WO2023167345A1 - Autonomous driving system and autonomous driving method capable of responding to traffic signal recognition failure - Google Patents
Autonomous driving system and autonomous driving method capable of responding to traffic signal recognition failure Download PDFInfo
- Publication number
- WO2023167345A1 WO2023167345A1 PCT/KR2022/002965 KR2022002965W WO2023167345A1 WO 2023167345 A1 WO2023167345 A1 WO 2023167345A1 KR 2022002965 W KR2022002965 W KR 2022002965W WO 2023167345 A1 WO2023167345 A1 WO 2023167345A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- traffic
- autonomous driving
- image
- vehicle
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000013473 artificial intelligence Methods 0.000 claims description 38
- 230000004044 response Effects 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 7
- 238000012790 confirmation Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000013135 deep learning Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 210000003195 fascia Anatomy 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/02—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
- B60W40/04—Traffic conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/08—Interaction between the driver and the control system
- B60W50/14—Means for informing the driver, warning the driver or prompting a driver intervention
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/58—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
Definitions
- the present invention relates to an autonomous driving system and an autonomous driving method capable of responding to traffic signal recognition failure, and more specifically, when traffic signal recognition fails during autonomous driving, braking control is automatically performed and autonomous driving is performed according to traffic signal confirmation by a user.
- the present invention relates to an autonomous driving system and an autonomous driving method capable of responding to a failure of traffic sign recognition that can continue and record the situation.
- Self-driving vehicles utilize deep learning technology to distinguish roads, vehicles, people, motorcycles, road signs, and traffic lights (vehicle lights) and use them as data necessary for autonomous driving.
- autonomous driving if an object, object, or person that needs to be identified is not properly identified, it can lead to an accident, so the discrimination rate and reliability of discrimination of roads, vehicles, people, motorcycles, road signs, and traffic lights (vehicle lights) are very high. It is an important factor, and automobile companies are striving for research and development to increase this discrimination rate.
- a 'traffic signal' a traffic light or a signal of a traffic light (hereinafter collectively referred to as a 'traffic signal')
- recognition of traffic signals requires very high reliability, and if you misjudge it at a crossroad and enter while maintaining the driving speed, it can harm your life.
- C-ITS Cooperative-Intelligent Transport System
- a specific vehicle manufacturer is mass-producing and selling a second-level autonomous driving model, and requires the driver to hold the steering wheel, forcing the driver to take responsibility in the event of an accident.
- an autonomous vehicle fails to recognize a traffic signal, it notifies the driver in advance so that the driver can be identified and subsequent autonomous driving continues, and it is preserved as evidence to prevent future legal disputes or traffic that can be used as evidence.
- an autonomous driving system and autonomous driving method capable of responding to signal recognition failure.
- the present invention has been made to solve the above-mentioned problems, and an autonomous driving system and autonomous driving capable of providing safe operation of an autonomous vehicle and continuing autonomous driving according to driver's confirmation when traffic signal recognition fails during autonomous driving. Its purpose is to provide a method.
- an object of the present invention is to provide an autonomous driving system and an autonomous driving method capable of increasing a traffic signal recognition rate during autonomous driving by simultaneously using a lidar sensor and a camera sensor.
- the present invention provides an autonomous driving system and autonomous driving method capable of improving the recognition rate of traffic signals according to the driver's driving environment by learning an artificial intelligence algorithm for traffic signal recognition using driver feedback for traffic signals. It has its purpose.
- An autonomous driving method includes attempting to recognize a traffic signal from signal data received through a sensor; outputting a notification signal according to unclear recognition of a traffic signal; Controlling the deceleration of the self-driving vehicle and recording an internal image of the self-driving vehicle according to the output of the notification signal; Receiving an input for the notification signal; and changing from the deceleration control to autonomous driving control according to the input.
- the step of attempting to recognize the traffic signal attempts to recognize a traffic light by using lidar signal data received through a lidar sensor and image signal data received through an image sensor, or the traffic light Try to recognize the output signal of
- the step of attempting to recognize the traffic signal attempts to recognize a traffic light from lidar signal data received through a lidar sensor, and when the recognition of the traffic light is successful, the image signal received through the image sensor An attempt is made to recognize an output signal from data, and the LIDAR sensor and the image sensor are sensors that sense signals in an area in the same direction.
- the step of outputting the notification signal outputs a voice message indicating a vehicle passage permission inquiry through a speaker and simultaneously outputs a message indicating the vehicle passage permission inquiry through a display.
- the vehicle passage permission input is received as a voice signal through a microphone or the vehicle passage permission input is received through a touch of a display.
- the autonomous driving method described above further includes recognizing the traffic signal using the signal data and the input and learning an artificial intelligence algorithm installed in the autonomous vehicle according to the recognition of the traffic signal.
- the step of learning the artificial intelligence algorithm outputs image signal data received through an image sensor to a display, recognizes a traffic light as a selection input on the display, and in the area of the recognized traffic light Recognizes the output signal as the image signal data of the recognized traffic light area data, the recognized output signal data and the image signal data of the image sensor are provided as learning data for the artificial intelligence algorithm, or the image signal data on which the traffic light is displayed Outputs to a display, recognizes the output signal as an input to the displayed traffic light, and provides area data of the traffic light, recognized output signal data, and image signal data of the image sensor as learning data for the artificial intelligence algorithm.
- an autonomous driving system includes a lidar sensor; a first image sensor; speaker; display; a second image sensor that photographs the inside of the self-driving vehicle; vehicle control module; and receiving signal data from the lidar sensor or the first image sensor, attempting to recognize a traffic signal from the received signal data, outputting a notification signal to the speaker and the display according to unclear recognition of the traffic signal, and controlling the vehicle. and an autonomous driving control module that performs deceleration control for the autonomous vehicle in conjunction with the module and records an image of the second image sensor, wherein the autonomous driving control module receives an input for the notification signal. The deceleration control is changed to autonomous driving control through control of the vehicle control module.
- the self-driving control module attempts to recognize a traffic light from lidar signal data received through the lidar sensor, and when the traffic light is successfully recognized, the image received through the first image sensor An attempt is made to recognize an output signal from signal data, and the lidar sensor and the first image sensor mounted outside the self-driving vehicle are sensors that sense signals in an area in the same direction.
- the autonomous driving control module outputs a voice message indicating a vehicle passage permission inquiry through the speaker and simultaneously outputs a message indicating the vehicle passage permission inquiry through the display.
- an autonomous driving control module equipped with an artificial intelligence algorithm and attempting to recognize a traffic signal according to the artificial intelligence algorithm learns the artificial intelligence algorithm using the signal data and the input.
- the self-driving control module outputs image signal data received through the first image sensor to the display, recognizes a traffic light as a selection input on the display, and displays the recognized traffic light. Recognizes an output signal as image signal data in an area and provides the area data of the recognized traffic light, the recognized output signal data, and the image signal data of the first image sensor as learning data for the artificial intelligence algorithm, or
- the displayed image signal data is output to the display, the output signal is recognized as an input to the displayed traffic light, and the area data of the traffic light, the recognized output signal data, and the image signal data of the first image sensor are converted into the artificial intelligence algorithm. provided as learning data.
- the self-driving system and method according to the present invention as described above has an effect of providing safe driving of the self-driving vehicle and continuing autonomous driving according to driver's confirmation when traffic signal recognition fails during self-driving.
- the autonomous driving system and the autonomous driving method according to the present invention as described above have an effect of increasing the recognition rate of traffic signals during autonomous driving by simultaneously using a lidar sensor and a camera sensor.
- the autonomous driving system and autonomous driving method according to the present invention as described above can improve the recognition rate of traffic signals according to the driver's driving environment by learning an artificial intelligence algorithm for traffic signal recognition using driver feedback on traffic signals. There are possible effects.
- FIG. 1 is a diagram illustrating an exemplary block diagram of an autonomous driving system.
- FIG. 2 is a diagram illustrating a control flow for controlling an autonomous vehicle according to traffic signal recognition.
- FIG. 3 is a diagram illustrating a specific control flow for recognizing a traffic signal using a lidar sensor and a first image sensor.
- FIG. 1 is a diagram illustrating an exemplary block diagram of an autonomous driving system 10 .
- an autonomous driving system 10 includes a display 100, an input interface 200, a lidar sensor 300, one or more image sensors 400 and 500, a GPS module 600, and a speaker 700.
- a vehicle control module 800 and an autonomous driving control module 900 are included. According to design examples, modifications, and other specific implementations, the autonomous driving system 10 may further include other sensors or control modules.
- the autonomous driving system 10 is mounted in an autonomous vehicle and controls autonomous driving of the vehicle using signals sensed through various sensors.
- the display 100 outputs various images or videos.
- the display 100 is installed on a dashboard in front of a driver's wheel or a center fascia of an autonomous vehicle to output various types of information or data visually recognizable by a user such as a driver.
- the display 100 may include an LCD display-module or an LED display-module.
- the input interface 200 receives driver (or user) input.
- the input interface 200 may include a microphone and/or a touch screen to receive a voice signal from a microphone or a touch input from a touch screen coupled to the display 100 .
- the lidar sensor 300 is mounted outside the self-driving vehicle (eg, on the upper outer roof of the self-driving vehicle) and senses the lidar signal.
- the lidar sensor 300 may emit light-based lidar (eg, laser) signals, sense the emitted lidar signals, and output the signals to the autonomous driving control module 900 .
- the lidar sensor 300 mounted on the roof of the self-driving vehicle makes it possible to recognize an object and its distance in all 360 directions outside the self-driving vehicle.
- the fixed lidar sensor 300 enables recognizing an object in front of the autonomous vehicle and its distance.
- the autonomous driving system 10 includes one or more image sensors 400 and 500 (or camera sensors), and one image sensor 400 (hereinafter referred to as a 'first image sensor') detects the outside of the autonomous vehicle. It is photographed and the photographed image signal is output to the autonomous driving control module (900).
- the first image sensor 400 is a sensor capable of sensing an image of an area in the same direction (advancing direction) as the lidar sensor 300 .
- the first image sensor 400 is positioned adjacent to, in front of, or above the lidar sensor 300 and rotates 360 degrees or is fixed like the lidar sensor 300 in the same direction as the direction the lidar sensor 300 senses. The area of is sensed at the same viewpoint.
- Another image sensor 500 (hereinafter referred to as 'second image sensor') is mounted inside the self-driving vehicle, takes pictures of the interior of the self-driving car, and outputs the captured image signal to the self-driving control module 900.
- the second image sensor 500 may capture a driver's motion (eg, pressing a button, pressing an accelerator, etc.) and output a captured image signal.
- the GPS module 600 captures GPS signals and outputs them.
- the GPS module 600 may sense a signal from one or more GPS satellites and output a GPS signal indicating the detected signal to the autonomous driving control module 900 .
- the speaker 700 converts an electrical signal, which is an audio signal, into an audible vibration signal.
- the speaker 700 is connected to the autonomous driving control module 900 and converts electrical signals of various information and inquiries into vibration signals and outputs them.
- the vehicle control module 800 controls various devices inside the vehicle.
- the vehicle control module 800 controls the performance of functions such as acceleration, braking, shifting, and steering of the autonomous vehicle.
- the vehicle control module 800 may control driving of the autonomous vehicle according to a control signal received from the autonomous driving control module 900 .
- the autonomous driving control module 900 controls driving of the autonomous vehicle using various sensing signals.
- the self-driving control module 900 receives signal data sensed by the lidar sensor 300 and/or the first image sensor 400, attempts to recognize a traffic signal from the received signal data, and determines whether the recognition of the traffic signal is unclear. Accordingly, a notification signal is output to the speaker 700 or the display 100 .
- the self-driving control module 900 performs deceleration control for the self-driving vehicle in conjunction with the vehicle control module 800 (subsequently or together) following the output of the notification signal, and the internal second image sensor 500 Record the image of the image signal data received from the internal storage medium (hard disk or non-volatile memory, etc.).
