WO2022209991A1 - Ophthalmologic device - Google Patents
Ophthalmologic device Download PDFInfo
- Publication number
- WO2022209991A1 WO2022209991A1 PCT/JP2022/012460 JP2022012460W WO2022209991A1 WO 2022209991 A1 WO2022209991 A1 WO 2022209991A1 JP 2022012460 W JP2022012460 W JP 2022012460W WO 2022209991 A1 WO2022209991 A1 WO 2022209991A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- eye
- optical system
- light
- anterior segment
- cross
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 379
- 238000005259 measurement Methods 0.000 claims abstract description 188
- 230000008878 coupling Effects 0.000 claims abstract description 24
- 238000010168 coupling process Methods 0.000 claims abstract description 24
- 238000005859 coupling reaction Methods 0.000 claims abstract description 24
- 230000004323 axial length Effects 0.000 claims description 72
- 238000003384 imaging method Methods 0.000 claims description 69
- 210000004087 cornea Anatomy 0.000 claims description 47
- 230000005540 biological transmission Effects 0.000 claims description 11
- 238000004904 shortening Methods 0.000 claims description 9
- 210000004220 fundus oculi Anatomy 0.000 abstract description 4
- 210000000695 crystalline len Anatomy 0.000 description 117
- 210000001747 pupil Anatomy 0.000 description 36
- 238000010586 diagram Methods 0.000 description 23
- 238000004364 calculation method Methods 0.000 description 21
- 238000005286 illumination Methods 0.000 description 16
- 235000019557 luminance Nutrition 0.000 description 14
- 210000001519 tissue Anatomy 0.000 description 14
- 201000009310 astigmatism Diseases 0.000 description 13
- 230000004907 flux Effects 0.000 description 11
- 230000006870 function Effects 0.000 description 11
- 238000001514 detection method Methods 0.000 description 10
- 238000012545 processing Methods 0.000 description 10
- 230000008859 change Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 210000001110 axial length eye Anatomy 0.000 description 7
- 230000035945 sensitivity Effects 0.000 description 7
- 230000007423 decrease Effects 0.000 description 5
- 230000003547 miosis Effects 0.000 description 5
- 206010027646 Miosis Diseases 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 230000000007 visual effect Effects 0.000 description 4
- 208000006550 Mydriasis Diseases 0.000 description 3
- 210000002159 anterior chamber Anatomy 0.000 description 3
- 210000002294 anterior eye segment Anatomy 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 210000000554 iris Anatomy 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 230000004075 alteration Effects 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 230000004379 myopia Effects 0.000 description 2
- 208000001491 myopia Diseases 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 208000002177 Cataract Diseases 0.000 description 1
- 206010034960 Photophobia Diseases 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 210000001742 aqueous humor Anatomy 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 210000000720 eyelash Anatomy 0.000 description 1
- 210000000744 eyelid Anatomy 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 208000013469 light sensitivity Diseases 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000002911 mydriatic effect Effects 0.000 description 1
- 230000004515 progressive myopia Effects 0.000 description 1
- 230000001179 pupillary effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/103—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining refraction, e.g. refractometers, skiascopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/13—Ophthalmic microscopes
- A61B3/135—Slit-lamp microscopes
Definitions
- the present disclosure relates to an ophthalmologic apparatus that acquires the axial length of an eye to be examined.
- An ophthalmologic apparatus that illuminates the translucent body of the anterior segment of the eye to be examined in a manner that cuts the light and captures a cross-sectional image of the anterior segment.
- the prevalence of myopia has increased significantly, mainly among young people, and the evaluation of myopia progression based on the axial length of the eye has attracted attention.
- the inventors obtained both the ocular refractive power of the eye to be examined and the cross-sectional image of the anterior segment of the eye, and studied an apparatus configuration for obtaining the axial length based on these images.
- the present disclosure has been made in view of the above circumstances, and a technical problem is to provide an ophthalmologic apparatus capable of accurately acquiring the axial length of an eye to be examined.
- An ophthalmologic apparatus includes a fixation target presenting optical system for projecting fixation light onto an eye to be inspected and presenting a fixation target used for fogging the eye to be inspected, and a fundus of the eye to be inspected.
- an eye refractive power measurement optical system for projecting a first measurement light onto the eye and acquiring the eye refractive power of the eye to be inspected based on the reflected light of the first measurement light reflected by the fundus; projecting a second measurement light onto the anterior segment of the eye to be inspected to form a light section passing through the optical axis of the eye refractive power measurement optical system in the anterior segment; a cross-sectional image capturing optical system for acquiring an anterior segment cross-sectional image of the eye to be inspected based on the light returned from the light-section surface of the eye refractive power and the anterior segment cross-sectional image; An ophthalmologic apparatus for obtaining the axial length of the subject's eye based on and an optical path coupling member that couples the measurement optical path of
- FIG. 1 is an external view of an ophthalmologic apparatus;
- FIG. 1 is a schematic diagram showing an optical system of an ophthalmologic apparatus;
- FIG. 4 is a schematic diagram showing the relationship between the luminosity of an eye to be inspected and the wavelength;
- FIG. 3 is a schematic diagram showing the relationship between light sensitivity of an image sensor and wavelength.
- FIG. 2 is a simplified schematic diagram of a fixation target presenting optical system;
- FIG. 2 is a simplified schematic diagram of a target projection optical system;
- 4 is a flow chart showing the control operation of the ophthalmologic apparatus; It is an example of a cross-sectional image of the anterior segment. It is a figure explaining the analysis area
- FIG. 4 is a diagram showing refractive power in the meridional direction; It is an example of a cross-sectional image of the anterior segment.
- conjugated is not necessarily limited to a perfect conjugated relationship, but includes “substantially conjugated”. That is, the term “conjugated” in this embodiment also includes the case where the parts are displaced from the perfectly conjugated position within the range allowed in relation to the technical significance of each part.
- the ophthalmologic apparatus of this embodiment is an apparatus capable of acquiring the axial length of an eye to be examined.
- the ophthalmologic apparatus may have an optical system used for measuring the axial length of the eye, an axial length acquisition means, and the like.
- the ophthalmologic apparatus may have shape information acquisition means, anterior segment information acquisition means, specifying means, setting means, and the like.
- the ophthalmologic apparatus of this embodiment may include a fixation target presentation optical system (for example, the fixation target presentation optical system 150).
- the fixation target presenting optical system may project fixation light onto the eye to be inspected and present the fixation target to the eye to be inspected.
- the fixation target presentation optical system may be capable of changing the presentation distance of the fixation target. For example, this allows the fixation target presenting optical system to be used for fogging the eye to be inspected when the first optical system acquires the eye refractive power of the eye to be inspected. In addition, it can be used to add adjustment to the subject's eye. Thus, for example, the fixation target may be used to fog the subject's eye.
- the ophthalmologic apparatus of this embodiment may have an eye refractive power measurement optical system (for example, the measurement optical system 100).
- the eye refractive power measurement optical system is an optical system for acquiring the eye refractive power of the eye to be examined.
- a configuration may be provided in which measurement light (first measurement light) is projected onto the fundus of the subject's eye, and the refractive power of the eye is obtained based on the reflected light of the measurement light reflected by the fundus. good.
- the first measurement light may be visible light or infrared light.
- the eye refractive power measuring optical system may be a measuring optical system used in an objective eye refractive power measuring device (autorefractometer, wavefront sensor, etc.).
- the projection optical axis of the first measurement light in the eye refractive power measurement optical system may be arranged on the plane of the light section formed by the cross-sectional image taking optical system, which will be described later.
- an eye refractive power measurement optical system is used to acquire the eye refractive power on the light-section plane of the anterior segment (surface eye refractive power).
- the eye refractive power measurement optical system may be capable of acquiring eye refractive power on other planes.
- the ophthalmologic apparatus of this embodiment may have a cross-sectional imaging optical system (for example, a cross-sectional imaging optical system).
- the cross-sectional image capturing optical system is an optical system for acquiring an anterior segment cross-sectional image of the subject's eye. For example, measuring light is projected toward the anterior segment of the eye to be inspected, and return light (scattered light) due to scattering of the measuring light is detected from an oblique direction with respect to the projection optical axis of the measuring light.
- a configuration for acquiring an eye cross-sectional image may be provided.
- the measurement light (second measurement light) is projected onto the anterior segment of the subject's eye to form a light section passing through the optical axis of the eye refractive power measurement optical system in the anterior segment, 2
- a configuration for acquiring an anterior segment cross-sectional image based on scattered light from the light-section plane of the measurement light may be provided.
- the measurement light (second measurement light) may be visible light or infrared light.
- the cross-sectional imaging optical system may be an optical system based on the Scheimpflug principle.
- the projection optical axis of the first measurement light in the eye refractive power measurement optical system and the projection optical axis of the second measurement light in the cross-sectional imaging optical system may be arranged coaxially.
- the second measurement light may be projected as slit light in the cross-sectional imaging optical system.
- the irradiation area of the slit light is set as the light cutting plane of the anterior segment.
- the cross-sectional image capturing optical system may have a lens system and a photodetector arranged in a Scheimpflug relationship with the light section formed in the anterior segment.
- the photodetector may be a two-dimensional imager.
- the light-receiving optical axis of the second measurement light is arranged so as to be inclined with respect to the light section plane.
- the imaging range of the anterior segment cross-sectional image by the cross-sectional image capturing optical system includes from the front surface of the cornea to at least the front surface of the crystalline lens of the subject's eye.
- the area from the anterior surface of the cornea to the posterior surface of the lens is included.
- the axial length can be determined more appropriately. can ask.
- the ophthalmologic apparatus of this embodiment includes a front image capturing optical system (for example, an index projection optical system 400, an alignment index projection optical system).
- the front image capturing optical system projects the third measurement light onto the cornea of the eye to be inspected, and captures an anterior segment front image including a projected image of the third measurement light projected onto the cornea to determine the shape of the cornea. may be acquired.
- the front imaging optical system may be a measurement optical system used in a corneal shape measuring device (autokeratometer).
- the third measurement light in the front imaging optical system is infrared light, but it can also be visible light.
- the fixation target presenting optical system and the cross-sectional image capturing optical system may share a common optical path. That is, part of the fixation optical path of the fixation light in the fixation target presenting optical system and the measurement optical path (projection optical path) of the second measurement light in the cross-sectional image capturing optical system may be a common optical path.
- an optical path coupling member that couples the respective optical paths in these optical systems may be arranged. The fixation light projected from the fixation target presenting optical system is focused on the fundus, and the second measurement light projected from the cross-sectional image capturing optical system is focused on the anterior segment of the eye.
- each optical system has a complicated configuration due to common use, but on the other hand, the optical path coupling member can be easily configured.
- the optical path coupling member can be configured more easily.
- Astigmatism may occur in at least one of the fixation light and the second measurement light by using an optical path coupling member for commonality of the fixation target presenting optical system and the cross-sectional image capturing optical system. Therefore, each optical system may be configured in consideration of the influence of astigmatism.
- the optical path coupling member may be composed of at least one optical member such as a beam splitter, a dichroic mirror, a half mirror, and the like. In this case, it is possible to use either a prism type member or a planar type member for the optical path coupling member.
- the prism-shaped member As an example of the prism-shaped member, a cube half mirror in which rectangular prisms are bonded together, a dichroic prism, or the like may be used. Since generation of astigmatism is suppressed with such a prism-shaped member, a good cross-sectional image of the anterior segment can be captured.
- a prism-shaped member is used as the optical path coupling member, one of the fixation target presenting optical system and the cross-sectional image capturing optical system is arranged on the transmission side of the optical path coupling member, and the optical system is arranged on the reflection side of the optical path coupling member. , the other of the fixation target presenting optical system and the cross-sectional image taking optical system may be arranged.
- a plate half mirror, a dichroic mirror, or the like may be used as an example of the planar member.
- the fixation target presenting optical system is arranged on the transmission side of the optical path coupling member, and the cross-sectional imaging optical system is arranged on the reflection side of the optical path coupling member. is preferred.
- the fixation target presenting optical system and the cross-sectional image capturing optical system may have a common lens arranged in their common optical path. More specifically, the common optical path of the fixation optical path of the fixation light in the fixation target presenting optical system and the measurement optical path of the second measurement light in the cross-sectional imaging optical system has a common optical path with different functions for each optical system.
- a lens may be arranged.
- the common lens may function as a total length shortening lens for shortening the total length of the fixation target presenting optical system.
- the partial focal length including the total length shortening lens is shortened without changing the entire focal length (composite focal length) of the fixation target presenting optical system.
- the common lens may function as a field lens for changing the traveling direction of the second measurement light in the cross-sectional imaging optical system. More specifically, it may function as a field lens for changing the traveling direction of the second measurement light passing off the optical axis of the cross-sectional imaging optical system. In other words, it may substantially coincide with the image plane of the cross-sectional imaging optical system and function as a field lens for transmitting the second measurement light without eclipse.
- the optical system for presenting a fixation target includes a lens with a shortened total length. It becomes possible to provide an optical member (for example, an objective lens) located downstream of the lens without increasing the diameter thereof. By arranging a common lens having these functions, the entire optical system can be space-saving, and as a result, the ophthalmic apparatus can be miniaturized.
- an optical member for example, an objective lens
- the ophthalmologic apparatus of this embodiment may include shape information acquisition means (for example, the control unit 50).
- the shape information obtaining means may obtain the anterior segment shape information regarding the shape of the anterior segment by analyzing the anterior segment cross-sectional image.
- the plurality of parameters are parameters including at least the cornea and the lens.
- the shape information may be any information that can specify the shape of the translucent body included in the anterior segment.
- coordinates at which each transparent body is located, equations representing the shape of each transparent body, and values obtained from the equations for example, curvature, thickness, depth, etc.
- a plurality of parameters included in the shape information may include parameters related to the shape of the cornea. Examples include the radius of curvature of the anterior surface of the cornea, the radius of curvature of the posterior surface of the cornea, the corneal thickness, and the like. Also, the plurality of parameters may include parameters relating to the shape of the lens. For example, the radius of curvature of the anterior surface of the lens, the radius of curvature of the posterior surface of the lens, the thickness of the lens, and the like. Also, the plurality of parameters may include a parameter relating to the depth of the anterior segment. For example, an anterior chamber depth and the like can be mentioned.
- the shape information acquisition means may perform analysis using a point on the optical axis of the second measurement light in the cross-sectional image capturing optical system in the anterior segment cross-sectional image. Further, the shape information obtaining means may perform analysis using a point on the optical axis of the first measurement light in the eye refractive power measurement optical system in the anterior segment cross-sectional image. Since the optical axis of the first measurement light is an axis that passes through the center of the pupil (that is, the center of each translucent body), it is easy to capture the vertex of the translucent body. can be obtained well.
- the shape information acquisition means may acquire the anterior segment shape information by analyzing an analysis region that does not include a reflected image in the anterior segment cross-sectional image set by the setting means.
- the anterior segment shape information may be acquired by changing whether or not to use the point on the optical axis of the second measurement light for analysis according to the position of the set analysis region.
- the anterior segment shape information may be acquired by changing whether or not to use the points on the optical axis of the first measurement light for analysis according to the position of the set analysis region. More specifically, for example, if the positions of the analysis regions overlap in the center of each translucent body, the analysis may be performed using a point on the optical axis of the first measurement light.
- the analysis may be performed without using the points on the optical axis of the first measurement light.
- the analysis may be performed without using the points on the optical axis of the first measurement light when the positions of the analysis regions are close to but do not overlap the centers of the transmissive bodies.
- the ophthalmologic apparatus of the present embodiment may include an anterior segment information acquisition means (for example, the control unit 50).
- the anterior segment information acquiring means may acquire anterior segment information relating to the anterior segment of the subject's eye.
- the anterior segment information may include the anterior segment shape information (described above) of the subject's eye.
- the corneal curvature radius which is one of the parameters in the anterior segment shape information, may be obtained as the anterior segment information.
- parameters other than the corneal radius of curvature may be obtained.
- the anterior segment information may include pupil state information regarding the pupil state of the subject's eye.
- the pupil state may be at least one of a miotic state and a mydriatic state.
- the information which can grasp the presence or absence of miosis and mydriasis may be used for the pupil state information.
- values such as pupil diameter may be used.
- the pupil state information a determination result obtained by determining the presence or absence of miosis or mydriasis based on the value of the pupil diameter may be used.
- the anterior segment information acquiring means may acquire anterior segment information by receiving anterior segment information acquired by a device different from the ophthalmologic device.
- the anterior eye segment information may be obtained by an input by the examiner using an operation means (for example, the monitor 16).
- the anterior segment information may be acquired by analyzing an anterior segment cross-sectional image acquired using a cross-sectional image capturing optical system.
- the anterior segment information may be acquired by analyzing an anterior segment front image acquired using a front image capturing optical system.
- the ophthalmologic apparatus of the present embodiment may include specifying means (for example, control unit 50).
- the specifying means may specify a reflected image included in the anterior segment cross-sectional image acquired using the cross-sectional image capturing optical system.
- the identifying means may identify the position (coordinates, for example) of the reflected image, or may identify a predetermined range including the position of the reflected image.
- the identification means may identify the position of the reflected image based on an operation signal input by the examiner's operation of the operation means (for example, the monitor 16). Further, the identifying means may identify the position of the reflected image based on luminance information (for example, at least one of luminance, gradation, gradation, etc.) of the anterior segment cross-sectional image. Further, the specifying means may specify the position of the reflected image based on at least one of the anterior segment information and the anterior segment shape information. In this case, the anterior segment information, the anterior segment shape information, and the position of the reflected image may be associated in advance from experiments or simulations. For example, the position of the reflected image may be specified according to the pupil diameter, corneal shape, lens shape, and the like.
- the reflected image included in the anterior segment cross-sectional image may be a corneal reflected image generated by reflection (specular reflection) of the second measurement light from the cross-sectional image capturing optical system on the cornea.
- it may be a slit reflection image generated by projecting slit light as the second measurement light.
- the reflected image included in the anterior segment cross-sectional image may be a corneal reflected image due to specular reflection of the third measurement light from the front imaging optical system.
- a corneal reflection image different from the corneal reflection image derived from the second measurement light and the corneal reflection image derived from the third measurement light may be included.
- the ophthalmologic apparatus of this embodiment may include setting means (for example, the control unit 50).
- the setting means sets an analysis region that does not include a reflected image generated by reflection (specular reflection) of at least the second measurement light on the cornea of the subject's eye in the anterior segment cross-sectional image acquired using the cross-sectional image capturing optical system. may be set.
- an analysis region may be set that does not include a reflected image produced by reflection (specular reflection) of the third measurement light on the cornea of the subject's eye.
- such an analysis region is set to acquire anterior segment shape information including the optical axis of the second measurement light in the cross-sectional imaging optical system (eg, shape information about the cornea and the lens).
- the setting means may set the analysis region to be analyzed from the target regions in which the anterior segment cross-sectional image can be analyzed.
- an area excluding the position of the reflected image may be set as the analysis area that does not include the reflected image.
- an area excluding a predetermined range including the position of the reflected image may be set as the analysis area that does not include the reflected image.
- the anterior segment shape information based on the anterior segment cross-sectional image is obtained with high accuracy.
- the setting means sets a non-analysis region (that is, the position of the reflected image or a predetermined range including the position of the reflected image) that is not to be analyzed from the target region of the anterior segment cross-sectional image,
- the analysis area may be set indirectly.
- the setting means excludes the position of the reflected image in the anterior segment cross-sectional image (or a predetermined range including the position of the reflected image), and interpolates using the excluded peripheral data to obtain the analysis region may be set. That is, the reflected image may be removed from the anterior segment cross-sectional image by image processing, and the analysis region may be set for the obtained anterior segment cross-sectional image that does not include the reflected image. In this case, all of the aforementioned target regions can be set as analysis regions that do not include reflected images. Of course, part of the target area can also be set as the analysis area.
- the setting means may set the analysis region based on the anterior segment information acquired by the anterior segment information acquisition means.
- the analysis region may be set based on the condition of the pupil of the subject's eye (for example, pupil diameter, etc.). Further, for example, the analysis region may be set based on the shape of each translucent body in the anterior segment of the subject's eye (for example, the radius of curvature of the cornea). As a result, the region suitable for analysis of the anterior segment cross-sectional image can be easily grasped.
- the setting means may set the analysis area by excluding the position of the reflected image specified by the specifying means (or a predetermined range including the position of the reflected image).
- the ophthalmologic apparatus of the present embodiment may include axial length acquisition means (for example, control unit 50).
- the axial length obtaining means may also serve as an image processing section, an axial length obtaining section, an arithmetic control section, and the like.
- the eye axial length acquisition means may acquire the eye refractive power of the subject's eye by controlling acquisition of the eye refractive power using the eye refractive power measurement optical system. More specifically, by controlling the projection of the first measurement light in the eye refractive power measurement optical system and the detection by the photodetector of the fundus reflected light of the first measurement light, the eye refractive power of the subject's eye is measured. may be obtained.
- the axial length acquiring means may acquire the anterior segment cross-sectional image of the eye to be examined by controlling the acquisition of the anterior segment cross-sectional image using the cross-sectional image capturing optical system. More specifically, by controlling the projection of the second measurement light in the cross-sectional imaging optical system and the detection of the return light (scattered light) of the second measurement light by the photodetector, Partial cross-sectional images may be acquired.
- the axial length acquisition means acquires the axial length of the eye to be examined based on the refractive power of the eye and a plurality of parameters included in the shape information acquired by the shape information acquisition means by analyzing the cross-sectional image of the anterior segment of the eye.
- the axial length acquisition means may derive the axial length by ray tracing calculation based on the refractive power of the eye and a plurality of parameters. In the ray tracing calculation, the distance between the point of intersection and the vertex of the cornea when a light ray incident on a predetermined position of the anterior segment from the far point is refracted by the translucent body and intersects the optical axis is derived as the axial length of the eye. be.
- the eye refractive power at the light-section plane may be used instead of the equivalent spherical power that is generally used when specifying the far point in the field of ophthalmology.
- the eye refractive power at the light-section plane surface eye refractive power
- the position of the far point of the light ray passing through the cut plane can be specified more properly.
- the axial length can be obtained more appropriately.
- a ray tracing calculation may be performed for each of the plurality of rays, and the axial length of the eye may be obtained as a result of the ray tracing calculation for each ray. For example, an average value (or a weighted average) of the axial lengths obtained by each ray tracing calculation may be obtained as the axial length of the subject's eye.
- the incident position of the ray with respect to the boundary surface of each transparent body and the angle change at the boundary surface are determined by considering the shape of the transparent body at the cut surface specified from the anterior segment information. may be The ray tracing calculation may also take into account the decentration of the anterior segment translucent body. Eccentricity is identified based on the anterior segment information. As a result of considering the eccentricity of the transmissive body in the cut plane, the axial length can be obtained more appropriately.
- a ray tracing calculation is performed for each of a plurality of rays including at least the first ray and the second ray to obtain the axial length for each ray, and based on the plurality of axial lengths, the final measurements may be obtained.
- the first light ray and the second light ray are light rays arranged on the cutting plane with the eye axis interposed therebetween.
- the axial length acquisition means may adjust the light amount of the second measurement light in the cross-sectional image capturing optical system based on the anterior segment cross-sectional image. More specifically, an anterior segment cross-sectional image (first anterior segment cross-sectional image) of the eye to be inspected is acquired, and if this anterior segment cross-sectional image is determined to be inappropriate for analysis, the amount of light of the second measurement light is reduced. After adjustment, the anterior segment cross-sectional image (second anterior segment cross-sectional image) may be acquired again. Further, in the present embodiment, the axial length acquisition means may adjust the detection conditions of the photodetector in the cross-sectional image capturing optical system based on the anterior segment cross-sectional image.
- the detection conditions of the photodetector are adjusted to obtain the second anterior segment cross-sectional image.
- a cross-sectional image may be acquired. This increases the possibility of obtaining appropriate values for the plurality of parameters based on the anterior segment cross-sectional image, and as a result improves the accuracy of the axial length.
- the axial length obtaining means may determine whether the first anterior segment cross-sectional image is suitable for analysis based on whether the first anterior segment cross-sectional image is obtained satisfactorily. . Further, the axial length obtaining means determines whether the first anterior segment cross-sectional image is suitable for analysis based on whether or not a plurality of parameters based on the first anterior segment cross-sectional image are obtained satisfactorily. may decide. This makes it easier to obtain appropriate values even when measured values for multiple parameters are unavailable or inaccurate.
- the axial length acquisition means adjusts the light amount of the second measurement light within a predetermined range in which the luminance information of each translucent body detected from the second anterior segment cross-sectional image is not saturated. good.
- the axial length acquisition means may increase or decrease the set value of the output of the light source, or insert or remove the optical member in the optical path of the second measurement light projected from the light source.
- the predetermined range may be set in advance based on the detection sensitivity, gain, etc. of the photodetector.
- the axial length acquisition means adjusts the detection conditions of the photodetector within a predetermined range in which the luminance information of each translucent body detected from the second anterior segment cross-sectional image is not saturated. may In this case, the axial length acquisition means may change at least one of the exposure time, gain, etc. of the photodetector.
- the ophthalmologic apparatus in this embodiment includes eye refractive power acquisition means for acquiring the eye refractive power of the eye to be inspected, an anterior segment cross-sectional image acquisition means for acquiring an anterior segment cross-sectional image of the eye to be inspected, and an anterior segment cross-sectional image setting means for setting an analysis region that does not include a corneal reflection image in an image; shape information acquisition means for analyzing the analysis region to acquire anterior segment shape information; and an eye axial length acquiring means for acquiring the axial length.
- the eye refractive power acquiring means acquires the eye refractive power by receiving measurement results using a device different from the ophthalmologic device, calling from an electronic medical record or the like, input by the examiner using the operation means, and the like.
- the ophthalmologic apparatus includes an eye refractive power measurement optical system
- the eye refractive power may be obtained as a measurement result using this optical system.
- the anterior segment cross-sectional image acquisition means may acquire the eye refractive power by receiving an image captured using a device different from the ophthalmologic device, by calling from an electronic medical record or the like.
- an anterior segment cross-sectional image may be acquired as a result of capturing using this optical system.
- FIG. 1 is an external view of an ophthalmologic apparatus 10.
- the ophthalmologic apparatus 10 is a multi-function machine of an objective eye refractive power measuring apparatus (especially an autorefractometer in this embodiment) and a Scheimpflug camera.
- the ophthalmologic apparatus 10 is a stationary examination apparatus, but is not necessarily limited to this, and may be hand-held.
- the ophthalmologic apparatus 10 has at least a measurement unit 11 , a base 12 , an alignment drive section 13 , a face support unit 15 , a monitor 16 and an arithmetic control section 50 .
- the measurement unit 11 includes a measurement system, an imaging system, and the like used for examination of an eye to be examined.
- the optical system shown in FIG. 2 is arranged.
- the alignment drive section 13 may be able to move the measurement unit 11 three-dimensionally with respect to the base 12 .
- the face support unit 15 is used to fix the subject's face in front of the measurement unit 11 .
- the face support unit 15 is fixed to the base 12 and supports the subject's face.
- the monitor 16 functions as a touch panel that also serves as an operation unit.
- the monitor 16 displays the ocular refractive power of the subject's eye E, the anterior segment cross-sectional image, the ocular axial length, and the like on the screen.
- the arithmetic control unit 50 (also referred to as a processor; hereinafter simply referred to as the control unit 50 ) controls the entire ophthalmologic apparatus 10 . It also processes various inspection results acquired via the measurement unit 11 .
- FIG. 2 is a schematic diagram showing the optical system of the ophthalmologic apparatus 10.
- the ophthalmologic apparatus 10 includes a measurement optical system 100, a fixation target presentation optical system 150, a front imaging optical system 200, a cross-sectional imaging optical system (an irradiation optical system 300a and a light receiving optical system 300b, an index projection optical system 400, and It has an alignment target projection optical system, and half mirrors 501, 502, 503 for branching and combining the optical paths of each optical system, an objective lens 505, etc.
- the light source side is upstream
- the side of the eye to be examined is the downstream side.
- the measurement optical system 100 is used to objectively measure the eye refractive power of the eye E to be examined.
- each value of SPH: spherical power, CYL: cylindrical power, and AXIS: cylinder axis angle may be obtained as a measurement result of the eye refractive power.
- the measurement optical system 100 has a projection optical system 100a and a light receiving optical system 100b.
- the projection optical system 100a has at least a measurement light source 111, and projects a spot-shaped measurement light onto the fundus of the eye E to be inspected via the center of the pupil or the corneal vertex of the eye E to be inspected.
- the measurement light source 111 may be an SLD light source, an LED light source, or other light sources.
- infrared light is used as the measurement light.
- near-infrared light with a peak wavelength between 800 nm and 900 nm may be used.
- near-infrared light with a peak wavelength of 870 nm may be used.
- a prism 115 is arranged on the common path of the projection optical system 100a and the light receiving optical system 100b. By rotating the prism 115 around the optical axis, the projection light flux on the pupil is rotated eccentrically at high speed. As an example, in this embodiment, the projection light flux is eccentrically rotated in a region of ⁇ 2 mm to ⁇ 4 mm on the pupil. This area is the eye refractive power measurement area in this embodiment.
- the light receiving optical system 100b has at least a ring lens 124 and an imaging element 125.
- the light-receiving optical system 100b takes out the reflected light flux of the measurement light flux reflected from the fundus in a ring shape through the periphery of the pupil.
- the ring lens 124 is arranged at a pupil conjugate position
- the imaging device 125 is arranged at a fundus conjugate position.
- the measurement light is eccentrically rotated at high speed on the pupil.
- Analysis processing is performed on an added image of image data that is sequentially output, and an eye refractive power is derived.
- at least values of SPH: spherical power, CYL: cylindrical power, and AXIS: cylinder axis angle are acquired as a result of the analysis processing.
- the measurement optical system 100 may have optical elements such as lenses and diaphragms.
- the measurement light flux from the measurement light source 111 passes through the hole portion of the hole mirror 113 and the prism 115, is reflected by the half mirrors 502 and 501, respectively, becomes coaxial with the optical axis L1, and passes through the objective lens 505. and reach the fundus.
- a reflected light flux which is the measurement light flux reflected by the fundus, passes through the optical path through which the measurement light flux has passed, is reflected by the mirror portion of the hole mirror 123 , and reaches the imaging device 125 via the ring lens 124 .
- a fixation target presenting optical system 150 presents a fixation target to the eye E to be examined.
- a fixation target is presented on the optical axis of the measurement optical system 100 .
- the fixation target presenting optical system 150 is used to fixate the eye E to be examined. It is also used to apply fogging and accommodation load to the subject's eye.
- the fixation target presenting optical system 150 includes at least a light source 151 and a fixation target plate 155 .
- the fixation target plate 155 may be placed at a fundus conjugate position.
