[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022193254A1 - 一种通信方法、装置和系统 - Google Patents

一种通信方法、装置和系统 Download PDF

Info

Publication number
WO2022193254A1
WO2022193254A1 PCT/CN2021/081626 CN2021081626W WO2022193254A1 WO 2022193254 A1 WO2022193254 A1 WO 2022193254A1 CN 2021081626 W CN2021081626 W CN 2021081626W WO 2022193254 A1 WO2022193254 A1 WO 2022193254A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
frequency domain
common signal
downlink common
random access
Prior art date
Application number
PCT/CN2021/081626
Other languages
English (en)
French (fr)
Inventor
李胜钰
官磊
李锐杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21930846.7A priority Critical patent/EP4301065A4/en
Priority to PCT/CN2021/081626 priority patent/WO2022193254A1/zh
Priority to CN202180095701.6A priority patent/CN117099435A/zh
Publication of WO2022193254A1 publication Critical patent/WO2022193254A1/zh
Priority to US18/467,802 priority patent/US20240008097A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access

Definitions

  • the embodiments of the present application relate to the field of wireless communication technologies, and in particular, to a communication method, apparatus, and system.
  • the 5G communication system is committed to supporting higher system performance, and will support multiple service types, different deployment scenarios and a wider spectrum range.
  • the various types of services supported by the 5G communication system include enhanced mobile broadband (eMBB), massive machine type communication (mMTC), ultra-reliable and low latency communications (ultra-reliable and low latency communications, URLLC), multimedia broadcast multicast service (MBMS) and positioning service, etc.
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communication
  • URLLC ultra-reliable and low latency communications
  • MBMS multimedia broadcast multicast service
  • positioning service etc.
  • a major feature of the 5G communication system compared with the 4G communication system is the addition of support for ultra-reliable and low-latency services.
  • URLLC's business types include many, typical use cases include industrial control, industrial production process automation, human-computer interaction, and telemedicine.
  • the bottleneck of data transmission delay in 5G new radio (NR) is uplink and downlink latency.
  • TDD time division duplex
  • Line transmission is dominant (abbreviated as DL-dominant frame structure), resulting in a large latency in uplink transmission (including uplink data transmission and feedback of downlink transmission, etc.).
  • One way to reduce this latency is to configure a shorter uplink and downlink switching period, such as a self-contained frame structure, so as to increase the proportion of uplink transmission symbols and reduce uplink latency.
  • This method is not very friendly to the coexistence of mixed services, which is reflected in that it will bring more switching overhead, pilot/control overhead, difficult product implementation, and there is anisotropic interference with the mainstream DL-dominant frame structure of macro cells.
  • a supplementary uplink (SUL) carrier that is, in addition to a normal uplink (NUL) TDD carrier, a downlink TDD carrier is also associated with another frequency division duplex (FDD) frequency band carrier resource, and the FDD carrier resource is a full uplink frame structure.
  • the problems of this method include: not all frequency bands have SUL resources that can be configured; and SUL is a full uplink frame structure, which can only reduce uplink latency. Dominant) TDD frame structure, configuring SUL cannot reduce downlink latency.
  • Embodiments of the present application provide a communication method and apparatus, so as to reduce the latency in the process of initializing access.
  • a communication method is provided.
  • the method can be executed by a terminal device or a chip system in the terminal device, and the method includes:
  • system information carries information indicating a first frequency domain resource and a second frequency domain resource, wherein the first frequency domain resource and the second frequency domain resource have different uplink and downlink configurations corresponding to the resource;
  • the random access resource set includes random access resources on the first frequency domain resource access resources and random access resources on the second frequency domain resources.
  • the random access resource set of the terminal device includes random access sets respectively located on at least two frequency domain resources. Since the uplink and downlink configurations corresponding to the at least two frequency domain resources are different, Then the terminal device can flexibly select suitable random access resources for random access from random access resources corresponding to at least two frequency domain resources according to the uplink and downlink configuration, which can shorten the waiting time for sending the random access preamble, thereby reducing the Access delay, and can improve the flexibility of the system.
  • the method also includes:
  • the subset of downlink common signal resources including downlink common signal resources on the first frequency domain resources and/or downlink common signal resources on the second frequency domain resources;
  • association relationship between the random access resource set and the downlink common signal resource subset, where the association relationship includes downlink common signal resources in the downlink common signal resource subset and random access in the random access resource set Correspondence of resource subsets;
  • a random access resource subset corresponding to the first downlink common signal resource is determined, and the first downlink common signal resource is the resource corresponding to the first downlink common signal, which is the A resource in a subset of downlink common signal resources, the random access resources in the random access resource subset all belong to the random access resource set, and the random access resource subset includes the first random access resource .
  • the determining the subset of downlink common signal resources includes:
  • Receive the first indication information and the second indication information and determine a first downlink common signal resource subset according to the first indication information, and the downlink common signals in the first downlink common signal resource subset belong to the first frequency domain resources , determine a second downlink common signal resource subset according to the second indication information, the downlink common signal in the second downlink common signal resource subset belongs to the second frequency domain resource, and the downlink common signal resource subset is the The union of the first downlink common signal resource subset and the second downlink common signal resource subset.
  • the association relationship includes at least one of a first association relationship, a second association relationship, a third association relationship, or a fourth association relationship
  • the first association relationship is the first association relationship on the first frequency domain resource.
  • An association relationship between the random access resource set and the first downlink common signal resource subset, the second association relationship is the second random access resource set on the second frequency domain resource and the first downlink common signal resource subset
  • the third association is the association between the first random access resource set and the second downlink common signal resource subset on the first frequency domain resource
  • the fourth association is the second frequency domain resource.
  • the two indication information respectively indicate the downlink common signal resources on the first frequency domain resource and the second frequency domain resource, which can match the frame structure, subcarrier spacing and other parameters of the two frequency domain resources, which can improve the indication efficiency.
  • the determining the subset of downlink common signal resources includes:
  • Receive third indication information determine the third downlink common signal resource subset according to the third indication information, the downlink common signal resource subset is equal to the third downlink common signal resource subset, and the third downlink common signal resource subset
  • the resource subset is a subset of a third downlink common signal resource set, the third downlink common signal resource set corresponds to a third downlink common signal pattern, and the third downlink common signal resource set includes downlink resources on the first frequency domain resources Common signal resources and downlink common signal resources on the second frequency domain resources.
  • the method also includes:
  • Receive downlink common signal pattern indication information where the downlink common signal pattern indication information indicates an index of the third downlink common signal pattern, and the third downlink common signal pattern is used to define each of the third downlink common signal sets The time domain position of the common signal in the first frequency domain resource or the second frequency domain resource.
  • a pattern is used to jointly indicate the set of downlink common signal resources on the first frequency domain resource and the second frequency domain resource, and then an indication information is used to indicate which public signals corresponding to the indexes in the set belong to the downlink common signal resources.
  • Subset of signal resources which can improve the flexibility of configuration.
  • the method also includes:
  • the second DCI is used to schedule the second physical downlink shared channel PDSCH, and the PDCCH monitoring position in the second PDCCH monitoring position set is on the first frequency domain resource and is located in the first sub-time window, so The PDCCH monitoring position in the third PDCCH monitoring position set is on the second frequency domain resource and is located in the second sub-time window, and the first sub-time window and the second sub-time window are based on the second sub-time window.
  • a random access resource is determined.
  • a suitable resource can be flexibly selected from at least two frequency domain resources for transmission according to the uplink and downlink configuration. Scheduling the second DCI of the random access response can shorten the delay in sending the second DCI and improve the flexibility of the system.
  • the symbol where the second monitoring position is located is a downlink symbol. or a flexible symbol, and when the symbol at the third monitoring position includes an uplink symbol, the second DCI is detected at the second monitoring position; or,
  • the symbol where the second monitoring location is located is a downlink symbol or a flexible symbol
  • the symbol at the third monitoring position is also a downlink symbol or a flexible symbol
  • the second DCI is monitored at a fourth monitoring position, where the fourth monitoring position is the one of the second monitoring position and the third monitoring position.
  • the second DCI is scrambled by the random access wireless network temporary identifier RA-RNTI, and the value of the RA-RNTI is based on the frequency domain resource where the first random access resource is located and the The time-frequency position of the first random access resource in the frequency domain resource is determined.
  • the method also includes:
  • Receive a random access response RAR the RAR is carried in the second PDSCH, the RAR is used to schedule the first physical uplink shared channel PUSCH, the RAR carries indication information indicating a fourth frequency domain resource, the first Four frequency domain resources belong to the first frequency domain resource or the second frequency domain resource;
  • the first PUSCH is sent on the fourth frequency domain resource.
  • the RAR carries the indication information sent by the RAR on the first frequency domain resource or the second frequency domain resource, and can select the frequency domain resource with the uplink part and the nearest uplink part to send according to the frame structure of the two frequency domain resources the first PUSCH, thereby reducing the transmission delay of the first PUSCH.
  • the method also includes:
  • the third DCI schedules the third PDSCH; the PDCCH monitoring positions in the fourth PDCCH monitoring position set are on the first frequency domain resource and within the third sub-time window, and the fifth PDCCH monitoring position set The monitoring position of the PDCCH is on the second frequency domain resource and is located in the fourth sub-time window, and the third sub-time and the fourth sub-time window are determined according to the first PUSCH time domain position.
  • a suitable resource can be flexibly selected from at least two frequency domain resources for transmission according to the uplink and downlink configuration. Scheduling the third DCI of the third PDSCH can shorten the delay in sending the third DCI and improve the flexibility of the system.
  • the symbol where the fifth monitoring position is located is a downlink symbol or a flexible symbol
  • the symbol at the sixth monitoring position includes an uplink symbol
  • the symbol where the fifth monitoring position is located is a downlink symbol or a flexible symbol
  • the sixth monitoring position When the symbol is a downlink symbol or a flexible symbol, the third DCI is detected at a seventh monitoring position, where the seventh monitoring position is a preset monitoring position among the fifth monitoring position and the sixth monitoring position.
  • the third DCI carries information indicating a sixth frequency domain resource
  • the sixth frequency domain resource belongs to the first frequency domain resource or the second frequency domain resource
  • the method further includes: in the sixth The feedback information of the third PDSCH is sent on the frequency domain resource.
  • the feedback information of the third PDSCH is carried by the second PUCCH.
  • the third DCI instructs the second PUCCH to be sent on the first frequency domain resource or the second frequency domain resource, and the frequency domain resource with the uplink part and the nearest uplink part can be selected according to the frame structure of the two frequency domain resources to transmit the second PUCCH, thereby reducing the transmission delay of the second PUCCH.
  • a communication method is provided, the method can be executed by a network device or a chip system in the network device, and the method includes:
  • system information carries information indicating the first frequency domain resource and the second frequency domain resource, wherein the uplink and downlink corresponding to the first frequency domain resource and the second frequency domain resource different configuration;
  • the set is a subset of a random access resource set, and the random access resource set includes random access resources on the first frequency domain resources and random access resources on the second frequency domain resources.
  • the sending the first downlink common signal to the terminal device includes:
  • a downlink common signal is sent on the downlink common signal resource in the downlink common signal resource subset, wherein the downlink common signal resource subset includes the first downlink common signal.
  • the method also includes:
  • the random access resource subset corresponding to the first downlink common signal resource is determined; the association relationship includes the downlink in the downlink common signal resource subset.
  • the first downlink common signal resource is the resource corresponding to the first downlink common signal, which is the downlink common signal A resource in a subset of signal resources.
  • the system information further carries first indication information and second indication information
  • the first indication information indicates the location information of the first downlink common signal resource subset
  • the second indication information indicates Location information of the second downlink common signal resource subset
  • the downlink common signal in the first downlink common signal resource subset belongs to the first frequency domain resource
  • the downlink common signal in the second downlink common signal resource subset belongs to the first frequency domain resource
  • the downlink common signal resource subset is the union of the first downlink common signal resource subset and the second downlink common signal resource subset.
  • the association relationship includes at least one of a first association relationship, a second association relationship, a third association relationship, or a fourth association relationship
  • the first association relationship is the first association relationship on the first frequency domain resource.
  • An association relationship between the random access resource set and the first downlink common signal resource subset, the second association relationship is the second random access resource set on the second frequency domain resource and the first downlink common signal resource subset
  • the third association is the association between the first random access resource set and the second downlink common signal resource subset on the first frequency domain resource
  • the fourth association is the second frequency domain resource.
  • the system information further carries third indication information, the third indication information indicates location information of a third downlink common signal resource subset, and the downlink common signal resource subset is equal to the third A downlink common signal resource subset, the third downlink common signal resource subset is a subset of a third downlink common signal resource set, the third downlink common signal resource set corresponds to a third downlink common signal pattern, the third The common signal resources included in the set of downlink common signal resources are located in the first frequency domain resource and the second frequency domain resource.
  • the method also includes:
  • Sending common signal pattern indication information where the downlink common signal pattern indication information indicates an index of the third downlink common signal pattern, and the third downlink common signal pattern is used to define each common signal pattern in the third downlink common signal set the time domain position of the signal in the first frequency domain resource or the second frequency domain resource.
  • the method also includes:
  • the second DCI is used to schedule the second PDSCH
  • the PDCCH monitoring position in the second PDCCH monitoring position set is on the first frequency domain resource and is located in the first sub-time window
  • the third PDCCH monitoring position The PDCCH monitoring position in the monitoring position set is on the second frequency domain resource and within the second sub-time window
  • the first sub-time window and the second sub-time window are based on the first random access resources are determined.
  • the method also includes:
  • the symbol where the second monitoring location is located is a downlink symbol or a flexible symbol, and the When the symbol at the third monitoring position includes an uplink symbol, the second DCI is sent at the second monitoring position; or,
  • the symbol where the second monitoring location is located is a downlink symbol or a flexible symbol
  • the symbol at the third monitoring position is also a downlink symbol or a flexible symbol
  • the second DCI is sent at a fourth monitoring position, where the fourth monitoring position is the one of the second monitoring position and the third monitoring position One.
  • the second DCI is scrambled by the random access wireless network temporary identifier RA-RNTI, and the value of the RA-RNTI is based on the frequency domain resource where the first random access resource is located and the The time-frequency position of the first random access resource in the frequency domain resource is determined.
  • the method also includes:
  • the RAR is carried in the second PDSCH, the RAR is used to schedule the first physical uplink shared channel PUSCH, and the RAR carries the indication information of the fourth frequency domain resource , the fourth frequency domain resource belongs to the first frequency domain resource or the second frequency domain resource;
  • the first PUSCH is received on a fourth frequency domain resource.
  • the method also includes:
  • the third DCI schedules the third PDSCH; the PDCCH monitoring positions in the fourth PDCCH monitoring position set are on the first frequency domain resource and within the third sub-time window, and the fifth PDCCH monitoring position set The monitoring position of the PDCCH is on the second frequency domain resource and is located in the fourth sub-time window, and the third sub-time and the fourth sub-time window are determined according to the first PUSCH time domain position.
  • the symbol where the fifth monitoring position is located is a downlink symbol or a flexible symbol
  • the symbol at the sixth monitoring position includes an uplink symbol
  • the symbol where the fifth monitoring position is located is a downlink symbol or a flexible symbol
  • the sixth monitoring position When the symbol is a downlink symbol or a flexible symbol, the third DCI is sent at a seventh monitoring location, where the seventh monitoring location is a preset monitoring location among the fifth monitoring location and the sixth monitoring location.
  • the third DCI carries indication information of a sixth frequency domain resource, and the sixth frequency domain resource belongs to the first frequency domain resource or the second frequency domain resource
  • the method further includes: in the The feedback information HARQ-ACK of the third PDSCH is received on the sixth frequency domain resource, where the sixth frequency domain resource belongs to the first frequency domain resource or the second frequency domain resource.
  • a communication method is provided, the method can be executed by a terminal device or a chip system in the terminal device, and the method includes:
  • the second downlink common signal is received at the frequency domain resource of the second downlink common signal.
  • a communication method is provided, the method can be performed by a network device or a chip system in the network device, and the method includes:
  • a second type of downlink common signal is sent, where the second type of downlink common signal includes one or more common signals; wherein the frequency domain resources of the second type of common signal are related to the frequency domain resources of the first type of downlink common signal.
  • the present application also provides a communication device, which can implement the communication method described in the first aspect, the second aspect, the third aspect or the fourth aspect.
  • the apparatus may be a terminal device or a network device, and may also be another apparatus capable of implementing the above communication method, which may implement the above method through software, hardware, or by executing corresponding software through hardware.
  • the apparatus may include a processor and a memory.
  • the processor is configured to support the apparatus to perform corresponding functions in the method described in any of the above aspects.
  • the memory is for coupling with the processor, which holds the necessary program instructions and data for the apparatus.
  • the device may further include a communication interface for supporting communication between the device and other devices.
  • the communication interface may be a transceiver or a transceiver circuit.
  • an embodiment of the present application provides a communication system, where the system includes the communication device described in the above aspect.
  • Yet another aspect of the present application provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, which, when executed on a computer, cause the computer to perform the methods described in the above aspects.
  • Yet another aspect of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the methods of the above aspects.
  • the present application also provides a chip system, where the chip system includes a processor, and may also include a memory, for implementing the method described in any one of the foregoing aspects.
  • any device or computer storage medium or computer program product or chip system or communication system provided above is used to execute the corresponding method provided above. Therefore, the beneficial effect that can be achieved can refer to the corresponding provided above. The beneficial effects of the corresponding scheme in the method are not repeated here.
  • FIG. 1 is a schematic structural diagram of a communication system to which an embodiment of the present application is applied;
  • FIG. 2 is a schematic diagram of the time-frequency resources occupied by the SSB of the present application.
  • Fig. 3 is the schematic diagram of a kind of SSB style of the application
  • FIG. 4 is a schematic diagram of message sending in the initial access process under the time slot configuration of the DL-dominant of the present application
  • FIG. 5 is a schematic diagram of the time slot configuration of the UL-dominant of the present application.
  • FIG. 6 is a schematic diagram of the SSB cycle and SSB pattern of the present application.
  • FIG. 7 is a schematic flowchart of an embodiment of a communication method provided by the present application.
  • FIG. 8 is a schematic flowchart of another embodiment of a communication method provided by the present application.
  • FIG. 9 is a schematic structural diagram of an embodiment of a communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another embodiment of a communication apparatus according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a communication system 1100 to which an embodiment of the present application is applied.
  • the communication system includes a radio access network 100 and a core network 200 .
  • the communication system 1100 may further include the Internet 300 .
  • the radio access network 100 may include at least one radio access network device (such as 110a and 110b in FIG. 1 ), and may also include at least one terminal (such as 120a-120j in FIG. 1 ).
  • the terminal is connected to the wireless access network device in a wireless way, and the wireless access network device is connected to the core network in a wireless or wired way.
  • the core network device and the radio access network device can be independent and different physical devices, or the functions of the core network device and the logical functions of the radio access network device can be integrated on the same physical device, or they can be one physical device. It integrates the functions of some core network equipment and some functions of the wireless access network equipment. Terminals and terminals and wireless access network devices and wireless access network devices may be connected to each other in a wired or wireless manner.
  • FIG. 1 is just a schematic diagram, and the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 1 .
  • the radio access network equipment can be a base station (base station), an evolved base station (evolved NodeB, eNodeB), a transmission reception point (transmission reception point, TRP), the next generation in the fifth generation (5th generation, 5G) mobile communication system
  • Base station (next generation NodeB, gNB), the next generation base station in the sixth generation (6th generation, 6G) mobile communication system, the base station in the future mobile communication system or the access node in the WiFi system, etc.; it can also complete the base station part
  • a functional module or unit for example, may be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the radio access network device may be a macro base station (110a in FIG.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the wireless access network device.
  • the following description takes a base station as an example of a radio access network device.
  • a terminal may also be referred to as terminal equipment, user equipment (UE), mobile station, mobile terminal, and the like.
  • Terminals can be widely used in various scenarios, such as device-to-device (D2D), vehicle-to-everything (V2X) communication, machine-type communication (MTC), Internet of Things ( internet of things, IOT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, etc.
  • Terminals can be mobile phones, tablet computers, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, etc.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal.
  • Base stations and terminals can be fixed or mobile. Base stations and terminals can be deployed on land, including indoor or outdoor, hand-held or vehicle-mounted; they can also be deployed on water; they can also be deployed in the air on aircraft, balloons, and satellites. The embodiments of the present application do not limit the application scenarios of the base station and the terminal.
  • the helicopter or drone 120i in FIG. 1 may be configured as a mobile base station, for those terminals 120j accessing the radio access network 100 through 120i, the terminal 120i is Base station; but for base station 110a, 120i is a terminal, that is, communication between 110a and 120i is performed through a wireless air interface protocol.
  • the communication between 110a and 120i may also be performed through an interface protocol between the base station and the base station.
  • both the base station and the terminal may be collectively referred to as communication devices, 110a and 110b in FIG. 1 may be referred to as communication devices with base station functions, and 120a-120j in FIG. 1 may be referred to as communication devices with terminal functions.
  • Communication between base stations and terminals, between base stations and base stations, and between terminals and terminals can be carried out through licensed spectrum, through unlicensed spectrum, or through licensed spectrum and unlicensed spectrum at the same time;
  • the frequency spectrum below gigahertz (GHz) is used for communication, the frequency spectrum above 6GHz can also be used for communication, and the frequency spectrum below 6GHz and the frequency spectrum above 6GHz can be used for communication at the same time.
  • the embodiments of the present application do not limit the spectrum resources used for wireless communication.
  • the function of the base station may also be performed by a module (such as a chip) in the base station, or may be performed by a control subsystem including the function of the base station.
  • the control subsystem including the base station function here may be the control center in the above application scenarios such as smart grid, industrial control, intelligent transportation, and smart city.
  • the functions of the terminal can also be performed by a module (such as a chip or a modem) in the terminal, and can also be performed by a device including the terminal functions.
  • the base station sends downlink signals or downlink information to the terminal, and the downlink information is carried on the downlink channel;
  • the terminal sends the uplink signal or uplink information to the base station, and the uplink information is carried on the uplink channel.
  • a terminal needs to establish a wireless connection with a cell controlled by the base station.
  • the cell that has established a wireless connection with the terminal is called the serving cell of the terminal.
  • the serving cell When the terminal communicates with the serving cell, it will also be interfered by signals from neighboring cells.
  • the process of the terminal equipment from the idle (idle) state accessing the cell to the connected (connected) state mainly includes three steps: synchronization signal and PBCH (synchronization signal and PBCH block, SSB) detection, system information block 1 ( system information block 1, SIB1) reception and random access process.
  • PBCH synchronization signal and PBCH block
  • SSB synchronization signal and PBCH block
  • SIB1 system information block 1, SIB1
  • the terminal device Through SSB detection, the terminal device obtains the cell identity (ID), completes downlink timing synchronization, and determines the time-frequency position of the downlink control information (DCI) for scheduling SIB1, thereby receiving other system information.
