WO2023176368A1 - レンズ部、積層体、表示体、表示体の製造方法および表示方法 - Google Patents
レンズ部、積層体、表示体、表示体の製造方法および表示方法 Download PDFInfo
- Publication number
- WO2023176368A1 WO2023176368A1 PCT/JP2023/006738 JP2023006738W WO2023176368A1 WO 2023176368 A1 WO2023176368 A1 WO 2023176368A1 JP 2023006738 W JP2023006738 W JP 2023006738W WO 2023176368 A1 WO2023176368 A1 WO 2023176368A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polarizing member
- reflective polarizing
- lens portion
- lens
- reflective
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0172—Head mounted characterised by optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/003—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having two lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/02—Viewing or reading apparatus
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0938—Using specific optical elements
- G02B27/095—Refractive optical elements
- G02B27/0955—Lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0938—Using specific optical elements
- G02B27/0977—Reflective elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/28—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
- G02B27/286—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3083—Birefringent or phase retarding elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B2027/0192—Supplementary details
- G02B2027/0194—Supplementary details with combiner of laminated type, for optical or mechanical aspects
Definitions
- the present invention relates to a lens part, a laminate, a display body, a method for manufacturing a display body, and a display method.
- Image display devices represented by liquid crystal display devices and electroluminescence (EL) display devices are rapidly becoming popular.
- EL electroluminescence
- optical members such as polarizing members and retardation members are generally used to realize image display and improve image display performance (see, for example, Patent Document 1).
- the main object of the present invention is to provide a lens portion that can realize weight reduction and high definition of VR goggles, and can further suppress afterimages.
- Lens units according to embodiments of the present invention are used in display systems that display images to users.
- the lens portion includes a reflective polarizing member that reflects light that is emitted forward from the display surface of the display element that represents an image and has passed through the polarizing member and the first ⁇ /4 member; an absorptive polarizing member disposed in front of the; a first lens portion disposed on the optical path between the display element and the reflective polarizing member; a second lens portion disposed in front of the absorptive polarizing member; a lens section; disposed between the display element and the first lens section, which transmits the light emitted from the display element and directs the light reflected by the reflective polarizing member toward the reflective polarizing member; and a second ⁇ /4 member disposed on an optical path between the half mirror and the reflective polarizing member.
- the second ⁇ /4 member and the first lens portion are integrated, and the reflective polarizing member, the absorptive polarizing member, and the second lens portion are integrated. 2.
- the reflection axis of the reflective polarizing member and the absorption axis of the absorptive polarizing member may be arranged parallel to each other. 3.
- the first lens section and the half mirror may be integrated. 4.
- the angle between the absorption axis of the polarizing member included in the display element and the slow axis of the first ⁇ /4 member is 40° to 50°.
- the angle between the absorption axis of the polarizing member included in the display element and the slow axis of the second ⁇ /4 member may be 40° to 50°. 5.
- the second ⁇ /4 member and the first lens portion may be integrated via an adhesive layer, and the reflective polarizing member
- the absorption type polarizing member and the second lens portion may be integrated with each other via an adhesive layer.
- the laminate according to the embodiment of the present invention is used in the lens section described in any one of 1 to 5 above, and includes the reflective polarizing member, the absorptive polarizing member, and the second lens section. 7.
- a laminate according to another embodiment of the present invention is used for the lens portion described in any one of items 1 to 5 above, and includes the second ⁇ /4 member and the first lens portion.
- the reflection axis of the reflective polarizing member and the absorption axis of the absorptive polarizing member may be arranged parallel to each other.
- the reflection axis of the reflective polarizing member and the absorption axis of the absorptive polarizing member may be arranged parallel to each other.
- a display body according to an embodiment of the present invention includes the lens portion described in any one of 1 to 5 above.
- a method for manufacturing a display body according to an embodiment of the present invention is a method for manufacturing a display body having a lens portion according to any one of items 1 to 5 above.
- a display method includes the steps of: causing light representing an image emitted through a polarizing member and a first ⁇ /4 member to pass through a half mirror and a first lens portion; a step of causing the light that has passed through the first lens portion to pass through a second ⁇ /4 member; reflecting the light that has passed through the second ⁇ /4 member toward the half mirror by the reflective polarizing member; step; allowing the light reflected by the reflective polarizing member and the half mirror to be transmitted through the reflective polarizing member by the second ⁇ /4 member; and the light transmitted through the reflective polarizing member. transmitting through the absorptive polarizing member and the second lens section; the second ⁇ /4 member and the first lens section are integrated, and the reflective polarizing member and the above The absorptive polarizing member and the second lens portion are integrated.
- the lens portion according to the embodiment of the present invention it is possible to realize weight reduction and high definition of VR goggles, and furthermore, it is possible to suppress afterimages.
- FIG. 1 is a schematic diagram showing a general configuration of a display system according to one embodiment of the present invention.
- FIG. 2 is a schematic perspective view showing an example of a multilayer structure included in a reflective polarizing film.
- Refractive index (nx, ny, nz) "nx" is the refractive index in the direction in which the in-plane refractive index is maximum (i.e., slow axis direction), and "ny” is the direction perpendicular to the slow axis in the plane (i.e., fast axis direction) "nz” is the refractive index in the thickness direction.
- Refractive index (nx, ny, nz) "nx" is the refractive index in the direction in which the in-plane refractive index is maximum (i.e., slow axis direction), and "ny” is the direction perpendicular to the slow axis in the plane (i.e., fast axis direction) "nz” is the refractive index in the thickness direction.
- In-plane phase difference (Re) "Re( ⁇ )” is an in-plane retardation measured with light having a wavelength of ⁇ nm at 23°C.
- Re(550) is an in-plane retardation measured with light having a wavelength of 550 nm at 23°C.
- Phase difference in thickness direction (Rth) is a retardation in the thickness direction measured with light having a wavelength of ⁇ nm at 23°C.
- Rth (550) is the retardation in the thickness direction measured with light having a wavelength of 550 nm at 23°C.
- FIG. 1 is a schematic diagram showing the general configuration of a display system according to one embodiment of the present invention.
- FIG. 1 schematically shows the arrangement, shape, etc. of each component of the display system 2.
- the display system 2 includes a display element 12 , a reflective polarizing member 32 , an absorbing polarizing member 34 , a first lens section 16 , a half mirror 18 , a first retardation member 20 , and a second retardation member 22 and a second lens section 24.
- the reflective polarizing member 32 is disposed at the front of the display element 12 on the display surface 12a side, and can reflect the light emitted from the display element 12.
- the first lens section 16 is arranged on the optical path between the display element 12 and the reflective polarizing member 32, and the half mirror 18 is arranged between the display element 12 and the first lens section 16.