- the internal storage medium hard disk or non-volatile memory, etc.
- the autonomous driving control module 900 stores artificial intelligence algorithms (programs) in an internal storage medium (hard disk or non-volatile memory) and recognizes traffic signals at least from signal data from sensors through the execution of artificial intelligence algorithms. Try it.
- the program of the artificial intelligence algorithm may be a program based on deep learning technology.
- the autonomous driving control module 900 includes a display 100, a lidar sensor 300, an input interface 200, a first image sensor 400, a second image sensor 500, a speaker 700, a GPS module ( 600), a vehicle control module 800, etc., and a signal interface or bus interface for transmitting and receiving data or signals are provided, and various data or signals can be transmitted and received.
- a detailed control flow of the autonomous driving control module 900 corresponding to traffic signal recognition failure will be reviewed in FIGS. 2 and 3 .
- FIG. 2 is a diagram illustrating a control flow for controlling an autonomous vehicle according to traffic signal recognition.
- the control flow of FIG. 2 is performed by an autonomous vehicle and is preferably controlled by the autonomous driving control module 900 of the autonomous driving system 10 .
- the self-driving vehicle performs autonomous driving based on signal data from various external sensors (S100), and the autonomous vehicle senses signals through the sensors (S200).
- the lidar sensor 300 periodically senses lidar signals according to a set period or rotation period and outputs the sensed lidar signals to the autonomous driving control module 900.
- the first image sensor 400 capable of sensing an image of an area in the same direction as the lidar sensor 300 adjacent to the lidar sensor 300 transmits an external image through a lens provided to the lidar sensor 300. It captures at the same time point as the sensing time point, and outputs the captured image signal to the autonomous driving control module 900.
- the self-driving vehicle tries to recognize a traffic signal from signal data received through a sensor (S300).
- the autonomous driving control module 900 receives lidar signal data from the lidar sensor 300 and image signal data from the first image sensor 400 .
- LIDAR signal data is composed of LIDAR signals
- image signal data can be composed of image signals.
- the self-driving control module 900 which attempts to recognize traffic signals through the execution of an artificial intelligence algorithm, lidar signal data received through the lidar sensor 300 and image signal data received through the first image sensor 400 Attempting to recognize a traffic light or recognizing an output signal of a recognized traffic light (for example, a vehicle passage permission signal (green signal) or a vehicle passage prohibition signal (red signal)) using . Traffic lights and their output signals may be collectively referred to as 'traffic signals'.
- FIG. 3 is a diagram illustrating a specific control flow for recognizing a traffic signal using the lidar sensor 300 and the first image sensor 400 .
- the control flow of FIG. 3 shows a specific example of the process S300 of FIG. 2 .
- the control flow of FIG. 3 is performed by the autonomous driving control module 900 and is preferably performed through an artificial intelligence algorithm that recognizes traffic signals.
- the autonomous driving control module 900 attempts to recognize traffic lights from lidar signal data received from lidar sensor 300 (S301).
- the artificial intelligence algorithm that has learned the traffic light may output a recognition result including reliability (eg, discrimination rate) of the traffic light from LIDAR signal data.
- the autonomous driving control module 900 determines whether a traffic light in the direction clearly exists in LIDAR signal data (S303).
- the autonomous driving control module 900 may determine whether a traffic light clearly exists based on whether the reliability probability output from the artificial intelligence algorithm is equal to or greater than a set threshold value (first threshold value). If the reliability probability is less than another set threshold (the second threshold significantly lower than the first threshold), the autonomous driving control module 900 may set the traffic light as non-existence and end the control flow of FIG. 3 .
- the autonomous driving control module 900 calculates the traffic light from the image signal data from the first image sensor 400. The recognition of is reattempted (S313).
- the self-driving control module 900 inputs image signal data from the first image sensor 400, which is located adjacent to the lidar sensor 300 and captures an image of an area in the same direction, into an artificial intelligence algorithm to detect traffic lights. Recognition results including reliability are received from the artificial intelligence algorithm.
- the autonomous driving control module 900 determines whether a traffic light clearly exists in the image signal data (S315).
- the autonomous driving control module 900 may determine whether a traffic light clearly exists based on whether the reliability probability output from the artificial intelligence algorithm is greater than or equal to a set threshold.
- the self-driving control module 900 attempts recognition of a traffic light again by using an image sensor looking in the same direction when recognition of a traffic light through the lidar sensor 300 fails. Accordingly, the recognition failure rate according to the surrounding environment, lighting, and brightness may be improved.
- the autonomous driving control module 900 determines that the traffic light clearly exists from the image signal, it can transition to step S305 and perform subsequent steps. If the reliability probability is less than the set threshold value, the autonomous driving control module 900 sets the recognition of the traffic light as unclear (S317) and ends the control flow of FIG. 3 .
- the self-driving control module 900 Upon successful recognition of the traffic light according to the determination of whether the traffic light is clear, the self-driving control module 900 attempts to recognize the output signal of the traffic light from the image signal data received from the first image sensor 400 (S305). .
- the artificial intelligence algorithm of the autonomous driving control module 900 may output a recognition result including reliability of the output signal from image signal data.
- the output signal may be, for example, a vehicle passage permission signal (green signal) or a vehicle passage prohibition signal (red signal).
- the autonomous driving control module 900 determines whether the output signal is clear from the image signal data (S307).
- the autonomous driving control module 900 may determine whether the output signal is clear based on whether the reliability probability output from the artificial intelligence algorithm is greater than or equal to a set threshold.
- the autonomous driving control module 900 sets the output signal (or traffic signal) clear (S309) and ends the control flow of FIG. 3 .
- the autonomous driving control module 900 sets the output signal to be unclear (S311) and ends the control flow of FIG. 3 .
- the first image sensor 400 and the lidar sensor 300 photograph and sense an area in the same direction to achieve complementary improved recognition performance despite various external environment changes (resolution degradation during night driving, light noise, etc.) can provide
- the self-driving vehicle proceeds with autonomous driving according to the recognized traffic signal (S100).
- the self-driving vehicle outputs a notification signal that can confirm this (S500).
- the self-driving control module 900 outputs the image signal data received through the first image sensor 400 to the display 100 and furthermore sends a voice message indicating a traffic light confirmation query to the speaker 700. ) and simultaneously outputs a message indicating a traffic light confirmation query through the display 100.
- the traffic light confirmation query may include or imply a vehicle clearance query (eg, "Is the light green?").
- the self-driving control module 900 outputs the image signal data received through the first image sensor 400 to the display 100 and furthermore sends a voice message indicating a vehicle passage permission query to the speaker 700. ) and at the same time outputs a message indicating a vehicle passage permission inquiry through the display 100.
- the vehicle passage permitting query may be, for example, an inquiry having meanings such as "Is it a green light" or "Is it a proceeding signal?".
- the vehicle passage permission query may be an query configured using a vehicle prohibition signal (eg, a red signal).
- the self-driving vehicle performs deceleration control and records an internal image (S600).
- Autonomous vehicles can ensure or improve the safety of autonomous vehicles by deceleration control in situations where traffic signals are unclear.
- the autonomous driving control module 900 outputs a control signal for vehicle deceleration to the vehicle control module 800 and stores image signal data received from the second image sensor 500 inside the vehicle in an internal storage medium.
- the video data of the image stored in this way can be used as various data thereafter.
- video data can be used as data to check the driver's control or reaction status in the event of an accident, and it is used to clarify the legal responsibility of the manufacturer or driver.
- the self-driving vehicle then receives an input for the notification signal (S700) and controls operation of the self-driving vehicle according to the input.
- the autonomous driving control module 900 receives an input for a vehicle passage permission query as a voice signal through a microphone or receives an input for a vehicle passage permission query through a touch on the touch screen of the display 100 .
- the autonomous driving control module 900 receives an input for permitting or disallowing (stopping) vehicle passage through a microphone or a touch.
- the autonomous driving control module 900 receives the driver's selection input (input for designating a specific location) on the display 100 displaying the image signal data from the first image sensor 400 according to the unclear recognition of the traffic light. Recognizes traffic lights and automatically recognizes output signals from image signal data in the area of the recognized traffic lights.
- the self-driving control module 900 determines the position of a specific signal by the driver in the display 100 of the image signal data displaying the traffic light from the first image sensor 400 according to the unclear recognition of the output signal. Recognizes the output signal as the designated selection input.
- the input used for recognizing the output signal may be the same as the input for the vehicle passage permission inquiry.
- the self-driving control module 900 is a driver's input, output signal data recognized according to the input, image signal data from the first image sensor 400 and lidar signal data from the lidar sensor 300, traffic signals, etc. Area data (data specifying the position of a traffic light) and the acquisition point of the data can be further stored in a storage medium.
- the driver's input may be matched with the recorded internal image, stored, and provided as data.
- the autonomous driving control module 900 terminates the storage of the video record according to the response to the vehicle passage permission query and changes from the deceleration control to the autonomous driving control through the control of the vehicle control module 800 (S100) to perform normal driving. can do.
- the self-driving vehicle can use the driver input data to learn the built-in artificial intelligence algorithm.
- the driver's input data includes information recognized according to the driver's input of an ambiguous traffic signal.
- the self-driving control module 900 converts the area data of traffic lights recognized from the image signal data or LIDAR signal data of the storage medium (location of the recognized traffic light area), Output signal data (data representing the vehicle passage permission signal (green signal) or vehicle passage prohibition signal (red signal) recognized according to the driver's input), image signal data from the first image sensor 400, and/or LIDAR
- the signal data and the acquisition point of the data may be provided as learning data of the artificial intelligence algorithm.
- artificial intelligence algorithms can improve recognition performance by using images obtained from the actual driving environment and driver inputs, and self-driving vehicles learn the driver's driving environment or external environment specialized for characteristics to autonomously drive specialized for the driver's environment. make this possible Furthermore, by having these learning data transmitted to the manufacturer's server, the recognition rate is improved for a specific traffic light with a low recognition rate (for example, a specific traffic light with a low recognition rate at night due to an advertising light or lighting that is overlapped with a traffic light or visible nearby) It can be used for updating software installed in autonomous vehicles.
- a specific traffic light with a low recognition rate for example, a specific traffic light with a low recognition rate at night due to an advertising light or lighting that is overlapped with a traffic light or visible nearby
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Mathematical Physics (AREA)
- Biophysics (AREA)
- Software Systems (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Computational Linguistics (AREA)
- Biomedical Technology (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Multimedia (AREA)
- Traffic Control Systems (AREA)
Abstract
The present invention relates to an autonomous driving method comprising the steps of: attempting to recognize a traffic signal from signal data received through a sensor; outputting a notification signal according to unclear recognition of the traffic signal; controlling the deceleration of an autonomous vehicle and recording an internal image of the autonomous vehicle, according to the output of the notification signal; receiving an input for the notification signal; and changing from deceleration control to autonomous driving control according to the input.
Description
본 발명은 교통 신호 인식 실패에 대응 가능한 자율 주행 시스템 및 자율 주행 방법에 관한 것으로서, 구체적으로는 자율 주행중 교통 신호의 인식에 실패한 경우 자동으로 제동 제어를 수행하고 사용자에 의한 교통 신호 확인에 따라 자율 주행을 계속할 수 있고 그 상황을 기록할 수 있는 교통 신호 인식 실패에 대응 가능한 자율 주행 시스템 및 자율 주행 방법에 관한 것이다.The present invention relates to an autonomous driving system and an autonomous driving method capable of responding to traffic signal recognition failure, and more specifically, when traffic signal recognition fails during autonomous driving, braking control is automatically performed and autonomous driving is performed according to traffic signal confirmation by a user. The present invention relates to an autonomous driving system and an autonomous driving method capable of responding to a failure of traffic sign recognition that can continue and record the situation.
