[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023004643A1 - 多连接下的通信方法和通信装置 - Google Patents

多连接下的通信方法和通信装置 Download PDF

Info

Publication number
WO2023004643A1
WO2023004643A1 PCT/CN2021/109052 CN2021109052W WO2023004643A1 WO 2023004643 A1 WO2023004643 A1 WO 2023004643A1 CN 2021109052 W CN2021109052 W CN 2021109052W WO 2023004643 A1 WO2023004643 A1 WO 2023004643A1
Authority
WO
WIPO (PCT)
Prior art keywords
tdls
connection
under
information
message frame
Prior art date
Application number
PCT/CN2021/109052
Other languages
English (en)
French (fr)
Inventor
董贤东
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2021/109052 priority Critical patent/WO2023004643A1/zh
Priority to CN202180002197.0A priority patent/CN115956370A/zh
Priority to EP21951257.1A priority patent/EP4380302A4/en
Publication of WO2023004643A1 publication Critical patent/WO2023004643A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present disclosure relates to the field of wireless communication, and more specifically, to a communication method and a communication device under multiple connections.
  • Wi-Fi technology 320MHz bandwidth transmission, aggregation and coordination of multiple frequency bands, etc. It is expected to increase the rate and throughput by at least four times compared with the existing standards. Its main application scenarios are Video transmission, AR (Augmented Reality, augmented reality), VR (Virtual Reality, virtual reality), etc.
  • the aggregation and coordination of multiple frequency bands refers to the simultaneous communication between devices in the 2.4GHz, 5GHz, and 6GHz frequency bands.
  • a new MAC Media Access Control
  • a new MAC Media Access Control
  • the current multi-band aggregation and system technology will support a maximum bandwidth of 320MHz (160MHz+160MHz), and may also support 240MHz (160MHz+80MHz) and other bandwidths.
  • the station (STA: Station) and the access point (AP: Access Point) can be a multi-connection device (MLD: multi-link device), that is, it supports simultaneous sending and receiving under multiple connections at the same time. /or receive functions. Therefore, in the current technology, there may be multiple connections between the STA and the AP, and the communication between the two devices under the multiple connections is being researched.
  • MLD multi-connection device
  • An exemplary embodiment of the present disclosure provides a communication method under multiple connections, including: determining a first message frame under one of the multiple connections, wherein the first message frame includes Information for implementing a Tunnel Direct Link Setup (TDLS) function under at least one of the connections; sending the first message frame.
  • TDLS Tunnel Direct Link Setup
  • An exemplary embodiment of the present disclosure provides a communication method under multiple connections, including: receiving a first message frame under one of the multiple connections, wherein the first message frame includes Information about implementing a TDLS function under at least one of the connections; performing a communication operation based on the first message frame.
  • a communication device under multiple connections, including: a processing module configured to: determine a first message frame under one of the multiple connections, wherein the first message frame Including information for realizing TDLS function under at least one connection among the multiple connections; a transceiver module configured to: send the first message frame.
  • a communication device under multiple connections, including: a transceiver module configured to: receive a first message frame under one of the multiple connections, wherein the first message frame It includes information for implementing a TDLS function under at least one of the multiple connections; a processing module configured to: control execution of a communication operation based on the first message frame.
  • an electronic device includes a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • the processor implements the above method when executing the computer program.
  • a computer-readable storage medium storing instructions for performing various operations.
  • a computer program is stored on the computer readable storage medium.
  • the computer program is executed by the processor, the above-mentioned method is realized.
  • the technical solution provided by the exemplary embodiments of the present disclosure can apply the TDLS mechanism in multi-connection communication, and improve spectrum utilization.
  • FIG. 1 is an exemplary diagram illustrating a communication scenario under multi-connection according to an embodiment.
  • FIG. 2 is an exemplary diagram illustrating tunnel direct link setup (TDLS) according to an embodiment.
  • TDLS tunnel direct link setup
  • FIG. 3 is a flowchart illustrating a communication method under multi-connection according to an embodiment.
  • Fig. 4 is a flowchart illustrating another communication method under multi-connection according to an embodiment.
  • FIG. 5 is a block diagram illustrating a communication device according to an embodiment.
  • FIG. 1 is an exemplary diagram illustrating a communication scenario under multi-connection according to an embodiment.
  • a basic service set may consist of an AP and one or more stations (STA) communicating with the AP.
  • a basic service set can be connected to the distribution system DS (Distribution System) through its AP, and then connected to another basic service set to form an extended service set ESS (Extended Service Set).
  • DS Distribution System
  • ESS Extended Service Set
  • An AP is a wireless switch for a wireless network and also an access device for a wireless network.
  • AP equipment can be used as a wireless base station, mainly used as a bridge for connecting wireless networks and wired networks. With this access point AP, wired and wireless networks can be integrated.
  • the AP may include software applications and/or circuitry to enable other types of nodes in the wireless network to communicate with the outside and inside of the wireless network through the AP.
  • the AP may be a terminal device or a network device equipped with a Wi-Fi (Wireless Fidelity, wireless fidelity) chip.
  • Wi-Fi Wireless Fidelity, wireless fidelity
  • stations may include, but are not limited to: cellular phones, smart phones, wearable devices, computers, personal digital assistants (PDAs), personal communication system (PCS) devices, personal information managers (PIMs), personal navigation devices (PND), GPS, multimedia devices, Internet of Things (IoT) devices, etc.
  • PDAs personal digital assistants
  • PCS personal communication system
  • PIMs personal information managers
  • PND personal navigation devices
  • GPS GPS
  • multimedia devices Internet of Things (IoT) devices, etc.
  • IoT Internet of Things
  • APs and STAs may support multi-connected devices, for example, may be denoted as AP MLD and non-AP STA MLD, respectively.
  • AP MLD multi-connected devices
  • non-AP STA MLD multi-connected devices
  • the AP MLD may represent an access point supporting the multi-connection communication function
  • the non-AP STA MLD may represent a station supporting the multi-connection communication function.
  • AP MLD can work under three connections, such as the affiliated AP1, AP2 and AP3 shown in Figure 1
  • the non-AP STA MLD can also work under three connections, as shown in Figure 1, the affiliated STA1, STA2 and STA3.
  • AP1 and STA1 communicate through the corresponding first link Link 1.
  • AP2 and AP3 communicate with STA2 and STA3 through the second link Link 2 and the third link Link 3 respectively.
  • Link 1 to Link 3 can be multiple connections at different frequencies, for example, connections at 2.4GHz, 5GHz, and 6GHz, or several connections at the same or different bandwidths at 2.4GHz, 5GHz, and 6GHz. Additionally, multiple channels can exist under each connection.
  • an AP MLD may be connected to multiple non-AP STA MLDs, or under each connection, the AP Can communicate with several other types of sites.
  • non-AP STA MLD can support tunneled direct link setup (TDLS, tunneled direct link setup) function.
  • TDLS tunneled direct link setup
  • FIG. 2 an exemplary diagram of Tunnel Direct Link Setup (TDLS) according to an embodiment is shown.
  • tunnel direct link establishment can be realized between the first multi-connection site device non-AP STA MLD 1 and the second multi-connection site device non-AP STA MLD 2, so that direct connection between them can be performed. Communication (for example, data transmission) is performed without going through the multi-connection access point device AP MLD.
  • TDLS tunnel direct link establishment
  • both the first multi-association site device non-AP STA MLD 1 and the second multi-association site device non-AP STA MLD 2 are connected to the same multi-association access point device AP MLD , but the present disclosure is not limited thereto, for example, non-AP STA MLD 1 and non-AP STA MLD 2 may be respectively connected to different AP MLDs.
  • One of the first multi-connection site device non-AP STA MLD 1 and the second multi-connection site device non-AP STA MLD 2 can be used as the initiator of TDLS to perform a TDLS discovery request (TDLS discovery request), and the other can As the responder of TDLS, execute TDLS discovery response (TDLS discovery response), and then establish a channel direct link between them through the process of TDLS establishment.
  • the process of TDLS setup may include: TDLS setup request (TDLS setup request), TDLS setup response (TDLS setup response) and TDLS setup confirmation (TDLS setup confirm).