- the first retardation member 20 is arranged on the optical path between the display element 12 and the half mirror 18, and the second retardation member 22 is arranged on the optical path between the half mirror 18 and the reflective polarizing member 32.
- Absorptive polarizing member 34 may be placed in front of reflective polarizing member 32.
- the reflection axis of the reflective polarizing member and the absorption axis of the absorptive polarizing member may be arranged substantially parallel to each other, and the transmission axis of the reflective polarizing member and the transmission axis of the absorptive polarizing member may be arranged substantially parallel to each other.
- the reflective polarizing member 32 and the absorbing polarizing member 34 may be collectively referred to as a reflecting section.
- the second lens section 24 is arranged in front of the absorptive polarizing member 34.
- the second retardation member 22 (hereinafter, the second retardation member may be referred to as a second ⁇ /4 member) and the first lens portion 16 are
- the reflective polarizing member 32, the absorbing polarizing member 34, and the second lens portion 24 are integrated.
- the second ⁇ /4 member 22 and the first lens portion 16, as well as the reflective polarizing member 32, the absorbing polarizing member 34, and the second lens portion 24 are integrated, for example, via an adhesive layer (not shown). (typically, laminated).
- the second ⁇ /4 member 22 and the absorption type polarizing member 34 are configured to be separated from each other (as separate bodies).
- the present inventors discovered that when the second ⁇ /4 member and the absorption type polarization member 34 (inevitably, the reflection type polarization member 32) are integrated, the absorption type polarization member constituting the absorption type polarization member It has been found that the second ⁇ /4 member may be deformed and/or shifted in the slow axis direction due to deformation (typically shrinkage) in a high temperature environment due to heating of the film or the like.
- the adhesive layer may be formed of an adhesive or a pressure-sensitive adhesive.
- the thickness of the adhesive layer is, for example, 0.05 ⁇ m to 30 ⁇ m, preferably 3 ⁇ m to 20 ⁇ m, and more preferably 5 ⁇ m to 15 ⁇ m.
- lens section 4 Components arranged in front of the half mirror (in the illustrated example, the half mirror 18, the first lens part 16, the second retardation member 22, the reflective polarizing member 32, the absorption polarizing member 34, and the second lens part 24) may be collectively referred to as a lens section (lens section 4).
- the display element 12 is, for example, a liquid crystal display or an organic EL display, and has a display surface 12a for displaying images.
- the light emitted from the display surface 12a passes through a polarizing member (typically, a polarizing film) that may be included in the display element 12, and is emitted as first linearly polarized light.
- a polarizing member typically, a polarizing film
- the first retardation member 20 is a ⁇ /4 member that can convert the first linearly polarized light incident on the first retardation member 20 into first circularly polarized light (hereinafter, the first retardation member is referred to as the first (sometimes referred to as a ⁇ /4 member). Note that the first retardation member 20 may be provided integrally with the display element 12.
- the half mirror 18 transmits the light emitted from the display element 12 and reflects the light reflected by the reflective polarizing member 32 toward the reflective polarizing member 32.
- the half mirror 18 is provided integrally with the first lens section 16.
- the second retardation member 22 is a ⁇ /4 member that can transmit the light reflected by the reflective polarizing member 32 and the half mirror 18 through the reflective polarizing member 32.
- the second retardation member 22 is provided integrally with the first lens portion 16.
- the first circularly polarized light emitted from the first ⁇ /4 member 20 passes through the half mirror 18 and the first lens section 16, and is converted into second linearly polarized light by the second ⁇ /4 member 22. .
- the second linearly polarized light emitted from the second ⁇ /4 member 22 is reflected toward the half mirror 18 without passing through the reflective polarizing member 32.
- the polarization direction of the second linearly polarized light incident on the reflective polarizing member 32 is the same direction as the reflection axis of the reflective polarizing member. Therefore, the second linearly polarized light incident on the reflective polarizing member is reflected by the reflective polarizing member.
- the second linearly polarized light reflected by the reflective polarizing member 32 is converted into second circularly polarized light by the second ⁇ /4 member 22, and the second circularly polarized light is emitted from the second ⁇ /4 member 22. passes through the first lens section 16 and is reflected by the half mirror 18.
- the second circularly polarized light reflected by the half mirror 18 passes through the first lens section 16 and is converted into third linearly polarized light by the second ⁇ /4 member 22.
- the third linearly polarized light is transmitted through the reflective polarizing member 32.
- the polarization direction of the third linearly polarized light incident on the reflective polarizing member 32 is the same direction as the transmission axis of the reflective polarizing member. Therefore, the third linearly polarized light incident on the reflective polarizing member 32 is transmitted through the reflective polarizing member.
- the light that has passed through the reflective polarizing member 32 passes through the absorbing polarizing member 34 and the second lens section 24, and enters the user's eyes 26.
- the polarization direction of the third linearly polarized light transmitted through the reflective polarizing member 32 is the same direction as the transmission axis of the absorbing polarizing member.
- the absorption axis of the polarizing member included in the display element 12 and the reflection axis of the reflective polarizing member 32 may be arranged substantially parallel to each other, or may be arranged substantially perpendicular to each other.
- the angle between the absorption axis of the polarizing member included in the display element 12 and the slow axis of the first retardation member 20 is, for example, 40° to 50°, may be 42° to 48°, and is about 45°. It may be °.
- the angle between the absorption axis of the polarizing member included in the display element 12 and the slow axis of the second retardation member 22 is, for example, 40° to 50°, may be 42° to 48°, and is about 45°. It may be °.
- the slow axis of the first phase difference member 20 and the slow axis of the second phase difference member 22 may be arranged substantially parallel to each other.
- the in-plane retardation Re (550) of the first retardation member 20 is, for example, 100 nm to 190 nm, may be 110 nm to 180 nm, may be 130 nm to 160 nm, or may be 135 nm to 155 nm. .
- the first retardation member 20 preferably exhibits inverse dispersion wavelength characteristics in which the retardation value increases depending on the wavelength of the measurement light.
- Re(450)/Re(550) of the first retardation member 20 is, for example, less than 1 and may be 0.95 or less, further less than 0.90, and even 0.85 or less. good.
- Re(450)/Re(550) of the first retardation member 20 is, for example, 0.75 or more.
- the first retardation member 20 has Re(400)/Re(550) ⁇ 0.85, Re(650)/Re(550)>1.03, and Re(750)/Re( 550)>1.05.
- the first retardation member 20 has 0.65 ⁇ Re(400)/Re(550) ⁇ 0.80 (preferably 0.7 ⁇ Re(400)/Re(550) ⁇ 0.75), 1. 0 ⁇ Re(650)/Re(550) ⁇ 1.25 (preferably 1.05 ⁇ Re(650)/Re(550) ⁇ 1.20) and 1.05 ⁇ Re(750)/Re( 550) ⁇ 1.40 (preferably 1.08 ⁇ Re(750)/Re(550) ⁇ 1.36), more preferably at least two. More preferably, all of them are satisfied.