전 세계 유명 자동차회사들은 자율주행차량을 만들기 위한 연구 개발에 매진중에 있다. 자율주행을 위해 인공지능 기술(딥러닝 기술)이 가장 많이 활용되고 있는 데 딥러닝 기술을 통한 자율주행을 위해 자율주행차량은 수많은 센서를 구비하고 신기술 적용을 통해 자율주행을 가능케 한다. Famous automobile companies around the world are focusing on research and development to create self-driving vehicles. For self-driving, artificial intelligence technology (deep learning technology) is most often used. For self-driving through deep learning technology, self-driving vehicles are equipped with numerous sensors and enable self-driving through the application of new technologies.
자율주행차량은 딥러닝 기술을 활용하여 도로, 차량, 사람, 오토바이, 도로표지판, 교통 신호등(차량 신호등)을 구별하여 자율주행에 필요한 데이터로 사용한다. 자율주행에 있어서 식별이 필요한 물체, 사물, 사람 등을 제대로 판별하지 못한 경우 사고로 이어질 수 있어 도로, 차량, 사람, 오토바이, 도로표지판, 교통 신호등(차량 신호등)의 판별율과 판별의 신뢰도는 매우 중요한 요소이며, 자동차회사들은 이 판별율을 높이기 위해 연구 개발에 매진하고 있다. Self-driving vehicles utilize deep learning technology to distinguish roads, vehicles, people, motorcycles, road signs, and traffic lights (vehicle lights) and use them as data necessary for autonomous driving. In autonomous driving, if an object, object, or person that needs to be identified is not properly identified, it can lead to an accident, so the discrimination rate and reliability of discrimination of roads, vehicles, people, motorcycles, road signs, and traffic lights (vehicle lights) are very high. It is an important factor, and automobile companies are striving for research and development to increase this discrimination rate.
특히, 교통 신호등에 대해 또는 교통 신호등의 신호(이하 '교통 신호'라고도 통칭함)에 대해 자율주행차량이 제대로 인식하지 못한 경우 대형참사로 이어질 가능성이 높다. 교통 신호에 대한 인식은 매우 높은 신뢰성을 요구하고 사거리 등에서 이를 잘못 판단하고 주행속도를 유지한 채 진입하게 되면 생명을 해할 수 있다.In particular, if an autonomous vehicle does not properly recognize a traffic light or a signal of a traffic light (hereinafter collectively referred to as a 'traffic signal'), it is highly likely to lead to a large-scale disaster. Recognition of traffic signals requires very high reliability, and if you misjudge it at a crossroad and enter while maintaining the driving speed, it can harm your life.
이러한 위험을 막기 위해 최근 C-ITS(Cooperative-Intelligent Transport System) 등을 도입하여 차량과 도로 간 양방향 통신으로 교통신호의 오인을 방지하는 프로젝트를 진행중에 있다. 그러나 이 시스템의 구축 이전이나 이 시스템이 적용 안된 장소에서는 여전히 자율주행차량은 교통 신호의 인식을 제대로 못할 위험에 노출된다. In order to prevent this risk, a project to prevent misrecognition of traffic signals through two-way communication between vehicles and roads by introducing C-ITS (Cooperative-Intelligent Transport System) is currently underway. However, before the establishment of this system or in places where this system is not applied, autonomous vehicles are still exposed to the risk of not properly recognizing traffic signals.
자율주행차량이 교통 신호 인식에 실패할 경우 자동차 제조사는 심각한 법률문제에 봉착한다. 특정 차량제조사는 자율주행 2단계 모델을 양산 및 판매중인 데 운전자는 반드시 핸들을 잡도록 요구하여 사고 발생시 운전자의 책임을 강제하고 있다. When autonomous vehicles fail to recognize traffic signs, automakers face serious legal problems. A specific vehicle manufacturer is mass-producing and selling a second-level autonomous driving model, and requires the driver to hold the steering wheel, forcing the driver to take responsibility in the event of an accident.
이와 같이, 자율주행차량이 교통 신호의 인식에 실패한 경우 미리 운전자에게 알려 운전자의 확인과 그에 따른 후속 자율주행이 지속할 수 있도록 하고 이를 증거로 보존하여 이후 법적 분쟁을 방지하거나 그 증거로 활용 가능한 교통 신호 인식 실패에 대응 가능한 자율 주행 시스템 및 자율 주행 방법이 필요하다.In this way, if an autonomous vehicle fails to recognize a traffic signal, it notifies the driver in advance so that the driver can be identified and subsequent autonomous driving continues, and it is preserved as evidence to prevent future legal disputes or traffic that can be used as evidence. There is a need for an autonomous driving system and autonomous driving method capable of responding to signal recognition failure.
본 발명은, 상술한 문제점을 해결하기 위해서 안출한 것으로서, 자율주행 중 교통 신호의 인식 실패시 자율주행차량의 안전 운행을 제공하고 운전자의 확인에 따라 자율주행을 계속할 수 있는 자율 주행 시스템 및 자율 주행 방법을 제공하는 데 그 목적이 있다.The present invention has been made to solve the above-mentioned problems, and an autonomous driving system and autonomous driving capable of providing safe operation of an autonomous vehicle and continuing autonomous driving according to driver's confirmation when traffic signal recognition fails during autonomous driving. Its purpose is to provide a method.
또한, 본 발명은 라이다 센서와 카메라 센서를 동시에 이용하여 자율주행 중에 교통 신호의 인식율을 높일 수 있는 자율 주행 시스템 및 자율 주행 방법을 제공하는 데 그 목적이 있다.In addition, an object of the present invention is to provide an autonomous driving system and an autonomous driving method capable of increasing a traffic signal recognition rate during autonomous driving by simultaneously using a lidar sensor and a camera sensor.
또한, 본 발명은 교통 신호에 대한 운전자 피드백의 이용으로 교통 신호 인식을 위한 인공지능 알고리즘을 학습시켜 교통 신호의 인식율을 운전자의 운행 환경에 따라 개선할 수 있는 자율 주행 시스템 및 자율 주행 방법을 제공하는 데 그 목적이 있다.In addition, the present invention provides an autonomous driving system and autonomous driving method capable of improving the recognition rate of traffic signals according to the driver's driving environment by learning an artificial intelligence algorithm for traffic signal recognition using driver feedback for traffic signals. It has its purpose.
본 발명의 일 양상에 따른 자율 주행 방법은 센서를 통해 수신되는 신호 데이터로부터 교통 신호를 인식 시도하는 단계; 교통 신호의 인식 불명확에 따른 알림 신호를 출력하는 단계; 상기 알림 신호의 출력에 따라, 상기 자율주행차량에 대한 감속 제어와 상기 자율주행차량의 내부 영상을 기록하는 단계; 상기 알림 신호에 대한 입력을 수신하는 단계; 및 상기 입력에 따라 상기 감속 제어로부터 자율주행 제어로 변경하는 단계;를 포함한다. An autonomous driving method according to an aspect of the present invention includes attempting to recognize a traffic signal from signal data received through a sensor; outputting a notification signal according to unclear recognition of a traffic signal; Controlling the deceleration of the self-driving vehicle and recording an internal image of the self-driving vehicle according to the output of the notification signal; Receiving an input for the notification signal; and changing from the deceleration control to autonomous driving control according to the input.
상기한 자율 주행 방법에 있어서, 상기 교통 신호를 인식 시도하는 단계는 라이다 센서를 통해 수신되는 라이다신호 데이터와 이미지 센서를 통해 수신되는 이미지신호 데이터를 이용하여 교통 신호등을 인식 시도하거나 상기 교통 신호등의 출력신호를 인식 시도한다.In the above-described autonomous driving method, the step of attempting to recognize the traffic signal attempts to recognize a traffic light by using lidar signal data received through a lidar sensor and image signal data received through an image sensor, or the traffic light Try to recognize the output signal of
상기한 자율 주행 방법에 있어서, 상기 교통 신호를 인식 시도하는 단계는 라이다 센서를 통해 수신되는 라이다신호 데이터로부터 교통 신호등을 인식 시도하고 교통 신호등의 인식 성공시에 이미지 센서를 통해 수신되는 이미지신호 데이터로부터 출력신호를 인식 시도하고, 상기 라이다 센서와 상기 이미지 센서는 서로 동일 방향의 영역의 신호를 센싱하는 센서이다.In the autonomous driving method described above, the step of attempting to recognize the traffic signal attempts to recognize a traffic light from lidar signal data received through a lidar sensor, and when the recognition of the traffic light is successful, the image signal received through the image sensor An attempt is made to recognize an output signal from data, and the LIDAR sensor and the image sensor are sensors that sense signals in an area in the same direction.
상기한 자율 주행 방법에 있어서, 상기 알림 신호를 출력하는 단계는 차량통행 허용 질의를 나타내는 음성 멘트를 스피커를 통해 출력하고 동시에 상기 차량통행 허용 질의를 나타내는 메시지를 디스플레이를 통해 출력한다.In the autonomous driving method described above, the step of outputting the notification signal outputs a voice message indicating a vehicle passage permission inquiry through a speaker and simultaneously outputs a message indicating the vehicle passage permission inquiry through a display.
상기한 자율 주행 방법에 있어서, 상기 입력을 수신하는 단계는 차량통행 허용에 대한 입력을 마이크를 통해 음성 신호로 수신하거나 상기 차량통행 허용에 대한 입력을 디스플레이의 터치를 통해 수신한다.In the autonomous driving method described above, in the receiving of the input, the vehicle passage permission input is received as a voice signal through a microphone or the vehicle passage permission input is received through a touch of a display.
상기한 자율 주행 방법에 있어서, 상기 신호 데이터와 상기 입력을 이용하여 상기 교통 신호를 인식하고 상기 교통 신호의 인식에 따라 상기 자율주행차량에 탑재되는 인공지능 알고리즘을 학습시키는 단계;를 더 포함한다.The autonomous driving method described above further includes recognizing the traffic signal using the signal data and the input and learning an artificial intelligence algorithm installed in the autonomous vehicle according to the recognition of the traffic signal.
상기한 자율 주행 방법에 있어서, 상기 인공지능 알고리즘을 학습시키는 단계는, 이미지 센서를 통해 수신되는 이미지신호 데이터를 디스플레이로 출력하고 디스플레이에서의 선택 입력으로 교통 신호등을 인식하고 인식된 교통 신호등의 영역에서의 이미지신호 데이터로 출력신호를 인식하고 인식된 교통 신호등의 영역 데이터, 인식된 출력신호 데이터 및 상기 이미지 센서의 이미지신호 데이터를 상기 인공지능 알고리즘의 학습 데이터로 제공하거나, 교통 신호등이 표시된 이미지신호 데이터를 디스플레이로 출력하고 표시된 교통 신호등에 대한 입력으로 출력신호를 인식하고 상기 교통 신호등의 영역 데이터, 인식된 출력신호 데이터 및 상기 이미지 센서의 이미지신호 데이터를 상기 인공지능 알고리즘의 학습 데이터로 제공한다.In the autonomous driving method described above, the step of learning the artificial intelligence algorithm outputs image signal data received through an image sensor to a display, recognizes a traffic light as a selection input on the display, and in the area of the recognized traffic light Recognizes the output signal as the image signal data of the recognized traffic light area data, the recognized output signal data and the image signal data of the image sensor are provided as learning data for the artificial intelligence algorithm, or the image signal data on which the traffic light is displayed Outputs to a display, recognizes the output signal as an input to the displayed traffic light, and provides area data of the traffic light, recognized output signal data, and image signal data of the image sensor as learning data for the artificial intelligence algorithm.