  • 802.11be equipment supports multi-connection communication.
  • the existing TDLS standard only supports the establishment of a single connection, and only supports communication after the establishment of a single connection. For example, after the non-AP STA MLD and AP MLD complete the establishment of multiple connections, then For TDLS communication, according to the existing standard, a TDLS discovery request frame needs to be sent under each connection, so the TDLS connection time is too long, which is not conducive to spectrum utilization.
  • FIG. 3 is a flowchart illustrating a communication method under multi-connection according to an embodiment.
  • the communication method shown in FIG. 3 can be applied to the TDLS initiator.
  • the TDLS initiator may be any affiliated station in a station supporting multi-connection communication (for example, the first multi-connection station device non-AP STA MLD 1 in FIG. 2 ).
  • a first message frame is determined under one of the multiple connections.
  • the first message frame may include information for implementing a Tunnel Direct Link Setup (TDLS) function under at least one of the multiple connections (hereinafter referred to as "TDLS information" for ease of description) .
  • TDLS information for ease of description
  • multiple connections may refer to multiple connections supported by the TDLS initiator for communication in different frequency bands (for example, Link 1, Link 2 and Link 3 in FIG. 1 ).
  • the first message frame may be a TDLS discovery request frame, however the present disclosure is not limited thereto, and other frames that can be used to initiate TDLS are also feasible.
  • the first message frame may be generated according to at least one of the following conditions: network conditions, load conditions, and hardware capabilities of sending/receiving devices , business type, and related agreement provisions; this embodiment of the present disclosure does not make specific limitations.
  • the first message frame may also be acquired from an external device, which is not specifically limited in this embodiment of the present disclosure.
  • the TDLS initiator can establish TDLS under at least one connection (one or more) connections under one connection by carrying TDLS information in the first message frame (for example, a TDLS discovery request frame),
  • TDLS information may carry information about at least one connection (at least one TDLS connection) to implement TDLS.
  • the TDLS information may be carried in the first message frame (eg, TDLS Discovery Request frame) in the form of an information element, however, the present disclosure is not limited thereto, and the TDLS information may be carried in any other feasible manner.
  • TDLS information is described in the form of information elements.
  • the first message frame (for example, a TDLS discovery request frame) may include a link identifier (link identifier) information element, and its format may be as shown in Table 1 below.
  • link identifier link identifier
  • connection identifier information element may include: an element identification (Element ID) identifying the connection identifier information element, a length field (Length) representing the length information of the connection identifier information element, and a corresponding to at least one TDLS connection TDLS information.
  • element ID element identification
  • Length length field
  • TDLS information corresponding to two TDLS connections is shown in Table 1, the present disclosure is not limited thereto, and the TDLS information in Table 1 may be variously changed according to the number of connections required to implement TDLS.
  • the TDLS information may include: a MAC address of a TDLS initiator under each connection of at least one TDLS connection (for example, TDLS initiator STA MAC address1, TDLS initiator STA MAC address2 in Table 1) and The MAC address of the TDLS responder (eg, TDLS responder STA MAC address1, TDLS responder STA MAC address2 in Table 1).
  • Each STA attached to the same non-AP STA MLD has a unique MAC address per connection.
  • the TDLS connection can be indicated by carrying the MAC addresses of the TDLS initiator and responder.
  • the TDLS information may include: a basic service set identifier or a connection identifier respectively corresponding to at least one TDLS connection, for example, BSSID1/Link ID1 and BSSID2/Link ID2 in Table 1.
  • the Basic Service Set Identifier may indicate: the identifier of the Basic Service Set (BSS) to which the TDLS initiator belongs under each connection in at least one TDLS connection.
  • BSS Basic Service Set
  • Each AP attached to the same AP MLD has a unique BSSID, and the stations connected to the AP can correspond to its BSSID.
  • the Basic Service Set Identifier may represent the BSSID of the AP associated with the TDLS initiator under the corresponding connection. Therefore, at least one TDLS connection can be identified by carrying at least one basic service set identifier (BSSID1, BSSID2).
  • the link ID may have multiple bits to identify the combined information of the working frequency spectrum, bandwidth/channel and/or BSSID.
  • At least one TDLS connection may be identified by carrying at least one connection identifier (Link ID1, Link ID2).
  • Different affiliated STAs may be assigned the same MAC address. Therefore, in order to clearly indicate the initiator and responder of TDLS to ensure effective implementation of TDLS functions, except Carry the MAC address of the TDLS initiator and the MAC address of the TDLS responder under each TDLS connection, and may also carry the basic service set identifier or connection identifier corresponding to the corresponding TDLS connection.
  • TDLS information under at least a part of at least one TDLS connection may be included in the connection identifier information element.
  • connection identifier information element can be redefined as shown in Table 1, so as to include the TDLS information corresponding to all connections in at least one TDLS connection (for example, the MAC address of the TDLS initiator and the TDLS response The MAC address of the party, and/or BSSID/Link ID) is carried in the connection identifier information element.
  • the information of all TDLS connections can be carried in the same information element, and the information can be transmitted in a simple encoding and decoding manner.
  • the connection identifier information element may only include information on a part of the TDLS connection (for example, may only include the MAC address of the TDLS initiator and the MAC address of the TDLS responder under one TDLS connection, and/or BSSID/Link ID), and the information of other TDLS connections can be carried in other positions of the first message frame.
  • the first message frame may include a multiple connection (ML) information element, and TDLS information under at least a part of the at least one TDLS connection may be included in the multiple connection information element of the first message frame.
  • the information of some TDLS connections can be carried in the connection identifier information element, and the information of some TDLS connections can be carried in the ML information element.
  • the first message frame when it is implemented as a TDLS discovery request frame, it may have the format shown in Table 2 below.
  • Order may identify the order of each information field (Information) in the TDLS discovery request frame.
  • the Category field may identify mechanisms for various management actions, for example, when it is set to a specific value (such as, but not limited to, 12), it may identify a TDLS mechanism.
  • the TDLS action (TDLS action) field can be set to various values to distinguish different TDLS actions, for example, when it is set to a specific value (such as, but not limited to "10"), it can identify a TDLS discovery request.
  • the Dialog token field MAY be used to match TDLS Discovery Response frames with TDLS Discovery Request frames.
  • the link identifier information element/connection identifier information element for multi-link may include information of a part of the TDLS connection (for example, information of one TDLS connection) as described above.
  • Multi-band (multi-bandwidth) field can exist selectively according to the setting of the source language.
  • the ML information element may include information on a part of the TDLS connection (for example, information on other TDLS connections other than the information on the part of the TDLS connection included in the connection identifier information element) as described above, for example, it may be included in the per-
  • the STA configuration information includes at least the MAC address and/or link ID (Link ID) of the TDLS responder under the corresponding TDLS connection, but the present disclosure is not limited thereto, and may also include the MAC address and the link ID of the TDLS initiator. /or connection identification (Link ID), etc.
  • the link identifier information element/connection identifier information element for multi-link can maintain the original format, for example, including information of a TDLS connection, and Information about other TDLS connections may be carried in the ML information element.
  • Such a design can increase the compatibility and flexibility of the system.
  • the TDLS information carried by the connection identifier information element and/or the ML information element shown in Table 1 and Table 2 is only exemplary, and the present disclosure is not limited thereto.
  • TDLS information may have different contents than those shown in Table 1 and Table 2.