- a fixation light flux from the light source 151 passes through the half mirror 503 after passing through the fixation target plate 155 and the lens 156 on the optical axis L2. Further, the light passes through the lens 504, passes through the half mirror 502, and is reflected by the half mirror 501, so that the light becomes coaxial with the optical axis L1.
- the fixation luminous flux further passes through the objective lens 505 and reaches the fundus.
- the measurement light source 111, the ring lens 124, and the imaging element 125 in the measurement optical system 100, and the light source 151 and the fixation target plate 155 in the fixation target presentation optical system 150 are driven by the drive unit 161 as a drive unit 160. It is integrally movable along the .
- the focal length within the driving unit 160 in the measurement optical system 100 and the focal length within the driving unit 160 in the fixation target presenting optical system 150 have a predetermined relationship.
- the presentation distance of the fixation target plate 155 to the eye E that is, the presentation position of the fixation target
- the imaging device 125 are optically conjugated to the fundus.
- the hole mirror 113 and the ring lens 124 are pupil conjugate at a constant magnification.
- the front imaging optical system 200 is used to capture a front image of the anterior segment of the eye E to be examined.
- the front imaging optical system 200 includes an imaging element 205 and the like.
- the imaging element 205 may be arranged at a pupil conjugate position.
- As the front image an observation image of the anterior segment may be acquired. The observed image is used for alignment and the like.
- the index image (point image) projected onto the cornea from the index projection optical system 400 and the index image (Meyerling image) projected onto the cornea from the alignment index projection optical system 600 are photographed by the front imaging optical system 200. be done.
- the cross-sectional imaging optical system is used to capture a cross-sectional image of the anterior segment of the eye.
- the cross-sectional imaging optical system includes an irradiation optical system 300a and a light receiving optical system 300b.
- the irradiation optical system 300a is coaxial with the projection optical axis (optical axis L1) of the measurement light in the measurement optical system 100, and irradiates the anterior segment with slit light (illumination light).
- the irradiation optical system 300a has a light source 311, a slit 312, and the like.
- the light source 311 may be an SLD light source, an LED light source, or other light sources.
- red visible light or near-infrared light is used as illumination light.
- red visible light or near-infrared light with peak wavelengths between 650 nm and 800 nm may be utilized.
- red visible light with a peak wavelength of 730 nm may be used.
- near-infrared light with a predetermined wavelength as a peak wavelength may also be used.
- the slit 312 may be placed at a pupil conjugate position.
- FIG. 3 is a schematic diagram showing the relationship between the visual sensitivity of an eye to be inspected and the wavelength.
- the eye to be inspected has luminosity in the visible range, which generally peaks around 550 nm, which is green visible light, and gradually decreases as the wavelength increases (closer to the infrared range). In other words, the subject's eye is likely to feel dazzling in green visible light, and less likely to feel dazzling in red visible light. It is said that infrared light is not dazzling.
- red visible light to near-infrared light which is less likely to be perceived by the eye to be examined, is used as illumination light.
- the visibility around 650 nm, which is red visible light drops to about 1/10
- the visibility around 700 nm drops to about 1/200, relative to the visibility around 550 nm, which is green visible light. Therefore, the burden on the subject is greatly reduced. In particular, when targeting young people including children, the burden is reduced and the efficiency of measurement is improved.
- the passage cross section of the slit light in the anterior segment is referred to as a "cut plane".
- the cut plane becomes the object plane of the cross-section imaging optical system.
- the opening of the slit 312 has a horizontal direction (the depth direction of the paper surface) as its longitudinal direction. Therefore, in this embodiment, the horizontal plane (XZ section) including the optical axis L1 is set as the cutting plane.
- a cut surface is formed at least between the anterior corneal surface and the posterior surface of the lens.
- the light receiving optical system 300b has a lens system 322, an imaging device 321, and the like.
- the lens system 322 and the imaging device 321 are arranged in a Scheimpflug relationship with the cutting plane set in the anterior segment. That is, the optical arrangement is such that the extended planes of the cut plane, the principal plane of the lens system 322, and the imaging surface of the imaging element 321 intersect at one line of intersection (one axis). A cross-sectional image of the anterior segment is acquired based on the signal from the imaging device 321 .
- the imaging element 321 may be configured with a semiconductor substrate made of silicon as a single element.
- FIG. 4 is a schematic diagram showing the relationship between the light receiving sensitivity of the image sensor 321 and the wavelength.
- an imaging device using silicon as a single element has sensitivity to wavelengths in the vicinity of 300 nm to 1000 nm, including wavelengths in the ultraviolet, visible, and infrared regions, but has sensitivity in the vicinity of 550 nm to 650 nm, which includes green visible light. It becomes the maximum, and gradually decreases as it approaches the infrared region.
- the sensitivity of 650 nm or more, which includes red visible light to near-infrared light, used in the irradiation optical system 300a is sufficient for obtaining a cross-sectional image of the anterior segment.
- some imaging devices have the highest sensitivity in the infrared region, but they are expensive. While it is desired that the device be widely used in many facilities such as hospitals and schools, the high cost of the device may hinder the widespread use of the device. If an imaging element made of silicon is used, the cost of the device can be reduced.
- the illumination light beam from the light source 311 passes through the slit 312 on the optical axis L3 and becomes a slit light beam. Coaxial with L2. Further, the light passes through the lens 504, passes through the half mirror 502, and is reflected by the half mirror 501, so that the light becomes coaxial with the optical axis L1. The illumination luminous flux further passes through the objective lens 505 and reaches the anterior segment of the eye. Return light from the cut surface formed in the anterior segment reaches the imaging device 321 via the lens 322 .
- a target projection optical system 400 is used to measure the corneal shape.
- the target projection optical system 400 projects a target for measuring the shape of the cornea from the front facing the subject's eye to the anterior segment of the eye.
- a target projection optical system 400 includes a plurality of point light sources 401 .
- the point light source 401 projects an infinity index by irradiating the cornea with parallel light.
- the point light source 401 emits infrared light. However, it may be visible light.
- the point light sources 401 are arranged vertically and horizontally symmetrically about the optical axis L1. For example, in this embodiment, two point light sources are provided on each side. This projects four point image indices onto the cornea. Note that the shape of the index is not limited to this, and a linear index or the like may be included. Also, the number of indices is not limited to this, and may be composed of three or more point image indices.
- the circumferential area onto which these four point images are projected is the corneal shape measurement area by the index projection optical system 400 and the front imaging optical system 200 .
- each point image is projected onto a ⁇ 3 mm circumferential region of the corneal model eye.
- the alignment target projection optical system is used to align (align) the measurement unit 11 with the eye E to be examined.
- the alignment light source 601 and the index projection optical system 400 form an alignment index projection optical system.
- the working distance is adjusted by moving the measurement unit 11 in the front-rear direction so that the Purkinje image by the alignment light source 601 and the Purkinje image by the index projection optical system 400 are photographed at a predetermined ratio.
- the alignment light source 601 projects a finite distance index by irradiating the cornea with diffused light.
- the alignment light source 601 emits infrared light. However, it may be visible light.
- the alignment light source 601 is arranged in a ring shape around the optical axis L1. Thereby, in this embodiment, a ring index (so-called Mayer ring) is projected onto the cornea.
- both the fixation target presenting optical system 150 and the target projecting optical system 300a are irradiated with visible light.
- a half mirror 503 makes the optical axis L2 of the fixation target presenting optical system 150 and the optical axis L3 of the target projecting optical system 300a coaxial.
- the fixation target presenting optical system 150 on the transmission side of the half mirror 503 and the target projection optical system 300a on the reflection side of the half mirror 503, the respective optical paths are shared.
- the half mirror 503 is of a flat type, and astigmatism tends to occur on the transmission side of the half mirror 503 .
- the optotype projection optical system 300a requires a certain imaging performance in order to obtain a clear cross-sectional image 70 by forming a cross section in the anterior segment. For this reason, it is preferable that the target projection optical system 300a be arranged on the reflection side, which is less affected by astigmatism.
- a lens 504 a is arranged on the optical axis of the fixation target presenting optical system 150 .
- the lens 504 a functions as a total length shortening lens for shortening the overall length of the fixation target presenting optical system 150 .
- the lens 504a also serves to reduce the diameter of the lens 156 located upstream of the lens 504a.
- FIG. 5 is a schematic diagram in which the fixation target presenting optical system 150 is simplified.
- the upper diagram of FIG. 5 shows the case where the lens 504a is not arranged.
- the lower diagram of FIG. 5 shows a case where the lens 504a is arranged.
- the optical path from the subject's eye E to the fixation target plate 155 is a straight line, and some optical members are omitted.
- Fundus imaging rays from the center and periphery of the fixation target plate 155 are represented by solid and dotted lines, respectively.
- the fixation target presenting optical system 150 may be a target-side telecentric optical system, and the lens 504a may be arranged at a pupil conjugate position. At this time, light rays from the center and peripheral portions of the fixation target plate 155 pass through the center of the lens 504a, so that the overall focal length (composite focal length) of the fixation target presenting optical system 150 changes. do not do. Therefore, the relationship between the focal lengths of the fixation target presenting optical system 150 and the measuring optical system 100 in the drive unit 160 is maintained.
- the lens 156 can be designed with a small diameter. Further, the total length of the fixation target presenting optical system 150 can be shortened while maintaining the predetermined working distance of the subject's eye E and the synthetic focal length of the fixation target presenting optical system 150 . As a result, the size of the ophthalmologic apparatus 10 can be reduced.
- a lens 504b is arranged on the optical axis of the target projection optical system 300a.
- the lens 504b has a role of reducing the diameter of the objective lens 505 located downstream of the lens 504b.
- FIG. 6 is a simplified schematic diagram of the optotype projection optical system 300a.
- the upper diagram of FIG. 6 shows the case where the lens 504b is not arranged.
- the lower diagram of FIG. 6 shows a case where the lens 504b is arranged.
- the optical path from the subject's eye E to the slit 312 is a straight line, and some optical members are omitted.
- Pupil imaging rays from the center and periphery of the slit 312 are represented by solid and dotted lines, respectively.
- the objective lens 155 can be designed with a small diameter. It should be noted that the rays from the central and peripheral portions of the slit 312 are refracted in a region farther from the center of the objective lens 505, and the greater the aberration may occur. Therefore, an objective lens 155 having an appropriate diameter may be used so as to reduce the size of the ophthalmologic apparatus 10 and suppress the occurrence of aberrations.
- a lens 504 that shares the above-described lenses 504a and 504b having different roles is arranged in the fixation target presenting optical system 150 and the target projecting optical system 300a.
- the lens 504 is arranged downstream of the half mirror 503 where the optical axis L2 of the fixation target presenting optical system 150 and the optical axis L3 of the target projecting optical system 300a are combined. As a result, the inside of the optical system can be made more space-saving.
- ⁇ Control action> The control operation of the ophthalmologic apparatus 10 will be described with reference to the flowchart shown in FIG.
- the ophthalmologic apparatus 10 sequentially performs corneal curvature measurement, eye refractive power measurement, and photographing of an anterior segment cross-sectional image, and the axial length is obtained based on the results of the measurements and photographing. be.
- control unit 50 adjusts the subject's eye E and the ophthalmologic apparatus 10 to a predetermined positional relationship based at least on the observed image of the anterior segment acquired via the front imaging optical system 200 . More specifically, alignment in the XY directions is performed so that the optical axis L1 coincides with the corneal vertex of the eye E to be examined. Alignment in the Z direction is also performed so that the distance between the subject's eye E and the ophthalmologic apparatus 10 is a predetermined working distance. At this time, an alignment index may be projected onto the cornea and the alignment may be adjusted based on the alignment index detected in the observed image.
- the control unit 50 projects a point image index from the index projection optical system 400 and captures a corneal Purkinje image of the point image index using the front imaging optical system 200 .
- the control unit 50 also acquires corneal shape information based on the corneal Purkinje image.
- the corneal shape information is derived based on the image height of the corneal Purkinje image.
- at least each value of the corneal curvature, the astigmatic power, and the astigmatic axis angle is acquired as the corneal shape information.
- ⁇ Eye refractive power measurement (S3)> the ocular refractive power of the subject's eye E is measured. Since infrared light is projected onto the subject's eye E as measurement light, the pupil diameter of the subject's eye E becomes a predetermined size in which miosis (for example, ⁇ 2 mm or less) is suppressed. As an example, it is any diameter included in the measurement area of the subject's eye E (area of ⁇ 2 mm to ⁇ 4 mm on the pupil). For example, in eye refractive power measurement, preliminary measurement may be performed first, and main measurement may be performed later.
- the ocular refractive power of the subject's eye E is measured with the fixation target placed at a predetermined presentation distance.
- the fixation target plate 155 may be arranged at an initial position that is optically sufficiently far away from the subject's eye E and that corresponds to the far point of the 0D eye.
- a ring image captured by the imaging device 125 based on the measurement light irradiated in this state is image-analyzed by the control unit 50 .
- the refractive power value in each meridian direction is obtained.
- At least the spherical power in the preliminary measurement is obtained by subjecting the refractive power in each meridional direction to a predetermined process.
- control unit 50 moves the fixation target plate 155 to the fog start position where the subject's eye E is in focus, according to the pre-measured spherical power of the subject's eye.
- the control unit 50 adds fog to the subject's eye E by moving the fixation target from the fog start position. This cancels the adjustment of the eye E to be examined.
- the main measurement is performed with fog added to the subject's eye E.
- the SPH of the eye E to be examined spherical power
- CYL cylindrical power
- AXIS astigmatism axis angle objective value
- a cross-sectional image (Scheimpflug image) of the anterior segment of the subject's eye E is captured.
- the control unit 50 captures a cross-sectional image of the anterior segment of the eye.
- the operation of capturing a cross-sectional image may be performed using the completion of the main measurement of the eye refractive power as a trigger. That is, immediately after the completion of the main measurement, illumination light is emitted from the illumination optical system 300a, and the scattered light scattered by the cornea and lens is imaged on the imaging device 321 to form an image of the cross section of the anterior segment. Get an image. This reduces misalignment between the measurement of the eye refractive power and the imaging of the cross-sectional image.
- FIG. 8 is an example of a cross-sectional image 70 of the anterior segment.
- Artifacts may appear in the cross-sectional image 70 together with the cornea, iris, lens, and the like.
- the slit light (illumination light) emitted from the irradiation optical system 300a forms a cut plane in the anterior segment of the eye, but part of it may be reflected (specularly reflected) by the cornea.
- the image pickup device 321 of the light receiving optical system 300 b captures the corneal reflected light of the slit light together with the return light from the cut surface of the slit light, and the image of the corneal reflected light is reflected in the cross-sectional image 70 as an artifact 75 .
- the artifact 75 exists, it becomes difficult to obtain the anterior segment shape information with high accuracy.
- the control unit 50 acquires anterior segment shape information regarding the shape of the anterior segment.
- the anterior segment shape information includes the radius of curvature of the anterior corneal surface (Ra), the radius of curvature of the posterior corneal surface (Rp), the corneal thickness (CT), the depth of the anterior chamber (ACD), the radius of curvature of the anterior lens surface (ra), A plurality of parameter information may be included that are measurements such as the radius of curvature of the posterior lens surface (rp), lens thickness (LT), and the like.
- the corneal shape information obtained in step S2 can also be used as the anterior segment shape information.
- the control unit 50 performs image processing on the cross-sectional image 70 to detect each translucent body (for example, the cornea, aqueous humor, lens, etc.) and acquire anterior segment shape information.
- luminance information of the cross-sectional image 70 may be used to detect pixel positions corresponding to tissue boundaries (corneal anterior and posterior surfaces, lens anterior and posterior surfaces, irises, etc.), and information such as curvature radii may be obtained.
- the distance between the pixel positions corresponding to the boundary of the tissue may be obtained, and information such as the thickness and depth of the tissue may be obtained.
- control unit 50 sets an analysis region that does not include the artifact 75 during image processing of the cross-sectional image 70 .
- the artifact 75 may lead to erroneous detection of the boundary of each tissue, or a decrease in detection accuracy of the boundary of each tissue.
- the effect on detection is significant. Therefore, the pixel position of the artifact 75 is specified, the artifact 75 is excluded from the analysis area, and image processing is performed.
- FIG. 9 is a diagram for explaining the analysis area of the cross-sectional image 70.
- the control unit 50 may identify the pixel position of the artifact 75 using the brightness information of the cross-sectional image 70 .
- the corneal reflected light of the slit light is light that does not pass through the cornea or the lens and is not attenuated.
- the return light from the cut surface of the slit light is light that has been attenuated by passing through the cornea and the lens, and is part of the light scattered by the cornea and the lens. Therefore, the reflected light from the cornea and the returned light (scattered light) have different luminances appearing in the cross-sectional image 70 as images.
- the control unit 50 may identify the pixel position of the artifact 75 by detecting whether the luminance value exceeds a preset threshold for each pixel position of the cross-sectional image 70 .
- the control unit 50 excludes at least the pixel positions of the artifacts 75 from the analysis target area Q in the cross-sectional image 70 (that is, the target area Q including all pixel positions).
- a range having a predetermined number of pixels in the vertical direction and the horizontal direction with reference to the pixel position of the artifact 75 is set as the non-analysis region Q1 (the solid line portion in FIG. 9) to be excluded from the target region Q.
- an analysis region Q2 (dotted line portion in FIG. 9), which is an analysis region Q2 to be subjected to image processing of the cross-sectional image 70 and is obtained by excluding the non-analysis region Q1 from the target region Q, is set.
- the control unit 50 may detect pixel positions corresponding to tissue boundaries based on the luminance information of the analysis region Q2, and specify at least three pixel positions on each boundary. Note that when the tissue boundary detected in the analysis region Q2 includes pixel positions on the optical axis L1, at least three pixel positions must include the intersection of the tissue boundary and the optical axis L1. May be specified.
- the control unit 50 can obtain information such as a radius of curvature by obtaining a circle passing through at least three specified points, and the center point and radius of this circle. In addition, it is possible to obtain information such as the thickness and depth of the tissue by obtaining the distance of the pixel position corresponding to the boundary of the tissue.
- the control unit 50 may change the designated point on the cross-sectional image 70 .
- the degree of similarity between the cross-sectional image 70 and the structure of the anterior segment predicted by image processing of the cross-sectional image 70 may be used. If the designated point is in a region with a low degree of similarity, the point may be deleted and reselected from a region with a high degree of similarity.
- control unit 50 may delete predetermined points so that at least three pixel positions remain. That is, in the cross-sectional image 70, if a point that does not follow the curved surface of the cornea or lens is designated, it may be deleted as appropriate.
- the control unit 50 calculates the axial length based on the refractive power of the eye E to be examined and a plurality of parameter information in the anterior segment shape information of the eye E to be examined.
- FIG. 10 is a schematic diagram for explaining the method of deriving the axial length of the eye.
- the axial length may be derived based on the ray tracing calculation on the cut plane of the anterior segment.
- the control unit 50 performs ray tracing calculation based on the position of the far point FP, the refractive index of each translucent body, and the parameter information in the anterior segment shape information.
- the control unit 50 traces a ray (e.g., ray Lx in FIG. 10) incident from the far point FP toward the eye E to be examined, refracts the ray by each translucent body of the eye E to be examined, and aligns the ray with the optical axis. Find the position of the crossing point. Details of the ray tracing calculation will be described later. For example, the position of the fundus oculi Ef is obtained by such ray tracing calculation.
- the control unit 50 derives the distance between the corneal vertex C and the fundus Ef as the axial length AL.
- the axial length AL is displayed on the monitor 16 .
- the axial length AL is displayed together with at least one of the corneal shape information and the eye refractive power (SPH, CYL, AXIS) of the eye E to be examined.
- the measurement result this time may be displayed with the past measurement result.
- the measurement results may be displayed by a trend graph in which the horizontal axis is the age (measurement date) and the vertical axis is the eye axial length AL.
- the display modes of the measurement results are not limited to these.
- the on-plane eye refractive power which is the eye refractive power on the cutting plane, is obtained, and the position of the far point FP is set based on the on-plane refractive power.
- the refractive power P on an arbitrary surface is expressed by the following formula.
- ⁇ is an angle with respect to the horizontal plane, and the horizontal direction is 0°.
- the control unit 50 traces the ray from the far point FP set in this way. For example, a ray (for example, ray Lx in FIG. 10) directed from the far point FP to a certain position (for example, a position of ⁇ 6 mm at the position of the pupil of the subject's eye (about 3 mm behind the cornea)) is guided. It should be noted that setting the fixed position at the position of the pupil of the subject's eye to ⁇ 6 mm is merely an example, and can be changed as appropriate.
- This light ray is first refracted at the anterior surface of the cornea.
- the intersection point of the ray with the anterior corneal surface is calculated based on the radius of curvature Ra of the anterior corneal surface, the position of the far point FP, and the ray angle at the far point FP. Furthermore, the incident angle of the light ray at the intersection is calculated.
- a light ray that reaches the anterior surface of the cornea changes direction at a fixed angle of refraction with respect to the angle of incidence according to Snell's law. In this way, the rays at each transparent body interface are traced sequentially.
- the anterior segment shape information (Ra, Rp, CT, ACD, ra, rp, LT) acquired based on the corneal shape information and the cross-sectional image 70 (Scheimpflug image) is It is used as appropriate to give the intersection points.
- the intersection point that is, the position of the fundus oculi Ef
- the axis of the eye here, the visual axis
- AL The distance from the intersection to the corneal vertex C (the origin here) is used as the axial length AL.
- At least the radius of curvature Ra of the anterior surface of the cornea is Values based on the corneal Purkinje image of the image index are used, and for the remaining values, values based on the cross-sectional image 70 (Scheimpflug image) are used. This is because the measurement accuracy of the corneal anterior surface shape based on the corneal Purkinje image is generally higher than that based on the Scheimpflug image.
- at least each value of the corneal curvature, the astigmatism power, and the astigmatism axis angle is acquired as the corneal shape information. From these values, the corneal curvature at the cut plane (curvature of the anterior corneal surface) can be determined using a technique similar to that used to determine the refractive power for the cut plane. The reciprocal of the obtained value may be used as Ra.
- the axial length AL of the subject's eye E can be obtained by tracing the light rays directed to such a fixed position.
- the method of ray tracing is not limited to the above method.
- a point to be imaged from the far point FP may be obtained by paraxial calculation.
- a point to be imaged from the far point FP may be obtained in consideration of a plurality of rays incident on the subject's eye E at different positions.
- ray tracing for paraxial rays and rays directed to fixed positions different from the paraxial rays may be combined.
- the final measured value (calculated value) of the axial length may be the average of the axial lengths of each ray-traced (weighted average). can also be used).
- the axial length AL may be obtained by tracing the light rays directed to the measurement area ( ⁇ 2 mm to ⁇ 4 mm on the pupil) by the measurement optical system 100 .
- ray tracing may be performed for each of a plurality of rays directed to a region of ⁇ 2 mm to ⁇ 4 mm on the pupil, and the average value of the axial length obtained by each ray tracing may be obtained as a calculation result. Since ray tracing is performed under more appropriate conditions, the axial length can be obtained more accurately.
- a predetermined offset value may be added to the axial length value obtained in this embodiment.
- the offset value corrects the error between the calculated value and the measured value.
- ray tracing may be performed by tracing a ray emitted from the far point FP and passing through the circumferential region on which the point image index for corneal topography measurement is projected. As a result, the conditions for ray tracing become more appropriate, and the axial length can be obtained more accurately.
- the ophthalmologic apparatus of this embodiment includes a fixation optical path of fixation light in the fixation target presenting optical system and a measurement optical path (projection light) of measurement light (illumination light) in the cross-sectional image capturing optical system. and an optical path coupling member for coupling the optical path.
- the fixation target can be appropriately presented to the subject's eye, the cross-sectional image of the anterior segment of the eye can be satisfactorily captured, and the axial length of the eye can be accurately obtained. Since the fixation light is converged on the fundus and the illumination light is condensed on the anterior segment of the eye, each optical system is made common, resulting in a complicated configuration. can be When both the fixation light and the illumination light are visible light, the optical path coupling member can be configured more easily.
- the ophthalmologic apparatus of this embodiment functions as a total length shortening lens for shortening the total length of the fixation target presenting optical system in the common optical path of the fixation optical path and the measurement optical path, and a cross-sectional image capturing optical system.
- a common lens is arranged to function as a field lens for changing the traveling direction of measurement light (illumination light) in the system.
- the optical system for presenting a fixation target includes a lens with a shortened total length. It can be designed without enlarging the lens. Therefore, the configuration of the optical system is space-saving, and the ophthalmologic apparatus is miniaturized.
- the ophthalmologic apparatus of this embodiment uses a planar member as an optical path coupling member.
- a planar member astigmatism is likely to occur on the transmission side, and astigmatism is less likely to occur on the reflection side. For this reason, the imaging performance of the light arranged on the transmission side is lower than the imaging performance of the light arranged on the reflection side.
- the fixation optical path on the transmission side priority is given to the imaging performance of the illumination light, and a cross-sectional image of the anterior segment can be satisfactorily captured.
- the imaging performance of the fixation light is lowered, but the performance to the extent that the fixation target can be fixed is ensured, so the effect on visual recognition is kept small.
- the ophthalmologic apparatus of the present embodiment identifies artifacts included in the anterior segment cross-sectional image, and sets an analysis region excluding the artifacts. As a result, it is possible to accurately acquire the anterior segment shape information using only the region suitable for analysis of the anterior segment cross-sectional image.
- the ophthalmologic apparatus of the present embodiment determines whether or not to use a point on the optical axis of the measurement light in the eye refractive power measurement optical system for analysis, depending on the position of the analysis region with respect to the anterior segment cross-sectional image. change. For example, if an artifact is detected near the curved surface of each tissue, or if an artifact is detected overlapping the curved surface of each tissue, the accuracy of the anterior segment shape information may decrease. . By appropriately changing the points used for analyzing the anterior segment cross-sectional image, the anterior segment shape information can be obtained with high accuracy.
- the optical axes of the fixation target presenting optical system 150 and the target projecting optical system 300a have been described as an example of a configuration in which the optical axes of the target projecting optical system 300a are branched or combined by the planar half mirror 503, but the present invention is not limited to this. .
- a prism type half mirror may be used to split or combine the respective optical axes.
- the prism type is less likely to produce astigmatism on either the transmission side or the reflection side. Therefore, regardless of which relationship the fixation target presenting optical system 150 and the target projecting optical system 300a are arranged with respect to the half mirror, the imaging performance of the target projecting optical system 300a can be maintained. As a result, a cross-sectional image of the anterior segment can be captured satisfactorily.
- the configuration in which the shared lens 504 is arranged on the common optical axis of the fixation target presenting optical system 150 and the target projecting optical system 300a has been described as an example, but it is not limited to this.
- lenses having different roles may be arranged on the optical axis of each optical system. That is, the lens 504a and the lens 504b may be arranged upstream of the half mirror 503 that splits or combines the optical axes of the respective optical systems.
- the configuration for specifying the pixel position of the artifact 75 using the luminance value threshold in the cross-sectional image 70 of the anterior segment has been described as an example, but the present invention is not limited to this.
- the pixel position of the artifact 75 may be specified by calculating the degree of similarity based on the brightness values of the cross-sectional image 70 and the template image.
- the control unit 50 moves the template image to be overlapped with the cross-sectional image 70 pixel by pixel (performs so-called pattern matching) while the similarity based on the difference in brightness value is zero (or , the value closest to zero) may be detected.
- the storage unit (memory) of the ophthalmologic apparatus 1 may have a template image.
- a template image for detecting the artifact 75 may be used.
- the control unit 50 may specify the pixel position of the template image corresponding to the cross-sectional image 70 as the pixel position of the artifact 75 .
- the control unit 50 may set the non-analysis region Q1 based on the pixel position of the artifact 75 in the cross-sectional image 70 .
- a template image representing a standard cross-sectional image of an eye modeled after a general eye structure may be used.
- the control unit 50 identifies the pixel position of the template image corresponding to the cross-sectional image 70.
- the control unit 50 may set the pixel position where the template image matches in the cross-sectional image 70 as the analysis region Q2 of the cross-sectional image 70 .
- control unit 50 may specify a pixel position where the template image does not match in the cross-sectional image 70 as the pixel position of the artifact 75, and set the non-analysis region Q1 of the cross-sectional image 70 based on this. That is, the template image may be used for indirect detection of artifacts 75 .
- the configuration in which the non-analysis region Q1 and the analysis region Q2 are set using luminance information in the cross-sectional image 70 of the anterior segment has been described as an example, but the present invention is not limited to this.
- the anterior segment information about the anterior segment of the eye E to be examined may be used to set each region.
- the anterior segment information may be information including anterior segment shape information (corneal shape information, lens shape information, etc.), information on pupillary conditions (for example, miosis or mydriasis), and the like.
- the control unit 50 may set at least the non-analysis region Q1 in the cross-sectional image 70 based on the radius of curvature of the anterior surface of the cornea, which is one piece of the anterior segment shape information of the eye E to be examined.
- the control unit 50 acquires the radius of curvature of the anterior surface of the cornea of the subject's eye E, and also acquires the pixel position of the artifact 75 corresponding to the radius of curvature. For example, from the radius of curvature of the anterior surface of the cornea, the approximate pixel position where the artifact 75 appears can be predicted.
- the storage unit of the ophthalmologic apparatus 1 may have a correspondence table in which pixel positions that change for each radius of curvature are associated in advance. This makes it possible to determine the non-analysis region Q1 without using the luminance information of the cross-sectional image 70.
- control unit 50 may set at least the analysis region Q2 in the cross-sectional image 70 based on the pupil diameter, which is one piece of pupil state information of the eye E to be examined.
- the control unit 50 may acquire the pupil diameter PDM (see FIG. 8) by detecting the iris of the subject's eye E, and set an area inside the pupil diameter PDM as the analysis area Q2.
- the region inside the pupil diameter PDM may be limited to the same region as the eye refractive power measurement region (for example, ⁇ 2 mm to ⁇ 4 mm on the pupil) by the measurement optical system 100 .
- the non-analysis region Q1 and the analysis region Q2 may be set by combining the luminance information and the anterior segment information.
- the case where the artifact 75 is reflected in the cross-sectional image 70 of the anterior segment by the slit light emitted from the irradiation optical system 300a has been described as an example, but the present invention is not limited to this.
- the measurement light emitted from the target projection optical system 400 and the measurement light emitted from the alignment target projection optical system are reflected by the cornea and captured by the imaging element 321, thereby preventing the reflection of artifacts. It can happen.
- FIG. 12 is an example of a cross-sectional image 70 of the anterior segment.
- a point-shaped artifact 76 derived from the light source 401, a ring-shaped artifact 77 derived from the alignment light source 601, and the like may occur (the shape of each artifact is not limited to this). do not have). Therefore, the control unit 50 may exclude the artifacts 76 and 77 from the target region Q as the non-analysis region Q1 in the same manner as the artifact 75, thereby performing image processing on the analysis region Q2 that does not include them. .