또한, 본 발명의 일 양상에 따른 자율 주행 시스템은 라이다 센서; 제1 이미지 센서; 스피커; 디스플레이; 상기 자율주행차량 내부를 촬영하는 제2 이미지 센서; 차량제어 모듈; 및 상기 라이다 센서나 상기 제1 이미지 센서로부터 신호 데이터를 수신하고 수신된 신호 데이터로부터 교통 신호를 인식 시도하며, 교통 신호의 인식 불명확에 따라 상기 스피커 및 상기 디스플레이로 알림 신호를 출력하고 상기 차량제어 모듈과 연동하여 상기 자율주행차량에 대한 감속 제어를 수행하고 상기 제2 이미지 센서의 영상을 기록하는 자율주행제어 모듈;을 포함하고, 상기 자율주행제어 모듈은 상기 알림 신호에 대한 입력의 수신에 따라 상기 차량제어 모듈의 제어를 통해 상기 감속 제어로부터 자율주행 제어로 변경한다.In addition, an autonomous driving system according to an aspect of the present invention includes a lidar sensor; a first image sensor; speaker; display; a second image sensor that photographs the inside of the self-driving vehicle; vehicle control module; and receiving signal data from the lidar sensor or the first image sensor, attempting to recognize a traffic signal from the received signal data, outputting a notification signal to the speaker and the display according to unclear recognition of the traffic signal, and controlling the vehicle. and an autonomous driving control module that performs deceleration control for the autonomous vehicle in conjunction with the module and records an image of the second image sensor, wherein the autonomous driving control module receives an input for the notification signal. The deceleration control is changed to autonomous driving control through control of the vehicle control module.
상기한 자율 주행 시스템에 있어서, 상기 자율주행제어 모듈은 상기 라이다 센서를 통해 수신되는 라이다신호 데이터로부터 교통 신호등을 인식 시도하고 교통 신호등의 인식 성공시에 상기 제1 이미지 센서를 통해 수신되는 이미지신호 데이터로부터 출력신호를 인식 시도하고, 상기 자율주행차량 외부에 탑재되는 상기 라이다 센서와 상기 제1 이미지 센서는 서로 동일 방향의 영역의 신호를 센싱하는 센서이다.In the autonomous driving system described above, the self-driving control module attempts to recognize a traffic light from lidar signal data received through the lidar sensor, and when the traffic light is successfully recognized, the image received through the first image sensor An attempt is made to recognize an output signal from signal data, and the lidar sensor and the first image sensor mounted outside the self-driving vehicle are sensors that sense signals in an area in the same direction.
상기한 자율 주행 시스템에 있어서, 상기 자율주행제어 모듈은 차량통행 허용 질의를 나타내는 음성 멘트를 상기 스피커를 통해 출력하고 동시에 상기 차량통행 허용 질의를 나타내는 메시지를 상기 디스플레이를 통해 출력한다.In the autonomous driving system described above, the autonomous driving control module outputs a voice message indicating a vehicle passage permission inquiry through the speaker and simultaneously outputs a message indicating the vehicle passage permission inquiry through the display.
상기한 자율 주행 시스템에 있어서, 인공지능 알고리즘을 탑재하고 상기 인공지능 알고리즘에 따라 교통 신호를 인식 시도하는 자율주행제어 모듈은 상기 신호 데이터와 상기 입력을 이용하여 상기 인공지능 알고리즘을 학습시킨다.In the autonomous driving system described above, an autonomous driving control module equipped with an artificial intelligence algorithm and attempting to recognize a traffic signal according to the artificial intelligence algorithm learns the artificial intelligence algorithm using the signal data and the input.
상기한 자율 주행 시스템에 있어서, 상기 자율주행제어 모듈은, 상기 제1 이미지 센서를 통해 수신되는 이미지신호 데이터를 상기 디스플레이로 출력하고 상기 디스플레이에서의 선택 입력으로 교통 신호등을 인식하고 인식된 교통 신호등의 영역에서의 이미지신호 데이터로 출력신호를 인식하고 인식된 교통 신호등의 영역 데이터, 인식된 출력신호 데이터 및 상기 제1 이미지 센서의 이미지신호 데이터를 상기 인공지능 알고리즘의 학습 데이터로 제공하거나, 교통 신호등이 표시된 이미지신호 데이터를 상기 디스플레이로 출력하고 표시된 교통 신호등에 대한 입력으로 출력신호를 인식하고 상기 교통 신호등의 영역 데이터, 인식된 출력신호 데이터 및 상기 제1 이미지 센서의 이미지신호 데이터를 상기 인공지능 알고리즘의 학습 데이터로 제공한다.In the self-driving system, the self-driving control module outputs image signal data received through the first image sensor to the display, recognizes a traffic light as a selection input on the display, and displays the recognized traffic light. Recognizes an output signal as image signal data in an area and provides the area data of the recognized traffic light, the recognized output signal data, and the image signal data of the first image sensor as learning data for the artificial intelligence algorithm, or The displayed image signal data is output to the display, the output signal is recognized as an input to the displayed traffic light, and the area data of the traffic light, the recognized output signal data, and the image signal data of the first image sensor are converted into the artificial intelligence algorithm. provided as learning data.
상기와 같은 본 발명에 따른 자율 주행 시스템 및 자율 주행 방법은 자율주행 중 교통 신호의 인식 실패시 자율주행차량의 안전 운행을 제공하고 운전자의 확인에 따라 자율주행을 계속할 수 있는 효과가 있다.The self-driving system and method according to the present invention as described above has an effect of providing safe driving of the self-driving vehicle and continuing autonomous driving according to driver's confirmation when traffic signal recognition fails during self-driving.
또한, 상기와 같은 본 발명에 따른 자율 주행 시스템 및 자율 주행 방법은 라이다 센서와 카메라 센서를 동시에 이용하여 자율주행 중에 교통 신호의 인식율을 높일 수 있는 효과가 있다.In addition, the autonomous driving system and the autonomous driving method according to the present invention as described above have an effect of increasing the recognition rate of traffic signals during autonomous driving by simultaneously using a lidar sensor and a camera sensor.
또한, 상기와 같은 본 발명에 따른 자율 주행 시스템 및 자율 주행 방법은 교통 신호에 대한 운전자 피드백의 이용으로 교통 신호 인식을 위한 인공지능 알고리즘을 학습시켜 교통 신호의 인식율을 운전자의 운행 환경에 따라 개선할 수 있는 효과가 있다.In addition, the autonomous driving system and autonomous driving method according to the present invention as described above can improve the recognition rate of traffic signals according to the driver's driving environment by learning an artificial intelligence algorithm for traffic signal recognition using driver feedback on traffic signals. There are possible effects.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The effects obtainable in the present invention are not limited to the effects mentioned above, and other effects not mentioned can be clearly understood by those skilled in the art from the description below. will be.
도 1은 자율 주행 시스템의 예시적인 블록도를 도시한 도면이다.1 is a diagram illustrating an exemplary block diagram of an autonomous driving system.
도 2는 교통 신호의 인식에 따른 자율주행차량을 제어하는 제어 흐름을 도시한 도면이다. 2 is a diagram illustrating a control flow for controlling an autonomous vehicle according to traffic signal recognition.
도 3은 라이다 센서 및 제1 이미지 센서를 이용하여 교통 신호를 인식하는 구체적인 제어 흐름을 도시한 도면이다.3 is a diagram illustrating a specific control flow for recognizing a traffic signal using a lidar sensor and a first image sensor.
상술한 목적, 특징 및 장점은 첨부된 도면을 참조하여 상세하게 후술 되어 있는 상세한 설명을 통하여 더욱 명확해 질 것이며, 그에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 또한, 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에 그 상세한 설명을 생략하기로 한다. 이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시 예를 상세히 설명하기로 한다.The above objects, features and advantages will become more clear through the detailed description described later in detail with reference to the accompanying drawings, and accordingly, those skilled in the art to which the present invention belongs will understand the technical spirit of the present invention. can be easily carried out. In addition, in describing the present invention, if it is determined that a detailed description of a known technology related to the present invention may unnecessarily obscure the subject matter of the present invention, the detailed description will be omitted. Hereinafter, preferred embodiments according to the present invention will be described in detail with reference to the accompanying drawings.
도 1은 자율 주행 시스템(10)의 예시적인 블록도를 도시한 도면이다.1 is a diagram illustrating an exemplary block diagram of an autonomous driving system 10 .
도 1에 따르면, 자율 주행 시스템(10)은 디스플레이(100), 입력 인터페이스(200), 라이다 센서(300), 하나 이상의 이미지 센서(400, 500), GPS 모듈(600), 스피커(700), 차량제어 모듈(800) 및 자율주행제어 모듈(900)을 포함한다. 설계 예, 변형, 그 외 구체적인 구현에 따라 자율 주행 시스템(10)은 그 외 다른 센서나 제어 모듈을 더 포함할 수 있다.Referring to FIG. 1 , an autonomous driving system 10 includes a display 100, an input interface 200, a lidar sensor 300, one or more image sensors 400 and 500, a GPS module 600, and a speaker 700. , A vehicle control module 800 and an autonomous driving control module 900 are included. According to design examples, modifications, and other specific implementations, the autonomous driving system 10 may further include other sensors or control modules.
본 발명에 따른 자율 주행 시스템(10)은 자율주행차량 내에 탑재되어 차량의 자율 주행을 각종 센서를 통해 센싱되는 신호를 이용하여 제어한다.The autonomous driving system 10 according to the present invention is mounted in an autonomous vehicle and controls autonomous driving of the vehicle using signals sensed through various sensors.
도 1을 통해, 자율 주행 시스템(10)의 구성 요소를 간단히 살펴보면 디스플레이(100)는 각종 이미지나 영상을 출력한다. 디스플레이(100)는 자율주행차량의 운전대 전방 대시보드나 센터페시아 등에 설치되어 운전자 등의 사용자가 시각적으로 인식 가능한 각종 정보나 데이터를 출력한다. 디스플레이(100)는 LCD 디스플레이-모듈이나 LED 디스플레이-모듈 등을 포함하여 구성될 수 있다.Looking briefly at the components of the autonomous driving system 10 through FIG. 1 , the display 100 outputs various images or videos. The display 100 is installed on a dashboard in front of a driver's wheel or a center fascia of an autonomous vehicle to output various types of information or data visually recognizable by a user such as a driver. The display 100 may include an LCD display-module or an LED display-module.
입력 인터페이스(200)는 운전자(또는 사용자) 입력을 수신한다. 입력 인터페이스(200)는 마이크 및/또는 터치 스크린을 포함하여 마이크로부터의 음성 신호를 수신하거나 디스플레이(100)에 결합된 터치 스크린으로부터 터치 입력을 수신할 수 있다.The input interface 200 receives driver (or user) input. The input interface 200 may include a microphone and/or a touch screen to receive a voice signal from a microphone or a touch input from a touch screen coupled to the display 100 .
라이다 센서(300)는 자율주행차량 외부에 탑재(예를 들어, 자율주행차량의 상측 외부 지붕)되어 라이다신호를 센싱한다. 라이다 센서(300)는 빛에 기반한 라이다(예를 들어, 레이저) 신호를 방출하고 방출된 라이다신호를 센싱하여 자율주행제어 모듈(900)로 출력할 수 있다. 자율주행차량의 지붕 등에 탑재되는 라이다 센서(300)는 자율주행차량 외부 360 전방향으로 물체와 그 거리를 인식 가능하도록 한다. 또는 고정된 라이다 센서(300)는 자율주행차량의 전방의 물체와 그 거리를 인식 가능하도록 한다. The lidar sensor 300 is mounted outside the self-driving vehicle (eg, on the upper outer roof of the self-driving vehicle) and senses the lidar signal. The lidar sensor 300 may emit light-based lidar (eg, laser) signals, sense the emitted lidar signals, and output the signals to the autonomous driving control module 900 . The lidar sensor 300 mounted on the roof of the self-driving vehicle makes it possible to recognize an object and its distance in all 360 directions outside the self-driving vehicle. Alternatively, the fixed lidar sensor 300 enables recognizing an object in front of the autonomous vehicle and its distance.