  • the TDLS information may include: AP MLD MAC address (AP MLD MAC address), link bitmap identifier (Link bitmap), MAC address (TDLS initiator non-AP STA MLD MAC address) and the MAC address of the TDLS responder multi-connection site device (TDLS responder non-AP STA MLD address).
  • TDLS information may be carried in a connection identifier information element having a format as shown in Table 3 below.
  • Link bitmap identifier may be set to a specific value (such as but not limited to, "1") to identify that a TDLS connection is to be established.
  • connection identifier information element shown in Table 3 By carrying TDLS information with the connection identifier information element shown in Table 3, two non-AP STA MLDs connected to the same AP MLD (non-AP STA MLD1 and non-AP STA MLD2 shown in Figure 2 ) to establish a TDLS connection, and the established TDLS connection may correspond to multiple connections supported by two non-AP STA MLDs.
  • the TDLS connection can be realized quickly and more simply.
  • Table 3 may include: multiple AP MLD MAC addresses, multiple TDLS initiator non-AP STA MLD MAC addresses, and multiple TDLS responder non-AP SAT MLD MAC addresses.
  • a TDLS connection can be established between non-AP STA MLDs connected to different AP MLDs.
  • each element shown in Table 1 to Table 3 exists independently, and these elements are exemplarily listed in the same table, but it does not mean that all elements in the table must be based on the table. displayed simultaneously. The value of each of these elements is not dependent on the value of any other element in the table. Therefore, those skilled in the art can understand that the value of each element in the tables of the present disclosure is an independent embodiment.
  • a first message frame may be sent.
  • Any STA attached to the same non-AP STA MLD can send the first message frame (TDLS discovery request frame) under any connection.
  • the first message frame may be sent under the connection for determining the first message frame in step 310, but the disclosure is not limited thereto, and the second message frame may be sent under a connection other than the connection for determining the first message frame in step 310.
  • a message frame may be sent under the connection for determining the first message frame in step 310.
  • the TDLS under at least one connection (preferably, multiple connections) can be established under one connection through a TDLS discovery request frame, thereby shortening the time for TDLS connection establishment, realizing efficient use of frequency spectrum, and benefiting equipment power saving.
  • Fig. 4 is a flowchart illustrating another communication method under multi-connection according to an embodiment.
  • the communication method shown in FIG. 4 can be applied to the TDLS responder.
  • the TDLS responder may respond to the first message frame (TDLS Discovery Request frame) of FIG. 3 in a station (e.g., the second multi-connection site device non-AP STA MLD 2 in FIG. 2 ) for TDLS communication with the TDLS initiator any affiliated sites).
  • the TDLS responder may be connected to the same AP MLD as the TDLS initiator; in another embodiment, the TDLS responder may be connected to different AP MLDs from the TDLS initiator.
  • a first message frame is received under one connection in the multi-connection, wherein the first message frame may include a channel direct link establishment (TDLS ) function information, that is, TDLS information.
  • TDLS channel direct link establishment
  • the TDLS information may include: a basic service set identifier or a connection identifier respectively corresponding to at least one connection.
  • the TDLS information includes: a MAC address of a TDLS initiator and a MAC address of a TDLS responder under each of the at least one connection.
  • the basic service set identifier means: an identifier of the basic service set to which the TDLS initiator belongs under the corresponding connection in at least one connection.
  • the first message frame includes a connection identifier information element, wherein TDLS information under at least a part of the at least one connection is included in the connection identifier information element.
  • the first message frame includes a multi-connection information element, wherein TDLS information under at least a part of the at least one connection is included in the multi-connection information element of the first message frame.
  • the first message frame, TDLS information, connection identifier information element, and multi-connection information element in FIG. 4 may be similar to the embodiments described with reference to FIG. 3 and Tables 1 to 3, and repeated descriptions are omitted here to avoid redundancy.
  • a communication operation may be performed based on the first message frame.
  • the TDLS responder may establish and start a TDLS communication operation with the TDLS initiator under a corresponding connection based on the TDLS information carried in the first message frame.
  • FIG. 5 is a block diagram illustrating a communication device 500 according to an embodiment of the present disclosure.
  • a communication device 500 may include a processing module 510 and a transceiving module 520 .
  • the communication device shown in FIG. 5 can be applied to a TDLS initiator or a TDLS responder.
  • the processing module 510 may be configured to: determine a first message frame under one of the multiple connections, wherein the first message frame includes Information for implementing a Tunnel Direct Link Setup (TDLS) function under at least one of the multiple connections; the transceiver module 520 may be configured to: send a first message frame.
  • the communication device 500 can execute the communication method described with reference to FIG. 3, and the first message frame and the information included therein can be similar to the embodiments described with reference to Table 1 to Table 3, and repeated descriptions are omitted here for Avoid redundancy.
  • the transceiver module 520 may be configured to: receive a first message frame under one of the multiple connections, wherein the first message frame includes Information for implementing a Tunnel Direct Link Setup (TDLS) function under at least one of the connections; the processing module 510 may be configured to: control the execution of the communication operation based on the first message frame.
  • the communication device 500 can execute the communication method described with reference to FIG. 4, and the first message frame and the information included therein can be similar to the embodiments described with reference to Table 1 to Table 3. For the sake of brevity, repetition is omitted here. description of.
  • the communication device 500 shown in FIG. 5 is only exemplary, and embodiments of the present disclosure are not limited thereto.
  • the communication device 500 may also include other modules, such as a memory module.
  • various modules in the communication device 500 may be combined into more complex modules, or may be divided into more individual modules.
  • the communication method and communication device under multi-connection can apply the TDLS mechanism in multi-connection communication to improve spectrum utilization.
  • the embodiments of the present disclosure also provide an electronic device, which includes a processor and a memory; wherein, the memory stores machine-readable instructions (may also be referred to as the “computer program”); a processor for executing machine-readable instructions to implement the methods described with reference to FIGS. 3 and 4 .
  • the memory stores machine-readable instructions (may also be referred to as the “computer program”); a processor for executing machine-readable instructions to implement the methods described with reference to FIGS. 3 and 4 .
  • Embodiments of the present disclosure also provide a computer-readable storage medium, on which a computer program is stored.
  • a computer program is stored.
  • the methods described with reference to FIG. 3 and FIG. 4 are implemented.
  • a processor may be used to implement or execute various exemplary logical blocks, modules and circuits described in conjunction with the present disclosure, for example, CPU (Central Processing Unit, central processing unit), general processing DSP (Digital Signal Processor, Data Signal Processor), ASIC (Application Specific Integrated Circuit, Application Specific Integrated Circuit), FPGA (Field Programmable Gate Array, Field Programmable Gate Array) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • the processor may also be a combination that realizes computing functions, for example, a combination of one or more microprocessors, a combination of DSP and a microprocessor, and the like.
  • the memory may be, for example, ROM (Read Only Memory, Read Only Memory), RAM (Random Access Memory, Random Access Memory), EEPROM (Electrically Erasable Programmable Read Only Memory, Electrically Erasable Programmable Only Memory) read memory), CD-ROM (Compact Disc Read Only Memory, read-only disc) or other optical disc storage, optical disc storage (including compact disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.), magnetic disk storage medium or other magnetic A storage device, or any other medium that can be used to carry or store program code in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • ROM Read Only Memory, Read Only Memory
  • RAM Random Access Memory
  • EEPROM Electrically Erasable Programmable Only Memory
  • CD-ROM Compact Disc Read Only Memory, read-only disc
  • optical disc storage including compact disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.
  • magnetic disk storage medium or other magnetic A storage device or any other medium that

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种多连接下的通信方法和通信装置。所述通信方法可以包括:在所述多连接中的一个连接下确定第一消息帧,其中,所述第一消息帧包括用于在所述多连接中的至少一个连接下实现通道直接链路建立(TDLS)功能的信息,即,TDLS信息;发送所述第一消息帧。本公开的示例实施例提供的技术方案能够提高频谱利用率。

Description

多连接下的通信方法和通信装置 技术领域
本公开涉及无线通信领域,更具体地说,涉及一种多连接下的通信方法和通信装置。
背景技术
目前的Wi-Fi技术所研究的范围为:320MHz的带宽传输、多个频段的聚合及协同等,期望能够相对于现有的标准提高至少四倍的速率以及吞吐量,其主要的应用场景为视频传输、AR(Augmented Reality,增强现实)、VR(Virtual Reality,虚拟现实)等。
多个频段的聚合及协同是指设备间同时在2.4GHz、5GHz及6GHz等的频段下进行通信,对于设备间同时在多个频段下通信需要定义新的MAC(Media Access Control,介质访问控制)机制来进行管理。此外,还期望多频段的聚合及协同能够支持低时延传输。
目前多频段的聚合及系统技术中将支持的最大带宽为320MHz(160MHz+160MHz),此外还可能会支持240MHz(160MHz+80MHz)及其它带宽。
在目前的技术中,站点(STA:Station)和接入点(AP:Access Point)可以是多连接设备(MLD:multi-link device),即,支持在同一时刻能够在多连接下同时发送和/或接收的功能。因此,在目前的技术中,STA与AP之间可以存在多个连接,并且正在对这两种设备在多连接下的通信进行研究。
发明内容
本公开的各方面将至少解决上述问题和/或缺点。本公开的各种实施例提供以下技术方案:
根据本公开的示例实施例提供一种多连接下的通信方法,包括:在所述多连接中的一个连接下确定第一消息帧,其中,所述第一消息帧包括用于在所述多连接中的至少一个连接下实现通道直接链路建立(TDLS)功能的信息;发送所述第一消息帧。
根据本公开的示例实施例提供一种多连接下的通信方法,包括:在所述多连接中的一个连接下接收第一消息帧,其中,所述第一消息帧包括用于在所述多连接中的至少一个连接下实现TDLS功能的信息;基于所述第一消息帧执行通信操作。
根据本公开的示例实施例提供一种多连接下的通信装置,包括:处理模块,被配置为:在所述多连接中的一个连接下确定第一消息帧,其中,所述第一消息帧包括用于在所述多连接中的至少一个连接下实现TDLS功能的信息;收发模块,被配置为:发送所述第一消息帧。
根据本公开的示例实施例提供一种多连接下的通信装置,包括:收发模块,被配置为:在所述多连接中的一个连接下接收第一消息帧,其中,所述第一消息帧包括用于在所述多连接中的至少一个连接下实现TDLS功能的信息;处理模块,被配置为:基于所述第一消息帧控制通信操作的执行。
根据本公开的示例实施例提供了一种电子装置。所述电子装置包括存储器、处理器及存储在所述存储器上并在所述处理器上可运行的计算机程序。所述处理器执行所述计算机程序时实现如上所述的方法。
根据本公开的示例实施例提供了一种计算机可读存储介质。所述计算机可读存储介质上存储有计算机程序。该计算机程序被处理器执行时实现如上所述的方法。
本公开的示例实施例提供的技术方案能够在多连接通信中应用TDLS机制,提高频谱利用率。
附图说明
通过参照附图详细描述本公开的示例实施例,本公开实施例的上述以及其他特征将更加明显,其中:
图1是示出根据实施例的多连接下的通信场景的示例性示图。
图2是示出根据实施例的通道直接链路建立(TDLS)的示例性示图。
图3是示出根据实施例的多连接下的通信方法的流程图。
图4是示出根据实施例的多连接下的另一通信方法的流程图。
图5是示出根据实施例的通信装置的框图。
具体实施方式
提供以下参照附图的描述,以帮助全面理解由所附权利要求及其等同物限定的本公开的各种实施例。本公开的各种实施例包括各种具体细节,但是这些具体细节仅被认为是示例性的。此外,为了清楚和简洁,可以省略对公知的技术、功能和构造的描述。
在本公开中使用的术语和词语不限于书面含义,而是仅被发明人所使用,以能够清楚和一致的理解本公开。因此,对于本领域技术人员而言,提供本公开的各种实施例的描述仅是为了说明的目的,而不是为了限制的目的。
应当理解,除非上下文另外清楚地指出,否则这里使用的单数形式“一”、“一个”、“所述”和“该”也可以包括复数形式。应该进一步理解的是,本公开中使用的措辞“包括”是指存在所描述的特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。
将理解的是,尽管术语“第一”、“第二”等在本文中可以用于描述各种元素,但是这些元素不应受这些术语的限制。这些术语仅用于将一个元素与另一个元素区分开。因此,在不脱离示例实施例的教导的情况下,下面讨论的第一元素可以被称为第二元素。
应该理解,当元件被称为“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的术语“和/或”或者表述“……中的至少一个/至少一者”包括一个或多个相关列出的项目的任何和所有组合。
除非另外定义,这里使用的所有术语(包括技术术语和科学术语), 具有与本公开所属领域中的普通技术人员的一般理解相同的意义。
图1是示出根据实施例的多连接下的通信场景的示例性示图。
在无线局域网中,一个基本服务集(BSS)可以由AP以及与AP通信的一个或多个站点(STA)构成。一个基本服务集可以通过其AP连接到分配系统DS(Distribution System),然后再接入到另一个基本服务集,构成扩展的服务集ESS(Extended Service Set)。
AP是用于无线网络的无线交换机,也是无线网络的接入设备。AP设备可以用作无线基站,主要是用来连接无线网络及有线网络的桥接器。利用这种接入点AP,可以整合有线及无线网络。
AP可以包括软件应用和/或电路,以使无线网络中的其他类型节点可以通过AP与无线网络外部及内部进行通信。在一些示例中,作为示例,AP可以是配备有Wi-Fi(Wireless Fidelity,无线保真)芯片的终端设备或网络设备。
作为示例,站点(STA)可以包括但不限于:蜂窝电话、智能电话、可穿戴设备、计算机、个人数字助理(PDA)、个人通信系统(PCS)设备、个人信息管理器(PIM)、个人导航设备(PND)、全球定位系统、多媒体设备、物联网(IoT)设备等。
在本公开的示例实施例中,AP和STA可以支持多连接的设备,例如,可以被分别表示为AP MLD和non-AP STA MLD。为了便于描述,在下文中,主要描述一个AP与一个STA在多连接下进行通信的示例,然而,本公开的示例实施例不限于此。
在图1中,仅作为示例性的,AP MLD可以表示支持多连接通信功能的接入点,non-AP STA MLD可以表示支持多连接通信功能的站点。参照图1,AP MLD可以工作在三个连接下,如图1所示的附属AP1、AP2和AP3,non-AP STA MLD也可以工作在三个连接下,如图1所示的附属STA1、STA2和STA3。在图1的示例中,假设AP1与STA1通过对应的第一连接Link 1进行通信,类似地,AP2和AP3分别通过第二连接Link 2和第三连接Link 3与STA2和STA3进行通信。此外,Link 1至Link 3可以是不同频率下的多个连接,例如,2.4GHz、5GHz、6GHz下的连接等,或2.4GHz、5GHz、6GHz下的几个相同或不同带宽的连接。此外,在每个连接下可以存在多个信道。然而,应该理解的是,图1所示的通 信场景仅是示例性的,本发明构思不限于此,例如,AP MLD可以连接到多个non-AP STA MLD,或者在每个连接下,AP可以与多个其他类型的站点进行通信。
为了提高传输效率,non-AP STA MLD可以支持通道直接链路建立(TDLS,tunneled direct link setup)功能。如图2所示,示出了根据实施例的通道直接链路建立(TDLS)的示例性示图。
参照图2,可以在第一多连接站点设备non-AP STA MLD 1与第二多连接站点设备non-AP STA MLD 2之间实现通道直接链路建立(TDLS),从而可以在他们之间直接进行通信(例如,数据的传输),而不需要经过多连接接入点设备AP MLD。将理解,虽然在图2中示出了,第一多连接站点设备non-AP STA MLD 1以及第二多连接站点设备non-AP STA MLD 2均连接到了同一多连接接入点设备AP MLD,但是本公开不限于此,例如,non-AP STA MLD 1和non-AP STA MLD 2可以分别连接到不同的AP MLD。
第一多连接站点设备non-AP STA MLD 1和第二多连接站点设备non-AP STA MLD 2中的一者可以作为TDLS的发起方来执行TDLS发现请求(TDLS discovery request),另一者可以作为TDLS的响应方来执行TDLS发现响应(TDLS discovery response),然后经过TDLS建立的过程在他们之间建立通道直接链路。例如,TDLS建立的过程可以包括:TDLS建立请求(TDLS setup request)、TDLS建立响应(TDLS setup response)以及TDLS建立确认(TDLS setup confirm)。
然而,802.11be设备支持多连接通信,现有的TDLS标准只支持单连接建立,且只支持单连接建立再进行通信,如non-AP STA MLD与AP MLD完成多连接建立后,然后如要进行TDLS通信,按照现有的标准需在每个连接下发送TDLS discovery request帧,这样TDLS连接的时间过长,不利于频谱利用。
图3是示出根据实施例的多连接下的通信方法的流程图。图3所示的通信方法可以应用于TDLS发起方。TDLS发起方可以是支持多连接通信的站点(例如,图2中的第一多连接站点设备non-AP STA MLD 1)中的任意附属站点。
参照图3,在步骤310中,在多连接中的一个连接下确定第一消息帧。根据本公开的实施例,第一消息帧可以包括用于在多连接中的至少一个连接下实现通道直接链路建立(TDLS)功能的信息(为了便于描述,在下 文称为“TDLS信息”)。
在本公开的实施例中,多连接可以是指TDLS发起方能够支持的、用于在不同频带下进行通信的多个连接(例如,图1中的Link 1、Link 2和Link 3)。仅作为描述性示例,第一消息帧可以是TDLS发现请求帧,然而本公开不限于此,其他能够用于发起TDLS的帧也是可行的。
在本公开的实施例中,确定第一消息帧的方式可以有很多种,例如:可以根据以下的至少一种情况来生成第一消息帧:网络情况、负载情况、发送/接收设备的硬件能力、业务类型、相关协议规定;对此本公开实施例不作具体限制。在本公开的实施例中,还可以从外部设备获取该第一消息帧,对此本公开实施例不作具体限制。
根据本公开的实施例,TDLS发起方可以通过在第一消息帧(例如,TDLS发现请求帧)携带TDLS信息,能够在一个连接下建立至少一个连接(一个或更多个)连接下的TDLS,在下文为了便于描述,可以将这样的至少一个连接称为至少一个TDLS连接。为此,TDLS信息可以携带与将要实现TDLS的至少一个连接(至少一个TDLS连接)有关的信息。
可以通过信息元素的形式,在第一消息帧(例如,TDLS发现请求帧)中携带TDLS信息,然而,本公开不限于此,可以以任何其他可行的方式来携带TDLS信息。在下文中,为了便于描述,以信息元素的形式来描述TDLS信息。
根据本公开的实施例,第一消息帧(例如,TDLS发现请求帧)可以包括连接标识符(link identifier)信息元素,其格式可以如下面表1所示。
表1.连接标识符(link identifier)信息元素的格式
Figure PCTCN2021109052-appb-000001
参照表1,连接标识符信息元素可以包括:标识连接标识符信息元素的元素标识(Element ID)、表示连接标识符信息元素的长度信息的长度域(Length)、以及与至少一个TDLS连接对应的TDLS信息。虽然在表1中示出了与两个TDLS连接对应的TDLS信息,但是本公开不限于此,可以根据需要实现TDLS的连接的数量而不同地改变表1中的TDLS信息。
根据本公开的实施例,TDLS信息可以包括:在至少一个TDLS连接中的每个连接下的TDLS发起方的MAC地址(例如,表1中的TDLS initiator STA  MAC address1、TDLS initiator STA MAC address2)以及TDLS响应方的MAC地址(例如,表1中的TDLS responder STA MAC address1、TDLS responder STA MAC address2)。
每个附属于同一个non-AP STA MLD的STA在每个连接下具有唯一的MAC地址。可以通过携带TDLS发起方和响应方的MAC地址,来指示TDLS连接。
根据本公开的实施例,TDLS信息可以包括:与至少一个TDLS连接分别对应的基本服务集标识符或者连接标识,例如,表1中的BSSID1/Link ID1、BSSID2/Link ID2。
基本服务集标识符(BSSID)可以表示:在至少一个TDLS连接中的每个连接下的TDLS发起方所属基本服务集(BSS)的标识符。每个附属于同一个AP MLD的AP具有唯一的BSSID,与该AP连接的站点可以对应于其BSSID。换言之,基本服务集标识符(BSSID)可以表示在相应连接下与TDLS发起方关联的AP的BSSID。因此,可以通过携带至少一个基本服务集标识符(BSSID1、BSSID2)来标识至少一个TDLS连接。
连接标识(Link ID)可以具有多个比特位,以标识工作频谱、带宽/信道和/或BSSID的组合信息。可以通过携带至少一个连接标识(Link ID1、Link ID2)来标识至少一个TDLS连接。
不同的附属STA(例如,附属于不同non-AP STA MLD的附属STA)可能被分配相同的MAC地址,因此,为了能够清楚的指示TDLS的发起方和响应方以保证有效地实现TDLS功能,除了携带每个TDLS连接下的TDLS发起方的MAC地址和TDLS响应方的MAC地址,还可以携带与相应TDLS连接对应的基本服务集标识符或者连接标识。
根据本公开的实施例,在至少一个TDLS连接中的至少一部分连接下的TDLS信息可以被包括在连接标识符信息元素中。
在本公开的一个实施例中,可以如表1所示重定义连接标识符信息元素,以将至少一个TDLS连接中的所有连接所对应的TDLS信息(例如,TDLS发起方的MAC地址以及TDLS响应方的MAC地址、和/或BSSID/Link ID)携带在连接标识符信息元素中。所有TDLS连接的信息都可以携带在同一信息元素中,可以以简单的编解码方式来进行信息传输。
在本公开的一个实施例中,连接标识符信息元素可以仅包括一部分 TDLS连接的信息(例如,可以仅包括一个TDLS连接下的TDLS发起方的MAC地址以及TDLS响应方的MAC地址、和/或BSSID/Link ID),而其他TDLS连接的信息可以携带在第一消息帧的其他位置中。例如,第一消息帧可以包括多连接(ML)信息元素,在至少一个TDLS连接中的至少一部分连接下的TDLS信息可以被包括在第一消息帧的多连接信息元素中。也就是说,部分TDLS连接的信息可以携带在连接标识符信息元素,部分TDLS连接的信息可以携带在ML信息元素中。在此情况下,当第一消息帧以TDLS发现请求帧来实现时,其可以具有下面表2所示的格式。
表2.TDLS发现请求帧的定义
Figure PCTCN2021109052-appb-000002
在表2中,Order(顺序)可以标识各个信息域(Information)在TDLS发现请求帧中的顺序。Category(类别)域可以标识各种管理动作的机制,例如,当其被设置为特定值(例如但不限于,12)时,可以标识TDLS机制。TDLS action(TDLS动作)域可以被设置为各种值以区分不同的TDLS动作,例如,当其被设置为特定值(例如,但不限于“10”)时,可以标识TDLS发现请求。Dialog token(对话令牌)域可以用于将TDLS发现响应帧与TDLS发现请求帧进行匹配。连接标识符信息元素/用于多连接的连接标识符信息元素(Link identifier element/Link identifier element for multi-link)可以如上所述包括部分TDLS连接的信息(例如,一个TDLS连接的信息)。Multi-band(多带宽)域可以根据源语的设置选择性地存在。ML信息元素可以如上所述包括部分TDLS连接的信息(例如,除了连接标识符信息元素所包括的部分TDLS连接的信息之外的其他TDLS连接的信息),例如,可以在ML信息元素的per-STA配置信息(per-STA profile)中至少包括相应TDLS连接下的TDLS响应方的MAC地址和/或连接标识(Link ID),然而本公开不限于 此,还可以包括TDLS发起方的MAC地址和/或连接标识(Link ID)等。
在表2中,连接标识符信息元素/用于多连接的连接标识符信息元素(Link identifier element/Link identifier element for multi-link)可以保持原有格式,例如,包括一个TDLS连接的信息,而其他TDLS连接的信息可以携带在ML信息元素中。这样的设计可以增加系统的兼容性和灵活性。
以表1和表2所示的连接标识符信息元素和/或ML信息元素携带的TDLS信息仅是示例性的,本公开不限于此。例如,TDLS信息可以具有不同于表1和表2所示的内容。例如,在本公开的一个可选实施例中,TDLS信息可以包括:AP MLD MAC地址(AP MLD MAC address)、连接位图标识(Link bitmap)、TDLS发起方多连接站点设备的MAC地址(TDLS initiator non-AP STA MLD MAC address)和TDLS响应方多连接站点设备的MAC地址(TDLS responder non-AP STA MLD address)。在此情况下,TDLS信息可以携带在具有如下面的表3所示的格式的连接标识符信息元素中。
表3.连接标识符信息元素的格式
Figure PCTCN2021109052-appb-000003
在表3中,连接位图标识(Link bitmap)可以被设置为特定值(例如但不限于,“1”)以标识要建立TDLS连接。
通过以如表3所示的连接标识符信息元素携带TDLS信息,可以在连接到同一AP MLD的两个non-AP STA MLD(如图2所示的non-AP STA MLD1和non-AP STA MLD2)之间建立TDLS连接,并且所建立的TDLS连接可以对应于两个non-AP STA MLD所支持的多个连接。通过表3所示的TDLS信息,可以快速地、更简单地实现TDLS连接。
表3所示的格式仅是示例性的,而不是对本公开的限制,可以对表3进行各种变形。例如,表3中可以包括:多个AP MLD MAC地址、多个TDLS发起方non-AP STA MLD MAC地址以及多个TDLS响应方non-AP SAT MLD MAC地址。换言之,可以在连接到不同AP MLD的non-AP STA MLD之间建立TDLS连接。此外,可以理解的是表1至表3所示的每一个元素都是独立存在的,这些元素被示例性的列在同一张表格中,但是并不代表表格中的所有元素必须根据表格中所示的同时存在。其中每一个元素的值,是不依 赖于表格中任何其他元素值。因此本领域内技术人员可以理解,本公开表格中的每一个元素的取值都是一个独立的实施例。
继续参照图3,在步骤320中,可以发送第一消息帧。附属于同一个non-AP STA MLD的任意STA可以在任一连接下发送第一消息帧(TDLS发现请求帧)。例如,可以在步骤310中的确定第一消息帧的连接下发送第一消息帧,然而本公开不限于此,可以在不同于步骤310中的确定第一消息帧的连接的其他连接下发送第一消息帧。
根据本公开的实施例的多连接下的通信方法,在non-AP STA MLD与AP MLD完成了多连接建立之后,如果需要在多连接下进行TDLS通信,则不需要在每个连接下发送TDLS发现请求帧,而是可以在一个连接下通过一个TDLS发现请求帧建立至少一个连接(优选地,多个连接)下的TDLS,从而缩短TDLS连接建立的时间,实现频谱的有效利用,以及利于设备省电。
图4是示出根据实施例的多连接下的另一通信方法的流程图。图4所示的通信方法可以应用于TDLS响应方。TDLS响应方可以响应于图3的第一消息帧(TDLS发现请求帧)而与TDLS发起方进行TDLS通信的站点(例如,图2中的第二多连接站点设备non-AP STA MLD 2)中的任意附属站点)。在一个实施例中,如图2所示,TDLS响应方可以与TDLS发起方连接到同一AP MLD;在另一实施例中,TDLS响应方可以与TDLS发起方连接到不同的AP MLD。
参照图4,在步骤410中,在多连接中的一个连接下接收第一消息帧,其中,第一消息帧可以包括用于在多连接中的至少一个连接下实现通道直接链路建立(TDLS)功能的信息,即,TDLS信息。
根据本公开的实施例,TDLS信息可以包括:与至少一个连接分别对应的基本服务集标识符或者连接标识。
根据本公开的实施例,TDLS信息包括:在至少一个连接中的每个连接下的TDLS发起方的MAC地址以及TDLS响应方的MAC地址。
根据本公开的实施例,基本服务集标识符表示:在至少一个连接中的相应连接下的TDLS发起方所属基本服务集的标识符。
根据本公开的实施例,第一消息帧包括连接标识符信息元素,其中,在至少一个连接中的至少一部分连接下的TDLS信息被包括在连接标识符信息元素中。
根据本公开的实施例,第一消息帧包括多连接信息元素,其中,在至 少一个连接中的至少一部分连接下的TDLS信息被包括在第一消息帧的多连接信息元素中。
图4中的第一消息帧、TDLS信息、连接标识符信息元素、多连接信息元素可以类似于参照图3以及表1至表3描述的实施例,在此省略重复的描述以避免冗余。
在步骤420中,可以基于第一消息帧执行通信操作。例如,TDLS响应方可以基于第一消息帧中携带的TDLS信息与TDLS发起方在相应连接下建立并开始TDLS通信操作。
图5是示出根据本公开的实施例的通信装置500的框图。
参照图5,通信装置500可以包括处理模块510和收发模块520。图5所示的通信装置可以应用于TDLS发起方或者TDLS响应方。
在图5所示的通信装置500应用于TDLS发起方的情况下,处理模块510可以被配置为:在多连接中的一个连接下确定第一消息帧,其中,第一消息帧包括用于在多连接中的至少一个连接下实现通道直接链路建立(TDLS)功能的信息;收发模块520可以被配置为:发送第一消息帧。在此情况下,通信装置500可以执行参照图3所描述的通信方法,并且第一消息帧以及其中包括的信息可以类似于参照表1至表3描述的实施例,在此省略重复的描述以避免冗余。
在图5所示的通信装置应用于TDLS响应方的情况下,收发模块520可以被配置为:在多连接中的一个连接下接收第一消息帧,其中,第一消息帧包括用于在多连接中的至少一个连接下实现通道直接链路建立(TDLS)功能的信息;处理模块510可以被配置为:基于第一消息帧控制通信操作的执行。在此情况下,通信装置500可以执行参照图4所描述的通信方法,并且第一消息帧以及其中包括的信息可以类似于参照表1至表3描述的实施例,为了简明,在此省略重复的描述。
此外,图5所示的通信装置500仅是示例性的,本公开的实施例不限于此,例如,通信装置500还可以包括其他模块,例如,存储器模块等。此外,通信装置500中的各个模块可以组合成更复杂的模块,或者可以划分为更多单独的模块。
根据本公开的实施例的多连接下的通信方法和通信装置能够在多连 接通信中应用TDLS机制,提高频谱利用率。
基于与本公开的实施例所提供的方法相同的原理,本公开的实施例还提供了一种电子装置,该电子装置包括处理器和存储器;其中,存储器中存储有机器可读指令(也可以称为“计算机程序”);处理器,用于执行机器可读指令以实现参照图3和图4描述的方法。
本公开的实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现参照图3和图4描述的方法。
在示例实施例中,处理器可以是用于实现或执行结合本公开内容所描述的各种示例性的逻辑方框、模块和电路,例如,CPU(Central Processing Unit,中央处理器)、通用处理器、DSP(Digital Signal Processor,数据信号处理器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field Programmable Gate Array,现场可编程门阵列)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合、DSP和微处理器的组合等。
在示例实施例中,存储器可以是,例如,ROM(Read Only Memory,只读存储器)、RAM(Random Access Memory,随机存取存储器)、EEPROM(Electrically Erasable Programmable Read Only Memory,电可擦可编程只读存储器)、CD-ROM(Compact Disc Read Only Memory,只读光盘)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的程序代码并能够由计算机存取的任何其他介质,但不限于此。
应该理解的是,虽然附图的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。此外,附图的流程图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成, 而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
虽然已经参照本公开的某些实施例示出和描述了本公开,但是本领域技术人员将理解,在不脱离本公开的范围的情况下,可以在形式和细节上进行各种改变。因此,本公开的范围不应被限定为受限于实施例,而是应由所附权利要求及其等同物限定。

Claims (16)

  1. 一种多连接下的通信方法,包括:
    在所述多连接中的一个连接下确定第一消息帧,其中,所述第一消息帧包括用于在所述多连接中的至少一个连接下实现通道直接链路建立TDLS功能的信息,即,TDLS信息;
    发送所述第一消息帧。
  2. 根据权利要求1所述的通信方法,其中,所述TDLS信息包括:与所述至少一个连接分别对应的基本服务集标识符或者连接标识。
  3. 根据权利要求1或2所述的通信方法,其中,所述TDLS信息包括:在所述至少一个连接中的每个连接下的TDLS发起方的MAC地址以及TDLS响应方的MAC地址。
  4. 根据权利要求3所述的通信方法,其中,所述基本服务集标识符表示:在所述至少一个连接中的每个连接下的TDLS发起方所属基本服务集的标识符。
  5. 根据权利要求3所述的通信方法,其中,所述第一消息帧包括连接标识符信息元素,
    其中,在所述至少一个连接中的至少一部分连接下的TDLS信息被包括在所述连接标识符信息元素中。
  6. 根据权利要求3所述的通信方法,其中,所述第一消息帧包括多连接信息元素,
    其中,在所述至少一个连接中的至少一部分连接下的TDLS信息被包括在所述第一消息帧的多连接信息元素中。
  7. 一种多连接下的通信方法,包括:
    在所述多连接中的一个连接下接收第一消息帧,其中,所述第一消息帧包括用于在所述多连接中的至少一个连接下实现通道直接链路建立TDLS功能的信息,即,TDLS信息;
    基于所述第一消息帧执行通信操作。
  8. 根据权利要求7所述的通信方法,其中,所述TDLS信息包括:与所述至少一个连接分别对应的基本服务集标识符或者连接标识。
  9. 根据权利要求7或8所述的通信方法,其中,所述TDLS信息包括:在所述至少一个连接中的每个连接下的TDLS发起方的MAC地址以及TDLS响应方的MAC地址。
  10. 根据权利要求9所述的通信方法,其中,所述基本服务集标识符表示:在所述至少一个连接中的相应连接下的TDLS发起方所属基本服务集的标识符。
  11. 根据权利要求9所述的通信方法,其中,所述第一消息帧包括连接标识符信息元素,
    其中,在所述至少一个连接中的至少一部分连接下的TDLS信息被包括在所述连接标识符信息元素中。
  12. 根据权利要求9所述的通信方法,其中,所述第一消息帧包括多连接信息元素,
    其中,在所述至少一个连接中的至少一部分连接下的TDLS信息被包括在所述第一消息帧的多连接信息元素中。
  13. 一种多连接下的通信装置,所述通信装置包括:
    处理模块,被配置为:在所述多连接中的一个连接下确定第一消息帧, 其中,所述第一消息帧包括用于在所述多连接中的至少一个连接下实现通道直接链路建立TDLS功能的信息;
    收发模块,被配置为:发送所述第一消息帧。
  14. 一种多连接下的通信装置,所述通信装置包括:
    收发模块,被配置为:在所述多连接中的一个连接下接收第一消息帧,其中,所述第一消息帧包括用于在所述多连接中的至少一个连接下实现通道直接链路建立TDLS功能的信息;
    处理模块,被配置为:基于所述第一消息帧控制通信操作的执行。
  15. 一种电子装置,包括存储器、处理器及存储在所述存储器上并在所述处理器上可运行的计算机程序,其中,所述处理器执行所述计算机程序时实现权利要求1至6中的任一项或者权利要求7至12中的任一项所述的方法。
  16. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现权利要求1至6中的任一项或者权利要求7至12中的任一项所述的方法。
PCT/CN2021/109052 2021-07-28 2021-07-28 多连接下的通信方法和通信装置 WO2023004643A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/109052 WO2023004643A1 (zh) 2021-07-28 2021-07-28 多连接下的通信方法和通信装置
CN202180002197.0A CN115956370A (zh) 2021-07-28 2021-07-28 多连接下的通信方法和通信装置
EP21951257.1A EP4380302A4 (en) 2021-07-28 2021-07-28 MULTIPLE-CONNECTION COMMUNICATION METHOD AND DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/109052 WO2023004643A1 (zh) 2021-07-28 2021-07-28 多连接下的通信方法和通信装置

Publications (1)

Publication Number Publication Date
WO2023004643A1 true WO2023004643A1 (zh) 2023-02-02

Family

ID=85085985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109052 WO2023004643A1 (zh) 2021-07-28 2021-07-28 多连接下的通信方法和通信装置

Country Status (3)

Country Link
EP (1) EP4380302A4 (zh)
CN (1) CN115956370A (zh)
WO (1) WO2023004643A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024187435A1 (zh) * 2023-03-15 2024-09-19 北京小米移动软件有限公司 通道直接链路建立的通信方法和通信设备
WO2024192587A1 (zh) * 2023-03-17 2024-09-26 北京小米移动软件有限公司 通信方法、电子设备及存储介质
WO2024192639A1 (zh) * 2023-03-20 2024-09-26 北京小米移动软件有限公司 通道直接链路建立的通信方法和通信设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021011427A1 (en) * 2019-07-12 2021-01-21 Qualcomm Incorporated Multi-link communication
US20210084542A1 (en) * 2018-02-16 2021-03-18 Idac Holdings, Inc. Methods and devices to determine the quality of service mechanisms for vehicle-to-everything mobile device communications
US20210195540A1 (en) * 2019-12-20 2021-06-24 Avago Technologies International Sales Pte. Limited Multi-link operation with triggered alignment of frames
US20210211871A1 (en) * 2020-01-04 2021-07-08 Nxp Usa, Inc. Apparatus and method for multi-link management in multi-link communication systems

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9900759B2 (en) * 2009-11-04 2018-02-20 Qualcomm Incorporated Method and apparatus for peer discovery in a wireless communication network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210084542A1 (en) * 2018-02-16 2021-03-18 Idac Holdings, Inc. Methods and devices to determine the quality of service mechanisms for vehicle-to-everything mobile device communications
WO2021011427A1 (en) * 2019-07-12 2021-01-21 Qualcomm Incorporated Multi-link communication
US20210195540A1 (en) * 2019-12-20 2021-06-24 Avago Technologies International Sales Pte. Limited Multi-link operation with triggered alignment of frames
US20210211871A1 (en) * 2020-01-04 2021-07-08 Nxp Usa, Inc. Apparatus and method for multi-link management in multi-link communication systems

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "NR numerology and frame structure for unlicensed bands", 3GPP DRAFT; R1-1810123, vol. RAN WG1, 29 September 2018 (2018-09-29), Chengdu, China, pages 1 - 14, XP051517538 *
See also references of EP4380302A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024187435A1 (zh) * 2023-03-15 2024-09-19 北京小米移动软件有限公司 通道直接链路建立的通信方法和通信设备
WO2024192587A1 (zh) * 2023-03-17 2024-09-26 北京小米移动软件有限公司 通信方法、电子设备及存储介质
WO2024192639A1 (zh) * 2023-03-20 2024-09-26 北京小米移动软件有限公司 通道直接链路建立的通信方法和通信设备

Also Published As

Publication number Publication date
CN115956370A (zh) 2023-04-11
EP4380302A1 (en) 2024-06-05
EP4380302A4 (en) 2024-08-28

Similar Documents

Publication Publication Date Title
WO2023004643A1 (zh) 多连接下的通信方法和通信装置
WO2022094940A1 (zh) 通信方法和通信设备
WO2022151486A1 (zh) 通信方法和通信设备
WO2022147691A1 (zh) 通信方法和通信设备
WO2022226841A1 (zh) 多连接下的通信方法和通信装置
WO2023004644A1 (zh) 多连接下的通信方法和通信装置
WO2023000151A1 (zh) 多连接下的通信方法和通信装置
WO2022205324A1 (zh) 多连接下的通信方法和通信装置
WO2023010345A1 (zh) 通信方法和通信装置
WO2022116150A1 (zh) 多连接下的通信方法和通信设备
WO2022116116A1 (zh) 多连接下的通信方法和通信设备
WO2023015415A1 (zh) 通信方法和通信装置
WO2023065095A1 (zh) 多连接下的通信方法和通信装置
WO2023056637A1 (zh) 多连接下的通信方法和通信装置
WO2022241641A1 (zh) 通信方法和通信装置
WO2022217586A1 (zh) 多连接下的通信方法和通信装置
WO2023056608A1 (zh) 通信方法和通信装置
WO2023019406A1 (zh) 用于基本服务集切换的通信方法和通信装置
WO2023019412A1 (zh) 通信方法和通信装置
WO2022147788A1 (zh) 通信方法和通信设备
WO2022165680A1 (zh) 多连接下的通信方法和通信装置
WO2022256985A1 (zh) 通信方法和通信装置
WO2022170448A1 (zh) 多连接下的通信方法和通信装置
WO2022267033A1 (zh) 通信方法和通信装置
WO2023023948A1 (zh) 通信方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951257

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18291512

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202447012377

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2021951257

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021951257

Country of ref document: EP

Effective date: 20240228