- the anterior segment shape information of the subject's eye can be obtained with higher accuracy, and an appropriate axial length can be obtained.
- the configuration for excluding artifacts from the analysis region of the cross-sectional image 70 has been described as an example, but the present invention is not limited to this.
- the present invention is not limited to this.
- a configuration in which an optical member for shielding the reflected light is arranged may be employed.
- artifacts are suppressed from appearing in the cross-sectional image 70, and the anterior segment shape information based on the cross-sectional image 70 can be appropriately acquired.
- the refractive index of each translucent body of the subject's eye E is constant has been described as an example, but the present invention is not limited to this.
- refractive index information regarding the refractive index of the translucent body may be acquired and the refractive index information may be used to derive the axial length AL.
- the refractive index of the translucent body based on the refractive index information may be further considered.
- the refractive index information may include the refractive index of the lens. It is known that the refractive index of the lens changes with aging.
- the storage unit of the ophthalmologic apparatus 10 may have a calculation formula or a lookup table in which the refractive index of the lens is associated with each age. In this case, by inputting the age of the subject, it is possible to acquire the refractive index according to the age.
- the control unit 50 may perform ray tracing calculation using such a refractive index of the crystalline lens.
- the anterior segment shape information may be configured to apply an assumed value to a part thereof.
- the hypothetical value should be obtained by taking into account the standard value based on the eye model, the average value based on statistical data, etc., the past measured values of the eye to be examined, the measured values of effective parameters, and the general ratio of each tissue. may be configured such that at least one of the estimated values, etc., can be selected.
- the ophthalmologic apparatus of the present embodiment projects the first measurement light onto the fundus of the eye to be inspected, and determines the eye refractive power of the eye to be inspected based on the light reflected by the fundus of the first measurement light.
- An ocular refractive power measurement optical system for obtaining the second measurement light is projected onto the anterior segment of the eye to be inspected to form a light cutting plane passing through the optical axis of the first optical system in the anterior segment of the eye to be examined.
- a cross-sectional image capturing optical system for acquiring a cross-sectional image of the anterior segment of the eye to be inspected based on the return light from the light-section plane of the second measurement light, and acquires the axial length of the eye to be inspected.
- An ophthalmologic apparatus comprising: setting means for setting an analysis region in an anterior segment cross-sectional image that does not include a reflected image generated by reflection of at least the second measurement light on the cornea of an eye to be inspected; and analysis set by the setting means.
- Shape information acquiring means for analyzing an area to acquire anterior segment shape information relating to the shape of the anterior segment; eye refractive power acquired using an eye refractive power measuring optical system; and shape information acquired by the shape information acquiring means and an axial length acquiring means for acquiring the axial length based on the anterior segment shape information.
- the ophthalmologic apparatus of the present embodiment projects the third measurement light onto the cornea of the subject's eye, and captures an anterior segment front image including a projected image of the third measurement light projected onto the cornea,
- a front image capturing optical system for acquiring corneal shape information about the shape of the cornea, and the setting means further captures a reflected image generated by the reflection of the third measurement light on the cornea in the anterior segment cross-sectional image.
- An analysis area that does not include may be set.
- the ophthalmologic apparatus of the present embodiment includes specifying means for specifying a reflected image included in the anterior segment cross-sectional image, and the setting means removes the reflected image specified by the specifying means from the anterior segment cross-sectional image, thereby , the analysis area may be set.
- the ophthalmologic apparatus of the present embodiment includes an anterior segment information obtaining means for obtaining anterior segment information about the anterior segment of the subject's eye, and the setting means sets the analysis region based on the anterior segment information.
- the anterior segment information acquiring means acquires the corneal curvature radius of the eye to be examined as the anterior segment information, and the setting means sets the analysis region based on the corneal curvature radius. good too.
- the anterior segment information acquisition means may acquire the pupil diameter of the subject's eye as the anterior segment information, and the setting means may set the analysis region based on the pupil diameter. .
- the shape information acquisition means changes whether or not to use the point on the optical axis of the first measurement light for analysis according to the position of the analysis area set by the setting means, Anterior segment shape information may be acquired.
- the reflected image is a slit reflected image generated by projecting slit light as the second measurement light onto the anterior segment of the subject's eye in the cross-sectional imaging optical system. good too.
- the ophthalmologic apparatus of the present embodiment is an ophthalmologic apparatus that acquires the axial length of an eye to be inspected, and includes eye refractive power acquisition means that acquires the eye refractive power of the eye to be inspected, and a cross-sectional image of the anterior segment of the eye to be inspected.
- An anterior segment cross-sectional image acquisition unit to be acquired, and an analysis region in the anterior segment cross-sectional image that does not include a reflected image generated by reflection of the measurement light projected onto the eye to be inspected by the cornea of the eye to be inspected is set.
- shape information acquisition means for analyzing the analysis region set by the setting means and acquiring anterior segment shape information relating to the shape of the anterior segment; eye refractive power; and the anterior eye acquired by the shape information acquisition means and axial length acquisition means for acquiring the axial length based on the part shape information.
- terminal control software that performs the functions of the above embodiments is supplied to a system or device via a network or various storage media, and a control device (eg, CPU, etc.) of the system or device reads the program. It is also possible to run For example, it has an eye refractive power measuring optical system for acquiring the eye refractive power of the eye to be inspected, and a cross-sectional image capturing optical system for acquiring an anterior segment cross-sectional image of the eye to be inspected, and an eye axis of the eye to be inspected.
- An ophthalmologic program for use in an ophthalmologic apparatus that acquires the length of the ophthalmologic apparatus, which is executed by a processor of the ophthalmologic apparatus to set a setting step of setting an analysis region that does not include a reflected image in an anterior segment cross-sectional image, and a setting step.
- ophthalmologic apparatus 50 control unit 100 measurement optical system 150 fixation target presentation optical system 200 front imaging optical system 300a irradiation optical system 300b light receiving optical system 400 index projection optical system
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Ophthalmology & Optometry (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Eye Examination Apparatus (AREA)
Abstract
This ophthalmologic device has: a fixation target presentation optical system for shedding fixation light on an eye examined and presenting a fixation target used to fog the eye examined; an eye refractive power measurement optical system for shedding first measurement light on the fundus oculi of the eye examined and acquiring eye refractive power of the eye examined on the basis of the reflection of the first measurement light reflected by the fundus oculi; and a cross-sectional image acquisition optical system for shedding second measurement light on the anterior segment of the eye examined to form, in the anterior segment, a light cutting plane passing through the optical axis of the eye refractive power measurement optical system, and acquiring a cross-sectional image of the anterior segment of the eye examined on the basis of the return light from the light cutting plane of the second measurement light. The ophthalmologic device acquires the eye axis length of the eye examined on the basis of the eye refractive power and the cross-sectional image of the anterior segment. The eye axis length of the eye examined is acquired with high accuracy as a result of comprising an optical passage coupling member that couples a fixation light passage for the fixation light in the fixation target presentation optical system to a measurement light passage of the second measurement light in the cross-sectional image acquisition optical system.
Description
本開示は、被検眼の眼軸長を取得する眼科装置に関する。
The present disclosure relates to an ophthalmologic apparatus that acquires the axial length of an eye to be examined.
被検眼における前眼部の透光体を光切断する形で照明し、前眼部断面画像を撮影する眼科装置が知られている。
An ophthalmologic apparatus is known that illuminates the translucent body of the anterior segment of the eye to be examined in a manner that cuts the light and captures a cross-sectional image of the anterior segment.
近年は若年層を中心とする近視有病率の増加が顕著であり、眼軸長に基づく近視進行の評価が注目されている。発明者らは、被検眼の眼屈折力と前眼部断面画像を共に取得し、これらに基づいて眼軸長を取得する装置構成を検討した。
In recent years, the prevalence of myopia has increased significantly, mainly among young people, and the evaluation of myopia progression based on the axial length of the eye has attracted attention. The inventors obtained both the ocular refractive power of the eye to be examined and the cross-sectional image of the anterior segment of the eye, and studied an apparatus configuration for obtaining the axial length based on these images.
本開示は、上記の事情に鑑みてなされたものであり、被検眼の眼軸長を精度よく取得できる眼科装置を提供することを技術課題とする。
The present disclosure has been made in view of the above circumstances, and a technical problem is to provide an ophthalmologic apparatus capable of accurately acquiring the axial length of an eye to be examined.
本開示に係る眼科装置は、被検眼に対して固視光を投光し、前記被検眼に対する雲霧を行うために用いる固視標を呈示する固視標呈示光学系と、前記被検眼の眼底に対して第1測定光を投光し、前記第1測定光が前記眼底にて反射された反射光に基づいて、前記被検眼の眼屈折力を取得するための眼屈折力測定光学系と、前記被検眼の前眼部に対して第2測定光を投光し、前記眼屈折力測定光学系の光軸を通る光切断面を前記前眼部に形成させると共に、前記第2測定光の前記光切断面からの戻り光に基づいて、前記被検眼の前眼部断面画像を取得するための断面画像撮影光学系と、を有し、前記眼屈折力と前記前眼部断面画像とに基づいて、前記被検眼の眼軸長を取得する眼科装置であって、前記固視標呈示光学系における前記固視光の固視光路と、前記断面画像撮影光学系における前記第2測定光の測定光路と、を結合する光路結合部材を備えることを特徴とする。
An ophthalmologic apparatus according to the present disclosure includes a fixation target presenting optical system for projecting fixation light onto an eye to be inspected and presenting a fixation target used for fogging the eye to be inspected, and a fundus of the eye to be inspected. an eye refractive power measurement optical system for projecting a first measurement light onto the eye and acquiring the eye refractive power of the eye to be inspected based on the reflected light of the first measurement light reflected by the fundus; projecting a second measurement light onto the anterior segment of the eye to be inspected to form a light section passing through the optical axis of the eye refractive power measurement optical system in the anterior segment; a cross-sectional image capturing optical system for acquiring an anterior segment cross-sectional image of the eye to be inspected based on the light returned from the light-section surface of the eye refractive power and the anterior segment cross-sectional image; An ophthalmologic apparatus for obtaining the axial length of the subject's eye based on and an optical path coupling member that couples the measurement optical path of
<概要>
本開示の実施形態に係る眼科装置の概要について説明する。以下の<>にて分類された項目は、独立又は関連して利用されうる。なお、本実施形態において、「共役」とは、必ずしも完全な共役関係に限定されるものではなく、「略共役」を含むものとする。すなわち、本実施形態の「共役」には、各部の技術意義との関係で許容される範囲で、完全な共役位置からずれて配置される場合についても含まれる。 <Overview>
An outline of an ophthalmologic apparatus according to an embodiment of the present disclosure will be described. The items classified in <> below can be used independently or in conjunction with each other. In the present embodiment, "conjugated" is not necessarily limited to a perfect conjugated relationship, but includes "substantially conjugated". That is, the term "conjugated" in this embodiment also includes the case where the parts are displaced from the perfectly conjugated position within the range allowed in relation to the technical significance of each part.
本開示の実施形態に係る眼科装置の概要について説明する。以下の<>にて分類された項目は、独立又は関連して利用されうる。なお、本実施形態において、「共役」とは、必ずしも完全な共役関係に限定されるものではなく、「略共役」を含むものとする。すなわち、本実施形態の「共役」には、各部の技術意義との関係で許容される範囲で、完全な共役位置からずれて配置される場合についても含まれる。 <Overview>
An outline of an ophthalmologic apparatus according to an embodiment of the present disclosure will be described. The items classified in <> below can be used independently or in conjunction with each other. In the present embodiment, "conjugated" is not necessarily limited to a perfect conjugated relationship, but includes "substantially conjugated". That is, the term "conjugated" in this embodiment also includes the case where the parts are displaced from the perfectly conjugated position within the range allowed in relation to the technical significance of each part.
本実施形態の眼科装置は、被検眼の眼軸長を取得することが可能な装置である。例えば、眼科装置は、眼軸長の測定に利用される光学系、眼軸長取得手段、等を有してもよい。また、例えば、眼科装置は、形状情報取得手段、前眼部情報取得手段、特定手段、設定手段、等を有してもよい。
The ophthalmologic apparatus of this embodiment is an apparatus capable of acquiring the axial length of an eye to be examined. For example, the ophthalmologic apparatus may have an optical system used for measuring the axial length of the eye, an axial length acquisition means, and the like. Further, for example, the ophthalmologic apparatus may have shape information acquisition means, anterior segment information acquisition means, specifying means, setting means, and the like.
<固視標呈示光学系>
本実施形態の眼科装置は、固視標呈示光学系(例えば、固視標呈示光学系150)を備えてもよい。固視標呈示光学系は、被検眼に対して固視光を投光し、被検眼に固視標を呈示してもよい。なお、固視標呈示光学系は、固視標の呈示距離を変更できてもよい。例えば、これによって、被検眼の眼屈折力を第1光学系によって取得する際、固視標呈示光学系を被検眼への雲霧掛けに利用することができる。また、被検眼への調節付加に利用することができる。つまり、例えば、固視標は、被検眼に対して雲霧を行うために用いられてもよい。 <Fixation target presentation optical system>
The ophthalmologic apparatus of this embodiment may include a fixation target presentation optical system (for example, the fixation target presentation optical system 150). The fixation target presenting optical system may project fixation light onto the eye to be inspected and present the fixation target to the eye to be inspected. The fixation target presentation optical system may be capable of changing the presentation distance of the fixation target. For example, this allows the fixation target presenting optical system to be used for fogging the eye to be inspected when the first optical system acquires the eye refractive power of the eye to be inspected. In addition, it can be used to add adjustment to the subject's eye. Thus, for example, the fixation target may be used to fog the subject's eye.
本実施形態の眼科装置は、固視標呈示光学系(例えば、固視標呈示光学系150)を備えてもよい。固視標呈示光学系は、被検眼に対して固視光を投光し、被検眼に固視標を呈示してもよい。なお、固視標呈示光学系は、固視標の呈示距離を変更できてもよい。例えば、これによって、被検眼の眼屈折力を第1光学系によって取得する際、固視標呈示光学系を被検眼への雲霧掛けに利用することができる。また、被検眼への調節付加に利用することができる。つまり、例えば、固視標は、被検眼に対して雲霧を行うために用いられてもよい。 <Fixation target presentation optical system>
The ophthalmologic apparatus of this embodiment may include a fixation target presentation optical system (for example, the fixation target presentation optical system 150). The fixation target presenting optical system may project fixation light onto the eye to be inspected and present the fixation target to the eye to be inspected. The fixation target presentation optical system may be capable of changing the presentation distance of the fixation target. For example, this allows the fixation target presenting optical system to be used for fogging the eye to be inspected when the first optical system acquires the eye refractive power of the eye to be inspected. In addition, it can be used to add adjustment to the subject's eye. Thus, for example, the fixation target may be used to fog the subject's eye.
<眼屈折力測定光学系>
本実施形態の眼科装置は、眼屈折力測定光学系(例えば、測定光学系100)を有してもよい。眼屈折力測定光学系は、被検眼の眼屈折力を取得するための光学系である。例えば、被検眼の眼底に対して測定光(第1測定光)を投光し、眼底にて測定光が反射された反射光に基づいて、眼屈折力を取得するための構成を備えてもよい。なお、第1測定光は、可視光であってもよいし、赤外光であってもよい。 <Eye refractive power measurement optical system>
The ophthalmologic apparatus of this embodiment may have an eye refractive power measurement optical system (for example, the measurement optical system 100). The eye refractive power measurement optical system is an optical system for acquiring the eye refractive power of the eye to be examined. For example, a configuration may be provided in which measurement light (first measurement light) is projected onto the fundus of the subject's eye, and the refractive power of the eye is obtained based on the reflected light of the measurement light reflected by the fundus. good. Note that the first measurement light may be visible light or infrared light.
本実施形態の眼科装置は、眼屈折力測定光学系(例えば、測定光学系100)を有してもよい。眼屈折力測定光学系は、被検眼の眼屈折力を取得するための光学系である。例えば、被検眼の眼底に対して測定光(第1測定光)を投光し、眼底にて測定光が反射された反射光に基づいて、眼屈折力を取得するための構成を備えてもよい。なお、第1測定光は、可視光であってもよいし、赤外光であってもよい。 <Eye refractive power measurement optical system>
The ophthalmologic apparatus of this embodiment may have an eye refractive power measurement optical system (for example, the measurement optical system 100). The eye refractive power measurement optical system is an optical system for acquiring the eye refractive power of the eye to be examined. For example, a configuration may be provided in which measurement light (first measurement light) is projected onto the fundus of the subject's eye, and the refractive power of the eye is obtained based on the reflected light of the measurement light reflected by the fundus. good. Note that the first measurement light may be visible light or infrared light.
眼屈折力測定光学系は、他覚式眼屈折力測定装置(オートレフラクトメータ及び波面センサ等)にて用いられる測定光学系であってもよい。眼屈折力測定光学系における第1測定光の投光光軸は、後述の断面画像撮影光学系にて形成される光切断面の面上に配置されてもよい。このために、眼屈折力測定光学系を用いて、前眼部の光切断面上での眼屈折力(面上眼屈折力)が取得される。もちろん、眼屈折力測定光学系は、他の面上での眼屈折力を取得することが可能であってもよい。
The eye refractive power measuring optical system may be a measuring optical system used in an objective eye refractive power measuring device (autorefractometer, wavefront sensor, etc.). The projection optical axis of the first measurement light in the eye refractive power measurement optical system may be arranged on the plane of the light section formed by the cross-sectional image taking optical system, which will be described later. For this purpose, an eye refractive power measurement optical system is used to acquire the eye refractive power on the light-section plane of the anterior segment (surface eye refractive power). Of course, the eye refractive power measurement optical system may be capable of acquiring eye refractive power on other planes.
<断面画像撮影光学系>
本実施形態の眼科装置は、断面画像撮影光学系(例えば、断面撮影光学系)を有してもよい。断面画像撮影光学系は、被検眼の前眼部断面画像を取得するための光学系である。例えば、被検眼の前眼部に向けて測定光を投光し、測定光の投光光軸に対して、測定光の散乱による戻り光(散乱光)を斜め方向から検出することで、前眼部断面画像を取得するための構成を備えてもよい。また、例えば、被検眼の前眼部に対して測定光(第2測定光)を投光し、前眼部に眼屈折力測定光学系の光軸を通る光切断面を形成させると共に、第2測定光の光切断面からの散乱光に基づいて、前眼部断面画像を取得するための構成を備えてもよい。なお、測定光(第2測定光)は、可視光であってもよいし、赤外光であってもよい。 <Sectional imaging optical system>
The ophthalmologic apparatus of this embodiment may have a cross-sectional imaging optical system (for example, a cross-sectional imaging optical system). The cross-sectional image capturing optical system is an optical system for acquiring an anterior segment cross-sectional image of the subject's eye. For example, measuring light is projected toward the anterior segment of the eye to be inspected, and return light (scattered light) due to scattering of the measuring light is detected from an oblique direction with respect to the projection optical axis of the measuring light. A configuration for acquiring an eye cross-sectional image may be provided. Further, for example, the measurement light (second measurement light) is projected onto the anterior segment of the subject's eye to form a light section passing through the optical axis of the eye refractive power measurement optical system in the anterior segment, 2 A configuration for acquiring an anterior segment cross-sectional image based on scattered light from the light-section plane of the measurement light may be provided. The measurement light (second measurement light) may be visible light or infrared light.
本実施形態の眼科装置は、断面画像撮影光学系(例えば、断面撮影光学系)を有してもよい。断面画像撮影光学系は、被検眼の前眼部断面画像を取得するための光学系である。例えば、被検眼の前眼部に向けて測定光を投光し、測定光の投光光軸に対して、測定光の散乱による戻り光(散乱光)を斜め方向から検出することで、前眼部断面画像を取得するための構成を備えてもよい。また、例えば、被検眼の前眼部に対して測定光(第2測定光)を投光し、前眼部に眼屈折力測定光学系の光軸を通る光切断面を形成させると共に、第2測定光の光切断面からの散乱光に基づいて、前眼部断面画像を取得するための構成を備えてもよい。なお、測定光(第2測定光)は、可視光であってもよいし、赤外光であってもよい。 <Sectional imaging optical system>
The ophthalmologic apparatus of this embodiment may have a cross-sectional imaging optical system (for example, a cross-sectional imaging optical system). The cross-sectional image capturing optical system is an optical system for acquiring an anterior segment cross-sectional image of the subject's eye. For example, measuring light is projected toward the anterior segment of the eye to be inspected, and return light (scattered light) due to scattering of the measuring light is detected from an oblique direction with respect to the projection optical axis of the measuring light. A configuration for acquiring an eye cross-sectional image may be provided. Further, for example, the measurement light (second measurement light) is projected onto the anterior segment of the subject's eye to form a light section passing through the optical axis of the eye refractive power measurement optical system in the anterior segment, 2 A configuration for acquiring an anterior segment cross-sectional image based on scattered light from the light-section plane of the measurement light may be provided. The measurement light (second measurement light) may be visible light or infrared light.
断面画像撮影光学系は、シャインプルーフの原理に基づく光学系であってもよい。この場合、眼屈折力測定光学系における第1測定光の投光光軸と、断面画像撮影光学系における第2測定光の投光光軸と、が同軸に配置されてもよい。また、この場合、断面画像撮影光学系において、第2測定光はスリット光として投光されてもよい。例えば、スリット光の照射領域が、前眼部の光切断面として設定される。また、この場合、断面画像撮影光学系は、前眼部に形成された光切断面とシャインプルーフの関係で配置されたレンズ系および光検出器を有してもよい。例えば、光検出器は2次元撮像素子であってもよい。第2測定光の受光光軸は、光切断面に対して傾斜するように配置される。
The cross-sectional imaging optical system may be an optical system based on the Scheimpflug principle. In this case, the projection optical axis of the first measurement light in the eye refractive power measurement optical system and the projection optical axis of the second measurement light in the cross-sectional imaging optical system may be arranged coaxially. Further, in this case, the second measurement light may be projected as slit light in the cross-sectional imaging optical system. For example, the irradiation area of the slit light is set as the light cutting plane of the anterior segment. Further, in this case, the cross-sectional image capturing optical system may have a lens system and a photodetector arranged in a Scheimpflug relationship with the light section formed in the anterior segment. For example, the photodetector may be a two-dimensional imager. The light-receiving optical axis of the second measurement light is arranged so as to be inclined with respect to the light section plane.
なお、断面画像撮影光学系による前眼部断面画像の撮影範囲には、被検眼の角膜前面から少なくとも水晶体前面までが含まれていることが好ましい。いうまでも無く、角膜前面から水晶体後面までが含まれていれば、更に好ましい。この場合は、角膜厚、角膜前面曲率半径、角膜後面曲率半径、前房深度、水晶体厚、水晶体前面曲率半径、および、水晶体後面曲率半径を、漏れなく取得できるため、眼軸長をより適正に求めることができる。
In addition, it is preferable that the imaging range of the anterior segment cross-sectional image by the cross-sectional image capturing optical system includes from the front surface of the cornea to at least the front surface of the crystalline lens of the subject's eye. Needless to say, it is more preferable if the area from the anterior surface of the cornea to the posterior surface of the lens is included. In this case, since the corneal thickness, the anterior corneal curvature radius, the posterior corneal curvature radius, the anterior chamber depth, the lens thickness, the anterior lens curvature radius, and the posterior lens curvature radius can be obtained without omission, the axial length can be determined more appropriately. can ask.
<正面画像撮影光学系>
本実施形態の眼科装置は、正面画像撮影光学系(例えば、指標投影光学系400、アライメント指標投影光学系)を備える。正面画像撮影光学系は、被検眼の角膜に対して第3測定光を投影し、角膜に第3測定光が投影された投影像を含む前眼部正面画像を撮影することによって、角膜の形状に関する角膜形状情報を取得してもよい。正面画像撮影光学系は、角膜形状測定装置(オートケラトメータ)にて用いられる測定光学系であってもよい。なお、正面画像撮影光学系における第3測定光は赤外光であるが、可視光とすることも可能である。 <Front image capturing optical system>
The ophthalmologic apparatus of this embodiment includes a front image capturing optical system (for example, an index projectionoptical system 400, an alignment index projection optical system). The front image capturing optical system projects the third measurement light onto the cornea of the eye to be inspected, and captures an anterior segment front image including a projected image of the third measurement light projected onto the cornea to determine the shape of the cornea. may be acquired. The front imaging optical system may be a measurement optical system used in a corneal shape measuring device (autokeratometer). The third measurement light in the front imaging optical system is infrared light, but it can also be visible light.
本実施形態の眼科装置は、正面画像撮影光学系(例えば、指標投影光学系400、アライメント指標投影光学系)を備える。正面画像撮影光学系は、被検眼の角膜に対して第3測定光を投影し、角膜に第3測定光が投影された投影像を含む前眼部正面画像を撮影することによって、角膜の形状に関する角膜形状情報を取得してもよい。正面画像撮影光学系は、角膜形状測定装置(オートケラトメータ)にて用いられる測定光学系であってもよい。なお、正面画像撮影光学系における第3測定光は赤外光であるが、可視光とすることも可能である。 <Front image capturing optical system>
The ophthalmologic apparatus of this embodiment includes a front image capturing optical system (for example, an index projection
<固視標呈示光学系と断面画像撮影光学系の共通化>
本実施形態において、固視標呈示光学系と断面画像撮影光学系は、共通光路とされてもよい。つまり、固視標呈示光学系における固視光の固視光路と、断面画像撮影光学系における第2測定光の測定光路(投光光路)と、の一部が共通光路とされてもよい。例えば、これらの光学系における各々の光路を結合する光路結合部材が配置されてもよい。なお、固視標呈示光学系から投光された固視光は眼底に集光し、断面画像撮影光学系から投光された第2測定光は前眼部上に集光する。このために、各々の光学系は共通化によって複雑な構成となるが、一方で、光路結合部材は容易に構成することができる。例えば、固視光と第2測定光を共に可視光とする場合、光路結合部材はより容易に構成できる。 <Common fixation target presentation optical system and cross-sectional image capturing optical system>
In this embodiment, the fixation target presenting optical system and the cross-sectional image capturing optical system may share a common optical path. That is, part of the fixation optical path of the fixation light in the fixation target presenting optical system and the measurement optical path (projection optical path) of the second measurement light in the cross-sectional image capturing optical system may be a common optical path. For example, an optical path coupling member that couples the respective optical paths in these optical systems may be arranged. The fixation light projected from the fixation target presenting optical system is focused on the fundus, and the second measurement light projected from the cross-sectional image capturing optical system is focused on the anterior segment of the eye. For this reason, each optical system has a complicated configuration due to common use, but on the other hand, the optical path coupling member can be easily configured. For example, when both the fixation light and the second measurement light are visible light, the optical path coupling member can be configured more easily.
本実施形態において、固視標呈示光学系と断面画像撮影光学系は、共通光路とされてもよい。つまり、固視標呈示光学系における固視光の固視光路と、断面画像撮影光学系における第2測定光の測定光路(投光光路)と、の一部が共通光路とされてもよい。例えば、これらの光学系における各々の光路を結合する光路結合部材が配置されてもよい。なお、固視標呈示光学系から投光された固視光は眼底に集光し、断面画像撮影光学系から投光された第2測定光は前眼部上に集光する。このために、各々の光学系は共通化によって複雑な構成となるが、一方で、光路結合部材は容易に構成することができる。例えば、固視光と第2測定光を共に可視光とする場合、光路結合部材はより容易に構成できる。 <Common fixation target presentation optical system and cross-sectional image capturing optical system>
In this embodiment, the fixation target presenting optical system and the cross-sectional image capturing optical system may share a common optical path. That is, part of the fixation optical path of the fixation light in the fixation target presenting optical system and the measurement optical path (projection optical path) of the second measurement light in the cross-sectional image capturing optical system may be a common optical path. For example, an optical path coupling member that couples the respective optical paths in these optical systems may be arranged. The fixation light projected from the fixation target presenting optical system is focused on the fundus, and the second measurement light projected from the cross-sectional image capturing optical system is focused on the anterior segment of the eye. For this reason, each optical system has a complicated configuration due to common use, but on the other hand, the optical path coupling member can be easily configured. For example, when both the fixation light and the second measurement light are visible light, the optical path coupling member can be configured more easily.
固視標呈示光学系及び断面画像撮影光学系の共通化に光路結合部材を用いることによって、固視光及び第2測定光の少なくともいずれかには、非点収差が発生し得る。このため、各々の光学系は、非点収差の影響を考慮した構成とされてもよい。
Astigmatism may occur in at least one of the fixation light and the second measurement light by using an optical path coupling member for commonality of the fixation target presenting optical system and the cross-sectional image capturing optical system. Therefore, each optical system may be configured in consideration of the influence of astigmatism.
光路結合部材は、ビームスプリッタ、ダイクロイックミラー、ハーフミラー、等の少なくともいずれかの光学部材で構成されてもよい。この場合、光路結合部材には、プリズム型の部材、平面型の部材、のどちらを用いることも可能である。
The optical path coupling member may be composed of at least one optical member such as a beam splitter, a dichroic mirror, a half mirror, and the like. In this case, it is possible to use either a prism type member or a planar type member for the optical path coupling member.
プリズム型の部材の一例としては、直角プリズムを貼り合わせたキューブハーフミラー、ダイクロイックプリズム、等が用いられてもよい。このようなプリズム型の部材では非点収差の発生が抑制されるため、良好な前眼部断面画像を撮影できる。なお、光路結合部材にプリズム型の部材が使用される場合は、光路結合部材の透過側に、固視標呈示光学系と断面画像撮影光学系の一方を配置し、光路結合部材の反射側に、固視標呈示光学系と断面画像撮影光学系の他方を配置してもよい。
As an example of the prism-shaped member, a cube half mirror in which rectangular prisms are bonded together, a dichroic prism, or the like may be used. Since generation of astigmatism is suppressed with such a prism-shaped member, a good cross-sectional image of the anterior segment can be captured. When a prism-shaped member is used as the optical path coupling member, one of the fixation target presenting optical system and the cross-sectional image capturing optical system is arranged on the transmission side of the optical path coupling member, and the optical system is arranged on the reflection side of the optical path coupling member. , the other of the fixation target presenting optical system and the cross-sectional image taking optical system may be arranged.