자율 주행 시스템(10)은 하나 이상의 이미지 센서(400, 500)(또는 카메라 센서)를 포함하는 데, 하나의 이미지 센서(400)(이하 '제1 이미지 센서'라 함)는 자율주행차량 외부를 촬영하고 촬영된 이미지신호를 자율주행제어 모듈(900)로 출력한다. The autonomous driving system 10 includes one or more image sensors 400 and 500 (or camera sensors), and one image sensor 400 (hereinafter referred to as a 'first image sensor') detects the outside of the autonomous vehicle. It is photographed and the photographed image signal is output to the autonomous driving control module (900).
바람직하게는, 제1 이미지 센서(400)는 라이다 센서(300)와 동일 방향(진행 방향)의 영역의 이미지를 센싱할 수 있는 센서이다. 제1 이미지 센서(400)는 라이다 센서(300) 옆, 앞 또는 위에 인접하게 위치하여 라이다 센서(300)와 같이 360도 회전하거나 고정되어 라이다 센서(300)가 센싱하는 방향과 동일한 방향의 영역을 동일 시점(視點)에서 센싱한다.Preferably, the first image sensor 400 is a sensor capable of sensing an image of an area in the same direction (advancing direction) as the lidar sensor 300 . The first image sensor 400 is positioned adjacent to, in front of, or above the lidar sensor 300 and rotates 360 degrees or is fixed like the lidar sensor 300 in the same direction as the direction the lidar sensor 300 senses. The area of is sensed at the same viewpoint.
다른 하나의 이미지 센서(500)(이하 '제2 이미지 센서'라 함)는 자율주행차량 내부에 탑재되어 자율주행차량 내부를 촬영하고 촬영된 이미지신호를 자율주행제어 모듈(900)로 출력한다. 제2 이미지 센서(500)는 운전자 등의 동작(예를 들어, 버튼 눌림, 악셀 눌림 등)을 촬영하고 촬영된 이미지신호를 출력할 수 있다. Another image sensor 500 (hereinafter referred to as 'second image sensor') is mounted inside the self-driving vehicle, takes pictures of the interior of the self-driving car, and outputs the captured image signal to the self-driving control module 900. The second image sensor 500 may capture a driver's motion (eg, pressing a button, pressing an accelerator, etc.) and output a captured image signal.
GPS 모듈(600)은 GPS 신호를 캡쳐링하고 이를 출력한다. GPS 모듈(600)은 하나 또는 복수의 GPS 위성으로부터의 신호를 센싱하고 이를 나타내는 GPS 신호를 자율주행제어 모듈(900)로 출력할 수 있다. The GPS module 600 captures GPS signals and outputs them. The GPS module 600 may sense a signal from one or more GPS satellites and output a GPS signal indicating the detected signal to the autonomous driving control module 900 .
스피커(700)는 오디오신호인 전기신호를 청각적으로 들을 수 있는 진동신호로 변환한다. 스피커(700)는 자율주행제어 모듈(900)에 연결되어 각종 안내, 질의 등의 멘트의 전기신호를 진동신호로 변환하여 출력한다. The speaker 700 converts an electrical signal, which is an audio signal, into an audible vibration signal. The speaker 700 is connected to the autonomous driving control module 900 and converts electrical signals of various information and inquiries into vibration signals and outputs them.
차량제어 모듈(800)은 차량 내부의 각종 장치를 제어한다. 차량제어 모듈(800)은 자율주행차량의 가속, 제동, 변속, 조향 등의 기능의 수행을 제어한다. 차량제어 모듈(800)은 자율주행제어 모듈(900)로부터 수신되는 제어신호에 따라 자율주행차량의 주행을 제어할 수 있다.The vehicle control module 800 controls various devices inside the vehicle. The vehicle control module 800 controls the performance of functions such as acceleration, braking, shifting, and steering of the autonomous vehicle. The vehicle control module 800 may control driving of the autonomous vehicle according to a control signal received from the autonomous driving control module 900 .
자율주행제어 모듈(900)은 자율주행차량의 주행을 각종 센싱 신호를 이용하여 제어한다. 자율주행제어 모듈(900)은 라이다 센서(300) 및/또는 제1 이미지 센서(400)에서 센싱되는 신호 데이터를 수신하고 수신된 신호 데이터로부터 교통 신호의 인식을 시도하고 교통 신호의 인식 불명확에 따라 스피커(700)나 디스플레이(100)로 알림 신호를 출력한다. The autonomous driving control module 900 controls driving of the autonomous vehicle using various sensing signals. The self-driving control module 900 receives signal data sensed by the lidar sensor 300 and/or the first image sensor 400, attempts to recognize a traffic signal from the received signal data, and determines whether the recognition of the traffic signal is unclear. Accordingly, a notification signal is output to the speaker 700 or the display 100 .
또한, 자율주행제어 모듈(900)은 알림 신호의 출력에 이어(후속하여 또는 함께) 차량제어 모듈(800)과 연동하여 자율주행차량에 대한 감속 제어를 수행하고 내부의 제2 이미지 센서(500)로부터 수신되는 이미지신호 데이터의 영상을 내부의 저장 매체(하드디스크나 비휘발성 메모리 등)에 기록한다. In addition, the self-driving control module 900 performs deceleration control for the self-driving vehicle in conjunction with the vehicle control module 800 (subsequently or together) following the output of the notification signal, and the internal second image sensor 500 Record the image of the image signal data received from the internal storage medium (hard disk or non-volatile memory, etc.).
자율주행제어 모듈(900)은 내부의 저장 매체(하드디스크나 비휘발성 메모리)에 인공지능 알고리즘(의 프로그램)을 저장하고 인공지능 알고리즘의 수행을 통해 적어도 센서로부터의 신호 데이터에서 교통 신호의 인식을 시도한다. 인공지능 알고리즘의 프로그램은 딥러닝 기술에 따른 프로그램일 수 있다.The autonomous driving control module 900 stores artificial intelligence algorithms (programs) in an internal storage medium (hard disk or non-volatile memory) and recognizes traffic signals at least from signal data from sensors through the execution of artificial intelligence algorithms. Try it. The program of the artificial intelligence algorithm may be a program based on deep learning technology.
자율주행제어 모듈(900)은 디스플레이(100), 라이다 센서(300), 입력 인터페이스(200), 제1 이미지 센서(400), 제2 이미지 센서(500), 스피커(700), GPS 모듈(600), 차량제어 모듈(800) 등과 데이터나 신호를 송수신하기 위한 신호 인터페이스나 버스 인터페이스를 구비하여 각종 데이터나 신호를 송수신 가능하다. The autonomous driving control module 900 includes a display 100, a lidar sensor 300, an input interface 200, a first image sensor 400, a second image sensor 500, a speaker 700, a GPS module ( 600), a vehicle control module 800, etc., and a signal interface or bus interface for transmitting and receiving data or signals are provided, and various data or signals can be transmitted and received.
교통 신호 인식 실패에 대응한 자율주행제어 모듈(900)의 구체적인 제어 흐름은 도 2 및 도 3에서 살펴보도록 한다. A detailed control flow of the autonomous driving control module 900 corresponding to traffic signal recognition failure will be reviewed in FIGS. 2 and 3 .
도 2는 교통 신호의 인식에 따른 자율주행차량을 제어하는 제어 흐름을 도시한 도면이다. 2 is a diagram illustrating a control flow for controlling an autonomous vehicle according to traffic signal recognition.
도 2의 제어 흐름은 자율주행차량이 수행하고 바람직하게는 자율 주행 시스템(10)의 자율주행제어 모듈(900)에 의한 제어로 이루어진다. The control flow of FIG. 2 is performed by an autonomous vehicle and is preferably controlled by the autonomous driving control module 900 of the autonomous driving system 10 .
먼저, 자율주행차량은 각종 외부 센서로부터의 신호 데이터에 기초하여 자율 주행을 수행(S100)하고, 자율주행차량은 센서를 통해 신호를 센싱(S200)한다.First, the self-driving vehicle performs autonomous driving based on signal data from various external sensors (S100), and the autonomous vehicle senses signals through the sensors (S200).
라이다 센서(300)는 설정 주기나 회전 주기에 따라 주기적으로 라이다신호를 센싱하고 센싱된 라이다신호를 자율주행제어 모듈(900)로 출력한다. 또한, 라이다 센서(300)에 인접하여 라이다 센서(300)와 동일 방향의 영역의 이미지를 센싱 가능한 제1 이미지 센서(400)는 구비된 렌즈를 통해 외부 이미지를 라이다 센서(300)의 센싱 시점과 동일 시점에 캡쳐링하고 캡쳐링된 이미지신호를 자율주행제어 모듈(900)로 출력한다.The lidar sensor 300 periodically senses lidar signals according to a set period or rotation period and outputs the sensed lidar signals to the autonomous driving control module 900. In addition, the first image sensor 400 capable of sensing an image of an area in the same direction as the lidar sensor 300 adjacent to the lidar sensor 300 transmits an external image through a lens provided to the lidar sensor 300. It captures at the same time point as the sensing time point, and outputs the captured image signal to the autonomous driving control module 900.
자율주행차량은 센서를 통해 수신되는 신호 데이터로부터 교통 신호를 인식 시도(S300)한다. The self-driving vehicle tries to recognize a traffic signal from signal data received through a sensor (S300).
자율주행제어 모듈(900)은 라이다 센서(300)로부터 라이다신호 데이터를 수신하고 제1 이미지 센서(400)로부터 이미지신호 데이터를 수신한다. 라이다신호 데이터는 라이다신호로부터 구성되고 이미지신호 데이터는 이미지신호로부터 구성 가능하다. The autonomous driving control module 900 receives lidar signal data from the lidar sensor 300 and image signal data from the first image sensor 400 . LIDAR signal data is composed of LIDAR signals, and image signal data can be composed of image signals.
인공지능 알고리즘의 수행을 통해 교통 신호를 인식 시도하는 자율주행제어 모듈(900)은 라이다 센서(300)를 통해 수신되는 라이다신호 데이터와 제1 이미지 센서(400)를 통해 수신되는 이미지신호 데이터를 이용하여 교통 신호등을 인식 시도하거나 인식된 교통 신호등의 출력신호(예를 들어, 차량통행 허용신호(녹색신호), 차량통행 불허신호(적색신호))를 인식 시도한다. 교통 신호등과 그 출력신호를 통칭하여 '교통 신호'로 지칭될 수 있다. The self-driving control module 900, which attempts to recognize traffic signals through the execution of an artificial intelligence algorithm, lidar signal data received through the lidar sensor 300 and image signal data received through the first image sensor 400 Attempting to recognize a traffic light or recognizing an output signal of a recognized traffic light (for example, a vehicle passage permission signal (green signal) or a vehicle passage prohibition signal (red signal)) using . Traffic lights and their output signals may be collectively referred to as 'traffic signals'.
도 3은 라이다 센서(300) 및 제1 이미지 센서(400)를 이용하여 교통 신호를 인식하는 구체적인 제어 흐름을 도시한 도면이다. FIG. 3 is a diagram illustrating a specific control flow for recognizing a traffic signal using the lidar sensor 300 and the first image sensor 400 .
도 3의 제어 흐름은 도 2의 S300 과정의 구체적인 일 예를 나타낸다. 도 3의 제어 흐름은 자율주행제어 모듈(900)에 의해 수행되고 바람직하게는 교통 신호를 인식하는 인공지능 알고리즘을 통해 수행된다. The control flow of FIG. 3 shows a specific example of the process S300 of FIG. 2 . The control flow of FIG. 3 is performed by the autonomous driving control module 900 and is preferably performed through an artificial intelligence algorithm that recognizes traffic signals.
먼저, 자율주행제어 모듈(900)은 라이다 센서(300)로부터 수신되는 라이다신호 데이터로부터 교통 신호등의 인식을 시도(S301)한다. 교통 신호등을 학습한 인공지능 알고리즘은 라이다신호 데이터로부터 교통 신호등에 대한 신뢰도(예를 들어, 판별율)를 포함하는 인식 결과를 출력할 수 있다. First, the autonomous driving control module 900 attempts to recognize traffic lights from lidar signal data received from lidar sensor 300 (S301). The artificial intelligence algorithm that has learned the traffic light may output a recognition result including reliability (eg, discrimination rate) of the traffic light from LIDAR signal data.
