an organic EL device.
- the high molecular weight compound of the present invention is synthesized by forming a carbon-carbon bond or a carbon-nitrogen bond and linking each structural unit by Suzuki polymerization reaction or HARTWIG-BUCHWALD polymerization reaction, respectively.
- the high molecular weight compound of the present invention is prepared by preparing a unit compound having each structural unit, appropriately boric acid esterifying or halogenating the unit compound, and performing a polycondensation reaction using an appropriate catalyst. Can be synthesized.
- a triarylamine derivative represented by the following general formula (1a) can be used as a compound for introducing the triarylamine structural unit represented by the general formula (1).
- Q is a hydrogen atom or a halogen atom (Br is particularly preferred), and R 1 , R 2 , and L are all the same as those shown in the general formula (1).
- a compound in which Q is a hydrogen atom is a unit compound for introducing the structural unit of general formula (1), and a compound in which Q is a halogen atom is a unit compound for synthesizing a polymer. It is a halide used for
- the intermediate for introducing structural unit A and structural unit C is a boric acid ester
- the intermediate for introducing structural unit B is a halogenated product
- the intermediate for introducing unit A and structural unit C is a halogenated product
- the intermediate for introducing structural unit B needs to be a boric acid ester. That is, the molar ratio of the halogenated product and the boric acid esterified product must be equal.
- the above-described high molecular weight compound of the present invention is dissolved in an aromatic organic solvent such as benzene, toluene, xylene, and anisole to prepare a coating solution, and this coating solution is coated on a predetermined substrate and dried by heating.
- an aromatic organic solvent such as benzene, toluene, xylene, and anisole
- a coating solution is coated on a predetermined substrate and dried by heating.
- a thin film having excellent properties such as hole injection properties, hole transport properties, and electron blocking properties can be formed.
- the formed thin film has good heat resistance and also has good adhesion to other layers.
- the high molecular weight compound can be used as a constituent material of a hole injection layer and/or a hole transport layer of an organic EL device.
- a hole injection layer or a hole transport layer formed from such a high molecular weight compound has higher hole injection properties, higher mobility, and electron blocking properties compared to those formed from conventional materials. It is possible to confine excitons generated in the light-emitting layer, and to improve the probability of holes and electrons recombining, resulting in high luminous efficiency and lower driving voltage. It is possible to realize the advantage that the durability of the element is improved.
- the high molecular weight compound of the present invention having the electrical properties described above has a wider gap than conventional materials and is effective in confining excitons, so it is naturally suitable for use in electron blocking layers and light emitting layers. can do.
- An organic EL element including an organic layer formed using the above-described high molecular weight compound of the present invention has a structure shown in FIG. 7, for example. That is, a transparent anode 2, a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, an electron transport layer 6 and a cathode 7 are formed on a glass substrate 1 (any transparent substrate such as a transparent resin substrate). It is provided.
- the organic EL device to which the high molecular weight compound of the present invention is applied is not limited to the above-mentioned layer structure, and a hole blocking layer can be provided between the light emitting layer 5 and the electron transport layer 6.
- a hole blocking layer can be provided between the hole transport layer 4 and the light emitting layer 5.
- an electron injection layer may be provided between the cathode 7 and the electron transport layer 6.
- some layers can also be omitted.
- a simple layered structure in which an anode 2, a hole transport layer 4, a light emitting layer 5, an electron transport layer 6, and a cathode 7 are provided on the substrate 1 may be used. It is also possible to have a two-layer structure in which layers having the same function are stacked.
- the high molecular weight compound of the present invention takes advantage of its properties such as hole injection and hole transport properties to provide an organic layer (for example, hole injection layer 3, positive It is suitably used as a material for forming the hole transport layer 4, the light emitting layer 5, and the electron blocking layer.
- organic layer for example, hole injection layer 3, positive It is suitably used as a material for forming the hole transport layer 4, the light emitting layer 5, and the electron blocking layer.
- the transparent anode 2 may be formed of a known electrode material, and an electrode material with a high work function such as ITO or gold is formed on the substrate 1 (a transparent substrate such as a glass substrate). It is formed by vapor deposition.
- the hole injection layer 3 provided on the transparent anode 2 is formed using a coating liquid in which the high molecular weight compound of the present invention is dissolved in an aromatic organic solvent such as toluene, xylene, or anisole.
- an aromatic organic solvent such as toluene, xylene, or anisole.
- the hole injection layer 3 can be formed by coating the transparent anode 2 with this coating liquid by spin coating, inkjet, or the like.
- the hole injection layer 3 may be made of a conventionally known material, such as the following, without using the high molecular weight compound of the present invention. It can also be formed using the following materials.
- PEDOT poly(3,4-ethylenedioxythiophene)
- PSS poly(styrene sulfonate)
- a layer (thin film) using such a material can be formed by a coating method such as vapor deposition, spin coating, or inkjet. The same applies to other layers, and the film is formed by a vapor deposition method or a coating method depending on the type of film-forming material.
- the hole transport layer 4 provided on the hole injection layer 3 is also formed using the high molecular weight compound of the present invention by a coating method such as spin coating or inkjet. be able to.
- the hole transport layer 4 can also be formed using a conventionally known hole transport material.
- Typical such hole transport materials are as follows.
- Benzidine derivatives e.g. N,N'-diphenyl-N,N'-di(m-tolyl)benzidine (hereinafter abbreviated as TPD); N,N'-diphenyl-N,N'-di( ⁇ -naphthyl)benzidine (hereinafter abbreviated as NPD); N,N,N',N'-tetrabiphenylylbenzidine; Amine derivatives, e.g.
- TAPC 1,1-bis[4-(di-4-tolylamino)phenyl]cyclohexane
- TAPC 1,1-bis[4-(di-4-tolylamino)phenyl]cyclohexane
- triphenylamine trimers and tetramers A coated polymer material that is also used as a hole injection layer.
- the above-mentioned compounds for the hole transport layer may each be formed into a film alone, or two or more thereof may be mixed and formed into a film. Moreover, a plurality of layers can be formed using one or more of the above compounds, and a multilayer film in which such layers are laminated can be used as a hole transport layer.
- the layer can also serve as both the hole injection layer 3 and the hole transport layer 4.
- the hole injection/transport layer can be formed by a coating method using a polymeric material such as PEDOT.
- hole transport layer 4 (same as the hole injection layer 3), trisbromophenylamine hexachloroantimony or a radialene derivative (for example, see WO2014/009310) is added to the material normally used for this layer. Doped materials can be used. Further, the hole transport layer 4 (or hole injection layer 3) can be formed using a high molecular weight compound having a TPD basic skeleton.
- an electron blocking layer (which can be provided between the hole transport layer 4 and the light emitting layer 5 as shown in FIG. 8) is also formed by spin coating, inkjet coating, etc. using the high molecular weight compound of the present invention. can do.
- an organic EL device having an organic layer formed using the high molecular weight compound of the present invention a known electron blocking compound having an electron blocking effect, such as a carbazole derivative or a triphenylsilyl group, may be used.
- the electron blocking layer can also be formed using a compound having a triarylamine structure. Specific examples of carbazole derivatives and compounds having a triarylamine structure are as follows.
- carbazole derivatives 4,4',4''-tri(N-carbazolyl)triphenylamine (hereinafter abbreviated as TCTA); 9,9-bis[4-(carbazol-9-yl)phenyl]fluorene; 1,3-bis(carbazol-9-yl)benzene (hereinafter abbreviated as mCP); 2,2-bis(4-carbazol-9-ylphenyl)adamantane (hereinafter abbreviated as Ad-Cz); Examples of compounds having a triarylamine structure 9-[4-(carbazol-9-yl)phenyl]-9-[4-(triphenylsilyl)phenyl]-9H-fluorene.
- TCTA 9,9-bis[4-(carbazol-9-yl)phenyl]fluorene
- mCP 1,3-bis(carbazol-9-yl)benzene
- Ad-Cz 2,2-bis(4-carbazol-9-y
- the electron blocking layer may also be formed individually, including the high molecular weight compound of the present invention, but it can also be formed as a mixture of two or more types. Alternatively, a plurality of layers may be formed using one or more of the above compounds, and a multilayer film in which such layers are laminated can be used as an electron blocking layer.
- the light-emitting layer is a metal complex of a quinolinol derivative such as Alq 3 ; various metal complexes such as zinc, beryllium, and aluminum; It can be formed using luminescent materials such as anthracene derivatives; bisstyrylbenzene derivatives; pyrene derivatives; oxazole derivatives; polyparaphenylene vinylene derivatives.
- a quinolinol derivative such as Alq 3
- various metal complexes such as zinc, beryllium, and aluminum
- luminescent materials such as anthracene derivatives; bisstyrylbenzene derivatives; pyrene derivatives; oxazole derivatives; polyparaphenylene vinylene derivatives.
- the light-emitting layer can also be composed of a host material and a dopant material.
- the host material in addition to the above-mentioned luminescent materials, thiazole derivatives, benzimidazole derivatives, polydialkylfluorene derivatives, etc. can be used, and furthermore, the above-mentioned high molecular weight compound of the present invention can also be used.
- the dopant material quinacridone, coumarin, rubrene, perylene, and derivatives thereof; benzopyran derivatives; rhodamine derivatives; aminostyryl derivatives, etc. can be used.
- Such a light emitting layer 5 can also have a single layer structure using one or more types of each light emitting material, or can have a multilayer structure in which a plurality of layers are laminated.
- the light emitting layer 5 can also be formed using a phosphorescent material as the light emitting material.
- a phosphorescent material phosphorescent emitters of metal complexes such as iridium and platinum can be used.
- green phosphorescent emitters such as Ir(ppy) 3 ; blue phosphorescent emitters such as FIrpic and FIr6; red phosphorescent emitters such as Btp 2 Ir(acac), etc.
- These phosphorescent materials are used by doping them into a hole-injecting/transporting host material or an electron-transporting host material.
- doping of the phosphorescent light-emitting material into the host material is preferably carried out by co-evaporation in a range of 1 to 30 weight percent based on the entire light-emitting layer.
- the driving voltage is lowered and the luminous efficiency is increased.
- An improved organic EL device can be realized.
- the high molecular weight compound of the present invention can be used as a host material with hole injection/transport properties.
- carbazole derivatives such as 4,4'-di(N-carbazolyl)biphenyl (hereinafter abbreviated as CBP), TCTA, and mCP can also be used.
- p-bis(triphenylsilyl)benzene (hereinafter abbreviated as UGH2) is used as an electron transporting host material.
- TPBI 2,2',2''-(1,3,5-phenylene)-tris(1-phenyl-1H-benzimidazole)
- the hole blocking layer (not shown in the figure) provided between the light emitting layer 5 and the electron transport layer 6 is as follows: It can be formed using a compound having a hole blocking effect that is known per se. Examples of known compounds having such a hole blocking effect include the following. Phenanthroline derivatives such as bathocuproine (hereinafter abbreviated as BCP); Metal complexes of quinolinol derivatives such as aluminum (III) bis(2-methyl-8-quinolinate)-4-phenylphenolate (hereinafter abbreviated as BAlq); Various rare earth complexes; Triazole derivative; Triazine derivative; Oxadiazole derivative.
- BCP bathocuproine
- BAlq Metal complexes of quinolinol derivatives such as aluminum (III) bis(2-methyl-8-quinolinate)-4-phenylphenolate
- These materials can also be used to form the electron transport layer 6 described below, and can also be used as the hole blocking layer and electron transport layer 6.
- Such a hole-blocking layer can also have a single-layer or multilayer stacked structure, and each layer is formed using one or more of the above-mentioned compounds having a hole-blocking effect.
- the electron transport layer 6 is made of a known electron transporting compound such as a quinolinol derivative such as Alq 3 and BAlq. Formation using metal complexes, various metal complexes, pyridine derivatives, pyrimidine derivatives, triazole derivatives, triazine derivatives, oxadiazole derivatives, thiadiazole derivatives, carbodiimide derivatives, quinoxaline derivatives, phenanthroline derivatives, silole derivatives, benzimidazole derivatives, etc. I can do it.
- a quinolinol derivative such as Alq 3 and BAlq.
- This electron transport layer 6 can also have a single layer or multilayer laminated structure, and each layer is formed using one or more of the above-mentioned electron transport compounds.
- the electron injection layer (not shown in the figure) provided as necessary may also be of a known type, for example. , alkali metal salts such as lithium fluoride and cesium fluoride, alkaline earth metal salts such as magnesium fluoride, metal oxides such as aluminum oxide, and organometallic complexes such as lithium quinoline. .
- an electrode material with a low work function such as aluminum, and a magnesium-silver alloy, a magnesium-indium alloy, or an aluminum-magnesium alloy can be used. Alloys with lower work functions, such as, are used as electrode materials.
- the hole injection layer 3, the hole transport layer 4, the light emitting layer 5, and the electron blocking layer using the high molecular weight compound of the present invention.
- An organic EL element with high efficiency and power efficiency, low practical driving voltage, low emission start voltage, and extremely excellent durability can be obtained.
- this organic EL element has high luminous efficiency while reducing drive voltage, improving current tolerance, and increasing maximum luminance.
- structural unit A the structural unit represented by general formula (1) possessed by the high molecular weight compound of the present invention
- structural unit B the connecting structural unit represented by general formula (2)
- structural unit C the thermally crosslinkable structural unit
- synthesized compound was purified by column chromatography and crystallization using a solvent.
- Compound identification was performed by NMR analysis.
- intermediates 1 to 10 were synthesized.
- intermediate 1 corresponds to "structural unit A”
- intermediates 4, 5, 6, and 10 correspond to "structural unit C”.
- intermediates 2 and 3 are intermediates for synthesizing intermediate 4
- intermediates 7, 8, and 9 are intermediates for synthesizing intermediate 10.
- Example 1 Synthesis of high molecular weight compound A; The following components were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through the vessel for 30 minutes.
- Intermediate 1 5.6g 1,3-dibromobenzene: 1.8g
- Intermediate 4 0.5g Tripotassium phosphate: 6.9g Toluene: 9ml, water: 5ml, 1,4-dioxane: 27ml
- 1.4 mg of palladium (II) acetate and 12 mg of tri-o-tolylphosphine were added, heated, and stirred at 88° C. for 8 hours.
- the crude polymer was dissolved in toluene, silica gel was added thereto for adsorption purification, and the silica gel was removed by filtration.
- the obtained filtrate was concentrated under reduced pressure, and 100 ml of toluene was added to the dried product to dissolve it, and the solution was added dropwise to 300 ml of n-hexane, and the resulting precipitate was collected by filtration. This operation was repeated three times and 3.3 g (yield 69%) of high molecular weight compound A was obtained by drying.
- the average molecular weight and dispersity of high molecular weight compound A measured by GPC were as follows. Number average molecular weight Mn (polystyrene equivalent): 76,000 Weight average molecular weight Mw (polystyrene equivalent): 175,000 Dispersity (Mw/Mn): 2.3
- this high molecular weight compound A contained 45 mol% of structural unit A, 50 mol% of structural unit B, and 5 mol% of structural unit C.
- Example 2 Synthesis of high molecular weight compound B; The following components were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through the vessel for 30 minutes.
- Intermediate 1 5.6g 1,3-dibromobenzene: 1.8g
- Intermediate 5 0.5g Tripotassium phosphate: 6.8g Toluene: 9ml, water: 5ml, 1,4-dioxane: 27ml
- 1.4 mg of palladium (II) acetate and 12 mg of tri-o-tolylphosphine were added, heated, and stirred at 88° C. for 12 hours.
- the crude polymer was dissolved in toluene, silica gel was added thereto for adsorption purification, and the silica gel was removed by filtration.
- the obtained filtrate was concentrated under reduced pressure, and 100 ml of toluene was added to the dried product to dissolve it, and the solution was added dropwise to 300 ml of n-hexane, and the resulting precipitate was collected by filtration. This operation was repeated three times and 3.4 g (yield 71%) of high molecular weight compound B was obtained by drying.
- the average molecular weight and dispersity of high molecular weight compound B measured by GPC were as follows. Number average molecular weight Mn (polystyrene equivalent): 40,000 Weight average molecular weight Mw (polystyrene equivalent): 65,000 Dispersity (Mw/Mn): 1.6
- this high molecular weight compound B contained 45 mol% of structural unit A, 50 mol% of structural unit B, and 5 mol% of structural unit C.
- Example 3 Synthesis of high molecular weight compound C; The following components were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through the vessel for 30 minutes.
- Intermediate 1 5.6g 1,3-dibromobenzene: 1.8g
- Intermediate 6 0.5g Tripotassium phosphate: 6.8g Toluene: 9ml, water: 5ml, 1,4-dioxane: 27ml
- 1.4 mg of palladium (II) acetate and 12 mg of tri-o-tolylphosphine were added, heated, and stirred at 88° C. for 12 hours.
- the crude polymer was dissolved in toluene, silica gel was added thereto for adsorption purification, and the silica gel was removed by filtration.
- the obtained filtrate was concentrated under reduced pressure, and 100 ml of toluene was added to the dried product to dissolve it, and the solution was added dropwise to 300 ml of n-hexane, and the resulting precipitate was collected by filtration. This operation was repeated three times and 3.4 g (yield 65%) of high molecular weight compound C was obtained by drying.
- the average molecular weight and dispersity of high molecular weight compound B measured by GPC were as follows. Number average molecular weight Mn (polystyrene equivalent): 44,000 Weight average molecular weight Mw (polystyrene equivalent): 80,000 Dispersity (Mw/Mn): 1.8
- this high molecular weight compound C contained 45 mol% of structural unit A, 50 mol% of structural unit B, and 5 mol% of structural unit C.
- Example 4 Synthesis of high molecular weight compound D; The following components were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through the vessel for 30 minutes.
- Intermediate 1 5.4g 1,3-dibromobenzene: 1.7g
- Intermediate 10 0.7g Tripotassium phosphate: 7.4g Toluene: 9ml, water: 5ml, 1,4-dioxane: 27ml
- 1.5 mg of palladium (II) acetate and 12 mg of tri-o-tolylphosphine were added, heated, and stirred at 86° C. for 9.5 hours.
- the crude polymer was dissolved in toluene, silica gel was added thereto for adsorption purification, and the silica gel was removed by filtration.
- the obtained filtrate was concentrated under reduced pressure, and 100 ml of toluene was added to the dried product to dissolve it, and the solution was added dropwise to 300 ml of n-hexane, and the resulting precipitate was collected by filtration. This operation was repeated three times and 3.3 g (yield 63%) of high molecular weight compound D was obtained by drying.
- the average molecular weight and dispersity of high molecular weight compound D measured by GPC were as follows. Number average molecular weight Mn (polystyrene equivalent): 78,000 Weight average molecular weight Mw (polystyrene equivalent): 124,000 Dispersity (Mw/Mn): 1.6
- this high molecular weight compound D contained 45 mol% of structural unit A, 50 mol% of structural unit B, and 5 mol% of structural unit C.
- the crude polymer was dissolved in toluene, silica gel was added thereto for adsorption purification, and the silica gel was removed by filtration.
- the obtained filtrate was concentrated under reduced pressure, and 100 ml of toluene was added to the dried product to dissolve it.
- the solution was added dropwise to 200 ml of n-hexane, and the resulting precipitate was collected by filtration. This operation was repeated three times and 2.9 g (yield 57%) of high molecular weight compound E was obtained by drying.
- the average molecular weight and dispersity of high molecular weight compound E measured by GPC were as follows. Number average molecular weight Mn (polystyrene equivalent): 91,000 Weight average molecular weight Mw (polystyrene equivalent): 155,000 Dispersity (Mw/Mn): 1.7
- this high molecular weight compound E contains 44 mol% of structural unit A, 50 mol% of structural unit B, and is represented by general formula (4-45) as structural unit C. It contained 3 mol% of structural units, and 3 mol% of structural units represented by general formula (5-7).
- the crude polymer was dissolved in toluene, silica gel was added thereto for adsorption purification, and the silica gel was removed by filtration.
- the obtained filtrate was concentrated under reduced pressure, and 100 ml of toluene was added to the dried product to dissolve it.
- the solution was added dropwise to 200 ml of n-hexane, and the resulting precipitate was collected by filtration. This operation was repeated three times and 3.3 g (yield 67%) of high molecular weight compound F was obtained by drying.
- the average molecular weight and dispersity of high molecular weight compound F measured by GPC were as follows. Number average molecular weight Mn (polystyrene equivalent): 63,000 Weight average molecular weight Mw (polystyrene equivalent): 101,000 Dispersity (Mw/Mn): 1.6
- this high molecular weight compound F contains 45 mol% of the structural unit A, 50 mol% of the structural unit B, and is represented by the general formula (4-45) as the structural unit C. It contained 2 mol% of structural units represented by general formula (5-7) and 3 mol% of structural units represented by general formula (5-7).
- Example 7 Synthesis of high molecular weight compound G; The following components were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through the vessel for 30 minutes.
- Intermediate 1 3.8g 9-(3,5-dibromophenyl)carbazole: 3.1g
- Intermediate 5 0.5g
- Intermediate 12 1.4g Tripotassium phosphate: 6.9g Toluene: 9ml, water: 5ml, 1,4-dioxane: 27ml
- 1.4 mg of palladium (II) acetate and 11 mg of tri-o-tolylphosphine were added, heated, and stirred at 86° C. for 12 hours.
- the crude polymer was dissolved in toluene, silica gel was added thereto for adsorption purification, and the silica gel was removed by filtration.
- the obtained filtrate was concentrated under reduced pressure, and 100 ml of toluene was added to the dried product to dissolve it, and the solution was added dropwise to 300 ml of n-hexane, and the resulting precipitate was collected by filtration. This operation was repeated three times and 2.6 g (yield 46%) of high molecular weight compound G was obtained by drying.
- the average molecular weight and dispersity of high molecular weight compound G measured by GPC were as follows. Number average molecular weight Mn (polystyrene equivalent): 67,000 Weight average molecular weight Mw (polystyrene equivalent): 97,000 Dispersity (Mw/Mn): 1.4
- this high molecular weight compound G contained 30 mol% of structural unit A, 50 mol% of structural unit B, and 5 mol% of structural unit C.
- Example 8> Using high molecular weight compounds A to G synthesized in Examples 1 to 7, a coating film with a thickness of 80 nm was prepared on an ITO substrate, and an ionization potential measuring device (manufactured by Sumitomo Heavy Industries, Ltd., PYS- 202 type) to measure the work function. The results were as follows. High molecular weight compound A: 5.67eV High molecular weight compound B: 5.62eV High molecular weight compound C: 5.64eV High molecular weight compound D: 5.66eV High molecular weight compound E: 5.62eV High molecular weight compound F: 5.62eV High molecular weight compound G: 5.70eV
- the high molecular weight compounds A to G of the present invention exhibit a suitable energy level compared to the work function of 5.4 eV of general hole transport materials such as NPD and TPD, and have good hole transport. It is clear that you have the ability.
- Example 9 Fabrication and evaluation of organic EL devices; An organic EL device having the layered structure shown in FIG. 7 was manufactured and its characteristics were evaluated. Specifically, the glass substrate 1 on which ITO with a thickness of 50 nm was formed was cleaned with an organic solvent, and then the ITO surface was cleaned with UV/ozone treatment. PEDOT/PSS (manufactured by Ossila) was formed into a film with a thickness of 50 nm by spin coating so as to cover the transparent anode 2 (ITO) provided on the glass substrate 1, and dried on a hot plate at 200°C for 10 minutes. Then, a hole injection layer 3 was formed.
- PEDOT/PSS manufactured by Ossila
- a coating solution was prepared by dissolving 0.6 wt% of the high molecular weight compound A obtained in Example 1 in toluene.
- the substrate on which the hole injection layer 3 is formed as described above is transferred to a glove box purged with dry nitrogen, and dried on a hot plate at 230° C. for 10 minutes. Then, a coating layer with a thickness of 25 nm was formed by spin coating using the above coating solution, and further dried on a hot plate at 220° C. for 30 minutes to form a hole transport layer 4.
- the substrate on which the hole transport layer 4 was formed as described above was placed in a vacuum evaporator and the pressure was reduced to 0.001 Pa or less.
- a light emitting layer 5 having a thickness of 34 nm was formed on the hole transport layer 4 by binary vapor deposition of a blue light emitting material (EMD-1) having the following structural formula and a host material (EMH-1).
- EMD-1:EMH-1 4:96.
- ETM-1 and ETM-2 were prepared as electron transport materials.
- an electron transport layer 6 with a thickness of 20 nm was formed by binary vapor deposition using the electron transport materials ETM-1 and ETM-2.
- the glass substrate on which the transparent anode 2, hole injection layer 3, hole transport layer 4, light emitting layer 5, electron transport layer 6, and cathode 7 are formed was placed in a glove box purged with dry nitrogen. Then, another glass substrate for sealing was bonded using a UV curing resin to form an organic EL element. Characteristics of the produced organic EL device were measured in the atmosphere at room temperature. Furthermore, the light emitting characteristics of the manufactured organic EL device when a DC voltage was applied were measured. The measurement results are shown in Table 1.
- Example 10 Example except that the hole transport layer 4 was formed using a coating solution prepared by dissolving 0.6 wt% of the high molecular weight compound B obtained in Example 2 in toluene instead of the high molecular weight compound A.
- An organic EL device was produced in exactly the same manner as in Example 9. Regarding the produced organic EL element, various characteristics were evaluated in the same manner as in Example 9, and the results are shown in Table 1.
- Example 11 Example except that the hole transport layer 4 was formed using a coating solution prepared by dissolving 0.6 wt% of the high molecular weight compound C obtained in Example 3 in toluene instead of the high molecular weight compound A.
- An organic EL device was produced in exactly the same manner as in Example 9. Regarding the produced organic EL element, various characteristics were evaluated in the same manner as in Example 9, and the results are shown in Table 1.
- Example 12 Example except that the hole transport layer 4 was formed using a coating solution prepared by dissolving 0.6 wt% of the high molecular weight compound D obtained in Example 4 in toluene instead of the high molecular weight compound A.
- An organic EL device was produced in exactly the same manner as in Example 9. Regarding the produced organic EL element, various characteristics were evaluated in the same manner as in Example 9, and the results are shown in Table 1.
- Example 9 except that instead of the high molecular weight compound A, the hole transport layer 4 was formed using a coating solution prepared by dissolving 0.6 wt% of the following TFB (hole transporting polymer) in toluene.
- TFB hole transporting polymer
- TFB hole transporting polymer
- voltage, luminance, luminous efficiency, and power efficiency are values when a current with a current density of 10 mA/cm 2 is passed.
- the device life is determined when the luminance at the start of light emission (initial luminance) is 700 cd/m 2 and constant current driving is performed, and the luminance is 560 cd/m 2 (80% of the initial luminance as 100%). It was measured as the time required to attenuate to (equivalent to: 80% attenuation).
- the driving voltage of the organic EL elements produced in Examples 9 to 12 was 3.88 V to 3.91 V, which was lower than the driving voltage of 4.08 V of the organic EL element of Comparative Example 1. It was voltage. Furthermore, when a current with a current density of 10 mA/cm 2 was applied, the luminous efficiency of the organic EL element of Example 9 was 8.33 cd/A, compared to 5.52 cd/A of the organic EL element of Comparative Example 1.
- the organic EL device of Example 10 had a high efficiency of 8.47 cd/A
- the organic EL device of Example 11 had a high efficiency of 8.86 cd/A
- the organic EL device of Example 12 had a high efficiency of 8.47 cd/A.
- the organic EL element of Example 9 had a 44 hour life span, and the organic EL element of Example 10 had a life span of 54 hours.
- the organic EL device of Example 11 had a long life of 13 hours, and the organic EL device of Example 12 had a long life of 29 hours.
- Example 13 An organic EL device having the layered structure shown in FIG. 8 was manufactured and its characteristics were evaluated. Specifically, the glass substrate 8 on which ITO was deposited with a thickness of 50 nm was cleaned with an organic solvent, and then the ITO surface was cleaned with UV/ozone treatment. PEDOT/PSS (manufactured by Ossila) was formed into a film with a thickness of 50 nm by spin coating so as to cover the transparent anode 9 (ITO) provided on the glass substrate 8, and dried on a hot plate at 200°C for 10 minutes. Then, a hole injection layer 10 was formed.
- PEDOT/PSS manufactured by Ossila
- a coating solution was prepared by dissolving 0.4 wt% of a high molecular weight compound HTM-1 having the following structural formula in toluene.
- the substrate on which the hole injection layer 10 is formed as described above is transferred to a glove box purged with dry nitrogen, and dried on a hot plate at 230° C. for 10 minutes. Then, a coating layer with a thickness of 15 nm was formed by spin coating using the above coating solution, and the hole transport layer 11 was further dried on a hot plate at 220° C. for 30 minutes.
- a coating solution was prepared by dissolving 0.4 wt% of the high molecular weight compound A obtained in Example 1 in toluene.
- a coating layer with a thickness of 15 nm was formed on the hole transport layer 11 by spin coating using the coating solution described above, and was further dried on a hot plate at 220° C. for 30 minutes to form an electron blocking layer 12. .
- the substrate on which the electron blocking layer 12 was formed as described above was placed in a vacuum evaporator and the pressure was reduced to 0.001 Pa or less.
- an electron transport layer 14 with a thickness of 20 nm was formed by binary vapor deposition using electron transport materials ETM-1 and ETM-2.
- Example 13 except that the electron blocking layer 12 was formed using a coating solution prepared by dissolving 0.4 wt% of the high molecular weight compound B obtained in Example 2 in toluene instead of the high molecular weight compound A.
- An organic EL device was produced in exactly the same manner as above. Regarding the produced organic EL element, various characteristics were evaluated in the same manner as in Example 13, and the results are shown in Table 2.
- Example 15 Example 13 except that the electron blocking layer 12 was formed using a coating solution prepared by dissolving 0.4 wt% of the high molecular weight compound C obtained in Example 3 in toluene instead of the high molecular weight compound A.
- An organic EL device was produced in exactly the same manner as above. Regarding the produced organic EL element, various characteristics were evaluated in the same manner as in Example 13, and the results are shown in Table 2.
- Example 16 except that the electron blocking layer 12 was formed using a coating solution prepared by dissolving 0.4 wt% of the high molecular weight compound D obtained in Example 4 in toluene instead of the high molecular weight compound A.
- An organic EL device was produced in exactly the same manner as above. Regarding the produced organic EL element, various characteristics were evaluated in the same manner as in Example 13, and the results are shown in Table 2.
- Example 13 except that the electron blocking layer 12 was formed using a coating solution prepared by dissolving 0.4 wt% of the high molecular weight compound E obtained in Example 5 in toluene instead of the high molecular weight compound A.
- An organic EL device was produced in exactly the same manner as above. Regarding the produced organic EL element, various characteristics were evaluated in the same manner as in Example 13, and the results are shown in Table 2.
- Example 13 except that the electron blocking layer 12 was formed using a coating solution prepared by dissolving 0.4 wt% of the high molecular weight compound F obtained in Example 6 in toluene instead of the high molecular weight compound A.
- An organic EL device was produced in exactly the same manner as above. Regarding the produced organic EL element, various characteristics were evaluated in the same manner as in Example 13, and the results are shown in Table 2.
- Example 13 except that the electron blocking layer 12 was formed using a coating solution prepared by dissolving 0.4 wt% of the high molecular weight compound G obtained in Example 7 in toluene instead of the high molecular weight compound A.
- An organic EL device was produced in exactly the same manner as above. Regarding the produced organic EL element, various characteristics were evaluated in the same manner as in Example 13, and the results are shown in Table 2.
- PEDOT/PSS manufactured by Ossila
- a coating solution was prepared by dissolving 0.6 wt% of high molecular weight compound HTM-1 in toluene.
- the substrate on which the hole injection layer 3 has been formed as described above is transferred to a glove box purged with dry nitrogen, and a 25 nm thick film is applied onto the hole injection layer 3 by spin coating using the coating solution described above.
- a coating layer having a thickness of 200° C. was formed, and further dried on a hot plate at 220° C. for 30 minutes to form a hole transport layer 4.
- the substrate on which the hole transport layer 4 was formed as described above was placed in a vacuum evaporator and the pressure was reduced to 0.001 Pa or less.
- an electron transport layer 6 having a thickness of 20 nm was formed by binary vapor deposition using electron transport materials ETM-1 and ETM-2.
- the glass substrate on which the transparent anode 2, hole injection layer 3, hole transport layer 4, light emitting layer 5, electron transport layer 6, and cathode 7 are formed was placed in a glove box purged with dry nitrogen. Then, another glass substrate for sealing was bonded using a UV curing resin to form an organic EL element. Characteristics of the produced organic EL device were measured in the atmosphere at room temperature. Furthermore, the light emitting characteristics of the manufactured organic EL device when a DC voltage was applied were measured. The measurement results are shown in Table 2.
- voltage, luminance, luminous efficiency, and power efficiency are values when a current with a current density of 10 mA/cm 2 is passed.
- the device life is determined when the luminance at the start of light emission (initial luminance) is 700 cd/m 2 and constant current driving is performed, and the luminance is 560 cd/m 2 (80% of the initial luminance as 100%). It was measured as the time required to attenuate to (equivalent to: 80% attenuation).
- the luminous efficiency of the organic EL element of Example 13 is 8.56 cd/A, compared to 7.56 cd/A of the organic EL element of Comparative Example 2. .27 cd/A, 8.30 cd/A for the organic EL device of Example 14, 8.54 cd/A for the organic EL device of Example 15, 8.34 cd/A for the organic EL device of Example 16, Example 19
- the organic EL device had a high efficiency of 8.13 cd/A.
- the organic EL device of Example 13 had a lifetime of 376 hours
- the organic EL device of Example 14 had a lifetime of 336 hours
- the organic EL device of Example 15 had a lifetime of 336 hours.
- 264 hours for the organic EL device of Example 16 274 hours for the organic EL device of Example 17, 280 hours for the organic EL device of Example 18, 604 hours for the organic EL device of Example 19, and 185 hours for the organic EL device of Example 19. Both had a long lifespan.
- the organic EL device including the organic layer formed using the high molecular weight compound of the present invention can realize an organic EL device with high luminous efficiency and long life compared to conventional organic EL devices. I understand.
- the high molecular weight compound of the present invention has high hole transport ability, excellent electron blocking ability, and good thermal crosslinkability, so it is excellent as a compound for coating type organic EL devices.
- a coated organic EL device using this compound high luminous efficiency and power efficiency can be obtained, and durability can be improved. This has enabled its use in a wide range of applications, such as home appliances and lighting.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
A purpose of the present invention is to provide a high-molecular-weight material that exhibits excellent hole injection and transport performance, has electron blocking capabilities, and has high stability when in the form of a thin film. Another purpose of the present invention is to provide an organic EL element that has an organic layer (thin film) formed from the high-molecular-weight material and exhibits high light-emission efficiency and a long service life. The present invention is a high-molecular-weight compound that contains: a repeating unit composed of a specific triarylamine structural unit having a fluorene structure and a linking structural unit that is a substituted or unsubstituted phenylene group; and a thermally crosslinkable structural unit.
Description
本発明は、各種の表示装置に好適な自発光素子である有機エレクトロルミネッセンス素子(有機EL素子)に適した高分子量化合物とその素子に関するものである。
The present invention relates to a high molecular weight compound suitable for an organic electroluminescent device (organic EL device), which is a self-luminous device suitable for various display devices, and the device.
有機EL素子は自己発光性素子であるため、液晶素子にくらべて明るく視認性に優れ、鮮明な表示が可能であるため、活発な研究がなされてきた。
Since organic EL devices are self-luminous devices, they are brighter and have better visibility than liquid crystal devices, allowing for clearer display, and have therefore been actively researched.
有機EL素子は、有機化合物の薄膜(有機層)を、陽極と陰極に挟んだ構成を有している。薄膜の形成方法としては、真空蒸着法と塗布法に大別される。真空蒸着法は、主に低分子化合物を用い、真空中で基板上に薄膜を形成する手法であり、既に実用化されている技術である。一方、塗布法は、主に高分子量化合物を用い、インクジェットや印刷など、溶液を用いて基板上に薄膜を形成する手法であり、材料の使用効率が高く、大面積化、高精細化に適しており、今後の大面積有機ELディスプレイには不可欠の技術である。
An organic EL element has a structure in which a thin film (organic layer) of an organic compound is sandwiched between an anode and a cathode. Methods for forming thin films are broadly classified into vacuum evaporation methods and coating methods. The vacuum evaporation method is a method of forming a thin film on a substrate in vacuum, mainly using a low-molecular compound, and is a technology that has already been put into practical use. On the other hand, the coating method is a method that mainly uses high molecular weight compounds to form a thin film on a substrate using a solution such as inkjet or printing.It has high material usage efficiency and is suitable for large areas and high definition. This technology will be essential for future large-area organic EL displays.
低分子材料を用いた真空蒸着法は、材料の使用効率が極端に低く、大型化すればシャドーマスクのたわみが大きくなり、大型基板への均一な蒸着は困難となる。また製造コストも高くなるといった問題も抱えている。
Vacuum deposition methods using low-molecular materials have extremely low material usage efficiency, and as the size increases, the shadow mask will bend more, making uniform deposition on large substrates difficult. It also has the problem of high manufacturing costs.
一方、高分子材料は、有機溶剤に溶解させた溶液を塗布することにより、大型基板でも均一な膜を形成することが可能であり、これを利用してインクジェット法や印刷法に代表される塗布法を用いることができる。そのため、材料の使用効率を高めることが可能となり、素子作製にかかる製造コストを大幅に削減することができる。
On the other hand, with polymeric materials, it is possible to form a uniform film even on large substrates by applying a solution dissolved in an organic solvent. The law can be used. Therefore, it becomes possible to increase the efficiency of material usage, and it is possible to significantly reduce the manufacturing cost required for producing the device.
これまで、高分子材料を用いた有機EL素子が、種々検討されてきたが、発光効率や寿命などの素子特性は必ずしも十分でないという問題があった(例えば、特許文献1~特許文献5参照)。
Until now, various organic EL devices using polymeric materials have been studied, but there has been a problem that device characteristics such as luminous efficiency and lifespan are not necessarily sufficient (for example, see Patent Documents 1 to 5). .
また、これまで高分子有機EL素子に用いられてきた代表的な正孔輸送材料としては、TFBと呼ばれるフルオレンポリマーが知られていた(特許文献6~7参照)。しかしながら、TFBは正孔輸送性が不十分であり、かつ電子阻止性が不十分であるため、電子の一部が発光層を通り抜けてしまい、発光効率の向上が期待できないという問題があった。また、隣接層との膜密着性が低いことから、素子の長寿命化も期待できないという問題があった。
Additionally, a fluorene polymer called TFB has been known as a typical hole transport material that has been used in polymer organic EL devices (see Patent Documents 6 and 7). However, since TFB has insufficient hole transporting properties and insufficient electron blocking properties, there is a problem in that some electrons pass through the light emitting layer, and no improvement in luminous efficiency can be expected. Furthermore, since the film adhesion with adjacent layers is low, there is a problem in that it cannot be expected to extend the life of the device.
本発明の目的は、正孔の注入・輸送性能に優れ、電子阻止能力を有し、薄膜状態での安定性が高い高分子材料を提供することにある。
また本発明の目的は、前記高分子材料により形成された有機層(薄膜)を有しており、発光効率が高く、長寿命な有機EL素子を提供することにある。 An object of the present invention is to provide a polymer material that has excellent hole injection and transport performance, has electron blocking ability, and is highly stable in a thin film state.
Another object of the present invention is to provide an organic EL element that has an organic layer (thin film) formed of the polymeric material, has high luminous efficiency, and has a long life.
また本発明の目的は、前記高分子材料により形成された有機層(薄膜)を有しており、発光効率が高く、長寿命な有機EL素子を提供することにある。 An object of the present invention is to provide a polymer material that has excellent hole injection and transport performance, has electron blocking ability, and is highly stable in a thin film state.
Another object of the present invention is to provide an organic EL element that has an organic layer (thin film) formed of the polymeric material, has high luminous efficiency, and has a long life.
本発明者らは分子主鎖にターフェニル構造を含むトリアリールアミンが高い正孔注入・輸送能力を有し、さらにワイドギャップ化も期待できることに着目し、種々のターフェニル構造を有する熱架橋性構造単位を含むトリアリールアミン高分子量化合物を合成して検討した結果、正孔注入・輸送能力に加え、ワイドギャップ且つ優れた耐熱性と薄膜安定性を有する新規な構造の高分子量化合物を見出し、本発明を完成するに至った。
The present inventors focused on the fact that triarylamines containing a terphenyl structure in the molecular main chain have high hole injection and transport ability, and are also expected to have a wide gap. As a result of synthesizing and studying triarylamine high molecular weight compounds containing structural units, we discovered a high molecular weight compound with a novel structure that has a wide gap, excellent heat resistance, and thin film stability, in addition to hole injection and transport capabilities. The present invention has now been completed.
本発明によれば、下記一般式(1)で表されるトリアリールアミン構造単位および一般式(2)で表される連結構造単位からなる、下記一般式(3)で表される繰り返し単位と、熱架橋性構造単位とを含む高分子量化合物が提供される。
According to the present invention, a repeating unit represented by the following general formula (3) consisting of a triarylamine structural unit represented by the following general formula (1) and a connecting structural unit represented by the general formula (2); , and a thermally crosslinkable structural unit.
また、本発明によれば、前記の高分子量化合物を用いて形成される有機層を備えた有機EL素子が提供される。
Further, according to the present invention, an organic EL element including an organic layer formed using the above-mentioned high molecular weight compound is provided.
本発明の有機EL素子においては、前記有機層が、正孔輸送層、電子阻止層、正孔注入層または発光層であることが好適である。
In the organic EL device of the present invention, the organic layer is preferably a hole transport layer, an electron blocking layer, a hole injection layer, or a light emitting layer.
すなわち、本発明は以下に記載するものである。
That is, the present invention is described below.
[1]下記一般式(1)で表されるトリアリールアミン構造単位、および下記一般式(2)で表される連結構造単位からなる、下記一般式(3)で表される繰り返し構造単位と、熱架橋性構造単位とを含み、ポリスチレン換算で10,000以上1,000,000未満の重量平均分子量を有する高分子量化合物。
[1] A repeating structural unit represented by the following general formula (3) consisting of a triarylamine structural unit represented by the following general formula (1) and a connecting structural unit represented by the following general formula (2). , a thermally crosslinkable structural unit, and has a weight average molecular weight of 10,000 or more and less than 1,000,000 in terms of polystyrene.
前記式中、R1は、それぞれ独立に、水素原子、重水素原子、シアノ基、ニトロ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数が3~40である、アルキル基、シクロアルキル基、アルキルオキシ基、シクロアルキルオキシ基、アルケニル基、またはアリールオキシ基を示す。
R2は、それぞれ独立に炭素数が3~40である、アルキル基、シクロアルキル基、またはアルキルオキシ基を示す。
Xは、水素原子、アミノ基、1価のアリール基、または1価のヘテロアリール基を示す。
Lは、2価のフェニル基を示し、nは0~3の整数を示す。
aおよびbは、R1の数であり、以下の整数である。
a=0、1、2または3
b=0、1、2、3または4 In the above formula, R 1 each independently represents a hydrogen atom, a deuterium atom, a cyano group, a nitro group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group having 3 to 40 carbon atoms, a cyclo It represents an alkyl group, an alkyloxy group, a cycloalkyloxy group, an alkenyl group, or an aryloxy group.
R 2 each independently represents an alkyl group, a cycloalkyl group, or an alkyloxy group having 3 to 40 carbon atoms.
X represents a hydrogen atom, an amino group, a monovalent aryl group, or a monovalent heteroaryl group.
L represents a divalent phenyl group, and n represents an integer of 0 to 3.
a and b are the numbers of R 1 and are the following integers.
a=0, 1, 2 or 3
b=0, 1, 2, 3 or 4
R2は、それぞれ独立に炭素数が3~40である、アルキル基、シクロアルキル基、またはアルキルオキシ基を示す。
Xは、水素原子、アミノ基、1価のアリール基、または1価のヘテロアリール基を示す。
Lは、2価のフェニル基を示し、nは0~3の整数を示す。
aおよびbは、R1の数であり、以下の整数である。
a=0、1、2または3
b=0、1、2、3または4 In the above formula, R 1 each independently represents a hydrogen atom, a deuterium atom, a cyano group, a nitro group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group having 3 to 40 carbon atoms, a cyclo It represents an alkyl group, an alkyloxy group, a cycloalkyloxy group, an alkenyl group, or an aryloxy group.
R 2 each independently represents an alkyl group, a cycloalkyl group, or an alkyloxy group having 3 to 40 carbon atoms.
X represents a hydrogen atom, an amino group, a monovalent aryl group, or a monovalent heteroaryl group.
L represents a divalent phenyl group, and n represents an integer of 0 to 3.
a and b are the numbers of R 1 and are the following integers.
a=0, 1, 2 or 3
b=0, 1, 2, 3 or 4
[2]前記一般式(1)、(2)および(3)において、aおよびbが0である[1]に記載の高分子量化合物。
[2] The high molecular weight compound according to [1], wherein a and b are 0 in the general formulas (1), (2) and (3).
[3]前記一般式(1)および(3)において、R2が炭素数3~40のアルキル基である[1]または[2]に記載の高分子量化合物。
[3] The high molecular weight compound according to [1] or [2], wherein in the general formulas (1) and (3), R 2 is an alkyl group having 3 to 40 carbon atoms.
[4]前記一般式(2)および(3)において、Xが水素原子、または置換されていてもよいアミノ基、アリール基、もしくはヘテロアリール基である[1]~[3]のいずれか1項に記載の高分子量化合物。
[4] Any one of [1] to [3], wherein in the general formulas (2) and (3), X is a hydrogen atom, or an optionally substituted amino group, aryl group, or heteroaryl group High molecular weight compounds described in Section.
[5]前記一般式(2)および(3)において、Xが水素原子、ジフェニルアミノ基、フェニル基、ナフチル基、ジベンゾフラニル基、ジベンゾチエニル基、フェナントレニル基、フルオレニル基、カルバゾリル基、インデノカルバゾリル基、またはアクリジニル基である[1]~[3]のいずれか1項に記載の高分子量化合物。
[5] In the above general formulas (2) and (3), The high molecular weight compound according to any one of [1] to [3], which is a carbazolyl group or an acridinyl group.
[6]前記熱架橋性構造単位が下記一般式(4-1)~(4-112)に示す構造単位である[1]~[5]のいずれか1項に記載の高分子量化合物。
[6] The high molecular weight compound according to any one of [1] to [5], wherein the thermally crosslinkable structural unit is a structural unit represented by the following general formulas (4-1) to (4-112).
前記式(4-1)~(4-112)において、破線は、隣接する構造単位への結合手を示し、環から延びている先端がフリーの実線は、その先端がメチル基であることを示す。
Rは、それぞれ独立に、水素原子、重水素原子、シアノ基、ニトロ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、または炭素数が3~40である、アルキル基、シクロアルキル基、アルキルオキシ基、シクロアルキルオキシ基、アルケニル基、もしくはアリールオキシ基を示す。
aおよびbは、Rの数であり、以下の整数である。
a=0、1、2または3
b=0、1、2、3または4 In the above formulas (4-1) to (4-112), the broken line indicates a bond to an adjacent structural unit, and the solid line extending from the ring with a free tip indicates that the tip is a methyl group. show.
R is each independently a hydrogen atom, a deuterium atom, a cyano group, a nitro group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or an alkyl group, a cycloalkyl group, or an alkyl group having 3 to 40 carbon atoms. Indicates an oxy group, cycloalkyloxy group, alkenyl group, or aryloxy group.
a and b are the numbers of R and are the following integers.
a=0, 1, 2 or 3
b=0, 1, 2, 3 or 4
Rは、それぞれ独立に、水素原子、重水素原子、シアノ基、ニトロ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、または炭素数が3~40である、アルキル基、シクロアルキル基、アルキルオキシ基、シクロアルキルオキシ基、アルケニル基、もしくはアリールオキシ基を示す。
aおよびbは、Rの数であり、以下の整数である。
a=0、1、2または3
b=0、1、2、3または4 In the above formulas (4-1) to (4-112), the broken line indicates a bond to an adjacent structural unit, and the solid line extending from the ring with a free tip indicates that the tip is a methyl group. show.
R is each independently a hydrogen atom, a deuterium atom, a cyano group, a nitro group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or an alkyl group, a cycloalkyl group, or an alkyl group having 3 to 40 carbon atoms. Indicates an oxy group, cycloalkyloxy group, alkenyl group, or aryloxy group.
a and b are the numbers of R and are the following integers.
a=0, 1, 2 or 3
b=0, 1, 2, 3 or 4
[7]下記一般式(5-1)~(5-31)に示す熱架橋性構造単位をさらに含む[6]に記載の高分子量化合物。
[7] The high molecular weight compound according to [6], further comprising a thermally crosslinkable structural unit represented by the following general formulas (5-1) to (5-31).
前記式(5-1)~(5-31)において、破線は、隣接する構造単位への結合手を示し、環から延びている先端がフリーの実線は、その先端がメチル基であることを示す。
Rは、それぞれ独立に、水素原子、重水素原子、シアノ基、ニトロ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、または炭素数が3~40である、アルキル基、シクロアルキル基、アルキルオキシ基、シクロアルキルオキシ基、アルケニル基、もしくはアリールオキシ基を示す。
aおよびbは、Rの数であり、以下の整数である。
a=0、1、2または3
b=0、1、2、3または4 In the above formulas (5-1) to (5-31), the broken line indicates a bond to an adjacent structural unit, and the solid line extending from the ring with a free tip indicates that the tip is a methyl group. show.
R is each independently a hydrogen atom, a deuterium atom, a cyano group, a nitro group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or an alkyl group, a cycloalkyl group, or an alkyl group having 3 to 40 carbon atoms. Indicates an oxy group, cycloalkyloxy group, alkenyl group, or aryloxy group.
a and b are the numbers of R and are the following integers.
a=0, 1, 2 or 3
b=0, 1, 2, 3 or 4
Rは、それぞれ独立に、水素原子、重水素原子、シアノ基、ニトロ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、または炭素数が3~40である、アルキル基、シクロアルキル基、アルキルオキシ基、シクロアルキルオキシ基、アルケニル基、もしくはアリールオキシ基を示す。
aおよびbは、Rの数であり、以下の整数である。
a=0、1、2または3
b=0、1、2、3または4 In the above formulas (5-1) to (5-31), the broken line indicates a bond to an adjacent structural unit, and the solid line extending from the ring with a free tip indicates that the tip is a methyl group. show.
R is each independently a hydrogen atom, a deuterium atom, a cyano group, a nitro group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or an alkyl group, a cycloalkyl group, or an alkyl group having 3 to 40 carbon atoms. Indicates an oxy group, cycloalkyloxy group, alkenyl group, or aryloxy group.
a and b are the numbers of R and are the following integers.
a=0, 1, 2 or 3
b=0, 1, 2, 3 or 4
[8][1]~[7]のいずれか1項に記載の高分子量化合物を用いて形成される有機層を備えた有機エレクトロルミネッセンス素子。
[8] An organic electroluminescent device comprising an organic layer formed using the high molecular weight compound according to any one of [1] to [7].
[9]前記有機層が正孔輸送層である、[8]に記載の有機エレクトロルミネッセンス素子。
[9] The organic electroluminescent device according to [8], wherein the organic layer is a hole transport layer.
[10]前記有機層が電子阻止層である、[8]に記載の有機エレクトロルミネッセンス素子。
[10] The organic electroluminescent device according to [8], wherein the organic layer is an electron blocking layer.
[11]前記有機層が正孔注入層である、[8]に記載の有機エレクトロルミネッセンス素子。
[11] The organic electroluminescent device according to [8], wherein the organic layer is a hole injection layer.
[12]前記有機層が発光層である、[8]に記載の有機エレクトロルミネッセンス素子。
[12] The organic electroluminescent device according to [8], wherein the organic layer is a light emitting layer.
本発明の高分子量化合物は、上述した一般式(1)で表されるトリアリールアミン構造単位(2価の基)および一般式(2)で表される連結構造単位(2価の基)からなる、前記一般式(3)で表される繰り返し構造単位と、熱架橋性構造単位とを含むポリマーであり、好適には、GPC(ゲルパーミエーションクロマトグラフィ)で測定したポリスチレン換算での重量平均分子量が10,000以上1,000,000未満の範囲にある。
The high molecular weight compound of the present invention is composed of a triarylamine structural unit (divalent group) represented by the above-mentioned general formula (1) and a connecting structural unit (bivalent group) represented by general formula (2). It is a polymer containing a repeating structural unit represented by the general formula (3) and a thermally crosslinkable structural unit, and preferably has a weight average molecular weight in terms of polystyrene measured by GPC (gel permeation chromatography). is in the range of 10,000 or more and less than 1,000,000.
本発明の高分子量化合物は、
(1)正孔の注入特性が良いこと、
(2)正孔の移動度が大きいこと、
(3)ワイドギャップであり、電子阻止能力に優れること、
(4)薄膜状態が安定であること、
(5)耐熱性に優れていること、
という特性を有している。 The high molecular weight compound of the present invention is
(1) Good hole injection characteristics;
(2) High hole mobility;
(3) wide gap and excellent electron blocking ability;
(4) The thin film state is stable;
(5) Excellent heat resistance;
It has the following characteristics.
(1)正孔の注入特性が良いこと、
(2)正孔の移動度が大きいこと、
(3)ワイドギャップであり、電子阻止能力に優れること、
(4)薄膜状態が安定であること、
(5)耐熱性に優れていること、
という特性を有している。 The high molecular weight compound of the present invention is
(1) Good hole injection characteristics;
(2) High hole mobility;
(3) wide gap and excellent electron blocking ability;
(4) The thin film state is stable;
(5) Excellent heat resistance;
It has the following characteristics.
このような高分子量化合物により形成された有機層、例えば、正孔輸送層、電子阻止層、正孔注入層または発光層が、一対の電極間に形成されている有機EL素子は、
(1)発光効率および電力効率が高いこと、
(2)実用駆動電圧が低いこと、
(3)長寿命であること、
という利点を有している。 An organic EL device in which an organic layer formed of such a high molecular weight compound, such as a hole transport layer, an electron blocking layer, a hole injection layer, or a light emitting layer, is formed between a pair of electrodes,
(1) High luminous efficiency and power efficiency;
(2) Low practical driving voltage;
(3) Long lifespan;
It has the advantage of
(1)発光効率および電力効率が高いこと、
(2)実用駆動電圧が低いこと、
(3)長寿命であること、
という利点を有している。 An organic EL device in which an organic layer formed of such a high molecular weight compound, such as a hole transport layer, an electron blocking layer, a hole injection layer, or a light emitting layer, is formed between a pair of electrodes,
(1) High luminous efficiency and power efficiency;
(2) Low practical driving voltage;
(3) Long lifespan;
It has the advantage of
<トリアリールアミン構造単位および連結構造単位>
本発明の高分子量化合物が有するトリアリールアミン構造単位および連結構造単位はいずれも2価の基であり、それぞれ下記の一般式(1)および(2)で表される。 <Triarylamine structural unit and linking structural unit>
The triarylamine structural unit and the linking structural unit of the high molecular weight compound of the present invention are both divalent groups, and are represented by the following general formulas (1) and (2), respectively.
本発明の高分子量化合物が有するトリアリールアミン構造単位および連結構造単位はいずれも2価の基であり、それぞれ下記の一般式(1)および(2)で表される。 <Triarylamine structural unit and linking structural unit>
The triarylamine structural unit and the linking structural unit of the high molecular weight compound of the present invention are both divalent groups, and are represented by the following general formulas (1) and (2), respectively.
前記一般式(1)および(2)において、R1は、それぞれ独立に、水素原子、重水素原子、シアノ基、ニトロ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数が1~8のアルキル基もしくはアルキルオキシ基、炭素数5~10のシクロアルキル基もしくはシクロアルキルオキシ基、炭素数2~6のアルケニル基、または炭素数6~10のアリールオキシ基を示す。
In the general formulas (1) and (2), R 1 is each independently a hydrogen atom, a deuterium atom, a cyano group, a nitro group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a group having 1 to 1 carbon atoms. 8 alkyl group or alkyloxy group, a cycloalkyl group or cycloalkyloxy group having 5 to 10 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or an aryloxy group having 6 to 10 carbon atoms.
前記R1で示されるアルキル基、アルキルオキシ基、シクロアルキル基、シクロアルキルオキシ基、アルケニル基、およびアリールオキシ基の例としては、以下の基を例示することができる。
Examples of the alkyl group, alkyloxy group, cycloalkyl group, cycloalkyloxy group, alkenyl group, and aryloxy group represented by R 1 include the following groups.
アルキル基(炭素数が1~8)の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、イソへキシル基、ネオへキシル基、n-ヘプチル基、イソへプチル基、ネオへプチル基、n-オクチル基、イソオクチル基、ネオオクチル基等が挙げられる。
アルキルオキシ基(炭素数が1~8)の例としては、メチルオキシ基、エチルオキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、tert-ブチルオキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基等が挙げられる。
シクロアルキル基(炭素数が5~10)の例としては、シクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-アダマンチル基等が挙げられる。
シクロアルキルオキシ基(炭素数が5~10)の例としては、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基、シクロオクチルオキシ基、1-アダマンチルオキシ基、2-アダマンチルオキシ基等が挙げられる。
アルケニル基(炭素数が2~6)の例としては、ビニル基、アリル基、イソプロペニル基、2-ブテニル基等が挙げられる。
アリールオキシ基(炭素数が6~10)の例としては、フェニルオキシ基、トリルオキシ基等が挙げられる。 Examples of alkyl groups (having 1 to 8 carbon atoms) include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, Examples include neopentyl group, n-hexyl group, isohexyl group, neohexyl group, n-heptyl group, isoheptyl group, neoheptyl group, n-octyl group, isooctyl group, neooctyl group, and the like.
Examples of alkyloxy groups (having 1 to 8 carbon atoms) include methyloxy, ethyloxy, n-propyloxy, isopropyloxy, n-butyloxy, tert-butyloxy, n-pentyloxy, n- -hexyloxy group, n-heptyloxy group, n-octyloxy group, etc.
Examples of the cycloalkyl group (having 5 to 10 carbon atoms) include a cyclopentyl group, a cyclohexyl group, a 1-adamantyl group, a 2-adamantyl group, and the like.
Examples of the cycloalkyloxy group (having 5 to 10 carbon atoms) include cyclopentyloxy group, cyclohexyloxy group, cycloheptyloxy group, cyclooctyloxy group, 1-adamantyloxy group, 2-adamantyloxy group, etc. .
Examples of the alkenyl group (having 2 to 6 carbon atoms) include vinyl group, allyl group, isopropenyl group, and 2-butenyl group.
Examples of the aryloxy group (having 6 to 10 carbon atoms) include phenyloxy group and tolyloxy group.
アルキルオキシ基(炭素数が1~8)の例としては、メチルオキシ基、エチルオキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、tert-ブチルオキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基等が挙げられる。
シクロアルキル基(炭素数が5~10)の例としては、シクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-アダマンチル基等が挙げられる。
シクロアルキルオキシ基(炭素数が5~10)の例としては、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基、シクロオクチルオキシ基、1-アダマンチルオキシ基、2-アダマンチルオキシ基等が挙げられる。
アルケニル基(炭素数が2~6)の例としては、ビニル基、アリル基、イソプロペニル基、2-ブテニル基等が挙げられる。
アリールオキシ基(炭素数が6~10)の例としては、フェニルオキシ基、トリルオキシ基等が挙げられる。 Examples of alkyl groups (having 1 to 8 carbon atoms) include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, Examples include neopentyl group, n-hexyl group, isohexyl group, neohexyl group, n-heptyl group, isoheptyl group, neoheptyl group, n-octyl group, isooctyl group, neooctyl group, and the like.
Examples of alkyloxy groups (having 1 to 8 carbon atoms) include methyloxy, ethyloxy, n-propyloxy, isopropyloxy, n-butyloxy, tert-butyloxy, n-pentyloxy, n- -hexyloxy group, n-heptyloxy group, n-octyloxy group, etc.
Examples of the cycloalkyl group (having 5 to 10 carbon atoms) include a cyclopentyl group, a cyclohexyl group, a 1-adamantyl group, a 2-adamantyl group, and the like.
Examples of the cycloalkyloxy group (having 5 to 10 carbon atoms) include cyclopentyloxy group, cyclohexyloxy group, cycloheptyloxy group, cyclooctyloxy group, 1-adamantyloxy group, 2-adamantyloxy group, etc. .
Examples of the alkenyl group (having 2 to 6 carbon atoms) include vinyl group, allyl group, isopropenyl group, and 2-butenyl group.
Examples of the aryloxy group (having 6 to 10 carbon atoms) include phenyloxy group and tolyloxy group.
本発明の高分子量化合物においては、aおよびbが0でない場合、前記のR1は、重水素原子が好適である。合成上、aおよびbが0であることが最も好適である。
In the high molecular weight compound of the present invention, when a and b are not 0, R 1 is preferably a deuterium atom. Synthetically, it is most preferable that a and b are 0.
前記一般式(1)において、R2は、それぞれ独立に、炭素数が3~40である、アルキル基、シクロアルキル基、またはアルキルオキシ基を示す。
In the general formula (1), R 2 each independently represents an alkyl group, a cycloalkyl group, or an alkyloxy group having 3 to 40 carbon atoms.
R2で示されるアルキル基、シクロアルキル基、およびアルキルオキシ基の例としては、R1において示した基と同様の基が挙げられる。
Examples of the alkyl group, cycloalkyl group, and alkyloxy group represented by R 2 include the same groups as those shown for R 1 .
本発明の高分子量化合物においては、前記のR2は、溶解性を高めるため、炭素数3~40のアルキル基であることが好ましく、n-ヘキシル基またはn-オクチル基であることが最も好適である。
In the high molecular weight compound of the present invention, R 2 is preferably an alkyl group having 3 to 40 carbon atoms, most preferably an n-hexyl group or an n-octyl group, in order to improve solubility. It is.
前記一般式(1)および(2)において、aおよびbは、Rの数であり、以下の整数を示す。
a=0、1、2または3
b=0、1、2、3または4 In the general formulas (1) and (2), a and b are the numbers of R and represent the following integers.
a=0, 1, 2 or 3
b=0, 1, 2, 3 or 4
a=0、1、2または3
b=0、1、2、3または4 In the general formulas (1) and (2), a and b are the numbers of R and represent the following integers.
a=0, 1, 2 or 3
b=0, 1, 2, 3 or 4
前記一般式(2)において、Xは水素原子、アミノ基、1価のアリール基、または1価のヘテロアリール基を示す。
In the general formula (2), X represents a hydrogen atom, an amino group, a monovalent aryl group, or a monovalent heteroaryl group.
前記1価のアリール基、および1価のヘテロアリール基の例としては、以下の基を例示することができる。
Examples of the monovalent aryl group and monovalent heteroaryl group include the following groups.
アリール基の例としては、フェニル基、ナフチル基、アントラセニル基、フェナントレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、およびフルオランテニル基等が挙げられる。
Examples of the aryl group include phenyl group, naphthyl group, anthracenyl group, phenanthrenyl group, fluorenyl group, indenyl group, pyrenyl group, perylenyl group, and fluoranthenyl group.
ヘテロアリール基の例としては、ピリジル基、ピリミジニル基、トリアジニル基、フリル基、ピロリル基、チエニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、インデノカルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、ナフチリジニル基、フェナントロリニル基、アクリジニル基、およびカルボリニル基等が挙げられる。
Examples of heteroaryl groups include pyridyl group, pyrimidinyl group, triazinyl group, furyl group, pyrrolyl group, thienyl group, quinolyl group, isoquinolyl group, benzofuranyl group, benzothienyl group, indolyl group, carbazolyl group, indenocarbazolyl group. group, benzoxazolyl group, benzothiazolyl group, quinoxalinyl group, benzimidazolyl group, pyrazolyl group, dibenzofuranyl group, dibenzothienyl group, naphthyridinyl group, phenanthrolinyl group, acridinyl group, and carbolinyl group.
また、前記のアミノ基、アリール基、およびヘテロアリール基は、置換基を有していてもよい。置換基としては、重水素原子、シアノ基、およびニトロ基などに加え、
ハロゲン原子、例えば、フッ素原子、塩素原子、臭素原子、およびヨウ素原子;
アルキル基、特に炭素数が1~8のもの、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、イソへキシル基、ネオへキシル基、n-ヘプチル基、イソへプチル基、ネオへプチル基、n-オクチル基、イソオクチル基、およびネオオクチル基;
アルキルオキシ基、特に炭素数1~8のもの、例えば、メチルオキシ基、エチルオキシ基、およびプロピルオキシ基;
アルケニル基、例えば、ビニル基、およびアリル基;
アリールオキシ基、例えば、フェニルオキシ基、およびトリルオキシ基;
アリール基、例えば、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、およびトリフェニレニル基;
ヘテロアリール基、例えば、ピリジル基、ピリミジニル基、トリアジニル基、チエニル基、フリル基、ピロリル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、インデノカルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、およびカルボリニル基;
アリールビニル基、例えば、スチリル基、およびナフチルビニル基;
アシル基、例えば、アセチル基、およびベンゾイル基、等が挙げられる。 Moreover, the above-mentioned amino group, aryl group, and heteroaryl group may have a substituent. Substituents include deuterium atoms, cyano groups, nitro groups, etc.
Halogen atoms, such as fluorine atoms, chlorine atoms, bromine atoms, and iodine atoms;
Alkyl groups, especially those having 1 to 8 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, Neopentyl group, n-hexyl group, isohexyl group, neohexyl group, n-heptyl group, isoheptyl group, neoheptyl group, n-octyl group, isooctyl group, and neooctyl group;
Alkyloxy groups, especially those with 1 to 8 carbon atoms, such as methyloxy, ethyloxy, and propyloxy groups;
alkenyl groups, such as vinyl groups, and allyl groups;
Aryloxy groups, such as phenyloxy groups and tolyloxy groups;
Aryl groups, such as phenyl, biphenylyl, terphenylyl, naphthyl, anthracenyl, phenanthrenyl, fluorenyl, indenyl, pyrenyl, perylenyl, fluoranthenyl, and triphenylenyl;
Heteroaryl groups, such as pyridyl groups, pyrimidinyl groups, triazinyl groups, thienyl groups, furyl groups, pyrrolyl groups, quinolyl groups, isoquinolyl groups, benzofuranyl groups, benzothienyl groups, indolyl groups, carbazolyl groups, indenocarbazolyl groups, Benzoxazolyl group, benzothiazolyl group, quinoxalinyl group, benzimidazolyl group, pyrazolyl group, dibenzofuranyl group, dibenzothienyl group, and carbolinyl group;
aryl vinyl groups, such as styryl groups, and naphthyl vinyl groups;
Acyl groups such as acetyl and benzoyl groups are included.
ハロゲン原子、例えば、フッ素原子、塩素原子、臭素原子、およびヨウ素原子;
アルキル基、特に炭素数が1~8のもの、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、イソへキシル基、ネオへキシル基、n-ヘプチル基、イソへプチル基、ネオへプチル基、n-オクチル基、イソオクチル基、およびネオオクチル基;
アルキルオキシ基、特に炭素数1~8のもの、例えば、メチルオキシ基、エチルオキシ基、およびプロピルオキシ基;
アルケニル基、例えば、ビニル基、およびアリル基;
アリールオキシ基、例えば、フェニルオキシ基、およびトリルオキシ基;
アリール基、例えば、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、およびトリフェニレニル基;
ヘテロアリール基、例えば、ピリジル基、ピリミジニル基、トリアジニル基、チエニル基、フリル基、ピロリル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、インデノカルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、およびカルボリニル基;
アリールビニル基、例えば、スチリル基、およびナフチルビニル基;
アシル基、例えば、アセチル基、およびベンゾイル基、等が挙げられる。 Moreover, the above-mentioned amino group, aryl group, and heteroaryl group may have a substituent. Substituents include deuterium atoms, cyano groups, nitro groups, etc.
Halogen atoms, such as fluorine atoms, chlorine atoms, bromine atoms, and iodine atoms;
Alkyl groups, especially those having 1 to 8 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, Neopentyl group, n-hexyl group, isohexyl group, neohexyl group, n-heptyl group, isoheptyl group, neoheptyl group, n-octyl group, isooctyl group, and neooctyl group;
Alkyloxy groups, especially those with 1 to 8 carbon atoms, such as methyloxy, ethyloxy, and propyloxy groups;
alkenyl groups, such as vinyl groups, and allyl groups;
Aryloxy groups, such as phenyloxy groups and tolyloxy groups;
Aryl groups, such as phenyl, biphenylyl, terphenylyl, naphthyl, anthracenyl, phenanthrenyl, fluorenyl, indenyl, pyrenyl, perylenyl, fluoranthenyl, and triphenylenyl;
Heteroaryl groups, such as pyridyl groups, pyrimidinyl groups, triazinyl groups, thienyl groups, furyl groups, pyrrolyl groups, quinolyl groups, isoquinolyl groups, benzofuranyl groups, benzothienyl groups, indolyl groups, carbazolyl groups, indenocarbazolyl groups, Benzoxazolyl group, benzothiazolyl group, quinoxalinyl group, benzimidazolyl group, pyrazolyl group, dibenzofuranyl group, dibenzothienyl group, and carbolinyl group;
aryl vinyl groups, such as styryl groups, and naphthyl vinyl groups;
Acyl groups such as acetyl and benzoyl groups are included.
また、これらの置換基は、前記で例示した置換基をさらに有していてもよい。
さらに、これらの置換基は、それぞれ独立して存在していることが好ましいが、これらの置換基同士が、単結合、置換基を有していてもよいメチレン基、酸素原子または硫黄原子を介して、互いに結合して環を形成していてもよい。 Moreover, these substituents may further have the substituents exemplified above.
Furthermore, it is preferable that these substituents exist independently, but if these substituents exist through a single bond, a methylene group that may have a substituent, an oxygen atom, or a sulfur atom, may be bonded to each other to form a ring.
さらに、これらの置換基は、それぞれ独立して存在していることが好ましいが、これらの置換基同士が、単結合、置換基を有していてもよいメチレン基、酸素原子または硫黄原子を介して、互いに結合して環を形成していてもよい。 Moreover, these substituents may further have the substituents exemplified above.
Furthermore, it is preferable that these substituents exist independently, but if these substituents exist through a single bond, a methylene group that may have a substituent, an oxygen atom, or a sulfur atom, may be bonded to each other to form a ring.
本発明においては、Xが水素原子、ジフェニルアミノ基、フェニル基、ナフチル基、ジベンゾフラニル基、ジベンゾチエニル基、フェナントレニル基、フルオレニル基、カルバゾリル基、インデノカルバゾリル基、またはアクリジニル基であることが好ましく、合成上、水素原子であることが特に好ましい。
In the present invention, X is a hydrogen atom, a diphenylamino group, a phenyl group, a naphthyl group, a dibenzofuranyl group, a dibenzothienyl group, a phenanthrenyl group, a fluorenyl group, a carbazolyl group, an indenocarbazolyl group, or an acridinyl group. is preferable, and from the viewpoint of synthesis, a hydrogen atom is particularly preferable.
例えば、前記のアリール基およびヘテロアリール基は、置換基としてフェニル基を有していてもよく、このフェニル基は、さらに置換基としてフェニル基を有していてもよい。即ち、アリール基を例に取ると、このアリール基は、ビフェニリル基、ターフェニリル基、トリフェニレニル基であってもよい。
For example, the above-mentioned aryl group and heteroaryl group may have a phenyl group as a substituent, and this phenyl group may further have a phenyl group as a substituent. That is, taking an aryl group as an example, this aryl group may be a biphenylyl group, a terphenylyl group, or a triphenylenyl group.
前記一般式(1)において、Lは2価のフェニレン基、またはナフチレン基を示し、nは0~3の整数を示す。本発明においては、nが0であることが好ましい。
In the general formula (1), L represents a divalent phenylene group or a naphthylene group, and n represents an integer of 0 to 3. In the present invention, n is preferably 0.
また、前記のLは置換基を有していてもよい。置換基としては、上述のXが有していてもよい置換基と同様の基であり、これらの置換基はさらに置換基を有していてもよい。
Furthermore, the above L may have a substituent. The substituent is the same as the substituent that X described above may have, and these substituents may further have a substituent.
本発明において、上述した一般式(2)で表される連結構造単位の具体例を、図1から図6に、構造単位1~31として示した。なお、図1から図6に示された化学式において、破線は、隣接する構造単位への結合手を示し、環から延びている先端がフリーの実線は、そのフリーの先端がメチル基であることを示している。連結構造単位として好ましい具体例を示したが、本発明で用いられる連結構造単位はこれらの構造単位に限定されるものではない。
In the present invention, specific examples of the connecting structural units represented by the above-mentioned general formula (2) are shown as structural units 1 to 31 in FIGS. 1 to 6. In the chemical formulas shown in Figures 1 to 6, the broken lines indicate bonds to adjacent structural units, and the solid lines with free tips extending from the ring indicate that the free tips are methyl groups. It shows. Although preferred specific examples of the connecting structural unit have been shown, the connecting structural unit used in the present invention is not limited to these structural units.
<熱架橋性構造単位>
本発明の高分子量化合物が有する熱架橋性構造単位は、熱による架橋反応が可能な構造単位であればよいが、好ましい構造単位として、前記一般式(4-1)~(4-112)で示される構造単位(熱架橋性構造単位4)が挙げられる。 <Thermal crosslinkable structural unit>
The thermally crosslinkable structural unit possessed by the high molecular weight compound of the present invention may be any structural unit that can undergo a thermal crosslinking reaction, but preferable structural units are those represented by the general formulas (4-1) to (4-112). The structural unit shown (thermally crosslinkable structural unit 4) is exemplified.
本発明の高分子量化合物が有する熱架橋性構造単位は、熱による架橋反応が可能な構造単位であればよいが、好ましい構造単位として、前記一般式(4-1)~(4-112)で示される構造単位(熱架橋性構造単位4)が挙げられる。 <Thermal crosslinkable structural unit>
The thermally crosslinkable structural unit possessed by the high molecular weight compound of the present invention may be any structural unit that can undergo a thermal crosslinking reaction, but preferable structural units are those represented by the general formulas (4-1) to (4-112). The structural unit shown (thermally crosslinkable structural unit 4) is exemplified.
前記一般式(4-1)~(4-112)において、Rは、それぞれ独立に、水素原子、重水素原子、シアノ基、ニトロ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、または炭素数が3~40である、アルキル基、シクロアルキル基、アルキルオキシ基、シクロアルキルオキシ基、アルケニル基、もしくはアリールオキシ基を示す。
In the general formulas (4-1) to (4-112), R is each independently a hydrogen atom, a deuterium atom, a cyano group, a nitro group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a carbon atom. Indicates an alkyl group, cycloalkyl group, alkyloxy group, cycloalkyloxy group, alkenyl group, or aryloxy group having a number of 3 to 40.
前記Rで表されるアルキル基、シクロアルキル基、アルキルオキシ基、シクロアルキルオキシ基、アルケニル基、およびアリールオキシ基の例としては、R1において示した基と同様の基が挙げられる。
Examples of the alkyl group, cycloalkyl group, alkyloxy group, cycloalkyloxy group, alkenyl group, and aryloxy group represented by R include the same groups as those shown for R 1 .
前記熱架橋性構造単位4の中でも、一般式(4-34)、(4-36)、(4-37)、(4-45)、(4-47)および(4-48)で示される構造単位が好ましい。またこれらの構造単位は、aおよびbが0であることが好ましい。
前記熱架橋性構造単位4は、ベンゼン環が3つ連結したターフェニル構造を含むことが好ましい。 Among the thermally crosslinkable structural units 4, those represented by general formulas (4-34), (4-36), (4-37), (4-45), (4-47) and (4-48) Structural units are preferred. Further, in these structural units, a and b are preferably 0.
The thermally crosslinkable structural unit 4 preferably includes a terphenyl structure in which three benzene rings are connected.
前記熱架橋性構造単位4は、ベンゼン環が3つ連結したターフェニル構造を含むことが好ましい。 Among the thermally crosslinkable structural units 4, those represented by general formulas (4-34), (4-36), (4-37), (4-45), (4-47) and (4-48) Structural units are preferred. Further, in these structural units, a and b are preferably 0.
The thermally crosslinkable structural unit 4 preferably includes a terphenyl structure in which three benzene rings are connected.
<高分子量化合物>
上述した一般式(1)で表されるトリアリールアミン構造単位および一般式(2)で表される連結構造単位からなる、一般式(3)で表される繰り返し単位と、熱架橋性構造単位とを含む本発明の高分子量化合物は、既に述べたように、正孔の注入特性、正孔の移動度、電子阻止能力、薄膜安定性および耐熱性等の特性が優れているものであるが、これらの特性をより高め且つ成膜性を確保するという観点から、GPCで測定したポリスチレン換算での重量平均分子量は、好ましくは10,000以上1,000,000未満、より好ましくは10,000以上500,000未満、さらに好ましくは10,000以上200,000未満の範囲である。 <High molecular weight compound>
A repeating unit represented by the general formula (3) consisting of the triarylamine structural unit represented by the above-mentioned general formula (1) and a connecting structural unit represented by the general formula (2), and a thermally crosslinkable structural unit. As already mentioned, the high molecular weight compound of the present invention containing From the viewpoint of further enhancing these properties and ensuring film formability, the weight average molecular weight in terms of polystyrene measured by GPC is preferably 10,000 or more and less than 1,000,000, more preferably 10,000. It is in the range of 10,000 or more and less than 200,000, more preferably 10,000 or more and less than 200,000.
上述した一般式(1)で表されるトリアリールアミン構造単位および一般式(2)で表される連結構造単位からなる、一般式(3)で表される繰り返し単位と、熱架橋性構造単位とを含む本発明の高分子量化合物は、既に述べたように、正孔の注入特性、正孔の移動度、電子阻止能力、薄膜安定性および耐熱性等の特性が優れているものであるが、これらの特性をより高め且つ成膜性を確保するという観点から、GPCで測定したポリスチレン換算での重量平均分子量は、好ましくは10,000以上1,000,000未満、より好ましくは10,000以上500,000未満、さらに好ましくは10,000以上200,000未満の範囲である。 <High molecular weight compound>
A repeating unit represented by the general formula (3) consisting of the triarylamine structural unit represented by the above-mentioned general formula (1) and a connecting structural unit represented by the general formula (2), and a thermally crosslinkable structural unit. As already mentioned, the high molecular weight compound of the present invention containing From the viewpoint of further enhancing these properties and ensuring film formability, the weight average molecular weight in terms of polystyrene measured by GPC is preferably 10,000 or more and less than 1,000,000, more preferably 10,000. It is in the range of 10,000 or more and less than 200,000, more preferably 10,000 or more and less than 200,000.
また、本発明の高分子量化合物は、熱架橋性構造単位として前記熱架橋性構造単位4を含むことが好ましいが、例えばコーティングにより有機EL素子中の有機層の形成に適用した場合の塗布性や他の層との密着性、耐久性を確保するために、前記熱架橋性構造単位4に加えて、その他の熱架橋性構造単位をさらに含んでいてもよい。
Further, the high molecular weight compound of the present invention preferably contains the thermally crosslinkable structural unit 4 as a thermally crosslinkable structural unit, but the coating property when applied to the formation of an organic layer in an organic EL element by coating, for example, In addition to the thermally crosslinkable structural unit 4, other thermally crosslinkable structural units may be further included in order to ensure adhesion with other layers and durability.
前記その他の熱架橋性構造単位としては、前記一般式(5-1)~(5-31)で示した構造単位(熱架橋性構造単位5)が挙げられる。
一般式(5-1)~(5-31)中のRは、前記一般式(4-1)~(4-112)中のRと同じである。 Examples of the other thermally crosslinkable structural units include the structural units represented by the general formulas (5-1) to (5-31) (thermally crosslinkable structural unit 5).
R in the general formulas (5-1) to (5-31) is the same as R in the general formulas (4-1) to (4-112).
一般式(5-1)~(5-31)中のRは、前記一般式(4-1)~(4-112)中のRと同じである。 Examples of the other thermally crosslinkable structural units include the structural units represented by the general formulas (5-1) to (5-31) (thermally crosslinkable structural unit 5).
R in the general formulas (5-1) to (5-31) is the same as R in the general formulas (4-1) to (4-112).
前記熱架橋性構造単位5の中でも、一般式(5-5)および(5-7)で示される構造単位が好ましい。またこれらの構造単位は、aおよびbが0であることが好ましい。
熱架橋性構造単位として、好ましい具体例を示したが、本発明で用いられる熱架橋性構造単位はこれらの構造単位に限定されるものではない。 Among the thermally crosslinkable structural units 5, structural units represented by general formulas (5-5) and (5-7) are preferred. Further, in these structural units, a and b are preferably 0.
Although preferred specific examples of the thermally crosslinkable structural unit have been shown, the thermally crosslinkable structural unit used in the present invention is not limited to these structural units.
熱架橋性構造単位として、好ましい具体例を示したが、本発明で用いられる熱架橋性構造単位はこれらの構造単位に限定されるものではない。 Among the thermally crosslinkable structural units 5, structural units represented by general formulas (5-5) and (5-7) are preferred. Further, in these structural units, a and b are preferably 0.
Although preferred specific examples of the thermally crosslinkable structural unit have been shown, the thermally crosslinkable structural unit used in the present invention is not limited to these structural units.
本発明の高分子量化合物において、一般式(1)で表されるトリアリールアミン構造単位を「構造単位A」、一般式(2)で表される連結構造単位を「構造単位B」、熱架橋性構造単位を「構造単位C」で表したとき、構造単位Aを1モル%以上、特に20モル%以上含んでいることが好ましく、このような量で構造単位Aを含んでいることを条件として、構造単位Bを1モル%以上、特に30~70モル%の量で含み、さらには、構造単位Cを1モル%以上、特に5~20モル%の量で含んでいることが好ましく、このような条件を満足するように構造単位A、BおよびCを含む3元共重合体であることが、有機EL素子の有機層を形成する上で最も好適である。
In the high molecular weight compound of the present invention, the triarylamine structural unit represented by general formula (1) is "structural unit A", the connecting structural unit represented by general formula (2) is "structural unit B", and thermal crosslinking When the structural unit is represented by "structural unit C", it is preferable that the structural unit A is contained in 1 mol% or more, particularly 20 mol% or more, and the condition is that the structural unit A is contained in such an amount. preferably contains structural unit B in an amount of 1 mol% or more, particularly 30 to 70 mol%, and further preferably contains structural unit C in an amount of 1 mol% or more, particularly 5 to 20 mol%, A ternary copolymer containing structural units A, B, and C that satisfies these conditions is most suitable for forming the organic layer of an organic EL device.
本発明の高分子量化合物は、スズキ重合反応またはHARTWIG-BUCHWALD重合反応により、それぞれ炭素-炭素結合または炭素-窒素結合を形成して各構造単位を連鎖することにより合成される。具体的には、各構造単位を有する単位化合物を用意し、この単位化合物を適宜ホウ酸エステル化またはハロゲン化し、適宜の触媒を使用して重縮合反応することにより、本発明の高分子量化合物を合成することができる。
The high molecular weight compound of the present invention is synthesized by forming a carbon-carbon bond or a carbon-nitrogen bond and linking each structural unit by Suzuki polymerization reaction or HARTWIG-BUCHWALD polymerization reaction, respectively. Specifically, the high molecular weight compound of the present invention is prepared by preparing a unit compound having each structural unit, appropriately boric acid esterifying or halogenating the unit compound, and performing a polycondensation reaction using an appropriate catalyst. Can be synthesized.
例えば、前記一般式(1)で表されるトリアリールアミン構造単位を導入するための化合物としては、下記一般式(1a)で表されるトリアリールアミン誘導体を使用することができる。
For example, as a compound for introducing the triarylamine structural unit represented by the general formula (1), a triarylamine derivative represented by the following general formula (1a) can be used.
式中、Qは、水素原子またはハロゲン原子(特にBrが好ましい)であり、R1、R2、およびLは、いずれも前記一般式(1)で示したものと同じである。
In the formula, Q is a hydrogen atom or a halogen atom (Br is particularly preferred), and R 1 , R 2 , and L are all the same as those shown in the general formula (1).
即ち、前記一般式(1a)において、Qが水素原子であるものが、一般式(1)の構造単位を導入するための単位化合物であり、Qがハロゲン原子であるものが、ポリマーを合成するために使用されるハロゲン化物である。
That is, in the general formula (1a), a compound in which Q is a hydrogen atom is a unit compound for introducing the structural unit of general formula (1), and a compound in which Q is a halogen atom is a unit compound for synthesizing a polymer. It is a halide used for
例えば、一般式(1)で表される構造単位Aを45モル%、一般式(2)で表される構造単位Bを50モル%、熱架橋性構造単位C(一般式(4-34)で表される構造単位)を5モル%で含む共重合体は下記に示す一般式(5)で表される。
For example, 45 mol% of structural unit A represented by general formula (1), 50 mol% of structural unit B represented by general formula (2), thermally crosslinkable structural unit C (general formula (4-34) A copolymer containing 5 mol % of the structural unit represented by is represented by the general formula (5) shown below.
ただし、構造単位Aと構造単位Cを導入するための中間体がホウ酸エステル化体であり、これに対し、構造単位Bを導入するための中間体がハロゲン化体であるか、または、構造単位Aと構造単位Cを導入するための中間体がハロゲン化体であり、これに対し、構造単位Bを導入するための中間体がホウ酸エステル化体である必要がある。つまり、ハロゲン化体とホウ酸エステル化体のモル比率は等しくなければならない。
However, the intermediate for introducing structural unit A and structural unit C is a boric acid ester, whereas the intermediate for introducing structural unit B is a halogenated product, or The intermediate for introducing unit A and structural unit C is a halogenated product, whereas the intermediate for introducing structural unit B needs to be a boric acid ester. That is, the molar ratio of the halogenated product and the boric acid esterified product must be equal.
上述した本発明の高分子量化合物は、ベンゼン、トルエン、キシレンおよびアニソールなどの芳香族系有機溶媒に溶解させて塗布液を調製し、この塗布液を所定の基材上にコーティングし、加熱乾燥することにより、正孔注入性、正孔輸送性および電子阻止性などの特性に優れた薄膜を形成することができる。また、形成される薄膜は耐熱性も良好であり、さらには他の層との密着性も良好である。
The above-described high molecular weight compound of the present invention is dissolved in an aromatic organic solvent such as benzene, toluene, xylene, and anisole to prepare a coating solution, and this coating solution is coated on a predetermined substrate and dried by heating. By this, a thin film having excellent properties such as hole injection properties, hole transport properties, and electron blocking properties can be formed. Furthermore, the formed thin film has good heat resistance and also has good adhesion to other layers.
例えば、前記高分子量化合物は、有機EL素子の正孔注入層および/または正孔輸送層の構成材料として使用することができる。このような高分子量化合物により形成された正孔注入層或いは正孔輸送層は、従来の材料で形成されたものに比して、正孔の注入性が高く、移動度が大きく、電子阻止性が高く、発光層内で生成した励起子を閉じ込めることができ、さらに正孔と電子が再結合する確率を向上させ、高発光効率を得ることができると共に、駆動電圧が低下して、有機EL素子の耐久性が向上するという利点を実現できる。
For example, the high molecular weight compound can be used as a constituent material of a hole injection layer and/or a hole transport layer of an organic EL device. A hole injection layer or a hole transport layer formed from such a high molecular weight compound has higher hole injection properties, higher mobility, and electron blocking properties compared to those formed from conventional materials. It is possible to confine excitons generated in the light-emitting layer, and to improve the probability of holes and electrons recombining, resulting in high luminous efficiency and lower driving voltage. It is possible to realize the advantage that the durability of the element is improved.
また、前記のような電気特性を有する本発明の高分子量化合物は、従来の材料よりもワイドギャップであり、励起子の閉じ込めに有効なため、当然、電子阻止層や発光層にも好適に使用することができる。
Furthermore, the high molecular weight compound of the present invention having the electrical properties described above has a wider gap than conventional materials and is effective in confining excitons, so it is naturally suitable for use in electron blocking layers and light emitting layers. can do.
<有機EL素子>
上述した本発明の高分子量化合物を用いて形成される有機層を備えた有機EL素子は、例えば図7に示す構造を有している。即ち、ガラス基板1(透明樹脂基板など、透明基板であればよい)の上に、透明陽極2、正孔注入層3、正孔輸送層4、発光層5、電子輸送層6および陰極7が設けられている。 <Organic EL element>
An organic EL element including an organic layer formed using the above-described high molecular weight compound of the present invention has a structure shown in FIG. 7, for example. That is, a transparent anode 2, a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, an electron transport layer 6 and a cathode 7 are formed on a glass substrate 1 (any transparent substrate such as a transparent resin substrate). It is provided.
上述した本発明の高分子量化合物を用いて形成される有機層を備えた有機EL素子は、例えば図7に示す構造を有している。即ち、ガラス基板1(透明樹脂基板など、透明基板であればよい)の上に、透明陽極2、正孔注入層3、正孔輸送層4、発光層5、電子輸送層6および陰極7が設けられている。 <Organic EL element>
An organic EL element including an organic layer formed using the above-described high molecular weight compound of the present invention has a structure shown in FIG. 7, for example. That is, a transparent anode 2, a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, an electron transport layer 6 and a cathode 7 are formed on a glass substrate 1 (any transparent substrate such as a transparent resin substrate). It is provided.
本発明の高分子量化合物が適用される有機EL素子は、前記の層構造に限定されるものではなく、発光層5と電子輸送層6との間に正孔阻止層を設けることができ、また、図8に示す構造のように、正孔輸送層4と発光層5との間に電子阻止層などを設けることができる。さらには、陰極7と電子輸送層6との間に電子注入層を設けることもできる。さらに、いくつかの層を省略することもできる。例えば、基板1上に、陽極2、正孔輸送層4、発光層5、電子輸送層6および陰極7を設けたシンプルな層構造とすることもできる。また、同一の機能を有する層を重ねた2層構造とすることも可能である。
The organic EL device to which the high molecular weight compound of the present invention is applied is not limited to the above-mentioned layer structure, and a hole blocking layer can be provided between the light emitting layer 5 and the electron transport layer 6. As in the structure shown in FIG. 8, an electron blocking layer or the like can be provided between the hole transport layer 4 and the light emitting layer 5. Furthermore, an electron injection layer may be provided between the cathode 7 and the electron transport layer 6. Furthermore, some layers can also be omitted. For example, a simple layered structure in which an anode 2, a hole transport layer 4, a light emitting layer 5, an electron transport layer 6, and a cathode 7 are provided on the substrate 1 may be used. It is also possible to have a two-layer structure in which layers having the same function are stacked.
本発明の高分子量化合物は、その正孔注入性や正孔輸送性などの特性を活かして、前記の陽極2と陰極7との間に設けられる有機層(例えば、正孔注入層3、正孔輸送層4、発光層5および電子阻止層)の形成材料として好適に使用される。
The high molecular weight compound of the present invention takes advantage of its properties such as hole injection and hole transport properties to provide an organic layer (for example, hole injection layer 3, positive It is suitably used as a material for forming the hole transport layer 4, the light emitting layer 5, and the electron blocking layer.
前記の有機EL素子において、透明陽極2は、それ自体公知の電極材料で形成されていてよく、ITOや金のような仕事関数の大きな電極材料を基板1(ガラス基板等の透明基板)の上に蒸着することにより形成される。
In the organic EL element described above, the transparent anode 2 may be formed of a known electrode material, and an electrode material with a high work function such as ITO or gold is formed on the substrate 1 (a transparent substrate such as a glass substrate). It is formed by vapor deposition.
また、透明陽極2上に設けられている正孔注入層3は、本発明の高分子量化合物を、例えばトルエン、キシレン、アニソールなどの芳香族系有機溶媒に溶解させた塗布液を用いて形成することができる。例えば、この塗布液を、スピンコート、インクジェットなどにより、透明陽極2上にコーティングすることにより、正孔注入層3を形成することができる。
Further, the hole injection layer 3 provided on the transparent anode 2 is formed using a coating liquid in which the high molecular weight compound of the present invention is dissolved in an aromatic organic solvent such as toluene, xylene, or anisole. be able to. For example, the hole injection layer 3 can be formed by coating the transparent anode 2 with this coating liquid by spin coating, inkjet, or the like.
また、本発明の高分子量化合物を用いて形成される有機層を備えた有機EL素子において、前記の正孔注入層3は本発明の高分子量化合物を用いずに、従来公知の材料、例えば以下の材料を用いて形成することもできる。
銅フタロシアニンに代表されるポルフィリン化合物;
スターバースト型のトリフェニルアミン誘導体;
単結合またはヘテロ原子を含まない2価基で連結した構造を有するアリールアミン(例えば、トリフェニルアミン3量体および4量体);
ヘキサシアノアザトリフェニレンのようなアクセプター性の複素環化合物;
塗布型の高分子材料、例えばポリ(3,4-エチレンジオキシチオフェン)(PEDOT)、ポリ(スチレンスルフォネート)(PSS)等。 In addition, in an organic EL device having an organic layer formed using the high molecular weight compound of the present invention, the hole injection layer 3 may be made of a conventionally known material, such as the following, without using the high molecular weight compound of the present invention. It can also be formed using the following materials.
Porphyrin compounds represented by copper phthalocyanine;
Starburst type triphenylamine derivative;
Arylamines having a structure connected by a single bond or a divalent group containing no heteroatoms (e.g., triphenylamine trimers and tetramers);
Acceptor heterocyclic compounds such as hexacyanoazatriphenylene;
Coating type polymeric materials, such as poly(3,4-ethylenedioxythiophene) (PEDOT), poly(styrene sulfonate) (PSS), etc.
銅フタロシアニンに代表されるポルフィリン化合物;
スターバースト型のトリフェニルアミン誘導体;
単結合またはヘテロ原子を含まない2価基で連結した構造を有するアリールアミン(例えば、トリフェニルアミン3量体および4量体);
ヘキサシアノアザトリフェニレンのようなアクセプター性の複素環化合物;
塗布型の高分子材料、例えばポリ(3,4-エチレンジオキシチオフェン)(PEDOT)、ポリ(スチレンスルフォネート)(PSS)等。 In addition, in an organic EL device having an organic layer formed using the high molecular weight compound of the present invention, the hole injection layer 3 may be made of a conventionally known material, such as the following, without using the high molecular weight compound of the present invention. It can also be formed using the following materials.
Porphyrin compounds represented by copper phthalocyanine;
Starburst type triphenylamine derivative;
Arylamines having a structure connected by a single bond or a divalent group containing no heteroatoms (e.g., triphenylamine trimers and tetramers);
Acceptor heterocyclic compounds such as hexacyanoazatriphenylene;
Coating type polymeric materials, such as poly(3,4-ethylenedioxythiophene) (PEDOT), poly(styrene sulfonate) (PSS), etc.
このような材料を用いた層(薄膜)の形成は、蒸着法、スピンコートおよびインクジェットなどによるコーティング法により成膜することができる。これらは、他の層についても同様であり、膜形成材料の種類に応じて、蒸着法またはコーティング法により成膜が行われる。
A layer (thin film) using such a material can be formed by a coating method such as vapor deposition, spin coating, or inkjet. The same applies to other layers, and the film is formed by a vapor deposition method or a coating method depending on the type of film-forming material.
前記の正孔注入層3の上に設けられている正孔輸送層4も、正孔注入層3と同様、本発明の高分子量化合物を用いて、スピンコートやインクジェットなどによるコーティング法によって形成することができる。
Like the hole injection layer 3, the hole transport layer 4 provided on the hole injection layer 3 is also formed using the high molecular weight compound of the present invention by a coating method such as spin coating or inkjet. be able to.
また、本発明の高分子量化合物を用いて形成される有機層を備えた有機EL素子において、従来公知の正孔輸送材料を用いて正孔輸送層4を形成することもできる。このような正孔輸送材料として代表的なものは、次のとおりである。
ベンジジン誘導体、例えば、
N,N’-ジフェニル-N,N’-ジ(m-トリル)ベンジジン(以下、TPDと略す);
N,N’-ジフェニル-N,N’-ジ(α-ナフチル)ベンジジン(以下、NPDと略す);
N,N,N’,N’-テトラビフェニリルベンジジン;
アミン系誘導体、例えば、
1,1-ビス[4-(ジ-4-トリルアミノ)フェニル]シクロヘキサン(以下、TAPCと略す);
種々のトリフェニルアミン3量体および4量体;
正孔注入層用としても使用される塗布型高分子材料。 Further, in an organic EL element including an organic layer formed using the high molecular weight compound of the present invention, the hole transport layer 4 can also be formed using a conventionally known hole transport material. Typical such hole transport materials are as follows.
Benzidine derivatives, e.g.
N,N'-diphenyl-N,N'-di(m-tolyl)benzidine (hereinafter abbreviated as TPD);
N,N'-diphenyl-N,N'-di(α-naphthyl)benzidine (hereinafter abbreviated as NPD);
N,N,N',N'-tetrabiphenylylbenzidine;
Amine derivatives, e.g.
1,1-bis[4-(di-4-tolylamino)phenyl]cyclohexane (hereinafter abbreviated as TAPC);
Various triphenylamine trimers and tetramers;
A coated polymer material that is also used as a hole injection layer.
ベンジジン誘導体、例えば、
N,N’-ジフェニル-N,N’-ジ(m-トリル)ベンジジン(以下、TPDと略す);
N,N’-ジフェニル-N,N’-ジ(α-ナフチル)ベンジジン(以下、NPDと略す);
N,N,N’,N’-テトラビフェニリルベンジジン;
アミン系誘導体、例えば、
1,1-ビス[4-(ジ-4-トリルアミノ)フェニル]シクロヘキサン(以下、TAPCと略す);
種々のトリフェニルアミン3量体および4量体;
正孔注入層用としても使用される塗布型高分子材料。 Further, in an organic EL element including an organic layer formed using the high molecular weight compound of the present invention, the hole transport layer 4 can also be formed using a conventionally known hole transport material. Typical such hole transport materials are as follows.
Benzidine derivatives, e.g.
N,N'-diphenyl-N,N'-di(m-tolyl)benzidine (hereinafter abbreviated as TPD);
N,N'-diphenyl-N,N'-di(α-naphthyl)benzidine (hereinafter abbreviated as NPD);
N,N,N',N'-tetrabiphenylylbenzidine;
Amine derivatives, e.g.
1,1-bis[4-(di-4-tolylamino)phenyl]cyclohexane (hereinafter abbreviated as TAPC);
Various triphenylamine trimers and tetramers;
A coated polymer material that is also used as a hole injection layer.
上述した正孔輸送層の化合物は、本発明の高分子量化合物を含め、それぞれ単独で成膜してもよいが、2種以上混合して成膜することもできる。また、前記化合物の1種または複数種を用いて複数の層を形成し、このような層が積層された多層膜を正孔輸送層とすることもできる。
The above-mentioned compounds for the hole transport layer, including the high molecular weight compound of the present invention, may each be formed into a film alone, or two or more thereof may be mixed and formed into a film. Moreover, a plurality of layers can be formed using one or more of the above compounds, and a multilayer film in which such layers are laminated can be used as a hole transport layer.
また、本発明の高分子量化合物を用いて形成される有機層を備えた有機EL素子において、正孔注入層3と正孔輸送層4とを兼ねた層とすることもでき、このような正孔注入・輸送層は、PEDOTなどの高分子材料を用いて、コーティング法により形成することができる。
Further, in an organic EL device having an organic layer formed using the high molecular weight compound of the present invention, the layer can also serve as both the hole injection layer 3 and the hole transport layer 4. The hole injection/transport layer can be formed by a coating method using a polymeric material such as PEDOT.
なお、正孔輸送層4(正孔注入層3も同様)において、該層に通常使用される材料に対し、トリスブロモフェニルアミンヘキサクロルアンチモンまたはラジアレン誘導体(例えば、WO2014/009310参照)などをPドーピングしたものを使用することができる。また、TPD基本骨格を有する高分子量化合物などを用いて正孔輸送層4(或いは正孔注入層3)を形成することができる。
In addition, in the hole transport layer 4 (same as the hole injection layer 3), trisbromophenylamine hexachloroantimony or a radialene derivative (for example, see WO2014/009310) is added to the material normally used for this layer. Doped materials can be used. Further, the hole transport layer 4 (or hole injection layer 3) can be formed using a high molecular weight compound having a TPD basic skeleton.
さらに、電子阻止層(図8のように、正孔輸送層4と発光層5との間に設けることができる)も、本発明の高分子量化合物を用いてスピンコートやインクジェットなどによるコーティングによって形成することができる。
Furthermore, an electron blocking layer (which can be provided between the hole transport layer 4 and the light emitting layer 5 as shown in FIG. 8) is also formed by spin coating, inkjet coating, etc. using the high molecular weight compound of the present invention. can do.
また、本発明の高分子量化合物を用いて形成される有機層を備えた有機EL素子において、電子阻止作用を有する公知の電子阻止性化合物、例えば、カルバゾール誘導体や、トリフェニルシリル基を有し且つトリアリールアミン構造を有する化合物などを用いて電子阻止層を形成することもできる。カルバゾール誘導体およびトリアリールアミン構造を有する化合物の具体例は、以下の通りである。
カルバゾール誘導体の例
4,4’,4’’-トリ(N-カルバゾリル)トリフェニルアミン以下、TCTAと略す);
9,9-ビス[4-(カルバゾール-9-イル)フェニル]フルオレン;
1,3-ビス(カルバゾール-9-イル)ベンゼン(以下、mCPと略す);
2,2-ビス(4-カルバゾール-9-イルフェニル)アダマンタン(以下、Ad-Czと略す);
トリアリールアミン構造を有する化合物の例
9-[4-(カルバゾール-9-イル)フェニル]-9-[4-(トリフェニルシリル)フェニル]-9H-フルオレン。 In addition, in an organic EL device having an organic layer formed using the high molecular weight compound of the present invention, a known electron blocking compound having an electron blocking effect, such as a carbazole derivative or a triphenylsilyl group, may be used. The electron blocking layer can also be formed using a compound having a triarylamine structure. Specific examples of carbazole derivatives and compounds having a triarylamine structure are as follows.
Examples of carbazole derivatives 4,4',4''-tri(N-carbazolyl)triphenylamine (hereinafter abbreviated as TCTA);
9,9-bis[4-(carbazol-9-yl)phenyl]fluorene;
1,3-bis(carbazol-9-yl)benzene (hereinafter abbreviated as mCP);
2,2-bis(4-carbazol-9-ylphenyl)adamantane (hereinafter abbreviated as Ad-Cz);
Examples of compounds having a triarylamine structure 9-[4-(carbazol-9-yl)phenyl]-9-[4-(triphenylsilyl)phenyl]-9H-fluorene.
カルバゾール誘導体の例
4,4’,4’’-トリ(N-カルバゾリル)トリフェニルアミン以下、TCTAと略す);
9,9-ビス[4-(カルバゾール-9-イル)フェニル]フルオレン;
1,3-ビス(カルバゾール-9-イル)ベンゼン(以下、mCPと略す);
2,2-ビス(4-カルバゾール-9-イルフェニル)アダマンタン(以下、Ad-Czと略す);
トリアリールアミン構造を有する化合物の例
9-[4-(カルバゾール-9-イル)フェニル]-9-[4-(トリフェニルシリル)フェニル]-9H-フルオレン。 In addition, in an organic EL device having an organic layer formed using the high molecular weight compound of the present invention, a known electron blocking compound having an electron blocking effect, such as a carbazole derivative or a triphenylsilyl group, may be used. The electron blocking layer can also be formed using a compound having a triarylamine structure. Specific examples of carbazole derivatives and compounds having a triarylamine structure are as follows.
Examples of carbazole derivatives 4,4',4''-tri(N-carbazolyl)triphenylamine (hereinafter abbreviated as TCTA);
9,9-bis[4-(carbazol-9-yl)phenyl]fluorene;
1,3-bis(carbazol-9-yl)benzene (hereinafter abbreviated as mCP);
2,2-bis(4-carbazol-9-ylphenyl)adamantane (hereinafter abbreviated as Ad-Cz);
Examples of compounds having a triarylamine structure 9-[4-(carbazol-9-yl)phenyl]-9-[4-(triphenylsilyl)phenyl]-9H-fluorene.
電子阻止層も、本発明の高分子量化合物を含め、それぞれ単独で成膜してもよいが、2種以上混合して成膜することもできる。また、前記化合物の1種または複数種を用いて複数の層を形成し、このような層が積層された多層膜を電子阻止層とすることもできる。
The electron blocking layer may also be formed individually, including the high molecular weight compound of the present invention, but it can also be formed as a mixture of two or more types. Alternatively, a plurality of layers may be formed using one or more of the above compounds, and a multilayer film in which such layers are laminated can be used as an electron blocking layer.
本発明の高分子量化合物を用いて形成される有機層を備えた有機EL素子において、発光層は、Alq3をはじめとするキノリノール誘導体の金属錯体;亜鉛、ベリリウムおよびアルミニウムなどの各種の金属錯体;アントラセン誘導体;ビススチリルベンゼン誘導体;ピレン誘導体;オキサゾール誘導体;ポリパラフェニレンビニレン誘導体などの発光材料を用いて形成することができる。
In an organic EL device including an organic layer formed using the high molecular weight compound of the present invention, the light-emitting layer is a metal complex of a quinolinol derivative such as Alq 3 ; various metal complexes such as zinc, beryllium, and aluminum; It can be formed using luminescent materials such as anthracene derivatives; bisstyrylbenzene derivatives; pyrene derivatives; oxazole derivatives; polyparaphenylene vinylene derivatives.
また、発光層をホスト材料とドーパント材料とで構成することもできる。この場合のホスト材料として、前記の発光材料に加え、チアゾール誘導体、ベンズイミダゾール誘導体、およびポリジアルキルフルオレン誘導体などを使用することができ、さらに、前述した本発明の高分子量化合物を使用することもできる。ドーパント材料としては、キナクリドン、クマリン、ルブレン、ペリレン、およびそれらの誘導体;ベンゾピラン誘導体;ローダミン誘導体;アミノスチリル誘導体などを用いることができる。
Furthermore, the light-emitting layer can also be composed of a host material and a dopant material. In this case, as the host material, in addition to the above-mentioned luminescent materials, thiazole derivatives, benzimidazole derivatives, polydialkylfluorene derivatives, etc. can be used, and furthermore, the above-mentioned high molecular weight compound of the present invention can also be used. . As the dopant material, quinacridone, coumarin, rubrene, perylene, and derivatives thereof; benzopyran derivatives; rhodamine derivatives; aminostyryl derivatives, etc. can be used.
このような発光層5も、各発光材料の1種または2種以上を用いた単層構成とすることもできるし、複数の層を積層した多層構造とすることもできる。
Such a light emitting layer 5 can also have a single layer structure using one or more types of each light emitting material, or can have a multilayer structure in which a plurality of layers are laminated.
さらに、発光材料として燐光発光材料を使用して発光層5を形成することもできる。燐光発光材料としては、イリジウムおよび白金などの金属錯体の燐光発光体を使用することができる。例えば、Ir(ppy)3などの緑色の燐光発光体;FIrpicおよびFIr6などの青色の燐光発光体;Btp2Ir(acac)などの赤色の燐光発光体などを用いることができる。これらの燐光発光材料は、正孔注入・輸送性のホスト材料や電子輸送性のホスト材料にドープして使用される。
Furthermore, the light emitting layer 5 can also be formed using a phosphorescent material as the light emitting material. As the phosphorescent material, phosphorescent emitters of metal complexes such as iridium and platinum can be used. For example, green phosphorescent emitters such as Ir(ppy) 3 ; blue phosphorescent emitters such as FIrpic and FIr6; red phosphorescent emitters such as Btp 2 Ir(acac), etc. can be used. These phosphorescent materials are used by doping them into a hole-injecting/transporting host material or an electron-transporting host material.
なお、燐光性の発光材料のホスト材料へのドープは濃度消光を避けるため、発光層全体に対して1~30重量パーセントの範囲で、共蒸着によって行うことが好ましい。
Note that in order to avoid concentration quenching, doping of the phosphorescent light-emitting material into the host material is preferably carried out by co-evaporation in a range of 1 to 30 weight percent based on the entire light-emitting layer.
また、発光材料としてPIC-TRZ、CC2TA、PXZ-TRZ、および4CzIPNなどのCDCB誘導体などの遅延蛍光を放射する材料を使用することも可能である。(Appl.Phys.Let.,98,083302(2011)参照)。
It is also possible to use materials that emit delayed fluorescence, such as PIC-TRZ, CC2TA, PXZ-TRZ, and CDCB derivatives such as 4CzIPN, as the luminescent material. (See Appl. Phys. Let., 98, 083302 (2011)).
本発明の高分子量化合物を、ドーパントと呼ばれている蛍光発光体、燐光発光体または遅延蛍光を放射する材料を担持させて発光層5を形成することにより、駆動電圧が低下し、発光効率が改善された有機EL素子を実現できる。
By forming the light-emitting layer 5 by supporting the high molecular weight compound of the present invention with a fluorescent light-emitting substance, a phosphorescent light-emitting substance, or a material that emits delayed fluorescence called a dopant, the driving voltage is lowered and the luminous efficiency is increased. An improved organic EL device can be realized.
本発明の高分子量化合物を用いて形成される有機層を備えた有機EL素子において、正孔注入・輸送性のホスト材料としては、本発明の高分子量化合物を用いることができる。その他に、4,4’-ジ(N-カルバゾリル)ビフェニル(以後、CBPと略称する)、TCTAおよびmCPなどのカルバゾール誘導体などを用いることもできる。
In an organic EL element including an organic layer formed using the high molecular weight compound of the present invention, the high molecular weight compound of the present invention can be used as a host material with hole injection/transport properties. In addition, carbazole derivatives such as 4,4'-di(N-carbazolyl)biphenyl (hereinafter abbreviated as CBP), TCTA, and mCP can also be used.
また、本発明の高分子量化合物を用いて形成される有機層を備えた有機EL素子において、電子輸送性のホスト材料としては、p-ビス(トリフェニルシリル)ベンゼン(以後、UGH2と略称する)、および2,2’,2’’-(1,3,5-フェニレン)-トリス(1-フェニル-1H-ベンズイミダゾール)(以後、TPBIと略称する)などを用いることができる。
Furthermore, in an organic EL device having an organic layer formed using the high molecular weight compound of the present invention, p-bis(triphenylsilyl)benzene (hereinafter abbreviated as UGH2) is used as an electron transporting host material. , 2,2',2''-(1,3,5-phenylene)-tris(1-phenyl-1H-benzimidazole) (hereinafter abbreviated as TPBI), and the like can be used.
本発明の高分子量化合物を用いて形成される有機層を備えた有機EL素子において、発光層5と電子輸送層6との間に設ける正孔阻止層(図では示されていない)としては、それ自体公知の正孔阻止作用を有する化合物を用いて形成することができる。このような正孔阻止作用を有する公知化合物の例としては、以下のものをあげることができる。
バソクプロイン(以後、BCPと略称する)などのフェナントロリン誘導体;
アルミニウム(III)ビス(2-メチル-8-キノリナート)-4-フェニルフェノレート(以後、BAlqと略称する)などのキノリノール誘導体の金属錯体;
各種希土類錯体;
トリアゾール誘導体;
トリアジン誘導体;
オキサジアゾール誘導体。 In the organic EL device including the organic layer formed using the high molecular weight compound of the present invention, the hole blocking layer (not shown in the figure) provided between the light emitting layer 5 and the electron transport layer 6 is as follows: It can be formed using a compound having a hole blocking effect that is known per se. Examples of known compounds having such a hole blocking effect include the following.
Phenanthroline derivatives such as bathocuproine (hereinafter abbreviated as BCP);
Metal complexes of quinolinol derivatives such as aluminum (III) bis(2-methyl-8-quinolinate)-4-phenylphenolate (hereinafter abbreviated as BAlq);
Various rare earth complexes;
Triazole derivative;
Triazine derivative;
Oxadiazole derivative.
バソクプロイン(以後、BCPと略称する)などのフェナントロリン誘導体;
アルミニウム(III)ビス(2-メチル-8-キノリナート)-4-フェニルフェノレート(以後、BAlqと略称する)などのキノリノール誘導体の金属錯体;
各種希土類錯体;
トリアゾール誘導体;
トリアジン誘導体;
オキサジアゾール誘導体。 In the organic EL device including the organic layer formed using the high molecular weight compound of the present invention, the hole blocking layer (not shown in the figure) provided between the light emitting layer 5 and the electron transport layer 6 is as follows: It can be formed using a compound having a hole blocking effect that is known per se. Examples of known compounds having such a hole blocking effect include the following.
Phenanthroline derivatives such as bathocuproine (hereinafter abbreviated as BCP);
Metal complexes of quinolinol derivatives such as aluminum (III) bis(2-methyl-8-quinolinate)-4-phenylphenolate (hereinafter abbreviated as BAlq);
Various rare earth complexes;
Triazole derivative;
Triazine derivative;
Oxadiazole derivative.
これらの材料は、以下に述べる電子輸送層6の形成にも使用することができ、さらには、正孔阻止層兼電子輸送層6として使用することもできる。
These materials can also be used to form the electron transport layer 6 described below, and can also be used as the hole blocking layer and electron transport layer 6.
このような正孔阻止層も、単層或いは多層の積層構造とすることができ、各層は、上述した正孔阻止作用を有する化合物の1種または2種以上を用いて成膜される。
Such a hole-blocking layer can also have a single-layer or multilayer stacked structure, and each layer is formed using one or more of the above-mentioned compounds having a hole-blocking effect.
本発明の高分子量化合物を用いて形成される有機層を備えた有機EL素子において、電子輸送層6は、それ自体公知の電子輸送性の化合物、例えば、Alq3およびBAlqをはじめとするキノリノール誘導体の金属錯体、各種金属錯体、ピリジン誘導体、ピリミジン誘導体、トリアゾール誘導体、トリアジン誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、カルボジイミド誘導体、キノキサリン誘導体、フェナントロリン誘導体、シロール誘導体およびベンゾイミダゾール誘導体などを用いて形成することができる。
In an organic EL device including an organic layer formed using the high molecular weight compound of the present invention, the electron transport layer 6 is made of a known electron transporting compound such as a quinolinol derivative such as Alq 3 and BAlq. Formation using metal complexes, various metal complexes, pyridine derivatives, pyrimidine derivatives, triazole derivatives, triazine derivatives, oxadiazole derivatives, thiadiazole derivatives, carbodiimide derivatives, quinoxaline derivatives, phenanthroline derivatives, silole derivatives, benzimidazole derivatives, etc. I can do it.
この電子輸送層6も、単層または多層の積層構造とすることができ、各層は、上述した電子輸送性化合物の1種または2種以上を用いて成膜される。
This electron transport layer 6 can also have a single layer or multilayer laminated structure, and each layer is formed using one or more of the above-mentioned electron transport compounds.
さらに、本発明の高分子量化合物を用いて形成される有機層を備えた有機EL素子において、必要に応じて設けられる電子注入層(図では示されていない)も、それ自体公知のもの、例えば、フッ化リチウムおよびフッ化セシウムなどのアルカリ金属塩、フッ化マグネシウムなどのアルカリ土類金属塩、酸化アルミニウムなどの金属酸化物、およびリチウムキノリンなどの有機金属錯体などを用いて形成することができる。
Further, in the organic EL device including the organic layer formed using the high molecular weight compound of the present invention, the electron injection layer (not shown in the figure) provided as necessary may also be of a known type, for example. , alkali metal salts such as lithium fluoride and cesium fluoride, alkaline earth metal salts such as magnesium fluoride, metal oxides such as aluminum oxide, and organometallic complexes such as lithium quinoline. .
本発明の高分子量化合物を用いて形成される有機層を備えた有機EL素子の陰極7としては、アルミニウムのような仕事関数の低い電極材料、およびマグネシウム銀合金、マグネシウムインジウム合金、もしくはアルミニウムマグネシウム合金のような、より仕事関数の低い合金が電極材料として用いられる。
As the cathode 7 of an organic EL element having an organic layer formed using the high molecular weight compound of the present invention, an electrode material with a low work function such as aluminum, and a magnesium-silver alloy, a magnesium-indium alloy, or an aluminum-magnesium alloy can be used. Alloys with lower work functions, such as, are used as electrode materials.
以上に述べたように、本発明の高分子量化合物を用いて、正孔注入層3、正孔輸送層4、発光層5、および電子阻止層の少なくとも何れかの層を形成することにより、発光効率および電力効率が高く、実用駆動電圧が低く、発光開始電圧も低く、極めて優れた耐久性を有する有機EL素子が得られる。特に、この有機EL素子では、高い発光効率を有しながら、駆動電圧が低下し、電流耐性が改善されて、最大発光輝度が向上している。
As described above, by forming at least one of the hole injection layer 3, the hole transport layer 4, the light emitting layer 5, and the electron blocking layer using the high molecular weight compound of the present invention, light emission can be achieved. An organic EL element with high efficiency and power efficiency, low practical driving voltage, low emission start voltage, and extremely excellent durability can be obtained. In particular, this organic EL element has high luminous efficiency while reducing drive voltage, improving current tolerance, and increasing maximum luminance.
以下、本発明を次の実験例により説明する。
なお、以下の説明において、本発明の高分子量化合物が有する一般式(1)で表される構造単位を「構造単位A」、一般式(2)で表される連結構造単位を「構造単位B」、熱架橋性構造単位を「構造単位C」として示した。 The present invention will be explained below using the following experimental examples.
In the following description, the structural unit represented by general formula (1) possessed by the high molecular weight compound of the present invention will be referred to as "structural unit A", and the connecting structural unit represented by general formula (2) will be referred to as "structural unit B". ”, and the thermally crosslinkable structural unit is shown as “structural unit C”.
なお、以下の説明において、本発明の高分子量化合物が有する一般式(1)で表される構造単位を「構造単位A」、一般式(2)で表される連結構造単位を「構造単位B」、熱架橋性構造単位を「構造単位C」として示した。 The present invention will be explained below using the following experimental examples.
In the following description, the structural unit represented by general formula (1) possessed by the high molecular weight compound of the present invention will be referred to as "structural unit A", and the connecting structural unit represented by general formula (2) will be referred to as "structural unit B". ”, and the thermally crosslinkable structural unit is shown as “structural unit C”.
また、合成された化合物の精製は、カラムクロマトグラフィーによる精製、および溶媒による晶析法によって行った。化合物の同定は、NMR分析によって行った。
Further, the synthesized compound was purified by column chromatography and crystallization using a solvent. Compound identification was performed by NMR analysis.
本発明の高分子量化合物を製造するために、以下の中間体1~10を合成した。その中に、中間体1は「構造単位A」に対応し、中間体4、5、6、10は「構造単位C」に対応する。なお、中間体2、3は中間体4を合成するための中間体であり、中間体7、8、9は中間体10を合成するための中間体である。
In order to produce the high molecular weight compound of the present invention, the following intermediates 1 to 10 were synthesized. Among them, intermediate 1 corresponds to "structural unit A", and intermediates 4, 5, 6, and 10 correspond to "structural unit C". Note that intermediates 2 and 3 are intermediates for synthesizing intermediate 4, and intermediates 7, 8, and 9 are intermediates for synthesizing intermediate 10.
<中間体1の合成>
<Synthesis of intermediate 1>
下記の成分を、窒素置換した反応容器に加え、30分間窒素ガスを通気した。
N,N-ビス(4-ブロモフェニル)-9,9-ジ-n-オクチル-9H-フルオレン-2-アミン:16.7g
ビス(ピナコラト)ジボロン:11.9g
酢酸カリウム:5.7g
1,4-ジオキサン:170ml
次いで、{1,1’-ビス(ジフェニルホスフィノ)フェロセン}パラジウム(II)ジクロリドのジクロロメタン付加物0.19gを加えて加熱し、100℃で7時間撹拌した。室温まで冷却した後、水とトルエンを加え、分液操作を行うことによって有機層を採取した。この有機層を無水硫酸マグネシウムで脱水した後、減圧下で濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=1:20(v/v))で精製することによって中間体1の白色粉体7.6g(収率40%)を得た。 The following components were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through the vessel for 30 minutes.
N,N-bis(4-bromophenyl)-9,9-di-n-octyl-9H-fluoren-2-amine: 16.7g
Bis(pinacolato)diboron: 11.9g
Potassium acetate: 5.7g
1,4-dioxane: 170ml
Next, 0.19 g of dichloromethane adduct of {1,1'-bis(diphenylphosphino)ferrocene}palladium(II) dichloride was added, heated, and stirred at 100° C. for 7 hours. After cooling to room temperature, water and toluene were added and a liquid separation operation was performed to collect the organic layer. This organic layer was dehydrated with anhydrous magnesium sulfate and then concentrated under reduced pressure to obtain a crude product. The crude product was purified by column chromatography (ethyl acetate: n-hexane = 1:20 (v/v)) to obtain 7.6 g (yield: 40%) of white powder of Intermediate 1.
N,N-ビス(4-ブロモフェニル)-9,9-ジ-n-オクチル-9H-フルオレン-2-アミン:16.7g
ビス(ピナコラト)ジボロン:11.9g
酢酸カリウム:5.7g
1,4-ジオキサン:170ml
次いで、{1,1’-ビス(ジフェニルホスフィノ)フェロセン}パラジウム(II)ジクロリドのジクロロメタン付加物0.19gを加えて加熱し、100℃で7時間撹拌した。室温まで冷却した後、水とトルエンを加え、分液操作を行うことによって有機層を採取した。この有機層を無水硫酸マグネシウムで脱水した後、減圧下で濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=1:20(v/v))で精製することによって中間体1の白色粉体7.6g(収率40%)を得た。 The following components were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through the vessel for 30 minutes.
N,N-bis(4-bromophenyl)-9,9-di-n-octyl-9H-fluoren-2-amine: 16.7g
Bis(pinacolato)diboron: 11.9g
Potassium acetate: 5.7g
1,4-dioxane: 170ml
Next, 0.19 g of dichloromethane adduct of {1,1'-bis(diphenylphosphino)ferrocene}palladium(II) dichloride was added, heated, and stirred at 100° C. for 7 hours. After cooling to room temperature, water and toluene were added and a liquid separation operation was performed to collect the organic layer. This organic layer was dehydrated with anhydrous magnesium sulfate and then concentrated under reduced pressure to obtain a crude product. The crude product was purified by column chromatography (ethyl acetate: n-hexane = 1:20 (v/v)) to obtain 7.6 g (yield: 40%) of white powder of Intermediate 1.
<中間体2の合成>
<Synthesis of intermediate 2>
下記の成分を、窒素置換した反応容器に加え、30分間窒素ガスを通気した。
4-ブロモベンゾシクロブテン:5g
3-アミノフェニルボロン酸一水和物:3.7g
2M-炭酸カリウム水溶液:22ml
トルエン:72ml、エタノール;18ml
次いで、テトラキストリフェニルホスフィンパラジウム(0)35mgを加えて加熱し、還流下で3時間撹拌した。室温まで冷却した後、水とトルエンを加え、分液操作を行うことによって有機層を得た。この有機層を無水硫酸ナトリウムで脱水した後、減圧下で濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=1:5(v/v))で精製することによって中間体2の白色粉末4.1g(収率74%)を得た。 The following components were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through the vessel for 30 minutes.
4-bromobenzocyclobutene: 5g
3-aminophenylboronic acid monohydrate: 3.7g
2M-potassium carbonate aqueous solution: 22ml
Toluene: 72ml, ethanol: 18ml
Next, 35 mg of tetrakistriphenylphosphine palladium (0) was added, heated, and stirred under reflux for 3 hours. After cooling to room temperature, water and toluene were added and a liquid separation operation was performed to obtain an organic layer. This organic layer was dehydrated with anhydrous sodium sulfate and then concentrated under reduced pressure to obtain a crude product. The crude product was purified by column chromatography (ethyl acetate: n-hexane = 1:5 (v/v)) to obtain 4.1 g of white powder of Intermediate 2 (yield 74%).
4-ブロモベンゾシクロブテン:5g
3-アミノフェニルボロン酸一水和物:3.7g
2M-炭酸カリウム水溶液:22ml
トルエン:72ml、エタノール;18ml
次いで、テトラキストリフェニルホスフィンパラジウム(0)35mgを加えて加熱し、還流下で3時間撹拌した。室温まで冷却した後、水とトルエンを加え、分液操作を行うことによって有機層を得た。この有機層を無水硫酸ナトリウムで脱水した後、減圧下で濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフィー(酢酸エチル:n-ヘキサン=1:5(v/v))で精製することによって中間体2の白色粉末4.1g(収率74%)を得た。 The following components were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through the vessel for 30 minutes.
4-bromobenzocyclobutene: 5g
3-aminophenylboronic acid monohydrate: 3.7g
2M-potassium carbonate aqueous solution: 22ml
Toluene: 72ml, ethanol: 18ml
Next, 35 mg of tetrakistriphenylphosphine palladium (0) was added, heated, and stirred under reflux for 3 hours. After cooling to room temperature, water and toluene were added and a liquid separation operation was performed to obtain an organic layer. This organic layer was dehydrated with anhydrous sodium sulfate and then concentrated under reduced pressure to obtain a crude product. The crude product was purified by column chromatography (ethyl acetate: n-hexane = 1:5 (v/v)) to obtain 4.1 g of white powder of Intermediate 2 (yield 74%).
<中間体3の合成>
<Synthesis of intermediate 3>
下記の成分を、窒素置換した反応容器に加え、30分間窒素ガスを通気した。
中間体2:4g
1-ブロモ-4-ヨードベンゼン:17.4g
ナトリウムt-ブトキシド:5.9g
キシレン:30ml
エタノール;18ml
次いで、ヨウ化銅(I):390mg、N,N’-ジメチルエチレンジアミン:360mgを加えて加熱し、120℃で21時間撹拌した。室温まで冷却した後、トルエンを加え、ろ過を行った。ろ液を減圧下で濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフィー(トルエン:n-ヘキサン=1:3(v/v))で精製した。得られた固体をトルエン:ヘキサン=1:3で再結晶することによって中間体3の白色粉末5.8g(収率56%)を得た。 The following components were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through the vessel for 30 minutes.
Intermediate 2: 4g
1-Bromo-4-iodobenzene: 17.4g
Sodium t-butoxide: 5.9g
Xylene: 30ml
Ethanol; 18ml
Next, 390 mg of copper (I) iodide and 360 mg of N,N'-dimethylethylenediamine were added, heated, and stirred at 120° C. for 21 hours. After cooling to room temperature, toluene was added and filtration was performed. The crude product was obtained by concentrating the filtrate under reduced pressure. The crude product was purified by column chromatography (toluene:n-hexane=1:3 (v/v)). The obtained solid was recrystallized with toluene:hexane=1:3 to obtain 5.8 g of white powder of Intermediate 3 (yield: 56%).
中間体2:4g
1-ブロモ-4-ヨードベンゼン:17.4g
ナトリウムt-ブトキシド:5.9g
キシレン:30ml
エタノール;18ml
次いで、ヨウ化銅(I):390mg、N,N’-ジメチルエチレンジアミン:360mgを加えて加熱し、120℃で21時間撹拌した。室温まで冷却した後、トルエンを加え、ろ過を行った。ろ液を減圧下で濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフィー(トルエン:n-ヘキサン=1:3(v/v))で精製した。得られた固体をトルエン:ヘキサン=1:3で再結晶することによって中間体3の白色粉末5.8g(収率56%)を得た。 The following components were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through the vessel for 30 minutes.
Intermediate 2: 4g
1-Bromo-4-iodobenzene: 17.4g
Sodium t-butoxide: 5.9g
Xylene: 30ml
Ethanol; 18ml
Next, 390 mg of copper (I) iodide and 360 mg of N,N'-dimethylethylenediamine were added, heated, and stirred at 120° C. for 21 hours. After cooling to room temperature, toluene was added and filtration was performed. The crude product was obtained by concentrating the filtrate under reduced pressure. The crude product was purified by column chromatography (toluene:n-hexane=1:3 (v/v)). The obtained solid was recrystallized with toluene:hexane=1:3 to obtain 5.8 g of white powder of Intermediate 3 (yield: 56%).
<中間体4の合成>
<Synthesis of intermediate 4>
下記の成分を、窒素置換した反応容器に加え、30分間窒素ガスを通気した。
中間体3:5.5g
ビス(ピナコラト)ジボロン:6.1g
酢酸カリウム:3.2g
1,4-ジオキサン:40ml
次いで、{1,1’-ビス(ジフェニルホスフィノ)フェロセン}パラジウム(II)ジクロリドのジクロロメタン付加物89mgを加えて加熱し、90℃で7時間撹拌した。室温まで冷却した後、市水とトルエンを加え、分液操作を行うことによって有機層を得た。この有機層を無水硫酸ナトリウムで脱水した後、減圧下で濃縮することによって粗製物を得た。粗製物を酢酸エチルで3回再結晶することによって、中間体4の白色粉体3.8g(収率58%)を得た。 The following components were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through the vessel for 30 minutes.
Intermediate 3: 5.5g
Bis(pinacolato)diboron: 6.1g
Potassium acetate: 3.2g
1,4-dioxane: 40ml
Next, 89 mg of dichloromethane adduct of {1,1'-bis(diphenylphosphino)ferrocene}palladium(II) dichloride was added, heated, and stirred at 90° C. for 7 hours. After cooling to room temperature, city water and toluene were added and a liquid separation operation was performed to obtain an organic layer. This organic layer was dehydrated with anhydrous sodium sulfate and then concentrated under reduced pressure to obtain a crude product. The crude product was recrystallized three times from ethyl acetate to obtain 3.8 g of white powder of Intermediate 4 (yield 58%).
中間体3:5.5g
ビス(ピナコラト)ジボロン:6.1g
酢酸カリウム:3.2g
1,4-ジオキサン:40ml
次いで、{1,1’-ビス(ジフェニルホスフィノ)フェロセン}パラジウム(II)ジクロリドのジクロロメタン付加物89mgを加えて加熱し、90℃で7時間撹拌した。室温まで冷却した後、市水とトルエンを加え、分液操作を行うことによって有機層を得た。この有機層を無水硫酸ナトリウムで脱水した後、減圧下で濃縮することによって粗製物を得た。粗製物を酢酸エチルで3回再結晶することによって、中間体4の白色粉体3.8g(収率58%)を得た。 The following components were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through the vessel for 30 minutes.
Intermediate 3: 5.5g
Bis(pinacolato)diboron: 6.1g
Potassium acetate: 3.2g
1,4-dioxane: 40ml
Next, 89 mg of dichloromethane adduct of {1,1'-bis(diphenylphosphino)ferrocene}palladium(II) dichloride was added, heated, and stirred at 90° C. for 7 hours. After cooling to room temperature, city water and toluene were added and a liquid separation operation was performed to obtain an organic layer. This organic layer was dehydrated with anhydrous sodium sulfate and then concentrated under reduced pressure to obtain a crude product. The crude product was recrystallized three times from ethyl acetate to obtain 3.8 g of white powder of Intermediate 4 (yield 58%).
<中間体5の合成>
<Synthesis of intermediate 5>
下記の成分を、窒素置換した反応容器に加え、30分間窒素ガスを通気した。
3,6-ジブロモ-9-(3-(ベンゾシクロブテン-4-イル)フェニル)カルバゾール:5.3g
ビス(ピナコラト)ジボロン:5.8g
酢酸カリウム:3.1g
1,4-ジオキサン:230ml
次いで、{1,1’-ビス(ジフェニルホスフィノ)フェロセン}パラジウム(II)ジクロリドのジクロロメタン付加物53mgを加えて加熱し、90℃で7時間撹拌した。室温まで冷却した後、市水とトルエンを加え、分液操作を行うことによって有機層を得た。この有機層を無水硫酸ナトリウムで脱水した後、減圧下で濃縮することによって粗製物を得た。粗製物をトルエン/メタノール=1/2で再結晶することによって、中間体5の白色針状結晶4.4g(収率70%)を得た。 The following components were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through the vessel for 30 minutes.
3,6-dibromo-9-(3-(benzocyclobuten-4-yl)phenyl)carbazole: 5.3g
Bis(pinacolato) diboron: 5.8g
Potassium acetate: 3.1g
1,4-dioxane: 230ml
Next, 53 mg of a dichloromethane adduct of {1,1'-bis(diphenylphosphino)ferrocene}palladium(II) dichloride was added, heated, and stirred at 90° C. for 7 hours. After cooling to room temperature, city water and toluene were added and a liquid separation operation was performed to obtain an organic layer. This organic layer was dehydrated with anhydrous sodium sulfate and then concentrated under reduced pressure to obtain a crude product. The crude product was recrystallized with toluene/methanol=1/2 to obtain 4.4 g of white needle-like crystals of Intermediate 5 (yield 70%).
3,6-ジブロモ-9-(3-(ベンゾシクロブテン-4-イル)フェニル)カルバゾール:5.3g
ビス(ピナコラト)ジボロン:5.8g
酢酸カリウム:3.1g
1,4-ジオキサン:230ml
次いで、{1,1’-ビス(ジフェニルホスフィノ)フェロセン}パラジウム(II)ジクロリドのジクロロメタン付加物53mgを加えて加熱し、90℃で7時間撹拌した。室温まで冷却した後、市水とトルエンを加え、分液操作を行うことによって有機層を得た。この有機層を無水硫酸ナトリウムで脱水した後、減圧下で濃縮することによって粗製物を得た。粗製物をトルエン/メタノール=1/2で再結晶することによって、中間体5の白色針状結晶4.4g(収率70%)を得た。 The following components were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through the vessel for 30 minutes.
3,6-dibromo-9-(3-(benzocyclobuten-4-yl)phenyl)carbazole: 5.3g
Bis(pinacolato) diboron: 5.8g
Potassium acetate: 3.1g
1,4-dioxane: 230ml
Next, 53 mg of a dichloromethane adduct of {1,1'-bis(diphenylphosphino)ferrocene}palladium(II) dichloride was added, heated, and stirred at 90° C. for 7 hours. After cooling to room temperature, city water and toluene were added and a liquid separation operation was performed to obtain an organic layer. This organic layer was dehydrated with anhydrous sodium sulfate and then concentrated under reduced pressure to obtain a crude product. The crude product was recrystallized with toluene/methanol=1/2 to obtain 4.4 g of white needle-like crystals of Intermediate 5 (yield 70%).
<中間体6の合成>
<Synthesis of intermediate 6>
下記の成分を、窒素置換した反応容器に加え、30分間窒素ガスを通気した。
N,N-ビス(4-ブロモフェニル)-N-(4’-(ベンゾシクロブテン-4-イル)-4-ビフェニル)アミン:3.5g
ビス(ピナコラト)ジボロン:3.3g
酢酸カリウム:1.8g
1,4-ジオキサン:130ml
次いで、{1,1’-ビス(ジフェニルホスフィノ)フェロセン}パラジウム(II)ジクロリドのジクロロメタン付加物49mgを加えて加熱し、90℃で7時間撹拌した。室温まで冷却した後、市水とトルエンを加え、分液操作を行うことによって有機層を得た。この有機層を無水硫酸ナトリウムで脱水した後、減圧下で濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフィー(クロロホルム:n-ヘキサン=1:8(v/v))で精製することによって中間体6の白色粉末0.6g(収率18%)を得た。 The following components were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through the vessel for 30 minutes.
N,N-bis(4-bromophenyl)-N-(4'-(benzocyclobuten-4-yl)-4-biphenyl)amine: 3.5 g
Bis(pinacolato)diboron: 3.3g
Potassium acetate: 1.8g
1,4-dioxane: 130ml
Next, 49 mg of dichloromethane adduct of {1,1'-bis(diphenylphosphino)ferrocene}palladium(II) dichloride was added, heated, and stirred at 90° C. for 7 hours. After cooling to room temperature, city water and toluene were added and a liquid separation operation was performed to obtain an organic layer. This organic layer was dehydrated with anhydrous sodium sulfate and then concentrated under reduced pressure to obtain a crude product. The crude product was purified by column chromatography (chloroform:n-hexane=1:8 (v/v)) to obtain 0.6 g of white powder of Intermediate 6 (yield: 18%).
N,N-ビス(4-ブロモフェニル)-N-(4’-(ベンゾシクロブテン-4-イル)-4-ビフェニル)アミン:3.5g
ビス(ピナコラト)ジボロン:3.3g
酢酸カリウム:1.8g
1,4-ジオキサン:130ml
次いで、{1,1’-ビス(ジフェニルホスフィノ)フェロセン}パラジウム(II)ジクロリドのジクロロメタン付加物49mgを加えて加熱し、90℃で7時間撹拌した。室温まで冷却した後、市水とトルエンを加え、分液操作を行うことによって有機層を得た。この有機層を無水硫酸ナトリウムで脱水した後、減圧下で濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフィー(クロロホルム:n-ヘキサン=1:8(v/v))で精製することによって中間体6の白色粉末0.6g(収率18%)を得た。 The following components were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through the vessel for 30 minutes.
N,N-bis(4-bromophenyl)-N-(4'-(benzocyclobuten-4-yl)-4-biphenyl)amine: 3.5 g
Bis(pinacolato)diboron: 3.3g
Potassium acetate: 1.8g
1,4-dioxane: 130ml
Next, 49 mg of dichloromethane adduct of {1,1'-bis(diphenylphosphino)ferrocene}palladium(II) dichloride was added, heated, and stirred at 90° C. for 7 hours. After cooling to room temperature, city water and toluene were added and a liquid separation operation was performed to obtain an organic layer. This organic layer was dehydrated with anhydrous sodium sulfate and then concentrated under reduced pressure to obtain a crude product. The crude product was purified by column chromatography (chloroform:n-hexane=1:8 (v/v)) to obtain 0.6 g of white powder of Intermediate 6 (yield: 18%).
<中間体7の合成>
<Synthesis of intermediate 7>
下記の成分を、窒素置換した反応容器に加え、30分間窒素ガスを通気した。
2-ブロモ-7-ヨード-9,9-ジオクチル-9H-フルオレン:12.0g
2-(ビシクロ[4.2.0]オクタ-1,3,5-トリエン-3-イル)-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン:4.6g
炭酸カリウム:3.6g
水:13ml、トルエン:40ml、エタノール:10ml
次いで、テトラキストリフェニルホスフィンパラジウム(0)を0.2g加えて加熱し、75℃で11時間撹拌した。室温まで冷却した後、トルエンを加え、分液操作を行うことによって有機層を得た。この有機層を無水硫酸ナトリウムで脱水した後、減圧下で濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフィー(n-ヘキサン)で精製することによって中間体7の無色透明オイル7.9g(収率69%)を得た。 The following components were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through the vessel for 30 minutes.
2-bromo-7-iodo-9,9-dioctyl-9H-fluorene: 12.0g
2-(bicyclo[4.2.0]octa-1,3,5-trien-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: 4.6 g
Potassium carbonate: 3.6g
Water: 13ml, Toluene: 40ml, Ethanol: 10ml
Next, 0.2 g of tetrakistriphenylphosphine palladium (0) was added, heated, and stirred at 75° C. for 11 hours. After cooling to room temperature, toluene was added and a liquid separation operation was performed to obtain an organic layer. This organic layer was dehydrated with anhydrous sodium sulfate and then concentrated under reduced pressure to obtain a crude product. The crude product was purified by column chromatography (n-hexane) to obtain 7.9 g (yield: 69%) of Intermediate 7, a colorless transparent oil.
2-ブロモ-7-ヨード-9,9-ジオクチル-9H-フルオレン:12.0g
2-(ビシクロ[4.2.0]オクタ-1,3,5-トリエン-3-イル)-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン:4.6g
炭酸カリウム:3.6g
水:13ml、トルエン:40ml、エタノール:10ml
次いで、テトラキストリフェニルホスフィンパラジウム(0)を0.2g加えて加熱し、75℃で11時間撹拌した。室温まで冷却した後、トルエンを加え、分液操作を行うことによって有機層を得た。この有機層を無水硫酸ナトリウムで脱水した後、減圧下で濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフィー(n-ヘキサン)で精製することによって中間体7の無色透明オイル7.9g(収率69%)を得た。 The following components were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through the vessel for 30 minutes.
2-bromo-7-iodo-9,9-dioctyl-9H-fluorene: 12.0g
2-(bicyclo[4.2.0]octa-1,3,5-trien-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: 4.6 g
Potassium carbonate: 3.6g
Water: 13ml, Toluene: 40ml, Ethanol: 10ml
Next, 0.2 g of tetrakistriphenylphosphine palladium (0) was added, heated, and stirred at 75° C. for 11 hours. After cooling to room temperature, toluene was added and a liquid separation operation was performed to obtain an organic layer. This organic layer was dehydrated with anhydrous sodium sulfate and then concentrated under reduced pressure to obtain a crude product. The crude product was purified by column chromatography (n-hexane) to obtain 7.9 g (yield: 69%) of Intermediate 7, a colorless transparent oil.
<中間体8の合成>
<Synthesis of intermediate 8>
下記の成分を、窒素置換した反応容器に加えた。
ジフェニルアミン:2.3g
中間体7:7.8g
ナトリウムt-ブトキシド:1.7g
酢酸パラジウム(II):61mg
トリt-ブチルホスフィン:0.2g
トルエン:50ml
反応容器を加熱し、90℃で4時間撹拌した。室温まで冷却した後、不溶物を濾過によって取り除き、濾液を減圧下で濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフィー(n-ヘキサン)で精製することによって中間体8の無色透明オイル7.7g(収率86%)を得た。 The following components were added to a reaction vessel purged with nitrogen.
Diphenylamine: 2.3g
Intermediate 7: 7.8g
Sodium t-butoxide: 1.7g
Palladium(II) acetate: 61mg
Tri-t-butylphosphine: 0.2g
Toluene: 50ml
The reaction vessel was heated and stirred at 90° C. for 4 hours. After cooling to room temperature, insoluble matter was removed by filtration, and the filtrate was concentrated under reduced pressure to obtain a crude product. The crude product was purified by column chromatography (n-hexane) to obtain 7.7 g (yield: 86%) of Intermediate 8, a colorless transparent oil.
ジフェニルアミン:2.3g
中間体7:7.8g
ナトリウムt-ブトキシド:1.7g
酢酸パラジウム(II):61mg
トリt-ブチルホスフィン:0.2g
トルエン:50ml
反応容器を加熱し、90℃で4時間撹拌した。室温まで冷却した後、不溶物を濾過によって取り除き、濾液を減圧下で濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフィー(n-ヘキサン)で精製することによって中間体8の無色透明オイル7.7g(収率86%)を得た。 The following components were added to a reaction vessel purged with nitrogen.
Diphenylamine: 2.3g
Intermediate 7: 7.8g
Sodium t-butoxide: 1.7g
Palladium(II) acetate: 61mg
Tri-t-butylphosphine: 0.2g
Toluene: 50ml
The reaction vessel was heated and stirred at 90° C. for 4 hours. After cooling to room temperature, insoluble matter was removed by filtration, and the filtrate was concentrated under reduced pressure to obtain a crude product. The crude product was purified by column chromatography (n-hexane) to obtain 7.7 g (yield: 86%) of Intermediate 8, a colorless transparent oil.
<中間体9の合成>
<Synthesis of intermediate 9>
下記の成分を、窒素置換した反応容器に加えた。
中間体8:7.6g
テトラヒドロフラン:40ml
中間体8が溶解したところで、N-ブロモスクシンイミド:4.1gを加え、室温で6時間撹拌した。水とトルエンを加え、分液操作を行うことによって有機層を得た。この有機層を無水硫酸ナトリウムで脱水した後、減圧下で濃縮することによって中間体9の淡黄色オイル9.6g(収率102%)を得た。 The following components were added to a reaction vessel purged with nitrogen.
Intermediate 8: 7.6g
Tetrahydrofuran: 40ml
When Intermediate 8 was dissolved, 4.1 g of N-bromosuccinimide was added and stirred at room temperature for 6 hours. An organic layer was obtained by adding water and toluene and performing a liquid separation operation. This organic layer was dehydrated with anhydrous sodium sulfate and then concentrated under reduced pressure to obtain 9.6 g (yield 102%) of a pale yellow oil of Intermediate 9.
中間体8:7.6g
テトラヒドロフラン:40ml
中間体8が溶解したところで、N-ブロモスクシンイミド:4.1gを加え、室温で6時間撹拌した。水とトルエンを加え、分液操作を行うことによって有機層を得た。この有機層を無水硫酸ナトリウムで脱水した後、減圧下で濃縮することによって中間体9の淡黄色オイル9.6g(収率102%)を得た。 The following components were added to a reaction vessel purged with nitrogen.
Intermediate 8: 7.6g
Tetrahydrofuran: 40ml
When Intermediate 8 was dissolved, 4.1 g of N-bromosuccinimide was added and stirred at room temperature for 6 hours. An organic layer was obtained by adding water and toluene and performing a liquid separation operation. This organic layer was dehydrated with anhydrous sodium sulfate and then concentrated under reduced pressure to obtain 9.6 g (yield 102%) of a pale yellow oil of Intermediate 9.
<中間体10の合成>
<Synthesis of intermediate 10>
下記の成分を、窒素置換した反応容器に加え、30分間窒素ガスを通気した。
中間体9:9.6g
ビス(ピナコラト)ジボロン:6.3g
酢酸カリウム:3.5g
1,4-ジオキサン:50ml
次いで、{1,1’-ビス(ジフェニルホスフィノ)フェロセン}パラジウム(II)ジクロリドのジクロロメタン付加物0.2gを加えて加熱し、98℃で10.5時間撹拌した。室温まで冷却した後、飽和食塩水とトルエンを加え、分液操作を行うことによって有機層を得た。この有機層を無水硫酸ナトリウムで脱水した後、減圧下で濃縮することによって粗製物を得た。粗製物を酢酸エチル/メタノール=2/1による晶析を行うことによって、中間体10の白色粉体3.6g(収率34%)を得た。 The following components were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through the vessel for 30 minutes.
Intermediate 9: 9.6g
Bis(pinacolato)diboron: 6.3g
Potassium acetate: 3.5g
1,4-dioxane: 50ml
Next, 0.2 g of dichloromethane adduct of {1,1'-bis(diphenylphosphino)ferrocene}palladium(II) dichloride was added, heated, and stirred at 98° C. for 10.5 hours. After cooling to room temperature, saturated brine and toluene were added and a liquid separation operation was performed to obtain an organic layer. This organic layer was dehydrated with anhydrous sodium sulfate and then concentrated under reduced pressure to obtain a crude product. The crude product was crystallized using ethyl acetate/methanol=2/1 to obtain 3.6 g (yield: 34%) of a white powder of Intermediate 10.
中間体9:9.6g
ビス(ピナコラト)ジボロン:6.3g
酢酸カリウム:3.5g
1,4-ジオキサン:50ml
次いで、{1,1’-ビス(ジフェニルホスフィノ)フェロセン}パラジウム(II)ジクロリドのジクロロメタン付加物0.2gを加えて加熱し、98℃で10.5時間撹拌した。室温まで冷却した後、飽和食塩水とトルエンを加え、分液操作を行うことによって有機層を得た。この有機層を無水硫酸ナトリウムで脱水した後、減圧下で濃縮することによって粗製物を得た。粗製物を酢酸エチル/メタノール=2/1による晶析を行うことによって、中間体10の白色粉体3.6g(収率34%)を得た。 The following components were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through the vessel for 30 minutes.
Intermediate 9: 9.6g
Bis(pinacolato)diboron: 6.3g
Potassium acetate: 3.5g
1,4-dioxane: 50ml
Next, 0.2 g of dichloromethane adduct of {1,1'-bis(diphenylphosphino)ferrocene}palladium(II) dichloride was added, heated, and stirred at 98° C. for 10.5 hours. After cooling to room temperature, saturated brine and toluene were added and a liquid separation operation was performed to obtain an organic layer. This organic layer was dehydrated with anhydrous sodium sulfate and then concentrated under reduced pressure to obtain a crude product. The crude product was crystallized using ethyl acetate/methanol=2/1 to obtain 3.6 g (yield: 34%) of a white powder of Intermediate 10.
<中間体11の合成>
<Synthesis of intermediate 11>
下記の成分を、窒素置換した反応容器に加え、30分間窒素ガスを通気した。
3,6-ジブロモ-9-(ベンゾシクロブテン-4-イル)カルバゾール
:19.6g
ビス(ピナコラト)ジボロン:24.5g
酢酸カリウム:13.5g
1,4-ジオキサン:120ml
次いで、{1,1’-ビス(ジフェニルホスフィノ)フェロセン}パラジウム(II)ジクロリドのジクロロメタン付加物0.4gを加えて加熱し、97℃で5時間撹拌した。室温まで冷却した後、市水とトルエンを加え、分液操作を行うことによって有機層を得た。この有機層を無水硫酸ナトリウムで脱水した後、減圧下で濃縮することによって粗製物を得た。粗製物をトルエン/メタノール=1/5による晶析を行うことによって、中間体11の白色結晶14.5g(収率61%)を得た。 The following components were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through the vessel for 30 minutes.
3,6-dibromo-9-(benzocyclobuten-4-yl)carbazole: 19.6g
Bis(pinacolato) diboron: 24.5g
Potassium acetate: 13.5g
1,4-dioxane: 120ml
Next, 0.4 g of a dichloromethane adduct of {1,1'-bis(diphenylphosphino)ferrocene}palladium(II) dichloride was added, heated, and stirred at 97° C. for 5 hours. After cooling to room temperature, city water and toluene were added and a liquid separation operation was performed to obtain an organic layer. This organic layer was dehydrated with anhydrous sodium sulfate and then concentrated under reduced pressure to obtain a crude product. The crude product was crystallized using toluene/methanol=1/5 to obtain 14.5 g of white crystals of Intermediate 11 (yield: 61%).
3,6-ジブロモ-9-(ベンゾシクロブテン-4-イル)カルバゾール
:19.6g
ビス(ピナコラト)ジボロン:24.5g
酢酸カリウム:13.5g
1,4-ジオキサン:120ml
次いで、{1,1’-ビス(ジフェニルホスフィノ)フェロセン}パラジウム(II)ジクロリドのジクロロメタン付加物0.4gを加えて加熱し、97℃で5時間撹拌した。室温まで冷却した後、市水とトルエンを加え、分液操作を行うことによって有機層を得た。この有機層を無水硫酸ナトリウムで脱水した後、減圧下で濃縮することによって粗製物を得た。粗製物をトルエン/メタノール=1/5による晶析を行うことによって、中間体11の白色結晶14.5g(収率61%)を得た。 The following components were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through the vessel for 30 minutes.
3,6-dibromo-9-(benzocyclobuten-4-yl)carbazole: 19.6g
Bis(pinacolato) diboron: 24.5g
Potassium acetate: 13.5g
1,4-dioxane: 120ml
Next, 0.4 g of a dichloromethane adduct of {1,1'-bis(diphenylphosphino)ferrocene}palladium(II) dichloride was added, heated, and stirred at 97° C. for 5 hours. After cooling to room temperature, city water and toluene were added and a liquid separation operation was performed to obtain an organic layer. This organic layer was dehydrated with anhydrous sodium sulfate and then concentrated under reduced pressure to obtain a crude product. The crude product was crystallized using toluene/methanol=1/5 to obtain 14.5 g of white crystals of Intermediate 11 (yield: 61%).
<中間体12の合成>
<Synthesis of intermediate 12>
下記の成分を、窒素置換した反応容器に加え、30分間窒素ガスを通気した。
ビス(p-ブロモフェニル)[p-(2-ナフチル)フェニル]アミン:7.3g
ビス(ピナコラト)ジボロン:7.4g
酢酸カリウム:4.1g
1,4-ジオキサン:50ml
次いで、{1,1’-ビス(ジフェニルホスフィノ)フェロセン}パラジウム(II)ジクロリドのジクロロメタン付加物0.11gを加えて加熱し、100℃で11時間撹拌した。室温まで冷却した後、メタノールを加えて1時間撹拌し、濾過を行った。得られた固体をクロロホルムに溶解させ、シリカゲル40gを加えて吸着精製を行い、減圧下で濃縮することによって粗製物を得た。粗製物をクロロホルム/メタノール=1/6により再結晶することによって、中間体12の白色粉体3.9g(収率45%)を得た。 The following components were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through the vessel for 30 minutes.
Bis(p-bromophenyl)[p-(2-naphthyl)phenyl]amine: 7.3g
Bis(pinacolato)diboron: 7.4g
Potassium acetate: 4.1g
1,4-dioxane: 50ml
Next, 0.11 g of a dichloromethane adduct of {1,1'-bis(diphenylphosphino)ferrocene}palladium(II) dichloride was added, heated, and stirred at 100° C. for 11 hours. After cooling to room temperature, methanol was added, stirred for 1 hour, and filtered. The obtained solid was dissolved in chloroform, 40 g of silica gel was added thereto for adsorption purification, and the mixture was concentrated under reduced pressure to obtain a crude product. The crude product was recrystallized from chloroform/methanol=1/6 to obtain 3.9 g of white powder of Intermediate 12 (yield: 45%).
ビス(p-ブロモフェニル)[p-(2-ナフチル)フェニル]アミン:7.3g
ビス(ピナコラト)ジボロン:7.4g
酢酸カリウム:4.1g
1,4-ジオキサン:50ml
次いで、{1,1’-ビス(ジフェニルホスフィノ)フェロセン}パラジウム(II)ジクロリドのジクロロメタン付加物0.11gを加えて加熱し、100℃で11時間撹拌した。室温まで冷却した後、メタノールを加えて1時間撹拌し、濾過を行った。得られた固体をクロロホルムに溶解させ、シリカゲル40gを加えて吸着精製を行い、減圧下で濃縮することによって粗製物を得た。粗製物をクロロホルム/メタノール=1/6により再結晶することによって、中間体12の白色粉体3.9g(収率45%)を得た。 The following components were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through the vessel for 30 minutes.
Bis(p-bromophenyl)[p-(2-naphthyl)phenyl]amine: 7.3g
Bis(pinacolato)diboron: 7.4g
Potassium acetate: 4.1g
1,4-dioxane: 50ml
Next, 0.11 g of a dichloromethane adduct of {1,1'-bis(diphenylphosphino)ferrocene}palladium(II) dichloride was added, heated, and stirred at 100° C. for 11 hours. After cooling to room temperature, methanol was added, stirred for 1 hour, and filtered. The obtained solid was dissolved in chloroform, 40 g of silica gel was added thereto for adsorption purification, and the mixture was concentrated under reduced pressure to obtain a crude product. The crude product was recrystallized from chloroform/methanol=1/6 to obtain 3.9 g of white powder of Intermediate 12 (yield: 45%).
<実施例1>
高分子量化合物Aの合成;
下記の成分を、窒素置換した反応容器に加え、30分間窒素ガスを通気した。
中間体1:5.6g
1,3-ジブロモベンゼン:1.8g
中間体4:0.5g
リン酸三カリウム:6.9g
トルエン:9ml、水:5ml、1,4-ジオキサン:27ml
次いで、酢酸パラジウム(II)を1.4mg、およびトリ-o-トリルホスフィン12mgを加えて加熱し、88℃で8時間撹拌した。この後、フェニルボロン酸を17mg加えて1時間撹拌し、次いでブロモベンゼン242mgを加えて1時間撹拌した。トルエン50ml、5wt%N,N-ジエチルジチオカルバミド酸ナトリウム水溶液50mlを加えて加熱し、還流下で2時間撹拌した。室温まで冷却した後、分液操作を行うことによって有機層を採取し、飽和食塩水で3回洗浄した。有機層を無水硫酸ナトリウムで脱水した後、減圧下で濃縮することによって粗ポリマーを得た。粗ポリマーをトルエンに溶解させ、シリカゲルを加えて吸着精製を行い、ろ過してシリカゲルを除去した。得られたろ液を減圧下で濃縮し、乾固物にトルエン100mlを加えて溶解させ、n-ヘキサン300ml中に滴下し、得られた沈殿物を濾取した。この操作を3回繰り返し、乾燥させることにより高分子量化合物Aを3.3g(収率69%)得た。 <Example 1>
Synthesis of high molecular weight compound A;
The following components were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through the vessel for 30 minutes.
Intermediate 1: 5.6g
1,3-dibromobenzene: 1.8g
Intermediate 4: 0.5g
Tripotassium phosphate: 6.9g
Toluene: 9ml, water: 5ml, 1,4-dioxane: 27ml
Next, 1.4 mg of palladium (II) acetate and 12 mg of tri-o-tolylphosphine were added, heated, and stirred at 88° C. for 8 hours. Thereafter, 17 mg of phenylboronic acid was added and stirred for 1 hour, and then 242 mg of bromobenzene was added and stirred for 1 hour. 50 ml of toluene and 50 ml of a 5 wt % sodium N,N-diethyldithiocarbamate aqueous solution were added, heated, and stirred under reflux for 2 hours. After cooling to room temperature, an organic layer was collected by performing a liquid separation operation and washed three times with saturated saline. The organic layer was dehydrated with anhydrous sodium sulfate and then concentrated under reduced pressure to obtain a crude polymer. The crude polymer was dissolved in toluene, silica gel was added thereto for adsorption purification, and the silica gel was removed by filtration. The obtained filtrate was concentrated under reduced pressure, and 100 ml of toluene was added to the dried product to dissolve it, and the solution was added dropwise to 300 ml of n-hexane, and the resulting precipitate was collected by filtration. This operation was repeated three times and 3.3 g (yield 69%) of high molecular weight compound A was obtained by drying.
高分子量化合物Aの合成;
下記の成分を、窒素置換した反応容器に加え、30分間窒素ガスを通気した。
中間体1:5.6g
1,3-ジブロモベンゼン:1.8g
中間体4:0.5g
リン酸三カリウム:6.9g
トルエン:9ml、水:5ml、1,4-ジオキサン:27ml
次いで、酢酸パラジウム(II)を1.4mg、およびトリ-o-トリルホスフィン12mgを加えて加熱し、88℃で8時間撹拌した。この後、フェニルボロン酸を17mg加えて1時間撹拌し、次いでブロモベンゼン242mgを加えて1時間撹拌した。トルエン50ml、5wt%N,N-ジエチルジチオカルバミド酸ナトリウム水溶液50mlを加えて加熱し、還流下で2時間撹拌した。室温まで冷却した後、分液操作を行うことによって有機層を採取し、飽和食塩水で3回洗浄した。有機層を無水硫酸ナトリウムで脱水した後、減圧下で濃縮することによって粗ポリマーを得た。粗ポリマーをトルエンに溶解させ、シリカゲルを加えて吸着精製を行い、ろ過してシリカゲルを除去した。得られたろ液を減圧下で濃縮し、乾固物にトルエン100mlを加えて溶解させ、n-ヘキサン300ml中に滴下し、得られた沈殿物を濾取した。この操作を3回繰り返し、乾燥させることにより高分子量化合物Aを3.3g(収率69%)得た。 <Example 1>
Synthesis of high molecular weight compound A;
The following components were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through the vessel for 30 minutes.
Intermediate 1: 5.6g
1,3-dibromobenzene: 1.8g
Intermediate 4: 0.5g
Tripotassium phosphate: 6.9g
Toluene: 9ml, water: 5ml, 1,4-dioxane: 27ml
Next, 1.4 mg of palladium (II) acetate and 12 mg of tri-o-tolylphosphine were added, heated, and stirred at 88° C. for 8 hours. Thereafter, 17 mg of phenylboronic acid was added and stirred for 1 hour, and then 242 mg of bromobenzene was added and stirred for 1 hour. 50 ml of toluene and 50 ml of a 5 wt % sodium N,N-diethyldithiocarbamate aqueous solution were added, heated, and stirred under reflux for 2 hours. After cooling to room temperature, an organic layer was collected by performing a liquid separation operation and washed three times with saturated saline. The organic layer was dehydrated with anhydrous sodium sulfate and then concentrated under reduced pressure to obtain a crude polymer. The crude polymer was dissolved in toluene, silica gel was added thereto for adsorption purification, and the silica gel was removed by filtration. The obtained filtrate was concentrated under reduced pressure, and 100 ml of toluene was added to the dried product to dissolve it, and the solution was added dropwise to 300 ml of n-hexane, and the resulting precipitate was collected by filtration. This operation was repeated three times and 3.3 g (yield 69%) of high molecular weight compound A was obtained by drying.
高分子量化合物AのGPCで測定した平均分子量および分散度は、以下の通りであった。
数平均分子量Mn(ポリスチレン換算):76,000
重量平均分子量Mw(ポリスチレン換算):175,000
分散度(Mw/Mn):2.3 The average molecular weight and dispersity of high molecular weight compound A measured by GPC were as follows.
Number average molecular weight Mn (polystyrene equivalent): 76,000
Weight average molecular weight Mw (polystyrene equivalent): 175,000
Dispersity (Mw/Mn): 2.3
数平均分子量Mn(ポリスチレン換算):76,000
重量平均分子量Mw(ポリスチレン換算):175,000
分散度(Mw/Mn):2.3 The average molecular weight and dispersity of high molecular weight compound A measured by GPC were as follows.
Number average molecular weight Mn (polystyrene equivalent): 76,000
Weight average molecular weight Mw (polystyrene equivalent): 175,000
Dispersity (Mw/Mn): 2.3
また、高分子量化合物AについてNMR測定を行った。1H-NMR測定結果を図9に示した。化学組成式は下記の通りであった。
Further, NMR measurement was performed on high molecular weight compound A. 1 H-NMR measurement results are shown in FIG. 9. The chemical composition formula was as follows.
前記化学組成から理解されるように、この高分子量化合物Aは、構造単位Aを45モル%含み、構造単位Bを50モル%含み、構造単位Cを5モル%含んでいた。
As understood from the chemical composition, this high molecular weight compound A contained 45 mol% of structural unit A, 50 mol% of structural unit B, and 5 mol% of structural unit C.
<実施例2>
高分子量化合物Bの合成;
下記の成分を、窒素置換した反応容器に加え、30分間窒素ガスを通気した。
中間体1:5.6g
1,3-ジブロモベンゼン:1.8g
中間体5:0.5g
リン酸三カリウム:6.8g
トルエン:9ml、水:5ml、1,4-ジオキサン:27ml
次いで、酢酸パラジウム(II)を1.4mg、およびトリ-o-トリルホスフィン12mgを加えて加熱し、88℃で12時間撹拌した。この後、フェニルボロン酸を17mg加えて1時間撹拌し、次いでブロモベンゼン242mgを加えて1時間撹拌した。トルエン50ml、5wt%N,N-ジエチルジチオカルバミド酸ナトリウム水溶液50mlを加えて加熱し、還流下で2時間撹拌した。室温まで冷却した後、分液操作を行うことによって有機層を採取し、飽和食塩水で3回洗浄した。有機層を無水硫酸ナトリウムで脱水した後、減圧下で濃縮することによって粗ポリマーを得た。粗ポリマーをトルエンに溶解させ、シリカゲルを加えて吸着精製を行い、ろ過してシリカゲルを除去した。得られたろ液を減圧下で濃縮し、乾固物にトルエン100mlを加えて溶解させ、n-ヘキサン300ml中に滴下し、得られた沈殿物を濾取した。この操作を3回繰り返し、乾燥させることにより高分子量化合物Bを3.4g(収率71%)得た。 <Example 2>
Synthesis of high molecular weight compound B;
The following components were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through the vessel for 30 minutes.
Intermediate 1: 5.6g
1,3-dibromobenzene: 1.8g
Intermediate 5: 0.5g
Tripotassium phosphate: 6.8g
Toluene: 9ml, water: 5ml, 1,4-dioxane: 27ml
Next, 1.4 mg of palladium (II) acetate and 12 mg of tri-o-tolylphosphine were added, heated, and stirred at 88° C. for 12 hours. Thereafter, 17 mg of phenylboronic acid was added and stirred for 1 hour, and then 242 mg of bromobenzene was added and stirred for 1 hour. 50 ml of toluene and 50 ml of a 5 wt % sodium N,N-diethyldithiocarbamate aqueous solution were added, heated, and stirred under reflux for 2 hours. After cooling to room temperature, an organic layer was collected by performing a liquid separation operation and washed three times with saturated saline. The organic layer was dehydrated with anhydrous sodium sulfate and then concentrated under reduced pressure to obtain a crude polymer. The crude polymer was dissolved in toluene, silica gel was added thereto for adsorption purification, and the silica gel was removed by filtration. The obtained filtrate was concentrated under reduced pressure, and 100 ml of toluene was added to the dried product to dissolve it, and the solution was added dropwise to 300 ml of n-hexane, and the resulting precipitate was collected by filtration. This operation was repeated three times and 3.4 g (yield 71%) of high molecular weight compound B was obtained by drying.
高分子量化合物Bの合成;
下記の成分を、窒素置換した反応容器に加え、30分間窒素ガスを通気した。
中間体1:5.6g
1,3-ジブロモベンゼン:1.8g
中間体5:0.5g
リン酸三カリウム:6.8g
トルエン:9ml、水:5ml、1,4-ジオキサン:27ml
次いで、酢酸パラジウム(II)を1.4mg、およびトリ-o-トリルホスフィン12mgを加えて加熱し、88℃で12時間撹拌した。この後、フェニルボロン酸を17mg加えて1時間撹拌し、次いでブロモベンゼン242mgを加えて1時間撹拌した。トルエン50ml、5wt%N,N-ジエチルジチオカルバミド酸ナトリウム水溶液50mlを加えて加熱し、還流下で2時間撹拌した。室温まで冷却した後、分液操作を行うことによって有機層を採取し、飽和食塩水で3回洗浄した。有機層を無水硫酸ナトリウムで脱水した後、減圧下で濃縮することによって粗ポリマーを得た。粗ポリマーをトルエンに溶解させ、シリカゲルを加えて吸着精製を行い、ろ過してシリカゲルを除去した。得られたろ液を減圧下で濃縮し、乾固物にトルエン100mlを加えて溶解させ、n-ヘキサン300ml中に滴下し、得られた沈殿物を濾取した。この操作を3回繰り返し、乾燥させることにより高分子量化合物Bを3.4g(収率71%)得た。 <Example 2>
Synthesis of high molecular weight compound B;
The following components were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through the vessel for 30 minutes.
Intermediate 1: 5.6g
1,3-dibromobenzene: 1.8g
Intermediate 5: 0.5g
Tripotassium phosphate: 6.8g
Toluene: 9ml, water: 5ml, 1,4-dioxane: 27ml
Next, 1.4 mg of palladium (II) acetate and 12 mg of tri-o-tolylphosphine were added, heated, and stirred at 88° C. for 12 hours. Thereafter, 17 mg of phenylboronic acid was added and stirred for 1 hour, and then 242 mg of bromobenzene was added and stirred for 1 hour. 50 ml of toluene and 50 ml of a 5 wt % sodium N,N-diethyldithiocarbamate aqueous solution were added, heated, and stirred under reflux for 2 hours. After cooling to room temperature, an organic layer was collected by performing a liquid separation operation and washed three times with saturated saline. The organic layer was dehydrated with anhydrous sodium sulfate and then concentrated under reduced pressure to obtain a crude polymer. The crude polymer was dissolved in toluene, silica gel was added thereto for adsorption purification, and the silica gel was removed by filtration. The obtained filtrate was concentrated under reduced pressure, and 100 ml of toluene was added to the dried product to dissolve it, and the solution was added dropwise to 300 ml of n-hexane, and the resulting precipitate was collected by filtration. This operation was repeated three times and 3.4 g (yield 71%) of high molecular weight compound B was obtained by drying.
高分子量化合物BのGPCで測定した平均分子量および分散度は、以下の通りであった。
数平均分子量Mn(ポリスチレン換算):40,000
重量平均分子量Mw(ポリスチレン換算):65,000
分散度(Mw/Mn):1.6 The average molecular weight and dispersity of high molecular weight compound B measured by GPC were as follows.
Number average molecular weight Mn (polystyrene equivalent): 40,000
Weight average molecular weight Mw (polystyrene equivalent): 65,000
Dispersity (Mw/Mn): 1.6
数平均分子量Mn(ポリスチレン換算):40,000
重量平均分子量Mw(ポリスチレン換算):65,000
分散度(Mw/Mn):1.6 The average molecular weight and dispersity of high molecular weight compound B measured by GPC were as follows.
Number average molecular weight Mn (polystyrene equivalent): 40,000
Weight average molecular weight Mw (polystyrene equivalent): 65,000
Dispersity (Mw/Mn): 1.6
また、高分子量化合物BについてNMR測定を行った。1H-NMR測定結果を図10に示した。化学組成式は下記の通りであった。
Further, NMR measurement was performed on high molecular weight compound B. 1 H-NMR measurement results are shown in FIG. The chemical composition formula was as follows.
前記化学組成から理解されるようにこの高分子量化合物Bは、構造単位Aを45モル%含み、構造単位Bを50モル%含み、構造単位Cを5モル%含んでいた。
As understood from the chemical composition, this high molecular weight compound B contained 45 mol% of structural unit A, 50 mol% of structural unit B, and 5 mol% of structural unit C.
<実施例3>
高分子量化合物Cの合成;
下記の成分を、窒素置換した反応容器に加え、30分間窒素ガスを通気した。
中間体1:5.6g
1,3-ジブロモベンゼン:1.8g
中間体6:0.5g
リン酸三カリウム:6.8g
トルエン:9ml、水:5ml、1,4-ジオキサン:27ml
次いで、酢酸パラジウム(II)を1.4mg、およびトリ-o-トリルホスフィン12mgを加えて加熱し、88℃で12時間撹拌した。この後、フェニルボロン酸を17mg加えて1時間撹拌し、次いでブロモベンゼン242mgを加えて1時間撹拌した。トルエン50ml、5wt%N,N-ジエチルジチオカルバミド酸ナトリウム水溶液50mlを加えて加熱し、還流下で2時間撹拌した。室温まで冷却した後、分液操作を行うことによって有機層を採取し、飽和食塩水で3回洗浄した。有機層を無水硫酸ナトリウムで脱水した後、減圧下で濃縮することによって粗ポリマーを得た。粗ポリマーをトルエンに溶解させ、シリカゲルを加えて吸着精製を行い、ろ過してシリカゲルを除去した。得られたろ液を減圧下で濃縮し、乾固物にトルエン100mlを加えて溶解させ、n-ヘキサン300ml中に滴下し、得られた沈殿物を濾取した。この操作を3回繰り返し、乾燥させることにより高分子量化合物Cを3.4g(収率65%)得た。 <Example 3>
Synthesis of high molecular weight compound C;
The following components were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through the vessel for 30 minutes.
Intermediate 1: 5.6g
1,3-dibromobenzene: 1.8g
Intermediate 6: 0.5g
Tripotassium phosphate: 6.8g
Toluene: 9ml, water: 5ml, 1,4-dioxane: 27ml
Next, 1.4 mg of palladium (II) acetate and 12 mg of tri-o-tolylphosphine were added, heated, and stirred at 88° C. for 12 hours. Thereafter, 17 mg of phenylboronic acid was added and stirred for 1 hour, and then 242 mg of bromobenzene was added and stirred for 1 hour. 50 ml of toluene and 50 ml of a 5 wt % sodium N,N-diethyldithiocarbamate aqueous solution were added, heated, and stirred under reflux for 2 hours. After cooling to room temperature, an organic layer was collected by performing a liquid separation operation and washed three times with saturated saline. The organic layer was dehydrated with anhydrous sodium sulfate and then concentrated under reduced pressure to obtain a crude polymer. The crude polymer was dissolved in toluene, silica gel was added thereto for adsorption purification, and the silica gel was removed by filtration. The obtained filtrate was concentrated under reduced pressure, and 100 ml of toluene was added to the dried product to dissolve it, and the solution was added dropwise to 300 ml of n-hexane, and the resulting precipitate was collected by filtration. This operation was repeated three times and 3.4 g (yield 65%) of high molecular weight compound C was obtained by drying.
高分子量化合物Cの合成;
下記の成分を、窒素置換した反応容器に加え、30分間窒素ガスを通気した。
中間体1:5.6g
1,3-ジブロモベンゼン:1.8g
中間体6:0.5g
リン酸三カリウム:6.8g
トルエン:9ml、水:5ml、1,4-ジオキサン:27ml
次いで、酢酸パラジウム(II)を1.4mg、およびトリ-o-トリルホスフィン12mgを加えて加熱し、88℃で12時間撹拌した。この後、フェニルボロン酸を17mg加えて1時間撹拌し、次いでブロモベンゼン242mgを加えて1時間撹拌した。トルエン50ml、5wt%N,N-ジエチルジチオカルバミド酸ナトリウム水溶液50mlを加えて加熱し、還流下で2時間撹拌した。室温まで冷却した後、分液操作を行うことによって有機層を採取し、飽和食塩水で3回洗浄した。有機層を無水硫酸ナトリウムで脱水した後、減圧下で濃縮することによって粗ポリマーを得た。粗ポリマーをトルエンに溶解させ、シリカゲルを加えて吸着精製を行い、ろ過してシリカゲルを除去した。得られたろ液を減圧下で濃縮し、乾固物にトルエン100mlを加えて溶解させ、n-ヘキサン300ml中に滴下し、得られた沈殿物を濾取した。この操作を3回繰り返し、乾燥させることにより高分子量化合物Cを3.4g(収率65%)得た。 <Example 3>
Synthesis of high molecular weight compound C;
The following components were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through the vessel for 30 minutes.
Intermediate 1: 5.6g
1,3-dibromobenzene: 1.8g
Intermediate 6: 0.5g
Tripotassium phosphate: 6.8g
Toluene: 9ml, water: 5ml, 1,4-dioxane: 27ml
Next, 1.4 mg of palladium (II) acetate and 12 mg of tri-o-tolylphosphine were added, heated, and stirred at 88° C. for 12 hours. Thereafter, 17 mg of phenylboronic acid was added and stirred for 1 hour, and then 242 mg of bromobenzene was added and stirred for 1 hour. 50 ml of toluene and 50 ml of a 5 wt % sodium N,N-diethyldithiocarbamate aqueous solution were added, heated, and stirred under reflux for 2 hours. After cooling to room temperature, an organic layer was collected by performing a liquid separation operation and washed three times with saturated saline. The organic layer was dehydrated with anhydrous sodium sulfate and then concentrated under reduced pressure to obtain a crude polymer. The crude polymer was dissolved in toluene, silica gel was added thereto for adsorption purification, and the silica gel was removed by filtration. The obtained filtrate was concentrated under reduced pressure, and 100 ml of toluene was added to the dried product to dissolve it, and the solution was added dropwise to 300 ml of n-hexane, and the resulting precipitate was collected by filtration. This operation was repeated three times and 3.4 g (yield 65%) of high molecular weight compound C was obtained by drying.
高分子量化合物BのGPCで測定した平均分子量および分散度は、以下の通りであった。
数平均分子量Mn(ポリスチレン換算):44,000
重量平均分子量Mw(ポリスチレン換算):80,000
分散度(Mw/Mn):1.8 The average molecular weight and dispersity of high molecular weight compound B measured by GPC were as follows.
Number average molecular weight Mn (polystyrene equivalent): 44,000
Weight average molecular weight Mw (polystyrene equivalent): 80,000
Dispersity (Mw/Mn): 1.8
数平均分子量Mn(ポリスチレン換算):44,000
重量平均分子量Mw(ポリスチレン換算):80,000
分散度(Mw/Mn):1.8 The average molecular weight and dispersity of high molecular weight compound B measured by GPC were as follows.
Number average molecular weight Mn (polystyrene equivalent): 44,000
Weight average molecular weight Mw (polystyrene equivalent): 80,000
Dispersity (Mw/Mn): 1.8
また、高分子量化合物CについてNMR測定を行った。1H-NMR測定結果を図11に示した。化学組成式は下記の通りであった。
Further, NMR measurement was performed on high molecular weight compound C. 1 H-NMR measurement results are shown in FIG. 11. The chemical composition formula was as follows.
前記化学組成から理解されるようにこの高分子量化合物Cは、構造単位Aを45モル%含み、構造単位Bを50モル%含み、構造単位Cを5モル%含んでいた。
As understood from the chemical composition, this high molecular weight compound C contained 45 mol% of structural unit A, 50 mol% of structural unit B, and 5 mol% of structural unit C.
<実施例4>
高分子量化合物Dの合成;
下記の成分を、窒素置換した反応容器に加え、30分間窒素ガスを通気した。
中間体1:5.4g
1,3-ジブロモベンゼン:1.7g
中間体10:0.7g
リン酸三カリウム:7.4g
トルエン:9ml、水:5ml、1,4-ジオキサン:27ml
次いで、酢酸パラジウム(II)を1.5mg、およびトリ-o-トリルホスフィン12mgを加えて加熱し、86℃で9.5時間撹拌した。この後、フェニルボロン酸を19mg加えて1時間撹拌し、次いでブロモベンゼン262mgを加えて1時間撹拌した。トルエン50ml、5wt%N,N-ジエチルジチオカルバミド酸ナトリウム水溶液50mlを加えて加熱し、還流下で2時間撹拌した。室温まで冷却した後、分液操作を行うことによって有機層を採取し、飽和食塩水で3回洗浄した。有機層を無水硫酸ナトリウムで脱水した後、減圧下で濃縮することによって粗ポリマーを得た。粗ポリマーをトルエンに溶解させ、シリカゲルを加えて吸着精製を行い、ろ過してシリカゲルを除去した。得られたろ液を減圧下で濃縮し、乾固物にトルエン100mlを加えて溶解させ、n-ヘキサン300ml中に滴下し、得られた沈殿物を濾取した。この操作を3回繰り返し、乾燥させることにより高分子量化合物Dを3.3g(収率63%)得た。 <Example 4>
Synthesis of high molecular weight compound D;
The following components were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through the vessel for 30 minutes.
Intermediate 1: 5.4g
1,3-dibromobenzene: 1.7g
Intermediate 10: 0.7g
Tripotassium phosphate: 7.4g
Toluene: 9ml, water: 5ml, 1,4-dioxane: 27ml
Next, 1.5 mg of palladium (II) acetate and 12 mg of tri-o-tolylphosphine were added, heated, and stirred at 86° C. for 9.5 hours. Thereafter, 19 mg of phenylboronic acid was added and stirred for 1 hour, and then 262 mg of bromobenzene was added and stirred for 1 hour. 50 ml of toluene and 50 ml of a 5 wt % sodium N,N-diethyldithiocarbamate aqueous solution were added, heated, and stirred under reflux for 2 hours. After cooling to room temperature, an organic layer was collected by performing a liquid separation operation and washed three times with saturated saline. The organic layer was dehydrated with anhydrous sodium sulfate and then concentrated under reduced pressure to obtain a crude polymer. The crude polymer was dissolved in toluene, silica gel was added thereto for adsorption purification, and the silica gel was removed by filtration. The obtained filtrate was concentrated under reduced pressure, and 100 ml of toluene was added to the dried product to dissolve it, and the solution was added dropwise to 300 ml of n-hexane, and the resulting precipitate was collected by filtration. This operation was repeated three times and 3.3 g (yield 63%) of high molecular weight compound D was obtained by drying.
高分子量化合物Dの合成;
下記の成分を、窒素置換した反応容器に加え、30分間窒素ガスを通気した。
中間体1:5.4g
1,3-ジブロモベンゼン:1.7g
中間体10:0.7g
リン酸三カリウム:7.4g
トルエン:9ml、水:5ml、1,4-ジオキサン:27ml
次いで、酢酸パラジウム(II)を1.5mg、およびトリ-o-トリルホスフィン12mgを加えて加熱し、86℃で9.5時間撹拌した。この後、フェニルボロン酸を19mg加えて1時間撹拌し、次いでブロモベンゼン262mgを加えて1時間撹拌した。トルエン50ml、5wt%N,N-ジエチルジチオカルバミド酸ナトリウム水溶液50mlを加えて加熱し、還流下で2時間撹拌した。室温まで冷却した後、分液操作を行うことによって有機層を採取し、飽和食塩水で3回洗浄した。有機層を無水硫酸ナトリウムで脱水した後、減圧下で濃縮することによって粗ポリマーを得た。粗ポリマーをトルエンに溶解させ、シリカゲルを加えて吸着精製を行い、ろ過してシリカゲルを除去した。得られたろ液を減圧下で濃縮し、乾固物にトルエン100mlを加えて溶解させ、n-ヘキサン300ml中に滴下し、得られた沈殿物を濾取した。この操作を3回繰り返し、乾燥させることにより高分子量化合物Dを3.3g(収率63%)得た。 <Example 4>
Synthesis of high molecular weight compound D;
The following components were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through the vessel for 30 minutes.
Intermediate 1: 5.4g
1,3-dibromobenzene: 1.7g
Intermediate 10: 0.7g
Tripotassium phosphate: 7.4g
Toluene: 9ml, water: 5ml, 1,4-dioxane: 27ml
Next, 1.5 mg of palladium (II) acetate and 12 mg of tri-o-tolylphosphine were added, heated, and stirred at 86° C. for 9.5 hours. Thereafter, 19 mg of phenylboronic acid was added and stirred for 1 hour, and then 262 mg of bromobenzene was added and stirred for 1 hour. 50 ml of toluene and 50 ml of a 5 wt % sodium N,N-diethyldithiocarbamate aqueous solution were added, heated, and stirred under reflux for 2 hours. After cooling to room temperature, an organic layer was collected by performing a liquid separation operation and washed three times with saturated saline. The organic layer was dehydrated with anhydrous sodium sulfate and then concentrated under reduced pressure to obtain a crude polymer. The crude polymer was dissolved in toluene, silica gel was added thereto for adsorption purification, and the silica gel was removed by filtration. The obtained filtrate was concentrated under reduced pressure, and 100 ml of toluene was added to the dried product to dissolve it, and the solution was added dropwise to 300 ml of n-hexane, and the resulting precipitate was collected by filtration. This operation was repeated three times and 3.3 g (yield 63%) of high molecular weight compound D was obtained by drying.
高分子量化合物DのGPCで測定した平均分子量および分散度は、以下の通りであった。
数平均分子量Mn(ポリスチレン換算):78,000
重量平均分子量Mw(ポリスチレン換算):124,000
分散度(Mw/Mn):1.6 The average molecular weight and dispersity of high molecular weight compound D measured by GPC were as follows.
Number average molecular weight Mn (polystyrene equivalent): 78,000
Weight average molecular weight Mw (polystyrene equivalent): 124,000
Dispersity (Mw/Mn): 1.6
数平均分子量Mn(ポリスチレン換算):78,000
重量平均分子量Mw(ポリスチレン換算):124,000
分散度(Mw/Mn):1.6 The average molecular weight and dispersity of high molecular weight compound D measured by GPC were as follows.
Number average molecular weight Mn (polystyrene equivalent): 78,000
Weight average molecular weight Mw (polystyrene equivalent): 124,000
Dispersity (Mw/Mn): 1.6
また、高分子量化合物DについてNMR測定を行った。1H-NMR測定結果を図12に示した。化学組成式は下記の通りであった。
Further, NMR measurement was performed on high molecular weight compound D. 1 H-NMR measurement results are shown in FIG. 12. The chemical composition formula was as follows.
前記化学組成から理解されるようにこの高分子量化合物Dは、構造単位Aを45モル%含み、構造単位Bを50モル%含み、構造単位Cを5モル%含んでいた。
As understood from the chemical composition, this high molecular weight compound D contained 45 mol% of structural unit A, 50 mol% of structural unit B, and 5 mol% of structural unit C.
<実施例5>
高分子量化合物Eの合成;
下記の成分を、窒素置換した反応容器に加え、30分間窒素ガスを通気した。
中間体1:5.4g
1,3-ジブロモベンゼン:1.8g
中間体10:0.4g
中間体11:0.2g
リン酸三カリウム:7.4g
トルエン:9ml、水:5ml、1,4-ジオキサン:27ml
次いで、酢酸パラジウム(II)を1.5mg、およびトリ-o-トリルホスフィン12.4mgを加えて加熱し、86℃で9時間撹拌した。この後、フェニルボロン酸を19mg加えて1時間撹拌し、次いでブロモベンゼン262mgを加えて1時間撹拌した。トルエン50ml、5wt%N,N-ジエチルジチオカルバミド酸ナトリウム水溶液50mlを加えて加熱し、還流下で2時間撹拌した。室温まで冷却した後、分液操作を行うことによって有機層を採取し、飽和食塩水で3回洗浄した。有機層を無水硫酸ナトリウムで脱水した後、減圧下で濃縮することによって粗ポリマーを得た。粗ポリマーをトルエンに溶解させ、シリカゲルを加えて吸着精製を行い、ろ過してシリカゲルを除去した。得られたろ液を減圧下で濃縮し、乾固物にトルエン100mlを加えて溶解させ、n-ヘキサン200ml中に滴下し、得られた沈殿物を濾取した。この操作を3回繰り返し、乾燥させることにより高分子量化合物Eを2.9g(収率57%)得た。 <Example 5>
Synthesis of high molecular weight compound E;
The following components were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through the vessel for 30 minutes.
Intermediate 1: 5.4g
1,3-dibromobenzene: 1.8g
Intermediate 10: 0.4g
Intermediate 11: 0.2g
Tripotassium phosphate: 7.4g
Toluene: 9ml, water: 5ml, 1,4-dioxane: 27ml
Next, 1.5 mg of palladium (II) acetate and 12.4 mg of tri-o-tolylphosphine were added, heated, and stirred at 86° C. for 9 hours. Thereafter, 19 mg of phenylboronic acid was added and stirred for 1 hour, and then 262 mg of bromobenzene was added and stirred for 1 hour. 50 ml of toluene and 50 ml of a 5 wt % sodium N,N-diethyldithiocarbamate aqueous solution were added, heated, and stirred under reflux for 2 hours. After cooling to room temperature, an organic layer was collected by performing a liquid separation operation and washed three times with saturated saline. The organic layer was dehydrated with anhydrous sodium sulfate and then concentrated under reduced pressure to obtain a crude polymer. The crude polymer was dissolved in toluene, silica gel was added thereto for adsorption purification, and the silica gel was removed by filtration. The obtained filtrate was concentrated under reduced pressure, and 100 ml of toluene was added to the dried product to dissolve it. The solution was added dropwise to 200 ml of n-hexane, and the resulting precipitate was collected by filtration. This operation was repeated three times and 2.9 g (yield 57%) of high molecular weight compound E was obtained by drying.
高分子量化合物Eの合成;
下記の成分を、窒素置換した反応容器に加え、30分間窒素ガスを通気した。
中間体1:5.4g
1,3-ジブロモベンゼン:1.8g
中間体10:0.4g
中間体11:0.2g
リン酸三カリウム:7.4g
トルエン:9ml、水:5ml、1,4-ジオキサン:27ml
次いで、酢酸パラジウム(II)を1.5mg、およびトリ-o-トリルホスフィン12.4mgを加えて加熱し、86℃で9時間撹拌した。この後、フェニルボロン酸を19mg加えて1時間撹拌し、次いでブロモベンゼン262mgを加えて1時間撹拌した。トルエン50ml、5wt%N,N-ジエチルジチオカルバミド酸ナトリウム水溶液50mlを加えて加熱し、還流下で2時間撹拌した。室温まで冷却した後、分液操作を行うことによって有機層を採取し、飽和食塩水で3回洗浄した。有機層を無水硫酸ナトリウムで脱水した後、減圧下で濃縮することによって粗ポリマーを得た。粗ポリマーをトルエンに溶解させ、シリカゲルを加えて吸着精製を行い、ろ過してシリカゲルを除去した。得られたろ液を減圧下で濃縮し、乾固物にトルエン100mlを加えて溶解させ、n-ヘキサン200ml中に滴下し、得られた沈殿物を濾取した。この操作を3回繰り返し、乾燥させることにより高分子量化合物Eを2.9g(収率57%)得た。 <Example 5>
Synthesis of high molecular weight compound E;
The following components were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through the vessel for 30 minutes.
Intermediate 1: 5.4g
1,3-dibromobenzene: 1.8g
Intermediate 10: 0.4g
Intermediate 11: 0.2g
Tripotassium phosphate: 7.4g
Toluene: 9ml, water: 5ml, 1,4-dioxane: 27ml
Next, 1.5 mg of palladium (II) acetate and 12.4 mg of tri-o-tolylphosphine were added, heated, and stirred at 86° C. for 9 hours. Thereafter, 19 mg of phenylboronic acid was added and stirred for 1 hour, and then 262 mg of bromobenzene was added and stirred for 1 hour. 50 ml of toluene and 50 ml of a 5 wt % sodium N,N-diethyldithiocarbamate aqueous solution were added, heated, and stirred under reflux for 2 hours. After cooling to room temperature, an organic layer was collected by performing a liquid separation operation and washed three times with saturated saline. The organic layer was dehydrated with anhydrous sodium sulfate and then concentrated under reduced pressure to obtain a crude polymer. The crude polymer was dissolved in toluene, silica gel was added thereto for adsorption purification, and the silica gel was removed by filtration. The obtained filtrate was concentrated under reduced pressure, and 100 ml of toluene was added to the dried product to dissolve it. The solution was added dropwise to 200 ml of n-hexane, and the resulting precipitate was collected by filtration. This operation was repeated three times and 2.9 g (yield 57%) of high molecular weight compound E was obtained by drying.
高分子量化合物EのGPCで測定した平均分子量および分散度は、以下の通りであった。
数平均分子量Mn(ポリスチレン換算):91,000
重量平均分子量Mw(ポリスチレン換算):155,000
分散度(Mw/Mn):1.7 The average molecular weight and dispersity of high molecular weight compound E measured by GPC were as follows.
Number average molecular weight Mn (polystyrene equivalent): 91,000
Weight average molecular weight Mw (polystyrene equivalent): 155,000
Dispersity (Mw/Mn): 1.7
数平均分子量Mn(ポリスチレン換算):91,000
重量平均分子量Mw(ポリスチレン換算):155,000
分散度(Mw/Mn):1.7 The average molecular weight and dispersity of high molecular weight compound E measured by GPC were as follows.
Number average molecular weight Mn (polystyrene equivalent): 91,000
Weight average molecular weight Mw (polystyrene equivalent): 155,000
Dispersity (Mw/Mn): 1.7
また、高分子量化合物EについてNMR測定を行った。1H-NMR測定結果を図13に示した。化学組成式は下記の通りであった。
Further, NMR measurement was performed on high molecular weight compound E. The results of 1 H-NMR measurement are shown in FIG. The chemical composition formula was as follows.
前記化学組成から理解されるようにこの高分子量化合物Eは、構造単位Aを44モル%含み、構造単位Bを50モル%含み、構造単位Cとして、一般式(4-45)で表される構造単位を3モル%含み、一般式(5-7)で表される構造単位を3モル%含んでいた。
As understood from the chemical composition, this high molecular weight compound E contains 44 mol% of structural unit A, 50 mol% of structural unit B, and is represented by general formula (4-45) as structural unit C. It contained 3 mol% of structural units, and 3 mol% of structural units represented by general formula (5-7).
<実施例6>
高分子量化合物Fの合成;
下記の成分を、窒素置換した反応容器に加え、30分間窒素ガスを通気した。
中間体1:5.4g
1,3-ジブロモベンゼン:1.7g
中間体10:0.3g
中間体11:0.2g
リン酸三カリウム:7.4g
トルエン:9ml、水:5ml、1,4-ジオキサン:27ml
次いで、酢酸パラジウム(II)を1.5mg、およびトリ-o-トリルホスフィン12.4mgを加えて加熱し、86℃で10時間撹拌した。この後、フェニルボロン酸を19mg加えて1時間撹拌し、次いでブロモベンゼン262mgを加えて1時間撹拌した。トルエン50ml、5wt%N,N-ジエチルジチオカルバミド酸ナトリウム水溶液50mlを加えて加熱し、還流下で2時間撹拌した。室温まで冷却した後、分液操作を行うことによって有機層を採取し、飽和食塩水で3回洗浄した。有機層を無水硫酸ナトリウムで脱水した後、減圧下で濃縮することによって粗ポリマーを得た。粗ポリマーをトルエンに溶解させ、シリカゲルを加えて吸着精製を行い、ろ過してシリカゲルを除去した。得られたろ液を減圧下で濃縮し、乾固物にトルエン100mlを加えて溶解させ、n-ヘキサン200ml中に滴下し、得られた沈殿物を濾取した。この操作を3回繰り返し、乾燥させることにより高分子量化合物Fを3.3g(収率67%)得た。 <Example 6>
Synthesis of high molecular weight compound F;
The following components were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through the vessel for 30 minutes.
Intermediate 1: 5.4g
1,3-dibromobenzene: 1.7g
Intermediate 10: 0.3g
Intermediate 11: 0.2g
Tripotassium phosphate: 7.4g
Toluene: 9ml, water: 5ml, 1,4-dioxane: 27ml
Next, 1.5 mg of palladium (II) acetate and 12.4 mg of tri-o-tolylphosphine were added, heated, and stirred at 86° C. for 10 hours. Thereafter, 19 mg of phenylboronic acid was added and stirred for 1 hour, and then 262 mg of bromobenzene was added and stirred for 1 hour. 50 ml of toluene and 50 ml of a 5 wt % sodium N,N-diethyldithiocarbamate aqueous solution were added, heated, and stirred under reflux for 2 hours. After cooling to room temperature, an organic layer was collected by performing a liquid separation operation and washed three times with saturated saline. The organic layer was dehydrated with anhydrous sodium sulfate and then concentrated under reduced pressure to obtain a crude polymer. The crude polymer was dissolved in toluene, silica gel was added thereto for adsorption purification, and the silica gel was removed by filtration. The obtained filtrate was concentrated under reduced pressure, and 100 ml of toluene was added to the dried product to dissolve it. The solution was added dropwise to 200 ml of n-hexane, and the resulting precipitate was collected by filtration. This operation was repeated three times and 3.3 g (yield 67%) of high molecular weight compound F was obtained by drying.
高分子量化合物Fの合成;
下記の成分を、窒素置換した反応容器に加え、30分間窒素ガスを通気した。
中間体1:5.4g
1,3-ジブロモベンゼン:1.7g
中間体10:0.3g
中間体11:0.2g
リン酸三カリウム:7.4g
トルエン:9ml、水:5ml、1,4-ジオキサン:27ml
次いで、酢酸パラジウム(II)を1.5mg、およびトリ-o-トリルホスフィン12.4mgを加えて加熱し、86℃で10時間撹拌した。この後、フェニルボロン酸を19mg加えて1時間撹拌し、次いでブロモベンゼン262mgを加えて1時間撹拌した。トルエン50ml、5wt%N,N-ジエチルジチオカルバミド酸ナトリウム水溶液50mlを加えて加熱し、還流下で2時間撹拌した。室温まで冷却した後、分液操作を行うことによって有機層を採取し、飽和食塩水で3回洗浄した。有機層を無水硫酸ナトリウムで脱水した後、減圧下で濃縮することによって粗ポリマーを得た。粗ポリマーをトルエンに溶解させ、シリカゲルを加えて吸着精製を行い、ろ過してシリカゲルを除去した。得られたろ液を減圧下で濃縮し、乾固物にトルエン100mlを加えて溶解させ、n-ヘキサン200ml中に滴下し、得られた沈殿物を濾取した。この操作を3回繰り返し、乾燥させることにより高分子量化合物Fを3.3g(収率67%)得た。 <Example 6>
Synthesis of high molecular weight compound F;
The following components were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through the vessel for 30 minutes.
Intermediate 1: 5.4g
1,3-dibromobenzene: 1.7g
Intermediate 10: 0.3g
Intermediate 11: 0.2g
Tripotassium phosphate: 7.4g
Toluene: 9ml, water: 5ml, 1,4-dioxane: 27ml
Next, 1.5 mg of palladium (II) acetate and 12.4 mg of tri-o-tolylphosphine were added, heated, and stirred at 86° C. for 10 hours. Thereafter, 19 mg of phenylboronic acid was added and stirred for 1 hour, and then 262 mg of bromobenzene was added and stirred for 1 hour. 50 ml of toluene and 50 ml of a 5 wt % sodium N,N-diethyldithiocarbamate aqueous solution were added, heated, and stirred under reflux for 2 hours. After cooling to room temperature, an organic layer was collected by performing a liquid separation operation and washed three times with saturated saline. The organic layer was dehydrated with anhydrous sodium sulfate and then concentrated under reduced pressure to obtain a crude polymer. The crude polymer was dissolved in toluene, silica gel was added thereto for adsorption purification, and the silica gel was removed by filtration. The obtained filtrate was concentrated under reduced pressure, and 100 ml of toluene was added to the dried product to dissolve it. The solution was added dropwise to 200 ml of n-hexane, and the resulting precipitate was collected by filtration. This operation was repeated three times and 3.3 g (yield 67%) of high molecular weight compound F was obtained by drying.
高分子量化合物FのGPCで測定した平均分子量および分散度は、以下の通りであった。
数平均分子量Mn(ポリスチレン換算):63,000
重量平均分子量Mw(ポリスチレン換算):101,000
分散度(Mw/Mn):1.6 The average molecular weight and dispersity of high molecular weight compound F measured by GPC were as follows.
Number average molecular weight Mn (polystyrene equivalent): 63,000
Weight average molecular weight Mw (polystyrene equivalent): 101,000
Dispersity (Mw/Mn): 1.6
数平均分子量Mn(ポリスチレン換算):63,000
重量平均分子量Mw(ポリスチレン換算):101,000
分散度(Mw/Mn):1.6 The average molecular weight and dispersity of high molecular weight compound F measured by GPC were as follows.
Number average molecular weight Mn (polystyrene equivalent): 63,000
Weight average molecular weight Mw (polystyrene equivalent): 101,000
Dispersity (Mw/Mn): 1.6
また、高分子量化合物FについてNMR測定を行った。1H-NMR測定結果を図14に示した。化学組成式は下記の通りであった。
Further, NMR measurement was performed on high molecular weight compound F. The 1 H-NMR measurement results are shown in FIG. 14. The chemical composition formula was as follows.
前記化学組成から理解されるように、この高分子量化合物Fは、構造単位Aを45モル%含み、構造単位Bを50モル%含み、構造単位Cとして、一般式(4-45)で表される構造単位を2モル%含み、一般式(5-7)で表される構造単位を3モル%含んでいた。
As understood from the chemical composition, this high molecular weight compound F contains 45 mol% of the structural unit A, 50 mol% of the structural unit B, and is represented by the general formula (4-45) as the structural unit C. It contained 2 mol% of structural units represented by general formula (5-7) and 3 mol% of structural units represented by general formula (5-7).
<実施例7>
高分子量化合物Gの合成;
下記の成分を、窒素置換した反応容器に加え、30分間窒素ガスを通気した。
中間体1:3.8g
9-(3,5―ジブロモフェニル)カルバゾール:3.1g
中間体5:0.5g
中間体12:1.4g
リン酸三カリウム:6.9g
トルエン:9ml、水:5ml、1,4-ジオキサン:27ml
次いで、酢酸パラジウム(II)を1.4mg、およびトリ-o-トリルホスフィン11mgを加えて加熱し、86℃で12時間撹拌した。その後、フェニルボロン酸を188mg加えて2時間撹拌し、次いでブロモベンゼン2.4gを加えて2時間撹拌した。トルエン50ml、5wt%N,N-ジエチルジチオカルバミド酸ナトリウム水溶液50mlを加えて加熱し、2時間還流した。室温まで冷却した後、有機層を、飽和食塩水で3回洗浄した。得られた有機層を無水硫酸ナトリウムで脱水した後、減圧下で濃縮することによって粗ポリマーを得た。粗ポリマーをトルエンに溶解させ、シリカゲルを加えて吸着精製を行い、ろ過してシリカゲルを除去した。得られたろ液を減圧下で濃縮し、乾固物にトルエン100mlを加えて溶解させ、n-ヘキサン300ml中に滴下し、得られた沈殿物を濾取した。この操作を3回繰り返し、乾燥させることにより高分子量化合物Gを2.6g(収率46%)得た。 <Example 7>
Synthesis of high molecular weight compound G;
The following components were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through the vessel for 30 minutes.
Intermediate 1: 3.8g
9-(3,5-dibromophenyl)carbazole: 3.1g
Intermediate 5: 0.5g
Intermediate 12: 1.4g
Tripotassium phosphate: 6.9g
Toluene: 9ml, water: 5ml, 1,4-dioxane: 27ml
Next, 1.4 mg of palladium (II) acetate and 11 mg of tri-o-tolylphosphine were added, heated, and stirred at 86° C. for 12 hours. Thereafter, 188 mg of phenylboronic acid was added and stirred for 2 hours, and then 2.4 g of bromobenzene was added and stirred for 2 hours. 50 ml of toluene and 50 ml of a 5 wt % sodium N,N-diethyldithiocarbamate aqueous solution were added, heated, and refluxed for 2 hours. After cooling to room temperature, the organic layer was washed three times with saturated brine. The obtained organic layer was dehydrated with anhydrous sodium sulfate and then concentrated under reduced pressure to obtain a crude polymer. The crude polymer was dissolved in toluene, silica gel was added thereto for adsorption purification, and the silica gel was removed by filtration. The obtained filtrate was concentrated under reduced pressure, and 100 ml of toluene was added to the dried product to dissolve it, and the solution was added dropwise to 300 ml of n-hexane, and the resulting precipitate was collected by filtration. This operation was repeated three times and 2.6 g (yield 46%) of high molecular weight compound G was obtained by drying.
高分子量化合物Gの合成;
下記の成分を、窒素置換した反応容器に加え、30分間窒素ガスを通気した。
中間体1:3.8g
9-(3,5―ジブロモフェニル)カルバゾール:3.1g
中間体5:0.5g
中間体12:1.4g
リン酸三カリウム:6.9g
トルエン:9ml、水:5ml、1,4-ジオキサン:27ml
次いで、酢酸パラジウム(II)を1.4mg、およびトリ-o-トリルホスフィン11mgを加えて加熱し、86℃で12時間撹拌した。その後、フェニルボロン酸を188mg加えて2時間撹拌し、次いでブロモベンゼン2.4gを加えて2時間撹拌した。トルエン50ml、5wt%N,N-ジエチルジチオカルバミド酸ナトリウム水溶液50mlを加えて加熱し、2時間還流した。室温まで冷却した後、有機層を、飽和食塩水で3回洗浄した。得られた有機層を無水硫酸ナトリウムで脱水した後、減圧下で濃縮することによって粗ポリマーを得た。粗ポリマーをトルエンに溶解させ、シリカゲルを加えて吸着精製を行い、ろ過してシリカゲルを除去した。得られたろ液を減圧下で濃縮し、乾固物にトルエン100mlを加えて溶解させ、n-ヘキサン300ml中に滴下し、得られた沈殿物を濾取した。この操作を3回繰り返し、乾燥させることにより高分子量化合物Gを2.6g(収率46%)得た。 <Example 7>
Synthesis of high molecular weight compound G;
The following components were added to a reaction vessel purged with nitrogen, and nitrogen gas was bubbled through the vessel for 30 minutes.
Intermediate 1: 3.8g
9-(3,5-dibromophenyl)carbazole: 3.1g
Intermediate 5: 0.5g
Intermediate 12: 1.4g
Tripotassium phosphate: 6.9g
Toluene: 9ml, water: 5ml, 1,4-dioxane: 27ml
Next, 1.4 mg of palladium (II) acetate and 11 mg of tri-o-tolylphosphine were added, heated, and stirred at 86° C. for 12 hours. Thereafter, 188 mg of phenylboronic acid was added and stirred for 2 hours, and then 2.4 g of bromobenzene was added and stirred for 2 hours. 50 ml of toluene and 50 ml of a 5 wt % sodium N,N-diethyldithiocarbamate aqueous solution were added, heated, and refluxed for 2 hours. After cooling to room temperature, the organic layer was washed three times with saturated brine. The obtained organic layer was dehydrated with anhydrous sodium sulfate and then concentrated under reduced pressure to obtain a crude polymer. The crude polymer was dissolved in toluene, silica gel was added thereto for adsorption purification, and the silica gel was removed by filtration. The obtained filtrate was concentrated under reduced pressure, and 100 ml of toluene was added to the dried product to dissolve it, and the solution was added dropwise to 300 ml of n-hexane, and the resulting precipitate was collected by filtration. This operation was repeated three times and 2.6 g (yield 46%) of high molecular weight compound G was obtained by drying.
高分子量化合物GのGPCで測定した平均分子量および分散度は、以下の通りであった。
数平均分子量Mn(ポリスチレン換算):67,000
重量平均分子量Mw(ポリスチレン換算):97,000
分散度(Mw/Mn):1.4 The average molecular weight and dispersity of high molecular weight compound G measured by GPC were as follows.
Number average molecular weight Mn (polystyrene equivalent): 67,000
Weight average molecular weight Mw (polystyrene equivalent): 97,000
Dispersity (Mw/Mn): 1.4
数平均分子量Mn(ポリスチレン換算):67,000
重量平均分子量Mw(ポリスチレン換算):97,000
分散度(Mw/Mn):1.4 The average molecular weight and dispersity of high molecular weight compound G measured by GPC were as follows.
Number average molecular weight Mn (polystyrene equivalent): 67,000
Weight average molecular weight Mw (polystyrene equivalent): 97,000
Dispersity (Mw/Mn): 1.4
また、高分子量化合物GについてNMR測定を行った。1H-NMR測定結果を図15に示した。化学組成式は下記の通りであった。
Further, NMR measurement was performed on high molecular weight compound G. 1 H-NMR measurement results are shown in FIG. 15. The chemical composition formula was as follows.
前記化学組成から理解されるように、この高分子量化合物Gは、構造単位Aを30モル%含み、構造単位Bを50モル%含み、構造単位Cを5モル%含んでいた。
As understood from the chemical composition, this high molecular weight compound G contained 30 mol% of structural unit A, 50 mol% of structural unit B, and 5 mol% of structural unit C.
<実施例8>
実施例1~7で合成された高分子量化合物A~Gを用いて、ITO基板の上に膜厚80nmの塗布膜を作製して、イオン化ポテンシャル測定装置(住友重機械工業株式会社製、PYS-202型)で仕事関数を測定した。その結果は以下の通りであった。
高分子量化合物A:5.67eV
高分子量化合物B:5.62eV
高分子量化合物C:5.64eV
高分子量化合物D:5.66eV
高分子量化合物E:5.62eV
高分子量化合物F:5.62eV
高分子量化合物G:5.70eV <Example 8>
Using high molecular weight compounds A to G synthesized in Examples 1 to 7, a coating film with a thickness of 80 nm was prepared on an ITO substrate, and an ionization potential measuring device (manufactured by Sumitomo Heavy Industries, Ltd., PYS- 202 type) to measure the work function. The results were as follows.
High molecular weight compound A: 5.67eV
High molecular weight compound B: 5.62eV
High molecular weight compound C: 5.64eV
High molecular weight compound D: 5.66eV
High molecular weight compound E: 5.62eV
High molecular weight compound F: 5.62eV
High molecular weight compound G: 5.70eV
実施例1~7で合成された高分子量化合物A~Gを用いて、ITO基板の上に膜厚80nmの塗布膜を作製して、イオン化ポテンシャル測定装置(住友重機械工業株式会社製、PYS-202型)で仕事関数を測定した。その結果は以下の通りであった。
高分子量化合物A:5.67eV
高分子量化合物B:5.62eV
高分子量化合物C:5.64eV
高分子量化合物D:5.66eV
高分子量化合物E:5.62eV
高分子量化合物F:5.62eV
高分子量化合物G:5.70eV <Example 8>
Using high molecular weight compounds A to G synthesized in Examples 1 to 7, a coating film with a thickness of 80 nm was prepared on an ITO substrate, and an ionization potential measuring device (manufactured by Sumitomo Heavy Industries, Ltd., PYS- 202 type) to measure the work function. The results were as follows.
High molecular weight compound A: 5.67eV
High molecular weight compound B: 5.62eV
High molecular weight compound C: 5.64eV
High molecular weight compound D: 5.66eV
High molecular weight compound E: 5.62eV
High molecular weight compound F: 5.62eV
High molecular weight compound G: 5.70eV
本発明の高分子量化合物A~Gは、NPD、TPDなどの一般的な正孔輸送材料がもつ仕事関数5.4eVと比較して、好適なエネルギー準位を示しており、良好な正孔輸送能力を有していることが分かる。
The high molecular weight compounds A to G of the present invention exhibit a suitable energy level compared to the work function of 5.4 eV of general hole transport materials such as NPD and TPD, and have good hole transport. It is clear that you have the ability.
<実施例9>
有機EL素子の作製と評価;
図7に示す層構造の有機EL素子を作製して特性評価を行った。
具体的には、膜厚50nmのITOを成膜したガラス基板1を有機溶媒で洗浄した後に、UV/オゾン処理にてITO表面を洗浄した。このガラス基板1に設けられている透明陽極2(ITO)を覆うように、PEDOT/PSS(Ossila製)をスピンコート法により50nmの厚みで成膜し、ホットプレート上,200℃で10分間乾燥して正孔注入層3を形成した。 <Example 9>
Fabrication and evaluation of organic EL devices;
An organic EL device having the layered structure shown in FIG. 7 was manufactured and its characteristics were evaluated.
Specifically, the glass substrate 1 on which ITO with a thickness of 50 nm was formed was cleaned with an organic solvent, and then the ITO surface was cleaned with UV/ozone treatment. PEDOT/PSS (manufactured by Ossila) was formed into a film with a thickness of 50 nm by spin coating so as to cover the transparent anode 2 (ITO) provided on the glass substrate 1, and dried on a hot plate at 200°C for 10 minutes. Then, a hole injection layer 3 was formed.
有機EL素子の作製と評価;
図7に示す層構造の有機EL素子を作製して特性評価を行った。
具体的には、膜厚50nmのITOを成膜したガラス基板1を有機溶媒で洗浄した後に、UV/オゾン処理にてITO表面を洗浄した。このガラス基板1に設けられている透明陽極2(ITO)を覆うように、PEDOT/PSS(Ossila製)をスピンコート法により50nmの厚みで成膜し、ホットプレート上,200℃で10分間乾燥して正孔注入層3を形成した。 <Example 9>
Fabrication and evaluation of organic EL devices;
An organic EL device having the layered structure shown in FIG. 7 was manufactured and its characteristics were evaluated.
Specifically, the glass substrate 1 on which ITO with a thickness of 50 nm was formed was cleaned with an organic solvent, and then the ITO surface was cleaned with UV/ozone treatment. PEDOT/PSS (manufactured by Ossila) was formed into a film with a thickness of 50 nm by spin coating so as to cover the transparent anode 2 (ITO) provided on the glass substrate 1, and dried on a hot plate at 200°C for 10 minutes. Then, a hole injection layer 3 was formed.
実施例1で得られた高分子量化合物Aを、トルエンに0.6wt%溶解して塗布液を調製した。前記のようにして正孔注入層3が形成されている基板を、乾燥窒素にて置換したグローブボックス内に移し、ホットプレート上、230℃で10分間乾燥した後に、正孔注入層3の上に、前記の塗布液を用いてスピンコートにより25nmの厚みの塗布層を形成し、さらに、ホットプレート上に220℃で30分間乾燥して正孔輸送層4を形成した。
A coating solution was prepared by dissolving 0.6 wt% of the high molecular weight compound A obtained in Example 1 in toluene. The substrate on which the hole injection layer 3 is formed as described above is transferred to a glove box purged with dry nitrogen, and dried on a hot plate at 230° C. for 10 minutes. Then, a coating layer with a thickness of 25 nm was formed by spin coating using the above coating solution, and further dried on a hot plate at 220° C. for 30 minutes to form a hole transport layer 4.
前記のようにして正孔輸送層4が形成されている基板を、真空蒸着機内に取り付け0.001Pa以下まで減圧した。正孔輸送層4の上に、下記構造式の青色発光材料(EMD-1)とホスト材料(EMH-1)との二元蒸着により、膜厚34nmの発光層5を形成した。なお、二元蒸着では、蒸着速度比を、EMD-1:EMH-1=4:96とした。
The substrate on which the hole transport layer 4 was formed as described above was placed in a vacuum evaporator and the pressure was reduced to 0.001 Pa or less. A light emitting layer 5 having a thickness of 34 nm was formed on the hole transport layer 4 by binary vapor deposition of a blue light emitting material (EMD-1) having the following structural formula and a host material (EMH-1). In the binary vapor deposition, the vapor deposition rate ratio was set to EMD-1:EMH-1=4:96.
電子輸送材料として、下記構造式の化合物、ETM-1およびETM-2を用意した。
Compounds having the following structural formulas, ETM-1 and ETM-2, were prepared as electron transport materials.
前記で形成された発光層5の上に、前記の電子輸送材料ETM-1およびETM-2を用いて、二元蒸着により膜厚20nmの電子輸送層6を形成した。なお、二元蒸着では、蒸着速度比を、ETM-1:ETM-2=50:50とした。
On the light emitting layer 5 formed above, an electron transport layer 6 with a thickness of 20 nm was formed by binary vapor deposition using the electron transport materials ETM-1 and ETM-2. In the binary vapor deposition, the vapor deposition rate ratio was set to ETM-1:ETM-2=50:50.
最後に、アルミニウムを膜厚100nmとなるように蒸着して陰極7を形成した。
このように、透明陽極2、正孔注入層3、正孔輸送層4、発光層5、電子輸送層6および陰極7が形成されているガラス基板を、乾燥窒素にて置換したグローブボックス内に移動し、UV硬化樹脂を用いて封止用の他のガラス基板を貼り合わせ、有機EL素子とした。
作製した有機EL素子について、大気中、常温で特性測定を行った。また、作製した有機EL素子に直流電圧を印加したときの発光特性を測定した。測定結果は、表1に示した。 Finally, aluminum was deposited to a thickness of 100 nm to form the cathode 7.
In this way, the glass substrate on which the transparent anode 2, hole injection layer 3, hole transport layer 4, light emitting layer 5, electron transport layer 6, and cathode 7 are formed was placed in a glove box purged with dry nitrogen. Then, another glass substrate for sealing was bonded using a UV curing resin to form an organic EL element.
Characteristics of the produced organic EL device were measured in the atmosphere at room temperature. Furthermore, the light emitting characteristics of the manufactured organic EL device when a DC voltage was applied were measured. The measurement results are shown in Table 1.
このように、透明陽極2、正孔注入層3、正孔輸送層4、発光層5、電子輸送層6および陰極7が形成されているガラス基板を、乾燥窒素にて置換したグローブボックス内に移動し、UV硬化樹脂を用いて封止用の他のガラス基板を貼り合わせ、有機EL素子とした。
作製した有機EL素子について、大気中、常温で特性測定を行った。また、作製した有機EL素子に直流電圧を印加したときの発光特性を測定した。測定結果は、表1に示した。 Finally, aluminum was deposited to a thickness of 100 nm to form the cathode 7.
In this way, the glass substrate on which the transparent anode 2, hole injection layer 3, hole transport layer 4, light emitting layer 5, electron transport layer 6, and cathode 7 are formed was placed in a glove box purged with dry nitrogen. Then, another glass substrate for sealing was bonded using a UV curing resin to form an organic EL element.
Characteristics of the produced organic EL device were measured in the atmosphere at room temperature. Furthermore, the light emitting characteristics of the manufactured organic EL device when a DC voltage was applied were measured. The measurement results are shown in Table 1.
<実施例10>
高分子量化合物Aに代えて、実施例2で得られた高分子量化合物Bをトルエンに0.6wt%溶解させて調製された塗布液を用いて正孔輸送層4を形成した以外は、実施例9と全く同様にして有機EL素子を作製した。作製した有機EL素子について、実施例9と同様に各種特性を評価し、その結果を表1に示した。 <Example 10>
Example except that the hole transport layer 4 was formed using a coating solution prepared by dissolving 0.6 wt% of the high molecular weight compound B obtained in Example 2 in toluene instead of the high molecular weight compound A. An organic EL device was produced in exactly the same manner as in Example 9. Regarding the produced organic EL element, various characteristics were evaluated in the same manner as in Example 9, and the results are shown in Table 1.
高分子量化合物Aに代えて、実施例2で得られた高分子量化合物Bをトルエンに0.6wt%溶解させて調製された塗布液を用いて正孔輸送層4を形成した以外は、実施例9と全く同様にして有機EL素子を作製した。作製した有機EL素子について、実施例9と同様に各種特性を評価し、その結果を表1に示した。 <Example 10>
Example except that the hole transport layer 4 was formed using a coating solution prepared by dissolving 0.6 wt% of the high molecular weight compound B obtained in Example 2 in toluene instead of the high molecular weight compound A. An organic EL device was produced in exactly the same manner as in Example 9. Regarding the produced organic EL element, various characteristics were evaluated in the same manner as in Example 9, and the results are shown in Table 1.
<実施例11>
高分子量化合物Aに代えて、実施例3で得られた高分子量化合物Cをトルエンに0.6wt%溶解させて調製された塗布液を用いて正孔輸送層4を形成した以外は、実施例9と全く同様にして有機EL素子を作製した。作製した有機EL素子について、実施例9と同様に各種特性を評価し、その結果を表1に示した。 <Example 11>
Example except that the hole transport layer 4 was formed using a coating solution prepared by dissolving 0.6 wt% of the high molecular weight compound C obtained in Example 3 in toluene instead of the high molecular weight compound A. An organic EL device was produced in exactly the same manner as in Example 9. Regarding the produced organic EL element, various characteristics were evaluated in the same manner as in Example 9, and the results are shown in Table 1.
高分子量化合物Aに代えて、実施例3で得られた高分子量化合物Cをトルエンに0.6wt%溶解させて調製された塗布液を用いて正孔輸送層4を形成した以外は、実施例9と全く同様にして有機EL素子を作製した。作製した有機EL素子について、実施例9と同様に各種特性を評価し、その結果を表1に示した。 <Example 11>
Example except that the hole transport layer 4 was formed using a coating solution prepared by dissolving 0.6 wt% of the high molecular weight compound C obtained in Example 3 in toluene instead of the high molecular weight compound A. An organic EL device was produced in exactly the same manner as in Example 9. Regarding the produced organic EL element, various characteristics were evaluated in the same manner as in Example 9, and the results are shown in Table 1.
<実施例12>
高分子量化合物Aに代えて、実施例4で得られた高分子量化合物Dをトルエンに0.6wt%溶解させて調製された塗布液を用いて正孔輸送層4を形成した以外は、実施例9と全く同様にして有機EL素子を作製した。作製した有機EL素子について、実施例9と同様に各種特性を評価し、その結果を表1に示した。 <Example 12>
Example except that the hole transport layer 4 was formed using a coating solution prepared by dissolving 0.6 wt% of the high molecular weight compound D obtained in Example 4 in toluene instead of the high molecular weight compound A. An organic EL device was produced in exactly the same manner as in Example 9. Regarding the produced organic EL element, various characteristics were evaluated in the same manner as in Example 9, and the results are shown in Table 1.
高分子量化合物Aに代えて、実施例4で得られた高分子量化合物Dをトルエンに0.6wt%溶解させて調製された塗布液を用いて正孔輸送層4を形成した以外は、実施例9と全く同様にして有機EL素子を作製した。作製した有機EL素子について、実施例9と同様に各種特性を評価し、その結果を表1に示した。 <Example 12>
Example except that the hole transport layer 4 was formed using a coating solution prepared by dissolving 0.6 wt% of the high molecular weight compound D obtained in Example 4 in toluene instead of the high molecular weight compound A. An organic EL device was produced in exactly the same manner as in Example 9. Regarding the produced organic EL element, various characteristics were evaluated in the same manner as in Example 9, and the results are shown in Table 1.
<比較例1>
高分子量化合物Aに代えて、下記のTFB(正孔輸送性ポリマー)をトルエンに0.6wt%溶解させて調製された塗布液を用いて正孔輸送層4を形成した以外は、実施例9と全く同様にして有機EL素子を作製した。 <Comparative example 1>
Example 9 except that instead of the high molecular weight compound A, the hole transport layer 4 was formed using a coating solution prepared by dissolving 0.6 wt% of the following TFB (hole transporting polymer) in toluene. An organic EL device was produced in exactly the same manner as above.
高分子量化合物Aに代えて、下記のTFB(正孔輸送性ポリマー)をトルエンに0.6wt%溶解させて調製された塗布液を用いて正孔輸送層4を形成した以外は、実施例9と全く同様にして有機EL素子を作製した。 <Comparative example 1>
Example 9 except that instead of the high molecular weight compound A, the hole transport layer 4 was formed using a coating solution prepared by dissolving 0.6 wt% of the following TFB (hole transporting polymer) in toluene. An organic EL device was produced in exactly the same manner as above.
TFB(正孔輸送性ポリマー)は、ポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-co-(4,4’-(N-(4-sec-ブチルフェニル))ジフェニルアミン](American Dye Source社製、Hole Transport Polymer ADS259BE)である。この比較例1の有機EL素子について、実施例9と同様に各種特性を評価し、その結果を表1に示した。
TFB (hole transporting polymer) is poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl))diphenylamine. ] (manufactured by American Dye Source, Hole Transport Polymer ADS259BE). Regarding the organic EL device of Comparative Example 1, various characteristics were evaluated in the same manner as in Example 9, and the results are shown in Table 1.
なお、各種特性の評価において、電圧、輝度、発光効率および電力効率は、電流密度10mA/cm2の電流を流したときの値である。また、素子寿命は、発光開始時の発光輝度(初期輝度)を700cd/m2として定電流駆動を行った時、発光輝度が560cd/m2(初期輝度を100%とした時の80%に相当:80%減衰)に減衰するまでの時間として測定した。
In the evaluation of various characteristics, voltage, luminance, luminous efficiency, and power efficiency are values when a current with a current density of 10 mA/cm 2 is passed. In addition, the device life is determined when the luminance at the start of light emission (initial luminance) is 700 cd/m 2 and constant current driving is performed, and the luminance is 560 cd/m 2 (80% of the initial luminance as 100%). It was measured as the time required to attenuate to (equivalent to: 80% attenuation).
表1に示すように、実施例9~12で作成した有機EL素子の駆動電圧は3.88V~3.91Vであり、比較例1の有機EL素子の駆動電圧4.08Vに比べて、低電圧であった。さらに電流密度10mA/cm2の電流を流したときの発光効率は、比較例1の有機EL素子の5.52cd/Aに対して、実施例9の有機EL素子では8.33cd/A、実施例10の有機EL素子では8.47cd/A、実施例11の有機EL素子では8.86cd/A、実施例12の有機EL素子では8.47cd/Aと何れも高効率であった。また、素子寿命(80%減衰)においては、比較例1の有機EL素子の6時間に対して、実施例9の有機EL素子では44時間、実施例10の有機EL素子では54時間、実施例11の有機EL素子では13時間、実施例12の有機EL素子では29時間といずれも長寿命であった。
As shown in Table 1, the driving voltage of the organic EL elements produced in Examples 9 to 12 was 3.88 V to 3.91 V, which was lower than the driving voltage of 4.08 V of the organic EL element of Comparative Example 1. It was voltage. Furthermore, when a current with a current density of 10 mA/cm 2 was applied, the luminous efficiency of the organic EL element of Example 9 was 8.33 cd/A, compared to 5.52 cd/A of the organic EL element of Comparative Example 1. The organic EL device of Example 10 had a high efficiency of 8.47 cd/A, the organic EL device of Example 11 had a high efficiency of 8.86 cd/A, and the organic EL device of Example 12 had a high efficiency of 8.47 cd/A. In addition, in terms of element life (80% attenuation), compared to 6 hours for the organic EL element of Comparative Example 1, the organic EL element of Example 9 had a 44 hour life span, and the organic EL element of Example 10 had a life span of 54 hours. The organic EL device of Example 11 had a long life of 13 hours, and the organic EL device of Example 12 had a long life of 29 hours.
<実施例13>
図8に示す層構造の有機EL素子を作製して特性評価を行った。
具体的には、膜厚50nmのITOを成膜したガラス基板8を有機溶媒で洗浄した後に、UV/オゾン処理にてITO表面を洗浄した。このガラス基板8に設けられている透明陽極9(ITO)を覆うように、PEDOT/PSS(Ossila製)をスピンコート法により50nmの厚みで成膜し、ホットプレート上,200℃で10分間乾燥して正孔注入層10を形成した。 <Example 13>
An organic EL device having the layered structure shown in FIG. 8 was manufactured and its characteristics were evaluated.
Specifically, the glass substrate 8 on which ITO was deposited with a thickness of 50 nm was cleaned with an organic solvent, and then the ITO surface was cleaned with UV/ozone treatment. PEDOT/PSS (manufactured by Ossila) was formed into a film with a thickness of 50 nm by spin coating so as to cover the transparent anode 9 (ITO) provided on the glass substrate 8, and dried on a hot plate at 200°C for 10 minutes. Then, a hole injection layer 10 was formed.
図8に示す層構造の有機EL素子を作製して特性評価を行った。
具体的には、膜厚50nmのITOを成膜したガラス基板8を有機溶媒で洗浄した後に、UV/オゾン処理にてITO表面を洗浄した。このガラス基板8に設けられている透明陽極9(ITO)を覆うように、PEDOT/PSS(Ossila製)をスピンコート法により50nmの厚みで成膜し、ホットプレート上,200℃で10分間乾燥して正孔注入層10を形成した。 <Example 13>
An organic EL device having the layered structure shown in FIG. 8 was manufactured and its characteristics were evaluated.
Specifically, the glass substrate 8 on which ITO was deposited with a thickness of 50 nm was cleaned with an organic solvent, and then the ITO surface was cleaned with UV/ozone treatment. PEDOT/PSS (manufactured by Ossila) was formed into a film with a thickness of 50 nm by spin coating so as to cover the transparent anode 9 (ITO) provided on the glass substrate 8, and dried on a hot plate at 200°C for 10 minutes. Then, a hole injection layer 10 was formed.
下記構造式の高分子量化合物HTM-1を、トルエンに0.4wt%溶解して塗布液を調製した。前記のようにして正孔注入層10が形成されている基板を、乾燥窒素にて置換したグローブボックス内に移し、ホットプレート上、230℃で10分間乾燥した後に、正孔注入層10の上に、前記の塗布液を用いてスピンコートにより15nmの厚みの塗布層を形成し、さらに、ホットプレート上、220℃で30分間乾燥して正孔輸送層11を形成した。
A coating solution was prepared by dissolving 0.4 wt% of a high molecular weight compound HTM-1 having the following structural formula in toluene. The substrate on which the hole injection layer 10 is formed as described above is transferred to a glove box purged with dry nitrogen, and dried on a hot plate at 230° C. for 10 minutes. Then, a coating layer with a thickness of 15 nm was formed by spin coating using the above coating solution, and the hole transport layer 11 was further dried on a hot plate at 220° C. for 30 minutes.
実施例1で得られた高分子量化合物Aを、トルエンに0.4wt%溶解して塗布液を調製した。正孔輸送層11の上に、前記の塗布液を用いてスピンコートにより15nmの厚みの塗布層を形成し、さらに、ホットプレート上、220℃で30分間乾燥して電子阻止層12を形成した。
A coating solution was prepared by dissolving 0.4 wt% of the high molecular weight compound A obtained in Example 1 in toluene. A coating layer with a thickness of 15 nm was formed on the hole transport layer 11 by spin coating using the coating solution described above, and was further dried on a hot plate at 220° C. for 30 minutes to form an electron blocking layer 12. .
前記のようにして電子阻止層12が形成されている基板を、真空蒸着機内に取り付け0.001Pa以下まで減圧した。電子阻止層12の上に、青色発光材料(EMD-1)とホスト材料(EMH-1)との二元蒸着により、膜厚34nmの発光層13を形成した。なお、二元蒸着では、蒸着速度比を、EMD-1:EMH-1=4:96とした。
The substrate on which the electron blocking layer 12 was formed as described above was placed in a vacuum evaporator and the pressure was reduced to 0.001 Pa or less. A light emitting layer 13 with a thickness of 34 nm was formed on the electron blocking layer 12 by binary vapor deposition of a blue light emitting material (EMD-1) and a host material (EMH-1). In the binary vapor deposition, the vapor deposition rate ratio was set to EMD-1:EMH-1=4:96.
前記で形成された発光層13の上に、電子輸送材料ETM-1およびETM-2を用いて、二元蒸着により膜厚20nmの電子輸送層14を形成した。なお、二元蒸着では、蒸着速度比を、ETM-1:ETM-2=50:50とした。
On the light emitting layer 13 formed above, an electron transport layer 14 with a thickness of 20 nm was formed by binary vapor deposition using electron transport materials ETM-1 and ETM-2. In the binary vapor deposition, the vapor deposition rate ratio was set to ETM-1:ETM-2=50:50.
最後に、アルミニウムを膜厚100nmとなるように蒸着して陰極15を形成した。
このように、透明陽極9、正孔注入層10、正孔輸送層11、電子阻止層12、発光層13、電子輸送層14および陰極15が形成されているガラス基板を、乾燥窒素にて置換したグローブボックス内に移動し、UV硬化樹脂を用いて封止用の他のガラス基板を貼り合わせ、有機EL素子とした。
作製した有機EL素子について、大気中、常温で特性測定を行った。また、作製した有機EL素子に直流電圧を印加したときの発光特性を測定した。測定結果は、表2に示した。 Finally, aluminum was deposited to a thickness of 100 nm to form the cathode 15.
In this way, the glass substrate on which the transparent anode 9, hole injection layer 10, hole transport layer 11, electron blocking layer 12, light emitting layer 13, electron transport layer 14 and cathode 15 are formed is replaced with dry nitrogen. The device was moved into a glove box, and another glass substrate for sealing was bonded to the device using UV curing resin to form an organic EL device.
Characteristics of the produced organic EL device were measured in the atmosphere at room temperature. Furthermore, the light emitting characteristics of the manufactured organic EL device when a DC voltage was applied were measured. The measurement results are shown in Table 2.
このように、透明陽極9、正孔注入層10、正孔輸送層11、電子阻止層12、発光層13、電子輸送層14および陰極15が形成されているガラス基板を、乾燥窒素にて置換したグローブボックス内に移動し、UV硬化樹脂を用いて封止用の他のガラス基板を貼り合わせ、有機EL素子とした。
作製した有機EL素子について、大気中、常温で特性測定を行った。また、作製した有機EL素子に直流電圧を印加したときの発光特性を測定した。測定結果は、表2に示した。 Finally, aluminum was deposited to a thickness of 100 nm to form the cathode 15.
In this way, the glass substrate on which the transparent anode 9, hole injection layer 10, hole transport layer 11, electron blocking layer 12, light emitting layer 13, electron transport layer 14 and cathode 15 are formed is replaced with dry nitrogen. The device was moved into a glove box, and another glass substrate for sealing was bonded to the device using UV curing resin to form an organic EL device.
Characteristics of the produced organic EL device were measured in the atmosphere at room temperature. Furthermore, the light emitting characteristics of the manufactured organic EL device when a DC voltage was applied were measured. The measurement results are shown in Table 2.
<実施例14>
高分子量化合物Aに代えて、実施例2で得られた高分子量化合物Bをトルエンに0.4wt%溶解させて調製された塗布液を用いて電子阻止層12を形成した以外は、実施例13と全く同様にして有機EL素子を作製した。作製した有機EL素子について、実施例13と同様に各種特性を評価し、その結果を表2に示した。 <Example 14>
Example 13 except that the electron blocking layer 12 was formed using a coating solution prepared by dissolving 0.4 wt% of the high molecular weight compound B obtained in Example 2 in toluene instead of the high molecular weight compound A. An organic EL device was produced in exactly the same manner as above. Regarding the produced organic EL element, various characteristics were evaluated in the same manner as in Example 13, and the results are shown in Table 2.
高分子量化合物Aに代えて、実施例2で得られた高分子量化合物Bをトルエンに0.4wt%溶解させて調製された塗布液を用いて電子阻止層12を形成した以外は、実施例13と全く同様にして有機EL素子を作製した。作製した有機EL素子について、実施例13と同様に各種特性を評価し、その結果を表2に示した。 <Example 14>
Example 13 except that the electron blocking layer 12 was formed using a coating solution prepared by dissolving 0.4 wt% of the high molecular weight compound B obtained in Example 2 in toluene instead of the high molecular weight compound A. An organic EL device was produced in exactly the same manner as above. Regarding the produced organic EL element, various characteristics were evaluated in the same manner as in Example 13, and the results are shown in Table 2.
<実施例15>
高分子量化合物Aに代えて、実施例3で得られた高分子量化合物Cをトルエンに0.4wt%溶解させて調製された塗布液を用いて電子阻止層12を形成した以外は、実施例13と全く同様にして有機EL素子を作製した。作製した有機EL素子について、実施例13と同様に各種特性を評価し、その結果を表2に示した。 <Example 15>
Example 13 except that the electron blocking layer 12 was formed using a coating solution prepared by dissolving 0.4 wt% of the high molecular weight compound C obtained in Example 3 in toluene instead of the high molecular weight compound A. An organic EL device was produced in exactly the same manner as above. Regarding the produced organic EL element, various characteristics were evaluated in the same manner as in Example 13, and the results are shown in Table 2.
高分子量化合物Aに代えて、実施例3で得られた高分子量化合物Cをトルエンに0.4wt%溶解させて調製された塗布液を用いて電子阻止層12を形成した以外は、実施例13と全く同様にして有機EL素子を作製した。作製した有機EL素子について、実施例13と同様に各種特性を評価し、その結果を表2に示した。 <Example 15>
Example 13 except that the electron blocking layer 12 was formed using a coating solution prepared by dissolving 0.4 wt% of the high molecular weight compound C obtained in Example 3 in toluene instead of the high molecular weight compound A. An organic EL device was produced in exactly the same manner as above. Regarding the produced organic EL element, various characteristics were evaluated in the same manner as in Example 13, and the results are shown in Table 2.
<実施例16>
高分子量化合物Aに代えて、実施例4で得られた高分子量化合物Dをトルエンに0.4wt%溶解させて調製された塗布液を用いて電子阻止層12を形成した以外は、実施例13と全く同様にして有機EL素子を作製した。作製した有機EL素子について、実施例13と同様に各種特性を評価し、その結果を表2に示した。 <Example 16>
Example 13 except that the electron blocking layer 12 was formed using a coating solution prepared by dissolving 0.4 wt% of the high molecular weight compound D obtained in Example 4 in toluene instead of the high molecular weight compound A. An organic EL device was produced in exactly the same manner as above. Regarding the produced organic EL element, various characteristics were evaluated in the same manner as in Example 13, and the results are shown in Table 2.
高分子量化合物Aに代えて、実施例4で得られた高分子量化合物Dをトルエンに0.4wt%溶解させて調製された塗布液を用いて電子阻止層12を形成した以外は、実施例13と全く同様にして有機EL素子を作製した。作製した有機EL素子について、実施例13と同様に各種特性を評価し、その結果を表2に示した。 <Example 16>
Example 13 except that the electron blocking layer 12 was formed using a coating solution prepared by dissolving 0.4 wt% of the high molecular weight compound D obtained in Example 4 in toluene instead of the high molecular weight compound A. An organic EL device was produced in exactly the same manner as above. Regarding the produced organic EL element, various characteristics were evaluated in the same manner as in Example 13, and the results are shown in Table 2.
<実施例17>
高分子量化合物Aに代えて、実施例5で得られた高分子量化合物Eをトルエンに0.4wt%溶解させて調製された塗布液を用いて電子阻止層12を形成した以外は、実施例13と全く同様にして有機EL素子を作製した。作製した有機EL素子について、実施例13と同様に各種特性を評価し、その結果を表2に示した。 <Example 17>
Example 13 except that the electron blocking layer 12 was formed using a coating solution prepared by dissolving 0.4 wt% of the high molecular weight compound E obtained in Example 5 in toluene instead of the high molecular weight compound A. An organic EL device was produced in exactly the same manner as above. Regarding the produced organic EL element, various characteristics were evaluated in the same manner as in Example 13, and the results are shown in Table 2.
高分子量化合物Aに代えて、実施例5で得られた高分子量化合物Eをトルエンに0.4wt%溶解させて調製された塗布液を用いて電子阻止層12を形成した以外は、実施例13と全く同様にして有機EL素子を作製した。作製した有機EL素子について、実施例13と同様に各種特性を評価し、その結果を表2に示した。 <Example 17>
Example 13 except that the electron blocking layer 12 was formed using a coating solution prepared by dissolving 0.4 wt% of the high molecular weight compound E obtained in Example 5 in toluene instead of the high molecular weight compound A. An organic EL device was produced in exactly the same manner as above. Regarding the produced organic EL element, various characteristics were evaluated in the same manner as in Example 13, and the results are shown in Table 2.
<実施例18>
高分子量化合物Aに代えて、実施例6で得られた高分子量化合物Fをトルエンに0.4wt%溶解させて調製された塗布液を用いて電子阻止層12を形成した以外は、実施例13と全く同様にして有機EL素子を作製した。作製した有機EL素子について、実施例13と同様に各種特性を評価し、その結果を表2に示した。 <Example 18>
Example 13 except that the electron blocking layer 12 was formed using a coating solution prepared by dissolving 0.4 wt% of the high molecular weight compound F obtained in Example 6 in toluene instead of the high molecular weight compound A. An organic EL device was produced in exactly the same manner as above. Regarding the produced organic EL element, various characteristics were evaluated in the same manner as in Example 13, and the results are shown in Table 2.
高分子量化合物Aに代えて、実施例6で得られた高分子量化合物Fをトルエンに0.4wt%溶解させて調製された塗布液を用いて電子阻止層12を形成した以外は、実施例13と全く同様にして有機EL素子を作製した。作製した有機EL素子について、実施例13と同様に各種特性を評価し、その結果を表2に示した。 <Example 18>
Example 13 except that the electron blocking layer 12 was formed using a coating solution prepared by dissolving 0.4 wt% of the high molecular weight compound F obtained in Example 6 in toluene instead of the high molecular weight compound A. An organic EL device was produced in exactly the same manner as above. Regarding the produced organic EL element, various characteristics were evaluated in the same manner as in Example 13, and the results are shown in Table 2.
<実施例19>
高分子量化合物Aに代えて、実施例7で得られた高分子量化合物Gをトルエンに0.4wt%溶解させて調製された塗布液を用いて電子阻止層12を形成した以外は、実施例13と全く同様にして有機EL素子を作製した。作製した有機EL素子について、実施例13と同様に各種特性を評価し、その結果を表2に示した。 <Example 19>
Example 13 except that the electron blocking layer 12 was formed using a coating solution prepared by dissolving 0.4 wt% of the high molecular weight compound G obtained in Example 7 in toluene instead of the high molecular weight compound A. An organic EL device was produced in exactly the same manner as above. Regarding the produced organic EL element, various characteristics were evaluated in the same manner as in Example 13, and the results are shown in Table 2.
高分子量化合物Aに代えて、実施例7で得られた高分子量化合物Gをトルエンに0.4wt%溶解させて調製された塗布液を用いて電子阻止層12を形成した以外は、実施例13と全く同様にして有機EL素子を作製した。作製した有機EL素子について、実施例13と同様に各種特性を評価し、その結果を表2に示した。 <Example 19>
Example 13 except that the electron blocking layer 12 was formed using a coating solution prepared by dissolving 0.4 wt% of the high molecular weight compound G obtained in Example 7 in toluene instead of the high molecular weight compound A. An organic EL device was produced in exactly the same manner as above. Regarding the produced organic EL element, various characteristics were evaluated in the same manner as in Example 13, and the results are shown in Table 2.
<比較例2>
図7に示す層構造の有機EL素子を作製して特性評価を行った。
具体的には、膜厚50nmのITOを成膜したガラス基板1を有機溶媒で洗浄した後に、UV/オゾン処理にてITO表面を洗浄した。このガラス基板1に設けられている透明陽極2(ITO)を覆うように、PEDOT/PSS(Ossila製)をスピンコート法により50nmの厚みで成膜し、ホットプレート上、200℃で10分間乾燥して正孔注入層3を形成した。 <Comparative example 2>
An organic EL device having the layered structure shown in FIG. 7 was manufactured and its characteristics were evaluated.
Specifically, the glass substrate 1 on which ITO with a thickness of 50 nm was formed was cleaned with an organic solvent, and then the ITO surface was cleaned with UV/ozone treatment. PEDOT/PSS (manufactured by Ossila) was formed into a film with a thickness of 50 nm by spin coating so as to cover the transparent anode 2 (ITO) provided on the glass substrate 1, and dried on a hot plate at 200°C for 10 minutes. Then, a hole injection layer 3 was formed.
図7に示す層構造の有機EL素子を作製して特性評価を行った。
具体的には、膜厚50nmのITOを成膜したガラス基板1を有機溶媒で洗浄した後に、UV/オゾン処理にてITO表面を洗浄した。このガラス基板1に設けられている透明陽極2(ITO)を覆うように、PEDOT/PSS(Ossila製)をスピンコート法により50nmの厚みで成膜し、ホットプレート上、200℃で10分間乾燥して正孔注入層3を形成した。 <Comparative example 2>
An organic EL device having the layered structure shown in FIG. 7 was manufactured and its characteristics were evaluated.
Specifically, the glass substrate 1 on which ITO with a thickness of 50 nm was formed was cleaned with an organic solvent, and then the ITO surface was cleaned with UV/ozone treatment. PEDOT/PSS (manufactured by Ossila) was formed into a film with a thickness of 50 nm by spin coating so as to cover the transparent anode 2 (ITO) provided on the glass substrate 1, and dried on a hot plate at 200°C for 10 minutes. Then, a hole injection layer 3 was formed.
高分子量化合物HTM-1を、トルエンに0.6wt%溶解して塗布液を調製した。前記のようにして正孔注入層3が形成されている基板を、乾燥窒素にて置換したグローブボックス内に移し、正孔注入層3の上に、前記の塗布液を用いてスピンコートにより25nmの厚みの塗布層を形成し、さらに、ホットプレート上、220℃で30分間乾燥して正孔輸送層4を形成した。
A coating solution was prepared by dissolving 0.6 wt% of high molecular weight compound HTM-1 in toluene. The substrate on which the hole injection layer 3 has been formed as described above is transferred to a glove box purged with dry nitrogen, and a 25 nm thick film is applied onto the hole injection layer 3 by spin coating using the coating solution described above. A coating layer having a thickness of 200° C. was formed, and further dried on a hot plate at 220° C. for 30 minutes to form a hole transport layer 4.
前記のようにして正孔輸送層4が形成されている基板を、真空蒸着機内に取り付け0.001Pa以下まで減圧した。正孔輸送層4の上に、青色発光材料(EMD-1)とホスト材料(EMH-1)との二元蒸着により、膜厚34nmの発光層5を形成した。
なお、二元蒸着では、蒸着速度比を、EMD-1:EMH-1=4:96とした。 The substrate on which the hole transport layer 4 was formed as described above was placed in a vacuum evaporator and the pressure was reduced to 0.001 Pa or less. A light emitting layer 5 having a thickness of 34 nm was formed on the hole transport layer 4 by binary vapor deposition of a blue light emitting material (EMD-1) and a host material (EMH-1).
In the binary vapor deposition, the vapor deposition rate ratio was set to EMD-1:EMH-1=4:96.
なお、二元蒸着では、蒸着速度比を、EMD-1:EMH-1=4:96とした。 The substrate on which the hole transport layer 4 was formed as described above was placed in a vacuum evaporator and the pressure was reduced to 0.001 Pa or less. A light emitting layer 5 having a thickness of 34 nm was formed on the hole transport layer 4 by binary vapor deposition of a blue light emitting material (EMD-1) and a host material (EMH-1).
In the binary vapor deposition, the vapor deposition rate ratio was set to EMD-1:EMH-1=4:96.
前記で形成された発光層5の上に、電子輸送材料ETM-1およびETM-2を用いて、二元蒸着により膜厚20nmの電子輸送層6を形成した。
なお、二元蒸着では、蒸着速度比を、ETM-1:ETM-2=50:50とした。 On the luminescent layer 5 formed above, an electron transport layer 6 having a thickness of 20 nm was formed by binary vapor deposition using electron transport materials ETM-1 and ETM-2.
In the binary vapor deposition, the vapor deposition rate ratio was set to ETM-1:ETM-2=50:50.
なお、二元蒸着では、蒸着速度比を、ETM-1:ETM-2=50:50とした。 On the luminescent layer 5 formed above, an electron transport layer 6 having a thickness of 20 nm was formed by binary vapor deposition using electron transport materials ETM-1 and ETM-2.
In the binary vapor deposition, the vapor deposition rate ratio was set to ETM-1:ETM-2=50:50.
最後に、アルミニウムを膜厚100nmとなるように蒸着して陰極7を形成した。
このように、透明陽極2、正孔注入層3、正孔輸送層4、発光層5、電子輸送層6および陰極7が形成されているガラス基板を、乾燥窒素にて置換したグローブボックス内に移動し、UV硬化樹脂を用いて封止用の他のガラス基板を貼り合わせ、有機EL素子とした。
作製した有機EL素子について、大気中、常温で特性測定を行った。また、作製した有機EL素子に直流電圧を印加したときの発光特性を測定した。測定結果は、表2に示した。 Finally, aluminum was deposited to a thickness of 100 nm to form the cathode 7.
In this way, the glass substrate on which the transparent anode 2, hole injection layer 3, hole transport layer 4, light emitting layer 5, electron transport layer 6, and cathode 7 are formed was placed in a glove box purged with dry nitrogen. Then, another glass substrate for sealing was bonded using a UV curing resin to form an organic EL element.
Characteristics of the produced organic EL device were measured in the atmosphere at room temperature. Furthermore, the light emitting characteristics of the manufactured organic EL device when a DC voltage was applied were measured. The measurement results are shown in Table 2.
このように、透明陽極2、正孔注入層3、正孔輸送層4、発光層5、電子輸送層6および陰極7が形成されているガラス基板を、乾燥窒素にて置換したグローブボックス内に移動し、UV硬化樹脂を用いて封止用の他のガラス基板を貼り合わせ、有機EL素子とした。
作製した有機EL素子について、大気中、常温で特性測定を行った。また、作製した有機EL素子に直流電圧を印加したときの発光特性を測定した。測定結果は、表2に示した。 Finally, aluminum was deposited to a thickness of 100 nm to form the cathode 7.
In this way, the glass substrate on which the transparent anode 2, hole injection layer 3, hole transport layer 4, light emitting layer 5, electron transport layer 6, and cathode 7 are formed was placed in a glove box purged with dry nitrogen. Then, another glass substrate for sealing was bonded using a UV curing resin to form an organic EL element.
Characteristics of the produced organic EL device were measured in the atmosphere at room temperature. Furthermore, the light emitting characteristics of the manufactured organic EL device when a DC voltage was applied were measured. The measurement results are shown in Table 2.
なお、各種特性の評価において、電圧、輝度、発光効率および電力効率は、電流密度10mA/cm2の電流を流したときの値である。また、素子寿命は、発光開始時の発光輝度(初期輝度)を700cd/m2として定電流駆動を行った時、発光輝度が560cd/m2(初期輝度を100%とした時の80%に相当:80%減衰)に減衰するまでの時間として測定した。
In the evaluation of various characteristics, voltage, luminance, luminous efficiency, and power efficiency are values when a current with a current density of 10 mA/cm 2 is passed. In addition, the device life is determined when the luminance at the start of light emission (initial luminance) is 700 cd/m 2 and constant current driving is performed, and the luminance is 560 cd/m 2 (80% of the initial luminance as 100%). It was measured as the time required to attenuate to (equivalent to: 80% attenuation).
表2に示すように、電流密度10mA/cm2の電流を流したときの発光効率は、比較例2の有機EL素子の7.56cd/Aに対して、実施例13の有機EL素子では8.27cd/A、実施例14の有機EL素子では8.30cd/A、実施例15の有機EL素子では8.54cd/A、実施例16の有機EL素子では8.34cd/A、実施例19の有機EL素子では8.13cd/Aと高効率であった。また、素子寿命(80%減衰)においては、比較例2の有機EL素子の20時間に対して、実施例13の有機EL素子では376時間、実施例14の有機EL素子では336時間、実施15の有機EL素子では264時間、実施例16の有機EL素子では274時間、実施例17の有機EL素子では280時間、実施例18の有機EL素子では604時間、実施例19の有機EL素子では185時間といずれも長寿命であった。
As shown in Table 2, when a current with a current density of 10 mA/cm 2 is applied, the luminous efficiency of the organic EL element of Example 13 is 8.56 cd/A, compared to 7.56 cd/A of the organic EL element of Comparative Example 2. .27 cd/A, 8.30 cd/A for the organic EL device of Example 14, 8.54 cd/A for the organic EL device of Example 15, 8.34 cd/A for the organic EL device of Example 16, Example 19 The organic EL device had a high efficiency of 8.13 cd/A. In addition, in terms of device life (80% attenuation), compared to 20 hours for the organic EL device of Comparative Example 2, the organic EL device of Example 13 had a lifetime of 376 hours, the organic EL device of Example 14 had a lifetime of 336 hours, and the organic EL device of Example 15 had a lifetime of 336 hours. 264 hours for the organic EL device of Example 16, 274 hours for the organic EL device of Example 17, 280 hours for the organic EL device of Example 18, 604 hours for the organic EL device of Example 19, and 185 hours for the organic EL device of Example 19. Both had a long lifespan.
このように、本発明の高分子量化合物を用いて形成されている有機層を備えた有機EL素子は、従来の有機EL素子と比較して、高発光効率、長寿命の有機EL素子を実現できることが分かった。
As described above, the organic EL device including the organic layer formed using the high molecular weight compound of the present invention can realize an organic EL device with high luminous efficiency and long life compared to conventional organic EL devices. I understand.
本発明の高分子量化合物は、正孔輸送能力が高く、電子阻止能力に優れており、熱架橋性が良好なので、塗布型有機EL素子用の化合物として優れている。該化合物を用いて塗布型有機EL素子を作製することにより、高い発光効率および電力効率を得ることができると共に、耐久性を改善させることができる。それによって、例えば、家庭電化製品や照明などの幅広い用途への展開が可能となった。
The high molecular weight compound of the present invention has high hole transport ability, excellent electron blocking ability, and good thermal crosslinkability, so it is excellent as a compound for coating type organic EL devices. By producing a coated organic EL device using this compound, high luminous efficiency and power efficiency can be obtained, and durability can be improved. This has enabled its use in a wide range of applications, such as home appliances and lighting.
1、8・・・ガラス基板
2、9・・・透明陽極
3、10・・・正孔注入層
4、11・・・正孔輸送層
5、13・・・発光層
6、14・・・電子輸送層
7、15・・・陰極
12・・・電子阻止層
1, 8... Glass substrate 2, 9... Transparent anode 3, 10... Hole injection layer 4, 11... Hole transport layer 5, 13... Light emitting layer 6, 14... Electron transport layer 7, 15...Cathode 12...Electron blocking layer
2、9・・・透明陽極
3、10・・・正孔注入層
4、11・・・正孔輸送層
5、13・・・発光層
6、14・・・電子輸送層
7、15・・・陰極
12・・・電子阻止層
1, 8... Glass substrate 2, 9... Transparent anode 3, 10... Hole injection layer 4, 11... Hole transport layer 5, 13... Light emitting layer 6, 14... Electron transport layer 7, 15...Cathode 12...Electron blocking layer
Claims (12)
- 下記一般式(1)で表されるトリアリールアミン構造単位、および下記一般式(2)で表される連結構造単位からなる、下記一般式(3)で表される繰り返し構造単位と、熱架橋性構造単位とを含み、ポリスチレン換算で10,000以上1,000,000未満の重量平均分子量を有している高分子量化合物。
R2は、それぞれ独立に、炭素数が3~40である、アルキル基、シクロアルキル基、またはアルキルオキシ基を示す。
Xは、水素原子、アミノ基、1価のアリール基、または1価のヘテロアリール基を示す。
Lは、2価のフェニレン基、またはナフチレン基を示し、nは0~3の整数を示す。
aおよびbは、R1の数であり、以下の整数である。
a=0、1、2または3
b=0、1、2、3または4 A repeating structural unit represented by the following general formula (3) consisting of a triarylamine structural unit represented by the following general formula (1) and a connecting structural unit represented by the following general formula (2), and thermal crosslinking. A high molecular weight compound having a weight average molecular weight of 10,000 or more and less than 1,000,000 in terms of polystyrene.
R 2 each independently represents an alkyl group, a cycloalkyl group, or an alkyloxy group having 3 to 40 carbon atoms.
X represents a hydrogen atom, an amino group, a monovalent aryl group, or a monovalent heteroaryl group.
L represents a divalent phenylene group or a naphthylene group, and n represents an integer of 0 to 3.
a and b are the numbers of R 1 and are the following integers.
a=0, 1, 2 or 3
b=0, 1, 2, 3 or 4 - 前記一般式(1)、(2)および(3)において、aおよびbが0である請求項1に記載の高分子量化合物。 The high molecular weight compound according to claim 1, wherein a and b are 0 in the general formulas (1), (2) and (3).
- 前記一般式(1)および(3)において、R2が炭素数3~40のアルキル基である請求項1に記載の高分子量化合物。 The high molecular weight compound according to claim 1, wherein in the general formulas (1) and (3), R 2 is an alkyl group having 3 to 40 carbon atoms.
- 前記一般式(2)および(3)において、Xが水素原子、または置換されていてもよいアミノ基、アリール基、もしくはヘテロアリール基である請求項1に記載の高分子量化合物。 The high molecular weight compound according to claim 1, wherein in the general formulas (2) and (3), X is a hydrogen atom, an optionally substituted amino group, an aryl group, or a heteroaryl group.
- 前記一般式(2)および(3)において、Xが水素原子、ジフェニルアミノ基、フェニル基、ナフチル基、ジベンゾフラニル基、ジベンゾチエニル基、フェナントレニル基、フルオレニル基、カルバゾリル基、インデノカルバゾリル基、またはアクリジニル基である請求項1に記載の高分子量化合物。 In the general formulas (2) and (3), X is a hydrogen atom, diphenylamino group, phenyl group, naphthyl group, dibenzofuranyl group, dibenzothienyl group, phenanthrenyl group, fluorenyl group, carbazolyl group, indenocarbazolyl The high molecular weight compound according to claim 1, which is a group or an acridinyl group.
- 前記熱架橋性構造単位が、下記一般式(4-1)~(4-112)に示す構造単位である請求項1に記載の高分子量化合物。
前記式(4-1)~(4-112)において、破線は、隣接する構造単位への結合手を示し、環から延びている先端がフリーの実線は、その先端がメチル基であることを示す。
Rは、それぞれ独立に、水素原子、重水素原子、シアノ基、ニトロ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、または炭素数が3~40である、アルキル基、シクロアルキル基、アルキルオキシ基、シクロアルキルオキシ基、アルケニル基、もしくはアリールオキシ基を示す。
aおよびbは、Rの数であり、以下の整数である。
a=0、1、2または3
b=0、1、2、3または4 The high molecular weight compound according to claim 1, wherein the thermally crosslinkable structural unit is a structural unit represented by the following general formulas (4-1) to (4-112).
In the above formulas (4-1) to (4-112), the broken line indicates a bond to an adjacent structural unit, and the solid line extending from the ring with a free tip indicates that the tip is a methyl group. show.
R is each independently a hydrogen atom, a deuterium atom, a cyano group, a nitro group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or an alkyl group, a cycloalkyl group, or an alkyl group having 3 to 40 carbon atoms. Indicates an oxy group, cycloalkyloxy group, alkenyl group, or aryloxy group.
a and b are the numbers of R and are the following integers.
a=0, 1, 2 or 3
b=0, 1, 2, 3 or 4 - 下記一般式(5-1)~(5-31)に示す熱架橋性構造単位をさらに含む請求項6に記載の高分子量化合物。
前記式(5-1)~(5-31)において、破線は、隣接する構造単位への結合手を示し、環から延びている先端がフリーの実線は、その先端がメチル基であることを示す。
Rは、それぞれ独立に、水素原子、重水素原子、シアノ基、ニトロ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、または炭素数が3~40である、アルキル基、シクロアルキル基、アルキルオキシ基、シクロアルキルオキシ基、アルケニル基、もしくはアリールオキシ基を示す。
aおよびbは、Rの数であり、以下の整数である。
a=0、1、2または3
b=0、1、2、3または4 The high molecular weight compound according to claim 6, further comprising a thermally crosslinkable structural unit represented by the following general formulas (5-1) to (5-31).
In the above formulas (5-1) to (5-31), the broken line indicates a bond to an adjacent structural unit, and the solid line extending from the ring with a free tip indicates that the tip is a methyl group. show.
R is each independently a hydrogen atom, a deuterium atom, a cyano group, a nitro group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or an alkyl group, a cycloalkyl group, or an alkyl group having 3 to 40 carbon atoms. Indicates an oxy group, cycloalkyloxy group, alkenyl group, or aryloxy group.
a and b are the numbers of R and are the following integers.
a=0, 1, 2 or 3
b=0, 1, 2, 3 or 4 - 請求項1~7のいずれか1項に記載の高分子量化合物を用いて形成される有機層を備えた有機エレクトロルミネッセンス素子。 An organic electroluminescent device comprising an organic layer formed using the high molecular weight compound according to any one of claims 1 to 7.
- 前記有機層が正孔輸送層である、請求項8に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescent device according to claim 8, wherein the organic layer is a hole transport layer.
- 前記有機層が電子阻止層である、請求項8に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescent device according to claim 8, wherein the organic layer is an electron blocking layer.
- 前記有機層が正孔注入層である、請求項8に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescent device according to claim 8, wherein the organic layer is a hole injection layer.
- 前記有機層が発光層である、請求項8に記載の有機エレクトロルミネッセンス素子。
The organic electroluminescent device according to claim 8, wherein the organic layer is a light emitting layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202380014593.4A CN118284640A (en) | 2022-03-25 | 2023-03-22 | Triarylamine high molecular weight compound and organic electroluminescent element |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-049397 | 2022-03-25 | ||
JP2022049397 | 2022-03-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023182377A1 true WO2023182377A1 (en) | 2023-09-28 |
Family
ID=88101588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/011302 WO2023182377A1 (en) | 2022-03-25 | 2023-03-22 | High-molecular-weight triarylamine compound and organic electroluminescent element |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN118284640A (en) |
TW (1) | TW202348680A (en) |
WO (1) | WO2023182377A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010108921A (en) * | 2008-09-30 | 2010-05-13 | Mitsubishi Chemicals Corp | Substrate for patterning organic thin film, organic field light-emitting element and its manufacturing method, organic el display, and organic el illumination |
JP2011253722A (en) * | 2010-06-02 | 2011-12-15 | Mitsubishi Chemicals Corp | Organic electroluminescent element, organic el illumination, and organic el display device |
WO2013180036A1 (en) * | 2012-05-28 | 2013-12-05 | 三菱化学株式会社 | Method for producing conductive thin film laminate |
WO2020009069A1 (en) * | 2018-07-03 | 2020-01-09 | 保土谷化学工業株式会社 | High molecular weight triarylamine compound comprising terphenyl structure in molecular main chain and organic electroluminescent element comprising said high molecular weight compound |
WO2021070878A1 (en) * | 2019-10-09 | 2021-04-15 | 保土谷化学工業株式会社 | Organic electroluminescence element having organic layer comprising high molecular weight compound |
-
2023
- 2023-03-22 CN CN202380014593.4A patent/CN118284640A/en active Pending
- 2023-03-22 WO PCT/JP2023/011302 patent/WO2023182377A1/en active Application Filing
- 2023-03-23 TW TW112110878A patent/TW202348680A/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010108921A (en) * | 2008-09-30 | 2010-05-13 | Mitsubishi Chemicals Corp | Substrate for patterning organic thin film, organic field light-emitting element and its manufacturing method, organic el display, and organic el illumination |
JP2011253722A (en) * | 2010-06-02 | 2011-12-15 | Mitsubishi Chemicals Corp | Organic electroluminescent element, organic el illumination, and organic el display device |
WO2013180036A1 (en) * | 2012-05-28 | 2013-12-05 | 三菱化学株式会社 | Method for producing conductive thin film laminate |
WO2020009069A1 (en) * | 2018-07-03 | 2020-01-09 | 保土谷化学工業株式会社 | High molecular weight triarylamine compound comprising terphenyl structure in molecular main chain and organic electroluminescent element comprising said high molecular weight compound |
WO2021070878A1 (en) * | 2019-10-09 | 2021-04-15 | 保土谷化学工業株式会社 | Organic electroluminescence element having organic layer comprising high molecular weight compound |
Also Published As
Publication number | Publication date |
---|---|
TW202348680A (en) | 2023-12-16 |
CN118284640A (en) | 2024-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7421476B2 (en) | Triarylamine high molecular weight compounds containing a terphenyl structure in the molecular main chain and organic electroluminescent devices containing these high molecular weight compounds | |
JP7017558B2 (en) | High molecular weight compound with substituted triarylamine skeleton | |
JP6942724B2 (en) | High molecular weight compounds containing substituted triarylamine structural units | |
JP7523873B2 (en) | High molecular weight compounds containing substituted triarylamine structural units and organic electroluminescent devices | |
JP7579268B2 (en) | Organic electroluminescence device having an organic layer made of a high molecular weight compound | |
WO2021166921A1 (en) | High molecular weight compound and light emitting diode including said high molecular weight compound | |
KR20240041870A (en) | Organic electroluminescence device | |
WO2023182377A1 (en) | High-molecular-weight triarylamine compound and organic electroluminescent element | |
WO2023167253A1 (en) | High molecular weight triarylamine compound and organic electroluminescent element | |
WO2022244822A1 (en) | High molecular weight triarylamine compounds, and organic electroluminescent elements containing these high molecular weight compounds | |
WO2022191141A1 (en) | High molecular weight compounds having indeno-dibenzoheterole structure as partial structure, and organic electroluminescent elements comprising said high molecular weight compounds | |
JP2024052606A (en) | Hi-molecular weight compound and organic electroluminescent device therewith | |
JP2024008856A (en) | High molecular weight compound and organic electroluminescent device using these | |
JP2024127866A (en) | High molecular weight compound and organic electroluminescence device | |
KR20240163050A (en) | Triarylamine high molecular weight compounds and organic electroluminescent devices | |
TW202222897A (en) | Thermally-crosslinkable low molecular weight compound-containing composition for light emitting diode | |
KR20240022707A (en) | Arylamine compound, organic electroluminescence element, and electronic device | |
KR20240129758A (en) | Arylamine compound, organic electroluminescence element, and electronic device | |
JP2023022389A (en) | Spirobifluorene compound and organic electroluminescent element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23774972 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024509175 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202380014593.4 Country of ref document: CN |