平面型の部材の一例としては、プレートハーフミラー、ダイクロイックミラー、等が用いられてもよい。このような平面型の部材では、固視光及び第2測定光のいずれかが大きな入射角をもって通過するので、透過側にて非点収差が発生しやすい。このため、光路結合部材に平面型の部材が使用される場合は、光路結合部材の透過側に固視標呈示光学系を配置し、光路結合部材の反射側に断面画像撮影光学系を配置することが好ましい。固視光路を透過側に配置することによって、照明光の結像性能を優先し、前眼部断面画像を良好に撮影することができる。なお、測定光路を反射側に配置することによって、固視光の結像性能は低下するが、固視標を固視できるほどの性能は担保されるため、視認への影響は小さく抑えられる。
A plate half mirror, a dichroic mirror, or the like may be used as an example of the planar member. In such a planar member, since either the fixation light or the second measurement light passes through with a large incident angle, astigmatism tends to occur on the transmission side. Therefore, when a planar member is used as the optical path coupling member, the fixation target presenting optical system is arranged on the transmission side of the optical path coupling member, and the cross-sectional imaging optical system is arranged on the reflection side of the optical path coupling member. is preferred. By arranging the fixation optical path on the transmission side, priority is given to the imaging performance of the illumination light, and the anterior segment cross-sectional image can be taken satisfactorily. By arranging the measurement optical path on the reflection side, the imaging performance of the fixation light is lowered, but the performance to the extent that the fixation target can be fixed is ensured, so the effect on visual recognition is kept small.
本実施形態において、固視標呈示光学系と断面画像撮影光学系は、その共通光路に共通レンズが配置されてもよい。より詳細には、固視標呈示光学系における固視光の固視光路と、断面画像撮影光学系における第2測定光の測定光路と、の共通光路に、各々の光学系に対する機能が異なる共通レンズが配置されてもよい。
In this embodiment, the fixation target presenting optical system and the cross-sectional image capturing optical system may have a common lens arranged in their common optical path. More specifically, the common optical path of the fixation optical path of the fixation light in the fixation target presenting optical system and the measurement optical path of the second measurement light in the cross-sectional imaging optical system has a common optical path with different functions for each optical system. A lens may be arranged.
本実施形態では、共通レンズが、固視標呈示光学系の全長を短縮するための全長短縮レンズとして機能してもよい。これによって、固視標呈示光学系の全体の焦点距離(合成焦点距離)を変化させることなく、全長短縮レンズを含む一部の焦点距離が短くされる。また、本実施形態では、共通レンズが、断面画像撮影光学系における第2測定光の進行方向を変更するためのフィールドレンズとして機能してもよい。より詳細には、断面画像撮影光学系の光軸外を通過する第2測定光の進行方向を変更するためのフィールドレンズとして機能してもよい。言い換えると、断面画像撮影光学系の像面に略一致し、第2測定光をけられなく伝送するためのフィールドレンズとして機能してもよい。
In this embodiment, the common lens may function as a total length shortening lens for shortening the total length of the fixation target presenting optical system. As a result, the partial focal length including the total length shortening lens is shortened without changing the entire focal length (composite focal length) of the fixation target presenting optical system. Further, in this embodiment, the common lens may function as a field lens for changing the traveling direction of the second measurement light in the cross-sectional imaging optical system. More specifically, it may function as a field lens for changing the traveling direction of the second measurement light passing off the optical axis of the cross-sectional imaging optical system. In other words, it may substantially coincide with the image plane of the cross-sectional imaging optical system and function as a field lens for transmitting the second measurement light without eclipse.
例えば、固視標呈示光学系はその構成に全長短縮レンズを含むが、固視光路と測定光路の共通化にともない、断面画像撮影光学系のフィールドレンズとして全長短縮レンズを活用することで、フィールドレンズよりも下流に位置する光学部材(例えば、対物レンズ)の径を大きくせずに設けることが可能になる。これらの機能をもつ共通レンズの配置によって、全体の光学系が省スペース化され、結果として眼科装置を小型化することができる。
For example, the optical system for presenting a fixation target includes a lens with a shortened total length. It becomes possible to provide an optical member (for example, an objective lens) located downstream of the lens without increasing the diameter thereof. By arranging a common lens having these functions, the entire optical system can be space-saving, and as a result, the ophthalmic apparatus can be miniaturized.
<形状情報取得手段>
本実施形態の眼科装置は、形状情報取得手段(例えば、制御部50)を備えてもよい。形状情報取得手段は、前眼部断面画像を解析することによって、前眼部の形状に関する前眼部形状情報を取得してもよい。なお、複数のパラメータは、角膜及び水晶体を少なくとも含むパラメータである。例えば、形状情報は、前眼部に含まれる透光体の形状を特定することが可能な情報であればよい。一例として、各々の透光体が位置する座標、各々の透光体の形状を表す方程式及び方程式から求められる値(例えば、曲率、厚み、深度、等)、等であってもよい。 <Shape Information Acquisition Means>
The ophthalmologic apparatus of this embodiment may include shape information acquisition means (for example, the control unit 50). The shape information obtaining means may obtain the anterior segment shape information regarding the shape of the anterior segment by analyzing the anterior segment cross-sectional image. Note that the plurality of parameters are parameters including at least the cornea and the lens. For example, the shape information may be any information that can specify the shape of the translucent body included in the anterior segment. As an example, coordinates at which each transparent body is located, equations representing the shape of each transparent body, and values obtained from the equations (for example, curvature, thickness, depth, etc.), and the like may be used.
本実施形態の眼科装置は、形状情報取得手段(例えば、制御部50)を備えてもよい。形状情報取得手段は、前眼部断面画像を解析することによって、前眼部の形状に関する前眼部形状情報を取得してもよい。なお、複数のパラメータは、角膜及び水晶体を少なくとも含むパラメータである。例えば、形状情報は、前眼部に含まれる透光体の形状を特定することが可能な情報であればよい。一例として、各々の透光体が位置する座標、各々の透光体の形状を表す方程式及び方程式から求められる値(例えば、曲率、厚み、深度、等)、等であってもよい。 <Shape Information Acquisition Means>
The ophthalmologic apparatus of this embodiment may include shape information acquisition means (for example, the control unit 50). The shape information obtaining means may obtain the anterior segment shape information regarding the shape of the anterior segment by analyzing the anterior segment cross-sectional image. Note that the plurality of parameters are parameters including at least the cornea and the lens. For example, the shape information may be any information that can specify the shape of the translucent body included in the anterior segment. As an example, coordinates at which each transparent body is located, equations representing the shape of each transparent body, and values obtained from the equations (for example, curvature, thickness, depth, etc.), and the like may be used.
形状情報に含まれる複数のパラメータは、角膜の形状に関するパラメータを含んでもよい。例えば、角膜前面の曲率半径、角膜後面の曲率半径、角膜厚、等が挙げられる。また、複数のパラメータは、水晶体の形状に関するパラメータを含んでもよい。例えば、水晶体前面の曲率半径、水晶体後面の曲率半径、水晶体厚、等が挙げられる。また、複数のパラメータは、前眼部の深度に関するパラメータを含んでもよい。例えば、前房深度等が挙げられる。
A plurality of parameters included in the shape information may include parameters related to the shape of the cornea. Examples include the radius of curvature of the anterior surface of the cornea, the radius of curvature of the posterior surface of the cornea, the corneal thickness, and the like. Also, the plurality of parameters may include parameters relating to the shape of the lens. For example, the radius of curvature of the anterior surface of the lens, the radius of curvature of the posterior surface of the lens, the thickness of the lens, and the like. Also, the plurality of parameters may include a parameter relating to the depth of the anterior segment. For example, an anterior chamber depth and the like can be mentioned.
形状情報取得手段は、前眼部断面画像において、断面画像撮影光学系における第2測定光の光軸上の点を使用した解析を実行してもよい。また、形状情報取得手段は、前眼部断面画像において、眼屈折力測定光学系における第1測定光の光軸上の点を使用した解析を実行してもよい。なお、第1測定光の光軸は、瞳の中央(つまり、各透光体の中央)を通過する軸となるため、透光体の頂点を捉えやすく、これによって前眼部形状情報を精度よく取得できる。
The shape information acquisition means may perform analysis using a point on the optical axis of the second measurement light in the cross-sectional image capturing optical system in the anterior segment cross-sectional image. Further, the shape information obtaining means may perform analysis using a point on the optical axis of the first measurement light in the eye refractive power measurement optical system in the anterior segment cross-sectional image. Since the optical axis of the first measurement light is an axis that passes through the center of the pupil (that is, the center of each translucent body), it is easy to capture the vertex of the translucent body. can be obtained well.
形状情報取得手段は、設定手段が設定した前眼部断面画像における反射像を含まない解析領域を解析することによって、前眼部形状情報を取得してもよい。この場合、第2測定光の光軸上の点を解析に用いるか否かを、設定した解析領域の位置に応じて変更することによって、前眼部形状情報を取得してもよい。また、この場合、第1測定光の光軸上の点を解析に用いるか否かを、設定した解析領域の位置に応じて変更することによって、前眼部形状情報を取得してもよい。より詳細には、例えば、解析領域の位置が、各透光体の中央に重複して位置する場合は、第1測定光の光軸上の点を使用して解析を実行してもよい。例えば、解析領域の位置が、各透光体の中央に重複せずに位置する場合は、第1測定光の光軸上の点を使用せずに解析を実行してもよい。例えば、解析領域の位置が、各透光体の中央に重複しないが近接する場合は、第1測定光の光軸上の点を使用せずに解析を実行してもよい。前眼部断面画像の解析に使用する点を適宜変更することで、前眼部形状情報が精度よく取得される。
The shape information acquisition means may acquire the anterior segment shape information by analyzing an analysis region that does not include a reflected image in the anterior segment cross-sectional image set by the setting means. In this case, the anterior segment shape information may be acquired by changing whether or not to use the point on the optical axis of the second measurement light for analysis according to the position of the set analysis region. In this case, the anterior segment shape information may be acquired by changing whether or not to use the points on the optical axis of the first measurement light for analysis according to the position of the set analysis region. More specifically, for example, if the positions of the analysis regions overlap in the center of each translucent body, the analysis may be performed using a point on the optical axis of the first measurement light. For example, when the positions of the analysis regions are located in the center of each translucent body without overlapping, the analysis may be performed without using the points on the optical axis of the first measurement light. For example, the analysis may be performed without using the points on the optical axis of the first measurement light when the positions of the analysis regions are close to but do not overlap the centers of the transmissive bodies. By appropriately changing the points used for analyzing the anterior segment cross-sectional image, the anterior segment shape information can be obtained with high accuracy.
<前眼部情報取得手段>
本実施形態の眼科装置は、前眼部情報取得手段(例えば、制御部50)を備えてもよい。前眼部情報取得手段は、被検眼の前眼部に関する前眼部情報を取得してもよい。前眼部情報は、被検眼の前眼部形状情報(前述)を含んでもよい。この場合、前眼部情報としては、前眼部形状情報におけるパラメータの1つである角膜曲率半径が取得されてもよい。もちろん、角膜曲率半径とは異なるパラメータが取得されてもよい。また、前眼部情報は、被検眼の瞳孔状態に関する瞳孔状態情報を含んでもよい。例えば、瞳孔状態は、縮瞳した状態、及び、散瞳した状態、の少なくともいずれかの状態であってもよい。なお、瞳孔状態情報には、縮瞳及び散瞳の有無を把握することが可能な情報が用いられてもよい。一例としては、瞳孔径等の値が用いられてもよい。また、瞳孔状態情報には、瞳孔径の値に基づいて縮瞳または散瞳の有無を判定した判定結果が用いられてもよい。 <Anterior Segment Information Acquisition Means>
The ophthalmologic apparatus of the present embodiment may include an anterior segment information acquisition means (for example, the control unit 50). The anterior segment information acquiring means may acquire anterior segment information relating to the anterior segment of the subject's eye. The anterior segment information may include the anterior segment shape information (described above) of the subject's eye. In this case, the corneal curvature radius, which is one of the parameters in the anterior segment shape information, may be obtained as the anterior segment information. Of course, parameters other than the corneal radius of curvature may be obtained. In addition, the anterior segment information may include pupil state information regarding the pupil state of the subject's eye. For example, the pupil state may be at least one of a miotic state and a mydriatic state. In addition, the information which can grasp the presence or absence of miosis and mydriasis may be used for the pupil state information. As an example, values such as pupil diameter may be used. Further, as the pupil state information, a determination result obtained by determining the presence or absence of miosis or mydriasis based on the value of the pupil diameter may be used.
本実施形態の眼科装置は、前眼部情報取得手段(例えば、制御部50)を備えてもよい。前眼部情報取得手段は、被検眼の前眼部に関する前眼部情報を取得してもよい。前眼部情報は、被検眼の前眼部形状情報(前述)を含んでもよい。この場合、前眼部情報としては、前眼部形状情報におけるパラメータの1つである角膜曲率半径が取得されてもよい。もちろん、角膜曲率半径とは異なるパラメータが取得されてもよい。また、前眼部情報は、被検眼の瞳孔状態に関する瞳孔状態情報を含んでもよい。例えば、瞳孔状態は、縮瞳した状態、及び、散瞳した状態、の少なくともいずれかの状態であってもよい。なお、瞳孔状態情報には、縮瞳及び散瞳の有無を把握することが可能な情報が用いられてもよい。一例としては、瞳孔径等の値が用いられてもよい。また、瞳孔状態情報には、瞳孔径の値に基づいて縮瞳または散瞳の有無を判定した判定結果が用いられてもよい。 <Anterior Segment Information Acquisition Means>
The ophthalmologic apparatus of the present embodiment may include an anterior segment information acquisition means (for example, the control unit 50). The anterior segment information acquiring means may acquire anterior segment information relating to the anterior segment of the subject's eye. The anterior segment information may include the anterior segment shape information (described above) of the subject's eye. In this case, the corneal curvature radius, which is one of the parameters in the anterior segment shape information, may be obtained as the anterior segment information. Of course, parameters other than the corneal radius of curvature may be obtained. In addition, the anterior segment information may include pupil state information regarding the pupil state of the subject's eye. For example, the pupil state may be at least one of a miotic state and a mydriatic state. In addition, the information which can grasp the presence or absence of miosis and mydriasis may be used for the pupil state information. As an example, values such as pupil diameter may be used. Further, as the pupil state information, a determination result obtained by determining the presence or absence of miosis or mydriasis based on the value of the pupil diameter may be used.
前眼部情報取得手段は、眼科装置とは異なる装置にて取得された前眼部情報を受信することによって、前眼部情報を取得してもよい。また、検者による操作手段(例えば、モニタ16)を用いた入力によって、前眼部情報を取得してもよい。また、断面画像撮影光学系を用いて取得された前眼部断面画像を解析することによって、前眼部情報を取得してもよい。また、正面画像撮影光学系を用いて取得された前眼部正面画像を解析することによって、前眼部情報を取得してもよい。
The anterior segment information acquiring means may acquire anterior segment information by receiving anterior segment information acquired by a device different from the ophthalmologic device. Alternatively, the anterior eye segment information may be obtained by an input by the examiner using an operation means (for example, the monitor 16). Alternatively, the anterior segment information may be acquired by analyzing an anterior segment cross-sectional image acquired using a cross-sectional image capturing optical system. Alternatively, the anterior segment information may be acquired by analyzing an anterior segment front image acquired using a front image capturing optical system.
<特定手段>
本実施形態の眼科装置は、特定手段(例えば、制御部50)を備えてもよい。特定手段は、断面画像撮影光学系を用いて取得された前眼部断面画像に含まれる反射像を特定してもよい。なお、特定手段は、反射像の位置(例えば、座標)を特定するものであってもよいし、反射像の位置を含む所定の範囲を特定するものであってもよい。 <Specifying means>
The ophthalmologic apparatus of the present embodiment may include specifying means (for example, control unit 50). The specifying means may specify a reflected image included in the anterior segment cross-sectional image acquired using the cross-sectional image capturing optical system. The identifying means may identify the position (coordinates, for example) of the reflected image, or may identify a predetermined range including the position of the reflected image.
本実施形態の眼科装置は、特定手段(例えば、制御部50)を備えてもよい。特定手段は、断面画像撮影光学系を用いて取得された前眼部断面画像に含まれる反射像を特定してもよい。なお、特定手段は、反射像の位置(例えば、座標)を特定するものであってもよいし、反射像の位置を含む所定の範囲を特定するものであってもよい。 <Specifying means>
The ophthalmologic apparatus of the present embodiment may include specifying means (for example, control unit 50). The specifying means may specify a reflected image included in the anterior segment cross-sectional image acquired using the cross-sectional image capturing optical system. The identifying means may identify the position (coordinates, for example) of the reflected image, or may identify a predetermined range including the position of the reflected image.
特定手段は、検者による操作手段(例えば、モニタ16)の操作にて入力される操作信号に基づいて、反射像の位置を特定してもよい。また、特定手段は、前眼部断面画像の輝度情報(一例として、輝度、階調、濃淡、等の少なくともいずれか)に基づいて、反射像の位置を特定してもよい。また、特定手段は、前眼部情報及び前眼部形状情報の少なくともいずれかに基づいて、反射像の位置を特定してもよい。この場合、前眼部情報や前眼部形状情報と、反射像の位置と、を実験やシミュレーションから予め対応付けておいてもよい。例えば、瞳孔径、角膜形状、及び水晶体形状、等に応じて、反射像の位置を特定してもよい。
The identification means may identify the position of the reflected image based on an operation signal input by the examiner's operation of the operation means (for example, the monitor 16). Further, the identifying means may identify the position of the reflected image based on luminance information (for example, at least one of luminance, gradation, gradation, etc.) of the anterior segment cross-sectional image. Further, the specifying means may specify the position of the reflected image based on at least one of the anterior segment information and the anterior segment shape information. In this case, the anterior segment information, the anterior segment shape information, and the position of the reflected image may be associated in advance from experiments or simulations. For example, the position of the reflected image may be specified according to the pupil diameter, corneal shape, lens shape, and the like.
例えば、前眼部断面画像に含まれる反射像は、断面画像撮影光学系からの第2測定光が角膜に反射(鏡面反射)されることによって生じる角膜反射像であってもよい。特に、第2測定光としてスリット光を投光することで生じるスリット反射像であってもよい。また、例えば、前眼部断面画像に含まれる反射像は、正面画像撮影光学系からの第3測定光の鏡面反射による角膜反射像であってもよい。もちろん、第2測定光に由来する角膜反射像及び第3測定光に由来する角膜反射像とは異なる角膜反射像を含んでもよい。
For example, the reflected image included in the anterior segment cross-sectional image may be a corneal reflected image generated by reflection (specular reflection) of the second measurement light from the cross-sectional image capturing optical system on the cornea. In particular, it may be a slit reflection image generated by projecting slit light as the second measurement light. Further, for example, the reflected image included in the anterior segment cross-sectional image may be a corneal reflected image due to specular reflection of the third measurement light from the front imaging optical system. Of course, a corneal reflection image different from the corneal reflection image derived from the second measurement light and the corneal reflection image derived from the third measurement light may be included.
<設定手段>
本実施形態の眼科装置は、設定手段(例えば、制御部50)を備えてもよい。設定手段は、断面画像撮影光学系を用いて取得された前眼部断面画像において、被検眼の角膜に少なくとも第2測定光が反射(鏡面反射)されることによって生じる反射像を含まない解析領域を設定してもよい。更に、被検眼の角膜に第3測定光が反射(鏡面反射)されることによって生じる反射像を含まない解析領域が設定されてもよい。例えば、このような解析領域は、断面画像撮影光学系における第2測定光の光軸上を含む前眼部形状情報(一例として、角膜や水晶体に関する形状情報)を取得するために設定される。 <Setting method>
The ophthalmologic apparatus of this embodiment may include setting means (for example, the control unit 50). The setting means sets an analysis region that does not include a reflected image generated by reflection (specular reflection) of at least the second measurement light on the cornea of the subject's eye in the anterior segment cross-sectional image acquired using the cross-sectional image capturing optical system. may be set. Furthermore, an analysis region may be set that does not include a reflected image produced by reflection (specular reflection) of the third measurement light on the cornea of the subject's eye. For example, such an analysis region is set to acquire anterior segment shape information including the optical axis of the second measurement light in the cross-sectional imaging optical system (eg, shape information about the cornea and the lens).
本実施形態の眼科装置は、設定手段(例えば、制御部50)を備えてもよい。設定手段は、断面画像撮影光学系を用いて取得された前眼部断面画像において、被検眼の角膜に少なくとも第2測定光が反射(鏡面反射)されることによって生じる反射像を含まない解析領域を設定してもよい。更に、被検眼の角膜に第3測定光が反射(鏡面反射)されることによって生じる反射像を含まない解析領域が設定されてもよい。例えば、このような解析領域は、断面画像撮影光学系における第2測定光の光軸上を含む前眼部形状情報(一例として、角膜や水晶体に関する形状情報)を取得するために設定される。 <Setting method>
The ophthalmologic apparatus of this embodiment may include setting means (for example, the control unit 50). The setting means sets an analysis region that does not include a reflected image generated by reflection (specular reflection) of at least the second measurement light on the cornea of the subject's eye in the anterior segment cross-sectional image acquired using the cross-sectional image capturing optical system. may be set. Furthermore, an analysis region may be set that does not include a reflected image produced by reflection (specular reflection) of the third measurement light on the cornea of the subject's eye. For example, such an analysis region is set to acquire anterior segment shape information including the optical axis of the second measurement light in the cross-sectional imaging optical system (eg, shape information about the cornea and the lens).
設定手段は、前眼部断面画像の解析が可能な対象領域から、解析の対象とする解析領域を設定してもよい。この場合、反射像を含まない解析領域として、反射像の位置を除外した領域が設定されてもよい。また、反射像を含まない解析領域として、反射像の位置を含む所定の範囲を除外した領域が設定されてもよい。これによって、前眼部断面画像に基づく前眼部形状情報が精度よく取得される。もちろん、設定手段は、前眼部断面画像の対象領域から、解析の対象としない非解析領域(つまり、反射像の位置、又は、反射像の位置を含む所定の範囲)を設定することによって、解析領域を間接的に設定してもよい。
The setting means may set the analysis region to be analyzed from the target regions in which the anterior segment cross-sectional image can be analyzed. In this case, an area excluding the position of the reflected image may be set as the analysis area that does not include the reflected image. Alternatively, an area excluding a predetermined range including the position of the reflected image may be set as the analysis area that does not include the reflected image. Thereby, the anterior segment shape information based on the anterior segment cross-sectional image is obtained with high accuracy. Of course, the setting means sets a non-analysis region (that is, the position of the reflected image or a predetermined range including the position of the reflected image) that is not to be analyzed from the target region of the anterior segment cross-sectional image, The analysis area may be set indirectly.
また、設定手段は、前眼部断面画像における反射像の位置(又は、反射像の位置を含む所定の範囲)を除外すると共に、除外した周辺のデータを利用して補間することで、解析領域を設定してもよい。つまり、前眼部断面画像から反射像を画像処理にて除去し、得られた反射像を含まない前眼部断面画像に対して、解析領域を設定してもよい。この場合には、前述の対象領域のすべてを、反射像を含まない解析領域として設定することができる。もちろん、対象領域の一部を解析領域として設定することもできる。
Further, the setting means excludes the position of the reflected image in the anterior segment cross-sectional image (or a predetermined range including the position of the reflected image), and interpolates using the excluded peripheral data to obtain the analysis region may be set. That is, the reflected image may be removed from the anterior segment cross-sectional image by image processing, and the analysis region may be set for the obtained anterior segment cross-sectional image that does not include the reflected image. In this case, all of the aforementioned target regions can be set as analysis regions that do not include reflected images. Of course, part of the target area can also be set as the analysis area.
設定手段は、前眼部情報取得手段が取得した前眼部情報に基づいて、解析領域を設定してもよい。例えば、被検眼の瞳孔状態(一例として、瞳孔径等)に基づいて解析領域を設定してもよい。また、例えば、被検眼の前眼部における各透光体の形状(一例として、角膜曲率半径等)に基づいて解析領域を設定してもよい。これによって、前眼部断面画像の解析に適した領域が容易に把握される。なお、設定手段は、特定手段が特定した反射像の位置(又は、反射像の位置を含む所定の範囲)を除くことによって、解析領域を設定してもよい。
The setting means may set the analysis region based on the anterior segment information acquired by the anterior segment information acquisition means. For example, the analysis region may be set based on the condition of the pupil of the subject's eye (for example, pupil diameter, etc.). Further, for example, the analysis region may be set based on the shape of each translucent body in the anterior segment of the subject's eye (for example, the radius of curvature of the cornea). As a result, the region suitable for analysis of the anterior segment cross-sectional image can be easily grasped. The setting means may set the analysis area by excluding the position of the reflected image specified by the specifying means (or a predetermined range including the position of the reflected image).
<眼軸長取得手段>
本実施形態の眼科装置は、眼軸長取得手段(例えば、制御部50)を備えてもよい。例えば、眼軸長取得手段は、画像処理部、眼軸長取得部、及び演算制御部、等を兼ねてもよい。 <Axial Length Acquisition Means>
The ophthalmologic apparatus of the present embodiment may include axial length acquisition means (for example, control unit 50). For example, the axial length obtaining means may also serve as an image processing section, an axial length obtaining section, an arithmetic control section, and the like.
本実施形態の眼科装置は、眼軸長取得手段(例えば、制御部50)を備えてもよい。例えば、眼軸長取得手段は、画像処理部、眼軸長取得部、及び演算制御部、等を兼ねてもよい。 <Axial Length Acquisition Means>
The ophthalmologic apparatus of the present embodiment may include axial length acquisition means (for example, control unit 50). For example, the axial length obtaining means may also serve as an image processing section, an axial length obtaining section, an arithmetic control section, and the like.
眼軸長取得手段は、眼屈折力測定光学系を用いた眼屈折力の取得を制御することによって、被検眼の眼屈折力を取得してもよい。より詳細には、眼屈折力測定光学系における第1測定光の投光と、第1測定光の眼底反射光の光検出器による検出と、を制御することによって、被検眼の眼屈折力を取得してもよい。
The eye axial length acquisition means may acquire the eye refractive power of the subject's eye by controlling acquisition of the eye refractive power using the eye refractive power measurement optical system. More specifically, by controlling the projection of the first measurement light in the eye refractive power measurement optical system and the detection by the photodetector of the fundus reflected light of the first measurement light, the eye refractive power of the subject's eye is measured. may be obtained.
また、眼軸長取得手段は、断面画像撮影光学系を用いた前眼部断面画像の取得を制御することによって、被検眼の前眼部断面画像を取得してもよい。より詳細には、断面画像撮影光学系における第2測定光の投光と、第2測定光の戻り光(散乱光)の光検出器による検出と、を制御することによって、被検眼の前眼部断面画像を取得してもよい。
Further, the axial length acquiring means may acquire the anterior segment cross-sectional image of the eye to be examined by controlling the acquisition of the anterior segment cross-sectional image using the cross-sectional image capturing optical system. More specifically, by controlling the projection of the second measurement light in the cross-sectional imaging optical system and the detection of the return light (scattered light) of the second measurement light by the photodetector, Partial cross-sectional images may be acquired.
眼軸長取得手段は、眼屈折力と、形状情報取得手段が前眼部断面画像を解析することで取得した形状情報に含まれる複数のパラメータと、に基づいて被検眼の眼軸長を取得してもよい。例えば、眼軸長取得手段は、眼屈折力及び複数のパラメータに基づき、光線追跡演算によって、眼軸長を導出してもよい。光線追跡演算では、遠点から前眼部の所定位置に入射する光線が透光体によって屈折された後に光軸上に交わるときの、交点と角膜頂点との間隔が、眼軸長として導出される。このとき、眼科分野において遠点を特定するときに一般的に用いられている等価球面度数ではなく、光切断面での眼屈折力(面上眼屈折力)が利用されてもよい。これにより、切断面上を通過する光線における遠点の位置が、より適正に特定される。結果として、眼軸長をより適正に求めることができる。このとき、複数の光線のそれぞれについて光線追跡演算を行い、各光線の光線追跡演算の結果として、眼軸長を求めてもよい。例えば、それぞれの光線追跡演算で得られた眼軸長の平均値(加重平均でも良い)が、被検眼の眼軸長として求められてもよい。
The axial length acquisition means acquires the axial length of the eye to be examined based on the refractive power of the eye and a plurality of parameters included in the shape information acquired by the shape information acquisition means by analyzing the cross-sectional image of the anterior segment of the eye. You may For example, the axial length acquisition means may derive the axial length by ray tracing calculation based on the refractive power of the eye and a plurality of parameters. In the ray tracing calculation, the distance between the point of intersection and the vertex of the cornea when a light ray incident on a predetermined position of the anterior segment from the far point is refracted by the translucent body and intersects the optical axis is derived as the axial length of the eye. be. At this time, instead of the equivalent spherical power that is generally used when specifying the far point in the field of ophthalmology, the eye refractive power at the light-section plane (surface eye refractive power) may be used. As a result, the position of the far point of the light ray passing through the cut plane can be specified more properly. As a result, the axial length can be obtained more appropriately. At this time, a ray tracing calculation may be performed for each of the plurality of rays, and the axial length of the eye may be obtained as a result of the ray tracing calculation for each ray. For example, an average value (or a weighted average) of the axial lengths obtained by each ray tracing calculation may be obtained as the axial length of the subject's eye.
なお、光線追跡演算では、各透光体の境界面に対する光線の入射位置および境界面での角度変化が、前眼部情報から特定される切断面での透光体の形状を考慮して決定されてもよい。また、光線追跡演算では、前眼部の透光体の偏心が考慮されてもよい。偏心は、前眼部情報に基づいて特定される。切断面内の透光体の偏心が考慮される結果として、眼軸長をより適正に求めることができる。この場合において、例えば、第1の光線と第2の光線とを少なくとも含む複数の光線のそれぞれについて光線追跡演算を行い光線毎に眼軸長を求め、複数の眼軸長に基づいて、最終的な測定値を求めてもよい。第1の光線と第2の光線とは、切断面上において、眼軸を挟んで配置される光線である。
In the ray tracing calculation, the incident position of the ray with respect to the boundary surface of each transparent body and the angle change at the boundary surface are determined by considering the shape of the transparent body at the cut surface specified from the anterior segment information. may be The ray tracing calculation may also take into account the decentration of the anterior segment translucent body. Eccentricity is identified based on the anterior segment information. As a result of considering the eccentricity of the transmissive body in the cut plane, the axial length can be obtained more appropriately. In this case, for example, a ray tracing calculation is performed for each of a plurality of rays including at least the first ray and the second ray to obtain the axial length for each ray, and based on the plurality of axial lengths, the final measurements may be obtained. The first light ray and the second light ray are light rays arranged on the cutting plane with the eye axis interposed therebetween.
本実施形態において、眼軸長取得手段は、前眼部断面画像に基づいて、断面画像撮影光学系における第2測定光の光量を調整してもよい。より詳細には、被検眼に対する前眼部断面画像(第1前眼部断面画像)を取得し、この前眼部断面画像が解析に不適切とされた場合に、第2測定光の光量を調整して、再び前眼部断面画像(第2前眼部断面画像)を取得してもよい。また、本実施形態において、眼軸長取得手段は、前眼部断面画像に基づいて、断面画像撮影光学系における光検出器の検出条件を調整してもよい。より詳細には、第1前眼部断面画像を取得し、第1前眼部断面画像が解析に不適切とされた場合に、光検出器の検出条件を調整して、第2前眼部断面画像を取得してもよい。これによって、前眼部断面画像に基づく複数のパラメータとして適切な値を取得できる可能性が高くなり、結果として眼軸長の精度が向上される。
In the present embodiment, the axial length acquisition means may adjust the light amount of the second measurement light in the cross-sectional image capturing optical system based on the anterior segment cross-sectional image. More specifically, an anterior segment cross-sectional image (first anterior segment cross-sectional image) of the eye to be inspected is acquired, and if this anterior segment cross-sectional image is determined to be inappropriate for analysis, the amount of light of the second measurement light is reduced. After adjustment, the anterior segment cross-sectional image (second anterior segment cross-sectional image) may be acquired again. Further, in the present embodiment, the axial length acquisition means may adjust the detection conditions of the photodetector in the cross-sectional image capturing optical system based on the anterior segment cross-sectional image. More specifically, when the first anterior segment cross-sectional image is acquired and the first anterior segment cross-sectional image is determined to be inappropriate for analysis, the detection conditions of the photodetector are adjusted to obtain the second anterior segment cross-sectional image. A cross-sectional image may be acquired. This increases the possibility of obtaining appropriate values for the plurality of parameters based on the anterior segment cross-sectional image, and as a result improves the accuracy of the axial length.
なお、眼軸長取得手段は、第1前眼部断面画像が解析に適しているか否かを、第1前眼部断面画像が良好に得られたか否かに基づいて、決定してもよい。また、眼軸長取得手段は、第1前眼部断面画像が解析に適しているか否かを、第1前眼部断面画像に基づく複数のパラメータが良好に得られたか否かに基づいて、決定してもよい。これによって、複数のパラメータの測定値が得られない場合や、測定値が正確でない場合であっても、適切な値が取得されやすくなる。
The axial length obtaining means may determine whether the first anterior segment cross-sectional image is suitable for analysis based on whether the first anterior segment cross-sectional image is obtained satisfactorily. . Further, the axial length obtaining means determines whether the first anterior segment cross-sectional image is suitable for analysis based on whether or not a plurality of parameters based on the first anterior segment cross-sectional image are obtained satisfactorily. may decide. This makes it easier to obtain appropriate values even when measured values for multiple parameters are unavailable or inaccurate.
例えば、眼軸長取得手段は、第2前眼部断面画像から検出される各透光体の輝度情報が、飽和状態とならない所定の範囲内で、第2測定光の光量を調整してもよい。この場合、眼軸長取得手段は、光源における出力の設定値を増加又は減少させてもよいし、光源から投光される第2測定光の光路内にて光学部材を挿抜させてもよい。なお、一例として、所定の範囲は、光検出器の検出感度やゲイン等に基づいて、予め設定されていてもよい。また、例えば、眼軸長取得手段は、第2前眼部断面画像から検出される各透光体の輝度情報が、飽和状態とならない所定の範囲内で、光検出器の検出条件を調整してもよい。この場合、眼軸長取得手段は、光検出器の露光時間、ゲイン、等の少なくともいずれかを変更してもよい。
For example, the axial length acquisition means adjusts the light amount of the second measurement light within a predetermined range in which the luminance information of each translucent body detected from the second anterior segment cross-sectional image is not saturated. good. In this case, the axial length acquisition means may increase or decrease the set value of the output of the light source, or insert or remove the optical member in the optical path of the second measurement light projected from the light source. As an example, the predetermined range may be set in advance based on the detection sensitivity, gain, etc. of the photodetector. Further, for example, the axial length acquisition means adjusts the detection conditions of the photodetector within a predetermined range in which the luminance information of each translucent body detected from the second anterior segment cross-sectional image is not saturated. may In this case, the axial length acquisition means may change at least one of the exposure time, gain, etc. of the photodetector.
なお、本実施形態における眼科装置は、被検眼の眼屈折力を取得する眼屈折力取得手段と、被検眼の前眼部断面画像を取得する前眼部断面画像取得手段と、前眼部断面画像における角膜反射像を含まない解析領域を設定する設定手段と、解析領域を解析して前眼部形状情報を取得する形状情報取得手段と、眼屈折力及び前眼部形状情報に基づいて眼軸長を取得する眼軸長取得手段と、を少なくとも備える構成であってもよい。
Note that the ophthalmologic apparatus in this embodiment includes eye refractive power acquisition means for acquiring the eye refractive power of the eye to be inspected, an anterior segment cross-sectional image acquisition means for acquiring an anterior segment cross-sectional image of the eye to be inspected, and an anterior segment cross-sectional image setting means for setting an analysis region that does not include a corneal reflection image in an image; shape information acquisition means for analyzing the analysis region to acquire anterior segment shape information; and an eye axial length acquiring means for acquiring the axial length.
この場合、眼屈折力取得手段は、眼科装置とは異なる装置を用いた測定結果の受信、電子カルテ等からの呼び出し、検者による操作手段を用いた入力、等によって、眼屈折力を取得してもよい。もちろん、眼科装置が眼屈折力測定光学系を備える場合には、この光学系を用いた測定結果としての眼屈折力が取得されてもよい。同様に、前眼部断面画像取得手段は、眼科装置とは異なる装置を用いた撮影画像の受信、電子カルテ等からの呼び出し、等によって、眼屈折力を取得してもよい。眼科装置が断面画像撮影光学系を備える場合には、この光学系を用いた撮影結果としての前眼部断面画像が取得されてもよい。
In this case, the eye refractive power acquiring means acquires the eye refractive power by receiving measurement results using a device different from the ophthalmologic device, calling from an electronic medical record or the like, input by the examiner using the operation means, and the like. may Of course, if the ophthalmologic apparatus includes an eye refractive power measurement optical system, the eye refractive power may be obtained as a measurement result using this optical system. Similarly, the anterior segment cross-sectional image acquisition means may acquire the eye refractive power by receiving an image captured using a device different from the ophthalmologic device, by calling from an electronic medical record or the like. When the ophthalmologic apparatus includes a cross-sectional image capturing optical system, an anterior segment cross-sectional image may be acquired as a result of capturing using this optical system.
<実施例>
本実施形態における眼科装置の一実施例について説明する。 <Example>
An example of an ophthalmologic apparatus according to this embodiment will be described.
本実施形態における眼科装置の一実施例について説明する。 <Example>
An example of an ophthalmologic apparatus according to this embodiment will be described.
<全体構成>
図1は、眼科装置10の外観図である。眼科装置10は、他覚式眼屈折力測定装置(特に、本実施例では、オートレフラクトメータ)と、シャインプルーフカメラと、の複合機である。本実施例において、眼科装置10は、据え置き型の検査装置であるが、必ずしもこれに限られるものでは無く、手持ち型であってもよい。 <Overall composition>
FIG. 1 is an external view of anophthalmologic apparatus 10. FIG. The ophthalmologic apparatus 10 is a multi-function machine of an objective eye refractive power measuring apparatus (especially an autorefractometer in this embodiment) and a Scheimpflug camera. In this embodiment, the ophthalmologic apparatus 10 is a stationary examination apparatus, but is not necessarily limited to this, and may be hand-held.
図1は、眼科装置10の外観図である。眼科装置10は、他覚式眼屈折力測定装置(特に、本実施例では、オートレフラクトメータ)と、シャインプルーフカメラと、の複合機である。本実施例において、眼科装置10は、据え置き型の検査装置であるが、必ずしもこれに限られるものでは無く、手持ち型であってもよい。 <Overall composition>
FIG. 1 is an external view of an
眼科装置10は、測定ユニット11、基台12、アライメント駆動部13、顔支持ユニット15、モニタ16、及び、演算制御部50、を少なくとも有している。
The ophthalmologic apparatus 10 has at least a measurement unit 11 , a base 12 , an alignment drive section 13 , a face support unit 15 , a monitor 16 and an arithmetic control section 50 .
測定ユニット11は、被検眼の検査に利用される測定系及び撮影系等を備える。本実施例では、図2に示す光学系が配置されている。
The measurement unit 11 includes a measurement system, an imaging system, and the like used for examination of an eye to be examined. In this embodiment, the optical system shown in FIG. 2 is arranged.
アライメント駆動部13は、測定ユニット11を基台12に対して3次元的に移動可能であってもよい。
The alignment drive section 13 may be able to move the measurement unit 11 three-dimensionally with respect to the base 12 .
顔支持ユニット15は、測定ユニット11の正面において被検者の顔を固定するために利用される。顔支持ユニット15は、基台12に対して固定されており、被検者の顔を支持する。
The face support unit 15 is used to fix the subject's face in front of the measurement unit 11 . The face support unit 15 is fixed to the base 12 and supports the subject's face.
モニタ16は、操作部を兼ねたタッチパネルとして機能する。また、モニタ16は、被検眼Eの眼屈折力、前眼部断面画像、眼軸長、等を画面に表示する。
The monitor 16 functions as a touch panel that also serves as an operation unit. In addition, the monitor 16 displays the ocular refractive power of the subject's eye E, the anterior segment cross-sectional image, the ocular axial length, and the like on the screen.
演算制御部50(プロセッサともいう。以下、単に、制御部50と称する。)は、眼科装置10の全体の制御を司る。また、測定ユニット11を介して取得された各種の検査結果を処理する。
The arithmetic control unit 50 (also referred to as a processor; hereinafter simply referred to as the control unit 50 ) controls the entire ophthalmologic apparatus 10 . It also processes various inspection results acquired via the measurement unit 11 .
<光学系>
図2は、眼科装置10の光学系を示す概略図である。一例として、眼科装置10は、測定光学系100、固視標呈示光学系150、正面撮影光学系200、断面撮影光学系(照射光学系300a及び受光光学系300b、指標投影光学系400、及び、アライメント指標投影光学系を備える。また、各光学系の光路を分岐及び結合するハーフミラー501,502,503、対物レンズ505、等を有する。なお、各々の光学系においては、光源側を上流、被検眼側を下流とする。 <Optical system>
FIG. 2 is a schematic diagram showing the optical system of theophthalmologic apparatus 10. As shown in FIG. As an example, the ophthalmologic apparatus 10 includes a measurement optical system 100, a fixation target presentation optical system 150, a front imaging optical system 200, a cross-sectional imaging optical system (an irradiation optical system 300a and a light receiving optical system 300b, an index projection optical system 400, and It has an alignment target projection optical system, and half mirrors 501, 502, 503 for branching and combining the optical paths of each optical system, an objective lens 505, etc. In each optical system, the light source side is upstream, The side of the eye to be examined is the downstream side.
図2は、眼科装置10の光学系を示す概略図である。一例として、眼科装置10は、測定光学系100、固視標呈示光学系150、正面撮影光学系200、断面撮影光学系(照射光学系300a及び受光光学系300b、指標投影光学系400、及び、アライメント指標投影光学系を備える。また、各光学系の光路を分岐及び結合するハーフミラー501,502,503、対物レンズ505、等を有する。なお、各々の光学系においては、光源側を上流、被検眼側を下流とする。 <Optical system>
FIG. 2 is a schematic diagram showing the optical system of the
<測定光学系>
測定光学系100は、被検眼Eの眼屈折力を他覚的に測定するために利用される。例えば、SPH:球面度数、CYL:柱面度数、AXIS:乱視軸角度、の各値が、眼屈折力の測定結果として取得されてもよい。 <Measurement optical system>
The measurementoptical system 100 is used to objectively measure the eye refractive power of the eye E to be examined. For example, each value of SPH: spherical power, CYL: cylindrical power, and AXIS: cylinder axis angle may be obtained as a measurement result of the eye refractive power.
測定光学系100は、被検眼Eの眼屈折力を他覚的に測定するために利用される。例えば、SPH:球面度数、CYL:柱面度数、AXIS:乱視軸角度、の各値が、眼屈折力の測定結果として取得されてもよい。 <Measurement optical system>
The measurement
測定光学系100は、投影光学系100a、及び、受光光学系100bを有する。
The measurement optical system 100 has a projection optical system 100a and a light receiving optical system 100b.
投影光学系100aは、少なくとも測定光源111を有し、被検眼Eにおける瞳孔の中心部又は角膜頂点を介して、被検眼Eの眼底にスポット状の測定光を投影する。測定光源111は、SLD光源であってもよいし、LED光源であってもよいし、その他の光源であってもよい。本実施例では、測定光として赤外光が利用される。例えば、800nm~900nmの間にピーク波長をもつ近赤外光が利用されてもよい。一例としては、870nmをピーク波長とする近赤外光が利用されてもよい。
The projection optical system 100a has at least a measurement light source 111, and projects a spot-shaped measurement light onto the fundus of the eye E to be inspected via the center of the pupil or the corneal vertex of the eye E to be inspected. The measurement light source 111 may be an SLD light source, an LED light source, or other light sources. In this embodiment, infrared light is used as the measurement light. For example, near-infrared light with a peak wavelength between 800 nm and 900 nm may be used. As an example, near-infrared light with a peak wavelength of 870 nm may be used.
本実施例では、投影光学系100a及び受光光学系100bの共通経路上にプリズム115が配置される。プリズム115が光軸周りに回転されることによって、瞳上での投影光束が高速に偏心回転される。一例として、本実施例では、瞳上のφ2mm~φ4mmの領域で、投影光束が偏心回転される。この領域が、本実施例における眼屈折力の測定領域となる。
In this embodiment, a prism 115 is arranged on the common path of the projection optical system 100a and the light receiving optical system 100b. By rotating the prism 115 around the optical axis, the projection light flux on the pupil is rotated eccentrically at high speed. As an example, in this embodiment, the projection light flux is eccentrically rotated in a region of φ2 mm to φ4 mm on the pupil. This area is the eye refractive power measurement area in this embodiment.
受光光学系100bは、少なくともリングレンズ124と、撮像素子125と、を有する。受光光学系100bは、眼底から反射された測定光束の反射光束を、瞳孔の周辺部を介してリング状に取り出す。リングレンズ124は、瞳共役位置に配置されており、撮像素子125は、眼底共役位置に配置されている。リングレンズ124を介して撮像素子125上に形成されるリング像を解析することによって、眼屈折力が導出される。
The light receiving optical system 100b has at least a ring lens 124 and an imaging element 125. The light-receiving optical system 100b takes out the reflected light flux of the measurement light flux reflected from the fundus in a ring shape through the periphery of the pupil. The ring lens 124 is arranged at a pupil conjugate position, and the imaging device 125 is arranged at a fundus conjugate position. By analyzing the ring image formed on the image sensor 125 via the ring lens 124, the eye refractive power is derived.
前述の通り、本実施例では、瞳上で測定光が高速に偏心回転されているので、回転周期に対して十分長い時間の露光に基づく撮像素子125からの出力画像、或いは、撮像素子125から逐次出力される画像データの加算画像、に対して解析処理が行われ、眼屈折力が導出される。本実施例では、SPH:球面度数、CYL:柱面度数、AXIS:乱視軸角度の値が、解析処理の結果として少なくとも取得される。
As described above, in this embodiment, the measurement light is eccentrically rotated at high speed on the pupil. Analysis processing is performed on an added image of image data that is sequentially output, and an eye refractive power is derived. In this embodiment, at least values of SPH: spherical power, CYL: cylindrical power, and AXIS: cylinder axis angle are acquired as a result of the analysis processing.
なお、測定光学系100は、測定光源111、プリズム115、リングレンズ124、及び撮像素子125の他にも、レンズや絞り等の光学素子を有していてもよい。測定光源111からの測定光束は、ホールミラー113のホール部とプリズム115を通過し、ハーフミラー502及びハーフミラー501にそれぞれ反射されることで、光軸L1と同軸となり、更に対物レンズ505を介して、眼底に到達する。測定光束が眼底にて反射された反射光束は、測定光束が通過した光路を経由し、ホールミラー123のミラー部に反射され、リングレンズ124を介して撮像素子125に到達する。
In addition to the measurement light source 111, the prism 115, the ring lens 124, and the imaging element 125, the measurement optical system 100 may have optical elements such as lenses and diaphragms. The measurement light flux from the measurement light source 111 passes through the hole portion of the hole mirror 113 and the prism 115, is reflected by the half mirrors 502 and 501, respectively, becomes coaxial with the optical axis L1, and passes through the objective lens 505. and reach the fundus. A reflected light flux, which is the measurement light flux reflected by the fundus, passes through the optical path through which the measurement light flux has passed, is reflected by the mirror portion of the hole mirror 123 , and reaches the imaging device 125 via the ring lens 124 .
<固視標呈示光学系>
固視標呈示光学系150は、被検眼Eに対して固視標を呈示する。固視標は、測定光学系100の光軸上に呈示される。固視標呈示光学系150は、被検眼Eを固視させるために利用される。また、被検眼に雲霧及び調節負荷を与えるために利用される。 <Fixation target presentation optical system>
A fixation target presentingoptical system 150 presents a fixation target to the eye E to be examined. A fixation target is presented on the optical axis of the measurement optical system 100 . The fixation target presenting optical system 150 is used to fixate the eye E to be examined. It is also used to apply fogging and accommodation load to the subject's eye.
固視標呈示光学系150は、被検眼Eに対して固視標を呈示する。固視標は、測定光学系100の光軸上に呈示される。固視標呈示光学系150は、被検眼Eを固視させるために利用される。また、被検眼に雲霧及び調節負荷を与えるために利用される。 <Fixation target presentation optical system>
A fixation target presenting
例えば、固視標呈示光学系150は、光源151、及び、固視標板155を少なくとも備える。固視標板155は、眼底共役位置に配置されてもよい。光源151からの固視光束は、光軸L2上の固視標板155とレンズ156を通過した後、ハーフミラー503を透過する。また、レンズ504を通過し、ハーフミラー502を透過し、ハーフミラー501に反射されることで、光軸L1と同軸となる。固視光束は、更に対物レンズ505を介すことで、眼底に到達する。
For example, the fixation target presenting optical system 150 includes at least a light source 151 and a fixation target plate 155 . The fixation target plate 155 may be placed at a fundus conjugate position. A fixation light flux from the light source 151 passes through the half mirror 503 after passing through the fixation target plate 155 and the lens 156 on the optical axis L2. Further, the light passes through the lens 504, passes through the half mirror 502, and is reflected by the half mirror 501, so that the light becomes coaxial with the optical axis L1. The fixation luminous flux further passes through the objective lens 505 and reaches the fundus.
なお、測定光学系100における測定光源111、リングレンズ124、及び撮像素子125と、固視標呈示光学系150における光源151及び固視標板155は、駆動ユニット160として、駆動部161により光軸に沿って一体的に移動可能である。例えば、測定光学系100における駆動ユニット160内の焦点距離と、固視標呈示光学系150における駆動ユニット160内の焦点距離は、所定の関係とされる。例えば、被検眼Eの眼屈折力に応じて駆動ユニットを移動させることで、被検眼Eに対する固視標板155の呈示距離(すなわち、固視標の呈示位置)を変更でき、さらに、測定光源111及び撮像素子125が光学的に眼底共役となる。このとき、駆動ユニットの移動に関わらず、ホールミラー113とリングレンズ124は一定の倍率で瞳共役となる。
The measurement light source 111, the ring lens 124, and the imaging element 125 in the measurement optical system 100, and the light source 151 and the fixation target plate 155 in the fixation target presentation optical system 150 are driven by the drive unit 161 as a drive unit 160. It is integrally movable along the . For example, the focal length within the driving unit 160 in the measurement optical system 100 and the focal length within the driving unit 160 in the fixation target presenting optical system 150 have a predetermined relationship. For example, by moving the drive unit according to the eye refractive power of the eye E to be examined, the presentation distance of the fixation target plate 155 to the eye E (that is, the presentation position of the fixation target) can be changed. 111 and the imaging device 125 are optically conjugated to the fundus. At this time, regardless of the movement of the drive unit, the hole mirror 113 and the ring lens 124 are pupil conjugate at a constant magnification.
<正面撮影光学系>
正面撮影光学系200は、被検眼Eの前眼部の正面画像を撮像するために利用される。例えば、正面撮影光学系200は、撮像素子205等を備える。撮像素子205は、瞳共役位置に配置されてもよい。正面画像としては、前眼部の観察画像が取得されてもよい。観察画像は、アライメント等に利用される。また、指標投影光学系400から角膜に投影される指標像(点像)、及び、アライメント指標投影光学系600から角膜に投影される指標像(マイヤーリング像)が、正面撮影光学系200によって撮影される。 <Front view optical system>
The front imagingoptical system 200 is used to capture a front image of the anterior segment of the eye E to be examined. For example, the front imaging optical system 200 includes an imaging element 205 and the like. The imaging element 205 may be arranged at a pupil conjugate position. As the front image, an observation image of the anterior segment may be acquired. The observed image is used for alignment and the like. Also, the index image (point image) projected onto the cornea from the index projection optical system 400 and the index image (Meyerling image) projected onto the cornea from the alignment index projection optical system 600 are photographed by the front imaging optical system 200. be done.
正面撮影光学系200は、被検眼Eの前眼部の正面画像を撮像するために利用される。例えば、正面撮影光学系200は、撮像素子205等を備える。撮像素子205は、瞳共役位置に配置されてもよい。正面画像としては、前眼部の観察画像が取得されてもよい。観察画像は、アライメント等に利用される。また、指標投影光学系400から角膜に投影される指標像(点像)、及び、アライメント指標投影光学系600から角膜に投影される指標像(マイヤーリング像)が、正面撮影光学系200によって撮影される。 <Front view optical system>
The front imaging
<断面撮影光学系>
断面撮影光学系は、前眼部の断面画像を撮影するために利用される。断面撮影光学系は、照射光学系300aと受光光学系300bと、を備える。 <Section imaging optical system>
The cross-sectional imaging optical system is used to capture a cross-sectional image of the anterior segment of the eye. The cross-sectional imaging optical system includes an irradiationoptical system 300a and a light receiving optical system 300b.
断面撮影光学系は、前眼部の断面画像を撮影するために利用される。断面撮影光学系は、照射光学系300aと受光光学系300bと、を備える。 <Section imaging optical system>
The cross-sectional imaging optical system is used to capture a cross-sectional image of the anterior segment of the eye. The cross-sectional imaging optical system includes an irradiation
照射光学系300aは、測定光学系100における測定光の投光光軸(光軸L1)と同軸であり、前眼部に対してスリット光(照明光)を照射する。照射光学系300aは、光源311及びスリット312等を有する。光源311は、SLD光源であってもよいし、LED光源であってもよいし、その他の光源であってもよい。本実施例では、照明光として赤色可視光又は近赤外光が利用される。例えば、650nm~800nmの間にピーク波長をもつ赤色可視光又は近赤外光が利用されてもよい。一例としては、730nmをピーク波長とする赤色可視光が利用されてもよい。もちろん、所定の波長をピーク波長とする近赤外光が利用されてもよい。スリット312は、瞳共役位置に配置されてもよい。
The irradiation optical system 300a is coaxial with the projection optical axis (optical axis L1) of the measurement light in the measurement optical system 100, and irradiates the anterior segment with slit light (illumination light). The irradiation optical system 300a has a light source 311, a slit 312, and the like. The light source 311 may be an SLD light source, an LED light source, or other light sources. In this embodiment, red visible light or near-infrared light is used as illumination light. For example, red visible light or near-infrared light with peak wavelengths between 650 nm and 800 nm may be utilized. As an example, red visible light with a peak wavelength of 730 nm may be used. Of course, near-infrared light with a predetermined wavelength as a peak wavelength may also be used. The slit 312 may be placed at a pupil conjugate position.
照射光学系300aの光源311について、詳細に説明する。図3は、被検眼の視感度と波長の関係を表す模式図である。被検眼は可視域に視感度をもつが、一般的に緑色可視光である550nm付近で最大となり、波長が長くなるにつれて(赤外域に近づくほど)徐々に低下する。つまり、被検眼は、緑色可視光に眩しさを感じやすく、赤色可視光には眩しさを感じにくい。なお、赤外光には眩しさを感じないとされている。
The light source 311 of the irradiation optical system 300a will be described in detail. FIG. 3 is a schematic diagram showing the relationship between the visual sensitivity of an eye to be inspected and the wavelength. The eye to be inspected has luminosity in the visible range, which generally peaks around 550 nm, which is green visible light, and gradually decreases as the wavelength increases (closer to the infrared range). In other words, the subject's eye is likely to feel dazzling in green visible light, and less likely to feel dazzling in red visible light. It is said that infrared light is not dazzling.
従来は、前眼部の断面画像をシャインプルーフの原理に基づいて取得する際に、青色可視光、緑色可視光、白色可視光、等が照明光として用いられてきた。これは、被検眼の透過率の影響で、白内障等が断面画像に現れやすいためであるが、被検者には照明光が眩しく負担となっていた。一方で、近年の若年層を中心とした近視有病率の増加にともない、若年層に対する眼軸長の測定は重要視されているが、若年層は白内障の可能性が低いため、上記とは異なる光を照明光として用いることも可能である。
Conventionally, blue visible light, green visible light, white visible light, etc. have been used as illumination light when acquiring cross-sectional images of the anterior segment based on the Scheimpflug principle. This is because a cataract or the like is likely to appear in a cross-sectional image due to the influence of the transmittance of the subject's eye. On the other hand, as the prevalence of myopia has increased in recent years, mainly among young people, the measurement of axial length in young people has been emphasized. It is also possible to use a different light as illumination light.
そこで、本実施例では、被検眼が眩しさを感じにくい赤色可視光~近赤外光の光を、照明光として使用する。例えば、緑色可視光である550nm付近の視感度に対し、赤色可視光である650nm付近の視感度は約10分の1に低下し、700nm付近の視感度は約200分の1に低下する。このため、被検者の負担は大きく軽減される。特に、小児を含む若年層が対象の場合は、負担の軽減とともに、測定の効率化につながる。
Therefore, in this embodiment, red visible light to near-infrared light, which is less likely to be perceived by the eye to be examined, is used as illumination light. For example, the visibility around 650 nm, which is red visible light, drops to about 1/10, and the visibility around 700 nm drops to about 1/200, relative to the visibility around 550 nm, which is green visible light. Therefore, the burden on the subject is greatly reduced. In particular, when targeting young people including children, the burden is reduced and the efficiency of measurement is improved.
本実施例では、前眼部におけるスリット光の通過断面を「切断面」と称する。切断面は、断面撮影光学系の物面となる。図2において、スリット312の開口は、水平方向(紙面奥行き方向)を長手方向とする。よって、本実施例では、光軸L1を含む水平面(XZ断面)が切断面として設定される。本実施例では、少なくとも、角膜前面から水晶体後面までの間に切断面が形成される。
In this embodiment, the passage cross section of the slit light in the anterior segment is referred to as a "cut plane". The cut plane becomes the object plane of the cross-section imaging optical system. In FIG. 2, the opening of the slit 312 has a horizontal direction (the depth direction of the paper surface) as its longitudinal direction. Therefore, in this embodiment, the horizontal plane (XZ section) including the optical axis L1 is set as the cutting plane. In this embodiment, a cut surface is formed at least between the anterior corneal surface and the posterior surface of the lens.
受光光学系300bは、レンズ系322及び撮像素子321等を有する。受光光学系300bにおいて、レンズ系322及び撮像素子321は、前眼部に設定される切断面とシャインプルーフの関係に配置される。すなわち、切断面とレンズ系322の主平面と、撮像素子321の撮像面と、の各延長面が、1本の交線(一軸)で交わるような光学配置となっている。撮像素子321からの信号に基づいて、前眼部の断面画像が取得される。撮像素子321は、単元素としてのシリコンを材料とした半導体の基板で構成されてもよい。
The light receiving optical system 300b has a lens system 322, an imaging device 321, and the like. In the light-receiving optical system 300b, the lens system 322 and the imaging device 321 are arranged in a Scheimpflug relationship with the cutting plane set in the anterior segment. That is, the optical arrangement is such that the extended planes of the cut plane, the principal plane of the lens system 322, and the imaging surface of the imaging element 321 intersect at one line of intersection (one axis). A cross-sectional image of the anterior segment is acquired based on the signal from the imaging device 321 . The imaging element 321 may be configured with a semiconductor substrate made of silicon as a single element.
受光光学系300bの撮像素子321について、詳細に説明する。図4は、撮像素子321の受光感度と波長の関係を表す模式図である。例えば、単元素としてシリコンを材料に用いた撮像素子は、紫外域、可視域、及び赤外域の波長を含む300nm~1000nm付近の波長に感度をもつが、緑色可視光を含む550nm~650nm付近で最大となり、赤外域に近づくほど徐々に低下する。しかし、照射光学系300aで使用される赤色可視光~近赤外光の光を含む650nm以上の感度は、前眼部の断面画像の取得には十分な感度である。
The imaging device 321 of the light receiving optical system 300b will be described in detail. FIG. 4 is a schematic diagram showing the relationship between the light receiving sensitivity of the image sensor 321 and the wavelength. For example, an imaging device using silicon as a single element has sensitivity to wavelengths in the vicinity of 300 nm to 1000 nm, including wavelengths in the ultraviolet, visible, and infrared regions, but has sensitivity in the vicinity of 550 nm to 650 nm, which includes green visible light. It becomes the maximum, and gradually decreases as it approaches the infrared region. However, the sensitivity of 650 nm or more, which includes red visible light to near-infrared light, used in the irradiation optical system 300a is sufficient for obtaining a cross-sectional image of the anterior segment.
なお、例えば、撮像素子には、その感度が赤外域で最大となるものが存在するが、高価である。装置が病院や学校等の多くの施設で普及されることが望まれる一方で、装置の高額化は装置の普及の妨げとなり得る。シリコンを材料とした撮像素子を用いれば、装置を安価に抑えることができる。
It should be noted that, for example, some imaging devices have the highest sensitivity in the infrared region, but they are expensive. While it is desired that the device be widely used in many facilities such as hospitals and schools, the high cost of the device may hinder the widespread use of the device. If an imaging element made of silicon is used, the cost of the device can be reduced.
このような断面撮影光学系において、光源311からの照明光束は、光軸L3上のスリット312を介してスリット光束となり、レンズ313を通過した後、ハーフミラー503に反射されることで、光軸L2と同軸となる。また、レンズ504を通過し、ハーフミラー502を透過し、ハーフミラー501に反射されることで、光軸L1と同軸となる。照明光束は、更に対物レンズ505を介すことで、前眼部に到達する。前眼部に形成された切断面からの戻り光は、レンズ322を介して撮像素子321に到達する。
In such a cross-sectional imaging optical system, the illumination light beam from the light source 311 passes through the slit 312 on the optical axis L3 and becomes a slit light beam. Coaxial with L2. Further, the light passes through the lens 504, passes through the half mirror 502, and is reflected by the half mirror 501, so that the light becomes coaxial with the optical axis L1. The illumination luminous flux further passes through the objective lens 505 and reaches the anterior segment of the eye. Return light from the cut surface formed in the anterior segment reaches the imaging device 321 via the lens 322 .