자율주행제어 모듈(900)은 인식 시도에 따라 라이다신호 데이터에서 진행방향의 교통 신호등이 명확히 존재하는 지를 판단(S303)한다. 자율주행제어 모듈(900)은 인공지능 알고리즘에서 출력된 신뢰도의 확률이 설정된 임계치(제 1 임계치) 이상인지로 교통 신호등이 명확히 존재하는 지를 판단할 수 있다. 만일, 신뢰도의 확률이 설정된 다른 임계치(제 1 임계치보다 현저히 낮은 제 2 임계치) 이하인 경우 자율주행제어 모듈(900)은 교통 신호등의 부존재로 설정하고 도 3의 제어 흐름을 종료할 수 있다. According to the recognition attempt, the autonomous driving control module 900 determines whether a traffic light in the direction clearly exists in LIDAR signal data (S303). The autonomous driving control module 900 may determine whether a traffic light clearly exists based on whether the reliability probability output from the artificial intelligence algorithm is equal to or greater than a set threshold value (first threshold value). If the reliability probability is less than another set threshold (the second threshold significantly lower than the first threshold), the autonomous driving control module 900 may set the traffic light as non-existence and end the control flow of FIG. 3 .
인공지능 알고리즘에 의해 산출된 신뢰도의 확률이 두 임계치 사이에 위치하여 교통 신호등의 존재 여부가 불명확한 경우에 자율주행제어 모듈(900)은 제1 이미지 센서(400)로부터의 이미지신호 데이터로부터 교통 신호등의 인식을 재시도(S313)한다. When the probability of reliability calculated by the artificial intelligence algorithm is located between two thresholds and the presence or absence of a traffic light is unclear, the autonomous driving control module 900 calculates the traffic light from the image signal data from the first image sensor 400. The recognition of is reattempted (S313).
자율주행제어 모듈(900)은 라이다 센서(300)와 인접하게 위치하여 동일한 방향의 영역을 이미지 캡쳐링하는 제1 이미지 센서(400)로부터의 이미지신호 데이터를 인공지능 알고리즘에 입력하여 교통 신호등에 대한 신뢰도를 포함하는 인식 결과를 인공지능 알고리즘으로부터 수신한다. The self-driving control module 900 inputs image signal data from the first image sensor 400, which is located adjacent to the lidar sensor 300 and captures an image of an area in the same direction, into an artificial intelligence algorithm to detect traffic lights. Recognition results including reliability are received from the artificial intelligence algorithm.
이후, 자율주행제어 모듈(900)은 이미지신호 데이터에서 교통 신호등이 명확히 존재하는 지를 판단(S315)한다. 자율주행제어 모듈(900)은 인공지능 알고리즘에서 출력된 신뢰도의 확률이 설정된 임계치 이상인지로 교통 신호등의 명확히 존재하는 지를 판단할 수 있다.Thereafter, the autonomous driving control module 900 determines whether a traffic light clearly exists in the image signal data (S315). The autonomous driving control module 900 may determine whether a traffic light clearly exists based on whether the reliability probability output from the artificial intelligence algorithm is greater than or equal to a set threshold.
이와 같이, 본 발명에 따른 자율주행제어 모듈(900)은 라이다 센서(300)를 통해 교통 신호등의 인식 실패시에 동일한 방향을 바라보는 이미지 센서를 이용하여 교통 신호등의 인식을 재시도한다. 이로 인해, 주변 환경, 조명, 밝기 등에 따른 인식 실패율을 향상시킬 수 있다. In this way, the self-driving control module 900 according to the present invention attempts recognition of a traffic light again by using an image sensor looking in the same direction when recognition of a traffic light through the lidar sensor 300 fails. Accordingly, the recognition failure rate according to the surrounding environment, lighting, and brightness may be improved.
자율주행제어 모듈(900)은 이미지신호로부터 교통 신호등이 명확히 존재하는 것으로 판단한 경우 과정 S305로 전이하여 후속하는 과정을 수행할 수 있다. 만일, 신뢰도의 확률이 설정된 임계치 미만인 경우 자율주행제어 모듈(900)은 교통 신호등의 인식이 불명확한 것으로 설정(S317)하고 도 3의 제어 흐름을 종료한다. When the autonomous driving control module 900 determines that the traffic light clearly exists from the image signal, it can transition to step S305 and perform subsequent steps. If the reliability probability is less than the set threshold value, the autonomous driving control module 900 sets the recognition of the traffic light as unclear (S317) and ends the control flow of FIG. 3 .
교통 신호등의 명확 여부 판단에 따라 교통 신호등의 인식 성공시에, 자율주행제어 모듈(900)은 제1 이미지 센서(400)로부터 수신되는 이미지신호 데이터에서 교통 신호등의 출력신호를 인식 시도(S305)한다. 자율주행제어 모듈(900)의 인공지능 알고리즘은 이미지신호 데이터로부터 출력신호에 대한 신뢰도를 포함하는 인식 결과를 출력할 수 있다. 출력신호는 예를 들어, 차량통행 허용신호(녹색신호), 차량통행 불허신호(적색신호) 등일 수 있다. Upon successful recognition of the traffic light according to the determination of whether the traffic light is clear, the self-driving control module 900 attempts to recognize the output signal of the traffic light from the image signal data received from the first image sensor 400 (S305). . The artificial intelligence algorithm of the autonomous driving control module 900 may output a recognition result including reliability of the output signal from image signal data. The output signal may be, for example, a vehicle passage permission signal (green signal) or a vehicle passage prohibition signal (red signal).
자율주행제어 모듈(900)은 이미지신호 데이터로부터 출력신호가 명확한지를 판단(S307)한다. 자율주행제어 모듈(900)은 인공지능 알고리즘으로부터 출력되는 신뢰도의 확률이 설정된 임계치 이상인지로 출력신호가 명확한지를 판단할 수 있다. The autonomous driving control module 900 determines whether the output signal is clear from the image signal data (S307). The autonomous driving control module 900 may determine whether the output signal is clear based on whether the reliability probability output from the artificial intelligence algorithm is greater than or equal to a set threshold.
출력신호가 명확한 경우, 자율주행제어 모듈(900)은 출력신호(또는 교통 신호) 명확으로 설정(S309)하고 도 3의 제어 흐름을 종료한다. When the output signal is clear, the autonomous driving control module 900 sets the output signal (or traffic signal) clear (S309) and ends the control flow of FIG. 3 .
출력신호가 불명확한 경우, 자율주행제어 모듈(900)은 출력신호 불명확으로 설정(S311)하고 도 3의 제어 흐름을 종료한다.When the output signal is unclear, the autonomous driving control module 900 sets the output signal to be unclear (S311) and ends the control flow of FIG. 3 .
동일 방향의 영역을 대상으로 동일 시점(視點)에서 촬영된 이미지신호 데이터와 라이다신호 데이터를 이용하여 교통 신호를 동적으로 인식 가능하다. 적어도, 제1 이미지 센서(400)와 라이다 센서(300)가 동일 방향의 영역을 촬영하고 센싱하여 각종 외부 환경 변화(야간 주행시 해상도 저하, 빛 노이즈 등)에도 불구하고 상보적으로 향상된 인식 성능을 제공할 수 있다.It is possible to dynamically recognize traffic signals by using image signal data and LIDAR signal data photographed from the same viewpoint targeting an area in the same direction. At least, the first image sensor 400 and the lidar sensor 300 photograph and sense an area in the same direction to achieve complementary improved recognition performance despite various external environment changes (resolution degradation during night driving, light noise, etc.) can provide
다시 도 2를 통해, 후속 제어 과정을 살펴보면, 교통 신호의 인식이 명확한 경우 자율주행차량은 인식된 교통 신호에 따라 자율 주행을 진행(S100)한다. Referring to FIG. 2 again, referring to the subsequent control process, when the recognition of a traffic signal is clear, the self-driving vehicle proceeds with autonomous driving according to the recognized traffic signal (S100).
만일, 교통 신호가 불명확한 경우(예를 들어, 교통 신호등 불명확, 출력 신호 불명확) 자율주행차량은 이를 확인할 수 있는 알림 신호를 출력(S500)한다.If the traffic signal is unclear (for example, the traffic signal is unclear or the output signal is unclear), the self-driving vehicle outputs a notification signal that can confirm this (S500).
교통 신호등의 불명확 인식에 따라 자율주행제어 모듈(900)은 제1 이미지 센서(400)를 통해 수신되는 이미지신호 데이터를 디스플레이(100)로 출력하고 나아가 교통 신호등 확인 질의를 나타내는 음성 멘트를 스피커(700)로 출력하고 동시에 교통 신호등 확인 질의를 나타내는 메시지를 디스플레이(100)를 통해 출력한다. 교통 신호등 확인 질의는 차량통행 허용 질의(예를 들어, "녹색신호 입니까")를 포함하거나 내포할 수 있다.According to the unclear recognition of the traffic light, the self-driving control module 900 outputs the image signal data received through the first image sensor 400 to the display 100 and furthermore sends a voice message indicating a traffic light confirmation query to the speaker 700. ) and simultaneously outputs a message indicating a traffic light confirmation query through the display 100. The traffic light confirmation query may include or imply a vehicle clearance query (eg, "Is the light green?").
출력신호의 불명확 인식에 따라 자율주행제어 모듈(900)은 제1 이미지 센서(400)를 통해 수신되는 이미지신호 데이터를 디스플레이(100)로 출력하고 나아가 차량통행 허용 질의를 나타내는 음성 멘트를 스피커(700)로 출력하고 동시에 차량통행 허용 질의를 나타내는 메시지를 디스플레이(100)를 통해 출력한다.According to the unclear recognition of the output signal, the self-driving control module 900 outputs the image signal data received through the first image sensor 400 to the display 100 and furthermore sends a voice message indicating a vehicle passage permission query to the speaker 700. ) and at the same time outputs a message indicating a vehicle passage permission inquiry through the display 100.
차량통행 허용 질의는 예를 들어, "녹색신호 입니까", "지금 진행신호 입니까" 등의 의미를 가지는 질의일 수 있다. 또는 차량통행 허용 질의는 차량불허 신호(예를 들어, 적색신호)를 이용하여 구성되는 질의일 수도 있다. The vehicle passage permitting query may be, for example, an inquiry having meanings such as "Is it a green light" or "Is it a proceeding signal?". Alternatively, the vehicle passage permission query may be an query configured using a vehicle prohibition signal (eg, a red signal).
알림 신호의 출력에 이어(또는 동시에), 자율주행차량은 감속 제어를 수행하고 내부 영상을 기록(S600)한다. 자율주행차량은 교통 신호가 불명확 상황에서 감속 제어로 자율주행차량의 안전을 보장하거나 향상시킬 수 있다. Following (or simultaneously with) the output of the notification signal, the self-driving vehicle performs deceleration control and records an internal image (S600). Autonomous vehicles can ensure or improve the safety of autonomous vehicles by deceleration control in situations where traffic signals are unclear.
자율주행제어 모듈(900)은 차량제어 모듈(800)로 차량 감속을 위한 제어 신호를 출력하는 한편 차량 내부의 제2 이미지 센서(500)로부터 수신되는 이미지신호 데이터를 내부 저장 매체에 저장한다. 이와 같이 저장되는 이미지의 영상 데이터는 이후 각종 자료로 활용될 수 있다. 예를 들어, 영상 데이터는 사고 발생시에 운전자의 제어나 반응 상태를 확인하기 위한 자료로 활용 가능하며, 제조사 또는 운전자로서는 법률상의 책임소재를 명확히 하는 데 이용된다. The autonomous driving control module 900 outputs a control signal for vehicle deceleration to the vehicle control module 800 and stores image signal data received from the second image sensor 500 inside the vehicle in an internal storage medium. The video data of the image stored in this way can be used as various data thereafter. For example, video data can be used as data to check the driver's control or reaction status in the event of an accident, and it is used to clarify the legal responsibility of the manufacturer or driver.