  • the terminal equipment has not completed uplink timing synchronization, so it can receive broadcast information, but cannot perform uplink data transmission or receive downlink unicast/multicast transmission.
  • the SSB includes a synchronization signal (SS) and a physical broadcast channel (PBCH).
  • the synchronization signal includes a primary synchronization signal (Primary SS, PSS) and a secondary synchronization signal (secondary SS, SSS).
  • the physical broadcast channel carries the master information block (MIB) of the access cell.
  • MIB master information block
  • the synchronization signal and the physical broadcast channel are used to obtain the cell physical ID, downlink timing and the most important system information MIB.
  • the cell physical ID is jointly carried by PSS and SSS.
  • the SSB occupies 4 consecutive symbols in the time domain and 20 resource blocks (RBs) in the frequency domain.
  • the location of the SSB in the frequency domain is defined by a synchronization raster.
  • each synchronous Raster position corresponds to an absolute frequency position
  • the absolute frequency domain position corresponds to the center frequency of the SSB, that is, the 11th RB The center frequency of the first subcarrier.
  • the terminal device performs cell search, for each frequency band, it will detect whether there is an SSB in the potential synchronous Raster position in the frequency band according to historical records or blind detection.
  • the time domain position of the SSB is defined by the SSB pattern (pattern), and an SSB pattern specifies the time domain position of a group of consecutive SSBs in a Half-Frame.
  • 3GPP defines five SSB patterns for the licensed spectrum (unshared spectrum), and each SSB pattern has an applicable subcarrier spacing (SCS).
  • SCS subcarrier spacing
  • an SSB pattern contains 8 SSBs, and the SSB index (index) is 0-7, which are located in the first 4 time slots in a Half-frame ( slot), each slot contains two SSBs, and the starting symbols are #2 and #8 respectively.
  • the terminal device when detecting the SSB in the searched frequency band, it needs to use the detected SSB time domain position, SSB index, and the radio frame index Frame index in the MIB, and the radio half-frame index Half-frame. index, completes downlink timing synchronization.
  • the terminal device can determine the SIB1 reception location based on the SSB.
  • SIB1 is carried on the physical downlink shared channel (PDSCH), but the time-frequency position and transmission parameters of the PDSCH carrying SIB1 are indicated by DCI.
  • the MIB in the SSB contains 4 bits of controlResourceSetZero and 4 bits of searchSpaceZero, indicating respectively The frequency domain position and the time domain position where the DCI of the scheduled SIB1 is received are received.
  • SIB1 After the terminal device determines the time-frequency position of the DCI for scheduling SIB1, it blindly detects the DCI at the time-frequency position where the DCI is located. Get SIB1.
  • the main function of SIB1 is to complete the configuration of the primary cell (Primary Cell, PCell), so that the terminal equipment in the idle state can monitor the paging message, or complete the uplink timing synchronization through random access, thereby changing to the Connected state.
  • SIB1 in NR will first configure a frequency domain offset (offset) to determine the frequency domain anchor point.
  • a serving cell (referred to as PCell) is configured, which mainly includes the TDD frame structure of the Pcell, downlink (DL) configuration and uplink (uplink, UL) configuration, and the UL configuration also includes NUL and SUL.
  • the DL configuration mainly configure the downlink common parameters of Pcell.
  • multiple resource grids (resource grids) are configured according to the subcarrier spacing SCS, and each resource grid is the resource division of the PCell under this SCS.
  • the initial downlink bandwidth part is also configured through the information element InitialDLBWP, indicating the bandwidth part (bandwidth part, BWP) used for downlink transmission before initial access.
  • the InitialDLBWP mainly includes physical downlink control channel (physical downlink control channel, PDCCH) configuration and PDSCH configuration.
  • the PDCCH configuration defines various search spaces (search space, SS) and control resource set (control resource set, CORESET), which are used to instruct the terminal equipment where and how to detect DCI.
  • PDSCH configuration is used to define potential parameter configuration for PDSCH transmission.
  • NUL configuration mainly configure the normal uplink common parameters of Pcell.
  • multiple Resource Grids are configured according to the subcarrier interval SCS, and each resource grid is the resource division of PCell under this SCS.
  • the BWP used for uplink transmission before initial access is also indicated through the information element InitialULBWP.
  • the InitialULBWP mainly includes physical uplink shared channel (PUSCH) configuration, physical uplink control channel (PUCCH) configuration and random access channel (random access channel, RACH) configuration.
  • the PUSCH configuration and the PUCCH configuration define the parameter configuration for the terminal device to send PUSCH (eg, the subsequent Msg3) and PUCCH (eg, the ACK/NACK feedback of the subsequent Msg4) before initial access.
  • the RACH configuration defines the parameter configuration for random access by terminal equipment.
  • SUL configuration mainly configure auxiliary uplink common parameters of Pcell.
  • 3GPP allows the configuration of SUL, that is, a cell includes a normal downlink carrier and an uplink carrier, as well as a SUL carrier.
  • the SUL carriers are all in a full uplink frame structure.
  • the SUL configuration also includes the cell initialULBWP, and the initialULBWP also has a RACH configuration.
  • the terminal device By receiving SIB1, the terminal device obtains the most basic information of the PCell, can receive more system information based on configuration parameters, and can choose to stay in the idle state and periodically monitor downlink paging. Or, the terminal device initiates random access through the configured RACH, obtains uplink timing synchronization, and obtains the Cell-Radio Network Temporary Identifier (C-RNTI), so as to receive the specific parameter configuration of the terminal device and perform up and down operations. line transfer.
  • C-RNTI Cell-Radio Network Temporary Identifier
  • the NR protocol defines 4-step (4-Step) RA and 2-step (2-Step) RA.
  • the 4-Step RA process is as follows:
  • the terminal device can send the random access preamble to the network device on the indicated RACH time-frequency resource.
  • the RACH time domain position is indicated by the information element RACHConfig in SIB1.
  • the Slot is repeated periodically. There can be one or more RACH occasions (occasions) in each slot, and the start symbol and length of the RACH occasion are configured by the high layer.
  • the RACH frequency domain position is up to 8 RACH positions, and the RB occupied by each position is configured by high-level signaling.
  • Random access resources include: RACH occasion and RACH preamble.
  • RACH occasion can also be called RACH time-frequency resource.
  • SSB and RACH resource association defines the correspondence between SSB and RACH resources.
  • One-to-one correspondence between SSB and SSB index Specifically, the terminal device determines which SSB indexes are active (active), that is, actually sent, according to the cell ssb-PositioninBurst in SIB1.
  • SSB-RACH Association is divided into two cases: as shown in Table 1, one SSB index is associated with at least one RACH occasion; or, as shown in Table 2, multiple SSB indexes are associated with one RACH occasion, but the RACH occasion associated with this RACH occasion corresponds to A collection of different Preamble indexes.
  • the terminal device measures the SSB, and selects whether to initiate random access on the NUL or the SUL according to the reference signal received power (RSRP) of the SSB.
  • RSRP reference signal received power
  • the ACK/NACK of Msg1, Msg3 and Msg4 are all sent on the same uplink carrier.
  • the terminal device selects the RACH occasion and preamble according to the selection criterion. For example, the preamble can be filtered according to the size of Msg3. When there are multiple RACH occasion and preamble index sets that can be selected, and there are no other selection criteria, the terminal device randomly selects RACH occasion and preamble among them.
  • the Msg1 is sent according to the spatial filtering settings used when receiving the corresponding SSB. It should be noted that the transmission of Msg1 can only be performed on uplink symbols, and which time domain positions are uplink symbols are determined according to the TDD frame structure in the Pcell configuration.
  • Msg2 is Random Access Response (RAR).
  • RAR Random Access Response
  • the terminal device After the terminal device sends Msg1, within the specified time domain window, it monitors the random access-wireless network temporary identifier (Random Access RNTI, RA-RNTI) scrambling in the Type 1 (Type1) common search space (Common SS, CSS) , the DCI sent by the network device.
  • the time domain position and frequency domain position of Type1CSS are configured in the above-mentioned information element InitialDLBWP, and the RA-RNTI is determined according to the RACH occasion that the terminal device sends Msg1, and the calculation method is as follows:
  • RA-RNTI 1+s ID +14 ⁇ t ID +14 ⁇ 80 ⁇ f ID +14 ⁇ 80 ⁇ 80 ⁇ ul_carrier_id
  • s ID and t ID respectively represent the start symbol index of the slot where the RACH occasion is located and the index of the slot in the frame
  • f ID represents the frequency domain position index of the RACH occasion
  • ul_carrier_id represents the UL carrier index.
  • NUL carrier the corresponding UL carrier index is 0, and for the SUL carrier, the corresponding UL carrier index is 1.
  • the terminal device If the terminal device detects the DCI scrambled by the RA-RNTI, it goes to receive the PDSCH scheduled by the DCI.
  • the medium access control (MAC) protocol data unit (Protocol Data Unit, PDU) carried by the PDSCH may carry a plurality of sub-protocol data units subPDU.
  • Each subPDU will contain a MAC header (header), indicating a preamble index, and a MAC RAR, in which the RAR includes uplink scheduling information for the terminal device that sends the preamble.
  • RAR has three main functions: one is to send initial uplink transmission timing advance (Timing Advance, TA) to help terminal equipment complete uplink timing synchronization; the other is to send temporary cell-wireless network temporary identifier (Temporary C-RNTI, TC-RNTI) ), which replaces the C-RNTI for the terminal device before the initial access is completed; the third is to send an uplink grant (UL grant) to schedule a PUSCH to carry the subsequent transmission of Msg3.
  • Timing Advance TA
  • Temporal C-RNTI Temporal C-RNTI
  • TC-RNTI temporary cell-wireless network temporary identifier
  • UL grant uplink grant
  • the terminal device If the terminal device receives the RAR, it sends Msg3 to the network device on the scheduled PUSCH according to the TA indicated by the RAR.
  • the data on the PUSCH is scrambled by TC-RNTI, and the data content on the PUSCH includes the identifier (identifier, ID) of the terminal device.
  • the terminal device After the terminal device sends the Msg3, it detects the DCI scrambled by the TC-RNTI (Temporary C-RNTI, Temporary Cell-Wireless Network Temporary Identifier) and sent by the network device in the corresponding time window. If the DCI is detected, the corresponding PDSCH is further received, This PDSCH contains a contention resolution identifier. If the contention resolution identifier is equal to the ID of the terminal device, it indicates that the conflict is successfully resolved, and the terminal device converts the TC-RNTI into a C-RNTI.
  • the TC-RNTI Temporary C-RNTI, Temporary Cell-Wireless Network Temporary Identifier
  • the terminal device parses the DCI scrambled by the TC-RNTI, if the PDSCH decoding is successful, the terminal device feeds back an acknowledgement (acknowledgment, ACK) to the network device; if the PDSCH decoding fails, the terminal device feeds back a negative acknowledgment ( negative acknowledgement, NACK).
  • ACK acknowledgement
  • NACK negative acknowledgement
  • the terminal device sends the RACH to the network device, and then sends the PUSCH on a PUSCH sending occasion, corresponding to Msg1 and Msg3 in the 4-step RACH, where the sending occasion of the PUSCH candidate is configured by the high layer, and a PUSCH selected by the terminal device
  • the sending occasion is associated with the selection of the RACH resource, and the parameters for the terminal device to send the PUSCH at the sending occasion are also configured by the high layer.
  • the network device If the network device successfully receives the RACH and PUSCH sent by the terminal device, it sends Msg4 to the terminal device, and Msg4 carries the contention resolution identifier. At this time, the random access process ends; otherwise, if the network device successfully receives the RACH , if the PUSCH is not successfully received, a fallback indication is sent to the terminal device, where the fallback indication is equivalent to Msg2 in the 4-step RACH, and then the terminal device falls back to the 4-step RACH, sends Msg3, and receives Msg4 .
  • each uplink and downlink conversion will introduce a large latency.
  • the terminal device needs to wait for one multi-slot to send Msg1 after receiving SIB1, and must wait for two multi-slots to receive Msg3 after receiving RAR. These waiting delays will increase the transition of the terminal device from the idle state. It is the initial access delay in the connected state.
  • the existing NR also supports random access based on SUL. If the terminal equipment selects SUL for random access, the latency of uplink transmission can be reduced to a certain extent, but there are the following problems: not all frequency bands have associated SUL carriers, so SUL-based random access is not a universal solution; the SUL carrier is an all-uplink frame structure, so it cannot complement the normal TDD frame structure, which is not helpful for reducing DL latency. For the DL-dominant frame structure, the DL latency is about 1ms-1.5ms, but for other frame structures, the DL latency is larger. At present, there are legacy terminal equipment on the SUL carrier, and the bandwidth may be limited, so there is a large collision probability for random access.
  • the network equipment does not have enough DL symbols to complete the SSB beam scanning within an uplink and downlink switching period, which may cause some terminals to fail to detect the SSB. If the SSB scan is extended to the next or next uplink and downlink switching cycle, it will bring a large SSB detection delay.
  • the present application proposes a dual-frequency-based initial access method. Further, the random access method supports dynamic frequency domain resource selection and switching, by configuring the uplink and downlink configuration of two frequency domain resources that are different or even complementary, and allows network equipment and terminal equipment to flexibly choose which frequency domain resource to perform uplink and downlink. transmission, reducing the waiting delay of each information transmission link in the initial access process.
  • the network device sends the SSB to the terminal device, the terminal device performs downlink synchronization by detecting the SSB, and then the terminal device receives SIB1 based on the SSB instruction, and obtains the basic information of the cell, for example, the cell contains two uplink and downlink configurations with different frequencies domain resources, the effective SSB resource set and the RACH resource set of the two frequency domain resources; then the terminal device obtains the association between the SSB and the RACH resource, and selects a first SSB resource from the effective SSB resource set based on the measured SSB received signal power strength , thereby determining the first RACH resource subset corresponding to the first SSB resource, and selecting a RACH resource from the first RACH resource subset to initiate random access, wherein the RACH resource associated with the first SSB resource may include the first frequency domain resource and the RACH resource on the second frequency domain resource, so that the terminal device can select the nearest uplink symbol from the two frequency domain resources to initiate random access, thereby
  • the network device sends a second DCI scheduling random access response RAR to the terminal device, and the second DCI may be in the first frequency domain resource, or the second frequency domain resource, or between the first frequency domain resource and the second frequency domain resource. It is sent on the downlink symbols, thereby reducing the transmission latency.
  • the RAR will instruct the terminal device on which frequency domain resource to send the Msg3, and the network device can select the nearest frequency domain resource with uplink symbols to carry the Msg3, reducing the latency of the terminal device.
  • the network device sends the third DCI scheduling Msg4 to the terminal device.
  • the third DCI may also be in the first frequency domain resource, or the second frequency domain resource, or the first frequency domain resource and the second frequency domain.
  • the resources are sent on the downlink symbols, thereby reducing the transmission latency.
  • the third DCI also indicates on which frequency domain resource the feedback information carrying Msg4 is sent, and the network device can select the uplink symbol with the closest time to carry the feedback information to reduce the waiting delay of the terminal device.
  • the present application divides downlink common signal transmission in the initial access phase into two stages, the first stage corresponds to the first type of downlink common signal, and the second stage corresponds to the second type of downlink common signal.
  • a possible implementation manner is: the first type of downlink common signal includes one or more downlink common signals, any one of which includes a synchronization signal (synchronization signal, SS) and the first broadcast channel, and the second type of downlink common signal includes a or multiple downlink common signals, any one of which includes the second broadcast channel, for example, in NR, the first type of downlink common signal is SSB, the first broadcast channel carries MIB, and the second broadcast channel carries SIB1; another possibility
  • the implementation is as follows: the first type of downlink public signal includes one or more downlink public signals, any one of which includes SS, and the second type of downlink public signal includes one or more downlink public signals, any of which includes the third broadcast Channels, eg, the third broadcast channel, carry MIB and SIB1.
  • This application does not
  • the transmission of the first type of downlink public signal is periodic, one pattern includes one pattern, and one pattern includes one or more time-frequency positions for transmitting the first type of downlink public signal, different time-frequency positions.
  • the first type of downlink public signals in the set form a public signal set, and a Pattern will specify the index and time-frequency resource location of each public signal in this set, that is, a public signal has a one-to-one correspondence with an index and a time-frequency location.
  • the first type of downlink common signal is SSB
  • the transmission of SSB is periodic, for example, the period is 20ms, one SSB pattern is included in one cycle, and 8 or more transmission SSBs are included in one pattern.
  • each time-frequency position corresponds to 1 SSB index.
  • One of the SSB time-frequency resources included in the SSB pattern may correspond to a time unit, and the length of the time unit may be smaller than the SSB transmission period.
  • the SSB transmission period in NR is 20ms, but the SSB pattern corresponds to The length of the time unit is 5ms, and the corresponding SSB transmission time-frequency positions are all within 5ms.
  • the transmission parameters of the first type of downlink common signals at different time-frequency positions within a pattern may be different, for example, the transmission filtering parameters are different or the transmission beams used are different.
  • the transmission of the second type of downlink common signal may also be periodic, and a period may also include one pattern.
  • the reception of the second type of downlink common signal may be independent of the reception of the first type of downlink common signal, that is, it has an independent period and pattern, or it may be indicated based on the first type of downlink common signal, for example, based on the first type of downlink common signal.
  • the indication of one type of downlink common signal determines the receiving position and the receiving parameter of the control information for scheduling the second type of downlink common signal.
  • the reception of the control information for scheduling the second type of downlink common signal has an associated relationship with the reception of the first type of downlink common signal, such as a one-to-one correspondence, and the receiving position and parameters of each control information for scheduling the second type of downlink common signal are set by A corresponding downlink common signal of the first type is determined.
  • the first type of downlink common signal in NR is SSB
  • the second type of downlink common signal is SIB1.
  • One SSB pattern contains multiple SSB indexes, and each SSB index corresponds to a time-frequency position, which is used to transmit the DCI that schedules SIB1.
  • an embodiment of a communication method provided by the present application is applied to a process of a terminal device accessing a network device, and the method includes:
  • the network device sends the first type of downlink common signal to the terminal device.
  • the first type of downlink common signals may include one or more common signals.
  • each downlink common signal in the first type of downlink common signal includes a synchronization signal and a first broadcast channel, for example, the first type of downlink common signal is SSB.
  • different downlink common signals in the first type of downlink common signals may be sent at different time domain locations and/or different frequency domain locations.
  • the terminal device detects the first type of downlink common signal.
  • the terminal device successfully detects the first downlink common signal in the first type of downlink common signals.
  • the first downlink common signal belongs to the first downlink common signal set, and the first downlink common signal set is a first type of downlink common signal pattern (denoted as the first pattern, or, pattern#1 ) corresponding to the set of the first type of downlink common signals.
  • the first pattern defines that within a time domain period P1 (or within a time unit Q1, where Q1 is less than or equal to P1), the network device can send multiple time domain locations and each time domain location of the first type of downlink common signal.
  • the corresponding index of the first type of downlink common signals, the first type of downlink common signals at these time domain positions constitute the first set of downlink common signals.
  • the terminal device detects the first downlink common signal in the first frequency domain resource.
  • the first downlink common signal further carries first information, and the first information is used to determine the second frequency domain resource, and the network device also sends the first type of downlink common signal on the second frequency domain resource.
  • signal, and the transmission of the first type of downlink common signal on the second frequency domain resource is also periodic, the period is P2, and one period includes a pattern (referred to as the second pattern, or, pattern#2) corresponding to the first Two sets of downlink common signals.
  • the second pattern defines that within the last time domain period P2 of the second frequency domain resource (or within a time unit Q2, where Q2 is less than or equal to P2), the network device can send the first type of downlink common signal.
  • a plurality of time domain positions and an index of the first type of downlink common signal corresponding to each time domain position, and the first type of downlink common signals at these time domain positions constitute a second set of downlink common signals.
  • the second frequency domain resource and the first frequency domain resource can correspond to two different uplink and downlink configurations, that is, different TDD frame structures, the periods P1 and P2 can be equal or unequal, and pattern#1 and pattern#2 can be the same , can also be different.
  • the above-mentioned first information is used to determine the offset between the second frequency domain resource and the first frequency domain resource.
  • the terminal device after detecting a first type of downlink common signal on one frequency domain resource, the terminal device can quickly learn that the first type of downlink common signal also exists on another frequency domain resource, and the first type of downlink common signal on different frequency domain resources can be quickly learned.
  • the quasi-downlink common signal can use different transmission parameters (such as beam direction), so as to facilitate the terminal equipment to complete some parameter measurements (such as beam measurement) more quickly.
  • the first downlink common signal carries second information, and the second information is used to determine the pattern of the first type of downlink common signal corresponding to the first downlink common signal, that is, to determine pattern #1.
  • the protocol defines one or more downlink common signal patterns of the first type for each frequency band (band), each pattern corresponds to a pattern index, each pattern corresponds to a period (or a time unit), and within the period ( or time unit) the time domain position where one or more first type downlink common signals are sent.
  • the time domain position may be an absolute time domain position, for example, which subframe, which slot, and which symbol in which radio frame the first type of downlink common signals with different indices are located.
  • the time domain position may be a relative time domain position, for example, the time domain offset of the first type of downlink common signal with different indexes relative to the reference common signal (for example, the first type of downlink common signal with index 0) is
  • the time domain position of the reference common signal can be obtained through other information carried by the first downlink common signal; for another example, the first type of downlink common signal with different indices is relative to the period (or time unit) of the common signal pattern. What is the time domain offset of the start symbol of Four information.
  • the network device can select different patterns to send the first type of downlink common signal, which increases flexibility and can better match the uplink and downlink configurations on different frequency domain resources.
  • the second information is further used to indicate an index of a pattern (ie, pattern #2) of the first type of downlink common signal on the second frequency domain resource.
  • pattern #2 an index of a pattern of the first type of downlink common signal on the second frequency domain resource.
  • the first downlink common signal also carries third information, which is used to determine the index of the first downlink common signal in the pattern#1. Combined with the definition of the pattern#1, it can be determined that the first downlink common signal is in the pattern #1.
  • the pattern #1 corresponds to a time domain position within a period or time unit.
  • the first downlink common signal carries a piece of information, or is used to determine a parameter, which may be indicated by system information (such as MIB) carried by the first downlink common signal, for example, the MIB contains a corresponding cell, It directly indicates the information or is used to determine the parameter; it can also be indicated by the physical layer bit carried in the first downlink common signal.
  • system information such as MIB
  • the physical layer bit contains a certain field, which directly indicates the information or is used to determine the parameter
  • the transport block (TB) carried by the PBCH in the NR contains both the MIB from the upper layer and a part of the physical layer information bits; it can also be implicitly indicated by the sequence information contained in the first downlink common signal, such as by The cyclic offset of the sequence or the sequence number is implicitly indicated, and the sequence here may be the sequence corresponding to the synchronization signal or the demodulation reference signal of the PBCH.
  • the terminal device completes downlink timing synchronization and/or frequency synchronization according to the index of the first downlink common signal, or according to the index of the first downlink common signal and the definition of the pattern where the first downlink common signal is located.
  • downlink timing synchronization is completed based on the index of the first downlink common signal, the time domain position corresponding to each index specified by pattern #1, and the detection time of the first downlink common signal.
  • the terminal device after the terminal device detects the first downlink public signal, it maintains the dwell state, and does not need to perform the following operation S703; optionally, after the terminal device detects the first downlink public signal, it further receives the second type Downlink public signals, obtain more system parameters, and then maintain the camping state or perform cell access.
  • S703 The terminal device receives the second type of downlink public signal sent by the network device.
  • the second type of downlink common signals includes one or more common signals.
  • the terminal device determines, based on the first downlink common signal, a transmission parameter of a second downlink common signal, where the second downlink common signal belongs to the second type of downlink common signal. For example, the terminal device determines the time-frequency position of the second downlink common signal according to the first downlink common signal, or determines the time-frequency position of the downlink control information for scheduling the transmission of the second downlink common signal, and detects and decodes the downlink control information by detecting and decoding the downlink control information. information to learn the transmission parameters of the second downlink common signal.
  • the second downlink public signal carries downlink paging configuration information and uplink random access configuration information, and the terminal device can choose to maintain the camping state and monitor downlink paging to ensure that it can be woken up, or choose to initiate uplink random access. Access, complete the cell access, and transfer to the connected state.
  • the terminal device after detecting a first type of downlink common signal (such as the first downlink common signal) on one frequency domain resource, the terminal device can quickly learn that the first type of downlink common signal also exists on another frequency domain resource , the first type of downlink common signals on different frequency domain resources can use different transmission parameters (such as beam directions), thereby facilitating the terminal device to complete some parameter measurements (such as beam measurements) more quickly. At the same time, the terminal device can choose not to perform cell access and remain in the camping state.
  • a first type of downlink common signal such as the first downlink common signal
  • the terminal device can quickly learn that the first type of downlink common signal also exists on another frequency domain resource , the first type of downlink common signals on different frequency domain resources can use different transmission parameters (such as beam directions), thereby facilitating the terminal device to complete some parameter measurements (such as beam measurements) more quickly.
  • the terminal device can choose not to perform cell access and remain in the camping state.
  • a subsequent cell access may be performed based on a plurality of the first type of downlink public signals on the two frequency domain resources with better quality, so as to improve the success probability of subsequent cell access.
  • an embodiment of a communication method provided by the present application is applied to a process in which a terminal device accesses a network device.
  • the method includes:
  • the network device sends the first type of downlink common signal to the terminal device.
  • the first type of downlink common signal includes one or more downlink common signals
  • the first type of downlink common signal includes a first downlink common signal
  • the first downlink common signal indicates the time-frequency position of the control information of the scheduling system information .
  • S802 The terminal device receives the first downlink common signal.
  • the terminal device can detect the first type of downlink common signal, and successfully detect the first downlink common signal.
  • a first-type downlink common signal corresponds to a first-type downlink common signal transmission time-frequency position and an index of the downlink common signal.
  • the downlink common signal, the downlink common signal index, and the time-frequency position of the downlink common signal can be used interchangeably.
  • the terminal device may obtain the receiving position of the system information according to the first downlink common signal.
  • the terminal device acquires downlink timing synchronization based on the first downlink common signal. For example, the following steps can be included:
  • the terminal device acquires, according to the frequency band where the first downlink common signal is located, a pattern or candidate pattern set of the first type of downlink common signal predefined in the frequency band.
  • the meaning of the first type of downlink common signal pattern is similar to that of the first pattern and the second pattern in the above embodiment, and details are not repeated here.
  • the terminal device determines, based on the second information carried by the first downlink common signal and the predefined candidate pattern set, a pattern corresponding to the transmission of the first downlink common signal, that is, the first pattern pattern #1.
  • the second information is used to determine the pattern of the first type of downlink common signal to which the first downlink common signal belongs.
  • N kinds of candidate patterns are predefined, corresponding to pattern indices #0-#(N-1), and the second information is used to indicate the above-mentioned pattern index.
  • This step is optional. For example, when each frequency band has only one predefined candidate pattern, the first downlink public signal does not need to carry the above-mentioned second information.
  • the terminal device obtains, according to the fourth information carried by the first downlink common signal, the time domain position of the start symbol of the period (or time unit) in which the first pattern corresponding to the first downlink common signal is located, for example, the fourth information It is used to indicate the radio frame, radio half frame, radio subframe, or time slot where the start symbol of the time unit corresponding to the first pattern is located.
  • the terminal device determines the index of the first downlink common signal transmission in the first pattern based on the third information carried by the first downlink common signal, so as to combine the definition of pattern#1 and the period or time unit corresponding to pattern#1
  • the time domain position of the starting symbol of the first downlink public signal is determined, and the number of the radio frame, radio half frame, radio subframe, time slot, symbol, etc. at the detection time of the first downlink public signal is determined, and then corresponds to the detection time of the first downlink public signal.
  • Downlink timing synchronization The time domain position of the starting symbol of the first downlink public signal is determined, and the number of the radio frame, radio half frame, radio subframe, time slot, symbol, etc. at the detection time of the first downlink public signal is determined, and then corresponds to the detection time of the first downlink public signal.
  • the terminal device further determines the first system information transmission location based on the detected first downlink common signal, where the first system information transmission location is one of one or more locations where the network device may transmit system information.
  • the system information may be a type of downlink common signal of the second type.
  • the system information may be SIB1.
  • the first system information is carried in the PDSCH, and the first downlink common signal carries the indication information of the frequency domain position and time domain position of the PDSCH; in another implementation, the first system information is carried in the PDSCH.
  • PDSCH, and the time-frequency position and transmission parameters of the PDSCH are indicated by the first DCI.
  • the first downlink common signal carries the indication information of the frequency domain position and the time domain position of the first DCI.
  • the terminal device obtains, according to the first downlink public signal, the DCI for receiving and scheduling the transmission position of the first system information at the frequency domain position and the time domain position, so as to obtain the frequency domain position and time domain position of the PDSCH carrying the first system information, that is, the first system information.
  • a system information transmission location The terminal device obtains, according to the first downlink public signal, the DCI for receiving and scheduling the transmission position of the first system information at the frequency domain position and the time domain position, so as to obtain the frequency domain position and time domain position of the PDSCH carrying the first system information, that is, the first system information.
  • S803 The network device sends the first system information to the terminal device
  • the first system information carries information indicating at least two frequency domain resources, and without loss of generality, two frequency domain resources (a first frequency domain resource and a second frequency domain resource) are used as an example for description here.
  • the first frequency domain resource and the second frequency domain resource may be two carriers, or two bandwidth parts or two other frequency units.
  • the first system information carries information indicating the first frequency domain resource and the second frequency domain resource; wherein the first frequency domain resource and the second frequency domain resource have different uplink and downlink configurations.
  • the first frequency domain resource and the second frequency domain resource may include one downlink carrier and one uplink carrier, or include one uplink BWP and one downlink BWP.
  • the uplink and downlink configuration refers to the number and positions of downlink symbols, uplink symbols and flexible symbols corresponding to a frequency domain resource.
  • the downlink symbol is used for downlink transmission
  • the uplink symbol is used for uplink transmission
  • the flexible symbol is used for uplink and downlink conversion or a symbol with no restriction on the transmission direction. It should be understood that the number of one or both of the downlink symbols, uplink symbols and flexible symbols corresponding to the frequency domain resource may be zero.
  • the uplink and downlink configuration can be expressed as ⁇ xD:yS:zU ⁇ , that is, x consecutive downlink symbols in sequence, followed by y consecutive flexible symbols, and finally z consecutive uplink symbols, where x, y, z are greater than or equal to 0 the integer.
  • the different uplink and downlink configurations of the first frequency domain resource and the second frequency domain resource refer to a different number or position of at least one of uplink symbols, flexible symbols and downlink symbols corresponding to the first frequency domain resource and the second frequency domain resource.
  • the first frequency domain resource and the second frequency domain resource can be replaced by the first cell and the second cell; or, can also be replaced by the first carrier and the second carrier; or, can also be replaced by the first BWP and Second BWP.
  • carrier, cell, and BWP can be used interchangeably.
  • the first frequency domain resource includes a downlink carrier DL carrier and an uplink carrier UL carrier
  • the second frequency domain resource includes a downlink carrier and an uplink carrier.
  • the center frequency points of the downlink carrier and the uplink carrier included in a frequency domain resource are aligned, but the widths may be different.
  • the carrier can also be other frequency units, such as bandwidth parts.
  • the network device can send the downlink signal on any one of the two DL carriers corresponding to the two frequency domain resources, and the terminal device can also send the uplink signal on any one of the two UL carriers corresponding to the two frequency domain resources.
  • the carrier corresponding to the first frequency domain resource and the carrier corresponding to the second frequency domain resource may both be in an active state during the initialized access process.
  • the network device and the terminal device can send and receive information on two carriers at the same time. It just means that the network device and the terminal device cannot always send and receive information on one carrier.
  • the two frequency domain resources have the following characteristics, which can support rapid switching between network equipment and terminal equipment on two DL carriers or two UL carriers, and dynamically, quickly and flexibly select a carrier for information transmission and reception.
  • two DL carriers do not overlap, or two DL carriers have the same subcarrier spacing, or two DL carriers have the same bandwidth
  • two UL carriers do not overlap, or two UL carriers have the same subcarrier spacing, or Both UL carriers have the same bandwidth.
  • S804 The terminal device receives the first system information.
  • the terminal device receives the first system information according to the detected first downlink common signal. Specifically, the terminal device determines the time-frequency position of the control information for scheduling the first system information according to the first downlink common signal, receives the control information at the time-frequency position of the control information, and the control information indicates the first system information , and then receive the first system information at that location.
  • the terminal device determines the first frequency domain resource and the second frequency domain resource according to the first system information. For example, the terminal device obtains the first frequency domain resource and the corresponding uplink and downlink configuration based on the information carried by the first system information; and obtains the second frequency domain resource and the corresponding uplink and downlink configuration.
  • the first downlink common signal is SSB
  • the first system information is SIB1.
  • the terminal device sends a random access preamble corresponding to the first random access resource on the first random access resource in the random access resource set.
  • the random access resource set includes random access resources on the first frequency domain resources and/or random access resources on the second frequency domain resources.
  • the random access resource set refers to a set of random access resources.
  • a random access resource refers to a random access preamble on a random access opportunity (or random access time-frequency resource), for details, please refer to the relevant description above.
  • the terminal device determines a random access resource set. For example, the terminal device determines the random access resource set according to the RACH configuration information carried in the first system information.
  • the RACH configuration information includes time-domain location information, frequency-domain location information, and code-domain configuration information of the RACH occasion, where the code-domain configuration information indicates the number of RACH preambles that can be sent on a time-frequency location (or RACH occasion) and each RACH preamble
  • the specific sequence information of the preamble, the frequency domain position information indicates that there are several RACH occasions and the frequency domain position of each RACH occasion at the same time domain position in the frequency domain resource, and the time domain position information indicates the configuration period of the RACH occasion , There are several RACH occurrences in the cycle and the relative time domain position of each occurrence in the cycle.
  • both the first frequency domain resource and the second frequency domain resource have random access resources, and the random access resources on the first frequency domain resource and the second frequency domain resource together form the random access resource.
  • the RACH occasion of the first frequency domain resource and the second frequency domain resource can be counted independently, or the RACH occasion on the first frequency domain resource and the second frequency domain resource can be counted jointly.
  • the terminal device receives the first random access configuration information and the second random access configuration information in the first system information, where the first random access configuration information is used to determine the random access on the first frequency domain resource resource, where the second random access configuration information is used to determine random access resources on the second frequency domain resources.
  • the first random access configuration information and the second random access configuration information are similar to the random access configuration information.
  • the first random access configuration information and the second random access configuration information include time domain location information, frequency domain location information and code domain configuration information of the RACH occasion.
  • only one frequency domain resource has random access resources on the two frequency domain resources, for example, only the first frequency domain resource has random access resources, and the first frequency domain resource has random access resources.
  • the random access resources constitute the random access resource set.
  • the terminal device receives the first random access configuration information in the first system information, and determines the RACH resource on the first frequency domain resource.
  • the first random access configuration information includes time domain location information, frequency domain location information and code domain configuration information of the RACH occasion, the specific meaning is the same as the above, and is not repeated here.
  • the random access resource set only includes valid random access resources, and the valid random access resources refer to whether the time domain position of the random access resources corresponds to an uplink symbol or a flexible symbol. , and/or, the random access resource does not overlap with any downlink common signal or valid downlink common signal in the time domain.
  • the terminal device Before determining the random access resource set, the terminal device first selects effective random access resources from random access resources on the first frequency domain resource and/or the second frequency domain resource.
  • the random access resource set includes valid random access resources and invalid random access resources. The so-called invalid random access resource means that the time domain position of the random access resource corresponds to a downlink symbol, and/or the random access resource overlaps with a downlink common signal or a valid downlink common signal in the time domain.
  • the terminal device determines the first random access resource according to the common signal index corresponding to the detected first downlink common signal.
  • the first downlink common signal here is a first type of downlink common signal detected by the terminal device, which may be the first type of downlink common signal detected by the terminal device, or one or more detected The first type of downlink common signal with the highest received signal power among the first type of downlink common signals, or the first detected first type of downlink common signal in a downlink common signal subset, where the one downlink common signal subset includes the terminal One or more first-type downlink common signals detected by the device and whose received power is greater than or equal to a first threshold, where the first threshold may be indicated by a certain first-type downlink common signal.
  • Selecting the first random access resource from the set of random access resources includes: the terminal device determining a subset of RACH resources according to the first SSB resource, the SSB resource and the RACH resource association relationship.
  • the random access resource subset is a subset of the random access resource set.
  • the RACH resource subset includes RACH resources on the first frequency domain resource and the second frequency domain resource.
  • the RACH resource subset may only include RACH resources on one frequency domain resource.
  • the terminal device needs to exclude invalid RACH resources from the RACH resource subset, and the invalid RACH resources are not valid RACH resources.
  • the definition of the valid RACH resources Same as above.
  • the terminal device selects the RACH resource with the earliest time domain from the RACH resource subset, if there are multiple RACH resources with the same time domain, such as multiple RACH occasions with different frequency domain locations, randomly select a RACH occasion, or, There are multiple RACH sequences in a RACH occasion, and one RACH sequence is randomly selected.
  • the spatial filtering settings used by the terminal device to send the first RACH preamble on the first RACH occasion are the same as the spatial filtering settings used by the terminal device to receive the first SSB resource.
  • the network device receives the random access preamble corresponding to the first random access resource on the first random access resource.
  • the network device detects the random access preamble on each random access resource in the first random access resource subset, and the network device detects the random access preamble on the first random access resource.
  • the random access resource set of the terminal device includes random access sets respectively located on at least two frequency domain resources. Since the uplink and downlink configurations corresponding to the at least two frequency domain resources are different, Then the terminal device can flexibly select suitable random access resources for random access from random access resources corresponding to at least two frequency domain resources according to the uplink and downlink configuration, which can shorten the waiting time for sending the random access preamble, thereby reducing the access delay, and can improve the flexibility of the system.
  • the method further includes:
  • the terminal device determines a downlink common signal resource subset, where the downlink common signal resource subset includes downlink common signal resources on the first frequency domain resources and/or downlink common signal resources on the second frequency domain resources.
  • the subset of downlink common signal resources may also be referred to as an effective downlink common signal set.
  • the valid downlink common signal refers to the downlink common signal that is actually sent.
  • the downlink common signal resource subset is a subset of the downlink common signal resource set.
  • the subset of downlink common signal resources includes a downlink common signal on the first frequency domain resource and a downlink common signal on the second frequency domain resource.
  • the downlink common signal resource subset includes a first downlink common signal resource subset and a second downlink common signal resource subset, and the resources in the first downlink common signal resource subset are located in the first frequency domain resources, the resources of the second downlink common signal resource subset are located in the second frequency domain resources.
  • the first downlink common signal resource subset is a subset of the first downlink common signal resource set (referred to as the first set for short).
  • the first set includes one or more common signals corresponding to the first downlink common signal pattern (eg, Pattern#1).
  • the first downlink common signal pattern is used to indicate one or more downlink common signals on the first frequency domain resource, the index of each downlink common signal, and the first frequency domain resource in one cycle (or within one time unit).
  • the index of the downlink common signal included in the first subset in the first downlink common signal set is indicated by the first indication information.
  • the second downlink common signal resource subset is a subset of the second downlink common signal resource set (referred to as the second set for short).
  • the second set includes one or more downlink common signals corresponding to the second downlink common signal pattern (eg, Pattern#2).
  • the second downlink common signal pattern is used to indicate one or more downlink common signals on the second frequency domain resource, the index of each downlink common signal, and the second frequency domain resource in one cycle (or within one time unit).
  • the index of the downlink common signal included in the second subset in the second downlink common signal set is indicated by the second indication information.
  • the first downlink common signal pattern may be the same as or different from the second downlink common signal pattern.
  • the first indication information includes a bitmap (bitmap), each bit in the bitmap corresponds to a downlink public signal in the first set, and the value of the bit is used to indicate whether the corresponding downlink public signal is. It belongs to the first downlink common signal resource subset.
  • the second indication information includes a bitmap, each bit in the bitmap corresponds to a downlink public signal in the second set, and the value of the bit is used to indicate whether the corresponding downlink public signal belongs to the first public signal. 2.
  • the terminal equipment determines a subset of downlink common signal resources, including:
  • the terminal device receives the first indication information and the second indication information, and determines the first downlink common signal resource subset according to the first indication information.
  • the first indication information and the second indication information are sent by the network device to the terminal device.
  • the first indication information and the second indication information are carried in the first system information.
  • the two indication information respectively indicate the downlink common signal resources on the first frequency domain resource and the second frequency domain resource, which can match the frame structure, subcarrier spacing and other parameters of the two frequency domain resources, thereby improving the indication efficiency .
  • the subset of downlink common signal resources only includes downlink common signals on the first frequency domain resource or the second frequency domain resource.
  • the set of downlink common signal resources only includes the first frequency domain resource. set or second set.
  • the index of the downlink common signal included in the downlink common signal resource subset in the first downlink common signal pattern or the second downlink common signal pattern is indicated by the first indication information or the second indication information.
  • the subset of downlink common signal resources includes a downlink common signal on the first frequency domain resource and a downlink common signal on the second frequency domain resource.
  • the downlink common signal resource subset is equal to the third downlink common signal resource subset, and the third downlink common signal resource subset is a subset of the third downlink common signal resource set (referred to as the third set for short).
  • the third set includes one or more downlink common signals corresponding to the third downlink common signal pattern (such as Pattern#3), and the third downlink common signal pattern is used to indicate that within a period (or within a time unit), the first frequency domain One or more downlink common signals on the resource and the second frequency domain resource, the index of each downlink common signal, and the time-frequency position on the first frequency domain resource or the second frequency domain resource.
  • the index of the downlink common signal included in the third downlink common signal resource subset in the third downlink common signal set is indicated by the third indication information.
  • the terminal equipment determines a subset of downlink common signal resources, including:
  • the terminal device receives the third indication information, and determines the third downlink common signal resource subset according to the third indication information, where the downlink common signal resource subset is equal to the third downlink common signal resource subset.
  • the third indication information is sent by the network device to the terminal device.
  • the third indication information is carried in the first system information.
  • the method further includes:
  • the terminal device receives the downlink common signal pattern indication information, the downlink common signal pattern indication information indicates the index of the third downlink common signal pattern, so that each downlink common signal in the third downlink common signal set is in the first frequency domain resource or the time domain location of the second frequency domain resource.
  • the downlink common signal pattern indication information may be carried in each first type of downlink common signal.
  • a pattern is used to jointly indicate the set of downlink common signal resources on the first frequency domain resource and the second frequency domain resource, and then an indication information is used to indicate which public signals corresponding to the indexes in the set belong to the downlink common signal resources.
  • a subset of signal resources for improved configuration flexibility.
  • the terminal device determines an association relationship between the random access resource set and the downlink common signal resource subset, where the association relationship includes the downlink common signal resource in the downlink common signal resource subset and the random access resource set in the random access resource set. Correspondence to a subset of resources.
  • the random access resource set may only include valid random access resources, or may include valid random access resources and invalid random access resources.
  • the downlink common signal resource subset includes a first downlink common signal resource subset and a second downlink common signal resource subset, and the resources in the first downlink common signal resource subset are located on the first frequency. domain resources, the resources of the second downlink common signal resource subset are located in the second frequency domain resources;
  • the association relationship includes at least one of a first association relationship, a second association relationship, a third association relationship, or a fourth association relationship, and the first association relationship is used to indicate that the random access resource on the first frequency domain resource is related to the first association relationship.
  • the association relationship between the downlink common signal resource subset, the second association relationship is used to indicate the association relationship between the random access resource set on the second frequency domain resource and the first downlink common signal resource subset, the third The association relationship is used to indicate the association relationship between the random access resource set on the first frequency domain resource and the second downlink common signal resource subset, and the fourth association relationship is used to indicate the random access resource set on the second frequency domain resource.
  • the association relationship of the second downlink common signal resource subset is used to indicate that the random access resource on the first frequency domain resource is related to the first association relationship.
  • the association relationship may include the first association relationship, the second association relationship, the third association relationship, the fourth association relationship, the fifth association relationship, the sixth association relationship, the seventh association relationship, the eighth association relationship or the ninth association relationship at least one of the associations.
  • the fifth association relationship is used to indicate the association relationship between the random access resources in the two frequency domains and the resources in the first downlink common signal resource subset, wherein the random access resources in the first frequency domain and the second frequency domain Random access resource joint count on the above.
  • the sixth association relationship is used to indicate the association relationship between the random access resources in the two frequency domains and the resources in the second downlink common signal resource subset, wherein the random access resources in the first frequency domain are associated with the resources in the second frequency domain. Joint count of random access resources.
  • the seventh association relationship is used to indicate the association relationship between the random access resource on the first frequency domain resource and each valid common signal resource in the downlink common signal resource subset, and the downlink common signal resource subset is the third downlink common signal A subset of resources.
  • the eighth association relationship is used to indicate the association relationship between the random access resource on the second frequency domain resource and each valid common signal resource in the first downlink common signal resource set, and the downlink common signal resource subset is The third downlink common signal resource subset.
  • the ninth association relationship is used to indicate the association relationship between the two random access resources in the frequency domain and each valid common signal resource in the first downlink common signal resource set, wherein the random access resources in the first frequency domain are The resources are counted jointly with the random access resources in the second frequency domain, and the subset of downlink common signal resources is the third subset of downlink common signal resources.
  • the downlink common signal in the third downlink common signal resource subset is counted jointly on the first frequency domain resource and the second frequency domain resource, and the corresponding index is indicated by the third downlink common signal pattern.
  • the terminal device determines a random access resource subset corresponding to a first downlink common signal resource, where the first downlink common signal resource is a resource in the downlink common signal resource subset, All random access resources in the random access resource subset belong to the random access resource set, and the random access resource subset includes the first random access resource.
  • the method further includes:
  • the terminal device determines the association between the random access resource set and the downlink common signal resource set, where the association includes downlink common signal resources in the downlink common signal resource set and resources in the random access resource set Subset correspondence.
  • the terminal device can determine at least one of the following: the association relationship between the random access resource set and the downlink common signal resource set, the association relationship between the valid random access resource set and the downlink common signal resource set, and the The association relationship between the random access resource set and the downlink common signal resource subset, or the association relationship between the effective random access resource set and the downlink common signal resource subset.
  • Step S807' and step S807 can be replaced with each other, that is, the terminal device can first determine the effective downlink common signal resource set from the downlink common signal resource set, and then determine the association relationship between the effective downlink common signal resource set and the random access resource set. .
  • the terminal device may determine the effective random access resource set from the random access resource set, and then determine the association relationship between the downlink common signal resource set and the effective random access resource set.
  • the terminal device may first determine the effective downlink common signal resource set from the downlink common signal resource set, determine the effective random access resource set from the random access resource set, and then determine the effective downlink common signal resource set and the effective random access resource.
  • the relationship of the collection The association relationship between the downlink common signal resource set and the random access resource set may also be directly determined, and when a certain common signal and/or random access resource is subsequently selected for transmission, it is then determined whether the common signal or resource is valid.
  • the downlink common signal resource subset can be determined by any one of the following methods:
  • the terminal device obtains first indication information from SIB1, where the first indication information indicates at least one valid downlink common signal index on the first frequency domain resource and in the first downlink common signal pattern, and the valid downlink common signal index corresponds to
  • the downlink common signals of the DLs constitute an effective downlink common signal resource set, that is, a subset of downlink common signal resources.
  • the first frequency domain resource is the frequency domain resource in which the first downlink common signal is detected in the foregoing steps.
  • the first frequency domain resource corresponds to the frequency domain resource where the SSB transmission detected by the terminal device in the preceding steps is located.
  • the terminal device obtains the first indication information from SIB1, and the first indication information indicates whether there is SSB transmission on the SSB resources corresponding to multiple SSB indexes in an SSB pattern on the first frequency domain resource, that is, each SSB index Whether it is valid or not, all the SSB resources corresponding to the valid SSB index form the valid SSB resource set.
  • the SSB resources corresponding to the effective SSB index are sorted in the effective SSB resource set according to the index order from small to large.
  • the terminal device obtains the first indication information and the second indication information from SIB1, and determines a first valid SSB resource subset according to the first indication information, and the SSBs in the first valid SSB resource subset belong to the first frequency domain resource, A second SSB resource subset is determined according to the second indication information, the SSBs in the second SSB resource subset belong to the second frequency domain resources, and the valid downlink common signal resource set (ie the downlink common signal resource subset) is The union of the first subset of valid SSB resources and the second subset of valid SSB resources.
  • both the first frequency domain resource and the second frequency domain resource have SSB resources, and the SSB resources on each frequency domain resource independently form an SSB pattern, as shown in Figure (b) below.
  • the terminal device obtains the first indication information and the second indication information from SIB1, and the first indication information is used to indicate whether the SSB resources corresponding to multiple SSB indexes in 1 SSB pattern on the first frequency domain resource are really available.
  • the second indication information is used to indicate whether there is really SSB transmission on the SSB resources corresponding to multiple SSB indexes in 1 SSB pattern on the second frequency domain resource, that is, each Whether the SSB index is valid; finally, the SSB resources corresponding to all valid SSB indices on the first frequency domain resources and the SSB resources corresponding to all valid SSB indices on the second frequency domain resources form the valid SSB resource set.
  • the terminal device obtains the third indication information from the system information SIB1, and determines the downlink common signal resource subset according to the third indication information, that is, the downlink common signal resource subset, and the downlink common signal resource subset is the third downlink common signal A subset of the third downlink common signal resource set corresponding to the pattern, where the SSB resource set corresponding to the third downlink common signal pattern includes the SSB resource on the first frequency domain resource and the SSB resource on the second frequency domain resource .
  • both the first frequency domain resource and the second frequency domain resource have SSB resources, and the SSB resources on the two frequency domain resources jointly form an SSB pattern, as shown in the following figure (c).
  • the terminal device obtains third indication information from SIB1, and the third indication information is used to indicate whether the SSB resources corresponding to multiple SSB indexes in one SSB pattern on the first frequency domain resource and the second frequency domain resource are There is really SSB transmission, that is, whether each SSB index is valid, and the SSB resource corresponding to the valid SSB index on the last SSB pattern constitutes the valid SSB resource set.
  • the SSB resources corresponding to the effective SSB index are sorted in the SSB resource set from small to large in order of index.
  • the association between the SSB resource and the RACH resource in step S807 or S807' may be one of the following associations:
  • the first type only the first frequency domain resources have SSB resources, and only the first frequency domain resources have RACH resources, then the association relationship is the first association relationship, that is, the RACH resources in the first frequency domain and the SSB resources in the first frequency domain association relationship.
  • the association relationship between the SSB and the RACH resource will include multiple sub-association relationships, and each sub-association relationship includes an SSB resource corresponding to an effective SSB index, and a RACH preamble set on a RACH occasion, or all RACH preambles on a RACH occasion A collection, or a collection of multiple RACH preambles on multiple RACH occasions.
  • the above-mentioned RACH occasion can be identified by the RACH occasion index, and the RACH occasion index is the counting method of the RACH occasion on the first frequency domain resource.
  • the RACH occasion counting method on a frequency domain resource includes: 1) frequency first, then time, that is, first order the RACH occasions in a time domain position and different frequency domain positions according to the frequency domain position from low to high, and then Sort the RACH occasions in different time domain positions from front to back; 2) Time first and then frequency, that is, first sort the RACH occasions in a frequency domain position and different time domain positions from front to back, and then sort the RACH occasions in different frequency domain positions.
  • RACH occasion is sorted from low to high; 3) In a second time unit, time first and then frequency, and then according to the second time unit from first to last, for example, the second time unit is a time slot, then for more
  • the RACH occasions in each time domain location and multiple frequency domain locations are first in time and then in frequency, and then the RACH occasions in different time slots are sorted according to the time slot index from small to large.
  • the RACH preamble on a RACH occasion can be identified by the preamble index.
  • the second type only the first frequency domain resource has SSB resources, both frequency domain resources have RACH resources, and the RACH occasion is independently counted on the two frequency domain resources, then the association relationship includes the first association relationship and the second association relationship.
  • the second association relationship indicates the association relationship between the RACH resources in the second frequency domain and the SSB resources in the first frequency domain.
  • the third type only the first frequency domain resource has SSB resources, both frequency domain resources have RACH resources, and the RACH occasion is counted jointly on the two frequency domain resources, then the association relationship is the fifth association relationship.
  • the fifth association relationship is used to indicate the association relationship between the SSB resource on the first frequency domain resource and the RACH occasion jointly counted on the two frequency domain resources, and the RACH preamble on each RACH occasion.
  • the joint counting method of the RACH occasion on the two frequency domain resources includes: 1) first the frequency and then the time, that is, firstly, the RACH occasion in one time domain position and two frequency domain resources in different frequency domain positions according to The frequency domain positions are sorted from low to high, and then the RACH occasions in different time domain positions are sorted from front to back; 2) Time first and frequency later, that is, first, the RACH occasions in a frequency domain position and different time domain positions are sorted from front to back.
  • the second time unit is time slot
  • the RACH occasion in multiple time domain locations and multiple frequency domain locations in a time slot is first time and then frequency
  • the RACH occasion in different time slots is sorted according to the time slot index from small to large
  • the first frequency domain resource and the second frequency domain resource, the RACH occurrence count on each frequency domain resource may be frequency first and then time, time first and then frequency, or a combination.
  • the effective RACH occasion refers to that the frequency domain position of the RACH occasion is within the first frequency domain resource or the second frequency domain resource, and the time domain position of the RACH occasion corresponds to the uplink symbol on the frequency domain resource or flexible symbol.
  • both frequency domain resources have SSB resources and each SSB resource constitutes an independent SSB pattern, and only the first frequency domain resource has RACH resources, the association relationship includes the first association relationship and the third association relationship.
  • both frequency domain resources have SSB resources and each SSB resource constitutes an independent SSB pattern, both frequency domain resources have RACH resources and the RACH occasion counts independently on the two frequency domain resources, then the association includes the first A relationship, a second relationship, a third relationship, and a fourth relationship.
  • Both frequency domain resources have SSB resources and each SSB resource constitutes an independent SSB pattern, both frequency domain resources have SSB resources and each SSB resource constitutes an independent SSB pattern, both frequency domain resources have The RACH resource and the RACH occasion are counted jointly on the two frequency domain resources, the association relationship includes the fifth association relationship and the sixth association relationship.
  • the six association relationships are used to indicate the association relationship between the SSB resource on the second frequency domain resource and the RACH occasion jointly counted on the two frequency domain resources, and the RACH preamble on each RACH occasion.
  • Type 7 Both frequency domain resources have SSB resources, and the two SSB resources are combined to form one SSB pattern, and only the first frequency domain resource has RACH resources, then the association relationship includes the seventh association relationship, and the seventh association relationship uses It is used to indicate the association relationship between each valid SSB resource in the joint SSB pattern on the two frequency domain resources and the RACH resource on the first frequency domain resource.
  • the location and index count of each SSB resource in 1 SSB pattern are determined by the SSB pattern.
  • both frequency domain resources have SSB resources and two SSB resources are combined to form one SSB pattern, both frequency domain resources have RACH resources and the RACH occasion on both frequency domain resources are independently counted, then the association relationship Including the seventh relationship and the eighth relationship.
  • the eighth association relationship is used to indicate the association relationship between each valid SSB resource in the joint SSB pattern on the two frequency domain resources and the RACH resource on the second frequency domain resource.
  • both frequency domain resources have SSB resources and two SSB resources are combined to form one SSB pattern, both frequency domain resources have RACH resources and both frequency domain resources have RACH occasion joint count, then the association relationship Including the ninth association relationship, the ninth association relationship is used to indicate the association relationship between each valid SSB resource in the joint SSB pattern on the two frequency domain resources and the RACH occasion of the joint count, and the RACH preamble on each RACH occasion.
  • the method further includes:
  • the network device sends the second downlink control information DCI at the PDCCH monitoring position in the second physical downlink control channel PDCCH monitoring position set; and/or,
  • the network device sends the second DCI at the PDCCH monitoring position in the third PDCCH monitoring position set;
  • the second DCI is used to schedule the second PDSCH
  • the second PDSCH is used to carry the RAR
  • the PDCCH monitoring position in the second PDCCH monitoring position set is on the first frequency domain resource and is located in the first In the sub-time window
  • the PDCCH monitoring position in the third PDCCH monitoring position set is on the second frequency domain resource and is located in the second sub-time window
  • the first sub-time window and the second sub-time The window is determined according to the first random access resource.
  • the network device sends the second DCI at one or more locations on the above-mentioned PDCCH detection location. For example, the network device selects the earliest effective monitoring location in the time domain to send the second DCI, so that the terminal device can quickly receive the RAR.
  • the terminal device detects the second downlink control information DCI at the PDCCH monitoring position in the second physical downlink control channel PDCCH monitoring position set; and/or,
  • the terminal device detects the second DCI at the PDCCH monitoring position in the third PDCCH monitoring position set.
  • the terminal device directly determines a first time window, the length of the first time window is predefined or indicated in SIB1, and the start position of the first time window is away from the end position of the first RACH resource.
  • the distance is predefined or indicated in SIB1.
  • the terminal device detects the second DCI within the first time window and the first frequency domain resource or within the second time window and on the second frequency domain resource.
  • the network device sends the second DCI at one or more PDCCH detection positions of the first frequency domain resource or the second frequency domain resource, then the network device can flexibly select from at least two frequency domain resources according to the uplink and downlink configuration Suitable resources are used to send the second DCI for scheduling the random access response, which can shorten the delay in sending the second DCI and improve the flexibility of the system.
  • the terminal device determines the first sub-time window and the second sub-time window respectively, and detects the second DCI in the first sub-time window and on the first frequency domain resource; and/or in the second sub-time window, The second DCI is detected on the second frequency domain resource.
  • the following is an example of this case.
  • Case 1 If the terminal device supports detecting the second DCI on two frequency domain resources at the same time, it supports detecting the second DCI at the monitoring positions in the second PDCCH monitoring position set and the third PDCCH monitoring position set at the same time. Then the terminal device detects the second DCI on the first frequency domain resource and each valid detection position of the second PDCCH monitoring position within the first sub-time window, and simultaneously detects the second DCI on the second frequency domain resource and within the second sub-time window. The second DCI is detected at each valid monitoring location in the set of three PDCCH monitoring locations, where the valid monitoring location means that the symbol where the monitoring location is located is a downlink symbol or a flexible symbol.
  • Case 2 If the terminal device does not support simultaneous detection of the second DCI on two frequency domain resources, that is, does not support simultaneous monitoring of one monitoring location in the second PDCCH monitoring location set and one overlapping monitoring location in the third PDCCH monitoring location set to detect the second DCI. At this time, when the second monitoring position in the second PDCCH monitoring position set and the third monitoring position in the third PDCCH monitoring position set overlap in time domain, the terminal device determines whether to detect the first monitoring position at the above-mentioned second monitoring position or the third monitoring position according to certain rules. 2 DCI.
  • the terminal device first determines which of the second monitoring position and the third monitoring position is an effective monitoring position, and the effective monitoring position refers to that the time domain symbols included in the PDCCH monitoring position are downlink symbols ( or downlink symbol or flexible symbol), the corresponding invalid monitoring position refers to that at least one time domain symbol in the time domain symbols included in the PDCCH detection position is an uplink symbol or flexible symbol (or uplink symbol) on the corresponding frequency domain resource .
  • the terminal device preferentially selects an effective monitoring location to detect the second DCI. If the second monitoring location and the third monitoring location are valid monitoring locations, the terminal device can select a monitoring location to detect the second DCI according to the following criteria:
  • Manner 1 preferentially select a monitoring position on a preset frequency domain resource, the preset frequency domain resource may be predefined, indicated by SIB1, or directly by the terminal device receiving the first downlink public signal in S802 The frequency domain resource where it is located;
  • Mode 2 The monitoring position on the frequency domain resource where the last valid PDCCH monitoring position is located is preferentially selected for detection, which has the advantage of reducing the number of times the terminal equipment switches between the two frequency domain resources.
  • the terminal device does not support the simultaneous detection of the second DCI on two frequency domain resources by default, and the processing is performed according to the above case 2.
  • the terminal device has not completed cell access, and the network device does not know the capabilities of the terminal device. It can only default that the terminal device does not support detecting the second DCI on two frequency domain resources at the same time. According to this situation, the second DCI is sent. , so the terminal device can only detect the second DCI according to this situation.
  • the symbol where the second monitoring position is located is a downlink symbol or a flexible symbol
  • the symbol at the third monitoring position includes an uplink symbol
  • the symbol where the second monitoring location is located is a downlink symbol or a flexible symbol
  • the symbol at the third monitoring position is also a downlink symbol or a flexible symbol
  • the second DCI is sent at a fourth monitoring position, where the fourth monitoring position is the one of the second monitoring position and the third monitoring position One.
  • the terminal device detects the second DCI at the corresponding monitoring position.
  • the second DCI is scrambled by a random access wireless network temporary identifier RA-RNTI, and the value of the RA-RNTI is based on whether the frequency domain resource where the first random access resource is located is the first frequency domain resource or the The second frequency domain resource and the time-frequency position of the first random access resource in the frequency domain resource are determined.
  • RA-RNTI random access wireless network temporary identifier
  • the terminal device determines the RA-RNTI, and descrambles the second DCI according to the RA-RNTI. For example, a terminal device receives a signal at a monitoring position, demodulates and decodes to obtain a set of bit sequences, determines the Cyclic Redundancy Check (CRC) bit according to RA-RNTI descrambling, and judges the received bit according to the CRC bit. The sequence is not received correctly and is not given to itself.
  • CRC Cyclic Redundancy Check
  • the value of the RA-RNTI is determined according to the frequency domain resource where the first RACH resource is located and the time-frequency position of the first RACH resource in the frequency domain resource where the first RACH resource is located.
  • the value of RA-RNTI is determined only with the time-frequency position of the first RACH resource on the first frequency domain resource, or, the RACH occurrence index on the first frequency domain resource is determined ;
  • the occasion index is determined, that is, the same RACH occurrence index on the first frequency domain resource and the second frequency domain resource corresponds to different RA-RNTI; for another example, for the third, sixth or ninth mode, the value of RA-RNTI is the same as that of the first RACH resource.
  • the RACH occasion is related to ordering (ie index) in joint counting
  • the terminal device receives the second PDSCH at a frequency domain resource indicated by the second DCI and a time-frequency position within the frequency domain resource, and decodes the second PDSCH. Parse the content of the second PDSCH, if one of the fields contains the RACH preamble index sent by the terminal device, it is considered that this field is for the terminal device, and the subsequent steps are performed.
  • the method further includes:
  • the network device sends a second PDSCH to the terminal device, where the second PDSCH includes a random access response RAR, and the RAR carries indication information of a fourth frequency domain resource;
  • the RAR is carried by the second PDSCH, the RAR is used to schedule the first physical uplink shared channel PUSCH, and the fourth frequency domain resource belongs to the first frequency domain resource or the second frequency domain resource.
  • the terminal device receives the random access response RAR, and determines the fourth frequency domain resource for sending the first PUSCH according to the indication information of the fourth frequency domain resource.
  • the terminal device determines the uplink timing advance TA, obtains the RAR UL grant from the RAR, and sends the first PUSCH according to the RAR UL grant.
  • the terminal device sends the first PUSCH on the fourth frequency domain resource.
  • the terminal device determines the uplink timing synchronization according to the TA indicated in the RAR, that is, the advance of the uplink time axis compared to the downlink time, or, for the same time domain symbol, the uplink transmission time is compared with the downlink reception time. advance amount.
  • the above RAR UL grant indicates the frequency domain resource where the first PUSCH is located, that is, whether the first PUSCH is sent on the first frequency domain resource or the second frequency domain resource.
  • the RAR UL grant also carries other information, such as the time domain position, frequency domain position, modulation mode, etc. of the first PUSCH on the corresponding frequency domain resource. In this way, the network device can select, according to the frame structure of the two frequency domain resources, a frequency domain resource having an uplink part and the uplink part is the closest to send the first PUSCH, thereby reducing the delay in sending the first PUSCH.
  • the terminal device sends the first PUSCH according to the RAR UL grant instruction, and the first PUSCH carries the message 3, for example, the first PUSCH carries the terminal device ID.
  • the network device receives the first PUSCH on the fourth frequency domain resource.
  • the network device sends a third DCI at a PDCCH monitoring location in the fourth PDCCH monitoring location set;
  • the network device sends the third DCI at the PDCCH monitoring position in the fifth PDCCH monitoring position set;
  • the third DCI schedules the third PDSCH; the PDCCH monitoring positions in the fourth PDCCH monitoring position set are on the first frequency domain resource and within the third sub-time window, and the fifth PDCCH monitoring position set The monitoring position of the PDCCH is on the second frequency domain resource and is located in the fourth sub-time window, and the third sub-time and the fourth sub-time window are determined according to the first PUSCH time domain position.
  • the terminal device detects the third DCI at the PDCCH monitoring position in the fourth PDCCH monitoring position set; and/or detects the third DCI at the PDCCH monitoring position in the fifth PDCCH monitoring position set.
  • the terminal device directly determines a second time window, which is applicable to two frequency domain resources, or a third sub-time window and a fourth sub-time window, which are respectively applicable to the first frequency domain resource and the second frequency domain resource. domain resources.
  • the terminal device determines the fourth PDCCH monitoring location set on the first frequency domain resource within the third sub-time window, and determines the fifth PDCCH monitoring location set on the second frequency domain resource and within the fourth sub-time window. If the terminal device supports the simultaneous detection of the third DCI on two frequency domain resources, the terminal device performs the third DCI detection on all determined valid monitoring positions; if the terminal device does not support the simultaneous detection of the third DCI on the two frequency domain resources , the terminal device determines whether to detect the third DCI in the first frequency domain resource or the second frequency domain resource according to a certain criterion, and the determination method is similar to that in S809.
  • the third DCI is sent at the seventh monitoring position
  • the symbol where the fifth monitoring position is located is a downlink symbol or a flexible symbol
  • the sixth monitoring position When the symbol where the monitoring position is located includes an uplink symbol, the third DCI is detected at the fifth monitoring position; or, when the fifth monitoring position in the fourth PDCCH monitoring set and the sixth monitoring position in the fifth PDCCH monitoring set When the time domain overlaps, the symbol where the fifth monitoring position is located is a downlink symbol or a flexible symbol, and the symbol where the sixth monitoring position is located is a downlink symbol or a flexible symbol, the third monitoring position is sent at the monitoring position on the seventh monitoring position. DCI, the seventh monitoring position is a preset monitoring position among the fifth monitoring position and the sixth monitoring position.
  • the third DCI is scrambled using a TC-RNTI
  • the terminal device detects the third DCI according to the TC-RNTI, and the value of the TC-RNTI is indicated by the RAR in step S810.
  • the terminal device After the terminal device successfully detects the third DCI for itself, it receives the third PDSCH according to the third DCI instruction, and the third PDSCH carries the contention resolution identifier.
  • the contention resolution identifier is the same as the one reported by the terminal device in S811
  • the terminal device considers that the contention is successfully resolved.
  • the terminal device successfully detects the third DCI for itself, where the third DCI carries the indication information of the sixth frequency domain resource, the following steps are performed.
  • the terminal device generates feedback information HARQ-ACK according to the third PDSCH decoding result, and sends a second PUCCH on the sixth frequency domain resource, where the second PUCCH carries the feedback information of the third PDSCH.
  • the sixth frequency domain resource belongs to the first frequency domain resource or the second frequency domain resource.
  • the network device receives the feedback information HARQ-ACK of the third PDSCH on the sixth frequency domain resource.
  • the above-mentioned feedback information includes ACK and NACK, respectively indicating that the third PDSCH is successfully decoded and fails to be decoded.
  • the above-mentioned third DCI carries information indicating the sixth frequency domain resource, that is, the third DCI indicates whether the second PUCCH is sent on the first frequency domain resource or the second frequency domain resource.
  • the third DCI further carries other information, such as a time domain position, a frequency domain position, and a modulation method of the second PUCCH on the corresponding frequency domain resource. In this way, the network device can select, according to the frame structure of the two frequency domain resources, the frequency domain resource having the uplink part and the uplink part closest to it to send the first PUCCH, thereby reducing the delay in sending the second PUCCH.
  • FIG. 7 and FIG. 8 may be used independently or in combination with each other; the implementation manners corresponding to FIG. 7 and FIG. 8 may also be combined.
  • the network device and the terminal device include corresponding hardware structures and/or software modules for performing each function.
  • the units and method steps of each example described in conjunction with the embodiments disclosed in the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software-driven hardware depends on the specific application scenarios and design constraints of the technical solution.
  • FIG. 9 and FIG. 10 are schematic structural diagrams of possible communication apparatuses provided by embodiments of the present application. These communication apparatuses can be used to implement the functions of the terminal equipment or the network equipment in the above method embodiments, and thus can also achieve the beneficial effects of the above method embodiments.
  • the communication device may be one of the terminals 120a-120j shown in FIG. 1, the base station 110a or 110b shown in FIG. 1, or a terminal or base station modules (eg chips).
  • the communication apparatus 900 includes a processing unit 910 and a transceiver unit 920 .
  • the communication apparatus 900 is configured to implement the functions of the terminal device or the network device in the method embodiment shown in FIG. 7 or FIG. 8 .
  • the transceiver unit 920 is used to receive the first common signal; the processing unit 910 is used to determine the frequency domain resource of the first downlink common signal The frequency domain resource of the second downlink common signal; the transceiver unit 920 is further configured to receive the second downlink common signal in the frequency domain resource of the second downlink common signal.
  • the transceiver unit 920 is configured to send the first type of downlink common signal and the second type of downlink common signal to the terminal equipment, the first type of downlink common signal.
  • the downlink common signal includes one or more common signals; the second type of downlink common signal includes one or more common signals; wherein the frequency domain resources of the second type of common signals are the same as the frequency domain resources of the first type of downlink common signals related.
  • the transceiver unit 920 is used to receive the first downlink common signal and system information, and the first random access resource in the random access resource set The random access preamble corresponding to the first random access resource is sent on the incoming resource; wherein, the first downlink common signal indicates the time-frequency position of the control information of the scheduling system information, and the system information carries an indication of the first frequency domain resources and information about the second frequency domain resources, the first frequency domain resources and the second frequency domain resources have different uplink and downlink configurations; the random access resource set includes random access resources on the first frequency domain resources. access resources and random access resources on the second frequency domain resources.
  • the processing unit 910 is configured to determine the first random access resource and the corresponding random access preamble in the random access resource set.
  • the transceiver unit 920 is configured to send the first downlink common signal and system information to the terminal device;
  • the first downlink common signal indicates The time-frequency position of the control information of the scheduling system information, where the system information carries information indicating the first frequency domain resource and the second frequency domain resource, wherein the first frequency domain resource corresponds to the second frequency domain resource
  • the processing unit 910 is configured to determine the first random access resource in the random access resource set.
  • the transceiver unit 920 is further configured to receive a random access preamble corresponding to the first random access resource on the first random access resource; wherein the first random access resource belongs to a subset of random access resources , the random access resource subset is a subset of a random access resource set, and the random access resource set includes random access resources on the first frequency domain resources and random access resources on the second frequency domain resources Random access resources.
  • the transceiver unit 920 is used for sending and receiving information, and the processing unit 910 is used for data processing or logic processing. More detailed descriptions of the above-mentioned processing unit 910 and the transceiver unit 920 can be obtained directly by referring to the relevant description in the method embodiment shown in FIG. 7 or 8. , will not be repeated here.
  • the communication apparatus 1000 includes a processor 1010 and an interface circuit 1020 .
  • the processor 1010 and the interface circuit 1020 are coupled to each other.
  • the interface circuit 1020 can be a transceiver or an input-output interface.
  • the communication apparatus 1000 may further include a memory 1030 for storing instructions executed by the processor 1010 or input data required by the processor 1010 to run the instructions or data generated after the processor 1010 runs the instructions.
  • the processor 1010 is used to implement the function of the above-mentioned processing unit 910
  • the interface circuit 1020 is used to implement the function of the above-mentioned transceiver unit 920 .
  • the terminal device chip When the above communication device is a chip applied to a terminal device, the terminal device chip implements the functions of the terminal device in the above method embodiments.
  • the terminal device chip receives information from other modules (such as a radio frequency module or an antenna) in the terminal device, and the information is sent by the network device to the terminal device; or, the terminal device chip sends information to other modules (such as a radio frequency module or an antenna) in the terminal device antenna) to send information, the information is sent by the terminal equipment to the network equipment.
  • modules such as a radio frequency module or an antenna
  • the network device chip When the above communication device is a chip applied to a network device, the network device chip implements the functions of the network device in the above method embodiments.
  • the network device chip receives information from other modules (such as a radio frequency module or an antenna) in the network device, and the information is sent by the terminal device to the network device; or, the network device chip sends information to other modules in the network device (such as a radio frequency module or an antenna). antenna) to send information, the information is sent by the network equipment to the terminal equipment.
  • modules such as a radio frequency module or an antenna
  • the processor in the embodiments of the present application may be a central processing unit (Central Processing Unit, CPU), and may also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions may be composed of corresponding software modules, and software modules may be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only memory memory, registers, hard disk, removable hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the ASIC may be located in a network device or in an end device.
  • the processor and the storage medium may also exist in the network device or the terminal device as discrete components.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer programs or instructions.
  • the processes or functions described in the embodiments of the present application are executed in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable apparatus.
  • the computer program or instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instructions may be downloaded from a website, computer, A server or data center transmits by wire or wireless to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available media that can be accessed by a computer or a data storage device such as a server, data center, etc. that integrates one or more available media.
  • the usable media may be magnetic media, such as floppy disks, hard disks, magnetic tapes; optical media, such as digital video discs; and semiconductor media, such as solid-state drives.
  • the computer-readable storage medium may be a volatile or non-volatile storage medium, or may include both types of storage media, volatile and non-volatile.
  • “at least one” means one or more, and “plurality” means two or more.
  • “And/or”, which describes the relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, it can indicate that A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are a kind of "or” relationship; in the formula of this application, the character "/” indicates that the related objects are a kind of "division” Relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信方法、装置和系统。网络设备向终端设备发送第一下行公共信号(例如,SSB)。终端设备根据SSB接收来自网络设备的系统信息,所述系统信息携带指示第一频域资源和第二频域资源的信息,其中,所述第一频域资源与所述第二频域资源可以为两个载波或两个BWP,且这两个频域资源对应的上下行配置不同。终端设备根据SSB与随机接入资源的关联关系,在随机接入资源集合中选择第一随机接入资源发送随机接入前导码,其中,所述随机接入资源集合包括所述第一频域资源上的随机接入资源和所述第二频域资源上的随机接入资源。该方法使得终端设备可以从这两个频域资源上选择最近的上行符号发起随机接入,降低随机接入等待时延。

Description

一种通信方法、装置和系统 技术领域
本申请实施例涉及无线通信技术领域,具体涉及一种通信方法、装置和系统。
背景技术
5G通信系统致力于支持更高系统性能,将支持多种业务类型、不同部署场景和更宽的频谱范围。其中,5G通信系统支持的多种业务类型包括增强移动宽带(enhanced mobile broadband,eMBB),海量机器类型通信(massive machine type communication,mMTC),超可靠低延迟通信(ultra-reliable and low latency communications,URLLC),多媒体广播多播业务(multimedia broadcast multicast service,MBMS)和定位业务等。
5G通信系统相比与4G通信系统的一大特征就是增加了对超可靠低时延业务的支持。URLLC的业务种类包括很多种,典型的用例包括工业控制、工业生产流程自动化、人机交互和远程医疗等。
目前,5G新空口(new radio,NR)中数据传输时延的瓶颈在于上下行等待时延,例如,现有宏小区中配置的时分双工(time division duplex,TDD)帧结构一般都是以下行传输为主(简称为DL-dominant帧结构),导致上行传输(包括上行数据传输和下行传输的反馈等)存在较大的等待时延。减少这种等待时延的一种方法是配置更短的上下行切换周期,如自包含(Self-contain)帧结构,从而提高上行传输符号的比例并降低上行等待时延。这种方法对混合业务共存不太友好,体现为会带来更大的切换开销、导频/控制开销,产品实现难度大,与宏小区主流的DL-dominant帧结构存在异向干扰等。
减少这种等待时延的另一种方法是配置补充上行(supplementary uplink,SUL)载波。即一个下行TDD载波除对应1个正常上行(normal uplink,NUL)TDD载波外,还关联另一个频分双工(frequency division duplex,FDD)频段的载波资源,该FDD载波资源是全上行帧结构。这种方法存在的问题包括:不是所有频段都有可以配置的SUL资源;且SUL是全上行帧结构,只能降低上行等待时延,对于部分场景需要部署以上行部分为主(简称为UL-dominant)的TDD帧结构,配置SUL无法降低下行等待时延。
发明内容
本申请实施例提供一种通信方法和装置,以降低初始化接入过程中的等待时延。
本申请实施例具体可以通过如下技术方案实现:
第一方面,提供了一种通信方法,该方法可以由终端设备或者终端设备中的芯片系统执行,该方法包括:
接收第一下行公共信号,所述第一下行公共信号指示调度系统信息的控制信息的时频位置;
接收系统信息,所述系统信息携带指示第一频域资源和第二频域资源的信息,其中,所述第一频域资源与所述第二频域资源对应的上下行配置不同;
在随机接入资源集合中的第一随机接入资源上发送第一随机接入资源对应的随机接 入前导码,其中,所述随机接入资源集合包括所述第一频域资源上的随机接入资源和所述第二频域资源上的随机接入资源。
该实施例中,在初始接入过程中,终端设备的随机接入资源集合包括分别位于至少两个频域资源上的随机接入集合,由于至少两个频域资源对应的上下行配置不同,则终端设备可以根据上下行配置从至少两个频域资源对应的随机接入资源中灵活选择适合的随机接入资源进行随机接入,能够缩短发送随机接入前导码的等待时延,从而降低接入时延,并能提高系统的灵活性。
一种可能的设计中,该方法还包括:
确定下行公共信号资源子集,所述下行公共信号资源子集包括第一频域资源上的下行公共信号资源和/或第二频域资源上的下行公共信号资源;
确定所述随机接入资源集合与所述下行公共信号资源子集的关联关系,所述关联关系包括所述下行公共信号资源子集中的下行公共信号资源与随机接入资源集合中的随机接入资源子集的对应关系;
根据所述关联关系,确定与第一下行公共信号资源对应的随机接入资源子集,所述第一下行公共信号资源为所述第一下行公共信号所对应的资源,是所述下行公共信号资源子集中的一个资源,所述随机接入资源子集中的随机接入资源均属于所述随机接入资源集合,所述随机接入资源子集包括所述第一随机接入资源。
一种可能的设计中,所述确定下行公共信号资源子集,包括:
接收第一指示信息和第二指示信息,根据所述第一指示信息确定第一下行公共信号资源子集,所述第一下行公共信号资源子集中的下行公共信号属于第一频域资源,根据所述第二指示信息确定第二下行公共信号资源子集,所述第二下行公共信号资源子集中的下公共信号属于第二频域资源,所述下行公共信号资源子集是所述第一下行公共信号资源子集和所述第二下行公共信号资源子集的并集。
一种可能的设计中,所述关联关系包括第一关联关系、第二关联关系、第三关联关系或第四关联关系中的至少一个,所述第一关联关系为第一频域资源上第一随机接入资源集合与第一下行公共信号资源子集的关联关系,所述第二关联关系为第二频域资源上第二随机接入资源集合与第一下行公共信号资源子集的关联关系,所述第三关联关系为第一频域资源上第一随机接入资源集合与第二下行公共信号资源子集的关联关系,所述第四关联关系为第二频域资源上第二随机接入资源集合与第二下行公共信号资源子集的关联关系。
该实现方式中,通过两个指示信息分别指示第一频域资源和第二频域资源上的下行公共信号资源,可以匹配两个频域资源的帧结构、子载波间隔等参数,能够提升指示效率。
另一种可能的设计中,所述确定下行公共信号资源子集,包括:
接收第三指示信息,根据第三指示信息确定所述第三下行公共信号资源子集,所述下行公共信号资源子集等于所述第三下行公共信号资源子集,所述第三下行公共信号资源子集为第三下行公共信号资源集合的子集,所述第三下行公共信号资源集合对应第三下行公共信号样式,所述第三下行公共信号资源集合包含第一频域资源上的下行公共信号资源和第二频域资源上的下行公共信号资源。
一种可能的设计中,该方法还包括:
接收下行公共信号样式指示信息,所述下行公共信号样式指示信息指示所述第三下行公共信号样式的索引,所述第三下行公共信号样式用于定义所述第三下行公共信号集合中每个公共信号在所述第一频域资源或所述第二频域资源的时域位置。
该实现方式中,通过一个样式联合指示第一频域资源和第二频域资源上的下行公共信号资源的集合,再通过一个指示信息指示该集合中哪些索引对应的公共信号属于所述下行公共信号资源子集,可以提高配置的灵活性。
一种可能的设计中,该方法还包括:
在第二物理下行控制信道PDCCH监测位置集合中的PDCCH监测位置检测第二下行控制信息DCI;和/或,
在第三PDCCH监测位置集合中的PDCCH监测位置检测第二DCI;
其中,所述第二DCI用于调度第二物理下行共享信道PDSCH,所述第二PDCCH监测位置集合中的PDCCH监测位置在所述第一频域资源上且位于第一子时间窗内,所述第三PDCCH监测位置集合中的PDCCH监测位置在所述第二频域资源上且位于第二子时间窗内,所述第一子时间窗和所述第二子时间窗是根据所述第一随机接入资源确定的。
该实现方式中,在第一频域资源或第二频域资源的一个或多个PDCCH检测位置检测第二DCI,则可以根据上下行配置从至少两个频域资源中灵活选择适合的资源发送调度随机接入响应的第二DCI,能够缩短发送第二DCI的时延,提高系统灵活性。
一种可能的设计中,当所述第二PDCCH监测位置集合中的第二监测位置和第三PDCCH监测位置集合中的第三监测位置时域重叠,所述第二监测位置所在符号为下行符号或灵活符号,且所述第三监测位置所在符号包含上行符号时,在所述第二监测位置上检测所述第二DCI;或,
当所述第二PDCCH监测位置集合中的第二监测位置和第三PDCCH监测位置集合中的第三监测位置时域重叠,所述第二监测位置所在符号为下行符号或灵活符号,且所述第三监测位置所在符号也为下行符号或灵活符号时,在第四监测位置上监测所述第二DCI,所述第四监测位置为所述第二监测位置和所述第三监测位置中的一个。
一种可能的设计中,所述第二DCI由随机接入无线网络临时标识RA-RNTI加扰,所述RA-RNTI的取值根据所述第一随机接入资源所在频域资源和所述第一随机接入资源在所述所在频域资源内的时频位置确定。
一种可能的设计中,该方法还包括:
接收随机接入响应RAR,所述RAR在所述第二PDSCH中承载,所述RAR用于调度第一物理上行共享信道PUSCH,所述RAR携带指示第四频域资源的指示信息,所述第四频域资源属于所述第一频域资源或所述第二频域资源;
在所述第四频域资源上发送所述第一PUSCH。
该实现方式中,RAR携带RAR在第一频域资源或第二频域资源上发送的指示信息,可以根据两个频域资源的帧结构选择具有上行部分且上行部分最近的频域资源来发送第一PUSCH,从而降低第一PUSCH发送时延。
一种可能的设计中,该方法还包括:
在第四PDCCH监测位置集合中的PDCCH监测位置检测第三DCI;和/或
在第五PDCCH监测位置集合中的PDCCH监测位置检测第三DCI;
其中,所述第三DCI调度第三PDSCH;所述第四PDCCH监测位置集合中的PDCCH监测位置在第一频域资源上且位于第三子时间窗内,所述第五PDCCH监测位置集合中的PDCCH监测位置在第二频域资源上且位于第四子时间窗内,所述第三子时间和所述第四子时间窗根据所述第一PUSCH时域位置确定。
该实现方式中,在第一频域资源或第二频域资源的一个或多个PDCCH检测位置检测第三DCI,则可以根据上下行配置从至少两个频域资源中灵活选择适合的资源发送调度第三PDSCH的第三DCI,能够缩短发送第三DCI的时延,提高系统灵活性。
一种可能的设计中,当所述第四PDCCH监测集合中第五监测位置和第五PDCCH监测集合中第六监测位置时域重叠,所述第五监测位置所在符号为下行符号或灵活符号,且所述第六监测位置所在符号包含上行符号时,在所述第五监测位置上检测所述第三DCI;或者,
当所述第四PDCCH监测集合中第五监测位置和第五PDCCH监测集合中第六监测位置时域重叠,所述第五监测位置所在符号为下行符号或灵活符号,且所述第六监测位置所在符号为下行符号或者灵活符号时,在第七监测位置检测所述第三DCI,所述第七监测位置是第五监测位置和第六监测位置中一个预设的监测位置。
一种可能的设计中,所述第三DCI携带指示第六频域资源的信息,所述第六频域资源属于第一频域资源或第二频域资源,该方法还包括:在第六频域资源上发送所述第三PDSCH的反馈信息。所述第三PDSCH的反馈信息通过第二PUCCH携带。
该实现方式中,通过第三DCI指示第二PUCCH在第一频域资源或第二频域资源上发送,可以根据两个频域资源的帧结构选择具有上行部分且上行部分最近的频域资源来发送第二PUCCH,从而降低第二PUCCH发送时延。
第二方面,提供了一种通信方法,该方法可以由网络设备或者网络设备中的芯片系统执行,该方法包括:
向终端设备发送第一下行公共信号,所述第一下行公共信号指示调度系统信息的控制信息的时频位置;
向所述终端设备发送系统信息,所述系统信息携带指示第一频域资源和第二频域资源的信息,其中,所述第一频域资源与所述第二频域资源对应的上下行配置不同;
在第一随机接入资源上接收所述第一随机接入资源对应的随机接入前导码,其中,所述第一随机接入资源属于随机接入资源子集,所述随机接入资源子集为随机接入资源集合的子集,所述随机接入资源集合包括所述第一频域资源上的随机接入资源和所述第二频域资源上的随机接入资源。
一种可能的设计中,所述向终端设备发送第一下行公共信号包括:
在所述下行公共信号资源子集内的下行公共信号资源上发送下行公共信号,其中,所述下行公共信号资源子集包含所述第一下行公共信号。
一种可能的设计中,该方法还包括:
根据随机接入资源集合与下行公共信号资源子集的关联关系,确定与第一下行公共信 号资源对应的随机接入资源子集;所述关联关系包括所述下行公共信号资源子集中的下行公共信号资源与随机接入资源集合中的随机接入资源子集的对应关系;所述第一下行公共信号的资源为所述第一下行公共信号所对应的资源,是所述下行公共信号资源子集中的一个资源。
一种可能的设计中,所述系统信息还携带第一指示信息和第二指示信息,所述第一指示信息指示第一下行公共信号资源子集的位置信息,所述第二指示信息指示第二下行公共信号资源子集的位置信息,所述第一下行公共信号资源子集中的下行公共信号属于第一频域资源,所述第二下行公共信号资源子集中的下行公共信号属于第二频域资源,所述下行公共信号资源子集是所述第一下行公共信号资源子集和所述第二下行公共信号资源子集的并集。
一种可能的设计中,所述关联关系包括第一关联关系、第二关联关系、第三关联关系或第四关联关系中的至少一个,所述第一关联关系为第一频域资源上第一随机接入资源集合与第一下行公共信号资源子集的关联关系,所述第二关联关系为第二频域资源上第二随机接入资源集合与第一下行公共信号资源子集的关联关系,所述第三关联关系为第一频域资源上第一随机接入资源集合与第二下行公共信号资源子集的关联关系,所述第四关联关系为第二频域资源上第二随机接入资源集合与第二下行公共信号资源子集的关联关系。
一种可能的设计中,所述系统信息还携带第三指示信息,所述第三指示信息指示第三下行公共信号资源子集的位置信息,所述下行公共信号资源子集等于所述第三下行公共信号资源子集,所述第三下行公共信号资源子集为第三下行公共信号资源集合的子集,所述第三下行公共信号资源集合对应第三下行公共信号样式,所述第三下行公共信号资源集合包含的公共信号资源位于所述第一频域资源和所述第二频域资源。
一种可能的设计中,该方法还包括:
发送公共信号样式指示信息,所述下行公共信号样式指示信息指示所述第三下行公共信号样式的索引,所述第三下行公共信号样式用于定义所述第三下行公共信号集合中每个公共信号在所述第一频域资源或所述第二频域资源的时域位置。
一种可能的设计中,该方法还包括:
在第二物理下行控制信道PDCCH监测位置集合中的PDCCH监测位置发送第二下行控制信息DCI;和/或,
在第三PDCCH监测位置集合中的PDCCH监测位置发送第二DCI;
其中,所述第二DCI用于调度第二PDSCH,所述第二PDCCH监测位置集合中的PDCCH监测位置在所述第一频域资源上且位于第一子时间窗内,所述第三PDCCH监测位置集合中的PDCCH监测位置在所述第二频域资源上且位于第二子时间窗内,所述第一子时间窗和所述第二子时间窗是根据所述第一随机接入资源确定的。
一种可能的设计中,该方法还包括:
当所述第二PDCCH监测位置集合中的第二监测位置和第三PDCCH监测位置集合中的第三监测位置时域重叠,所述第二监测位置所在符号为下行符号或灵活符号,且所述第三监测位置所在符号包含上行符号时,在所述第二监测位置上发送所述第二DCI;或,
当所述第二PDCCH监测位置集合中的第二监测位置和第三PDCCH监测位置集合中的 第三监测位置时域重叠,所述第二监测位置所在符号为下行符号或灵活符号,且所述第三监测位置所在符号也为下行符号或灵活符号时,在第四监测位置上发送所述第二DCI,所述第四监测位置为所述第二监测位置和所述第三监测位置中的一个。
一种可能的设计中,所述第二DCI由随机接入无线网络临时标识RA-RNTI加扰,所述RA-RNTI的取值根据所述第一随机接入资源所在频域资源和所述第一随机接入资源在所述所在频域资源内的时频位置确定。
一种可能的设计中,该方法还包括:
向所述终端设备发送随机接入响应RAR,所述RAR在所述第二PDSCH中承载,所述RAR用于调度第一物理上行共享信道PUSCH,所述RAR携带第四频域资源的指示信息,所述第四频域资源属于第一频域资源或第二频域资源;
在第四频域资源上接收所述第一PUSCH。
一种可能的设计中,该方法还包括:
在第四PDCCH监测位置集合中的PDCCH监测位置发送第三DCI;和/或
在第五PDCCH监测位置集合中的PDCCH监测位置发送第三DCI;
其中,所述第三DCI调度第三PDSCH;所述第四PDCCH监测位置集合中的PDCCH监测位置在第一频域资源上且位于第三子时间窗内,所述第五PDCCH监测位置集合中的PDCCH监测位置在第二频域资源上且位于第四子时间窗内,所述第三子时间和所述第四子时间窗根据所述第一PUSCH时域位置确定。
一种可能的设计中,当所述第四PDCCH监测集合中第五监测位置和第五PDCCH监测集合中第六监测位置时域重叠,所述第五监测位置所在符号为下行符号或灵活符号,且所述第六监测位置所在符号包含上行符号时,在所述第五监测位置上检测所述第三DCI;或者,
当所述第四PDCCH监测集合中第五监测位置和第五PDCCH监测集合中第六监测位置时域重叠,所述第五监测位置所在符号为下行符号或灵活符号,且所述第六监测位置所在符号为下行符号或者灵活符号时,在第七监测位置发送所述第三DCI,所述第七监测位置是第五监测位置和第六监测位置中一个预设的监测位置。
一种可能的设计中,所述第三DCI携带第六频域资源的指示信息,所述第六频域资源属于第一频域资源或第二频域资源,该方法还包括:在所述第六频域资源上接收所述第三PDSCH的反馈信息HARQ-ACK,所述第六频域资源属于第一频域资源或第二频域资源。
第三方面,提供了一种通信方法,该方法可以由终端设备或者终端设备中的芯片系统执行,该方法包括:
接收第一公共信号;
根据第一下行公共信号的频域资源确定第二下行公共信号的频域资源;
在第二下行公共信号的频域资源接收第二下行公共信号。
第四方面,提供了一种通信方法,该方法可以由网络设备或者网络设备中的芯片系统执行,该方法包括:
发送第一类下行公共信号,所述第一类下行公共信号包含一个或多个公共信号;
发送第二类下行公共信号,第二类下行公共信号包含一个或多个公共信号;其中所述第二类公共信号的频域资源与第一类下行公共信号的频域资源相关。
相应的,本申请还提供了一种通信装置,该装置可以实现第一方面、第二方面、第三方面或第四方面所述的通信方法。例如,该装置可以是终端设备或网络设备,还可以是其他能够实现上述通信方法的装置,其可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,该装置可以包括处理器和存储器。该处理器被配置为支持该装置执行上述任一方面所述的方法中相应的功能。存储器用于与处理器耦合,其保存该装置必要的程序指令和数据。另外该装置中还可以包括通信接口,用于支持该装置与其他装置之间的通信。该通信接口可以是收发器或收发电路。
又一方面,本申请实施例提供了一种通信系统,该系统包括上述方面所述的通信装置。
本申请的又一方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
本申请的又一方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
本申请还提供了一种芯片系统,该芯片系统中包括处理器,还可以包括存储器,用于实现上述任一方面所述的方法。
上述提供的任一种装置或计算机存储介质或计算机程序产品或芯片系统或通信系统均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文提供的对应的方法中对应方案的有益效果,此处不再赘述。
附图说明
图1为本申请的实施例应用的通信系统的架构示意图;
图2为本申请SSB占用的时频资源的示意图;
图3为本申请一种SSB样式的示意图;
图4为本申请DL-dominant的时隙配置下初始接入流程中消息发送的示意图;
图5为本申请UL-dominant的时隙配置的示意图;
图6为本申请SSB周期与SSB样式的示意图;
图7为本申请提供的一种通信方法的实施例的流程示意图;
图8为本申请提供的一种通信方法的另一个实施例的流程示意图;
图9为本申请的实施例提供的通信装置一个实施例的结构示意图;
图10为本申请的实施例提供的通信装置另一个实施例的结构示意图。
具体实施方式
本申请的实施例可以应用于5G移动通信系统,也可以应用于6G移动通信系统和未来的移动通信系统。图1是本申请的实施例应用的通信系统1100的架构示意图。如图1所示,该通信系统包括无线接入网100和核心网200,可选的,通信系统1100还可以包括互联网300。其中,无线接入网100可以包括至少一个无线接入网设备(如图1中的110a和110b),还可以包括至少一个终端(如图1中的120a-120j)。终端通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网连接。核心网设备与无线接 入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端和终端之间以及无线接入网设备和无线接入网设备之间可以通过有线或无线的方式相互连接。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。
无线接入网设备可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、第五代(5th generation,5G)移动通信系统中的下一代基站(next generation NodeB,gNB)、第六代(6th generation,6G)移动通信系统中的下一代基站、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。无线接入网设备可以是宏基站(如图1中的110a),也可以是微基站或室内站(如图1中的110b),还可以是中继节点或施主节点等。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。为了便于描述,下文以基站作为无线接入网设备的例子进行描述。
终端也可以称为终端设备、用户设备(user equipment,UE)、移动台、移动终端等。终端可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。本申请的实施例对终端所采用的具体技术和具体设备形态不做限定。
基站和终端可以是固定位置的,也可以是可移动的。基站和终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对基站和终端的应用场景不做限定。
基站和终端的角色可以是相对的,例如,图1中的直升机或无人机120i可以被配置成移动基站,对于那些通过120i接入到无线接入网100的终端120j来说,终端120i是基站;但对于基站110a来说,120i是终端,即110a与120i之间是通过无线空口协议进行通信的。当然,110a与120i之间也可以是通过基站与基站之间的接口协议进行通信的,此时,相对于110a来说,120i也是基站。因此,基站和终端都可以统一称为通信装置,图1中的110a和110b可以称为具有基站功能的通信装置,图1中的120a-120j可以称为具有终端功能的通信装置。
基站和终端之间、基站和基站之间、终端和终端之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信;可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对无线通信所使用的频谱资源不做限定。
在本申请的实施例中,基站的功能也可以由基站中的模块(如芯片)来执行,也可以 由包含有基站功能的控制子系统来执行。这里的包含有基站功能的控制子系统可以是智能电网、工业控制、智能交通、智慧城市等上述应用场景中的控制中心。终端的功能也可以由终端中的模块(如芯片或调制解调器)来执行,也可以由包含有终端功能的装置来执行。
在本申请中,基站向终端发送下行信号或下行信息,下行信息承载在下行信道上;终端向基站发送上行信号或上行信息,上行信息承载在上行信道上。终端为了与基站进行通信,需要与基站控制的小区建立无线连接。与终端建立了无线连接的小区称为该终端的服务小区。当终端与该服务小区进行通信的时候,还会受到来自邻区的信号的干扰。
NR系统中终端设备从空闲(idle)态接入小区变为连接(connected)态的过程,主要包括三个步骤:同步信号和PBCH(synchronization signal and PBCH block,SSB)检测、系统信息块1(system information block 1,SIB1)接收和随机接入过程。
1.SSB检测
通过SSB检测,终端设备获取小区标识(identity,ID),完成下行定时同步,并确定调度SIB1的下行控制信息(downlink control information,DCI)的时频位置,从而接收其他系统信息。但是终端设备没有完成上行定时同步,因此能接收广播信息,不能进行上行数据传输或接收下行单播/组播传输。
SSB包括同步信号(synchronization signal,SS)和物理广播信道(physical broadcast channel,PBCH)。同步信号包括主同步信号(Primary SS,PSS)和辅同步信号(secondary SS,SSS)。物理广播信道承载接入小区的主信息块(master information block,MIB)。同步信号和物理广播信道用于进行小区物理ID获取、下行定时和最主要的系统信息MIB获取。小区物理ID由PSS和SSS联合承载。如图2所示,在NR中,SSB时域上占用连续的4个符号,频域上占用20个资源块(resource block,RB)。
SSB在频域的位置由同步栅格(raster)定义。具体地,在3GPP定义的每个频段Band,都有一定数目的同步Raster位置,每个同步Raster位置对应一个绝对频率位置,该绝对频域位置对应SSB的中心频点,即第11个RB的第一个子载波的中心频点。对应地,终端设备在进行小区搜索时,对于每个频段,会根据历史记录或者盲检,在该频段内潜在的同步Raster位置检测是否有SSB。
SSB的时域位置由SSB样式(pattern)定义,一个SSB pattern规定了一组连续的SSB在半帧(Half-Frame)中的时域位置。目前3GPP对授权频谱(unshared spectrum)定义了5种SSB pattern,每个SSB pattern都有适用的子载波间隔(subcarrier spacing,SCS)。但是每个频段可用的SSB pattern一般只有1-2个。以目前NR主流部署频段n78(3.3Ghz-3.8GHz)为例,该频段只支持一种的SSB pattern。如图3所示,以该SSB pattern适用的子载波间隔为30kHz为例,一个SSB pattern包含8个SSB,SSB索引(index)为0-7,位于一个Half-frame中前4个时隙(slot),每个slot包含两个SSB,起始符号分别为#2和#8。
对应地,终端设备在进行小区搜索的时候,在搜索的频段内检测到SSB后,需要根据检测到的SSB时域位置、SSB index和MIB中无线帧索引Frame index、无线半帧索引Half-frame index,完成下行定时同步。
2.SIB1接收
终端设备可以基于SSB确定SIB1接收位置。SIB1是在物理下行共享信道(physical downlink shared channel,PDSCH)承载的,但是承载SIB1的PDSCH的时频位置和传输参数都是DCI指示的,SSB中MIB包含4bit的controlResourceSetZero和4bit的searchSpaceZero,分别指示接收调度SIB1的DCI所在的频域位置和时域位置。
终端设备确定调度SIB1的DCI所在时频位置后,在DCI所在时频位置盲检DCI,如果检测到DCI,就可以根据DCI指示,在指定的时频资源上按照指定的参数去接收PDSCH,从而获得SIB1。SIB1主要的功能是完成对主小区(Primary Cell,PCell)的配置,便于处于idle态的终端设备监听寻呼消息,或者通过随机接入完成上行定时同步,从而转变为连接Connected态。目前,NR中SIB1会首先配置一个频域偏移(offset),用于确定频域锚点。基于这个锚点配置1个服务小区(记为PCell),主要包括这个Pcell的TDD帧结构,下行(downlink,DL)配置和上行(uplink,UL)配置,UL配置又包括NUL和SUL。
DL配置:主要配置Pcell的下行公共参数。对于NR,会先根据子载波间隔SCS,配置多个资源格(resource grid),每个资源格就是PCell在这个SCS下的资源划分。还会通过信元InitialDLBWP配置初始下行带宽部分,指示初始接入前下行传输使用的带宽部分(bandwidth part,BWP)。InitialDLBWP中主要包括物理下行控制信道(physical downlink control channel,PDCCH)配置和PDSCH配置。PDCCH配置定义多种搜索空间(search space,SS)和控制资源集合(control resource set,CORESET),用于指示终端设备在哪里、如何检测DCI。PDSCH配置用于定义PDSCH传输的潜在参数配置。
NUL配置:主要配置Pcell的正常上行公共参数。对于NR,会先根据子载波间隔SCS,配置多个Resource Grid,每个资源格就是PCell在这个SCS下的资源划分。还会通过信元InitialULBWP,指示初始接入前上行传输使用的BWP。InitialULBWP中主要包括物理上行共享信道(physical uplink shared channel,PUSCH)配置、物理上行控制信道(physical uplink control channel,PUCCH)配置和随机接入信道(random access channel,RACH)配置。PUSCH配置和PUCCH配置定义初始接入之前,终端设备发送PUSCH(如后续Msg3)和PUCCH(如后续Msg4的ACK/NACK反馈)的参数配置。RACH配置定义终端设备进行随机化接入的参数配置。
SUL配置:主要配置Pcell的辅助上行公共参数。对于部分频段,3GPP允许配置SUL,即1个小区除了包含正常的1个下行载波(carrier)、1个上行载波,还有一个SUL载波。目前,SUL载波都是全上行帧结构。SUL配置中上也包括信元initialULBWP,initialULBWP也有RACH配置。
通过接收SIB1,终端设备获取PCell最基本的信息,可以基于配置参数,去接收更多的系统信息,并且可以选择保持在idle态,周期性监听下行寻呼。或者,终端设备通过配置的RACH,发起随机接入,获取上行定时同步,并获取小区无线网络临时标识(Cell-Radio Network Temporary Identifier,C-RNTI),从而接收终端设备特定的参数配置并进行上下行传输。
3.随机接入(random access,RA)
NR协议定义了4步(4-Step)RA和2步(2-Step)RA。
4-Step RA流程如下:
1)发送消息1(message 1,Msg1)
Msg1,即物理随机接入信道(physical random access channel,PRACH)。终端设备获取RACH配置后,可以在指示的RACH时频资源上向网络设备发送随机接入前导码preamble。RACH时域位置由SIB1中信元RACHConfig指示。以Slot为周期重复,每个Slot中可以有1个或多个RACH时机(occasion),RACH occasion的起始符号和长度都是高层配置的。RACH频域位置最多是8个RACH位置,每个位置占据的RB由高层信令配置。
随机接入资源(RACH资源)包括:RACH occasion和RACH前导(preamble)。RACH occasion也可以称为RACH时频资源。终端设备选择哪个RACH occasion,发送哪个preamble,采样什么空域滤波设置(如发送波束),都需要根据关联的SSB index确定。SSB与RACH资源关联关系(SSB-RACH Association)定义了SSB和RACH资源之间的对应关系。SSB与SSB index一一对应。具体地,终端设备根据SIB1中信元ssb-PositioninBurst,确定哪些SSB index是有效(active)的,即真正被发送的。再将active SSB index从小到大排序,将RACH occasion先频后时排序,将二者一一关联。SSB-RACH Association分为2种情况:如表1所示,1个SSB index关联至少一个RACH occasion;或者,如表2所示,多个SSB index关联1个RACH occasion,但是关联这个RACH occasion对应的不同Preamble index集合。
表1
SSB索引 RACH occasion索引
0 {#0,#1,……#(N-1)}
无效的(Inactive) NULL
2 {#N,#(N+1),……#(2N-1)}
表2
SSB索引 RACH occasion索引 Preamble索引
0 #0 #0,#1,…#31
Inactive NULL NULL
2 #0 #32,#33,…#63
3 #1 #0,#1,…#31
4 #1 #32,#33,…#63
终端设备测量SSB,根据SSB的参考信号接收功率(Reference Signal Received Power,RSRP),选择在NUL还是SUL上发起随机接入。一旦确定了发起随机接入的上行载波,则Msg1、Msg3和Msg4的ACK/NACK都在相同的上行载波上发送。接着,选择SSB的RSRP大于规定门限(高层配置)的一个SSB index,根据SSB-RACH Association,确定可以选择的RACH occasion和preamble index集合。当有多个可以选择的RACH occasion和preamble index集合时,如果有选择准则,则终端设备按照选择准则从中选择RACH occasion和 preamble,例如,可以根据Msg3的大小筛选preamble。当有多个可以选择的RACH occasion和preamble index集合,且没有其他选择准则时,则终端设备从中随机选择RACH occasion和preamble。按照接收对应SSB时使用的空域滤波设置,来发送Msg1。需要注意的是,Msg1的发送只能在上行符号上进行,哪些时域位置是上行符号是根据Pcell配置中TDD帧结构确定的。
2)接收消息2(message 2,Msg2)
Msg2即随机接入响应(Random Access Response,RAR)。终端设备发送Msg1后,在规定的时域窗口内,在类型1(Type1)公共搜索空间(Common SS,CSS)内监测随机接入-无线网络临时标识(Random Access RNTI,RA-RNTI)加扰的、网络设备发送的DCI。其中,Type1CSS的时域位置和频域位置在上述信元InitialDLBWP中配置,RA-RNTI是根据终端设备发送Msg1的RACH occasion确定的,计算方式如下:
RA-RNTI=1+s ID+14×t ID+14×80×f ID+14×80×80×ul_carrier_id
其中s ID、t ID分别表示RACH occasion所在时隙slot的起始符号index和该slot在frame中的index,f ID表示RACH occasion的频域位置index,ul_carrier_id表示UL carrier index。对于NUL载波,对应的UL carrier index为0,对于SUL载波,对应的UL carrier index为1。
如果终端设备检测到RA-RNTI加扰的DCI,则去接收该DCI调度的PDSCH。该PDSCH承载的媒体接入控制(medium access control,MAC)协议数据单元(Protocol Data Unit,PDU)会携带多个子协议数据单元subPDU。每个subPDU会包含一个MAC头(header),指示一个preamble index,并包含一个MAC RAR,在该RAR中包括对发送该preamble的终端设备的上行调度信息。
RAR的主要功能有3个:一是发送初始上行传输定时提前(Timing Advance,TA),帮助终端设备完成上行定时同步;二是发送临时小区-无线网络临时标识(Temporary C-RNTI,TC-RNTI),在初始化接入完成前替代C-RNTI给终端设备使用;三是发送一个上行授权(UL grant),用于调度一个PUSCH来承载后续Msg3的发送。
3)发送消息3(message 3,Msg3)
终端设备如果收到RAR,则根据RAR指示的TA,在调度的PUSCH上向网络设备发送Msg3。PUSCH上的数据使用TC-RNTI加扰,该PUSCH上的数据内容包含终端设备的标识(identifier,ID)。
4)接收消息4(message 4,Msg4)
终端设备发送Msg3后,在对应时间窗口检测TC-RNTI(Temporary C-RNTI,临时小区-无线网络临时标识)加扰的、网络设备发送的DCI,如果检测到DCI,则进一步接收对应的PDSCH,这个PDSCH中包含一个竞争解决标识(contention resolution identifier)。如果contention resolution identifier与终端设备的ID相等,则表明冲突解决成功,终端设备将TC-RNTI转变为C-RNTI。
终端设备解析到TC-RNTI加扰的DCI后,如果PDSCH译码成功,则终端设备向网络设备反馈肯定应答(acknowledgement,ACK);如果PDSCH译码失败,则终端设备向网络设备反馈否定应答(negative acknowledgement,NACK)。反馈ACK/NACK的PUCCH资源也是 上述DCI指示的。
2-step RACH的流程如下:
1)发送消息A(message A,MsgA)
MsgA,即RACH。终端设备向网络设备发送RACH,并紧跟着在一个PUSCH发送时机上发送PUSCH,对应于4-step RACH中Msg1和Msg3,其中PUSCH候选的发送时机是高层配置的,且终端设备选择的一个PUSCH发送时机是与选择RACH资源关联的,终端设备在该发送时机上发送PUSCH的参数也是高层配置的。
2)接收消息B(message B,MsgB)
分为2种情况,如果网络设备成功接收到终端设备发送的RACH和PUSCH,则向终端设备发送Msg4,Msg4中携带竞争解决标识,此时随机接入流程结束;否则,如果网络设备成功接收RACH,没有成功接收PUSCH,则向终端设备发送回退指示(fallback indication),这里的fallback indication相当于4-step RACH中的Msg2,然后终端设备回退到4-step RACH,发送Msg3,并接收Msg4。
对于TDD系统,现有NR的初始接入流程中SSB、SIB1在下行符号上发送,Msg1、Msg3和Msg4的ACK/NACK在上行符号上发送,Msg2和Msg4则在下行符号上发送,对于DL-dominant的配置,每次上下行转换都会引入较大的等待时延。如图4所示,终端设备在接收SIB1之后需要等待1个多slot才能发送Msg1,在接收RAR之后也必须等待两个多slot才能接收Msg3,这些等待时延会加大终端设备从idle态转变为connected态的初始接入时延。
现有NR还支持基于SUL的随机接入,如果终端设备选择SUL进行随机接入,一定程度上可以降低上行传输的等待时延,但是存在如下问题:不是所有频段都有关联的SUL carrier,因此基于SUL的随机接入不是一个普适方案;SUL carrier是全上行帧结构,因此无法与正常的TDD帧结构形成互补,从而对于降低DL等待时延没有帮助。对于DL-dominant帧结构,DL等待时延约1ms-1.5ms,但是对于其他帧结构,DL等待时延较大。目前,SUL carrier上有传统(legacy)终端设备,且带宽可能受限,因此进行随机接入存在较大的碰撞概率。
此外,对于上述DL-dominant帧结构,有足够的DL symbol来发送SSB,可以保证网络设备可以发送足够多的SSB,完成下行波束扫描,即采用不同的发送波束,在不同是时域位置依次发送SSB,保证不同方向的UE都可以获得较大的接收信号功率。对于图5所示的UL-dominant时隙结构,网络设备在一个上下行切换周期内没有足够的DL symbol完成SSB波束扫描,可能导致部分终端无法检测到SSB。如果将SSB扫描延伸到下一个或者下下个上下行切换周期,则会带来较大的SSB检测时延。
另一方面,即使配置了SUL,在初始接入的环节仍然只能配置使用SUL载波或NUL上行载波中的一个,即SUL是和NUL之间不支持动态切换,灵活性不够。
为了减少随机接入过程中的时延,本申请提出了一种基于双频的初始接入方法。进一步的,该随机接入方法支持动态频域资源选择和切换,通过配置上下行配置不同甚至互补 的两个频域资源,且允许网络设备和终端设备灵活选择在哪一个频域资源进行上下行传输,减小初始接入过程中各个信息传输环节的等待时延。
本申请中,网络设备向终端设备发送SSB,终端设备通过检测SSB进行下行同步,然后终端设备基于SSB指示去接收SIB1,获取小区的基本信息,例如,小区包含的两个上下行配置不同的频域资源,两个频域资源的有效SSB资源集合和RACH资源集合;然后终端设备获取SSB与RACH资源的关联关系,基于测量的SSB接收信号功率强度从有效SSB资源集合中选择一个第一SSB资源,从而确定与第一SSB资源对应的第一RACH资源子集,从第一RACH资源子集中选择一个RACH资源发起随机接入,其中与第一SSB资源关联的RACH资源可以包含第一频域资源和第二频域资源上的RACH资源,从而终端设备可以从这两个频域资源上选择最近的上行符号发起随机接入,降低随机接入等待时延。本申请实施例中的第一频域资源和第二频域资源可以为两个载波或两个BWP。
进一步的,网络设备向终端设备发送第二DCI调度随机接入响应RAR,第二DCI可以在第一频域资源、或第二频域资源、或第一频域资源和第二频域资源的下行符号上发送,从而降低发送等待时延。同时,RAR会指示终端设备在哪个频域资源上发送Msg3,网络设备可以选择最近的、具有上行符号的频域资源来承载Msg3,降低终端设备的等待时延。之后,网络设备向终端设备发送第三DCI调度Msg4,与第二DCI类似,第三DCI也可以在第一频域资源、或第二频域资源、或第一频域资源和第二频域资源的下行符号上发送,从而降低发送等待时延。第三DCI还会指示承载Msg4的反馈信息在哪个频域资源上发送,网络设备可以选择时间最近的上行符号来承载该反馈信息,降低终端设备的等待时延。
不失一般性,本申请将初始接入阶段的下行公共信号传输分为2个阶段,第一阶段对应第一类下行公共信号,第二阶段对应第二类下行公共信号。一种可能的实现方式为:第一类下行公共信号包括一个或多个下行公共信号,其中的任一个包含同步信号(synchronization signal,SS)和第一广播信道,第二类下行公共信号包括一个或多个下行公共信号,其中的任一个包含第二广播信道,例如,在NR中,第一类下行公共信号为SSB,第一广播信道承载MIB,第二广播信道承载SIB1;另一种可能的实现方式为:第一类下行公共信号包括一个或多个下行公共信号,其中的任一个包含SS,第二类下行公共信号包括一个或多个下行公共信号,其中的任一个包含第三广播信道,例如,第三广播信道承载MIB和SIB1。本申请对于第一类下行公共信号和第二类下行公共信号的具体形式和内容不做限定。
可选地,第一类下行公共信号的传输是周期性的,一个周期内包含一个pattern,一个pattern内包含一个或多个用于传输第一类下行公共信号的时频位置,不同时频位置的第一类下行公共信号组成一个公共信号集合,一个Pattern会规定这个集合内每个公共信号的索引以及时频资源位置,即一个公共信号与一个索引、一个时频位置都是一一对应的。例如,在NR系统中,第一类下行公共信号是SSB,SSB的传输是周期性的,例如周期为20ms,一个周期内包含1个SSB pattern,一个pattern内包含8个或更多的传输SSB的时频位置,每个时频位置对应1个SSB index。其中一个SSB pattern包含的SSB时频资源可以对应一个时间单元,所述时间单元的长度可以小于所述SSB传输周期,例如,如图6所示, NR中SSB传输周期是20ms,但是SSB pattern对应时间单元的长度是5ms,对应的SSB传输时频位置都在5ms内。可选地,一个pattern内不同时频位置的第一类下行公共信号的传输参数可以不同,例如,发送滤波参数不同或使用的发送波束不同。
类似地,第二类下行公共信号的传输也可以是周期性的,一个周期内也可以包含一个pattern。并且,第二类下行公共信号的接收可以与第一类下行公共信号的接收是相互独立的,即具有独立的周期和pattern,也可以是基于第一类下行公共信号指示的,例如,基于第一类下行公共信号的指示确定调度第二类下行公共信号的控制信息的接收位置和接收参数。或者,调度第二类下行公共信号的控制信息的接收与第一类下行公共信号的接收具有关联关系,如一一对应,每个调度第二类下行公共信号的控制信息的接收位置和参数由对应的一个第一类下行公共信号确定。例如,NR中第一类下行公共信号是SSB,第二类下行公共信号是SIB1,一个SSB pattern包含多个SSB index,每个SSB index对应1个时频位置,用于传输调度SIB1的DCI。
参考图7,本申请提供的一种通信方法的实施例,应用于终端设备接入网络设备的过程,该方法包括:
S701:网络设备向终端设备发送第一类下行公共信号。其中,所述第一类下行公共信号可以包含一个或多个公共信号。
可选地,第一类下行公共信号中的每一个下行公共信号都包含同步信号和第一广播信道,例如,第一类下行公共信号为SSB。可选地,第一类下行公共信号中的不同下行公共信号可以在不同时域位置和/或不同频域位置发送。
S702:终端设备检测第一类下行公共信号。可选地,终端设备成功检测到第一类下行公共信号中的第一下行公共信号。
可选地,第一下行公共信号属于第一下行公共信号集合,所述第一下行公共信号集合是一个第一类下行公共信号样式(记为第一样式,或,pattern#1)对应的第一类下行公共信号的集合。所述第一样式定义了一个时域周期P1内(或者一个时间单元Q1内,Q1小于等于P1),网络设备可以发送第一类下行公共信号的多个时域位置和每个时域位置对应的第一类下行公共信号的index,这些时域位置上的第一类下行公共信号组成第一下行公共信号集合。终端设备在第一频域资源检测到第一下行公共信号。可选地,第一下行公共信号还携带第一信息,所述第一信息用于确定第二频域资源,所述网络设备在所述第二频域资源上也发送第一类下行公共信号,且所述第二频域资源上第一类下行公共信号的发送也是周期性的,周期为P2,一个周期内包含一个样式(记为第二样式,或,pattern#2)对应的第二下行公共信号集合,第二样式定义了所述第二频域资源上一个时域周期P2内(或者一个时间单元Q2内,Q2小于等于P2),网络设备可以发送第一类下行公共信号的多个时域位置和每个时域位置对应的第一类下行公共信号的index,这些时域位置上的第一类下行公共信号组成第二下行公共信号集合。其中,第二频域资源和第一频域资源可以对应2个不同的上下行配置,即不同的TDD帧结构,周期P1和P2可以相等也可以不等,pattern#1和pattern#2可以相同,也可以不同。可选地,上述第一信息用于确定第二频域资源与第一频域资源的偏移。通过上述方案,终端设备在检测到一个频域资源上的一个 第一类下行公共信号后,可以快速获知另一个频域资源上也存在第一类下行公共信号,不同频域资源上的第一类下行公共信号可以使用不同的传输参数(例如波束方向),从而便于终端设备更快的完成一些参数测量(如波束测量)。
可选地,第一下行公共信号携带第二信息,所述第二信息用于确定所述第一下行公共信号对应的第一类下行公共信号的样式,即确定pattern#1。例如,协议对于每个频段(band)定义一个或多个第一类下行公共信号样式,每个样式对应一个样式索引,每个样式对应一个周期(或一个时间单元),以及在该周期内(或时间单元内)一个或多个第一类下行公共信号发送的时域位置。可选地,所述时域位置可以是绝对时域位置,例如,不同索引的第一类下行公共信号分别在哪个无线帧中的哪个子帧、哪个时隙、哪个符号。或者,所述时域位置可以是相对时域位置,例如,不同索引的第一类下行公共信号相对于参考公共信号(例如是索引为0的第一类下行公共信号)的时域偏移是多少,其中参考公共信号的时域位置可以通过第一下行公共信号携带的其他信息获取;又例如,不同索引的第一类下行公共信号相对于所述公共信号样式所在周期(或时间单元)的起始符号的时域偏移是多少,其中公共信号样式所在周期(或时间单元)的起始符号的时域位置可以通过第一下行公共信号携带的其他信息获取,例如下文中的第四信息。通过上述方案,网络设备可以选择不同的pattern发送第一类下行公共信号,增加了灵活性,可以更好的匹配不同频域资源上的上下行配置。可选地,第二信息还用于指示所述第二频域资源上第一类下行公共信号的样式(即pattern#2)的索引。这里,对于一个频段,如果协议只规定一个第一类下行公共信号样式,则第一下行公共信号中可以不携带上述第二信息。
进一步,第一下行公共信号还携带第三信息,用于确定第一下行公共信号在所述pattern#1中的索引,结合该pattern#1的定义,可以确定第一下行公共信号在所述pattern#1对应周期或时间单元内的时域位置。
需要注意的是,第一下行公共信号携带一个信息,或者用于确定一个参数,可以是通过第一下行公共信号承载的系统信息(如MIB)指示,例如MIB中包含对应的信元,直接指示该信息或用于确定该参数;也可以是第一下行公共信号中承载的物理层比特指示的,例如,物理层比特包含某个字段,直接指示该信息或用于确定该参数,NR中PBCH承载的传输块(transport block,TB)既包含来自高层的MIB,也包含一部分物理层信息比特;也可以是通过第一下行公共信号中包含的序列信息隐式指示,例如可以通过序列的循环偏移、或者序列编号等方式隐式指示,这里的序列可以是同步信号或PBCH的解调参考信号对应的序列。
可选地,终端设备根据第一下行公共信号的索引,或者,根据第一下行公共信号的索引和该第一下行公共信号所在pattern的定义,完成下行定时同步和/或频率同步。例如,基于该第一下行公共信号的索引、pattern#1规定的每个索引对应的时域位置、以及该第一下行公共信号的检测时刻,完成下行定时同步。
可选地,终端设备检测到第一下行公共信号之后,维持驻留状态,则不需要进行下面操作S703;可选的,终端设备检测到第一下行公共信号之后,进一步接收第二类下行公共信号,获取更多系统参数,再维持驻留状态或进行小区接入。
S703:终端设备接收网络设备发送的第二类下行公共信号。
可选地,第二类下行公共信号包含一个或多个公共信号。
可选地,终端设备基于第一下行公共信号确定第二下行公共信号的传输参数,所述第二下行公共信号属于所述第二类下行公共信号。例如,终端设备根据第一下行公共信号确定第二下行公共信号的时频位置,或者,确定调度第二下行公共信号传输的下行控制信息的时频位置,并通过检测并译码该下行控制信息,获知第二下行公共信号的传输参数。
可选地,第二下行公共信号中携带下行寻呼配置信息和上行随机接入配置信息,终端设备可以选择维持驻留状态,并监听下行寻呼,保证自己可以被唤醒,或者选择发起上行随机接入,完成小区接入,转入连接状态。
通过上述方案,终端设备在检测到一个频域资源上的一个第一类下行公共信号(如第一下行公共信号)后,可以快速获知另一个频域资源上也存在第一类下行公共信号,不同频域资源上的第一类下行公共信号可以使用不同的传输参数(例如波束方向),从而便于终端设备更快的完成一些参数测量(如波束测量)。与此同时,终端设备可以选择不进行小区接入,保留在驻留状态,此时也可以对两个频域资源上的第一类下行公共信号进行测量,完成驻留态测量,也可以选择接入小区,此时可以基于该两个频域资源上多个第一类下行公共信号中质量较好的,进行后续小区接入,提升后续小区接入成功概率。
参考图8,本申请提供的一种通信方法的实施例,应用于终端设备接入网络设备的过程。该方法包括:
S801:网络设备向终端设备发送第一类下行公共信号。
具体的,第一类下行公共信号包括1个或多个下行公共信号,第一类下行公共信号包括第一下行公共信号,第一下行公共信号指示调度系统信息的控制信息的时频位置。第一类下行公共信号和第一下行公共信号的相关描述可以参考上面的实施例,在此不赘述。
S802:终端设备接收第一下行公共信号。
具体的,终端设备可以对第一类下行公共信号进行检测,并成功检测到第一下行公共信号。应理解,与上述描述相同,一个第一类下行公共信号对应一个第一类下行公共信号传输时频位置和一个下行公共信号的索引。在本申请的实施例中,在不影响表达逻辑的前提下,下行公共信号、下行公共信号索引、和下行公共信号的时频位置可以互换使用。终端设备可以根据第一下行公共信号获得系统信息的接收位置。
可选的,终端设备基于第一下行公共信号获取下行定时同步。例如,可以包括如下几个步骤:
8021:终端设备根据第一下行公共信号所在频段获取该频段内预定义的第一类下行公共信号的样式或候选样式集合。所述第一类下行公共信号样式的含义与上面实施例中第一样式、第二样式类似,这里不再赘述。
8022:终端设备基于第一下行公共信号携带的第二信息和预定义的候选样式集合确定该第一下行公共信号传输对应的样式,即第一样式pattern#1。第二信息用于确定所述第一下行公共信号属于的第一类下行公共信号的样式。例如,预定义了N种候选样式,对应样式索引#0-#(N-1),第二信息用于指示上述pattern索引。
该步骤是可选的,例如,每个频段只有一种预定义的候选样式的情况下,第一下行公 共信号中不需要携带上述第二信息。
8023:终端设备根据第一下行公共信号携带的第四信息获取第一下行公共信号对应的第一样式所在周期(或时间单元)的起始符号的时域位置,例如,第四信息用于指示第一样式对应时间单元的起始符号所在的无线帧、无线半帧、无线子帧、或者时隙等。
8024:终端设备基于第一下行公共信号携带的第三信息确定第一下行公共信号传输在该第一样式中的索引,从而结合pattern#1定义、pattern#1对应的周期或时间单元的起始符号时域位置,确定第一下行公共信号检测时刻的无线帧、无线半帧、无线子帧、时隙、符号等编号,再与第一下行公共信号的检测时刻对应,完成下行定时同步。
第二信息、第三信息的相关描述可以参考图7所示的实施例。
另外,终端设备还基于检测到的第一下行公共信号确定第一系统信息传输位置,其中,第一系统信息传输位置是网络设备可能传输系统信息的一个或多个位置中的一个。系统信息可以是第二类下行公共信号的一种。一种实现方式中,系统信息可以是SIB1。一种实现方式中,第一系统信息承载在PDSCH中,第一下行公共信号携带所述PDSCH的频域位置和时域位置的指示信息;另一种实现方式中,第一系统信息承载在PDSCH中,而该PDSCH的时频位置和传输参数是通过第一DCI指示的。第一下行公共信号携带所述第一DCI的频域位置和时域位置的指示信息。终端设备根据第一下行公共信号获得在该频域位置和时域位置接收调度第一系统信息传输位置的DCI,从而获得承载第一系统信息的PDSCH的频域位置和时域位置,即第一系统信息传输位置。
S803:网络设备向终端设备发送第一系统信息;
第一系统信息携带指示至少两个频域资源的信息,不失一般性,这里以两个频域资源(第一频域资源和第二频域资源)为例进行阐述。第一频域资源和第二频域资源可以为两个载波,或两个带宽部分或两个其他频率单元。
第一系统信息携带指示第一频域资源和第二频域资源的信息;其中,所述第一频域资源与第二频域资源对应的上下行配置不同。第一频域资源和第二频域资源可以包括一个下行载波和一个上行载波,或包括一个上行BWP和一个下行BWP。
一种实现方式中,上下行配置指的是一个频域资源对应的下行符号、上行符号和灵活符号的符号数量以及位置。其中,下行符号用于下行传输,上行符号用于上行传输,灵活符号用于上下行转换或者为没有限制传输方向的符号。应理解的是,频域资源对应的下行符号、上行符号和灵活符号中的一个或两个的数量可以为0。例如,上下行配置可以表示为{xD:yS:zU},即按照顺序连续x个下行符号,接着是连续y个灵活符号,最后连续z个上行符号,其中x,y,z为大于等于0的整数。
第一频域资源和第二频域资源的上下行配置不同是指第一频域资源与第二频域资源对应的上行符号、灵活符号和下行符号中至少一个的数量或位置不同。
本申请中的第一频域资源和第二频域资源可以替换为第一小区和第二小区;或者,也可以替换为第一载波和第二载波;或者,也可以替换为第一BWP和第二BWP。在本申请中,如果没有特别说明,载波、小区、BWP可以互换使用。
一种实现方式中,第一频域资源包括一个下行载波DL carrier和一个上行载波UL carrier,第二频域资源包括一个下行载波和一个上行载波。可选的,一个频域资源包含的 下行载波和上行载波的中心频点对齐,但是宽度可以不同。这里载波也可以是其他频率单元,例如带宽部分。
网络设备可以在两个频域资源对应的两个DL carrier中任意一个下行载波上发送下行信号,终端设备也可以在两个频域资源对应的两个UL Carrier中任意一个上行载波上发送上行信号。即,第一频域资源对应的载波和第二频域资源对应的载波在初始化接入过程中可以都处于激活态。但并不意味着,网络设备和终端设备可以同时在两个Carrier上进行信息收发,只是表示,网络设备和终端设备不是始终只能在一个Carrier上进行信息收发。
可选地,两个频域资源具有如下特征,可以支持网络设备和终端设备在两个DL carrier或两个UL carrier上快速切换,动态、快速、灵活选择一个carrier进行信息收发。例如,两个DL carrier不重叠、或两个DL carrier的子载波间隔相同、或两个DL carrier的带宽相同,类似,两个UL carrier不重叠、或两个UL carrier的子载波间隔相同、或两个UL carrier的带宽相同。
S804:终端设备接收第一系统信息。
可选地,终端设备根据检测到的第一下行公共信号接收第一系统信息。具体的,终端设备根据第一下行公共信号确定调度第一系统信息的控制信息的时频位置,在该控制信息的时频位置上接收该控制信息,该控制信息中指示了第一系统信息的接收位置,然后在该位置上接收第一系统信息。
进一步的,终端设备根据该第一系统信息,确定所述第一频域资源和第二频域资源。例如,终端设备基于第一系统信息携带的信息,获得第一频域资源和对应的上下行配置;获得第二频域资源和对应的上下行配置。
一种实现方式中,第一下行公共信号为SSB,第一系统信息为SIB1。
S805:终端设备在随机接入资源集合中的第一随机接入资源上发送第一随机接入资源对应的随机接入前导码。
可选的,所述随机接入资源集合包括所述第一频域资源上的随机接入资源和/或所述第二频域资源上的随机接入资源。
随机接入资源集合指随机接入资源的集合。一个随机接入资源指的是一个随机接入时机(或者随机接入时频资源)上的一个随机接入前导码,具体可以参考前文相关的描述。
可选的,终端设备确定随机接入资源集合。例如,终端设备根据第一系统信息中携带的RACH配置信息,确定所述随机接入资源集合。RACH配置信息包括RACH occasion的时域位置信息、频域位置信息和码域配置信息,所述码域配置信息指示一个时频位置(或者说RACH occasion)上可以发送的RACH preamble的数目和每个preamble的具体序列信息,所述频域位置信息指示在频域资源内同一时域位置上有几个RACH occasion和每个RACH occasion的频域位置,所述时域位置信息指示RACH occasion的配置周期、在周期内有几个RACH occasion以及每个occasion在周期内的相对时域位置。
一种可能的实现中,第一频域资源和第二频域资源上都有随机接入资源,所述第一频域资源和第二频域资源上的随机接入资源一起组成所述随机接入资源集合。第一频域资源和第二频域资源的RACH occasion可以独立计数,或者,第一频域资源和第二频域资源上 的RACH occasion可以联合计数。对应地,终端设备在第一系统信息中接收第一随机接入配置信息和第二随机接入配置信息,所述第一随机接入配置信息用于确定第一频域资源上的随机接入资源,所述第二随机接入配置信息用于确定第二频域资源上的随机接入资源。第一随机接入配置信息、第二随机接入配置信息与随机接入配置信息类似。例如,第一随机接入配置信息和第二随机接入配置信息包括RACH occasion的时域位置信息、频域位置信息和码域配置信息。