<指標投影光学系>
指標投影光学系400は、角膜形状を測定するために利用される。指標投影光学系400は、被検眼と対向する正面から前眼部へ、角膜形状を測定するための指標を投影する。 <Target projection optical system>
A target projectionoptical system 400 is used to measure the corneal shape. The target projection optical system 400 projects a target for measuring the shape of the cornea from the front facing the subject's eye to the anterior segment of the eye.
指標投影光学系400は、角膜形状を測定するために利用される。指標投影光学系400は、被検眼と対向する正面から前眼部へ、角膜形状を測定するための指標を投影する。 <Target projection optical system>
A target projection
指標投影光学系400は、複数の点光源401を備える。点光源401は、角膜に平行光を照射することで、無限遠指標を投影する。点光源401は、赤外光を発する。但し、可視光であってもよい。点光源401は、光軸L1を中心として、上下対称及び左右対称に配置される。例えば、本実施例では、点光源が左右に2つずつ設けられる。これによって、角膜に対して4つの点像指標が投影される。なお、指標の形状はこれに限られたものでは無く、線状等の指標が含まれてもよい。また、指標の数はこれに限られたものでは無く、3つ以上の点像指標によって構成されてもよい。
A target projection optical system 400 includes a plurality of point light sources 401 . The point light source 401 projects an infinity index by irradiating the cornea with parallel light. The point light source 401 emits infrared light. However, it may be visible light. The point light sources 401 are arranged vertically and horizontally symmetrically about the optical axis L1. For example, in this embodiment, two point light sources are provided on each side. This projects four point image indices onto the cornea. Note that the shape of the index is not limited to this, and a linear index or the like may be included. Also, the number of indices is not limited to this, and may be composed of three or more point image indices.
本実施例では、これらの4つの点像が投影された円周領域が、指標投影光学系400及び正面撮影光学系200による角膜形状の測定領域となる。一例として、所定の曲率半径をもつ角膜模型眼が、所定の作動距離に置かれたときに、角膜模型眼のφ3mmの円周領域に対して各々の点像が投影される。
In this embodiment, the circumferential area onto which these four point images are projected is the corneal shape measurement area by the index projection optical system 400 and the front imaging optical system 200 . As an example, when a corneal model eye having a predetermined radius of curvature is placed at a predetermined working distance, each point image is projected onto a φ3 mm circumferential region of the corneal model eye.
<アライメント指標投影光学系>
アライメント指標投影光学系は、被検眼Eに対して測定ユニット11をアライメント(位置合わせ)するために利用される。本実施例では、アライメント用光源601と、指標投影光学系400と、によって、アライメント指標投影光学系が形成される。例えば、アライメント用光源601によるプルキンエ像と、指標投影光学系400によるプルキンエ像と、が所定の比率で撮影されるように、測定ユニット11を前後方向に移動させることで、作動距離調整が行われてもよい。 <Alignment target projection optical system>
The alignment target projection optical system is used to align (align) themeasurement unit 11 with the eye E to be examined. In this embodiment, the alignment light source 601 and the index projection optical system 400 form an alignment index projection optical system. For example, the working distance is adjusted by moving the measurement unit 11 in the front-rear direction so that the Purkinje image by the alignment light source 601 and the Purkinje image by the index projection optical system 400 are photographed at a predetermined ratio. may
アライメント指標投影光学系は、被検眼Eに対して測定ユニット11をアライメント(位置合わせ)するために利用される。本実施例では、アライメント用光源601と、指標投影光学系400と、によって、アライメント指標投影光学系が形成される。例えば、アライメント用光源601によるプルキンエ像と、指標投影光学系400によるプルキンエ像と、が所定の比率で撮影されるように、測定ユニット11を前後方向に移動させることで、作動距離調整が行われてもよい。 <Alignment target projection optical system>
The alignment target projection optical system is used to align (align) the
アライメント用光源601は、角膜に拡散光を照射することで、有限遠指標を投影する。アライメント用光源601は、赤外光を発する。但し、可視光であってもよい。アライメント用光源601は、光軸L1を中心として、リング状に配置される。これによって、本実施例では、角膜に対してリング指標(いわゆるマイヤーリング)が、投影される。
The alignment light source 601 projects a finite distance index by irradiating the cornea with diffused light. The alignment light source 601 emits infrared light. However, it may be visible light. The alignment light source 601 is arranged in a ring shape around the optical axis L1. Thereby, in this embodiment, a ring index (so-called Mayer ring) is projected onto the cornea.
<固視標呈示光学系と断面撮影光学系の共通光路化>
本実施例では、固視標呈示光学系150と、視標投影光学系300aと、において、共に可視光が照射される。固視標呈示光学系150の光軸L2と、視標投影光学系300aの光軸L3とは、ハーフミラー503によって同軸とされる。固視標呈示光学系150がハーフミラー503の透過側に配置され、視標投影光学系300aがハーフミラー503の反射側に配置されることで、各々の光路が共通化される。例えば、ハーフミラー503は平面型であり、ハーフミラー503の透過側は非点収差が発生しやすい。視標投影光学系300aは、前眼部に切断面を形成して明瞭な断面画像70を得るために、一定の結像性能を必要とする。このような理由から、視標投影光学系300aは、非点収差の影響が少ない反射側に配置されることが好ましい。 <Common optical path for fixation target presentation optical system and cross-section imaging optical system>
In this embodiment, both the fixation target presentingoptical system 150 and the target projecting optical system 300a are irradiated with visible light. A half mirror 503 makes the optical axis L2 of the fixation target presenting optical system 150 and the optical axis L3 of the target projecting optical system 300a coaxial. By arranging the fixation target presenting optical system 150 on the transmission side of the half mirror 503 and the target projection optical system 300a on the reflection side of the half mirror 503, the respective optical paths are shared. For example, the half mirror 503 is of a flat type, and astigmatism tends to occur on the transmission side of the half mirror 503 . The optotype projection optical system 300a requires a certain imaging performance in order to obtain a clear cross-sectional image 70 by forming a cross section in the anterior segment. For this reason, it is preferable that the target projection optical system 300a be arranged on the reflection side, which is less affected by astigmatism.
本実施例では、固視標呈示光学系150と、視標投影光学系300aと、において、共に可視光が照射される。固視標呈示光学系150の光軸L2と、視標投影光学系300aの光軸L3とは、ハーフミラー503によって同軸とされる。固視標呈示光学系150がハーフミラー503の透過側に配置され、視標投影光学系300aがハーフミラー503の反射側に配置されることで、各々の光路が共通化される。例えば、ハーフミラー503は平面型であり、ハーフミラー503の透過側は非点収差が発生しやすい。視標投影光学系300aは、前眼部に切断面を形成して明瞭な断面画像70を得るために、一定の結像性能を必要とする。このような理由から、視標投影光学系300aは、非点収差の影響が少ない反射側に配置されることが好ましい。 <Common optical path for fixation target presentation optical system and cross-section imaging optical system>
In this embodiment, both the fixation target presenting
また、本実施例では、固視標呈示光学系150の光軸上に、レンズ504aが配置される。レンズ504aは、固視標呈示光学系150の全体の長さを短くするための全長短縮用レンズとして機能する。また、レンズ504aは、レンズ504aの上流に位置するレンズ156の径を小さくするための役割をもつ。
Also, in this embodiment, a lens 504 a is arranged on the optical axis of the fixation target presenting optical system 150 . The lens 504 a functions as a total length shortening lens for shortening the overall length of the fixation target presenting optical system 150 . The lens 504a also serves to reduce the diameter of the lens 156 located upstream of the lens 504a.
図5は、固視標呈示光学系150を簡略化した模式図である。図5の上図は、レンズ504aを配置しない場合を示す。図5の下図は、レンズ504aを配置する場合を示す。ここでは、被検眼Eから固視標板155までの光路を直線とし、一部の光学部材を省略している。固視標板155の中心部と周辺部からの眼底結像光線を、それぞれ実線と点線で表す。
FIG. 5 is a schematic diagram in which the fixation target presenting optical system 150 is simplified. The upper diagram of FIG. 5 shows the case where the lens 504a is not arranged. The lower diagram of FIG. 5 shows a case where the lens 504a is arranged. Here, the optical path from the subject's eye E to the fixation target plate 155 is a straight line, and some optical members are omitted. Fundus imaging rays from the center and periphery of the fixation target plate 155 are represented by solid and dotted lines, respectively.
被検眼Eから対物レンズまでを所定の作動距離とした際、図5の上図では、固視標呈示光学系150の距離(特に、固視標板155からレンズ156までの距離)が長くなる。固視標板155の中心部及び周辺部からの光線は、共に大きな径でレンズ156に到達する。一方、図5の下図のように、固視標呈示光学系150にレンズ504aを配置すると、固視標呈示光学系150の距離を短くすることができる。これは、レンズ156のみの焦点距離に比べ、レンズ156とレンズ504aを合わせた焦点距離が、短くなるためである。固視標板155からの各々の光線は、共に小さな径でレンズ156に到達する。
When the distance from the subject's eye E to the objective lens is set to a predetermined working distance, in the upper diagram of FIG. . Light rays from the central portion and the peripheral portion of the fixation target plate 155 both reach the lens 156 with large diameters. On the other hand, when a lens 504a is arranged in the fixation target presenting optical system 150 as shown in the lower diagram of FIG. 5, the distance of the fixation target presenting optical system 150 can be shortened. This is because the combined focal length of the lens 156 and the lens 504a is shorter than the focal length of the lens 156 alone. Each ray from fixation target plate 155 reaches lens 156 with a small diameter.
なお、例えば、固視標呈示光学系150は視標側テレセントリックな光学系であり、レンズ504aは瞳共役位置に配置されてもよい。このとき、固視標板155の中心部及び周辺部からの光線は、レンズ504aの中心を通過することになるため、固視標呈示光学系150の全体の焦点距離(合成焦点距離)が変化しない。従って、固視標呈示光学系150と測定光学系100の駆動ユニット160内における焦点距離の関係性が維持される。
Note that, for example, the fixation target presenting optical system 150 may be a target-side telecentric optical system, and the lens 504a may be arranged at a pupil conjugate position. At this time, light rays from the center and peripheral portions of the fixation target plate 155 pass through the center of the lens 504a, so that the overall focal length (composite focal length) of the fixation target presenting optical system 150 changes. do not do. Therefore, the relationship between the focal lengths of the fixation target presenting optical system 150 and the measuring optical system 100 in the drive unit 160 is maintained.
このように、固視標呈示光学系150にレンズ504aを配置すれば、小さな径でレンズ156を設計することができる。また、被検眼Eの所定の作動距離と固視標呈示光学系150の合成焦点距離を保ちながらも、固視標呈示光学系150の全体の長さを短縮できる。結果として、眼科装置10の小型化に繋がる。
By arranging the lens 504a in the fixation target presenting optical system 150 in this manner, the lens 156 can be designed with a small diameter. Further, the total length of the fixation target presenting optical system 150 can be shortened while maintaining the predetermined working distance of the subject's eye E and the synthetic focal length of the fixation target presenting optical system 150 . As a result, the size of the ophthalmologic apparatus 10 can be reduced.
また、本実施例では、視標投影光学系300aの光軸上に、レンズ504bが配置される。レンズ504bは、レンズ504bの下流に位置する対物レンズ505の径を小さくするための役割をもつ。
Also, in this embodiment, a lens 504b is arranged on the optical axis of the target projection optical system 300a. The lens 504b has a role of reducing the diameter of the objective lens 505 located downstream of the lens 504b.
図6は、視標投影光学系300aを簡略化した模式図である。図6の上図は、レンズ504bを配置しない場合を示す。図6の下図は、レンズ504bを配置する場合を示す。ここでは、被検眼Eからスリット312までの光路を直線とし、一部の光学部材を省略している。スリット312の中心部と周辺部からの瞳結像光線を、それぞれ実線と点線で表す。
FIG. 6 is a simplified schematic diagram of the optotype projection optical system 300a. The upper diagram of FIG. 6 shows the case where the lens 504b is not arranged. The lower diagram of FIG. 6 shows a case where the lens 504b is arranged. Here, the optical path from the subject's eye E to the slit 312 is a straight line, and some optical members are omitted. Pupil imaging rays from the center and periphery of the slit 312 are represented by solid and dotted lines, respectively.
図6の上図と下図では、スリット312の中心部からの光線が、レンズ504bの有無に関わらず、対物レンズ505の中心を通過する。しかし、図6の上図において、スリット312の周辺部からの光線は、対物レンズ505の中心からより離れた位置にて屈折される。被検眼Eにこのような光線を到達させるためには、大きな径の対物レンズ505が必要になる。一方、図6の下図では、スリット312の周辺部からの光線が、対物レンズ505の中心の位置にて屈折される。被検眼Eにこのような光線を到達させるために、小さな径の対物レンズ505を使用することができる。
In the upper and lower diagrams of FIG. 6, light rays from the center of the slit 312 pass through the center of the objective lens 505 regardless of the presence or absence of the lens 504b. However, in the top view of FIG. 6, rays from the periphery of slit 312 are refracted at positions further away from the center of objective lens 505 . In order to allow such rays to reach the subject's eye E, an objective lens 505 with a large diameter is required. On the other hand, in the lower diagram of FIG. 6 , light rays from the periphery of the slit 312 are refracted at the center position of the objective lens 505 . A small diameter objective lens 505 can be used to allow such rays to reach the eye E to be examined.
このように、視標投影光学系300aにレンズ504bを配置すれば、光軸L3を通過する光線の進行方向は変えずに、光軸L3外を通過する光線の進行方向を変えることができるため、小さな径で対物レンズ155を設計することができる。なお、スリット312の中心部及び周辺部からの光線は、対物レンズ505の中心から離れた領域で屈折されるほど、大きな収差が発生し得る。このため、眼科装置10を小型化しつつ、収差の発生を抑えるような、適切な径の対物レンズ155が用いられてもよい。
In this way, by arranging the lens 504b in the target projection optical system 300a, it is possible to change the traveling direction of light rays passing outside the optical axis L3 without changing the traveling direction of the light rays passing through the optical axis L3. , the objective lens 155 can be designed with a small diameter. It should be noted that the rays from the central and peripheral portions of the slit 312 are refracted in a region farther from the center of the objective lens 505, and the greater the aberration may occur. Therefore, an objective lens 155 having an appropriate diameter may be used so as to reduce the size of the ophthalmologic apparatus 10 and suppress the occurrence of aberrations.
なお、本実施例では、固視標呈示光学系150及び視標投影光学系300aにおいて、上述した役割が異なるレンズ504a及びレンズ504bを共有化したレンズ504が配置される。例えば、固視標呈示光学系150の光軸L2と視標投影光学系300aの光軸L3が結合するハーフミラー503の下流に、レンズ504が配置される。これによって、光学系の内部は、より省スペース化される。
Note that, in this embodiment, a lens 504 that shares the above-described lenses 504a and 504b having different roles is arranged in the fixation target presenting optical system 150 and the target projecting optical system 300a. For example, the lens 504 is arranged downstream of the half mirror 503 where the optical axis L2 of the fixation target presenting optical system 150 and the optical axis L3 of the target projecting optical system 300a are combined. As a result, the inside of the optical system can be made more space-saving.
<制御動作>
眼科装置10の制御動作を、図7に示すフローチャートを参照しつつ説明する。本実施例では、眼科装置10によって、角膜曲率測定、眼屈折力測定、及び、前眼部断面画像の撮影、が順番に実行され、測定及び撮影の結果に基づいて、眼軸長が取得される。 <Control action>
The control operation of theophthalmologic apparatus 10 will be described with reference to the flowchart shown in FIG. In this embodiment, the ophthalmologic apparatus 10 sequentially performs corneal curvature measurement, eye refractive power measurement, and photographing of an anterior segment cross-sectional image, and the axial length is obtained based on the results of the measurements and photographing. be.
眼科装置10の制御動作を、図7に示すフローチャートを参照しつつ説明する。本実施例では、眼科装置10によって、角膜曲率測定、眼屈折力測定、及び、前眼部断面画像の撮影、が順番に実行され、測定及び撮影の結果に基づいて、眼軸長が取得される。 <Control action>
The control operation of the
<アライメント(S1)>
まず、被検眼Eに対する測定ユニット11のアライメントが行われる。検者は、被検者に、顔を顔支持ユニット15へ載せるように指示する。制御部50は、固視標の呈示及び前眼部観察画像の取得を開始する。 <Alignment (S1)>
First, alignment of themeasurement unit 11 with respect to the eye E to be examined is performed. The examiner instructs the subject to put his/her face on the face support unit 15 . The control unit 50 starts presentation of the fixation target and acquisition of the anterior segment observation image.
まず、被検眼Eに対する測定ユニット11のアライメントが行われる。検者は、被検者に、顔を顔支持ユニット15へ載せるように指示する。制御部50は、固視標の呈示及び前眼部観察画像の取得を開始する。 <Alignment (S1)>
First, alignment of the
例えば、制御部50は、正面撮影光学系200を介して取得される前眼部の観察画像に少なくとも基づいて、被検眼Eと眼科装置10とを、所定の位置関係へと調整する。より詳細には、被検眼Eの角膜頂点に光軸L1が一致するように、XY方向に関するアライメントを行う。また、被検眼Eと眼科装置10との間隔が所定の作動距離となるように、Z方向に関するアライメントを行う。このとき、角膜にアライメント指標を投影し、観察画像にて検出されるアライメント指標に基づいて、アライメントを調整してもよい。
For example, the control unit 50 adjusts the subject's eye E and the ophthalmologic apparatus 10 to a predetermined positional relationship based at least on the observed image of the anterior segment acquired via the front imaging optical system 200 . More specifically, alignment in the XY directions is performed so that the optical axis L1 coincides with the corneal vertex of the eye E to be examined. Alignment in the Z direction is also performed so that the distance between the subject's eye E and the ophthalmologic apparatus 10 is a predetermined working distance. At this time, an alignment index may be projected onto the cornea and the alignment may be adjusted based on the alignment index detected in the observed image.
<角膜形状測定(S2)>
次に、被検眼Eの角膜形状が測定される。制御部50は、指標投影光学系400から点像指標を投影し、点像指標の角膜プルキンエ像を、正面撮影光学系200によって撮影する。また、制御部50は、角膜プルキンエ像に基づいて、角膜形状情報を取得する。例えば、角膜プルキンエ像の像高に基づいて、角膜形状情報を導出する。本実施例では、角膜形状情報として、角膜曲率、乱視度数、及び乱視軸角度、の各値が少なくとも取得される。 <Corneal shape measurement (S2)>
Next, the corneal shape of the subject's eye E is measured. Thecontrol unit 50 projects a point image index from the index projection optical system 400 and captures a corneal Purkinje image of the point image index using the front imaging optical system 200 . The control unit 50 also acquires corneal shape information based on the corneal Purkinje image. For example, the corneal shape information is derived based on the image height of the corneal Purkinje image. In this embodiment, at least each value of the corneal curvature, the astigmatic power, and the astigmatic axis angle is acquired as the corneal shape information.
次に、被検眼Eの角膜形状が測定される。制御部50は、指標投影光学系400から点像指標を投影し、点像指標の角膜プルキンエ像を、正面撮影光学系200によって撮影する。また、制御部50は、角膜プルキンエ像に基づいて、角膜形状情報を取得する。例えば、角膜プルキンエ像の像高に基づいて、角膜形状情報を導出する。本実施例では、角膜形状情報として、角膜曲率、乱視度数、及び乱視軸角度、の各値が少なくとも取得される。 <Corneal shape measurement (S2)>
Next, the corneal shape of the subject's eye E is measured. The
<眼屈折力測定(S3)>
次に、被検眼Eの眼屈折力が測定される。被検眼Eには測定光として赤外光が投光されるため、被検眼Eの瞳孔径は縮瞳(例えば、φ2mm以下)が抑制された所定の大きさとなる。一例としては、被検眼Eの測定領域(瞳上のφ2mm~φ4mmの領域)に含まれるいずれかの径となる。例えば、眼屈折力の測定では、先に予備測定が実施され、後に本測定が実施されてもよい。 <Eye refractive power measurement (S3)>
Next, the ocular refractive power of the subject's eye E is measured. Since infrared light is projected onto the subject's eye E as measurement light, the pupil diameter of the subject's eye E becomes a predetermined size in which miosis (for example, φ2 mm or less) is suppressed. As an example, it is any diameter included in the measurement area of the subject's eye E (area of φ2 mm to φ4 mm on the pupil). For example, in eye refractive power measurement, preliminary measurement may be performed first, and main measurement may be performed later.
次に、被検眼Eの眼屈折力が測定される。被検眼Eには測定光として赤外光が投光されるため、被検眼Eの瞳孔径は縮瞳(例えば、φ2mm以下)が抑制された所定の大きさとなる。一例としては、被検眼Eの測定領域(瞳上のφ2mm~φ4mmの領域)に含まれるいずれかの径となる。例えば、眼屈折力の測定では、先に予備測定が実施され、後に本測定が実施されてもよい。 <Eye refractive power measurement (S3)>
Next, the ocular refractive power of the subject's eye E is measured. Since infrared light is projected onto the subject's eye E as measurement light, the pupil diameter of the subject's eye E becomes a predetermined size in which miosis (for example, φ2 mm or less) is suppressed. As an example, it is any diameter included in the measurement area of the subject's eye E (area of φ2 mm to φ4 mm on the pupil). For example, in eye refractive power measurement, preliminary measurement may be performed first, and main measurement may be performed later.
予備測定では、固視標が所定の呈示距離に配置された状態で、被検眼Eの眼屈折力が測定される。測定時において、被検眼Eに対して光学的に十分な遠方の距離であり、0D眼の遠点に相当する初期位置に、固視標板155が配置されてもよい。この状態で照射された測定光に基づいて撮像素子125により撮像されるリング像が、制御部50によって画像解析される。解析結果として、各経線方向の屈折力の値が求められる。各経線方向の屈折力に所定の処理を施すことによって、少なくとも、予備測定における球面度数を取得する。
In the preliminary measurement, the ocular refractive power of the subject's eye E is measured with the fixation target placed at a predetermined presentation distance. At the time of measurement, the fixation target plate 155 may be arranged at an initial position that is optically sufficiently far away from the subject's eye E and that corresponds to the far point of the 0D eye. A ring image captured by the imaging device 125 based on the measurement light irradiated in this state is image-analyzed by the control unit 50 . As an analysis result, the refractive power value in each meridian direction is obtained. At least the spherical power in the preliminary measurement is obtained by subjecting the refractive power in each meridional direction to a predetermined process.
続いて、制御部50は、被検眼Eの予備測定の球面度数に応じて、被検眼Eの焦点が合う雲霧開始位置に、固視標板155を移動させる。これによって、被検眼Eには固視標がはっきりと観察されるようになる。その後、制御部50は、雲霧開始位置から固視標を移動させることで、被検眼Eに対して雲霧を付加する。これによって、被検眼Eの調節を解除させる。
Subsequently, the control unit 50 moves the fixation target plate 155 to the fog start position where the subject's eye E is in focus, according to the pre-measured spherical power of the subject's eye. As a result, the eye E to be examined can clearly observe the fixation target. Thereafter, the control unit 50 adds fog to the subject's eye E by moving the fixation target from the fog start position. This cancels the adjustment of the eye E to be examined.
被検眼Eに雲霧を付加した状態で、本測定が行われる。雲霧が付加された被検眼Eについて撮像されたリング像に対し、所定の解析処理が行われることで、被検眼EのSPH:球面度数、CYL:柱面度数、AXIS:乱視軸角度の他覚値が取得される。
The main measurement is performed with fog added to the subject's eye E. By performing a predetermined analysis process on the ring image captured for the eye E to which fog is added, the SPH of the eye E to be examined: spherical power, CYL: cylindrical power, AXIS: astigmatism axis angle objective value is retrieved.
<前眼部断面画像の撮影(S4)>
次に、被検眼Eの前眼部における断面画像(シャインプルーフ画像)が撮影される。制御部50は、眼屈折力の本測定の完了後、直ちに前眼部の断面画像の撮影を実行する。例えば、眼屈折力の本測定の完了をトリガとして、断面画像の撮影動作が実行されてもよい。つまり、本測定の完了後、直ちに、照射光学系300aから照明光を照射すると共に、照明光が角膜及び水晶体にて散乱した散乱光が撮像素子321に結像されることによる前眼部の断面画像を取得する。これによって、眼屈折力の測定時と断面画像の撮影時との間で、アライメントずれが軽減される。 <Capturing an anterior segment cross-sectional image (S4)>
Next, a cross-sectional image (Scheimpflug image) of the anterior segment of the subject's eye E is captured. Immediately after completing the main measurement of the eye refractive power, thecontrol unit 50 captures a cross-sectional image of the anterior segment of the eye. For example, the operation of capturing a cross-sectional image may be performed using the completion of the main measurement of the eye refractive power as a trigger. That is, immediately after the completion of the main measurement, illumination light is emitted from the illumination optical system 300a, and the scattered light scattered by the cornea and lens is imaged on the imaging device 321 to form an image of the cross section of the anterior segment. Get an image. This reduces misalignment between the measurement of the eye refractive power and the imaging of the cross-sectional image.
次に、被検眼Eの前眼部における断面画像(シャインプルーフ画像)が撮影される。制御部50は、眼屈折力の本測定の完了後、直ちに前眼部の断面画像の撮影を実行する。例えば、眼屈折力の本測定の完了をトリガとして、断面画像の撮影動作が実行されてもよい。つまり、本測定の完了後、直ちに、照射光学系300aから照明光を照射すると共に、照明光が角膜及び水晶体にて散乱した散乱光が撮像素子321に結像されることによる前眼部の断面画像を取得する。これによって、眼屈折力の測定時と断面画像の撮影時との間で、アライメントずれが軽減される。 <Capturing an anterior segment cross-sectional image (S4)>
Next, a cross-sectional image (Scheimpflug image) of the anterior segment of the subject's eye E is captured. Immediately after completing the main measurement of the eye refractive power, the
図8は、前眼部の断面画像70の一例である。断面画像70には、角膜、虹彩、水晶体、等と共に、アーチファクトが映り込むことがある。例えば、照射光学系300aから照射されたスリット光(照明光)は、前眼部に切断面を形成するが、一部が角膜にて反射(鏡面反射)される場合がある。受光光学系300bの撮像素子321が、スリット光の切断面からの戻り光と共に、スリット光の角膜反射光を撮像することによって、この角膜反射光の像がアーチファクト75として断面画像70に映り込む。なお、続くステップS5の解析においては、アーチファクト75が存在すると、前眼部形状情報を精度よく得ることが難しくなる。
FIG. 8 is an example of a cross-sectional image 70 of the anterior segment. Artifacts may appear in the cross-sectional image 70 together with the cornea, iris, lens, and the like. For example, the slit light (illumination light) emitted from the irradiation optical system 300a forms a cut plane in the anterior segment of the eye, but part of it may be reflected (specularly reflected) by the cornea. The image pickup device 321 of the light receiving optical system 300 b captures the corneal reflected light of the slit light together with the return light from the cut surface of the slit light, and the image of the corneal reflected light is reflected in the cross-sectional image 70 as an artifact 75 . In the subsequent analysis in step S5, if the artifact 75 exists, it becomes difficult to obtain the anterior segment shape information with high accuracy.
<前眼部断面画像の解析(S5)>
制御部50は、被検眼Eの前眼部の断面画像70に基づき、前眼部の形状に関する前眼部形状情報を取得する。例えば、前眼部形状情報には、角膜前面の曲率半径(Ra)、角膜後面の曲率半径(Rp)、角膜厚(CT)、前房深度(ACD)、水晶体前面の曲率半径(ra)、水晶体後面の曲率半径(rp)、水晶体厚(LT)、等の測定値である複数のパラメータ情報が含まれてもよい。なお、前眼部形状情報としては、ステップS2にて取得された角膜形状情報を用いることも可能である。 <Analysis of cross-sectional image of anterior segment (S5)>
Based on thecross-sectional image 70 of the anterior segment of the eye E to be examined, the control unit 50 acquires anterior segment shape information regarding the shape of the anterior segment. For example, the anterior segment shape information includes the radius of curvature of the anterior corneal surface (Ra), the radius of curvature of the posterior corneal surface (Rp), the corneal thickness (CT), the depth of the anterior chamber (ACD), the radius of curvature of the anterior lens surface (ra), A plurality of parameter information may be included that are measurements such as the radius of curvature of the posterior lens surface (rp), lens thickness (LT), and the like. The corneal shape information obtained in step S2 can also be used as the anterior segment shape information.
制御部50は、被検眼Eの前眼部の断面画像70に基づき、前眼部の形状に関する前眼部形状情報を取得する。例えば、前眼部形状情報には、角膜前面の曲率半径(Ra)、角膜後面の曲率半径(Rp)、角膜厚(CT)、前房深度(ACD)、水晶体前面の曲率半径(ra)、水晶体後面の曲率半径(rp)、水晶体厚(LT)、等の測定値である複数のパラメータ情報が含まれてもよい。なお、前眼部形状情報としては、ステップS2にて取得された角膜形状情報を用いることも可能である。 <Analysis of cross-sectional image of anterior segment (S5)>
Based on the
制御部50は、断面画像70を画像処理することによって、各透光体(一例として、角膜、房水、水晶体、等)を検出し、前眼部形状情報を取得する。例えば、断面画像70の輝度情報を利用して、組織の境界(角膜前後面、水晶体前後面、虹彩、等)に相当する画素位置を検出し、曲率半径等の情報を取得してもよい。また、例えば、組織の境界に相当する画素位置の距離を求め、組織の厚みや深度等の情報を取得してもよい。
The control unit 50 performs image processing on the cross-sectional image 70 to detect each translucent body (for example, the cornea, aqueous humor, lens, etc.) and acquire anterior segment shape information. For example, luminance information of the cross-sectional image 70 may be used to detect pixel positions corresponding to tissue boundaries (corneal anterior and posterior surfaces, lens anterior and posterior surfaces, irises, etc.), and information such as curvature radii may be obtained. Further, for example, the distance between the pixel positions corresponding to the boundary of the tissue may be obtained, and information such as the thickness and depth of the tissue may be obtained.