자율주행차량은 이후 알림 신호에 대한 입력을 수신(S700)하고 입력에 따라 자율주행차량의 운행을 제어한다.The self-driving vehicle then receives an input for the notification signal (S700) and controls operation of the self-driving vehicle according to the input.
자율주행제어 모듈(900)은 차량통행 허용 질의에 대한 입력을 마이크를 통해 음성 신호로 수신하거나 차량통행 허용 질의에 대한 입력을 디스플레이(100)의 터치 스크린에 대한 터치를 통해 수신한다. 자율주행제어 모듈(900)은 차량통행 허용 또는 불허(정지)를 위한 입력을 마이크나 터치를 통해 수신한다. The autonomous driving control module 900 receives an input for a vehicle passage permission query as a voice signal through a microphone or receives an input for a vehicle passage permission query through a touch on the touch screen of the display 100 . The autonomous driving control module 900 receives an input for permitting or disallowing (stopping) vehicle passage through a microphone or a touch.
나아가, 자율주행제어 모듈(900)은 교통 신호등의 불명확 인식에 따라 제1 이미지 센서(400)로부터의 이미지신호 데이터가 표시된 디스플레이(100)에서의 운전자의 선택 입력(특정 위치를 지정하는 입력)으로 교통 신호등을 인식하고 인식된 교통 신호등의 영역에서의 이미지신호 데이터에서 출력신호를 자동 인식한다. Furthermore, the autonomous driving control module 900 receives the driver's selection input (input for designating a specific location) on the display 100 displaying the image signal data from the first image sensor 400 according to the unclear recognition of the traffic light. Recognizes traffic lights and automatically recognizes output signals from image signal data in the area of the recognized traffic lights.
또는(또한), 자율주행제어 모듈(900)은 출력신호의 불명확 인식에 따라 제1 이미지 센서(400)로부터의 교통 신호등이 표시된 이미지신호 데이터의 디스플레이(100)에서 운전자에 의한 특정 신호의 위치를 지정하는 선택 입력으로 출력신호를 인식한다. 출력신호의 인식에 이용되는 입력은 차량통행 허용 질의에 대한 입력과 동일할 수 있다.Alternatively (also), the self-driving control module 900 determines the position of a specific signal by the driver in the display 100 of the image signal data displaying the traffic light from the first image sensor 400 according to the unclear recognition of the output signal. Recognizes the output signal as the designated selection input. The input used for recognizing the output signal may be the same as the input for the vehicle passage permission inquiry.
자율주행제어 모듈(900)은 운전자의 입력, 입력에 따라 인식되는 출력신호 데이터, 제1 이미지 센서(400)로부터의 이미지신호 데이터 및 라이다 센서(300)로부터의 라이다신호 데이터, 교통 신호등의 영역 데이터(교통 신호등의 위치를 특정하는 데이터), 및 데이터의 획득지점을 저장 매체에 더 저장할 수 있다. 여기서, 운전자의 입력은 기록된 내부 영상에 매칭되어 저장되고 자료로 제공될 수 있다.The self-driving control module 900 is a driver's input, output signal data recognized according to the input, image signal data from the first image sensor 400 and lidar signal data from the lidar sensor 300, traffic signals, etc. Area data (data specifying the position of a traffic light) and the acquisition point of the data can be further stored in a storage medium. Here, the driver's input may be matched with the recorded internal image, stored, and provided as data.
자율주행제어 모듈(900)은 차량통행 허용 질의에 대한 응답에 따라 영상 기록의 저장을 종료하고 차량제어 모듈(800)의 제어를 통해 감속 제어로부터 자율주행 제어로 변경(S100)하여 정상적인 주행을 수행할 수 있다.The autonomous driving control module 900 terminates the storage of the video record according to the response to the vehicle passage permission query and changes from the deceleration control to the autonomous driving control through the control of the vehicle control module 800 (S100) to perform normal driving. can do.
이후, 교통신호의 불명확에 따른 운전자 입력 자료가 축적됨에 따라 자율주행차량은 운전자 입력 자료를 이용하여 탑재된 인공지능 알고리즘을 학습시킬 수 있다. 운전자 입력 자료는 불명확한 교통 신호를 운전자의 입력에 따라 인식된 정보를 포함한다. Subsequently, as driver input data is accumulated due to unclear traffic signals, the self-driving vehicle can use the driver input data to learn the built-in artificial intelligence algorithm. The driver's input data includes information recognized according to the driver's input of an ambiguous traffic signal.
지정된 개수 이상 또는 설정된 주기의 도래에 따라, 자율주행제어 모듈(900)은 저장 매체의 이미지신호 데이터 또는 라이다신호 데이터에서 인식된 교통 신호등의 영역 데이터(인식된 교통 신호등의 영역 위치), 인식된 출력신호 데이터(운전자의 입력에 따라 인식된 차량통행 허용신호(녹색신호) 또는 차량통행 불허신호(적색신호)를 나타내는 데이터), 제1 이미지 센서(400)로부터의 이미지신호 데이터 및/또는 라이다신호 데이터, 및 데이터의 획득지점을 인공지능 알고리즘의 학습 데이터로 제공할 수 있다.According to the arrival of a specified number or a set period, the self-driving control module 900 converts the area data of traffic lights recognized from the image signal data or LIDAR signal data of the storage medium (location of the recognized traffic light area), Output signal data (data representing the vehicle passage permission signal (green signal) or vehicle passage prohibition signal (red signal) recognized according to the driver's input), image signal data from the first image sensor 400, and/or LIDAR The signal data and the acquisition point of the data may be provided as learning data of the artificial intelligence algorithm.
이에 따라, 인공지능 알고리즘은 실제 운행 환경에서 확보한 이미지와 운전자 입력을 이용하여 인식 성능을 개선할 수 있고 자율주행차량은 운전자의 운전환경이나 특성에 특화된 외부 환경을 학습하여 운전자 환경에 특화된 자율 주행이 가능토록 한다. 나아가, 이러한 학습 데이터는 제조사의 서버로 전송되게 함으로써 인식률이 낮은 특정 신호등(예를 들면 신호등에 겹쳐보이거나 그 근처에 보이는 광고등이나 조명등으로 인해서 야간 인식율이 낮은 특정 신호등)에 대하여 인식율을 향상시키고 자율주행차량에 설치되는 소프트웨어의 업데이트를 위해 이용될 수 있다.Accordingly, artificial intelligence algorithms can improve recognition performance by using images obtained from the actual driving environment and driver inputs, and self-driving vehicles learn the driver's driving environment or external environment specialized for characteristics to autonomously drive specialized for the driver's environment. make this possible Furthermore, by having these learning data transmitted to the manufacturer's server, the recognition rate is improved for a specific traffic light with a low recognition rate (for example, a specific traffic light with a low recognition rate at night due to an advertising light or lighting that is overlapped with a traffic light or visible nearby) It can be used for updating software installed in autonomous vehicles.
이상에서 설명한 본 발명은, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시 예 및 첨부된 도면에 의해 한정되는 것이 아니다.The present invention described above is capable of various substitutions, modifications, and changes without departing from the technical spirit of the present invention to those skilled in the art in the technical field to which the present invention belongs. It is not limited by drawings.
Claims (12)
- 인공지능 알고리즘을 탑재한 자율주행차량이 수행하는 자율 주행 방법으로서,As an autonomous driving method performed by an autonomous vehicle equipped with an artificial intelligence algorithm,센서를 통해 수신되는 신호 데이터로부터 상기 인공지능 알고리즘에 따라 교통 신호를 인식 시도하는 단계;attempting to recognize a traffic signal according to the artificial intelligence algorithm from signal data received through a sensor;교통 신호의 인식 불명확에 따른 알림 신호를 출력하는 단계;outputting a notification signal according to unclear recognition of a traffic signal;상기 알림 신호의 출력에 따라, 상기 자율주행차량에 대한 감속 제어와 상기 자율주행차량의 내부 영상을 기록하는 단계; Controlling the deceleration of the self-driving vehicle and recording an internal image of the self-driving vehicle according to the output of the notification signal;상기 알림 신호에 대한 입력을 수신하는 단계; 및 Receiving an input for the notification signal; and상기 입력에 따라 상기 감속 제어로부터 자율주행 제어로 변경하는 단계;를 포함하며,Including; changing from the deceleration control to autonomous driving control according to the input,상기 알림 신호를 출력하는 단계는, 차량통행 허용 질의를 나타내는 음성 멘트 또는 메시지를 출력하는 것을 포함하되, 상기 차량통행 허용 질의는 상기 교통 신호가 녹색신호, 진행신호 또는 적색신호인지를 묻는 질의를 포함하며,The step of outputting the notification signal includes outputting a voice comment or message indicating a vehicle passage permission inquiry, wherein the vehicle passage permission query includes an inquiry asking whether the traffic signal is a green signal, a progress signal, or a red signal. and상기 입력은 상기 차량통행 허용 질의 대한 응답을 포함하는,The input includes a response to the vehicle passage permission query,자율 주행 방법.self-driving method.
- 제1항에 있어서, According to claim 1,상기 교통 신호를 인식 시도하는 단계는 라이다 센서를 통해 수신되는 라이다신호 데이터와 이미지 센서를 통해 수신되는 이미지신호 데이터를 이용하여 교통 신호등을 인식 시도하거나 상기 교통 신호등의 출력신호를 인식 시도하는, The step of attempting to recognize the traffic signal is to attempt to recognize a traffic light or recognize an output signal of the traffic light using lidar signal data received through a lidar sensor and image signal data received through an image sensor,자율 주행 방법.self-driving method.
- 제2항에 있어서,According to claim 2,상기 교통 신호를 인식 시도하는 단계는 라이다 센서를 통해 수신되는 라이다신호 데이터로부터 교통 신호등을 인식 시도하고 교통 신호등의 인식 성공시에 이미지 센서를 통해 수신되는 이미지신호 데이터로부터 출력신호를 인식 시도하고,The step of attempting to recognize the traffic signal attempts to recognize a traffic light from lidar signal data received through a lidar sensor, and attempts to recognize an output signal from image signal data received through an image sensor when the recognition of a traffic light is successful ,상기 라이다 센서와 상기 이미지 센서는 서로 동일 방향의 영역의 신호를 센싱하는 센서인,The lidar sensor and the image sensor are sensors for sensing signals in the same direction as each other,자율 주행 방법.self-driving method.
- 제2항에 있어서,According to claim 2,상기 차량통행 허용 질의는 스피커 또는 디스플레이를 통해 출력되는,The vehicle passage permission query is output through a speaker or display,자율 주행 방법.self-driving method.
- 제4항에 있어서, According to claim 4,상기 입력을 수신하는 단계는, 마이크를 통해 음성 신호로 수신하거나 디스플레이의 터치를 통해 수신하는,Receiving the input may include receiving it as a voice signal through a microphone or receiving it through a touch of a display,자율 주행 방법.self-driving method.
- 제1항에 있어서, According to claim 1,상기 신호 데이터와 상기 입력을 이용하여 상기 교통 신호를 인식하고 상기 교통 신호의 인식에 따라 상기 자율주행차량에 탑재되는 인공지능 알고리즘을 학습시키는 단계;를 더 포함하는,Recognizing the traffic signal using the signal data and the input and learning an artificial intelligence algorithm mounted in the autonomous vehicle according to the recognition of the traffic signal; further comprising,자율 주행 방법.self-driving method.