- the first retardation member 20 preferably exhibits a refractive index characteristic of nx>ny ⁇ nz.
- the Nz coefficient of the first retardation member 20 is preferably 0.9 to 3, more preferably 0.9 to 2.5, even more preferably 0.9 to 1.5, particularly preferably 0.9 to 1. It is 3.
- the first retardation member 20 is formed of any suitable material that can satisfy the above characteristics.
- the first retardation member 20 may be, for example, a stretched resin film or an oriented solidified layer of a liquid crystal compound.
- the resins contained in the above resin film include polycarbonate resin, polyester carbonate resin, polyester resin, polyvinyl acetal resin, polyarylate resin, cyclic olefin resin, cellulose resin, polyvinyl alcohol resin, and polyamide resin. , polyimide resin, polyether resin, polystyrene resin, acrylic resin, and the like. These resins may be used alone or in combination (for example, blended or copolymerized).
- a resin film containing a polycarbonate resin or a polyester carbonate resin hereinafter sometimes simply referred to as a polycarbonate resin
- polycarbonate resins contain structural units derived from fluorene-based dihydroxy compounds, structural units derived from isosorbide-based dihydroxy compounds, alicyclic diols, alicyclic dimethanols, di-, tri-, or polyethylene glycols, and alkylene-based dihydroxy compounds. a structural unit derived from at least one dihydroxy compound selected from the group consisting of glycol or spiroglycol.
- the polycarbonate resin contains a structural unit derived from a fluorene dihydroxy compound, a structural unit derived from an isosorbide dihydroxy compound, a structural unit derived from an alicyclic dimethanol, and/or a di, tri, or polyethylene glycol. More preferably, it contains a structural unit derived from a fluorene dihydroxy compound, a structural unit derived from an isosorbide dihydroxy compound, and a structural unit derived from di, tri or polyethylene glycol. .
- the polycarbonate resin may contain structural units derived from other dihydroxy compounds as necessary.
- the thickness of the first retardation member 20 made of a stretched resin film is, for example, 10 ⁇ m to 100 ⁇ m, preferably 10 ⁇ m to 70 ⁇ m, more preferably 10 ⁇ m to 40 ⁇ m, and still more preferably 20 ⁇ m to 30 ⁇ m.
- the liquid crystal compound alignment and solidification layer is a layer in which the liquid crystal compound is aligned in a predetermined direction within the layer, and the alignment state is fixed.
- the "alignment hardened layer” is a concept that includes an orientation hardened layer obtained by curing a liquid crystal monomer as described below.
- rod-shaped liquid crystal compounds are typically aligned in the slow axis direction of the first retardation member (homogeneous alignment). Examples of rod-shaped liquid crystal compounds include liquid crystal polymers and liquid crystal monomers.
- the liquid crystal compound is preferably polymerizable. If the liquid crystal compound is polymerizable, the alignment state of the liquid crystal compound can be fixed by aligning the liquid crystal compound and then polymerizing it.
- the liquid crystal compound alignment and solidification layer is produced by subjecting the surface of a predetermined base material to an alignment treatment, applying a coating liquid containing the liquid crystal compound to the surface, and subjecting the liquid crystal compound to the alignment treatment. It can be formed by orienting it in a corresponding direction and fixing the orientation state. Any suitable orientation treatment may be employed as the orientation treatment. Specifically, mechanical alignment treatment, physical alignment treatment, and chemical alignment treatment can be mentioned. Specific examples of mechanical alignment treatment include rubbing treatment and stretching treatment. Specific examples of physical alignment treatment include magnetic field alignment treatment and electric field alignment treatment. Specific examples of chemical alignment treatment include oblique vapor deposition and photo alignment treatment. As the treatment conditions for various orientation treatments, any appropriate conditions may be adopted depending on the purpose.
- the alignment of the liquid crystal compound is carried out by treatment at a temperature that exhibits a liquid crystal phase depending on the type of liquid crystal compound.
- the liquid crystal compound assumes a liquid crystal state, and the liquid crystal compound is oriented in accordance with the orientation treatment direction of the substrate surface.
- the alignment state is fixed by cooling the liquid crystal compound aligned as described above.
- the alignment state is fixed by subjecting the liquid crystal compound aligned as described above to polymerization treatment or crosslinking treatment.
- liquid crystal compound any suitable liquid crystal polymer and/or liquid crystal monomer can be used as the liquid crystal compound.
- the liquid crystal polymer and the liquid crystal monomer may be used alone or in combination.
- Specific examples of liquid crystal compounds and methods for producing liquid crystal alignment solidified layers are described in, for example, JP 2006-163343A, JP 2006-178389A, and WO 2018/123551A. The descriptions of these publications are incorporated herein by reference.
- the thickness of the first retardation member 20 composed of the liquid crystal alignment solidified layer is, for example, 1 ⁇ m to 10 ⁇ m, preferably 1 ⁇ m to 8 ⁇ m, more preferably 1 ⁇ m to 6 ⁇ m, and still more preferably 1 ⁇ m to 4 ⁇ m.
- the in-plane retardation Re (550) of the second retardation member 22 is, for example, 100 nm to 190 nm, may be 110 nm to 180 nm, may be 130 nm to 160 nm, or may be 135 nm to 155 nm. .
- the second retardation member 22 preferably exhibits inverse dispersion wavelength characteristics in which the retardation value increases depending on the wavelength of the measurement light.
- Re(450)/Re(550) of the second retardation member 22 is, for example, less than 1 and may be 0.95 or less, further less than 0.90, and even 0.85 or less. good.
- Re(450)/Re(550) of the second retardation member 22 is, for example, 0.75 or more.
- the second retardation member 22 has Re(400)/Re(550) ⁇ 0.85, Re(650)/Re(550)>1.03, and Re(750)/Re( 550)>1.05.
- the second retardation member 22 has 0.65 ⁇ Re(400)/Re(550) ⁇ 0.80 (preferably 0.7 ⁇ Re(400)/Re(550) ⁇ 0.75), 1. 0 ⁇ Re(650)/Re(550) ⁇ 1.25 (preferably 1.05 ⁇ Re(650)/Re(550) ⁇ 1.20) and 1.05 ⁇ Re(750)/Re( 550) ⁇ 1.40 (preferably 1.08 ⁇ Re(750)/Re(550) ⁇ 1.36), more preferably at least two. More preferably, all of them are satisfied.
- the second retardation member 22 preferably exhibits a refractive index characteristic of nx>ny ⁇ nz.
- the Nz coefficient of the second retardation member 22 is preferably 0.9 to 3, more preferably 0.9 to 2.5, even more preferably 0.9 to 1.5, particularly preferably 0.9 to 1. It is 3.
- the second retardation member 22 is formed of any suitable material that can satisfy the above characteristics.
- the second retardation member 22 may be, for example, a stretched resin film or an oriented solidified layer of a liquid crystal compound.
- the same explanation as for the first retardation member 20 can be applied to the second retardation member 22 made of a stretched resin film or an oriented solidified layer of a liquid crystal compound.
- the first retardation member 20 and the second retardation member 22 may have the same configuration (forming material, thickness, optical properties, etc.), or may have different configurations.
- the reflective polarizing member can transmit polarized light parallel to its transmission axis (typically, linearly polarized light) while maintaining its polarized state, and can reflect light in other polarized states.
- the reflective polarizing member is typically composed of a film having a multilayer structure (sometimes referred to as a reflective polarizing film).
- the thickness of the reflective polarizing member is, for example, 10 ⁇ m to 150 ⁇ m, preferably 20 ⁇ m to 100 ⁇ m, and more preferably 30 ⁇ m to 60 ⁇ m.
- FIG. 2 is a schematic perspective view showing an example of a multilayer structure included in a reflective polarizing film.
- the multilayer structure 32a has layers A having birefringence and layers B having substantially no birefringence alternating.
- the total number of layers making up the multilayer structure may be between 50 and 1000.
- the refractive index nx in the x-axis direction of the A layer is larger than the refractive index ny in the y-axis direction, and the refractive index nx in the x-axis direction and the refractive index ny in the y-axis direction of the B layer are substantially the same,
- the refractive index difference between layer A and layer B is large in the x-axis direction and substantially zero in the y-axis direction.
- the x-axis direction can become the reflection axis
- the y-axis direction can become the transmission axis.
- the refractive index difference between layer A and layer B in the x-axis direction is preferably 0.2 to 0.3.
- the above layer A is typically made of a material that exhibits birefringence when stretched.
- materials include, for example, naphthalene dicarboxylic acid polyesters (eg, polyethylene naphthalate), polycarbonates, and acrylic resins (eg, polymethyl methacrylate).
- the B layer is typically made of a material that does not substantially exhibit birefringence even when stretched. Examples of such materials include copolyesters of naphthalene dicarboxylic acid and terephthalic acid.
- the multilayer structure may be formed by a combination of coextrusion and stretching. For example, after extruding the material constituting layer A and the material constituting layer B, they are multilayered (for example, using a multiplier). The obtained multilayer laminate is then stretched.
- the x-axis direction in the illustrated example may correspond to the stretching direction.
- reflective polarizing films include, for example, 3M's product names "DBEF” and “APF” and Nitto Denko's product name "APCF”.
- the cross transmittance (Tc) of the reflective polarizing member (reflective polarizing film) may be, for example, 0.01% to 3%.
- the single transmittance (Ts) of the reflective polarizing member (reflective polarizing film) may be, for example, 43% to 49%, preferably 45 to 47%.
- the degree of polarization (P) of the reflective polarizing member (reflective polarizing film) can be, for example, 92% to 99.99%.
- the absorption type polarizing member is typically composed of a resin film containing a dichroic substance (sometimes referred to as an absorption type polarizing film).
- the thickness of the absorption type polarizing member is, for example, 1 ⁇ m or more and 20 ⁇ m or less, 2 ⁇ m or more and 15 ⁇ m or less, 12 ⁇ m or less, 10 ⁇ m or less, and 8 ⁇ m or less. The thickness may be 5 ⁇ m or less.
- the above-mentioned absorption type polarizing film may be produced from a single layer resin film, or may be produced using a laminate of two or more layers.
- a hydrophilic polymer film such as a polyvinyl alcohol (PVA) film, a partially formalized PVA film, or a partially saponified ethylene/vinyl acetate copolymer film is coated with iodine or dichloromethane.
- An absorption type polarizing film can be obtained by dyeing with a dichroic substance such as a color dye, stretching, and the like. Among these, an absorption type polarizing film obtained by dyeing a PVA film with iodine and uniaxially stretching it is preferred.
- the above-mentioned staining with iodine is performed, for example, by immersing the PVA-based film in an iodine aqueous solution.
- the stretching ratio of the above-mentioned uniaxial stretching is preferably 3 to 7 times. Stretching may be performed after the dyeing process or may be performed while dyeing. Alternatively, it may be dyed after being stretched. If necessary, the PVA film is subjected to swelling treatment, crosslinking treatment, washing treatment, drying treatment, etc.
- the laminate produced using the above-mentioned laminate of two or more layers is a laminate of a resin base material and a PVA resin layer (PVA resin film) laminated on the resin base material, or a laminate of a resin base material and a PVA resin layer (PVA resin film) laminated on the resin base material, or Examples include a laminate of a material and a PVA-based resin layer formed by coating on the resin base material.
- An absorptive polarizing film obtained using a laminate of a resin base material and a PVA resin layer coated on the resin base material can be obtained by, for example, applying a PVA resin solution to the resin base material and drying it.
- a PVA resin layer on a base material to obtain a laminate of the resin base material and the PVA resin layer; stretching and dyeing the laminate to make the PVA resin layer an absorption type polarizing film.
- a polyvinyl alcohol resin layer containing a halide and a polyvinyl alcohol resin is formed on one side of the resin base material.
- Stretching typically includes immersing the laminate in an aqueous boric acid solution and stretching.
- the stretching may further include stretching the laminate in air at a high temperature (for example, 95° C. or higher) before stretching in the boric acid aqueous solution, if necessary.
- the laminate is preferably subjected to a drying shrinkage treatment in which the laminate is heated while being conveyed in the longitudinal direction to shrink by 2% or more in the width direction.
- the manufacturing method of this embodiment includes subjecting the laminate to an in-air auxiliary stretching process, a dyeing process, an underwater stretching process, and a drying shrinkage process in this order.
- the obtained resin base material/absorbing polarizing film laminate may be used as is (that is, the resin base material may be used as a protective layer of the absorbing polarizing film), or the resin base material/absorbing polarizing film laminate may be used as is.
- Any suitable protective layer depending on the purpose may be laminated on the peeled surface from which the resin base material is peeled off, or on the surface opposite to the peeled surface. Details of the manufacturing method of such an absorption type polarizing film are described in, for example, Japanese Patent Application Publication No. 2012-73580 and Japanese Patent No. 6470455. The entire descriptions of these publications are incorporated herein by reference.
- the orthogonal transmittance (Tc) of the absorption type polarizing member (absorption type polarizing film) is preferably 0.5% or less, more preferably 0.1% or less, and still more preferably 0.05% or less. be.
- the single transmittance (Ts) of the absorption type polarizing member (absorption type polarizing film) is, for example, 41.0% to 45.0%, preferably 42.0% or more.
- the degree of polarization (P) of the absorption type polarizing member (absorption type polarizing film) is, for example, 99.0% to 99.997%, preferably 99.9% or more.
- the orthogonal transmittance (Tc) of the reflective part is preferably 0.5% or less, more preferably 0.1% or less, and still more preferably 0.05% or less. By satisfying such orthogonal transmittance, visibility of afterimages (ghosts) by the user can be suppressed, and excellent display characteristics can be achieved.
- the single transmittance (Ts) of the reflective portion is preferably 40.0% to 45.0%, more preferably 41.0% or more.
- the degree of polarization (P) of the reflective portion is preferably 99.0% to 99.997%, more preferably 99.9% or more.
- the optical properties of the reflective section may correspond to the optical properties of a reflective polarizing member, or may correspond to the optical properties of a laminate of a reflective polarizing member and an absorbing polarizing member.
- the above optical properties can be extremely well achieved by combining a reflective polarizing member with an absorptive polarizing member.
- the second ⁇ /4 member and the first lens portion, as well as the reflective polarizing member, the absorbing polarizing member, and the second lens portion are each integrated.
- Embodiments of the present invention also include each such integrated product (laminate).
- Each laminate can be used, for example, in the display system of FIG. 1 (typically, the lens portion thereof).
- the thickness is a value measured by the following measuring method.
- ⁇ Thickness> The thickness of 10 ⁇ m or less was measured using a scanning electron microscope (manufactured by JEOL Ltd., product name “JSM-7100F”). Thickness exceeding 10 ⁇ m was measured using a digital micrometer (manufactured by Anritsu Corporation, product name “KC-351C”).
- the PVA resin film was stretched in an aqueous solution containing 4% by weight of boric acid and 5% by weight of potassium iodide so that the length of the PVA-based resin film became 6 times its original length. Furthermore, after performing an iodine ion impregnation treatment with a 3% by weight potassium iodide aqueous solution (iodine impregnation bath), it was dried in an oven at 60° C. for 4 minutes to obtain a polarizing film with a thickness of 12 ⁇ m.
- the HC-TAC film is a film in which a hard coat (HC) layer (7 ⁇ m thick) is formed on a triacetyl cellulose (TAC) film (25 ⁇ m thick), and is pasted with the TAC film facing the polarizer.
- the oligomerized reaction liquid in the first reactor was transferred to the second reactor.
- temperature increase and pressure reduction in the second reactor were started, and the internal temperature was 240° C. and the pressure was 0.2 kPa in 50 minutes.
- polymerization was allowed to proceed until a predetermined stirring power was reached.
- nitrogen was introduced into the reactor to restore the pressure nitrogen was introduced into the reactor to restore the pressure, the produced polyester carbonate resin was extruded into water, and the strands were cut to obtain pellets.
- polyester carbonate resin pellets
- a single-screw extruder manufactured by Toshiba Machine Co., Ltd., cylinder temperature setting: 250°C
- T-die width 200mm, setting temperature: 250°C
- a long resin film with a thickness of 130 ⁇ m was produced using a film forming apparatus equipped with a chill roll (temperature setting: 120 to 130° C.), a winder and a winder.
- the obtained long resin film was stretched in the width direction at a stretching temperature of 140° C. and a stretching ratio of 2.7 times.
- a retardation film ( ⁇ /4 member 1) having a thickness of 47 ⁇ m, a Re(590) of 143 nm, and an Nz coefficient of 1.2 was obtained.
- a coating film was obtained by applying a polyimide solution for an alignment film to a glass substrate with a thickness of 0.7 mm using a spin coating method, drying it at 100°C for 10 minutes, and then baking it at 200°C for 60 minutes. .
- the obtained coating film was rubbed using a commercially available rubbing device to form an alignment film.
- the polymerizable composition obtained above was applied to the base material (substantially the alignment film) by a spin coating method, and dried at 100° C. for 2 minutes.
- the obtained coating film was cooled to room temperature, it was irradiated with ultraviolet rays for 30 seconds at an intensity of 30 mW/cm 2 using a high-pressure mercury lamp. Thereby, a liquid crystal alignment solidified layer ( ⁇ /4 member 2) having a thickness of 1.5 ⁇ m, Re(590) of 143 nm, and Nz coefficient of 1.0 was obtained.
- Example 1 A polarizing plate 1 is placed on a reflective polarizing film ("APCFG4" manufactured by Nitto Denko Corporation), and an adhesive is placed so that the reflection axis of the reflective polarizing film and the absorption axis of the polarizing film of the polarizing plate 1 are arranged parallel to each other. A laminate of reflective polarizing film/polarizing plate 1 was obtained. After cutting the laminate into a size of 100 mm in length and 100 mm in width, the polarizing plate 1 side is bonded to glass (lens substitute) via an adhesive to form a reflective polarizing film/polarizing plate 1/glass configuration. Evaluation sample E1-1 was obtained.
- the polarizing plate was cut so that the absorption axis of the polarizing film was in the horizontal direction (0°).
- the retardation film 1 (second ⁇ /4 member) of Production Example 2 was placed on the same glass as evaluation sample E1-1 via an adhesive.
- an evaluation sample E1-2 having a ( ⁇ /4) member 1/glass configuration was obtained.
- cutting was performed so that the slow axis of the retardation film was 45° counterclockwise when viewed from above with the lateral direction set at 0° and the glass surface facing down.
- the ⁇ /4 member 1 side was bonded to the same glass as in Example 1 with an adhesive, and the glass/( ⁇ /4) member 1/
- An evaluation sample C1 having a configuration of reflective polarizing film/polarizing plate 1 was obtained.
- the absorption axis of the polarizing plate is in the horizontal direction (0°)
- the slow axis of the retardation film is counterclockwise when viewed from above with the horizontal direction set at 0° and the glass surface facing down.
- the cut was made at an angle of 45°.
- Laminate 1 was obtained in the same manner as Comparative Example 1. After cutting the laminate 1 into a size of 100 mm in length and 100 mm in width, the polarizing plate 1 side was bonded to the same glass as in Example 1 via an adhesive to form ( ⁇ /4) member 1/reflective polarizing film. An evaluation sample C2 having a configuration of /Polarizing plate 1/Glass was obtained. Here, the absorption axis of the polarizing plate is in the horizontal direction (0°), and the slow axis of the retardation film is counterclockwise when viewed from above with the horizontal direction set at 0° and the glass surface facing down. The cut was made so that the angle was 135°.
- the dimensional change rate of the second ⁇ /4 member is smaller than that of the comparative example, and as a result, the second ⁇ /4 member and the reflective polarizing film
- the present invention is not limited to the above embodiments, and various modifications are possible.
- it can be replaced with a configuration that is substantially the same as the configuration shown in the above embodiment, a configuration that has the same effect, or a configuration that can achieve the same purpose.
- the lens section according to the embodiment of the present invention can be used, for example, in a display body such as VR goggles.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Polarising Elements (AREA)
Abstract
Description
2.上記1に記載のレンズ部において、上記反射型偏光部材の反射軸と上記吸収型偏光部材の吸収軸とは互いに平行に配置されてもよい。
3.上記1または2に記載のレンズ部において、上記第一レンズ部と上記ハーフミラーとは一体であってもよい。
4.上記1から3のいずれかに記載のレンズ部において、上記表示素子に含まれる上記偏光部材の吸収軸と上記第1のλ/4部材の遅相軸とのなす角度は40°~50°であってもよく、上記表示素子に含まれる上記偏光部材の吸収軸と上記第2のλ/4部材の遅相軸とのなす角度は40°~50°であってもよい。
5.上記1から4のいずれかに記載のレンズ部において、上記第2のλ/4部材と上記第一レンズ部とは接着層を介して一体化されていてもよく、ならびに、上記反射型偏光部材と上記吸収型偏光部材と上記第二レンズ部とは接着層を介して一体化されていてもよい。
7.本発明の別の実施形態による積層体は、上記1から5のいずれかに記載のレンズ部に用いられ、上記第2のλ/4部材と上記第一レンズ部とを有する。
8.上記6に記載の積層体において、上記反射型偏光部材の反射軸と上記吸収型偏光部材の吸収軸とは互いに平行に配置されてもよい。
9.上記7に記載の積層体において、上記反射型偏光部材の反射軸と上記吸収型偏光部材の吸収軸とは互いに平行に配置されてもよい。
11.本発明の実施形態による表示体の製造方法は、上記1から5のいずれかに記載のレンズ部を有する表示体の製造方法である。
本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re(λ)=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth(λ)=(nx-nz)×dによって求められる。
(4)Nz係数
Nz係数は、Nz=Rth/Reによって求められる。
(5)角度
本明細書において角度に言及するときは、当該角度は基準方向に対して時計回りおよび反時計回りの両方を包含する。したがって、例えば「45°」は±45°を意味する。
<厚み>
10μm以下の厚みは、走査型電子顕微鏡(日本電子社製、製品名「JSM-7100F」)を用いて測定した。10μmを超える厚みは、デジタルマイクロメーター(アンリツ社製、製品名「KC-351C」)を用いて測定した。
平均重合度2400、ケン化度99.9モル%、厚さ30μmのポリビニルアルコールフィルムを、30℃ の温水中に浸漬し、膨潤させながらPVA系樹脂フィルムの長さが元長の2.0倍となるように一軸延伸を行った。次いで、0.3重量%(重量比:ヨウ素/ヨウ化カリウム=0.5/8)の30℃のヨウ素溶液中に浸漬し、PVA系樹脂フィルムの長さが元長の3.0倍となるように一軸延伸しながら染色した。その後、ホウ酸4重量%、ヨウ化カリウム5重量%の水溶液中で、PVA系樹脂フィルムの長さが元長の6倍となるように延伸した。さらに、ヨウ化カリウム3重量%の水溶液(ヨウ素含浸浴)でヨウ素イオン含浸処理を行った後、60℃のオーブンで4分間乾燥し、厚さ12μmの偏光膜を得た。
この偏光膜の両側に長尺状のHC-TACフィルムおよび内側保護層となる長尺状のアクリル系樹脂フィルム(厚み20μm)をそれぞれ、互いの長手方向を揃えるようにして貼り合わせて偏光板1を得た。なお、HC-TACフィルムは、トリアセチルセルロース(TAC)フィルム(厚み25μm)にハードコート(HC)層(厚み7μm)が形成されたフィルムであり、TACフィルムが偏光子側となるようにして貼り合わせた。
撹拌翼および100℃に制御された還流冷却器を具備した縦型反応器2器からなるバッチ重合装置に、ビス[9-(2-フェノキシカルボニルエチル)フルオレン-9-イル]メタン29.60重量部(0.046mol)、イソソルビド(ISB)29.21重量部(0.200mol)、スピログリコール(SPG)42.28重量部(0.139mol)、ジフェニルカーボネート(DPC)63.77重量部(0.298mol)、および、触媒として酢酸カルシウム1水和物1.19×10-2重量部(6.78×10-5mol)を仕込んだ。反応器内を減圧窒素置換した後、熱媒で加温を行い、内温が100℃になった時点で撹拌を開始した。昇温開始40分後に内温を220℃に到達させ、この温度を保持するように制御すると同時に減圧を開始し、220℃に到達してから90分で13.3kPaにした。重合反応とともに副生するフェノール蒸気を100℃の還流冷却器に導き、フェノール蒸気中に若干量含まれるモノマー成分を反応器に戻し、凝縮しないフェノール蒸気は45℃の凝縮器に導いて回収した。第1反応器に窒素を導入して一旦大気圧まで復圧させた後、第1反応器内のオリゴマー化された反応液を第2反応器に移した。次いで、第2反応器内の昇温および減圧を開始して、50分で内温240℃、圧力0.2kPaにした。その後、所定の攪拌動力となるまで重合を進行させた。所定動力に到達した時点で反応器に窒素を導入して復圧し、生成したポリエステルカーボネート系樹脂を水中に押し出し、ストランドをカッティングしてペレットを得た。
得られたポリエステルカーボネート系樹脂(ペレット)を80℃で5時間真空乾燥をした後、単軸押出機(東芝機械社製、シリンダー設定温度:250℃)、Tダイ(幅200mm、設定温度:250℃)、チルロール(設定温度:120~130℃)および巻取機を備えたフィルム製膜装置を用いて、厚み130μmの長尺状の樹脂フィルムを作製した。得られた長尺状の樹脂フィルムを、幅方向に、延伸温度140℃、延伸倍率2.7倍で延伸した。これにより、厚みが47μmであり、Re(590)が143nmであり、Nz係数が1.2である位相差フィルム(λ/4部材1)を得た。
式(I)で示される化合物55重量部と、式(II)で示される化合物25重量部と、式(III)で示される化合物20重量部とを、シクロペンタノン(CPN)400重量部に加えた後、60℃に加温、撹拌して溶解させた。その後、上記した化合物の溶液を室温に戻し、上記した化合物の溶液に、イルガキュア907(BASFジャパン社製)3重量部と、メガファックF-554(DIC社製)0.2重量部と、p-メトキシフェノール(MEHQ)0.1重量部とを加えて、さらに撹拌した。撹拌後の溶液は、透明で均一であった。得られた溶液を0.20μmのメンブランフィルターでろ過し、重合性組成物を得た。
また、配向膜用ポリイミド溶液を厚さ0.7mmのガラス基材にスピンコート法を用いて塗布し、100℃で10分乾燥した後、200℃で60分焼成することにより塗膜を得た。得られた塗膜を、市販のラビング装置によってラビング処理し、配向膜を形成した。
次いで、基材(実質的には、配向膜)に、上記で得られた重合性組成物をスピンコート法で塗布し、100℃で2分乾燥した。得られた塗布膜を室温まで冷却した後、高圧水銀ランプを用いて、30mW/cm2の強度で30秒間紫外線を照射した。これにより、厚みが1.5μmであり、Re(590)が143nmであり、Nz係数が1.0である液晶配向固化層(λ/4部材2)を得た。
反射型偏光フィルム(日東電工社製の「APCFG4」)に偏光板1を、反射型偏光フィルムの反射軸と偏光板1の偏光膜の吸収軸とが互いに平行に配置されるように、粘着剤を介して貼り合わせ、反射型偏光フィルム/偏光板1の積層体を得た。積層体を縦100mm、横100mmの大きさに切断した後に、偏光板1側をガラス(レンズ代替品)に粘着剤を介して貼り合わせ、反射型偏光フィルム/偏光板1/ガラスの構成を有する評価用サンプルE1-1を得た。ここでは、偏光板の偏光膜の吸収軸が横方向(0°)になるように切断を行った。一方、製造例2の位相差フィルム1(第2のλ/4部材)を縦100mm、横100mmの大きさに切断した後に、評価用サンプルE1-1と同様のガラスに、粘着剤を介して貼り合わせ、(λ/4)部材1/ガラスの構成を有する評価用サンプルE1-2を得た。ここでは、位相差フィルムの遅相軸が、横方向を0°としてガラス面を下にした状態で上から視認した際に、反時計回りに45°になるように切断を行った。
実施例1と同様にして、反射型偏光フィルム/偏光板1の積層体を得た。次に、反射型偏光フィルムの偏光板が設けられていない側の表面に、粘着剤を介して製造例2の位相差フィルム1(第2のλ/4部材)を貼り合わせた。ここで、位相差フィルム1は、その遅相軸が反射型偏光フィルムの反射軸および偏光板1の偏光膜の吸収軸に対して45°の角度をなすようにして貼り合わせた。このようにして、(λ/4)部材1/反射型偏光フィルム/偏光板1の構成を有する積層体1を得た。積層体1を縦100mm、横100mmの大きさに切断した後に、λ/4部材1側を実施例1と同様のガラスに粘着剤を介して貼り合わせ、ガラス/(λ/4)部材1/反射型偏光フィルム/偏光板1の構成を有する評価用サンプルC1を得た。ここでは、偏光板の吸収軸が横方向(0°)になり、位相差フィルムの遅相軸が、横方向を0°としてガラス面を下にした状態で上から視認した際に、反時計回りに45°になるように切断を行った。
比較例1と同様にして積層体1を得た。積層体1を縦100mm、横100mmの大きさに切断した後に、偏光板1側を実施例1と同様のガラスに粘着剤を介して貼り合わせ、(λ/4)部材1/反射型偏光フィルム/偏光板1/ガラスの構成を有する評価用サンプルC2を得た。ここでは、偏光板の吸収軸が横方向(0°)になり、位相差フィルムの遅相軸が、横方向を0°としてガラス面を下にした状態で上から視認した際に、反時計回りに135°になるように切断を行った。
<評価>
評価用サンプルを85℃のオーブンに120時間保管した際の縦方向及び横方向の寸法収縮率を測定した。次に、その寸法収縮率から遅相軸及び吸収軸の角度を算出し、更にそれぞれの遅相軸及び吸収軸の角度をもとに、45°からの軸ずれを算出した。結果を表1に示す。
4 レンズ部
12 表示素子
16 第一レンズ部
18 ハーフミラー
20 第一位相差部材
22 第二位相差部材
24 第二レンズ部
32 反射型偏光部材
34 吸収型偏光部材
Claims (12)
- ユーザに対して画像を表示する表示システムに用いられるレンズ部であって、
画像を表す表示素子の表示面から前方に向けて出射され、偏光部材および第1のλ/4部材を通過した光を反射する、反射型偏光部材と、
前記反射型偏光部材の前方に配置される吸収型偏光部材と、
前記表示素子と前記反射型偏光部材との間の光路上に配置される第一レンズ部と、
前記吸収型偏光部材の前方に配置される第二レンズ部と、
前記表示素子と前記第一レンズ部との間に配置され、前記表示素子から出射された光を透過させ、前記反射型偏光部材で反射された光を前記反射型偏光部材に向けて反射させるハーフミラーと、
前記ハーフミラーと前記反射型偏光部材との間の光路上に配置される第2のλ/4部材と、を備え、
前記第2のλ/4部材と前記第一レンズ部とが一体化され、ならびに、前記反射型偏光部材と前記吸収型偏光部材と前記第二レンズ部とが一体化されている、
レンズ部。 - 前記反射型偏光部材の反射軸と前記吸収型偏光部材の吸収軸とは互いに平行に配置される、請求項1に記載のレンズ部。
- 前記第一レンズ部と前記ハーフミラーとは一体である、請求項1に記載のレンズ部。
- 前記表示素子に含まれる前記偏光部材の吸収軸と前記第1のλ/4部材の遅相軸とのなす角度は40°~50°であり、
前記表示素子に含まれる前記偏光部材の吸収軸と前記第2のλ/4部材の遅相軸とのなす角度は40°~50°である、請求項1に記載のレンズ部。 - 前記第2のλ/4部材と前記第一レンズ部とは接着層を介して一体化され、ならびに、前記反射型偏光部材と前記吸収型偏光部材と前記第二レンズ部とは、接着層を介して一体化されている、請求項1に記載のレンズ部。
- 請求項1から5のいずれかに記載のレンズ部に用いられ、
前記反射型偏光部材と前記吸収型偏光部材と前記第二レンズ部とを有する、
積層体。 - 請求項1から5のいずれかに記載のレンズ部に用いられ、
前記第2のλ/4部材と前記第一レンズ部とを有する、
積層体。 - 前記反射型偏光部材の反射軸と前記吸収型偏光部材の吸収軸とは互いに平行に配置される、請求項6に記載の積層体。
- 前記反射型偏光部材の反射軸と前記吸収型偏光部材の吸収軸とは互いに平行に配置される、請求項7に記載の積層体。
- 請求項1から5のいずれか一項に記載のレンズ部を有する表示体。
- 請求項1から5のいずれか一項に記載のレンズ部を有する表示体の製造方法。
- 偏光部材および第1のλ/4部材を介して出射された画像を表す光を、ハーフミラーおよび第一レンズ部を通過させるステップと、
前記ハーフミラーおよび前記第一レンズ部を通過した光を、第2のλ/4部材を通過させるステップと、
前記第2のλ/4部材を通過した光を、反射型偏光部材で前記ハーフミラーに向けて反射させるステップと、
前記反射型偏光部材および前記ハーフミラーで反射させた光を、前記第2のλ/4部材により前記反射型偏光部材を透過可能にするステップと、
前記反射型偏光部材を透過した光を、吸収型偏光部材および第二レンズ部を透過させるステップと、を有し、
前記第2のλ/4部材と前記第一レンズ部とが一体化され、ならびに、前記反射型偏光部材と前記吸収型偏光部材と前記第二レンズ部とが一体化されている、
表示方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202380027743.5A CN118805125A (zh) | 2022-03-14 | 2023-02-24 | 透镜部、层叠体、显示体、显示体的制造方法及显示方法 |
KR1020247030807A KR20240155253A (ko) | 2022-03-14 | 2023-02-24 | 렌즈부, 적층체, 표시체, 표시체의 제조 방법 및 표시 방법 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022039286 | 2022-03-14 | ||
JP2022039285 | 2022-03-14 | ||
JP2022-039286 | 2022-03-14 | ||
JP2022-039285 | 2022-03-14 | ||
JP2022-077679 | 2022-05-10 | ||
JP2022077679A JP7516458B2 (ja) | 2022-05-10 | 2022-05-10 | レンズ部、積層体、表示体、表示体の製造方法および表示方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023176368A1 true WO2023176368A1 (ja) | 2023-09-21 |
Family
ID=88023450
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/006738 WO2023176368A1 (ja) | 2022-03-14 | 2023-02-24 | レンズ部、積層体、表示体、表示体の製造方法および表示方法 |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR20240155253A (ja) |
TW (1) | TW202346915A (ja) |
WO (1) | WO2023176368A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002107655A (ja) * | 2000-09-27 | 2002-04-10 | Minolta Co Ltd | 映像表示装置 |
JP2019505854A (ja) * | 2016-01-28 | 2019-02-28 | 深▲セン▼多▲ドゥオ▼新技術有限責任公司Shenzhen Dlodlo New Technology Co., Ltd. | 短距離光拡大モジュール、短距離光拡大方法及び短距離光拡大システム |
US20200132994A1 (en) * | 2018-07-16 | 2020-04-30 | Shanghai Seeo Optronics Technology Co., Ltd. | Virtual reality display device |
CN113448101A (zh) * | 2021-06-28 | 2021-09-28 | 歌尔股份有限公司 | 光学模组和头戴显示设备 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7397683B2 (ja) | 2019-01-25 | 2023-12-13 | 住友化学株式会社 | 有機elディスプレイ用積層体およびそれに用いる円偏光板 |
-
2023
- 2023-02-24 KR KR1020247030807A patent/KR20240155253A/ko active Pending
- 2023-02-24 WO PCT/JP2023/006738 patent/WO2023176368A1/ja active Application Filing
- 2023-03-03 TW TW112107739A patent/TW202346915A/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002107655A (ja) * | 2000-09-27 | 2002-04-10 | Minolta Co Ltd | 映像表示装置 |
JP2019505854A (ja) * | 2016-01-28 | 2019-02-28 | 深▲セン▼多▲ドゥオ▼新技術有限責任公司Shenzhen Dlodlo New Technology Co., Ltd. | 短距離光拡大モジュール、短距離光拡大方法及び短距離光拡大システム |
US20200132994A1 (en) * | 2018-07-16 | 2020-04-30 | Shanghai Seeo Optronics Technology Co., Ltd. | Virtual reality display device |
CN113448101A (zh) * | 2021-06-28 | 2021-09-28 | 歌尔股份有限公司 | 光学模组和头戴显示设备 |
Also Published As
Publication number | Publication date |
---|---|
TW202346915A (zh) | 2023-12-01 |
KR20240155253A (ko) | 2024-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2024133082A (ja) | レンズ部、積層体、表示体、表示体の製造方法および表示方法 | |
WO2023176368A1 (ja) | レンズ部、積層体、表示体、表示体の製造方法および表示方法 | |
WO2023176365A1 (ja) | レンズ部、積層体、表示体、表示体の製造方法および表示方法 | |
JP2023166851A (ja) | レンズ部、積層体、表示体、表示体の製造方法および表示方法 | |
WO2023176366A1 (ja) | レンズ部、積層体、表示体、表示体の製造方法および表示方法 | |
JP2023166852A (ja) | レンズ部、積層体、表示体、表示体の製造方法および表示方法 | |
WO2023176367A1 (ja) | レンズ部、積層体、表示体、表示体の製造方法および表示方法 | |
JP2023166853A (ja) | レンズ部、積層体、表示体、表示体の製造方法および表示方法 | |
JP7547456B2 (ja) | レンズ部、表示体および表示方法 | |
WO2023176693A1 (ja) | 表示システム、表示方法、表示体および表示体の製造方法 | |
JP2023166841A (ja) | 表示システム、表示方法、表示体および表示体の製造方法 | |
WO2023176363A1 (ja) | 表示システム、表示方法、表示体および表示体の製造方法 | |
WO2023176627A1 (ja) | 表示システム、表示方法、表示体および表示体の製造方法 | |
WO2023176691A1 (ja) | 表示システム、表示方法、表示体および表示体の製造方法 | |
WO2023176626A1 (ja) | 表示システム、表示方法、表示体および表示体の製造方法 | |
WO2023176692A1 (ja) | 表示システム、表示方法、表示体および表示体の製造方法 | |
JP2023134317A (ja) | 表示システム、表示方法、表示体および表示体の製造方法 | |
WO2023176361A1 (ja) | 表示システム、表示方法、表示体および表示体の製造方法 | |
JP2024122668A (ja) | 表示システム、表示方法、表示体および表示体の製造方法 | |
JP2023166840A (ja) | 表示システム、表示方法、表示体および表示体の製造方法 | |
WO2023176362A1 (ja) | 表示システム、表示方法、表示体および表示体の製造方法 | |
WO2023176625A1 (ja) | レンズ部、表示体および表示方法 | |
WO2023176690A1 (ja) | 表示システム、光学積層体、および表示システムの製造方法 | |
WO2023176624A1 (ja) | レンズ部、表示体および表示方法 | |
JP2024095144A (ja) | レンズ部、表示体および表示方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23770327 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20247030807 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202380027743.5 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 23770327 Country of ref document: EP Kind code of ref document: A1 |