なお、本実施例において、制御部50は、断面画像70の画像処理の際に、アーチファクト75を含まないような解析領域を設定する。これは、アーチファクト75によって、各々の組織の境界を誤検出する可能性や、各々の組織の境界の検出精度が低下する可能性があるためである。特に、アーチファクト75の少なくとも一部が、組織の境界に近接する場合、或いは、重複する場合には、検出への影響が大きい。このため、アーチファクト75の画素位置を特定し、アーチファクト75を解析領域から除外して、画像処理が行われる。
Note that in this embodiment, the control unit 50 sets an analysis region that does not include the artifact 75 during image processing of the cross-sectional image 70 . This is because the artifact 75 may lead to erroneous detection of the boundary of each tissue, or a decrease in detection accuracy of the boundary of each tissue. In particular, if at least part of the artifact 75 is close to or overlaps with the tissue boundary, the effect on detection is significant. Therefore, the pixel position of the artifact 75 is specified, the artifact 75 is excluded from the analysis area, and image processing is performed.
図9は、断面画像70の解析領域を説明する図である。制御部50は、断面画像70の輝度情報を利用して、アーチファクト75の画素位置を特定してもよい。例えば、スリット光の角膜反射光は、角膜や水晶体を透過せず減光していない光である。一方、スリット光の切断面からの戻り光は、角膜や水晶体を透過することで減光した光であり、かつ、角膜や水晶体にて散乱された光の一部である。このため、角膜反射光と戻り光(散乱光)では、像として断面画像70に現れる輝度が異なる。一例として、制御部50は、断面画像70の各々の画素位置につき、輝度値が予め設定された閾値を超えるか否かを検出することで、アーチファクト75の画素位置を特定してもよい。
FIG. 9 is a diagram for explaining the analysis area of the cross-sectional image 70. FIG. The control unit 50 may identify the pixel position of the artifact 75 using the brightness information of the cross-sectional image 70 . For example, the corneal reflected light of the slit light is light that does not pass through the cornea or the lens and is not attenuated. On the other hand, the return light from the cut surface of the slit light is light that has been attenuated by passing through the cornea and the lens, and is part of the light scattered by the cornea and the lens. Therefore, the reflected light from the cornea and the returned light (scattered light) have different luminances appearing in the cross-sectional image 70 as images. As an example, the control unit 50 may identify the pixel position of the artifact 75 by detecting whether the luminance value exceeds a preset threshold for each pixel position of the cross-sectional image 70 .
続いて、制御部50は、断面画像70における解析の対象領域Q(すなわち、全画素位置を含む対象領域Q)から、少なくともアーチファクト75の画素位置を除外する。本実施例では、アーチファクト75の画素位置を基準として、所定の画素数を上下方向及び左右方向にもつ範囲が、対象領域Qから除外する非解析領域Q1(図9の実線部)として設定される。これによって、断面画像70の画像処理の対象となる解析領域Q2であって、対象領域Qから非解析領域Q1を除外した解析領域Q2(図9の点線部)が設定される。
Subsequently, the control unit 50 excludes at least the pixel positions of the artifacts 75 from the analysis target area Q in the cross-sectional image 70 (that is, the target area Q including all pixel positions). In the present embodiment, a range having a predetermined number of pixels in the vertical direction and the horizontal direction with reference to the pixel position of the artifact 75 is set as the non-analysis region Q1 (the solid line portion in FIG. 9) to be excluded from the target region Q. . As a result, an analysis region Q2 (dotted line portion in FIG. 9), which is an analysis region Q2 to be subjected to image processing of the cross-sectional image 70 and is obtained by excluding the non-analysis region Q1 from the target region Q, is set.
制御部50は、解析領域Q2の輝度情報に基づいて、組織の境界に相当する画素位置を検出し、各々の境界の少なくとも3点の画素位置を指定してもよい。なお、解析領域Q2にて検出される組織の境界が、光軸L1上の画素位置を含む場合は、組織の境界と光軸L1との交点を必ず含むように、少なくとも3点の画素位置が指定されてもよい。制御部50は、指定した少なくとも3点を通過する円、及び、この円の中心点や半径を求め、曲率半径等の情報を取得することができる。また、組織の境界に相当する画素位置の距離を求め、組織の厚みや深度等の情報を取得することができる。
The control unit 50 may detect pixel positions corresponding to tissue boundaries based on the luminance information of the analysis region Q2, and specify at least three pixel positions on each boundary. Note that when the tissue boundary detected in the analysis region Q2 includes pixel positions on the optical axis L1, at least three pixel positions must include the intersection of the tissue boundary and the optical axis L1. May be specified. The control unit 50 can obtain information such as a radius of curvature by obtaining a circle passing through at least three specified points, and the center point and radius of this circle. In addition, it is possible to obtain information such as the thickness and depth of the tissue by obtaining the distance of the pixel position corresponding to the boundary of the tissue.
なお、断面画像70の一部の輝度値が低いとき(一例として、被検者の瞼や睫毛の映り込み等)や、非解析領域Q1の設定が不適切なときは、少なくとも3点の画素位置を用いた円のフィッティングによる誤差が大きくなることがある。この場合、制御部50は、断面画像70上で指定した点を変更しても良い。例えば、これには、断面画像70と、断面画像70の画像処理によって予測される前眼部の構造と、の類似度が用いられてもよい。指定の点が類似度の低い領域にあれば、その点を削除し、類似度の高い領域から、再度、選択しなおされてもよい。また、制御部50は、断面画像70において4点以上の画素位置を指定した場合、少なくとも3点の画素位置が残るように、所定の点を削除してもよい。つまり、断面画像70において、角膜や水晶体の曲面に沿わない点が指定されていれば、適宜、削除してもよい。
Note that when the luminance value of a part of the cross-sectional image 70 is low (for example, the subject's eyelids and eyelashes are reflected) or when the setting of the non-analysis region Q1 is inappropriate, at least three pixels Fitting a circle with position can lead to large errors. In this case, the control unit 50 may change the designated point on the cross-sectional image 70 . For example, the degree of similarity between the cross-sectional image 70 and the structure of the anterior segment predicted by image processing of the cross-sectional image 70 may be used. If the designated point is in a region with a low degree of similarity, the point may be deleted and reselected from a region with a high degree of similarity. Further, when four or more pixel positions are specified in the cross-sectional image 70, the control unit 50 may delete predetermined points so that at least three pixel positions remain. That is, in the cross-sectional image 70, if a point that does not follow the curved surface of the cornea or lens is designated, it may be deleted as appropriate.
<眼軸長演算(S6)>
次に、被検眼Eの眼軸長が演算される。制御部50は、被検眼Eの眼屈折力と、被検眼Eの前眼部形状情報における複数のパラメータ情報に基づいて、眼軸長を演算する。 <Axial Length Calculation (S6)>
Next, the axial length of the eye E to be examined is calculated. Thecontrol unit 50 calculates the axial length based on the refractive power of the eye E to be examined and a plurality of parameter information in the anterior segment shape information of the eye E to be examined.
次に、被検眼Eの眼軸長が演算される。制御部50は、被検眼Eの眼屈折力と、被検眼Eの前眼部形状情報における複数のパラメータ情報に基づいて、眼軸長を演算する。 <Axial Length Calculation (S6)>
Next, the axial length of the eye E to be examined is calculated. The
まず、制御部50は、被検眼Eの眼屈折力の測定結果に基づいて、角膜頂点Cに対する遠点FP(図10参照)の位置を求める。例えば、被検眼Eに乱視が無く、SPH=-5Dであり、VD=12mmであれば、12+1000/5=212mmが、角膜頂点Cから遠点FPまでの距離となる。遠点FPからの光線が、眼底に結像すると考えられる。なお、VD=12mmは、眼鏡レンズの装用を前提とした角膜頂点間距離を示す一定値である。VDは、装置によって異なり得る。
First, the control unit 50 obtains the position of the far point FP (see FIG. 10) with respect to the corneal vertex C based on the measurement result of the eye refractive power of the eye E to be examined. For example, if the subject's eye E has no astigmatism, SPH=−5D, and VD=12 mm, the distance from the corneal vertex C to the far point FP is 12+1000/5=212 mm. Light rays from the far point FP are considered to be imaged on the fundus. Note that VD=12 mm is a constant value indicating the distance between the corneal vertices on the premise of wearing spectacle lenses. VD may vary from device to device.
図10は、眼軸長の導出手法を説明するための模式図である。本実施例では、前眼部の切断面上での光線追跡演算に基づいて、眼軸長が導出されてもよい。例えば、制御部50は、遠点FPの位置と、各透光体の屈折率と、前眼部形状情報におけるパラメータ情報と、に基づいて、光線追跡演算を行う。
FIG. 10 is a schematic diagram for explaining the method of deriving the axial length of the eye. In this embodiment, the axial length may be derived based on the ray tracing calculation on the cut plane of the anterior segment. For example, the control unit 50 performs ray tracing calculation based on the position of the far point FP, the refractive index of each translucent body, and the parameter information in the anterior segment shape information.
制御部50は、被検眼Eに向かって遠点FPから入射する光線(例えば、図10の光線Lx)を追跡し、被検眼Eの各透光体によって光線が屈折され、光線が光軸と交わる交点の位置を求める。なお、光線追跡演算についての詳細は、後述する。例えば、このような光線追跡演算によって、眼底Efの位置が求められる。制御部50は、角膜頂点Cと眼底Efとの距離を、眼軸長ALとして導出する。
The control unit 50 traces a ray (e.g., ray Lx in FIG. 10) incident from the far point FP toward the eye E to be examined, refracts the ray by each translucent body of the eye E to be examined, and aligns the ray with the optical axis. Find the position of the crossing point. Details of the ray tracing calculation will be described later. For example, the position of the fundus oculi Ef is obtained by such ray tracing calculation. The control unit 50 derives the distance between the corneal vertex C and the fundus Ef as the axial length AL.
<表示出力(S6)>
最後に、眼軸長ALがモニタ16に表示される。本実施例では、被検眼Eの角膜形状情報及び眼屈折力(SPH、CYL、AXIS)のうち、少なくとも一方と共に、眼軸長ALが表示される。なお、被検眼Eに対する過去の眼軸長測定結果が存在する場合、過去の測定結果と共に、今回の測定結果が表示されてもよい。例えば、横軸を年齢(測定日)とし、縦軸を眼軸長ALとしたトレンドグラフによって、測定結果が表示されてもよい。勿論、測定結果の表示態様は、これらに限定されるものでは無い。 <Display output (S6)>
Finally, the axial length AL is displayed on themonitor 16 . In this embodiment, the axial length AL is displayed together with at least one of the corneal shape information and the eye refractive power (SPH, CYL, AXIS) of the eye E to be examined. In addition, when the past eye axial length measurement result with respect to the to-be-tested eye E exists, the measurement result this time may be displayed with the past measurement result. For example, the measurement results may be displayed by a trend graph in which the horizontal axis is the age (measurement date) and the vertical axis is the eye axial length AL. Of course, the display modes of the measurement results are not limited to these.
最後に、眼軸長ALがモニタ16に表示される。本実施例では、被検眼Eの角膜形状情報及び眼屈折力(SPH、CYL、AXIS)のうち、少なくとも一方と共に、眼軸長ALが表示される。なお、被検眼Eに対する過去の眼軸長測定結果が存在する場合、過去の測定結果と共に、今回の測定結果が表示されてもよい。例えば、横軸を年齢(測定日)とし、縦軸を眼軸長ALとしたトレンドグラフによって、測定結果が表示されてもよい。勿論、測定結果の表示態様は、これらに限定されるものでは無い。 <Display output (S6)>
Finally, the axial length AL is displayed on the
<光線追跡演算>
眼軸長を導出するための光線追跡演算について説明する。なお、本実施例では、説明の便宜上、被検眼Eの各透光体における屈折率が一定であり、それぞれの内部での屈折変化が無いものとする。但し、必ずしもこれに限られるものではなく、透光体の内部での屈折率の変化(例えば、水晶体の内側-外側間の屈折率の変化)を考慮して、眼軸長が導出されてもよい。 <Ray tracing calculation>
A ray tracing calculation for deriving the axial length will be described. In this embodiment, for convenience of explanation, it is assumed that the refractive index of each translucent body of the subject's eye E is constant and there is no refraction change inside each. However, it is not necessarily limited to this, and even if the axial length is derived in consideration of the change in the refractive index inside the translucent body (for example, the change in the refractive index between the inside and outside of the crystalline lens) good.
眼軸長を導出するための光線追跡演算について説明する。なお、本実施例では、説明の便宜上、被検眼Eの各透光体における屈折率が一定であり、それぞれの内部での屈折変化が無いものとする。但し、必ずしもこれに限られるものではなく、透光体の内部での屈折率の変化(例えば、水晶体の内側-外側間の屈折率の変化)を考慮して、眼軸長が導出されてもよい。 <Ray tracing calculation>
A ray tracing calculation for deriving the axial length will be described. In this embodiment, for convenience of explanation, it is assumed that the refractive index of each translucent body of the subject's eye E is constant and there is no refraction change inside each. However, it is not necessarily limited to this, and even if the axial length is derived in consideration of the change in the refractive index inside the translucent body (for example, the change in the refractive index between the inside and outside of the crystalline lens) good.
ところで、広く利用されているSPH、CYL、AXISによる眼屈折力の表現形式では、SPHは、強主経線(又は弱主経線)に関する屈折力を示しているので、前眼部の切断面上での光線追跡において、必ずしも適切な値とはならない。例えば、SPH=-5D、CYL=-2D、AXIS=30°であった場合を考える。この場合、上記光学系の例で水平断面を取得したとすると、この断面での屈折力は-5Dでも無いし、CYLを付加した-7Dでも無い。
By the way, in the expression format of eye refractive power by SPH, CYL, and AXIS, which are widely used, SPH indicates the refractive power related to the strong principal meridian (or weak principal meridian). is not necessarily an appropriate value in the ray tracing of For example, consider the case where SPH=-5D, CYL=-2D, and AXIS=30°. In this case, if a horizontal cross section is obtained in the example of the above optical system, the refractive power at this cross section is neither −5D nor −7D with CYL added.
これに対し、本実施例では、切断面上での眼屈折力である面上眼屈折力を求めて、面上屈折力に基づいて、遠点FPの位置が設定される。ここで、任意の面での屈折度数Pは、次の式によって表現される。但し、θは、水平面に対する角度であって、水平方向を0°とする。
On the other hand, in this embodiment, the on-plane eye refractive power, which is the eye refractive power on the cutting plane, is obtained, and the position of the far point FP is set based on the on-plane refractive power. Here, the refractive power P on an arbitrary surface is expressed by the following formula. However, θ is an angle with respect to the horizontal plane, and the horizontal direction is 0°.
P(θ)=SPH+CYL×[sin2(θ-A)]
P(θ)=SPH+CYL×[sin2(θ-A)]
図11は、被検眼EがSPH=-5D、CYL=-2D、AXIS=30°である場合における各経線方向の屈折度数を示す図である。例えば、本実施例の切断面は、水平面(θ=0°)である。このため、被検眼EがSPH=-5D、CYL=-2D、AXIS=30°であれば、P(0°)=-5.5Dと算出される。この場合、切断面における角膜頂点Cから遠点FPまでの距離は、VD=12mmであれば、12+1000/5.5=194mmとなる。
FIG. 11 is a diagram showing the refractive power in each meridional direction when the subject's eye E has SPH=-5D, CYL=-2D, and AXIS=30°. For example, the cutting plane in this embodiment is a horizontal plane (θ=0°). Therefore, if the subject's eye E has SPH=-5D, CYL=-2D, and AXIS=30°, P(0°)=-5.5D is calculated. In this case, the distance from the corneal vertex C to the far point FP on the cut plane is 12+1000/5.5=194 mm if VD=12 mm.
制御部50は、このように設定された遠点FPからの光線を追跡する。例えば、遠点FPから一定位置(一例として、被検眼の瞳(角膜の奥3mm程度)の位置でφ6mmの位置)に向かう光線(例えば、図10の光線Lx)を導く。なお、一定位置を被検眼の瞳の位置でφ6mmとすることは、一例に過ぎず、適宜変更可能である。
The control unit 50 traces the ray from the far point FP set in this way. For example, a ray (for example, ray Lx in FIG. 10) directed from the far point FP to a certain position (for example, a position of φ6 mm at the position of the pupil of the subject's eye (about 3 mm behind the cornea)) is guided. It should be noted that setting the fixed position at the position of the pupil of the subject's eye to φ6 mm is merely an example, and can be changed as appropriate.
この光線は、まず、角膜前面で最初の屈折が生じる。光線と角膜前面の交点が、角膜前面の曲率半径Raと、遠点FPの位置及び遠点FPでの光線角度に基づいて、算出される。また、更に、該交点での光線の入射角が算出される。角膜前面に到達した光線は、スネルの法則に基づいて、入射角に対して決まった屈折角で、向きを変化させる。このようにして、それぞれの透光体境界面での光線が、逐次追跡される。その際、角膜形状情報及び断面画像70(シャインプルーフ画像)に基づいて取得される前眼部形状情報(Ra,Rp,CT,ACD,ra,rp,LT)が、各境界面と光線との交点とを与えるために適宜利用される。本実施例では、最終的に、水晶体後面を出た後に、眼の軸(ここでは、視軸)と交わる交点(すなわち、眼底Efの位置)を求める。交点から角膜頂点C(ここでは、原点)までの距離が、眼軸長ALとして利用される。
This light ray is first refracted at the anterior surface of the cornea. The intersection point of the ray with the anterior corneal surface is calculated based on the radius of curvature Ra of the anterior corneal surface, the position of the far point FP, and the ray angle at the far point FP. Furthermore, the incident angle of the light ray at the intersection is calculated. A light ray that reaches the anterior surface of the cornea changes direction at a fixed angle of refraction with respect to the angle of incidence according to Snell's law. In this way, the rays at each transparent body interface are traced sequentially. At that time, the anterior segment shape information (Ra, Rp, CT, ACD, ra, rp, LT) acquired based on the corneal shape information and the cross-sectional image 70 (Scheimpflug image) is It is used as appropriate to give the intersection points. In the present embodiment, finally, after exiting the posterior surface of the lens, the intersection point (that is, the position of the fundus oculi Ef) that intersects with the axis of the eye (here, the visual axis) is obtained. The distance from the intersection to the corneal vertex C (the origin here) is used as the axial length AL.
なお、光線追跡演算において、上記の前眼部形状情報(Ra,Rp,CT,ACD,ra,rp,LT)を利用する場合、本実施例では、少なくとも角膜前面の曲率半径Raについては、点像指標の角膜プルキンエ像に基づく値が利用され、残りの値については、断面画像70(シャインプルーフ画像)に基づく値が利用される。一般に、角膜前面形状については、角膜プルキンエ像に基づく測定精度のほうが、シャインプルーフ画像に基づく測定精度よりも、高いからである。なお、前述の通り、本実施例では、角膜形状情報として、角膜曲率、乱視度数、及び、乱視軸角度の各値が少なくとも取得される。切断面に関して屈折度数を求めた手法と同様の手法を用いて、これらの値から、切断面における角膜曲率(角膜前面の曲率)を求めることができる。求めた値の逆数が、Raとして利用されてもよい。
When using the anterior segment shape information (Ra, Rp, CT, ACD, ra, rp, LT) in the ray tracing calculation, in this embodiment, at least the radius of curvature Ra of the anterior surface of the cornea is Values based on the corneal Purkinje image of the image index are used, and for the remaining values, values based on the cross-sectional image 70 (Scheimpflug image) are used. This is because the measurement accuracy of the corneal anterior surface shape based on the corneal Purkinje image is generally higher than that based on the Scheimpflug image. As described above, in this embodiment, at least each value of the corneal curvature, the astigmatism power, and the astigmatism axis angle is acquired as the corneal shape information. From these values, the corneal curvature at the cut plane (curvature of the anterior corneal surface) can be determined using a technique similar to that used to determine the refractive power for the cut plane. The reciprocal of the obtained value may be used as Ra.
被検眼Eの眼軸長ALは、このような一定位置に向かう光線の追跡によって、求めることができる。但し、光線追跡の手法は、上記手法に限定されない。例えば、近軸計算によって遠点FPから結像する点が求められても良い。また、被検眼Eに入射する位置が互いに異なる複数の光線を考慮して、遠点FPから結像する点が求められてもよい。例えば、近軸光線と近軸とは異なる一定位置に向かう光線とのそれぞれの光線に対する光線追跡を組み合わせてもよい。複数本の光線の光線追跡が行われる場合、眼軸長の最終的な測定値(演算値)は、それぞれの光線追跡による眼軸長の平均値であってもよい(加重平均値であってもよい)。
The axial length AL of the subject's eye E can be obtained by tracing the light rays directed to such a fixed position. However, the method of ray tracing is not limited to the above method. For example, a point to be imaged from the far point FP may be obtained by paraxial calculation. In addition, a point to be imaged from the far point FP may be obtained in consideration of a plurality of rays incident on the subject's eye E at different positions. For example, ray tracing for paraxial rays and rays directed to fixed positions different from the paraxial rays may be combined. When multiple rays are ray-traced, the final measured value (calculated value) of the axial length may be the average of the axial lengths of each ray-traced (weighted average). can also be used).
また、測定光学系100による測定領域(瞳上のφ2mm~φ4mm)に向かう光線を追跡することで、眼軸長ALを求めてもよい。例えば、瞳上のφ2mm~φ4mmの領域に向かう複数本の光線のそれぞれで、光線追跡を実施し、各々の光線追跡によって求められる眼軸長の平均値を、演算結果として取得してもよい。より適切な条件で光線追跡が行われるため、眼軸長がより精度よく取得されやすくなる。
Also, the axial length AL may be obtained by tracing the light rays directed to the measurement area (φ2 mm to φ4 mm on the pupil) by the measurement optical system 100 . For example, ray tracing may be performed for each of a plurality of rays directed to a region of φ2 mm to φ4 mm on the pupil, and the average value of the axial length obtained by each ray tracing may be obtained as a calculation result. Since ray tracing is performed under more appropriate conditions, the axial length can be obtained more accurately.
なお、本実施例において得られる眼軸長値には、所定のオフセット値が加えられていてもよい。オフセット値により、演算値と実測値との誤差が補正される。
A predetermined offset value may be added to the axial length value obtained in this embodiment. The offset value corrects the error between the calculated value and the measured value.
また、遠点FPから出射し、角膜形状測定用の点像指標が投影される円周領域を通過する光線を追跡することで、光線追跡が行われてもよい。これにより、光線追跡の条件が一層適正になるため、眼軸長がより精度よく取得されやすくなる。
Further, ray tracing may be performed by tracing a ray emitted from the far point FP and passing through the circumferential region on which the point image index for corneal topography measurement is projected. As a result, the conditions for ray tracing become more appropriate, and the axial length can be obtained more accurately.
以上、説明したように、例えば、本実施例における眼科装置は、固視標呈示光学系における固視光の固視光路と、断面画像撮影光学系における測定光(照明光)の測定光路(投光光路)と、を結合する光路結合部材を備える。これによって、被検眼に固視標を適切に呈示すると共に、前眼部断面画像を良好に撮影し、眼軸長を精度よく取得できる。なお、固視光は眼底に集光し、照明光は前眼部上に集光するため、各々の光学系は共通化によって複雑な構成となるが、一方で、光路結合部材は容易に構成とすることができる。固視光及び照明光をいずれも可視光とする場合には、光路結合部材をより容易に構成できる。
As described above, for example, the ophthalmologic apparatus of this embodiment includes a fixation optical path of fixation light in the fixation target presenting optical system and a measurement optical path (projection light) of measurement light (illumination light) in the cross-sectional image capturing optical system. and an optical path coupling member for coupling the optical path. As a result, the fixation target can be appropriately presented to the subject's eye, the cross-sectional image of the anterior segment of the eye can be satisfactorily captured, and the axial length of the eye can be accurately obtained. Since the fixation light is converged on the fundus and the illumination light is condensed on the anterior segment of the eye, each optical system is made common, resulting in a complicated configuration. can be When both the fixation light and the illumination light are visible light, the optical path coupling member can be configured more easily.
また、例えば、本実施例における眼科装置は、固視光路と測定光路との共通光路に、固視標呈示光学系の全長を短縮するための全長短縮レンズとして機能し、かつ、断面画像撮影光学系における測定光(照明光)の進行方向を変更するためのフィールドレンズとして機能する、共通レンズを配置する。例えば、固視標呈示光学系はその構成に全長短縮レンズを含むが、固視光路と測定光路の共通化にともない、断面画像撮影光学系のフィールドレンズとして全長短縮レンズを活用することで、対物レンズを大きくすることなく設計できる。従って、光学系の構成が省スペース化され、眼科装置が小型化される。
Further, for example, the ophthalmologic apparatus of this embodiment functions as a total length shortening lens for shortening the total length of the fixation target presenting optical system in the common optical path of the fixation optical path and the measurement optical path, and a cross-sectional image capturing optical system. A common lens is arranged to function as a field lens for changing the traveling direction of measurement light (illumination light) in the system. For example, the optical system for presenting a fixation target includes a lens with a shortened total length. It can be designed without enlarging the lens. Therefore, the configuration of the optical system is space-saving, and the ophthalmologic apparatus is miniaturized.
また、例えば、本実施例における眼科装置は、光路結合部材として平面型の部材を使用する。なお、平面型の部材では、透過側にて非点収差が発生しやすく、反射側では非点収差が発生しにくい。このため、透過側に配置された光の結像性能は、反射側に配置された光の結像性能に比べて、低下する。本実施例では、固視光路を透過側に配置することによって、照明光の結像性能を優先し、前眼部断面画像を良好に撮影することができる。なお、測定光路を反射側に配置することによって、固視光の結像性能は低下するが、固視標を固視できるほどの性能は担保されるため、視認への影響は小さく抑えられる。
Also, for example, the ophthalmologic apparatus of this embodiment uses a planar member as an optical path coupling member. In a planar member, astigmatism is likely to occur on the transmission side, and astigmatism is less likely to occur on the reflection side. For this reason, the imaging performance of the light arranged on the transmission side is lower than the imaging performance of the light arranged on the reflection side. In the present embodiment, by arranging the fixation optical path on the transmission side, priority is given to the imaging performance of the illumination light, and a cross-sectional image of the anterior segment can be satisfactorily captured. By arranging the measurement optical path on the reflection side, the imaging performance of the fixation light is lowered, but the performance to the extent that the fixation target can be fixed is ensured, so the effect on visual recognition is kept small.
また、例えば、本実施例における眼科装置は、前眼部断面画像に含まれるアーチファクトを特定し、アーチファクトを除く解析領域を設定する。これによって、前眼部断面画像の解析に適した領域のみを使用して、前眼部形状情報を精度よく取得することができる。
Also, for example, the ophthalmologic apparatus of the present embodiment identifies artifacts included in the anterior segment cross-sectional image, and sets an analysis region excluding the artifacts. As a result, it is possible to accurately acquire the anterior segment shape information using only the region suitable for analysis of the anterior segment cross-sectional image.
また、例えば、本実施例における眼科装置は、前眼部断面画像に対する解析領域の位置に応じて、眼屈折力測定光学系における測定光の光軸上の点を、解析に用いるか否かを変更する。例えば、各組織の曲面に近い箇所でアーチファクトが検出される場合、又は、各組織の曲面と重複してアーチファクトが検出される場合には、前眼部形状情報の精度が低下する可能性がある。前眼部断面画像の解析に使用する点を適宜変更することで、前眼部形状情報を精度よく取得することができる。
Further, for example, the ophthalmologic apparatus of the present embodiment determines whether or not to use a point on the optical axis of the measurement light in the eye refractive power measurement optical system for analysis, depending on the position of the analysis region with respect to the anterior segment cross-sectional image. change. For example, if an artifact is detected near the curved surface of each tissue, or if an artifact is detected overlapping the curved surface of each tissue, the accuracy of the anterior segment shape information may decrease. . By appropriately changing the points used for analyzing the anterior segment cross-sectional image, the anterior segment shape information can be obtained with high accuracy.
<変容例>
本実施例では、固視標呈示光学系150及び視標投影光学系300aの光軸を、平面型のハーフミラー503にて分岐または結合する構成を例に挙げて説明したが、これに限定されない。本実施例では、プリズム型のハーフミラーを利用して、各々の光軸を分岐または結合する構成としてもよい。プリズム型は、透過側と反射側のいずれであっても、非点収差が発生しにくい。このため、固視標呈示光学系150及び視標投影光学系300aをハーフミラーに対してどちらの関係性で配置しても、視標投影光学系300aの結像性能を維持することができる。結果として、前眼部断面画像が良好に撮影される。 <transformation example>
In this embodiment, the optical axes of the fixation target presentingoptical system 150 and the target projecting optical system 300a have been described as an example of a configuration in which the optical axes of the target projecting optical system 300a are branched or combined by the planar half mirror 503, but the present invention is not limited to this. . In this embodiment, a prism type half mirror may be used to split or combine the respective optical axes. The prism type is less likely to produce astigmatism on either the transmission side or the reflection side. Therefore, regardless of which relationship the fixation target presenting optical system 150 and the target projecting optical system 300a are arranged with respect to the half mirror, the imaging performance of the target projecting optical system 300a can be maintained. As a result, a cross-sectional image of the anterior segment can be captured satisfactorily.
本実施例では、固視標呈示光学系150及び視標投影光学系300aの光軸を、平面型のハーフミラー503にて分岐または結合する構成を例に挙げて説明したが、これに限定されない。本実施例では、プリズム型のハーフミラーを利用して、各々の光軸を分岐または結合する構成としてもよい。プリズム型は、透過側と反射側のいずれであっても、非点収差が発生しにくい。このため、固視標呈示光学系150及び視標投影光学系300aをハーフミラーに対してどちらの関係性で配置しても、視標投影光学系300aの結像性能を維持することができる。結果として、前眼部断面画像が良好に撮影される。 <transformation example>
In this embodiment, the optical axes of the fixation target presenting
本実施例では、固視標呈示光学系150及び視標投影光学系300aの共通光軸上に、共有のレンズ504を配置する構成を例に挙げて説明したが、これに限定されない。本実施例では、各々の光学系の光軸上に、役割が異なるレンズ(レンズ504a及びレンズ504b)をそれぞれ配置する構成としてもよい。つまり、各々の光学系の光軸を分岐又は結合するハーフミラー503の上流に、レンズ504a及びレンズ504bをそれぞれ配置する構成としてもよい。しかしながら、眼科装置10を小型化する上では、レンズ504aとレンズ504bを共有化したレンズ504を用いることが好ましい。
In this embodiment, the configuration in which the shared lens 504 is arranged on the common optical axis of the fixation target presenting optical system 150 and the target projecting optical system 300a has been described as an example, but it is not limited to this. In this embodiment, lenses having different roles (lens 504a and lens 504b) may be arranged on the optical axis of each optical system. That is, the lens 504a and the lens 504b may be arranged upstream of the half mirror 503 that splits or combines the optical axes of the respective optical systems. However, in order to miniaturize the ophthalmologic apparatus 10, it is preferable to use the lens 504 in which the lens 504a and the lens 504b are shared.
本実施例では、前眼部の断面画像70における輝度値の閾値を利用して、アーチファクト75の画素位置を特定する構成を例に挙げて説明したが、これに限定されない。本実施例では、断面画像70とテンプレート画像との輝度値に基づく類似度を算出することによって、アーチファクト75の画素位置を特定する構成としてもよい。一例として、この場合、制御部50は、断面画像70に対して重複させるテンプレート画像を1画素ずつ移動させながら(いわゆるパターンマッチングを行い)、各々の輝度値の差分に基づく類似度がゼロ(又は、ゼロにもっとも近い値)となる組み合わせを検出してもよい。なお、眼科装置1の記憶部(メモリ)は、テンプレート画像を有していてもよい。
In the present embodiment, the configuration for specifying the pixel position of the artifact 75 using the luminance value threshold in the cross-sectional image 70 of the anterior segment has been described as an example, but the present invention is not limited to this. In the present embodiment, the pixel position of the artifact 75 may be specified by calculating the degree of similarity based on the brightness values of the cross-sectional image 70 and the template image. As an example, in this case, the control unit 50 moves the template image to be overlapped with the cross-sectional image 70 pixel by pixel (performs so-called pattern matching) while the similarity based on the difference in brightness value is zero (or , the value closest to zero) may be detected. Note that the storage unit (memory) of the ophthalmologic apparatus 1 may have a template image.
例えば、断面画像70に映り込むアーチファクト75の形状、大きさ、輝度値、等は、設計上、予測することができるため、アーチファクト75を検出するためのテンプレート画像が使用されてもよい。この場合、制御部50は、断面画像70に対応するテンプレート画像の画素位置を、アーチファクト75の画素位置として特定してもよい。また、制御部50は、断面画像70におけるアーチファクト75の画素位置に基づいて、非解析領域Q1を設定してもよい。
For example, since the shape, size, luminance value, etc. of the artifact 75 appearing in the cross-sectional image 70 can be predicted in terms of design, a template image for detecting the artifact 75 may be used. In this case, the control unit 50 may specify the pixel position of the template image corresponding to the cross-sectional image 70 as the pixel position of the artifact 75 . Also, the control unit 50 may set the non-analysis region Q1 based on the pixel position of the artifact 75 in the cross-sectional image 70 .
また、例えば、一般的な眼の構造をモデルとした、眼の標準的な断面画像を表すテンプレート画像が使用されてもよい。制御部50は、断面画像70に対応するテンプレート画像の画素位置を特定するが、断面画像70にアーチファクト75等が含まれる場合は、各々の輝度値に差が生じ、これらが部分的に一致しない。そこで、制御部50は、断面画像70においてテンプレート画像が一致する画素位置を、断面画像70の解析領域Q2として設定してもよい。或いは、制御部50は、断面画像70においてテンプレート画像が一致しない画素位置を、アーチファクト75の画素位置として特定し、これに基づいて、断面画像70の非解析領域Q1を設定してもよい。つまり、テンプレート画像がアーチファクト75の間接的な検出に使用されてもよい。
Also, for example, a template image representing a standard cross-sectional image of an eye modeled after a general eye structure may be used. The control unit 50 identifies the pixel position of the template image corresponding to the cross-sectional image 70. However, if the cross-sectional image 70 contains artifacts 75 or the like, there will be differences in the respective brightness values, and they will not match partially. . Therefore, the control unit 50 may set the pixel position where the template image matches in the cross-sectional image 70 as the analysis region Q2 of the cross-sectional image 70 . Alternatively, the control unit 50 may specify a pixel position where the template image does not match in the cross-sectional image 70 as the pixel position of the artifact 75, and set the non-analysis region Q1 of the cross-sectional image 70 based on this. That is, the template image may be used for indirect detection of artifacts 75 .
本実施例では、前眼部の断面画像70における輝度情報を利用して、非解析領域Q1及び解析領域Q2を設定する構成を例に挙げて説明したが、これに限定されない。本実施例では、被検眼Eの前眼部に関する前眼部情報を利用して、各々の領域を設定する構成としてもよい。前眼部情報は、前眼部形状情報(角膜形状情報、水晶体形状情報、等)、瞳孔状態(例えば、縮瞳や散瞳)に関する情報、等を含む情報であってもよい。これによって、前眼部断面画像の解析に適した領域を容易に把握し、前眼部形状情報を精度よく取得することができる。
In the present embodiment, the configuration in which the non-analysis region Q1 and the analysis region Q2 are set using luminance information in the cross-sectional image 70 of the anterior segment has been described as an example, but the present invention is not limited to this. In this embodiment, the anterior segment information about the anterior segment of the eye E to be examined may be used to set each region. The anterior segment information may be information including anterior segment shape information (corneal shape information, lens shape information, etc.), information on pupillary conditions (for example, miosis or mydriasis), and the like. As a result, it is possible to easily grasp the region suitable for analysis of the anterior segment cross-sectional image, and to obtain the anterior segment shape information with high accuracy.
例えば、制御部50は、被検眼Eの前眼部形状情報の1つである角膜前面の曲率半径に基づいて、断面画像70における少なくとも非解析領域Q1を設定してもよい。この場合、制御部50は、被検眼Eの角膜前面の曲率半径を取得すると共に、曲率半径に対応するアーチファクト75の画素位置を取得する。例えば、角膜前面の曲率半径から、アーチファクト75が映り込むおおよその画素位置が予測できる。なお、眼科装置1の記憶部は、曲率半径毎に変化する画素位置を予め対応付けた対応表を有していてもよい。これによって、断面画像70の輝度情報を用いることなく、非解析領域Q1を決定することも可能である。
For example, the control unit 50 may set at least the non-analysis region Q1 in the cross-sectional image 70 based on the radius of curvature of the anterior surface of the cornea, which is one piece of the anterior segment shape information of the eye E to be examined. In this case, the control unit 50 acquires the radius of curvature of the anterior surface of the cornea of the subject's eye E, and also acquires the pixel position of the artifact 75 corresponding to the radius of curvature. For example, from the radius of curvature of the anterior surface of the cornea, the approximate pixel position where the artifact 75 appears can be predicted. Note that the storage unit of the ophthalmologic apparatus 1 may have a correspondence table in which pixel positions that change for each radius of curvature are associated in advance. This makes it possible to determine the non-analysis region Q1 without using the luminance information of the cross-sectional image 70. FIG.
また、例えば、制御部50は、被検眼Eの瞳孔状態情報の1つである瞳孔径に基づいて、断面画像70における少なくとも解析領域Q2を設定してもよい。この場合、制御部50は、被検眼Eの虹彩を検出することで瞳孔径PDM(図8参照)を取得し、瞳孔径PDMの内側の領域を、解析領域Q2として設定してもよい。なお、瞳孔径PDMの内側の領域は、測定光学系100による眼屈折力の測定領域(例えば、瞳上のφ2mm~φ4mm)と、同一の領域に制限されてもよい。
Further, for example, the control unit 50 may set at least the analysis region Q2 in the cross-sectional image 70 based on the pupil diameter, which is one piece of pupil state information of the eye E to be examined. In this case, the control unit 50 may acquire the pupil diameter PDM (see FIG. 8) by detecting the iris of the subject's eye E, and set an area inside the pupil diameter PDM as the analysis area Q2. Note that the region inside the pupil diameter PDM may be limited to the same region as the eye refractive power measurement region (for example, φ2 mm to φ4 mm on the pupil) by the measurement optical system 100 .
もちろん、断面画像70においては、輝度情報と前眼部情報とを組み合わせることによって、非解析領域Q1及び解析領域Q2が設定される構成であってもよい。
Of course, in the cross-sectional image 70, the non-analysis region Q1 and the analysis region Q2 may be set by combining the luminance information and the anterior segment information.
本実施例では、照射光学系300aから照射されるスリット光によって、前眼部の断面画像70にアーチファクト75が映り込む場合を例に挙げて説明したが、これに限定されない。例えば、指標投影光学系400から照射される測定光や、アライメント指標投影光学系から照射される測定光が、角膜にて反射され、撮像素子321に撮像されることによっても、アーチファクトの映り込みが起こり得る。
In this embodiment, the case where the artifact 75 is reflected in the cross-sectional image 70 of the anterior segment by the slit light emitted from the irradiation optical system 300a has been described as an example, but the present invention is not limited to this. For example, the measurement light emitted from the target projection optical system 400 and the measurement light emitted from the alignment target projection optical system are reflected by the cornea and captured by the imaging element 321, thereby preventing the reflection of artifacts. It can happen.
図12は、前眼部の断面画像70の一例である。例えば、断面画像70には、光源401に由来する点状のアーチファクト76、アライメント用光源601に由来するリング状のアーチファクト77、等が発生することがある(各アーチファクトの形状はこれに限るものではない)。このため、制御部50は、アーチファクト75と同様に、アーチファクト76及びアーチファクト77についても、対象領域Qから非解析領域Q1として除外することで、これらを含まない解析領域Q2を画像処理してもよい。これによって、被検眼の前眼部形状情報がより精度よく取得され、適切な眼軸長を取得することができる。
FIG. 12 is an example of a cross-sectional image 70 of the anterior segment. For example, in the cross-sectional image 70, a point-shaped artifact 76 derived from the light source 401, a ring-shaped artifact 77 derived from the alignment light source 601, and the like may occur (the shape of each artifact is not limited to this). do not have). Therefore, the control unit 50 may exclude the artifacts 76 and 77 from the target region Q as the non-analysis region Q1 in the same manner as the artifact 75, thereby performing image processing on the analysis region Q2 that does not include them. . As a result, the anterior segment shape information of the subject's eye can be obtained with higher accuracy, and an appropriate axial length can be obtained.
なお、前眼部の断面画像の撮影においては、光源401を消灯させることで、断面画像70へのアーチファクト76の映り込みを抑制することができる。また、アライメント用光源601を消灯させることで、断面画像70へのアーチファクト77の映り込みを抑制することができる。
It should be noted that, in photographing the cross-sectional image of the anterior segment, by turning off the light source 401 , it is possible to suppress the reflection of the artifact 76 in the cross-sectional image 70 . In addition, by turning off the alignment light source 601 , it is possible to suppress the reflection of the artifact 77 in the cross-sectional image 70 .
本実施例では、前眼部形状情報を適切に取得するために、断面画像70の解析領域からアーチファクトを除外する構成を例に挙げて説明したが、これに限定されない。例えば、眼科装置10が備える光学系の光路内に、照射光学系300aからのスリット光、指標投影光学系400からの測定光、アライメント指標投影光学系からの測定光、等の少なくともいずれかの角膜反射光を遮光するための光学部材を配置する構成としてもよい。これによって、断面画像70へのアーチファクトの映り込みが抑制され、断面画像70に基づく前眼部形状情報を適切に取得できる。
In this embodiment, in order to appropriately acquire the anterior segment shape information, the configuration for excluding artifacts from the analysis region of the cross-sectional image 70 has been described as an example, but the present invention is not limited to this. For example, in the optical path of the optical system provided in the ophthalmologic apparatus 10, at least one of slit light from the irradiation optical system 300a, measurement light from the index projection optical system 400, measurement light from the alignment index projection optical system, and the like. A configuration in which an optical member for shielding the reflected light is arranged may be employed. As a result, artifacts are suppressed from appearing in the cross-sectional image 70, and the anterior segment shape information based on the cross-sectional image 70 can be appropriately acquired.
本実施例では、被検眼Eの各透光体における屈折率を一定とする場合を例に挙げて説明したが、これに限定されない。例えば、前眼部の断面画像70とは別に、透光体の屈折率に関する屈折率情報を取得し、眼軸長ALの導出に屈折率情報を利用してもよい。つまり、眼軸長ALを取得する上で、屈折率情報に基づく透光体の屈折率を、更に考慮してもよい。一例として、屈折率情報は、水晶体の屈折率を含んでもよい。水晶体の屈折率は、加齢にともなう変化があることが知られている。そこで、眼科装置10の記憶部は、水晶体の屈折率が年齢毎に対応付けられた計算式やルックアップテーブルを有していてもよい。この場合、被検者の年齢が入力されることで、年齢に応じた屈折率を取得することができる。制御部50は、このような水晶体の屈折率を用いて、光線追跡演算を行ってもよい。
In this embodiment, the case where the refractive index of each translucent body of the subject's eye E is constant has been described as an example, but the present invention is not limited to this. For example, in addition to the cross-sectional image 70 of the anterior segment, refractive index information regarding the refractive index of the translucent body may be acquired and the refractive index information may be used to derive the axial length AL. In other words, in obtaining the axial length AL, the refractive index of the translucent body based on the refractive index information may be further considered. As an example, the refractive index information may include the refractive index of the lens. It is known that the refractive index of the lens changes with aging. Therefore, the storage unit of the ophthalmologic apparatus 10 may have a calculation formula or a lookup table in which the refractive index of the lens is associated with each age. In this case, by inputting the age of the subject, it is possible to acquire the refractive index according to the age. The control unit 50 may perform ray tracing calculation using such a refractive index of the crystalline lens.
本実施例では、眼軸長ALの光線追跡演算に利用する前眼部形状情報(Ra,Rp,CT,ACD,ra,rp,LT)に、いずれも測定値を適用する構成を例に挙げて説明得したが、これに限定されない。本実施例において、前眼部形状情報は、その一部に仮定値を適用する構成としてもよい。なお、仮定値は、模型眼に基づく標準値、統計データ等に基づく平均値、被検眼の過去の測定値、有効なパラメータの測定値と、各組織の一般的な比率を考慮して求めることが可能な推定値、等の少なくともいずれかを選択することが可能な構成としてもよい。
In the present embodiment, an example of a configuration in which measured values are applied to all of the anterior segment shape information (Ra, Rp, CT, ACD, ra, rp, LT) used for ray tracing calculation of the axial length AL is taken as an example. However, it is not limited to this. In this embodiment, the anterior segment shape information may be configured to apply an assumed value to a part thereof. The hypothetical value should be obtained by taking into account the standard value based on the eye model, the average value based on statistical data, etc., the past measured values of the eye to be examined, the measured values of effective parameters, and the general ratio of each tissue. may be configured such that at least one of the estimated values, etc., can be selected.
なお、本実施形態の眼科装置は、被検眼の眼底に対して第1測定光を投光し、第1測定光が眼底にて反射された反射光に基づいて、被検眼の眼屈折力を取得するための眼屈折力測定光学系と、被検眼の前眼部に対して第2測定光を投光し、前眼部に第1光学系の光軸を通る光切断面を形成させると共に、第2測定光の光切断面からの戻り光に基づいて、被検眼の前眼部断面画像を取得するための断面画像撮影光学系と、を有し、被検眼の眼軸長を取得する眼科装置であって、前眼部断面画像において、被検眼の角膜に少なくとも第2測定光が反射されることによって生じる反射像を含まない解析領域を設定する設定手段と、設定手段が設定した解析領域を解析して、前眼部の形状に関する前眼部形状情報を取得する形状情報取得手段と、眼屈折力測定光学系を用いて取得された眼屈折力と、形状情報取得手段が取得した前眼部形状情報と、に基づいて、眼軸長を取得する眼軸長取得手段と、を備えてもよい。
Note that the ophthalmologic apparatus of the present embodiment projects the first measurement light onto the fundus of the eye to be inspected, and determines the eye refractive power of the eye to be inspected based on the light reflected by the fundus of the first measurement light. An ocular refractive power measurement optical system for obtaining the second measurement light is projected onto the anterior segment of the eye to be inspected to form a light cutting plane passing through the optical axis of the first optical system in the anterior segment of the eye to be examined. and a cross-sectional image capturing optical system for acquiring a cross-sectional image of the anterior segment of the eye to be inspected based on the return light from the light-section plane of the second measurement light, and acquires the axial length of the eye to be inspected. An ophthalmologic apparatus, comprising: setting means for setting an analysis region in an anterior segment cross-sectional image that does not include a reflected image generated by reflection of at least the second measurement light on the cornea of an eye to be inspected; and analysis set by the setting means. Shape information acquiring means for analyzing an area to acquire anterior segment shape information relating to the shape of the anterior segment; eye refractive power acquired using an eye refractive power measuring optical system; and shape information acquired by the shape information acquiring means and an axial length acquiring means for acquiring the axial length based on the anterior segment shape information.
また、本実施形態の眼科装置は、被検眼の角膜に対して第3測定光を投影し、角膜に第3測定光が投影された投影像を含む前眼部正面画像を撮影することによって、角膜の形状に関する角膜形状情報を取得するための正面画像撮影光学系を有し、設定手段は、前眼部断面画像において、更に、角膜に第3測定光が反射されることによって生じる反射像を含まない解析領域を設定してもよい。
Further, the ophthalmologic apparatus of the present embodiment projects the third measurement light onto the cornea of the subject's eye, and captures an anterior segment front image including a projected image of the third measurement light projected onto the cornea, A front image capturing optical system for acquiring corneal shape information about the shape of the cornea, and the setting means further captures a reflected image generated by the reflection of the third measurement light on the cornea in the anterior segment cross-sectional image. An analysis area that does not include may be set.
また、本実施形態の眼科装置は、前眼部断面画像に含まれる反射像を特定する特定手段を備え、設定手段は、前眼部断面画像から、特定手段が特定した反射像を除くことによって、解析領域を設定してもよい。
Further, the ophthalmologic apparatus of the present embodiment includes specifying means for specifying a reflected image included in the anterior segment cross-sectional image, and the setting means removes the reflected image specified by the specifying means from the anterior segment cross-sectional image, thereby , the analysis area may be set.
また、本実施形態の眼科装置において、被検眼の前眼部に関する前眼部情報を取得する前眼部情報取得手段を備え、設定手段は、前眼部情報に基づいて、解析領域を設定してもよい。
Further, the ophthalmologic apparatus of the present embodiment includes an anterior segment information obtaining means for obtaining anterior segment information about the anterior segment of the subject's eye, and the setting means sets the analysis region based on the anterior segment information. may
また、本実施形態の眼科装置において、前眼部情報取得手段は、被検眼の角膜曲率半径を前眼部情報として取得し、設定手段は、角膜曲率半径に基づいて、解析領域を設定してもよい。
Further, in the ophthalmologic apparatus of the present embodiment, the anterior segment information acquiring means acquires the corneal curvature radius of the eye to be examined as the anterior segment information, and the setting means sets the analysis region based on the corneal curvature radius. good too.
また、本実施形態の眼科装置において、前眼部情報取得手段は、被検眼の瞳孔径を前眼部情報として取得し、設定手段は、瞳孔径に基づいて、解析領域を設定してもよい。
Further, in the ophthalmologic apparatus of the present embodiment, the anterior segment information acquisition means may acquire the pupil diameter of the subject's eye as the anterior segment information, and the setting means may set the analysis region based on the pupil diameter. .
また、本実施形態の眼科装置において、形状情報取得手段は、設定手段が設定した解析領域の位置に応じて、第1測定光の光軸上の点を解析に用いるか否かを変更し、前眼部形状情報を取得してもよい。
Further, in the ophthalmologic apparatus of the present embodiment, the shape information acquisition means changes whether or not to use the point on the optical axis of the first measurement light for analysis according to the position of the analysis area set by the setting means, Anterior segment shape information may be acquired.
また、本実施形態の眼科装置において、反射像は、断面画像撮影光学系において、被検眼の前眼部に第2測定光としてのスリット光を投光することによって生じる、スリット反射像であってもよい。
Further, in the ophthalmologic apparatus of the present embodiment, the reflected image is a slit reflected image generated by projecting slit light as the second measurement light onto the anterior segment of the subject's eye in the cross-sectional imaging optical system. good too.
また、本実施形態の眼科装置は、被検眼の眼軸長を取得する眼科装置であって、被検眼の眼屈折力を取得する眼屈折力取得手段と、被検眼の前眼部断面画像を取得する前眼部断面画像取得手段と、前眼部断面画像において、被検眼に投光される測定光が、被検眼の角膜に反射されることによって生じる反射像を含まない解析領域を設定する設定手段と、設定手段が設定した解析領域を解析して、前眼部の形状に関する前眼部形状情報を取得する形状情報取得手段と、眼屈折力と、形状情報取得手段が取得した前眼部形状情報と、に基づいて、眼軸長を取得する眼軸長取得手段と、を備えてもよい。
Further, the ophthalmologic apparatus of the present embodiment is an ophthalmologic apparatus that acquires the axial length of an eye to be inspected, and includes eye refractive power acquisition means that acquires the eye refractive power of the eye to be inspected, and a cross-sectional image of the anterior segment of the eye to be inspected. An anterior segment cross-sectional image acquisition unit to be acquired, and an analysis region in the anterior segment cross-sectional image that does not include a reflected image generated by reflection of the measurement light projected onto the eye to be inspected by the cornea of the eye to be inspected is set. setting means; shape information acquisition means for analyzing the analysis region set by the setting means and acquiring anterior segment shape information relating to the shape of the anterior segment; eye refractive power; and the anterior eye acquired by the shape information acquisition means and axial length acquisition means for acquiring the axial length based on the part shape information.
なお、本開示は、本実施形態に記載する装置に限定されない。例えば、上記実施形態の機能を行う端末制御ソフトウェア(プログラム)を、ネットワークまたは各種の記憶媒体等を介してシステムあるいは装置に供給し、システムあるいは装置の制御装置(例えば、CPU等)がプログラムを読み出して実行することも可能である。例えば、被検眼の眼屈折力を取得するための眼屈折力測定光学系と、被検眼の前眼部断面画像を取得するための断面画像撮影光学系と、を有し、被検眼の眼軸長を取得する眼科装置にて用いる眼科プログラムであって、眼科装置のプロセッサに実行されることで、前眼部断面画像において反射像を含まない解析領域を設定する設定ステップと、設定ステップが設定した解析領域を解析して前眼部形状情報を取得する形状情報取得ステップと、眼屈折力測定光学系を用いて取得された眼屈折力と、形状情報取得手段が取得した前眼部形状情報と、に基づいて、眼軸長を取得する眼軸長取得ステップと、を眼科装置に実行させてもよい。
Note that the present disclosure is not limited to the device described in this embodiment. For example, terminal control software (program) that performs the functions of the above embodiments is supplied to a system or device via a network or various storage media, and a control device (eg, CPU, etc.) of the system or device reads the program. It is also possible to run For example, it has an eye refractive power measuring optical system for acquiring the eye refractive power of the eye to be inspected, and a cross-sectional image capturing optical system for acquiring an anterior segment cross-sectional image of the eye to be inspected, and an eye axis of the eye to be inspected. An ophthalmologic program for use in an ophthalmologic apparatus that acquires the length of the ophthalmologic apparatus, which is executed by a processor of the ophthalmologic apparatus to set a setting step of setting an analysis region that does not include a reflected image in an anterior segment cross-sectional image, and a setting step. a shape information acquiring step of acquiring anterior eye segment shape information by analyzing the analyzed region; ocular refractive power acquired using an eye refractive power measuring optical system; and anterior eye segment shape information acquired by the shape information acquiring means and an eye axial length acquisition step of acquiring the eye axial length based on and.
10 眼科装置
50 制御部
100 測定光学系
150 固視標呈示光学系
200 正面撮影光学系
300a 照射光学系
300b 受光光学系
400 指標投影光学系 10ophthalmologic apparatus 50 control unit 100 measurement optical system 150 fixation target presentation optical system 200 front imaging optical system 300a irradiation optical system 300b light receiving optical system 400 index projection optical system
50 制御部
100 測定光学系
150 固視標呈示光学系
200 正面撮影光学系
300a 照射光学系
300b 受光光学系
400 指標投影光学系 10
Claims (6)
- 被検眼に対して固視光を投光し、前記被検眼に対する雲霧を行うために用いる固視標を呈示する固視標呈示光学系と、
被検眼の眼底に対して第1測定光を投光し、前記第1測定光が前記眼底にて反射された反射光に基づいて、前記被検眼の眼屈折力を取得するための眼屈折力測定光学系と、
前記被検眼の前眼部に対して第2測定光を投光し、前記眼屈折力測定光学系の光軸を通る光切断面を前記前眼部に形成させると共に、前記第2測定光の前記光切断面からの戻り光に基づいて、前記被検眼の前眼部断面画像を取得するための断面画像撮影光学系と、
を有し、
前記眼屈折力と前記前眼部断面画像とに基づいて、前記被検眼の眼軸長を取得する眼科装置であって、
前記固視標呈示光学系における前記固視光の固視光路と、前記断面画像撮影光学系における前記第2測定光の測定光路と、を結合する光路結合部材を備えることを特徴とする眼科装置。 a fixation target presenting optical system for projecting fixation light onto an eye to be inspected and presenting a fixation target used for fogging the eye to be inspected;
Eye refractive power for projecting a first measurement light onto the fundus of an eye to be inspected and acquiring the eye refractive power of the eye to be inspected based on reflected light in which the first measurement light is reflected by the fundus. a measurement optical system;
projecting a second measurement light onto the anterior segment of the eye to be inspected to form a light section passing through the optical axis of the eye refractive power measurement optical system in the anterior segment; a cross-sectional image capturing optical system for acquiring a cross-sectional image of the anterior segment of the subject's eye based on the light returned from the light-section plane;
has
An ophthalmologic apparatus for acquiring the axial length of the subject's eye based on the eye refractive power and the anterior segment cross-sectional image,
An ophthalmologic apparatus comprising an optical path coupling member that couples a fixation optical path of the fixation light in the fixation target presenting optical system and a measurement optical path of the second measurement light in the cross-sectional imaging optical system. . - 請求項1の眼科装置において、
前記固視光路と前記測定光路とを前記光路結合部材によって結合した共通光路には、共通レンズが配置され、
前記共通レンズは、前記固視標呈示光学系の全長を短縮するための全長短縮レンズであり、かつ、前記断面画像撮影光学系における前記測定光の進行方向を変更するためのフィールドレンズであることを特徴とする眼科装置。 The ophthalmic device of claim 1, wherein
A common lens is arranged in a common optical path connecting the fixation optical path and the measurement optical path by the optical path coupling member,
The common lens is a total length shortening lens for shortening the total length of the fixation target presenting optical system, and is a field lens for changing the traveling direction of the measurement light in the cross-sectional imaging optical system. An ophthalmic device characterized by: - 請求項1または2の眼科装置において、
前記光路結合部材は、プリズム型の部材であることを特徴とする眼科装置。 The ophthalmic device of claim 1 or 2,
An ophthalmologic apparatus, wherein the optical path coupling member is a prism-shaped member. - 請求項1~3のいずれかの眼科装置において、
前記光路結合部材は、平面型の部材であることを特徴とする眼科装置。 In the ophthalmic device according to any one of claims 1 to 3,
The ophthalmologic apparatus, wherein the optical path coupling member is a planar member. - 請求項1~4のいずれかの眼科装置において、
前記光路結合部材の透過側に前記固視光路を配置し、前記光路結合部材の反射側に前記測定光路を配置することを特徴とする眼科装置。 In the ophthalmic device according to any one of claims 1 to 4,
An ophthalmologic apparatus, wherein the fixation optical path is arranged on the transmission side of the optical path coupling member, and the measurement optical path is arranged on the reflection side of the optical path coupling member. - 請求項1~5のいずれかの眼科装置において、
前記前眼部断面画像において、前記被検眼の角膜に少なくとも前記第2測定光が反射されることによって生じる反射像を含まない解析領域を設定する設定手段と、
前記設定手段が設定した前記解析領域を解析して、前記前眼部の形状に関する前眼部形状情報を取得する形状情報取得手段と、
前記眼屈折力測定光学系を用いて取得された前記眼屈折力と、前記形状情報取得手段が取得した前記前眼部形状情報と、に基づいて、眼軸長を取得する眼軸長取得手段と、
を備えることを特徴とする眼科装置。
In the ophthalmic device according to any one of claims 1 to 5,
setting means for setting, in the anterior segment cross-sectional image, an analysis region that does not include a reflected image generated by reflection of at least the second measurement light on the cornea of the eye to be inspected;
shape information acquisition means for analyzing the analysis region set by the setting means to acquire anterior segment shape information relating to the shape of the anterior segment;
Axial length obtaining means for obtaining the axial length based on the eye refractive power obtained by using the eye refractive power measuring optical system and the anterior segment shape information obtained by the shape information obtaining means. When,
An ophthalmic device comprising:
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-061511 | 2021-03-31 | ||
JP2021-061512 | 2021-03-31 | ||
JP2021061511A JP2022157345A (en) | 2021-03-31 | 2021-03-31 | Ophthalmologic apparatus |
JP2021061512A JP2022157346A (en) | 2021-03-31 | 2021-03-31 | Ophthalmologic apparatus and ophthalmology program |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022209991A1 true WO2022209991A1 (en) | 2022-10-06 |
Family
ID=83456165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/012460 WO2022209991A1 (en) | 2021-03-31 | 2022-03-17 | Ophthalmologic device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022209991A1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002200045A (en) * | 2000-10-24 | 2002-07-16 | Topcon Corp | Ophthalmic instrument |
-
2022
- 2022-03-17 WO PCT/JP2022/012460 patent/WO2022209991A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002200045A (en) * | 2000-10-24 | 2002-07-16 | Topcon Corp | Ophthalmic instrument |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110934563B (en) | Ophthalmologic information processing apparatus, ophthalmologic apparatus, and ophthalmologic information processing method | |
US10123700B2 (en) | Ophthalmic apparatus and alignment method for ophthalmic apparatus | |
CN109068973B (en) | Keratometer with detachable micro microscope for cataract operation | |
JP6685151B2 (en) | Ophthalmic equipment | |
JP7304780B2 (en) | ophthalmic equipment | |
US11013400B2 (en) | Ophthalmic apparatus | |
JP2014079517A (en) | Ophthalmologic apparatus | |
JP2003245300A (en) | Ophthalmic equipment | |
JP4663147B2 (en) | Eye characteristics measuring device | |
JP6736356B2 (en) | Ophthalmic equipment | |
US12133687B2 (en) | Ophthalmic apparatus | |
JP2018000290A (en) | Ophthalmologic apparatus | |
WO2022209991A1 (en) | Ophthalmologic device | |
JP6898712B2 (en) | Ophthalmic equipment | |
JP6589378B2 (en) | Ophthalmic measuring device | |
JP7236927B2 (en) | Ophthalmic device, control method thereof, ophthalmic information processing device, control method thereof, program, and recording medium | |
JP2022157345A (en) | Ophthalmologic apparatus | |
JP2022157346A (en) | Ophthalmologic apparatus and ophthalmology program | |
JP2022027987A (en) | Ophthalmologic apparatus | |
JP7009273B2 (en) | Ophthalmic device and its corneal shape measurement method | |
WO2022209992A1 (en) | Ophthalmological device | |
JP2022157347A (en) | Ophthalmologic apparatus | |
JP7480553B2 (en) | Ophthalmic Equipment | |
JP7480552B2 (en) | Ophthalmic device and axial length calculation program | |
JP2022157348A (en) | Ophthalmologic apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22780210 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22780210 Country of ref document: EP Kind code of ref document: A1 |