- 제6항에 있어서, According to claim 6,상기 인공지능 알고리즘을 학습시키는 단계는, The step of learning the artificial intelligence algorithm,이미지 센서를 통해 수신되는 이미지신호 데이터를 디스플레이로 출력하고 디스플레이에서의 선택 입력으로 교통 신호등을 인식하고 인식된 교통 신호등의 영역에서의 이미지신호 데이터로 출력신호를 인식하고 인식된 교통 신호등의 영역 데이터, 인식된 출력신호 데이터 및 상기 이미지 센서의 이미지신호 데이터를 상기 인공지능 알고리즘의 학습 데이터로 제공하거나,The image signal data received through the image sensor is output to the display, the traffic light is recognized as a selection input on the display, the output signal is recognized as the image signal data in the recognized traffic light area, the area data of the recognized traffic light, The recognized output signal data and the image signal data of the image sensor are provided as learning data of the artificial intelligence algorithm,교통 신호등이 표시된 이미지신호 데이터를 디스플레이로 출력하고 표시된 교통 신호등에 대한 입력으로 출력신호를 인식하고 상기 교통 신호등의 영역 데이터, 인식된 출력신호 데이터 및 상기 이미지 센서의 이미지신호 데이터를 상기 인공지능 알고리즘의 학습 데이터로 제공하는,The image signal data displayed by the traffic light is output to the display, the output signal is recognized as an input to the displayed traffic light, and the area data of the traffic light, the recognized output signal data, and the image signal data of the image sensor are converted into the artificial intelligence algorithm. Provided as learning data,자율 주행 방법.self-driving method.
- 자율주행차량에 탑재되는 자율 주행 시스템으로서,As an autonomous driving system mounted on an autonomous vehicle,라이다 센서 또는 제1 이미지 센서; 스피커; 디스플레이; 상기 자율주행차량 내부를 촬영하는 제2 이미지 센서; 차량제어 모듈; 및 LiDAR sensor or first image sensor; speaker; display; a second image sensor that photographs the inside of the self-driving vehicle; vehicle control module; and인공지능 알고리즘을 탑재하며, 상기 라이다 센서나 상기 제1 이미지 센서로부터 신호 데이터를 수신하고 수신된 신호 데이터로부터 상기 인공지능 알고리즘에 따라 교통 신호를 인식 시도하며, 교통 신호의 인식 불명확에 따라 상기 스피커 또는 상기 디스플레이로 알림 신호를 출력하고 상기 차량제어 모듈과 연동하여 상기 자율주행차량에 대한 감속 제어를 수행하고 상기 제2 이미지 센서의 영상을 기록하는 자율주행제어 모듈;을 포함하고,It is equipped with an artificial intelligence algorithm, receives signal data from the lidar sensor or the first image sensor, attempts to recognize a traffic signal from the received signal data according to the artificial intelligence algorithm, and if the recognition of the traffic signal is unclear, the speaker or an autonomous driving control module outputting a notification signal to the display, performing deceleration control of the autonomous vehicle in conjunction with the vehicle control module, and recording an image of the second image sensor;상기 자율주행제어 모듈은 상기 알림 신호에 대한 입력의 수신에 따라 상기 차량제어 모듈의 제어를 통해 상기 감속 제어로부터 자율주행 제어로 변경하며,The autonomous driving control module changes from the deceleration control to autonomous driving control through control of the vehicle control module according to reception of an input for the notification signal,상기 알림 신호의 출력은, 차량통행 허용 질의를 나타내는 음성 멘트 또는 메시지를 출력하는 것을 포함하되, 상기 차량통행 허용 질의는 상기 교통 신호가 녹색신호, 진행신호 또는 적색신호인지를 묻는 질의를 포함하며,The output of the notification signal includes outputting a voice comment or message indicating a vehicle passage permission inquiry, wherein the vehicle passage permission query includes an inquiry asking whether the traffic signal is a green signal, a progress signal, or a red signal,상기 입력은 상기 차량통행 허용 질의 대한 응답을 포함하는,The input includes a response to the vehicle passage permission query,자율 주행 시스템.autonomous driving system.
- 제8항에 있어서,According to claim 8,상기 자율주행제어 모듈은 상기 라이다 센서를 통해 수신되는 라이다신호 데이터로부터 교통 신호등을 인식 시도하고 교통 신호등의 인식 성공시에 상기 제1 이미지 센서를 통해 수신되는 이미지신호 데이터로부터 출력신호를 인식 시도하고,The self-driving control module attempts to recognize a traffic light from lidar signal data received through the lidar sensor, and attempts to recognize an output signal from image signal data received through the first image sensor when the traffic light is successfully recognized. do,상기 자율주행차량 외부에 탑재되는 상기 라이다 센서와 상기 제1 이미지 센서는 서로 동일 방향의 영역의 신호를 센싱하는 센서인,The lidar sensor and the first image sensor mounted outside the self-driving vehicle are sensors for sensing signals in the same direction as each other,자율 주행 시스템.autonomous driving system.
- 제8항에 있어서, According to claim 8,상기 음성 멘트는 상기 스피커를 통해 출력하며, 상기 메시지는 상기 디스플레이를 통해 출력하는,The voice comment is output through the speaker, and the message is output through the display.자율 주행 시스템.autonomous driving system.
- 제8항에 있어서, According to claim 8,상기 자율주행제어 모듈은 상기 신호 데이터와 상기 입력을 이용하여 상기 인공지능 알고리즘을 학습시키는, The autonomous driving control module learns the artificial intelligence algorithm using the signal data and the input.자율 주행 시스템.autonomous driving system.
- 제11항에 있어서,According to claim 11,상기 자율주행제어 모듈은, The autonomous driving control module,상기 제1 이미지 센서를 통해 수신되는 이미지신호 데이터를 상기 디스플레이로 출력하고 상기 디스플레이에서의 선택 입력으로 교통 신호등을 인식하고 인식된 교통 신호등의 영역에서의 이미지신호 데이터로 출력신호를 인식하고 인식된 교통 신호등의 영역 데이터, 인식된 출력신호 데이터 및 상기 제1 이미지 센서의 이미지신호 데이터를 상기 인공지능 알고리즘의 학습 데이터로 제공하거나,The image signal data received through the first image sensor is output to the display, the traffic light is recognized as a selection input on the display, the output signal is recognized with the image signal data in the area of the recognized traffic light, and the recognized traffic is recognized. Provide the area data of the traffic light, the recognized output signal data, and the image signal data of the first image sensor as learning data of the artificial intelligence algorithm;교통 신호등이 표시된 이미지신호 데이터를 상기 디스플레이로 출력하고 표시된 교통 신호등에 대한 입력으로 출력신호를 인식하고 상기 교통 신호등의 영역 데이터, 인식된 출력신호 데이터 및 상기 제1 이미지 센서의 이미지신호 데이터를 상기 인공지능 알고리즘의 학습 데이터로 제공하는, The image signal data displayed by the traffic light is output to the display, the output signal is recognized as an input to the displayed traffic light, and the area data of the traffic light, the recognized output signal data, and the image signal data of the first image sensor are converted into the artificial light. Provided as learning data for intelligent algorithms,자율 주행 시스템.autonomous driving system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2022/002965 WO2023167345A1 (en) | 2022-03-03 | 2022-03-03 | Autonomous driving system and autonomous driving method capable of responding to traffic signal recognition failure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2022/002965 WO2023167345A1 (en) | 2022-03-03 | 2022-03-03 | Autonomous driving system and autonomous driving method capable of responding to traffic signal recognition failure |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023167345A1 true WO2023167345A1 (en) | 2023-09-07 |
Family
ID=87883772
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2022/002965 WO2023167345A1 (en) | 2022-03-03 | 2022-03-03 | Autonomous driving system and autonomous driving method capable of responding to traffic signal recognition failure |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023167345A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170069551A (en) * | 2015-12-11 | 2017-06-21 | 현대자동차주식회사 | System and method of detecting signal light |
KR20180026243A (en) * | 2016-09-02 | 2018-03-12 | 엘지전자 주식회사 | Autonomous vehicle and control method thereof |
JP6432601B2 (en) * | 2014-08-08 | 2018-12-12 | 日産自動車株式会社 | Signal detection device and signal detection method |
KR20190091419A (en) * | 2019-07-17 | 2019-08-06 | 엘지전자 주식회사 | Controll Method for Autonomous Vehicle and System thereof |
US20200082186A1 (en) * | 2018-09-07 | 2020-03-12 | Baidu Online Network Technology (Beijing) Co., Ltd. | Method for recognizing traffic light, device, and vehicle |
KR102399494B1 (en) * | 2021-01-05 | 2022-05-18 | 이상혁 | Automatic driving system and automatic driving method able to deal with to traffic lights recognition failure |
-
2022
- 2022-03-03 WO PCT/KR2022/002965 patent/WO2023167345A1/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6432601B2 (en) * | 2014-08-08 | 2018-12-12 | 日産自動車株式会社 | Signal detection device and signal detection method |
KR20170069551A (en) * | 2015-12-11 | 2017-06-21 | 현대자동차주식회사 | System and method of detecting signal light |
KR20180026243A (en) * | 2016-09-02 | 2018-03-12 | 엘지전자 주식회사 | Autonomous vehicle and control method thereof |
US20200082186A1 (en) * | 2018-09-07 | 2020-03-12 | Baidu Online Network Technology (Beijing) Co., Ltd. | Method for recognizing traffic light, device, and vehicle |
KR20190091419A (en) * | 2019-07-17 | 2019-08-06 | 엘지전자 주식회사 | Controll Method for Autonomous Vehicle and System thereof |
KR102399494B1 (en) * | 2021-01-05 | 2022-05-18 | 이상혁 | Automatic driving system and automatic driving method able to deal with to traffic lights recognition failure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021006491A1 (en) | Sound source visualization device and method | |
WO2009145422A2 (en) | Image-recording apparatus for vehicle integrated with camera | |
WO2020241955A1 (en) | In-vehicle electronic device and method for operating in-vehicle electronic device | |
WO2017018744A1 (en) | System and method for providing public service using autonomous smart car | |
WO2014163307A1 (en) | Automatic driving system for vehicle | |
WO2013115470A1 (en) | Integrated control system and method using surveillance camera for vehicle | |
WO2014157781A1 (en) | Integrated parking control system | |
WO2020105759A1 (en) | Communication device, control method thereof, and communication system including same | |
WO2021002519A1 (en) | Apparatus for providing advertisement for vehicle, and method for providing advertisement for vehicle | |
WO2021002503A1 (en) | Electronic device for vehicle and method for operating same | |
WO2021002517A1 (en) | Shared vehicle management device and shared vehicle management method | |
WO2020241952A1 (en) | Autonomous vehicle system and autonomus driving method for vehicle | |
KR20210034096A (en) | Detecting and responding to matrices for autonomous vehicles | |
WO2010024528A2 (en) | System for monitoring an impact absorbing facility for a vehicle, and apparatus for monitoring an impact absorbing facility for a vehicle | |
WO2020241971A1 (en) | Traffic accident management device and traffic accident management method | |
WO2023167345A1 (en) | Autonomous driving system and autonomous driving method capable of responding to traffic signal recognition failure | |
WO2023120818A1 (en) | Traffic flow control device for controlling traffic flow in which autonomous vehicles are mixed, and method using same | |
WO2014084594A1 (en) | Apparatus and method for monitoring traffic violations | |
KR102399494B1 (en) | Automatic driving system and automatic driving method able to deal with to traffic lights recognition failure | |
WO2015163737A1 (en) | Black box for motorcycle including external data collecting part | |
CN113256998A (en) | Special vehicle and working state identification method and equipment thereof | |
WO2020218716A1 (en) | Automatic parking device and automatic parking method | |
WO2017111282A1 (en) | Device and method for controlling vehicular black box images | |
WO2023234468A1 (en) | Dimming control method for luminaire and dimming control system using same | |
WO2022149640A1 (en) | Autonomous vehicle driving control method and system using infrastructure information, driving information about adjacent vehicles, and pre-learned information |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22929989 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |