[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023094508A1 - Koppelstange und verfahren zum herstellen - Google Patents

Koppelstange und verfahren zum herstellen Download PDF

Info

Publication number
WO2023094508A1
WO2023094508A1 PCT/EP2022/083097 EP2022083097W WO2023094508A1 WO 2023094508 A1 WO2023094508 A1 WO 2023094508A1 EP 2022083097 W EP2022083097 W EP 2022083097W WO 2023094508 A1 WO2023094508 A1 WO 2023094508A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
coupling rod
connecting element
joint
rod according
Prior art date
Application number
PCT/EP2022/083097
Other languages
English (en)
French (fr)
Inventor
Arne BUSCH
Eduardo GONZÁLEZ PÉREZ
Christian Friedrich
Original Assignee
Muhr Und Bender Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Muhr Und Bender Kg filed Critical Muhr Und Bender Kg
Priority to EP22822044.8A priority Critical patent/EP4436807A1/de
Priority to CN202280078309.5A priority patent/CN118302311A/zh
Publication of WO2023094508A1 publication Critical patent/WO2023094508A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G7/00Pivoted suspension arms; Accessories thereof
    • B60G7/001Suspension arms, e.g. constructional features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/04Pivotal connections
    • F16C11/06Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints
    • F16C11/0619Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints the female part comprising a blind socket receiving the male part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/04Pivotal connections
    • F16C11/06Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints
    • F16C11/0666Sealing means between the socket and the inner member shaft
    • F16C11/0671Sealing means between the socket and the inner member shaft allowing operative relative movement of joint parts due to flexing of the sealing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C7/00Connecting-rods or like links pivoted at both ends; Construction of connecting-rod heads
    • F16C7/02Constructions of connecting-rods with constant length
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C7/00Connecting-rods or like links pivoted at both ends; Construction of connecting-rod heads
    • F16C7/02Constructions of connecting-rods with constant length
    • F16C7/026Constructions of connecting-rods with constant length made of fibre reinforced resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/84Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks by moulding material on preformed parts to be joined
    • B29C70/845Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks by moulding material on preformed parts to be joined by moulding material on a relative small portion of the preformed parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/40Auxiliary suspension parts; Adjustment of suspensions
    • B60G2204/416Ball or spherical joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/012Hollow or tubular elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/10Constructional features of arms
    • B60G2206/11Constructional features of arms the arm being a radius or track or torque or steering rod or stabiliser end link
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/70Materials used in suspensions
    • B60G2206/71Light weight materials
    • B60G2206/7101Fiber-reinforced plastics [FRP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/80Manufacturing procedures
    • B60G2206/81Shaping
    • B60G2206/8101Shaping by casting
    • B60G2206/81012Shaping by casting by injection moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/80Manufacturing procedures
    • B60G2206/81Shaping
    • B60G2206/8105Shaping by extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/80Manufacturing procedures
    • B60G2206/81Shaping
    • B60G2206/811Shaping by cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/80Manufacturing procedures
    • B60G2206/82Joining
    • B60G2206/8209Joining by deformation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/05Vehicle suspensions, e.g. bearings, pivots or connecting rods used therein

Definitions

  • the present invention relates to a coupling rod for a chassis of a motor vehicle and a method for producing such a coupling rod.
  • a connecting rod is used to connect the stabilizer bar to the chassis of a vehicle.
  • the up and down movements of a wheel occurring while driving are passed on to the stabilizer via the coupling rods.
  • the stabilizer bar is loaded.
  • cornering the rolling of the vehicle is reduced and driving stability is increased.
  • Coupling rods can have ball joints at their ends, via which they are connected to the chassis or stabilizer. Coupling rods are also known as pendulum supports, stabilizer bars, torsion bars or axle struts.
  • a coupling rod is known from the generic FR 2 862 559 A1, the connecting rod of which is made of fiber-reinforced plastic by pultrusion.
  • the ends are molded onto the connecting rod with the joints.
  • the profile that forms the bar can be made of a thermoplastic or thermoset rigid polymeric material or aluminum.
  • the connecting rod has a uniform cross-section along its length.
  • a stabilizer for a motor vehicle suspension is known from EP 3385097 A1.
  • the stabilizer bar comprises a tubular body having at each of its ends two flattened areas between which a sealed cavity is formed, and a sheathing body made of polymeric material, which is connected to the respective end of the tubular body in the molding process so that it surrounds the flattened areas.
  • the end casing bodies each have an articulated connection.
  • the tubular body is preferably made of metal, but can also be made of a thermoplastic material.
  • An axle strut for a vehicle is known from DE 10 2017 207 164 A1, corresponding to WO 2018/197136 A1, which has a support profile and two load introduction elements connected thereto by gluing.
  • the supporting profile is continuous fiber reinforced and is formed from fiber reinforced plastic and is produced continuously by means of a pultrusion process or by means of a pulwinding process.
  • DE 10 2018 213 322 A1 discloses a multipoint link for a chassis of a motor vehicle which has a pultruded hollow profile section made from a fiber-reinforced plastic.
  • a method for producing a ball joint for a coupling rod is known from DE 10 2005 034 210 A1.
  • EP 3 283 279 B1 discloses a pultrusion device for producing a fiber-reinforced endless profile with a cross-section that is discontinuous in the pultrusion direction, and a method for its production.
  • DE 10 2019 218 124 B3 discloses a method for positively connecting a hollow body made of fiber-reinforced plastic to a metal body.
  • the hollow body is introduced into a die casting mold, into which molten metal is then introduced under pressure.
  • the pressure of the molten metal is greater than the pressure in the interior of the hollow body, so that its wall in a connecting section is dented in some areas due to the pressure difference, forming a depression.
  • Molten metal penetrates into the recess, which then solidifies and forms the metal body in the solidified state.
  • DE 102010041 791 A1 discloses a stabilizer bar with a joint mount which has an end region with a recess into which a connecting element engages in a form-fitting manner.
  • the starting material of the connecting element can consist of metal and/or fiber-reinforced plastic.
  • a connecting strut is known from DE 10 2013 007 284 A1, with a rod section and end bearing eyes.
  • the connecting strut consists at least partially of fiber-reinforced plastic, which is formed by prepregs.
  • DE 10 2014 220 796 A1 discloses an articulated rod for a motor vehicle, with a connecting rod designed as an open profile and two joints connected to one another via this connecting rod.
  • the joints each comprise a joint housing in which the connecting rod is embedded with its axial ends.
  • a link rod for vehicles is known from EP 1 953 012 A2, with a strut body, at each end of which a joint is connected.
  • the strut body is formed from an open profile and the pivot comprises a ball stud articulated in a thin-walled sliding cup.
  • the end of the strut body and the sliding shell are overmoulded together with a plastic coating.
  • EP 1 733 859 A1 discloses a method and a device for producing a connection and force transmission element for suspension and steering mechanisms of motor vehicles by means of overmolding.
  • the connecting element has a rod-shaped middle part made of a material of high mechanical strength and an end part made of plastics material which is over-molded on one end of the middle part, so that a one-piece connecting element is formed.
  • the present invention is based on the object of proposing a coupling rod for a chassis of a motor vehicle which is easy to produce and has a low weight.
  • the task is also to propose a corresponding method with which such a coupling rod can be produced easily and efficiently.
  • a coupling rod for a chassis of a motor vehicle comprising: a connecting element which is produced from a fiber-reinforced plastic by means of a pultrusion process, the fiber-reinforced plastic comprising continuous fibers embedded in a matrix, which extend in a longitudinal direction of the connecting element extend, wherein the connecting element has a strut section with a longitudinal axis and, at least at one end, a connecting section which is deformed in relation to the strut section; a hinge element; and a carrier element which is connected to the connecting element and the joint element and is produced from plastic by overmoulding, with a form-fitting connection being formed between the connecting section of the connecting element and the carrier element.
  • the coupling rod has a low weight due to the use of fiber-reinforced plastic and can be easily produced using the pultrusion process.
  • the formed connection section which deviates from a continuous long form with a constant cross section, can be produced by means of the pultrusion process.
  • a secure connection to the injection-molded carrier element or the articulated element accommodated therein can be established by the formed connection section.
  • the coupling rod has a connecting section that is shaped in relation to the strut section, which includes the possibility that both ends can also have a shaped connecting section.
  • the joint element can be positioned with its joint axis as required and thus connected to the rod element.
  • the injection-molded carrier element serves to connect the joint element to the rod element and to accommodate the joint element; in this respect, the carrier element can also be referred to as a joint mount. If two joint elements are used, they can be positioned at any desired angle to one another, ie between 0° and 180° in relation to the longitudinal axis of the coupling rod.
  • the joint element has a bearing part accommodated in the carrier element and a connecting part that can be connected to a chassis part.
  • the design of the joint element is arbitrary and can be selected depending on the requirement.
  • the coupling rod can have at least one joint element made of a metallic material, with a ball section as the bearing part and a pin section as the connection part.
  • the joint element can be designed with or without a ball socket or be embedded in the plastic joint mount.
  • the coupling rod can have at least one joint element made of an elastic material.
  • the elastic joint element can have an elastic bearing part and a rigid sleeve connected thereto as a connecting part.
  • the elastic bearing part can be made of rubber, for example, and can be connected to the carrier element by overmolding or pressing.
  • the sleeve is preferably made of metal, for example aluminum or steel, and can be inserted into the bearing part. Alternatively, the bearing part can be vulcanized onto the sleeve.
  • the formed connecting section has a smallest transverse extent in cross section that is less than 0.5 times, in particular less than 0.75 times, the smallest diameter of the strut section.
  • a forming area is designed in particular in such a way that a form-fitting connection is produced in the axial direction and against twisting in relation to the molded-on carrier element.
  • a cross-sectional area of the formed connecting section can deviate from a cross-sectional area of the strut section by less than 25%, in particular less than 10%. This achieves a homogeneous structure of the endless fibers over the entire length of the connecting element, which leads to high resilience and a long service life.
  • the connecting element is designed as a hollow profile, at least in the strut section, with an embodiment as a solid profile also being possible.
  • the wall thickness is preferably greater than 2 mm and/or less than 4 mm.
  • a connecting section can be produced by radially pressing in the hollow profile so that a constriction is produced. The pressing can be done in such a way that the hollow profile is closed in this section, in particular in that in cross-section two opposing Wall sections are connected to each other. Closing the hollow profile in the connecting section prevents plastic from undesirably penetrating into the cavity of the connecting element when the joint element is molded on.
  • the matrix of the fiber-reinforced plastic can be a thermoset or a thermoplastic.
  • Thermosets are densely crosslinked polymeric materials, whereby the material is solid after crosslinking.
  • a thermoset can also be referred to as a hardened synthetic resin.
  • Thermosets are usually formed as non-crosslinked pre-condensates from the dissolved, liquid or plastic state and then hardened. Crosslinking can take place simultaneously or after shaping.
  • Thermosetting plastics from the group of vinyl ester resins, epoxy resins or unsaturated polyester resins or combinations thereof are preferably used for the matrix of the connecting element.
  • the duroplastics used can be chosen so that they preferably cure at room temperature, ie without the addition of heat. Furthermore, the duroplastics can in particular cure quickly, ie achieve dimensional stability in less than 10 seconds during curing.
  • the plastic encapsulation is preferably made from a thermoplastic.
  • the endless fibers can comprise glass fibers (GF) and/or carbon fibers (CF) and/or aramid fibers (AF) and/or natural fibers or combinations of the fibers mentioned.
  • the endless fibers are arranged unidirectionally or quasi-isotropically along the connecting element or at least along the strut section. They can extend the entire length from one end to the other end of the connecting element.
  • the connecting element In the strut section, the connecting element can have a fiber volume proportion of between 50% and 70% of the total volume. In the connection section adjoining the strut section, the proportion of matrix can be somewhat reduced, so that the proportion of fiber volume can be between 50% and 80% here, for example.
  • the properties of the fiber-reinforced plastics can be adjusted as required using the compounds and crosslinking substances that can be used for the duroplastics, as well as the fiber reinforcement materials (GF, CR, AF).
  • the fiber-reinforced plastic, in particular with a duroplastic matrix is preferably designed in such a way that the connecting element has a transverse tensile strength of at least 40 MPa, in particular at least 50 MPa.
  • the effective modulus of elasticity of a fiber-reinforced plastic is defined in particular by the modulus of elasticity of the fibers, the modulus of elasticity of the matrix and the fiber volume fraction.
  • the fiber-reinforced plastic made of duroplastic material is preferably designed in such a way that the effective modulus of elasticity in the direction of the fibers is greater than 35 GPa, in particular greater than 40 GPa.
  • the connecting section can be designed in such a way that it ends in front of the joint head.
  • the formed connection section preferably has at least one cross-section-reducing indentation, which forms the form-fitting connection with the injection-molded carrier element.
  • the end of the connecting section is preferably closed in order to prevent plastic from penetrating when the associated joint element is molded on.
  • the formed connecting section can be designed in such a way that it extends as far as the bearing part or articulated head in a side view.
  • the connecting section of the connecting element can encompass the bearing part or the spherical section of the joint head over an angular range of at least 90°, in particular at least 180° and/or up to 360° around the joint axis. In this way, a reinforcement of the connection area is guaranteed.
  • the joint element can have a spigot section which is firmly connected to the ball section, with a sealing bellows being provided which seals the spigot section with respect to the injection-molded carrier element.
  • the bellows is fixed in a sealing manner with a first collar on the journal section and with a second collar on the carrier element.
  • the object is further achieved by a method for producing a coupling rod, with the steps: producing an endless profile by means of pultrusion in a continuous process from endless fibers embedded in a plastic matrix, the endless profile being at least partially hardened, the endless profile having a higher ductility in second sections or formability is provided than in hardened first sections; Reshaping of the endless profile in the second sections, so that reshaped areas arise; hardening of the second sections after forming, so that the endless profile is fully hardened; cutting the fully hardened endless profile into a connecting element having a strut section and at least one deformed connecting section; providing a joint element with a bearing part and a connecting part; inserting and aligning the connecting element and the joint element in an injection molding tool, a mold cavity being formed around the connecting portion of the connecting element; and injecting plastic into the mold cavity, with a form-fitting connection being formed between the carrier element thus formed and the connecting section of the connecting element by curing the injected plastic.
  • the endless profile is hardened to such an extent that it is already dimensionally stable, but still so ductile that it can be deformed in some areas by an external force. After forming, the endless profile is then fully hardened, for example with or without the addition of heat.
  • a second option which applies in particular to a thermoplastic matrix
  • the endless profile is first completely hardened and then the second sections are made softer again by heating, so that they can be deformed. After the second partial sections have been formed, they are then cooled again and hardened as a result, so that the endless profile is completely hardened.
  • the connecting section of the connecting element can be subjected to a structuring surface treatment before the overmolding.
  • the surface treatment can be accomplished, for example, by mechanically introducing a micro-serration. This can be done in particular during the forming by means of a suitable shaping structure of the forming tool.
  • the surface processing can also be carried out by partially removing the upper plastic layer, for example by laser processing.
  • at least 50% of the surface to be overmoulded is given a corresponding structuring treatment, in particular at least 75%.
  • the structure produced can have a roughness of, for example, more than 100 micrometers and less than 1 mm.
  • the connection section can be provided with an adhesion promoter.
  • a material-fitting connection is also produced, which leads to a particularly reliable connection.
  • a bearing shell for the joint ball can optionally also be injected or overmolded as part of the overmolding.
  • FIG. 1A shows a coupling rod according to the invention in a first embodiment in a side view, partially sectioned
  • FIG. 1B shows a first end of the coupling rod from FIG. 1A as a detail in an enlarged view, without a seal;
  • FIG. 1C shows a second end of the coupling rod from FIG. 1A as a detail in an enlarged view in longitudinal section, without a seal;
  • FIG. 1D shows the connecting element of the coupling rod from FIG. 1A in a perspective view, partially in section;
  • FIG. 1E shows the end of the connecting element from FIG. 1D in an enlarged representation;
  • FIG. 2 shows the end of a coupling rod according to the invention in an embodiment that is slightly modified compared to the embodiment shown in FIG. 1;
  • FIG. 3A shows a coupling rod according to the invention in a further embodiment in a side view, partially sectioned
  • FIG. 3B shows the connecting element of the coupling rod from FIG. 3A in a perspective view, partially sectioned
  • FIG. 3C shows the end of the connecting element from FIG. 3B in an enlarged representation
  • FIG. 4 shows a coupling rod according to the invention in a further embodiment in longitudinal section, partially in an exploded view
  • FIG. 5 shows a coupling rod according to the invention in a further embodiment, partially in section.
  • FIGS. 1A to 1E which are also collectively referred to as FIG. 1 and are jointly described below, show a coupling rod 2 according to the invention in a first embodiment.
  • the coupling rod 2 can be used, for example, for a chassis of a motor vehicle in order to connect an axle stabilizer to the chassis.
  • the coupling rod 2 comprises a connecting element 3 made of a fiber-reinforced plastic, at the ends of which a joint element 4, 5 is fastened by means of an injection-molded carrier element 6, 7.
  • the connecting element 3 is produced from continuous fiber-reinforced plastic by means of a pultrusion process.
  • the connecting element comprises continuous fibers 22 embedded in a matrix 23, which extend over the length of the connecting element.
  • the profile of the connecting element 3 is produced in a continuous process through the targeted connection of fiber reinforcements and resin systems.
  • the connecting element 3 is designed as a hollow profile, without being restricted thereto, and comprises a strut section 8 and connecting sections 9, 9′ formed at the two ends.
  • the wall thickness of Hollow profile can be chosen according to the technical requirements and can be, for example, between 2 mm and 4 mm in the strut section.
  • the formed connecting sections 9, 9' are each produced by pressing in the hollow profile at a number of points that are spaced apart axially from one another. Viewed in longitudinal section, this creates a double-wavy profile with tapered areas 10, 11 and an enlarged area 12 in between.
  • the deformations can be produced in the course of the pultrusion process in a partially hardened state, i.e. before these deformed areas are fully hardened. With the sequence of the tapered or flattened areas 10, 11 and the expanded profile area 12 lying in between, a secure form-fitting connection to the carrier element 6, 7 is produced, both in the axial direction and against twisting.
  • the matrix 23 of the fiber-reinforced plastic can be a thermoset or a thermoplastic.
  • the endless fibers 22 can include glass fibers (GF) and/or carbon fibers (CF) and/or aramid fibers (AF) and/or natural fibers or combinations of the fibers mentioned.
  • the endless fibers are preferably arranged unidirectionally or quasi-isotropically along the connecting element 3 or the strut section 8 .
  • the proportion of fiber volume in the total volume of fibers 22 and matrix 23 is between 50% and 70%.
  • the matrix portion can be somewhat reduced due to the reshaping, so that a fiber volume portion of, for example, between 50% and 80% can result here.
  • the cross-sectional area S9 of the connecting section 9, 9' can essentially correspond to the cross-sectional area S8 of the strut section 8, with deviations of less than 25%, in particular less than 10%, being possible.
  • the connecting element 3 is preferably made from a matrix of duroplastic with continuous fibers 22 embedded therein in such a way that it has a transverse tensile strength of at least 40 MPa.
  • the effective modulus of elasticity of the connecting element 3 in the fiber direction is in particular greater than 35 GPa.
  • the connection section 9, 9' ends in front of the joint element 4, 5, the form-fitting connection between the components mentioned being formed by the overmoulded support element 6, 7.
  • the joint elements 4 , 5 are designed in the form of ball pins, which are each made of a metallic material and have a ball section as the bearing part 13 and a pin section as the connection part 14 .
  • a spherical shell 21 is injected into the respective carrier element 6, 7, in which the spherical section 13 is pivotally mounted.
  • the joint element 4, 5 is attached to the connecting element 3 by overmolding with plastic.
  • the overmoulded plastic forms the carrier element 6, 7 in the hardened state, which on the one hand is positively connected to the connecting element 3 and on the other hand forms a receptacle for an associated joint element.
  • a thermoplastic material is preferably used for the plastic encapsulation.
  • the respective joint element 4, 5 is positioned with its joint axis A4, A5 as required and is thus connected to the connecting element 3.
  • the two joint elements 4, 5 can be positioned at any angle to one another, with the two joint axes A4, A5 being able to enclose an angle of between 0° and 180° with one another, viewed in an axial view of the longitudinal axis of the coupling rod.
  • the joint space can be sealed off by means of a seal 15, 15'.
  • a seal 15, 15' At the first end in Figure 1A the seal 15 is shown in exploded view and at the second end the seal 15' is shown assembled.
  • the seal 15, 15' comprises a sealing bellows 16, 16', which is pulled with a first collar onto an annular groove 17 of the carrier element 6, 7 and is fixed in a sealing manner by means of a retaining ring 18, 18', and with a second collar in an annular groove 19 of the joint element 4, 5 engages and is sealingly fastened by means of a locking ring 20, 20'.
  • a method for producing a coupling rod 2 according to the invention can comprise the following steps: An endless profile is produced from endless fibers 22 embedded in a plastic matrix 23 by means of pultrusion in a continuous process.
  • the endless profile is hardened, with at least partial areas still being formable, or be made deformable again, which later form the connecting sections 9.
  • the connecting sections 9 are formed into the endless profile by forming.
  • the endless profile is fully hardened and then cut to length to form a connecting element 3 with a strut section 8 and a connecting section 9 .
  • the connecting element 3 and a prefabricated joint element 4, 5 are placed in an injection mold and aligned with one another in the desired position. Plastic is injected into the mold cavity formed in this way, which then hardens to form the carrier element 7 . In this way, a form-fitting connection is formed between the carrier element 7 and the connecting section 9 of the connecting element 3 .
  • FIG. 2 shows the end section of a coupling rod according to the invention in a modified embodiment in which no ball socket is provided in the support element 6, 7. Rather, the spherical section 13 is pivotally mounted directly in a spherical inner surface 24 of the carrier element 6 . Otherwise, the present embodiment according to FIG. 2 corresponds to that shown in FIG. 1, to the description of which reference is made for abbreviation.
  • FIGS. 3A to 3C also collectively referred to as FIG. 3, show a coupling rod according to the invention in a further embodiment. This largely corresponds to the embodiment shown in FIG. 1, to the extent of which reference is made to the description thereof. Identical or corresponding details are provided with the same reference symbols as in FIG.
  • FIG. 3 shows a coupling rod according to the invention in a further embodiment. This largely corresponds to the embodiment shown in FIG. 3, to which reference is made to the description. Identical or mutually corresponding details are provided with the same reference symbols as in the above figures.
  • a special feature of the embodiment according to FIG. 4 is that the two joint elements 4, 5' are designed differently.
  • One joint element 4, here on the left side is designed as a ball joint, as shown in the embodiment according to FIG.
  • the other joint element 5' here on the right side, is designed in the form of an elastic joint.
  • the elastic joint element 5′ comprises an elastic bearing part 13′′ and a connection part 14′′ connected thereto in the form of a rigid sleeve.
  • the elastic bearing part 13" can be made of rubber, for example, and can be connected to the carrier element 7 by injection molding or pressing.
  • the elastic bearing part 13" can have a circumferential, in particular concave, recess 25, which is encompassed by the ring section of the carrier element 7. As in the embodiment according to FIG.
  • the connecting element 3 can be designed with two C-shaped connecting sections 9, 9′.
  • the connecting section assigned to the elastic joint 5' is embedded in the carrier element 7 and largely encompasses the elastic bearing part 13".
  • the sleeve is preferably made of metal, for example aluminum or steel. The sleeve can be inserted into the bearing part 13". Alternatively, the bearing part 13" can be vulcanized onto the sleeve.
  • FIG. 5 shows a coupling rod according to the invention in a further embodiment. This largely corresponds to the embodiment shown in FIG. 4, to the extent of which reference is made to the description thereof. Identical or mutually corresponding details are provided with the same reference symbols as in the above figures.
  • the special feature of the embodiment according to FIG. 5 is that the two joint elements 4′, 5′ are designed as elastic joints as in FIG. 4, right side. Both joints are designed the same, with the left side shown in section, with the sleeve exploded, while the right side is shown in side view.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

Die Erfindung betrifft eine Koppelstange umfassend: ein Verbindungselement (3), das mittels eines Pultrusionsverfahrens aus einem faserverstärkten Kunststoff hergestellt ist, wobei das Verbindungselement (3) einen Strebenabschnitt (8) mit einer Längsachse (A3) und einen Verbindungsabschnitt (9, 9') aufweist; ein Gelenkelement (4, 5); und ein mit dem Verbindungselement (3) und dem Gelenkelement (4, 5) verbundenes Trägerelement (6, 7), das durch Umspritzen aus Kunststoff hergestellt ist; wobei die Matrix des faserverstärkten Kunststoffs ein Duroplast ist und der Verbindungsabschnitt gegenüber dem Strebenabschnitt umgeformt ist, wobei durch das umspritzte Trägerelement ein Formschluss zwischen dem Verbindungsabschnitt (9, 9') und dem Trägerelement (6, 7) gebildet ist. Die Erfindung betrifft ferner ein Verfahren zum Herstellen einer Koppelstange.

Description

Koppelstange und Verfahren zum Herstellen
Beschreibung
Die vorliegende Erfindung betrifft eine Koppelstange für ein Fahrwerk eines Kraftfahrzeugs sowie ein Verfahren zum Herstellen einer solchen Koppelstange.
Eine Koppelstange dient dazu, den Stabilisator mit dem Fahrwerk eines Fahrzeugs zu verbinden. Die während der Fahrt auftretenden Auf- und Abwärtsbewegungen eines Rades werden über die Koppelstangen an den Stabilisator weitergegeben. Wenn die Kräfte zwischen den Rädern einer Achse unterschiedlich sind, wird der Stabilisator belastet. Bei Kurvenfahrt wird das Wanken des Fahrzeugs somit reduziert und die Fahrstabilität erhöht.
Koppelstangen können an ihren Enden Kugelgelenke aufweisen, über die sie mit dem Fahrwerk beziehungsweise Stabilisator verbunden sind. Koppelstangen werden auch als Pendelstütze, Stabilisatorstrebe, Drehstabgestänge oder Achsstrebe bezeichnet.
Aus der gattungsbildenden FR 2 862 559 A1 ist eine Koppelstange bekannt, deren Verbindungsstab durch Pultrusion aus faserverstärktem Kunststoff hergestellt ist. Die Enden sind mit den Gelenken an den Verbindungsstab angespritzt. Das Profil, das den Stab bildet, kann aus einem thermoplastischen oder wärmehärtbaren steifen Polymermaterial oder Aluminium hergestellt werden. Der Verbindungsstab hat einen einheitlichen Querschnitt über der Länge.
Aus der EP 3385097 A1 ist ein Stabilisator für eine Kraftfahrzeugaufhängung bekannt. Der Stabilisator umfasst einen rohrförmigen Körper, der an seinen Enden jeweils zwei abgeflachte Bereiche aufweist, zwischen denen ein dichter Hohlraum gebildet ist, und ein Ummantelungskörper aus polymerem Material, der im Formgebungsprozess mit dem jeweiligen Ende des rohrförmigen Körpers verbunden wird, so dass er die abgeflachten Bereiche umgibt. Die endseitigen Ummantelungskörper weisen jeweils eine Gelenkverbindung auf. Der rohrförmige Körper ist vorzugsweise aus Metall hergestellt, kann aber auch aus einem thermoplastischen Material hergestellt werden.
Aus der DE 10 2017 207 164 A1 , entsprechend WO 2018/197136 A1 , ist eine Achsstrebe für ein Fahrzeug bekannt, die ein Tragprofil und zwei hiermit durch Kleben verbundene Lasteinleitelemente aufweist. Das Tragprofil ist endlosfaserverstärkt aus faserverstärktem Kunststoff ausgeformt und kontinuierlich mittels eines Pultrusionsver- fahrens oder mittels eines Pulwindingverfahrens hergestellt.
Aus der DE 10 2018 213 322 A1 ist ein Mehrpunktlenker für ein Fahrwerk eines Kraftfahrzeugs bekannt, der einen pultrudierten Hohlprofilabschnitt aus einem faserverstärkten Kunststoff aufweist.
Aus der DE 10 2005 034 210 A1 ist ein Verfahren zur Herstellung eines Kugelgelenks für eine Koppelstange bekannt.
Aus der EP 3 283 279 B1 ist eine Pultrusionsvorrichtung zum Erzeugen eines faserverstärkten Endlosprofils mit einem in Pultrusionsrichtung diskontinuierlichen Querschnittsverlauf, sowie ein Verfahren zu dessen Herstellung bekannt.
Aus der DE 10 2019 218 124 B3 ist ein Verfahren zum formschlüssigen Verbinden eines Hohlkörpers aus faserverstärktem Kunststoff mit einem Metallkörper bekannt. Der Hohlkörper wird in eine Druckgussform eingebracht, in die anschließend eine Metallschmelze mit Druck eingebracht wird. Der Druck der Metallschmelze ist größer als der Druck im Innenraum des Hohlkörpers, sodass dessen Wandung in einem Verbindungsabschnitt aufgrund des Druckunterschieds unter Ausbildung einer Vertiefung bereichsweise eingedrückt wird. In die Vertiefung dringt Metallschmelze ein, die anschließend erstarrt und im erstarrten Zustand den Metallkörper bildet. Aus der DE 102010041 791 A1 ist ein Stabilisator mit einer Gelenkaufnahme bekannt, die einen Endbereich mit einer Ausnehmung aufweist, in die ein Verbindungselement formschlüssig eingreift. Das Ausgangsmaterial des Verbindungselements kann aus Metall und/oder faserverstärktem Kunststoff bestehen.
Aus der DE 10 2013 007 284 A1 ist eine Verbindungsstrebe bekannt, mit einem Stangenabschnitt und endseitigen Lageraugen. Die Verbindungsstrebe besteht zumindest teilweise aus faserverstärktem Kunststoff, welcher durch Prepregs gebildet wird.
Aus der DE 10 2014 220 796 A1 ist eine Gelenkstange für ein Kraftfahrzeug bekannt, mit einer als offenes Profil ausgebildeten Verbindungsstange und zwei über diese miteinander verbundenen Gelenken. Die Gelenke umfassen jeweils ein Gelenkgehäuse, in das die Verbindungsstange mit ihren axialen Enden eingebettet ist.
Aus der EP 1 953 012 A2 ist eine Gelenkstange für Fahrzeuge bekannt, mit einem Strebenkörper, an dessen Enden jeweils ein Gelenk angeschlossen ist. Der Strebenkörper ist aus einem offenen Profil gebildet, und das Gelenk umfasst einen Kugelzapfen, der in einer dünnwandigen Gleitschale gelenkig gelagert ist. Das Ende des Strebenkörpers und die Gleitschale sind gemeinsam mit einer Kunststoffummantelung umspritzt.
Aus der EP 1 733 859 A1 sind ein Verfahren und eine Vorrichtung zum Herstellen eines Anschluss- und Kraftübertragungselement für Aufhängungs- und Lenkmechanismen von Kraftfahrzeugen mittels Überspritzung bekannt. Das Anschlusselement weist ein stabförmiges Mittelteil aus einem Material hoher mechanischer Festigkeit und ein Endteil aus Kunststoffmaterial auf, das auf einem Ende des Mittelteils überspritzt wird, so dass ein einstückiges Verbindungselement gebildet wird.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Koppelstange für ein Fahrwerk eines Kraftfahrzeugs vorzuschlagen, die einfach herstellbar ist und ein geringes Gewicht aufweist. Die Aufgabe liegt weiter darin, ein entsprechendes Verfahren vorzuschlagen, mit dem eine solche Koppelstange einfach und effizient hergestellt werden kann. Zur Lösung der Aufgabe wird eine Koppelstange für ein Fahrwerk eines Kraftfahrzeugs vorgeschlagen, umfassend: ein Verbindungselement, das mittels eines Pultrusionsver- fahrens aus einem faserverstärkten Kunststoff hergestellt ist, wobei der faserverstärkte Kunststoff in eine Matrix eingebettete Endlosfasern umfasst, die sich in eine Längsrichtung des Verbindungselements erstrecken, wobei das Verbindungselement einen Strebenabschnitt mit einer Längsachse und an zumindest einem Ende einen gegenüber dem Strebenabschnitt umgeformten Verbindungsabschnitt aufweist; ein Gelenkelement; und ein mit dem Verbindungselement und dem Gelenkelement verbundenes Trägerelement, das durch Umspritzen aus Kunststoff hergestellt ist, wobei eine formschlüssige Verbindung zwischen dem Verbindungsabschnitt des Verbindungselements und dem Trägerelement gebildet ist.
Ein Vorteil der Koppelstange ist, dass diese durch Verwendung von faserverstärktem Kunststoff ein geringes Gewicht aufweist und mittels des Pultrusionsverfahrens einfach herstellbar ist. Dabei kann der umgeformte Verbindungsabschnitt, welcher von einer kontinuierlichen Langform mit konstantem Querschnitt abweicht, im Wege des Pultrusionsverfahrens hergestellt werden. Durch den umgeformten Verbindungsabschnitt kann eine sichere Verbindung zum angespritzten Trägerelement beziehungsweise dem darin aufgenommenen Gelenkelement hergestellt werden.
Die Koppelstange weist zumindest an einem Ende einen gegenüber dem Strebenabschnitt umgeformten Verbindungsabschnitt auf, was die Möglichkeit mit einschließt, dass auch beide Enden einen umgeformten Verbindungsabschnitt aufweisen können. Im Rahmen des Umspritzens mit Kunststoff kann das Gelenkelement mit seiner Gelenkachse nach Bedarf positioniert und so mit dem Stangenelement verbunden werden. Das angespritzte Trägerelement dient zum Verbinden des Gelenkelements mit dem Stangenelement und zur Aufnahme des Gelenkelements; insofern kann das Trägerelement auch als Gelenkaufnahme bezeichnet werden. Bei Verwendung von zwei Gelenkelementen können diese entsprechend in beliebigen Winkeln zueinander positioniert werden, das heißt zwischen 0° und 180° in Bezug auf die Längsachse der Koppelstange. Das Gelenkelement weist ein im Trägerelement aufgenommenes Lagerteil und ein mit einem Fahrwerksteil verbindbares Anschlussteil auf. Die Ausgestaltung des Gelenkelements ist beliebig und kann je nach Anforderung gewählt werden. Beispielsweise kann die Koppelstange zumindest ein aus einem metallischen Werkstoff hergestelltes Gelenkelement aufweisen, mit einem Kugelabschnitt als Lagerteil und einem Zapfenabschnitt als Anschlussteil. Dabei kann das Gelenkelement mit oder ohne Kugelschale ausgeführt werden beziehungsweise in die Gelenkaufnahme aus Kunststoff eingebettet sein. Alternativ oder ergänzend kann die Koppelstange zumindest ein aus einem elastischen Material hergestelltes Gelenkelement aufweisen. Das elastische Gelenkelement kann ein elastisches Lagerteil und eine hiermit verbundene starre Hülse als Anschlussteil aufweisen. Das elastische Lagerteil kann beispielsweise aus Gummi hergestellt sein und mit dem Trägerelement durch Umspritzen oder Einpressen verbunden werden. Die Hülse ist vorzugsweise aus Metall, beispielsweise Aluminium oder Stahl hergestellt, und kann in das Lagerteil eingesteckt werden. Alternativ kann das Lagerteil an die Hülse anvulkanisiert werden. Nach einer möglichen Ausgestaltung weist der umgeformte Verbindungsabschnitt eine kleinste Quererstreckung im Querschnitt auf, der kleiner ist als das 0,5-fache, insbesondere kleiner als das 0,75-fache des kleinsten Durchmessers des Strebenabschnitts. Ein Umformbereich ist insbesondere so gestaltet, dass damit eine formschlüssige Verbindung in axialer Richtung sowie gegen Verdrehen gegenüber dem angespritzten Trägerelement hergestellt ist. Nach einer möglichen Ausgestaltung kann eine Querschnittsfläche des umgeformten Verbindungsabschnitts von einer Querschnittsfläche des Strebenabschnitts um weniger als 25 %, insbesondere weniger als 10 % abweichen. Hierdurch wird eine homogene Struktur der Endlosfasern über die gesamte Länge des Verbindungselements erreicht, was zu einer hohen Belastbarkeit und langen Lebensdauer führt.
Nach einer Ausführungsform ist das Verbindungselement zumindest im Strebenabschnitt als Hohlprofil gestaltet, wobei eine Ausführung als Vollprofil auch möglich ist. Bei Herstellung als Hohlprofil ist die Wandstärke vorzugsweise größer als 2 mm und/oder kleiner als 4 mm. Ein Verbindungsabschnitt kann durch radiales Eindrücken des Hohlprofils hergestellt werden, so dass eine Einschnürung erzeugt wird. Das Eindrücken kann derart erfolgen, dass das Hohlprofil in diesem Abschnitt geschlossen wird, insbesondere dadurch, dass im Querschnitt zwei einander gegenüberliegende Wandungsabschnitte miteinander verbunden werden. Durch das Schließen des Hohlprofils im Verbindungsabschnitt wird verhindert, dass beim Anspritzen des Gelenkelements Kunststoff ungewünscht in den Hohlraum des Verbindungselements eindringt.
Die Matrix des faserverstärkten Kunststoffs kann ein Duroplast oder ein Thermoplast sein. Duroplaste sind engmaschig vernetzte Polymerwerkstoffe, wobei das Material nach der Vernetzung fest ist. Ein Duroplast kann auch als gehärtetes Kunstharz bezeichnet werden. Duroplaste werden üblicherweise als unvernetzte Vorkondensate aus dem gelösten, flüssigen oder plastischen Zustand geformt und anschließend gehärtet. Die Vernetzung kann gleichzeitig oder nach der Formgebung erfolgen. Für die Matrix des Verbindungselements werden vorzugsweise duroplastische Kunststoffe aus der Gruppe der Vinylesterharze, Epoxidharze oder ungesättigten Polyesterharze oder Kombinationen davon verwendet. Die verwendeten Duroplaste können so gewählt werden, dass sie vorzugsweise bei Raumtemperatur aushärten, das heißt ohne Zufuhr von Wärme. Ferner können die Duroplaste insbesondere schnell aushärtend sein, das heißt beim Härten in weniger als 10 Sekunden eine Formstabilität erreichen.
Die Kunststoffumspritzung wird vorzugsweise aus einem Thermoplast hergestellt. Die Endlosfasern können Glasfasern (GF) und/oder Carbonfasern (CF) und/oder Aram id- fasern (AF) und/oder Naturfasern oder Kombinationen der genannten Fasern umfassen. Die Endlosfasern sind entlang des Verbindungselements beziehungsweise zumindest des Strebenabschnitts unidirektional oder quasi-isotrop angeordnet. Sie können sich über die gesamte Länge von einem Ende zum anderen Ende des Verbindungselements erstrecken. Das Verbindungselement kann im Strebenabschnitt einen Faservolumenanteil am Gesamtvolumen von zwischen 50 % und 70 % aufweisen. Im an den Strebenabschnitt anschließenden Verbindungsabschnitt kann der Matrixanteil etwas reduziert sein, so dass der Faservolumenanteil hier beispielsweise zwischen 50 % und 80 % liegen kann.
Die Eigenschaften der faserverstärkten Kunststoffe können nach Bedarf mittels der einsetzbaren Verbindungen und Vernetzersubstanzen der Duroplaste, sowie der Verstärkungsmatenalien der Fasern (GF, CR, AF) eingestellt werden. Vorzugsweise ist der faserverstärkte Kunststoff, insbesondere mit duroplastischer Matrix, so gestaltet, dass das Verbindungselement eine Querzugfestigkeit von mindestens 40 MPa, insbesondere mindestens 50 MPa aufweist. Der effektive E-Modul eines faserverstärkten Kunststoffs wird insbesondere durch den E-Modul der Fasern, den E-Modul der Matrix sowie den Faservolumenanteil definiert. Erfindungsgemäß ist der faserverstärkte Kunststoff aus duroplastischem Material vorzugsweise so gestaltet, dass der effektive E-Modul in Faserrichtung größer als 35 GPa, insbesondere größer 40 GPa ist.
Der Verbindungsabschnitt kann nach einer ersten Ausführungsform so gestaltet sein, dass er vor dem Gelenkkopf endet. Dabei weist der umgeformte Verbindungsabschnitt vorzugsweise mindestens eine querschnittsreduzierende Einformung auf, welche die formschlüssige Verbindung mit dem angespritzten Trägerelement bildet. Es können auch mehrere, axial voneinander beabstandete Einformungen vorgesehen sein, die beispielsweise um das 0,5 bis 2-fache des Durchmessers des Strebenabschnitts axial voneinander versetzt sein können. Vorzugsweise sind genau zwei Einformungen, eine axial endseitige Einformung und eine hiervon axial beabstandete Einformung, vorgesehen, zwischen denen genau eine Verdickung gebildet ist. Bei Verwendung eines Hohlprofils ist das Ende des Verbindungsabschnitts vorzugsweise geschlossen, um beim Anspritzen des zugehörigen Gelenkelements ein Eindringen von Kunststoff zu verhindern.
Nach einer alternativen Ausführungsform kann der umgeformte Verbindungsabschnitt so gestaltet sein, dass er sich in Seitenansicht bis zum Lagerteil beziehungsweise Gelenkkopf erstreckt. Dabei kann der Verbindungsabschnitt des Verbindungselements das Lagerteil beziehungsweise den Kugelabschnitt des Gelenkkopfs über einen Winkelbereich von mindestens 90°, insbesondere mindestens 180° und/oder bis zu 360°, um die Gelenkachse umgreifen. Auf diese Weise wird eine Verstärkung des Verbindungsbereichs gewährleistet.
Das Gelenkelement kann einen Zapfenabschnitt aufweisen, der mit dem Kugelabschnitt fest verbunden ist, wobei ein Dichtbalg vorgesehen ist, welcher den Zapfenabschnitt gegenüber dem angespritzten Trägerelement abdichtet. Dabei ist der Balg mit einem ersten Bund am Zapfenabschnitt und mit einem zweiten Bund am Trägerelement abdichtend fixiert. Die Aufgabe wird weiter gelöst durch ein Verfahren zum Herstellen einer Koppelstange, mit den Schritten: Herstellen eines Endlosprofils mittels Pultrusion im kontinuierlichen Verfahren aus in einer Kunststoffmatrix eingebetteten Endlosfasern, wobei das Endlosprofil zumindest teilweise gehärtet wird, wobei das Endlosprofil in zweiten Teilabschnitten mit einer höheren Duktilität beziehungsweise Umformbarkeit versehen wird als in gehärteten ersten Teilabschnitten; Umformen des Endlosprofils in den zweiten Teilabschnitten, so dass umgeformte Bereiche entstehen; Härten der zweiten Teilabschnitte nach dem Umformen, so dass das Endlosprofil vollständig gehärtet ist; Schneiden des vollständig gehärteten Endlosprofils zu einem Verbindungselement, das einen Strebenabschnitt und zumindest einen umgeformten Verbindungsabschnitt aufweist; Bereitstellen eines Gelenkelements mit einem Lagerteil und einem Anschlussteil; Einlegen und Ausrichten des Verbindungselements und des Gelenkelements in einem Spritzwerkzeug, wobei um den Verbindungsabschnitt des Verbindungselements ein Formhohlraum gebildet wird; und Einspritzen von Kunststoff in den Formhohlraum, wobei durch Aushärten des eingespritzten Kunststoffs eine formschlüssige Verbindung zwischen dem so gebildeten Trägerelement und dem Verbindungsabschnitt des Verbindungselements gebildet wird.
Mit dem Verfahren werden analog dieselben Vorteile erzielt, wie oben im Zusammenhang mit der erfindungsgemäßen Koppelstange beschrieben. Es versteht sich, dass die bezüglich des Erzeugnisses beschriebenen Merkmale sinngemäß auf das Verfahren übertragbar sind, und umgekehrt.
Zum Erzeugen der umgeformten Bereiche sind zwei Verfahrensführungen möglich. Nach einer ersten Option, die insbesondere für eine duroplastische Matrix gilt, wird das Endlosprofil so weit gehärtet, dass es bereits formstabil ist, aber noch so duktil, dass es in Teilbereichen durch eine äußere Kraft umgeformt werden kann. Nach dem Umformen wird das Endlosprofil dann vollständig gehärtet, z.B. mit oder ohne Wärmezufuhr. Nach einer zweiten Option, die insbesondere für eine thermoplastische Matrix gilt, wird das Endlosprofil zunächst vollständig gehärtet und anschließend die zweiten Teilabschnitte durch Erwärmen wieder weicher gemacht, so dass sie umformbar sind. Nach dem Umformen der zweiten Teilabschnitte werden diese dann erneut abgekühlt und dadurch gehärtet, so dass das Endlosprofil vollständig gehärtet ist. Nach einer möglichen Verfahrensführung kann der Verbindungsabschnitt des Verbindungselements vor dem Umspritzen einer strukturgebenden Oberflächenbearbeitung unterzogen werden. Hierdurch wird die Oberfläche vergrößert, womit eine verbesserte Fügeverbindung zum angespritzten Kunststoff erreicht wird. Die Oberflächenbearbeitung kann beispielsweise durch mechanisches Einbringen einer Mikroverzahnung bewerkstelligt werden. Dies kann insbesondere im Rahmen der Umformung mittels einer geeigneten formgebenden Struktur des Umformwerkzeugs erfolgen. Alternativ kann die Oberflächenbearbeitung auch durch teilweises Abtragen der oberen Kunststoffschicht erfolgen, beispielsweise durch eine Laserbearbeitung. Vorzugsweise werden mindestens 50 % der zu umspritzenden Oberfläche entsprechend strukturgebend behandelt, insbesondere mindestens 75 %. Die erzeugte Struktur kann eine Rauigkeit von beispielsweise mehr als 100 Mikrometern und weniger als 1 mm haben. Alternativ oder ergänzend zur strukturgebenden Oberflächenbearbeitung kann der Verbindungsabschnitt mit einem Haftvermittler versehen werden. So wird neben der formschlüssigen auch eine stoffschlüssige Verbindung hergestellt, was zu einer besonders zuverlässigen Verbindung führt.
Bei Verwendung eines Kugelgelenks kann im Rahmen des Umspritzens optional auch eine Lagerschale für die Gelenkkugel mit eingespritzt beziehungsweise überspritzt werden.
Bevorzugte Ausführungsformen werden nachstehend anhand der Zeichnungsfiguren erläutert. Hierin zeigt:
Figur 1A eine erfindungsgemäße Koppelstange in einer ersten Ausführungsform in Seitenansicht, teilweise geschnitten;
Figur 1 B ein erstes Ende der Koppelstange aus Figur 1A als Detail in vergrößerter Darstellung, ohne Dichtung;
Figur 1 C ein zweites Ende der Koppelstange aus Figur 1A als Detail in vergrößerter Darstellung im Längsschnitt, ohne Dichtung;
Figur 1 D das Verbindungselement der Koppelstange aus Figur 1A in perspektivischer Darstellung, teilweise geschnitten; Figur 1 E das Ende des Verbindungselements aus Figur 1 D in vergrößerter Darstellung;
Figur 2 das Ende einer erfindungsgemäßen Koppelstange in einer gegenüber der in Figur 1 gezeigten Ausführungsform leicht abgewandelten Ausführung;
Figur 3A eine erfindungsgemäße Koppelstange in einer weiteren Ausführungsform in Seitenansicht, teilweise geschnitten;
Figur 3B das Verbindungselement der Koppelstange aus Figur 3A in perspektivischer Darstellung, teilweise geschnitten;
Figur 3C das Ende des Verbindungselements aus Figur 3B in vergrößerter Darstellung;
Figur 4 eine erfindungsgemäße Koppelstange in einer weiteren Ausführungsform im Längsschnitt, teilweise in Explosionsdarstellung; und
Figur 5 eine erfindungsgemäße Koppelstange in einer weiteren Ausführungsform teilweise geschnitten.
Die Figuren 1A bis 1 E, welche zusammenfassend auch als Figur 1 bezeichnet und im Folgenden gemeinsam beschrieben werden, zeigen eine erfindungsgemäße Koppelstange 2 in einer ersten Ausführungsform. Die Koppelstange 2 kann beispielsweise für ein Fahrwerk eines Kraftfahrzeugs verwendet werden, um einen Achs-Stabilisator mit dem Fahrwerk zu verbinden.
Die Koppelstange 2 umfasst ein Verbindungselement 3 aus einem faserverstärkten Kunststoff, an dessen Enden jeweils ein Gelenkelement 4, 5 mittels eines angespritzten Trägerelements 6, 7 befestigt ist.
Das Verbindungselement 3 ist mittels eines Pultrusionsverfahrens aus endlosfaserverstärktem Kunststoff hergestellt. Dabei umfasst das Verbindungselement in eine Matrix 23 eingebettete Endlosfasern 22, die sich über die Länge des Verbindungselements erstrecken. Bei der Pultrusion wird in einem kontinuierlichen Prozess durch gezielte Verbindung von Faserverstärkungen und Harzsystemen das Profil des Verbindungselements 3 hergestellt. Das Verbindungselement 3 ist vorliegend als Hohlprofil gestaltet, ohne darauf eingeschränkt zu sein, und umfasst einen Strebenabschnitt 8 und an den beiden Enden umgeformte Verbindungsabschnitte 9, 9'. Die Wandstärke des Hohlprofils kann entsprechend der technischen Anforderungen gewählt werden und beispielsweise zwischen 2 mm und 4 mm im Strebenabschnitt betragen.
Bei der vorliegenden Ausführungsform sind die umgeformten Verbindungsabschnitte 9, 9' jeweils durch Eindrücken des Hohlprofils an mehreren axial zueinander beabstan- deten Stellen hergestellt. Im Längsschnitt betrachtet entsteht so ein doppelwellenförmiges Profil, mit verjüngten Bereichen 10, 11 und jeweils dazwischen liegenden erweiterten Bereich 12. Die Umformungen können im Zuge des Pultrusionsverfahrens in einem teilgehärteten Zustand erzeugt werden, das heißt, bevor diese umgeformten Bereiche vollständig gehärtet werden. Mit der Abfolge aus den verjüngten beziehungsweise abgeflachten Bereichen 10, 11 und dem dazwischen liegenden erweiterten Profilbereich 12 wird eine sichere Formschlussverbindung zum Trägerelement 6, 7 hergestellt, und zwar sowohl in axialer Richtung sowie gegen Verdrehen.
Die Matrix 23 des faserverstärkten Kunststoffs kann ein Duroplast oder ein Thermoplast sein. Die Endlosfasern 22 können Glasfasern (GF) und/oder Carbonfasern (CF) und/oder Aram idfasern (AF) und/oder Naturfasern oder Kombinationen der genannten Fasern umfassen. Die Endlosfasern sind entlang des Verbindungselements 3 beziehungsweise des Strebenabschnitts 8 vorzugsweise unidirektional oder quasi-isotrop angeordnet. Im Strebenabschnitt 8 liegt der Faservolumenanteil am Gesamtvolumen aus Fasern 22 und Matrix 23 zwischen 50 % und 70 %. Im Verbindungsabschnitt kann der Matrixanteil aufgrund der Umformung etwas reduziert sein, so dass sich hier ein Faservolumenanteil von beispielsweise zwischen 50 % und 80 % ergeben kann. Die Querschnittsfläche S9 des Verbindungsabschnitts 9, 9' kann der Querschnittsfläche S8 des Strebenabschnitts 8 im Wesentlichen entsprechen, wobei Abweichungen von weniger als 25 %, insbesondere von weniger als 10 %, möglich sind.
Das Verbindungselement 3 ist vorzugsweise derart aus einer Matrix aus Duroplast mit darin eingebetteten Endlosfasern 22 hergestellt, dass es eine Querzugfestigkeit von mindestens 40 MPa aufweist. Der effektive E-Modul des Verbindungselements 3 in Faserrichtung ist insbesondere größer als 35 GPa. Bei der in Figur 1 gezeigten Ausführungsform endet der Verbindungsabschnitt 9, 9' vor dem Gelenkelement 4, 5, wobei die formschlüssige Verbindung zwischen den genannten Komponenten durch das umspritzte Trägerelement 6, 7 gebildet wird. Die Gelenkelemente 4, 5 sind in der vorliegenden Ausführung in Form von Kugelzapfen gestaltet, die jeweils aus einem metallischen Werkstoff hergestellt sind, und einen Kugelabschnitt als Lagerteil 13 und einen Zapfenabschnitt als Anschlussteil 14 aufweisen. Bei der vorliegenden Ausführung wird eine Kugelschale 21 mit in das jeweilige Trägerelement 6, 7 eingespritzt, in welcher der Kugelabschnitt 13 schwenkbar gelagert ist.
Das Gelenkelement 4, 5 wird durch Umspritzen mit Kunststoff an dem Verbindungselement 3 angebracht. Dabei bildet der umspritzte Kunststoff in ausgehärtetem Zustand das Trägerelement 6, 7, das einerseits formschlüssig mit dem Verbindungselement 3 verbunden ist und andererseits eine Aufnahme für ein zugehöriges Gelenkelement bildet. Für die Kunststoffumspritzung wird vorzugsweise ein thermoplastischer Kunststoff verwendet. Im Rahmen des Umspritzens wird das jeweilige Gelenkelement 4, 5 mit seiner Gelenkachse A4, A5 nach Bedarf positioniert und so mit dem Verbindungselement 3 verbunden. Die beiden Gelenkelemente 4, 5 können in beliebigen Winkeln zueinander positioniert werden, wobei die beiden Gelenkachsen A4, A5, in Axialansicht auf die Längsachse der Koppelstange betrachtet, einen Winkel zwischen 0° und 180° miteinander einschließen können.
Der Gelenkraum kann mittels einer Dichtung 15, 15' abgedichtet werden. Am ersten Ende in Figur 1A ist die Dichtung 15 in Explosionsdarstellung gezeigt, und am zweiten Ende ist die Dichtung 15' montiert dargestellt. Die Dichtung 15, 15' umfasst einen Dichtbalg 16, 16', der mit einem ersten Bund auf eine Ringnut 17 des Trägerelements 6, 7 aufgezogen und mittels eines Sicherungsrings 18, 18' abdichtend befestigt wird, und mit einem zweiten Bund in eine Ringnut 19 des Gelenkelements 4, 5 eingreift und mittels eines Sicherungsrings 20, 20' abdichtend befestigt wird.
Ein Verfahren zum Herstellen einer erfindungsgemäßen Koppelstange 2 kann folgende Schritte umfassen: Es wird ein Endlosprofil mittels Pultrusion im kontinuierlichen Verfahren aus in einer Kunststoffmatrix 23 eingebetteten Endlosfasern 22 hergestellt. Das Endlosprofil wird gehärtet, wobei zumindest Teilbereiche noch umformbar sind, beziehungsweise wieder umformbar gemacht werden, welche später die Verbindungsabschnitte 9 bilden. Nach dem teilweisen Härten werden die Verbindungsabschnitte 9 durch Umformen in das Endlosprofil eingeformt. Das Endlosprofil wird vollständig gehärtet und anschließend zu einem Verbindungselement 3 mit Strebenabschnitt 8 und Verbindungsabschnitt 9 abgelängt. Das Verbindungselement 3 und ein vorgefertigtes Gelenkelement 4, 5 werden in ein Spritzwerkzeug eingelegt und zueinander in die gewünschte Position ausgerichtet. In den so gebildeten Formhohlraum wird Kunststoff eingespritzt, welcher dann zum Trägerelement 7 aushärtet. Auf diese Weise ist eine formschlüssige Verbindung zwischen dem Trägerelement 7 und dem Verbindungsabschnitt 9 des Verbindungselements 3 gebildet.
Die Figur 2 zeigt den Endabschnitt einer erfindungsgemäßen Koppelstange in einer abgewandelten Ausführungsform, bei der im Trägerelement 6, 7 keine Kugelschale vorgesehen ist. Vielmehr ist der Kugelabschnitt 13 unmittelbar in einer kugeligen Innenfläche 24 des Trägerelements 6 schwenkbar gelagert. Im Übrigen entspricht die vorliegende Ausführung nach Figur 2 der in Figur 1 gezeigten, auf deren Beschreibung insofern abkürzend verwiesen wird.
Die Figuren 3A bis 3C, gemeinsam auch als Figur 3 bezeichnet, zeigen eine erfindungsgemäße Koppelstange in einer weiteren Ausführungsform. Diese entspricht weitestgehend der in Figur 1 gezeigten Ausführung, auf deren Beschreibung insofern verwiesen wird. Dabei sind gleiche beziehungsweise einander entsprechende Einzelheiten mit gleichen Bezugszeichen versehen, wie in Figur 1.
Eine Besonderheit der Ausführungsform nach Figur 3 ist die Ausgestaltung der Verbindungsabschnitte 9, 9' an den Enden des Verbindungselements 3, die C-förmig umgeformt sind, so dass sie den Kugelabschnitt des jeweiligen Gelenkelements umgreifen und eine Verstärkung hierfür bilden. Die Verbindungsabschnitte 9, 9' sind dabei vorzugsweise so gestaltet, dass sie den Kugelabschnitt des Gelenkkopfs über einen Winkelbereich von mindestens 90°, insbesondere mindestens 180°, um die Gelenkachse A4, A5 umgreifen. Auf diese Weise wird eine effektive Verstärkung des Verbindungsbereichs und gute Kraftabstützung vom Gelenkelement 4, 5 in das Verbindungselement 3 gewährleistet. Die Figur 4 zeigt eine erfindungsgemäße Koppelstange in einer weiteren Ausführungsform. Diese entspricht weitestgehend der in Figur 3 gezeigten Ausführung, auf deren Beschreibung insofern verwiesen wird. Dabei sind gleiche beziehungsweise einander entsprechende Einzelheiten mit gleichen Bezugszeichen versehen, wie in den obigen Figuren.
Eine Besonderheit der Ausführung nach Figur 4 ist, dass die beiden Gelenkelemente 4, 5' unterschiedlich gestaltet sind. Das eine Gelenkelement 4, hier auf der linken Seite, ist als Kugelgelenk so gestaltet, wie in der Ausführung gemäß Figur 3 gezeigt. Das andere Gelenkelement 5', hier auf der rechten Seite, ist in Form eines elastischen Gelenks gestaltet. Das elastische Gelenkelement 5' umfasst ein elastisches Lagerteil 13" und ein hiermit verbundenes Anschlussteil 14" in Form einer starren Hülse. Das elastische Lagerteil 13" kann beispielsweise aus Gummi hergestellt sein und mit dem Trägerelement 7 durch Umspritzen oder Einpressen verbunden werden. Das elastische Lagerteil 13" kann eine umlaufende, insbesondere konkave Ausnehmung 25 aufweisen, die vom Ringabschnitt des Trägerelements 7 umgriffen wird. Das Verbindungselement 3 kann wie bei der Ausführungsform gemäß Figur 3 mit zwei C-förmigen Verbindungsabschnitten 9, 9' gestaltet sein. Dabei ist der dem elastischen Gelenk 5' zugeordnete Verbindungsabschnitt in das Trägerelement 7 eingebettet und umgreift das elastische Lagerteil 13" weitestgehend. Die Hülse ist vorzugsweise aus Metall, beispielsweise Aluminium oder Stahl hergestellt. Die Hülse kann in das Lagerteil 13" eingesteckt werden. Alternativ kann das Lagerteil 13" an die Hülse anvulkanisiert werden.
Die Figur 5 zeigt eine erfindungsgemäße Koppelstange in einer weiteren Ausführungsform. Diese entspricht weitestgehend der in Figur 4 gezeigten Ausführung, auf deren Beschreibung insofern verwiesen wird. Dabei sind gleiche beziehungsweise einander entsprechende Einzelheiten mit gleichen Bezugszeichen versehen, wie in den obigen Figuren.
Die Besonderheit der Ausführung nach Figur 5 ist, dass die beiden Gelenkelemente 4', 5' als elastische Gelenke wie in Figur 4, rechte Seite, ausgestaltet sind. Beide Gelenke sind gleich gestaltet, wobei die linke Seite geschnitten dargestellt ist, mit Hülse in Explosionsdarstellung, während die rechte Seite in Seitenansicht gezeigt ist. Bezugszeichenliste
2 Koppelstange
3 Verbindungselement
4, 4' Gelenkelement
5, 5' Gelenkelement
6 Trägerelement
7 Trägerelement
8 Strebenabschnitt
9, 9' Verbindungsabschnitt
10, 10' Bereich
11 , 11' Bereich
12, 12' Bereich
13, 13', 13" Lagerteil
14, 14', 14" Anschlussteil
15, 15' Dichtung
16, 16' Dichtbalg
17 Ringnut
18, 18' Sicherungsring
19 Ringnut
20, 20' Sicherungsring
21 , 21' Kugelschale
22 Fasern
23 Matrix
24 Innenfläche
25 Ausnehmung
A Achse
D Durchmesser
S Fläche

Claims

Ansprüche
1. Koppelstange, insbesondere für ein Fahrwerk eines Kraftfahrzeugs, umfassend: ein Verbindungselement (3), das mittels eines Pultrusionsverfahrens aus einem faserverstärkten Kunststoff hergestellt ist, wobei der faserverstärkte Kunststoff in eine Matrix (23) eingebettete Endlosfasern (22) umfasst, die sich in eine Längsrichtung des Verbindungselements (3) erstrecken, wobei das Verbindungselement (3) einen Strebenabschnitt (8) mit einer Längsachse (A3) und an zumindest einem Ende einen Verbindungsabschnitt (9, 9') aufweist, ein Gelenkelement (4, 4', 5, 5'), ein mit dem Verbindungselement (3) und dem Gelenkelement (4, 4', 5, 5') verbundenes Trägerelement (6, 7), das durch Umspritzen aus Kunststoff hergestellt ist, dadurch gekennzeichnet, dass die Matrix (23) des faserverstärkten Kunststoffs des Verbindungselements (3) ein Duroplast ist, und der Verbindungsabschnitt (9, 9') des mittels Pultrusion hergestellten Verbindungselements (3) gegenüber dem Strebenabschnitt (8) umgeformt ist, wobei durch das umspritzte Trägerelement (6, 7) ein Formschluss zwischen dem umgeformten Verbindungsabschnitt (9, 9') und dem Trägerelement (6, 7) gebildet ist. Koppelstange nach Anspruch 1 , dadurch gekennzeichnet, dass die Matrix (23) des faserverstärkten Kunststoffs aus der Gruppe der Vinylesterharze, Epoxidharze oder Polyesterharze gewählt ist. Koppelstange nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Verbindungselement (3) zumindest im Strebenabschnitt (8) als Hohlprofil gestaltet ist, wobei die Wandstärke des Hohlprofils insbesondere größer als 2 mm und kleiner als 4 mm ist. Koppelstange nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Endlosfasern (22) entlang des Verbindungselements (3) unidirektional angeordnet sind. Koppelstange nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Trägerelement (6, 7) aus einem thermoplastischen Kunststoff hergestellt ist. Koppelstange nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass zwischen dem Trägerelement (6, 7) und dem Verbindungsabschnitt (9, 9') des Verbindungselements (3) eine stoffschlüssige Verbindung vorgesehen ist, die mittels eines auf den Verbindungsabschnitt (9, 9') vor dem Umspritzen aufgebrachten Haftvermittlers erzeugt ist, und/oder der Verbindungsabschnitt (9, 9') vor dem Umspritzen mit einer Oberflächenstruktur versehen ist. Koppelstange nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, 18 dass der Verbindungsabschnitt (9, 9') eine querschnittsreduzierende erste Einformung (11 ) am axialen Ende des Verbindungselements (3) sowie axial versetzt hierzu eine querschnittreduzierende zweite Einformung (10) umfasst, wobei die erste Einformung (11 ) einen dichten Verschluss des Verbindungselements (3) bildet, und wobei die kleinste Querschnittserstreckung (D9) im Bereich der ersten und zweiten Einformungen (10, 11 ) jeweils kleiner ist als das 0,5-fache des kleinsten Durchmessers (D8) des Strebenabschnitts (8). Koppelstange nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Gelenkelement (4, 5) einen Kugelabschnitt (13, 13') und einen Zapfenabschnitt (14, 14') aufweist, wobei der Verbindungsabschnitt (9, 9') so gestaltet ist, dass er den Kugelabschnitt (13, 13') über einen Winkelbereich von mindestens 90°, insbesondere mindestens 180°, um die Gelenkachse (A4, A5) umgreift, und/oder dass das Gelenkelement (4', 5') ein elastisches Lagerteil (13") und ein Anschlussteil (14") aufweist, wobei der Verbindungsabschnitt (9, 9') so gestaltet ist, dass er das elastische Lagerteil (13") über einen Winkelbereich von mindestens 90°, insbesondere mindestens 180°, um die Gelenkachse (A4, A5) umgreift. Koppelstange nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass eine Gesamtquerschnittsfläche (S9) des Verbindungsabschnitts (9, 9') von einer Gesamtquerschnittsfläche (S8) des Strebenabschnitts (8) um weniger als 25 % abweicht. Koppelstange nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Verbindungselement (3) im Strebenabschnitt (8) einen Faservolumenanteil am Gesamtvolumen aufweist, der zwischen 50 % und 70 % beträgt, wobei der Faservolumenanteil des Verbindungselements (3) im Verbindungsabschnitt (9, 9') gleich groß oder größer dem Faservolumenanteil im Strebenabschnitt (8) ist. 19 Koppelstange nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das Verbindungselement (3) derart aus duroplastischem Material mit darin eingebetteten Endlosfasern (22) hergestellt ist, dass das Verbindungselement eine Querzugfestigkeit von mindestens 40 MPa aufweist, und/oder, dass der effektive E-Modul des Verbindungselements (3) in Faserrichtung größer als 35 GPa ist. Koppelstange nach einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass eine Oberfläche des Verbindungsabschnitts (9, 9') eine höhere Rauigkeit aufweist als eine Oberfläche des Strebenabschnitts (8). Koppelstange nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das Gelenkelement (4, 5) mittels eines Dichtbalgs (16, 16') abgedichtet ist, wobei ein erster Bund des Dichtbalgs mit dem Trägerelement (6, 7) verbunden ist, und ein zweiter Bund des Dichtbalgs mit dem Zapfenabschnitt (14, 14') des Gelenkelements (4, 5) verbunden ist. Verfahren zum Herstellen einer Koppelstange, umfassend:
Herstellen eines Endlosprofils mittels Pultrusion im kontinuierlichen Verfahren aus in einer Kunststoffmatrix (23) eingebetteten Endlosfasern (22), wobei die Kunststoffmatrix (23) einen Duroplast enthält, und das Endlosprofil soweit gehärtet wird, dass es mindestens in Teilabschnitten eine höhere Duktilität aufweist, so dass diese umformbar sind;
Umformen des Endlosprofils in den duktilen Teilabschnitten, so dass umgeformte Bereiche (10, 11 ) entstehen;
Härten der umgeformten Teilabschnitte nach dem Umformen, so dass das Endlosprofil vollständig gehärtet ist; 20
Schneiden des vollständig gehärteten Endlosprofils zu einem Verbindungselement (3), das einen Strebenabschnitt (8) und zumindest einen umgeformten Verbindungsabschnitt (9, 9') aufweist;
Bereitstellen eines Gelenkelements (4, 5);
Einlegen und Ausrichten des Verbindungselements (3) und des Gelenkelements (4, 5) in einem Spritzwerkzeug, wobei um den Verbindungsabschnitt (9, 9') des Verbindungselements (3) ein Formhohlraum gebildet wird;
Einspritzen von Kunststoff in den Formhohlraum, wobei durch Aushärten des eingespritzten Kunststoffs eine formschlüssige Verbindung zwischen dem so gebildeten Trägerelement (6, 7) und dem Verbindungsabschnitt (9, 9') des Verbindungselements (3) gebildet wird. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass die Pultrusion mit den Schritten Teilhärten des Endlosprofils, Umformen der duktilen Teilabschnitte und vollständiges Härten durchgeführt wird. Verfahren nach Anspruch 14 oder 15, dadurch gekennzeichnet, dass der Verbindungsabschnitt (9, 9') des Verbindungselements (3) vor dem Umspritzen einer strukturgebenden Oberflächenbearbeitung unterzogen und/oder mit einem Haftvermittler versehen wird.
PCT/EP2022/083097 2021-11-25 2022-11-24 Koppelstange und verfahren zum herstellen WO2023094508A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22822044.8A EP4436807A1 (de) 2021-11-25 2022-11-24 Koppelstange und verfahren zum herstellen
CN202280078309.5A CN118302311A (zh) 2021-11-25 2022-11-24 拉杆和制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021130919.0 2021-11-25
DE102021130919.0A DE102021130919A1 (de) 2021-11-25 2021-11-25 Koppelstange und Verfahren zum Herstellen

Publications (1)

Publication Number Publication Date
WO2023094508A1 true WO2023094508A1 (de) 2023-06-01

Family

ID=84487714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/083097 WO2023094508A1 (de) 2021-11-25 2022-11-24 Koppelstange und verfahren zum herstellen

Country Status (4)

Country Link
EP (1) EP4436807A1 (de)
CN (1) CN118302311A (de)
DE (1) DE102021130919A1 (de)
WO (1) WO2023094508A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023205514A1 (de) 2023-06-14 2024-03-28 Zf Friedrichshafen Ag Verfahren zur Herstellung eines Verbindungsbauteils

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2862559A1 (fr) 2003-11-24 2005-05-27 Cf Gomma Spa Bras de suspension d'essieu pour vehicule automobile et un procede de fabrication
EP1733859A1 (de) 2005-06-14 2006-12-20 Industria Auxiliar Alavesa, S.A. (Inauxa) Verfahren und Vorrichtung zur Herstellung eines lastübertragenden Verbindungselements durch Umspritzen
DE102005034210A1 (de) 2005-07-19 2007-02-01 Zf Friedrichshafen Ag Verfahren zur Herstellung eines Kugelgelenks und danach hergestelltes Gelenk
EP1953012A2 (de) 2007-02-03 2008-08-06 HQM Sachsenring GmbH Gelenkstange
DE102010041791A1 (de) 2010-09-30 2012-04-05 Zf Friedrichshafen Ag Fahrzeugbauteil
DE102013007284A1 (de) 2013-04-27 2014-10-30 Volkswagen Ag Verbindungsstrebe und Verfahren zur Herstellung derselben
DE102014220796A1 (de) 2014-10-14 2016-04-14 Zf Friedrichshafen Ag Gelenkstange für ein Kraftfahrzeug
EP3385097A1 (de) 2017-04-05 2018-10-10 Engineering Developments for Automotive Industry, S.L. Stabilisatorverbindung für kraftfahrzeugaufhängungen
DE102017207164A1 (de) 2017-04-28 2018-10-31 Zf Friedrichshafen Ag Achsstrebe und Verfahren zur Herstellung einer Achsstrebe
EP3283279B1 (de) 2015-04-16 2019-07-03 Bayerische Motoren Werke Aktiengesellschaft Pultrusion von endlosprofilen mit diskontinuierlichem querschnittsverlauf
DE102018213322A1 (de) 2018-08-08 2020-02-13 Zf Friedrichshafen Ag Mehrpunktlenker für ein Fahrwerk eines Kraftfahrzeugs
DE102019218124B3 (de) 2019-11-25 2021-01-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum formschlüssigen Verbinden eines Hohlkörpers aus faserverstärktem Kunststoff mit einem Metallkörper

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2862559A1 (fr) 2003-11-24 2005-05-27 Cf Gomma Spa Bras de suspension d'essieu pour vehicule automobile et un procede de fabrication
EP1733859A1 (de) 2005-06-14 2006-12-20 Industria Auxiliar Alavesa, S.A. (Inauxa) Verfahren und Vorrichtung zur Herstellung eines lastübertragenden Verbindungselements durch Umspritzen
DE102005034210A1 (de) 2005-07-19 2007-02-01 Zf Friedrichshafen Ag Verfahren zur Herstellung eines Kugelgelenks und danach hergestelltes Gelenk
EP1953012A2 (de) 2007-02-03 2008-08-06 HQM Sachsenring GmbH Gelenkstange
DE102010041791A1 (de) 2010-09-30 2012-04-05 Zf Friedrichshafen Ag Fahrzeugbauteil
DE102013007284A1 (de) 2013-04-27 2014-10-30 Volkswagen Ag Verbindungsstrebe und Verfahren zur Herstellung derselben
DE102014220796A1 (de) 2014-10-14 2016-04-14 Zf Friedrichshafen Ag Gelenkstange für ein Kraftfahrzeug
EP3283279B1 (de) 2015-04-16 2019-07-03 Bayerische Motoren Werke Aktiengesellschaft Pultrusion von endlosprofilen mit diskontinuierlichem querschnittsverlauf
EP3385097A1 (de) 2017-04-05 2018-10-10 Engineering Developments for Automotive Industry, S.L. Stabilisatorverbindung für kraftfahrzeugaufhängungen
DE102017207164A1 (de) 2017-04-28 2018-10-31 Zf Friedrichshafen Ag Achsstrebe und Verfahren zur Herstellung einer Achsstrebe
WO2018197136A1 (de) 2017-04-28 2018-11-01 Zf Friedrichshafen Ag Achsstrebe und verfahren zur herstellung einer achsstrebe
DE102018213322A1 (de) 2018-08-08 2020-02-13 Zf Friedrichshafen Ag Mehrpunktlenker für ein Fahrwerk eines Kraftfahrzeugs
DE102019218124B3 (de) 2019-11-25 2021-01-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum formschlüssigen Verbinden eines Hohlkörpers aus faserverstärktem Kunststoff mit einem Metallkörper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023205514A1 (de) 2023-06-14 2024-03-28 Zf Friedrichshafen Ag Verfahren zur Herstellung eines Verbindungsbauteils

Also Published As

Publication number Publication date
CN118302311A (zh) 2024-07-05
EP4436807A1 (de) 2024-10-02
DE102021130919A1 (de) 2023-05-25

Similar Documents

Publication Publication Date Title
EP2759423B1 (de) Querlenker aus faserverstärktem Kunststoff für eine Radaufhängung eines Fahrzeuges
DE102006016060B4 (de) Radialgelenk und Verfahren zur Herstellung eines derartigen Radialgelenkes für ein Kraftfahrzeug
DE102010041791B4 (de) Fahrzeugbauteil
EP2619466B1 (de) Verfahren zum herstellen eines kugelhülsengelenks
WO2008119341A1 (de) Verbindungsstück zum gelenkigen verbinden von im fahrwerk eines fahrzeugs angeordneten bauelementen
EP0174296A2 (de) Verfahren zur Herstellung von Hohlkörpern
DE102008061463A1 (de) Lasteinleitungseinrichtung
EP3661770B1 (de) Dreipunktlenker und herstellungsverfahren für einen dreipunktlenker
DE102018202307A1 (de) Lenker für eine Radaufhängung
EP3156269A1 (de) Befestigungsschäkel zur befestigung einer blattfeder an einem fahrzeugaufbau
WO2009010053A1 (de) Hybridlenker für ein fahrzeug
DE10236829B4 (de) Lagerschale für ein Kugelgelenk und Verfahren zu deren Herstellung
EP2764260B1 (de) Verbindungsanordnung für ein fahrzeug
WO2012055489A1 (de) Elastische lagerung für ein bauteil und verfahren zu deren herstellung
WO2023094508A1 (de) Koppelstange und verfahren zum herstellen
EP2636829B1 (de) Scharnier, Scharnierteil und Verfahren zur Herstellung eines Scharnierteils
EP3642061B1 (de) Stabilisator für ein fahrwerk eines fahrzeugs und verfahren zum herstellen eines solchen stabilisators
DE102017211625B4 (de) Verfahren zur Herstellung einer Lagerbuchse, Lagerbuchse sowie Lenker für eine Radaufhängung eines Kraftfahrzeuges
DE102012210469A1 (de) Rad aus Faserverbundwerkstoff und Verfahren zu seiner Herstellung
DE102004061057B4 (de) Kugelgelenkverbindung zwischen einem Zapfen und einem Befestigungsteil
DE102014218433A1 (de) Verfahren zur Herstellung eines Verbindungsbauteils für ein Fahrzeug
WO2019224018A1 (de) Verfahren zum herstellen einer klebeverbindung sowie eine achstrebe für ein fahrzeug
WO2018158031A1 (de) Verfahren zur herstellung einer blattfeder, sowie blattfeder und radaufhängung
DE102019206726B3 (de) Stabilisator für ein Fahrwerk eines Fahrzeugs, Pendelstütze für einen solchen Stabilisator und Verfahren zum Herstellen eines solchen Stabilisators bzw. einer solchen Pendelstütze
DE102022122215A1 (de) Koppelstange

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22822044

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18709892

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280078309.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022822044

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022822044

Country of ref document: EP

Effective date: 20240625