另一种可能的实现中,所述两个频域资源上只有一个频域资源上有随机接入资源,例如只有第一频域资源上有随机接入资源,所述第一频域资源上的随机接入资源组成所述随机接入资源集合。对应地,终端设备在第一系统信息中接收第一随机接入配置信息,确定第一频域资源上的RACH资源。例如,第一随机接入配置信息包括RACH occasion的时域位置信息、频域位置信息和码域配置信息,具体含义和上面相同,这里不再赘述。
一种可能的实现中,所述随机接入资源集合只包含有效随机接入资源,所述有效随机接入资源指的是所述随机接入资源的时域位置对应的是上行符号或者灵活符号,和/或,所述随机接入资源在时域与任何一个下行公共信号或有效下行公共信号不重叠。终端设备确定所述随机接入资源集合之前,先从第一频域资源和/或第二频域资源上的随机接入资源中选择出有效随机接入资源。另一种可能的实现中,所述随机接入资源集合包含有效的随机接入资源和无效的随机接入资源。所谓的无效的随机接入资源是指该随机接入资源的时域位置对应的是下行符号,和/或,所述随机接入资源在时域与一个下行公共信号或有效下行公共信号重叠。
一种实现方式,终端设备根据检测的第一下行公共信号对应的公共信号索引确定第一随机接入资源。应理解,这里第一下行公共信号是终端设备检测到的一个第一类下行公共信号,可以是终端设备第一个检测到的第一类下行公共信号,或者,检测到的一个或多个第一类下行公共信号中接收信号功率最大的第一类下行公共信号,或者,一个下行公共信号子集中第一个检测到的第一类下行公共信号,所述一个下行公共信号子集包含终端设备检测到的、接收功率大于等于第一门限的一个或多个第一类下行公共信号,所述第一门限可以有某个第一类下行公共信号指示。
例如,以第一下行公共信号为第一SSB,系统信息为SIB1为例。从所述随机接入资源集合中选择第一随机接入资源,包括:终端设备根据第一SSB资源、所述SSB资源和所述RACH资源关联关系,确定RACH资源子集。其中,所述随机接入资源子集为所述随机接入资源集合的子集。可选地,所述RACH资源子集包含第一频域资源和第二频域资源上的RACH资源。
可选地,如果所述RACH资源集合只包含有效RACH资源,则RACH资源子集可能只包含一个频域资源上的RACH资源。可选地,如果所述RACH资源集合没有剔除无效RACH资源,则终端设备需要从所述RACH资源子集中剔除无效RACH资源,所述无效RACH资源即不是有效RACH资源,所述有效RACH资源的定义与上面相同。
可选地,终端设备从所述RACH资源子集中选择时域最早的RACH资源,如果有多个RACH资源时域相同,如多个频域位置不同的RACH occasion,随机选择一个RACH occasion,或者,一个RACH occasion中多个RACH序列,随机选择一个RACH序列。
可选地,终端设备在第一RACH occasion上发送第一RACH preamble使用的空域滤波设置与终端设备接收所述第一SSB资源使用的空域滤波设置相同。
相应的,网络设备在第一随机接入资源上接收所述第一随机接入资源对应的随机接入前导码。
网络设备在第一随机接入资源子集中的每个随机接入资源上检测随机接入前导码,网络设备在第一随机接入资源上检测到随机接入前导码。
该实施例中,在初始接入过程中,终端设备的随机接入资源集合包括分别位于至少两个频域资源上的随机接入集合,由于至少两个频域资源对应的上下行配置不同,则终端设备可以根据上下行配置从至少两个频域资源对应的随机接入资源中灵活选择适合的随机接入资源进行随机接入,能够缩短发送随机接入前导码的等待时延,从而降低接入时延,并能提高系统的灵活性。
可选的,该方法还包括:
S806:终端设备确定下行公共信号资源子集,所述下行公共信号资源子集包括第一频域资源上的下行公共信号资源和/或第二频域资源上的下行公共信号资源。
下行公共信号资源子集,也可以称为有效下行公共信号集合。有效下行公共信号指真正被发送的下行公共信号。下行公共信号资源子集为下行公共信号资源集合的子集。
一种实现方式中,所述下行公共信号资源子集包括所述第一频域资源上的下行公共信号和所述第二频域资源上的下行公共信号。例如,所述下行公共信号资源子集包含第一下行公共信号资源子集和第二下行公共信号资源子集,所述第一下行公共信号资源子集中的资源位于所述第一频域资源,所述第二下行公共信号资源子集的资源位于所述第二频域资源。第一下行公共信号资源子集为第一下行公共信号资源集合(简称为第一集合)的子集。第一集合包括第一下行公共信号样式(如Pattern#1)对应的一个或多个公共信号。第一下行公共信号样式用于指示一个周期内(或一个时间单元内),第一频域资源上的一个或多个下行公共信号、每个下行公共信号的索引以及在第一频域资源上的时频位置,对应地,第一子集包含的下行公共信号在该第一下行公共信号集合中的索引是由第一指示信息指示的。第二下行公共信号资源子集为第二下行公共信号资源集合(简称为第二集合)的子集。第二集合包括第二下行公共信号样式(如Pattern#2)对应的一个或多个下行公共信号。第二下行公共信号样式用于指示一个周期内(或一个时间单元内),第二频域资源上的一个或多个下行公共信号、每个下行公共信号的索引以及在第二频域资源上的时频位置,对应地,第二子集包含的下行公共信号在该第二下行公共信号集合中的索引是由第二指示信息指示的。其中,第一下行公共信号样式可以和第二下行公共信号样式相同或者不同。可选的,第一指示信息包括一个比特位图(bitmap),该bitmap中的每个比特bit对应第一集合中的一个下行公共信号,该bit的取值用于指示对应的下行公共信号是否属于第一下行公共信号资源子集。可选的,第二指示信息包括一个比特位图,该比特位图中的每个比特对应第二集合中的一个下行公共信号,该比特的取值用于指示对应的下行公共信号是否属于第二下行公共信号资源子集。
终端设备确定下行公共信号资源子集,包括:
终端设备接收第一指示信息和第二指示信息,根据所述第一指示信息确定第一下行公 共信号资源子集。
第一指示信息和第二指示信息是网络设备向终端设备发送的。一种实现方式中,第一指示信息和第二指示信息携带在第一系统信息中。
该实现方式中,通过两个指示信息分别指示第一频域资源和第二频域资源上的下行公共信号资源,可以匹配两个频域资源的帧结构、子载波间隔等参数,提升指示效率。
另一种实现方式中,所述下行公共信号资源子集只包括所述第一频域资源或第二频域资源上的下行公共信号,对应地,所述下行公共信号资源集合只包括第一集合或第二集合。对应地,所述下行公共信号资源子集包含的下行公共信号在第一下行公共信号样式或第二下行公共信号样式中的索引是由第一指示信息或第二指示信息指示的。
一种实现方式中,所述下行公共信号资源子集包括所述第一频域资源上的下行公共信号和所述第二频域资源上的下行公共信号。下行公共信号资源子集等于第三下行公共信号资源子集,第三下行公共信号资源子集为第三下行公共信号资源集合(简称为第三集合)的子集。第三集合包括第三下行公共信号样式(如Pattern#3)对应的一个或多个下行公共信号,第三下行公共信号样式用于指示一个周期内(或一个时间单元内),第一频域资源和第二频域资源上的一个或多个下行公共信号、每个下行公共信号的索引以及在第一频域资源或第二频域资源上的时频位置。对应地,第三下行公共信号资源子集包含的下行公共信号在该第三下行公共信号集合中的索引是由第三指示信息指示的。
终端设备确定下行公共信号资源子集,包括:
终端设备接收第三指示信息,根据第三指示信息确定所述第三下行公共信号资源子集,所述下行公共信号资源子集等于所述第三下行公共信号资源子集。
第三指示信息是网络设备向终端设备发送的。一种实现方式中,第三指示信息携带在第一系统信息中。
可选的,该方法还包括:
终端设备接收下行公共信号样式指示信息,所述下行公共信号样式指示信息指示第三下行公共信号样式的索引,从而致使所述第三下行公共信号集合中每个下行公共信号在所述第一频域资源或所述第二频域资源的时域位置。可选地,对于每个频段,预定义多种下行公共信号样式,每种下行公共信号样式对应一个索引,通过获取第三下行公共信号样式的索引,确定第三下行公共信号样式。下行公共信号样式指示信息可以携带在每一个第一类下行公共信号中。
该实现方式中,通过一个样式联合指示第一频域资源和第二频域资源上的下行公共信号资源的集合,再通过一个指示信息指示该集合中哪些索引对应的公共信号属于所述下行公共信号资源子集,提高配置的灵活性。
S807:终端设备确定所述随机接入资源集合与所述下行公共信号资源子集的关联关系,所述关联关系包括所述下行公共信号资源子集中下行公共信号资源与随机接入资源集合中的资源子集的对应关系。
所述随机接入资源集合可以仅包含有效的随机接入资源,也可以包含有效的随机接入资源和无效的随机接入资源。
一个实施例中,下行公共信号资源子集包含第一下行公共信号资源子集和第二下行公 共信号资源子集,所述第一下行公共信号资源子集中的资源位于所述第一频域资源,所述第二下行公共信号资源子集的资源位于所述第二频域资源;
所述关联关系包括第一关联关系、第二关联关系、第三关联关系或第四关联关系中的至少一个,所述第一关联关系用于指示第一频域资源上随机接入资源与第一下行公共信号资源子集的关联关系,所述第二关联关系用于指示第二频域资源上随机接入资源集合与第一下行公共信号资源子集的关联关系,所述第三关联关系用于指示第一频域资源上随机接入资源集合与第二下行公共信号资源子集的关联关系,所述第四关联关系用于指示第二频域资源上随机接入资源集合与第二下行公共信号资源子集的关联关系。
可替换的,关联关系可以包括第一关联关系、第二关联关系、第三关联关系、第四关联关系、第五关联关系、第六关联关系、第七关联关系、第八关联关系或第九关联关系中的至少一个。所述第五关联关系用于指示两个频域上随机接入资源与第一下行公共信号资源子集中的资源的关联关系,其中,第一频域上随机接入资源与第二频域上随机接入资源联合计数。所述第六关联关系用于指示两个频域上随机接入资源与第二下行公共信号资源子集中的资源的关联关系,其中,第一频域上随机接入资源与第二频域上随机接入资源联合计数。第七关联关系用于指示第一频域资源上随机接入资源与所述下行公共信号资源子集中每个有效公共信号资源的关联关系,所述下行公共信号资源子集是第三下行公共信号资源子集。所述第八关联关系用于指示第二频域资源上随机接入资源与所述第一下行公共信号资源集合中每个有效公共信号资源的关联关系,所述下行公共信号资源子集是第三下行公共信号资源子集。所述第九关联关系用于指示两个频域上随机接入资源与所述第一下行公共信号资源集合中每个有效公共信号资源的关联关系,其中,第一频域上随机接入资源与第二频域上随机接入资源联合计数,所述下行公共信号资源子集是第三下行公共信号资源子集。其中,所述第三下行公共信号资源子集中下行公共信号在第一频域资源和第二频域资源上联合计数,对应的索引有第三下行公共信号样式指示。
S808:根据所述关联关系,终端设备确定与第一下行公共信号资源对应的随机接入资源子集,所述第一下行公共信号资源为所述下行公共信号资源子集中的一个资源,所述随机接入资源子集中的随机接入资源均属于所述随机接入资源集合,所述随机接入资源子集包括所述第一随机接入资源。
可选地,该方法还包括:
S807’:终端设备确定随机接入资源集合与所述下行公共信号资源集合的关联关系,所述关联关系包括所述下行公共信号资源集合中的下行公共信号资源与随机接入资源集合中的资源子集的对应关系。
即,终端设备可以确定以下至少一个:所述随机接入资源集合与所述下行公共信号资源集合的关联关系,所述有效随机接入资源集合与所述下行公共信号资源集合的关联关系,所述随机接入资源集合与所述下行公共信号资源子集的关联关系,或者,所述有效随机接入资源集合与下行公共信号资源子集的关联关系。
步骤S807’与步骤S807可以互相替换,也就是说,终端设备可以先从下行公共信号资源集合中确定有效下行公共信号资源集合,再确定有效下行公共信号资源集合与随机接入资源集合的关联关系。或者,终端设备可以从随机接入资源集合中确定有效随机接入资源 集合,再确定下行公共信号资源集合与有效随机接入资源集合的关联关系。或者,终端设备可以先从下行公共信号资源集合中确定有效下行公共信号资源集合,从随机接入资源集合中确定有效随机接入资源集合,再确定有效下行公共信号资源集合与有效随机接入资源集合的关联关系。也可以直接确定下行公共信号资源集合与随机接入资源集合的关联关系,在后续选择某个公共信号和/或随机接入资源进行传输的时候,再判断该公共信号或资源是否是有效的。
以第一下行公共信号为SSB,第一系统信息为SIB1为例,可以通过以下方式中的任意一种确定下行公共信号资源子集:
方式一:
当第一频域资源与第二频域资源中只有一个频域资源上有SSB,例如只有第一频域资源上有公共信号。终端设备从SIB1中获得第一指示信息,所述第一指示信息指示第一频域资源上、第一下行公共信号样式中的至少一个有效下行公共信号索引,所述有效下行公共信号索引对应的下行公共信号组成有效下行公共信号资源集合,即下行公共信号资源子集。所述第一频域资源为前述步骤中检测到第一下行公共信号的频域资源。
例如,只有第一频域资源上有SSB资源,如下图(a)所示。这个第一频域资源对应的是终端设备在前述步骤中检测到的SSB传输所在的频域资源。对应的,终端设备从SIB1中获得第一指示信息,所述第一指示信息指示第一频域资源上一个SSB pattern中多个SSB index对应的SSB资源上是否有SSB传输,即每个SSB index是否有效,所有有效SSB index对应的SSB资源组成所述有效SSB资源集合。可选地,所述有效SSB index对应的SSB资源在所述有效SSB资源集合中按照index顺序从小到大排序。
方式二:
当第一频域资源与第二频域资源都有SSB资源,且每个频域资源上的SSB单独指示。终端设备从SIB1中获得第一指示信息和第二指示信息,根据所述第一指示信息确定第一有效SSB资源子集,所述第一有效SSB资源子集中的SSB属于第一频域资源,根据所述第二指示信息确定第二SSB资源子集,所述第二SSB资源子集中的SSB属于第二频域资源,所述有效下行公共信号资源集合(即下行公共信号资源子集)是所述第一有效SSB资源子集和所述第二有效SSB资源子集的并集。
可选地,第一频域资源与第二频域资源上都有SSB资源,且每个频域资源上的SSB资源独立组成一个SSB pattern,如下图(b)所示。对应的,终端设备从SIB1中获取第一指示信息和第二指示信息,所述第一指示信息用于指示第一频域资源上1个SSB pattern中多个SSB index对应的SSB资源上是否真得有SSB传输,即每个SSB index是否有效,所述第二指示信息用于指示第二频域资源上1个SSB pattern中多个SSB index对应的SSB资源上是否真得有SSB传输,即每个SSB index是否有效;最后,第一频域资源上所有有效SSB index对应的SSB资源和第二频域资源上所有有效SSB index对应的SSB资源组成所述有效SSB资源集合。
方式三:
当第一频域资源与第二频域资源都有公共信号,且两个频域资源上的公共信号通过同一条指示信息指示。终端设备从系统信息SIB1中获得第三指示信息,根据第三指示信息确 定下行公共信号资源子集,即所述下行公共信号资源子集,所述下行公共信号资源子集为第三下行公共信号样式对应的第三下行公共信号资源集合的子集,所述第三下行公共信号样式对应的SSB资源集合包含所述第一频域资源上的SSB资源和所述第二频域资源的SSB资源。
可选地,第一频域资源与第二频域资源上都有SSB资源,且两个频域资源上的SSB资源联合组成一个SSB pattern,如下图(c)所示。对应的,终端设备从SIB1中获取第三指示信息,所述第三指示信息用于指示第一频域资源和第二频域资源上1个SSB pattern中多个SSB index对应的SSB资源上是否真得有SSB传输,即每个SSB index是否有效,最后1个SSB pattern上的有效SSB index对应的SSB资源组成所述有效SSB资源集合。可选地,所述有效SSB index对应的SSB资源在所述SSB资源集合中按照index顺序从小到大排序。
可选地,以第一下行公共信号为SSB,第一系统信息为SIB1为例,步骤S807或S807’中的SSB资源和RACH资源的关联关系可以为以下几种关联关系之一:
第一种:只有第一频域资源有SSB资源,只有第一频域资源上有RACH资源,则关联关系为第一关联关系,即第一频域上RACH资源与第一频域上SSB资源的关联关系。
所述SSB与RACH资源的关联关系会包含多个子关联关系,每个子关联关系包含1个有效SSB index对应的SSB资源,以及,一个RACH occasion上一个RACH preamble集合、或者一个RACH occasion上所有RACH preamble集合、或者多个RACH occasion上多个RACH preamble集合。
其中,上述RACH occasion可以通过RACH occasion index识别,所述RACH occasion index为RACH occasion在所述第一频域资源上的计数方式。可选地,一个频域资源上的RACH occasion计数方式包括:1)先频后时,即先对一个时域位置上、不同频域位置的RACH occasion按照频域位置从低到高排序,再对不同时域位置上的RACH occasion从前到后排序;2)先时后频,即先对一个频域位置上、不同时域位置的RACH occasion按照从前到后排序,再对不同频域位置的RACH occasion按照从低到高排序;3)一个第二时间单元内先时后频,再按照第二时间单元从先到后排序,例如第二时间单元是时隙,则对一个时隙内多个时域位置、多个频域位置上RACH occasion先时后频,再对不同时隙内的RACH occasion按照时隙索引从小到大排序。
其中,一个RACH occasion上的RACH preamble可以通过preamble index识别。
第二种:只有第一频域资源有SSB资源,两个频域资源上都有RACH资源且两个频域资源上RACH occasion独立计数,则关联关系包括第一关联关系和第二关联关系。第二关联关系指示第二频域上RACH资源与第一频域上SSB资源的关联关系。
第三种:只有第一频域资源有SSB资源,两个频域资源上都有RACH资源且,两个频域资源上RACH occasion联合计数,则所述关联关系为第五关联关系。所述第五关联关系用于指示所述第一频域资源上SSB资源与两个频域资源上联合计数的RACH occasion、每个RACH occasion上RACH preamble的关联关系。
可选地,所述两个频域资源上RACH occasion的联合计数方法包括:1)先频后时,即先对一个时域位置上、两个频域资源上不同频域位置的RACH occasion按照频域位置从低 到高排序,再对不同时域位置上的RACH occasion从前到后排序;2)先时后频,即先对一个频域位置上、不同时域位置的RACH occasion按照从前到后排序,再对不同频域位置的RACH occasion按照从低到高排序;3)一个第二时间单元内先时后频,再按照第二时间单元从先到后排序,例如第二时间单元是时隙,则对一个时隙内多个时域位置、多个频域位置上RACH occasion先时后频,再对不同时隙内的RACH occasion按照时隙索引从小到大排序;4)先第一频域资源再第二频域资源,每个频域资源上的RACH occasion计数可以是先频后时、先时后频、或者结合。
可选地,对RACH occasion进行计数时,是对SIB1中配置的所有RACH occasion进行计数,或者,是对SIB1中配置的有效RACH occasion进行计数。其中,有效RACH occasion指的是所述RACH occasion的频域位置在第一频域资源或第二频域资源内,且所述RACH occasion的时域位置对应所在频域资源上的上行符号或者灵活符号。
第四种:两个频域资源都有SSB资源且每份SSB资源组成独立SSB pattern,只有第一频域资源上有RACH资源,则关联关系包括第一关联关系和第三关联关系。
第五种:两个频域资源都有SSB资源且每份SSB资源组成独立SSB pattern,两个频域资源上都有RACH资源且两个频域资源上RACH occasion独立计数,则关联关系包括第一关联关系、第二关联关系、第三关联关系和第四关联关系。
第六种:两个频域资源都有SSB资源且每份SSB资源组成独立SSB pattern,两个频域资源都有SSB资源且每份SSB资源组成独立SSB pattern,两个频域资源上都有RACH资源且两个频域资源上RACH occasion联合计数,则关联关系包括第五关联关系和六关联关系。所述六关联关系用于指示所述第二频域资源上SSB资源与两个频域资源上联合计数的RACH occasion、每个RACH occasion上RACH preamble的关联关系。
第七种:两个频域资源都有SSB资源且两份SSB资源联合组成1个SSB pattern,只有第一频域资源上有RACH资源,则关联关系包括第七关联关系,第七关联关系用于指示所述两个频域资源上联合SSB pattern中每个有效SSB资源和第一频域资源上RACH资源的关联关系。这里1个SSB pattern中每个SSB资源的位置和index计数由SSB pattern确定。
第八种:两个频域资源都有SSB资源且两份SSB资源联合组成1个SSB pattern,两个频域资源上都有RACH资源且两个频域资源上RACH occasion独立计数,则关联关系包括第七关联关系和第八关联关系。第八关联关系用于指示所述两个频域资源上联合SSB pattern中每个有效SSB资源和第而频域资源上RACH资源的关联关系。
第九种:两个频域资源都有SSB资源且两份SSB资源联合组成1个SSB pattern,两个频域资源上都有RACH资源且两个频域资源上RACH occasion联合计数,则关联关系包括第九关联关系,所述第九关联关系用于指示述两个频域资源上联合SSB pattern中每个有效SSB资源与联合计数的RACH occasion、每个RACH occasion上RACH preamble的关联关系。
可选的,该方法还包括:
S809:网络设备在第二物理下行控制信道PDCCH监测位置集合中的PDCCH监测位置发送第二下行控制信息DCI;和/或,
网络设备在第三PDCCH监测位置集合中的PDCCH监测位置发送第二DCI;
其中,所述第二DCI用于调度第二PDSCH,所述第二PDSCH用于承载RAR,所述第二PDCCH监测位置集合中的PDCCH监测位置在所述第一频域资源上且位于第一子时间窗内,所述第三PDCCH监测位置集合中的PDCCH监测位置在所述第二频域资源上且位于第二子时间窗内,所述第一子时间窗和所述第二子时间窗是根据所述第一随机接入资源确定的。
网络设备在上述PDCCH检测位置上一个或多个位置发送第二DCI。例如,网络设备选择时域最早的有效监测位置发送第二DCI,便于终端设备快速接收RAR。
相应的,终端设备在第二物理下行控制信道PDCCH监测位置集合中的PDCCH监测位置检测第二下行控制信息DCI;和/或,
终端设备在第三PDCCH监测位置集合中的PDCCH监测位置检测第二DCI。
可选地,终端设备直接确定一个第一时间窗,所述第一时间窗的长度是预定义的或者SIB1中指示的,所述第一时间窗的起始位置距离上述第一RACH资源结束位置的距离是预定义的或者SIB1中指示的。终端设备在第一时间窗内、第一频域资源或第二时间窗内、第二频域资源上检测第二DCI。
该实施例中,网络设备在第一频域资源或第二频域资源的一个或多个PDCCH检测位置发送第二DCI,则网络设备可以根据上下行配置从至少两个频域资源中灵活选择适合的资源发送调度随机接入响应的第二DCI,能够缩短发送第二DCI的时延,提高系统灵活性。
可选地,终端设备分别确定第一子时间窗和第二子时间窗,在第一子时间窗内、第一频域资源上检测第二DCI;和/或在第二子时间窗内、第二频域资源上检测第二DCI。不失一般性,下面以这种情况为例进行阐述。
情况1:如果终端设备支持同时在两个频域资源上检测第二DCI,即支持同时在第二PDCCH监测位置集合和第三PDCCH监测位置集合中的监测位置去检测第二DCI。则终端设备在第一频域资源上、第一子时间窗内第二PDCCH监测位置中每个有效检测位置去检测第二DCI,同时在第二频域资源上、第二子时间窗内第三PDCCH监测位置集合中每个有效监测位置去检测第二DCI,所述有效监测位置指的是该监测位置所在符号是下行符号或者灵活符号。
情况2:如果终端设备不支持同时在两个频域资源上检测第二DCI,即不支持同时在第二PDCCH监测位置集合中一个监测位置和第三PDCCH监测位置集合中的一个重叠的监测位置去检测第二DCI。此时,当第二PDCCH检测位置集合第二监测位置和第三PDCCH监测位置集合中第三监测位置时域重叠时,终端设备按照一定规则确定在上述第二监测位置还是第三监测位置检测第二DCI。例如,终端设备先判断第二监测位置和第三监测位置哪个是有效监测位置,所述有效监测位置指的是,该PDCCH监测位置包含的时域符号在对应的频域资源上是下行符号(或者下行符号或灵活符号),对应的无效监测位置指的是,该PDCCH检测位置包含的时域符号中至少一个时域符号在对应的频域资源上是上行符号或灵活符号(或者上行符号)。终端设备优先选择有效的监测位置去检测第二DCI。如果上述第二监测位置和第三监测位置都是有效监测位置,则终端设备可以按照如下准则选择一个监测位置去检测第二DCI:
方式一:优先选择1个预设的频域资源上的监测位置,该预设的频域资源可以是预定义的、SIB1指示的、或者直接是终端设备在S802中接收第一下行公共信号所在的频域资 源;
方式二:优先选择最近一次有效PDCCH监测位置所在的频域资源上的监测位置进行检测,好处是降低终端设备在两个频域资源之间切换次数。
可选地,终端设备默认不支持同时在两个频域资源上检测第二DCI,按照上述情况2进行处理。这是因为,终端设备还没有完成小区接入,网络设备不知道终端设备的能力,只能默认终端设备不支持同时在两个频域资源上检测第二DCI,按照这种情况发送第二DCI,所以终端设备也只能按照这种情况去检测第二DCI。
一个实施例中,当所述第二PDCCH监测位置集合中的第二监测位置和第三PDCCH监测位置集合中的第三监测位置时域重叠,所述第二监测位置所在符号为下行符号或灵活符号,且所述第三监测位置所在符号包含上行符号时,在所述第二监测位置上发送所述第二DCI;或,
当所述第二PDCCH监测位置集合中的第二监测位置和第三PDCCH监测位置集合中的第三监测位置时域重叠,所述第二监测位置所在符号为下行符号或灵活符号,且所述第三监测位置所在符号也为下行符号或灵活符号时,在第四监测位置上发送所述第二DCI,所述第四监测位置为所述第二监测位置和所述第三监测位置中的一个。
相应的,终端设备在对应的监测位置检测第二DCI。
可选地,所述第二DCI由随机接入无线网络临时标识RA-RNTI加扰,所述RA-RNTI取值根据所述第一随机接入资源所在频域资源是第一频域资源还是第二频域资源,以及所述第一随机接入资源在所在频域资源内的时频位置确定。
相应的,终端设备在检测第二DCI之前,确定RA-RNTI,根据RA-RNTI对第二DCI进行去扰。例如,终端设备在一个监测位置接收信号,解调译码得到一组比特序列,根据RA-RNTI去扰确定循环冗余校验(Cyclic redundancy Check,CRC)比特,根据CRC比特去判断该接收比特序列是不是接收正确以及是不是给自己的。
可选地,RA-RNTI取值根据所述第一RACH资源所在频域资源和所述第一RACH资源在该所在频域资源内的时频位置确定。例如,对于方式一、方式四或方式七,RA-RNTI取值只与第一RACH资源在第一频域资源上的时频位置确定,或者,在第一频域资源上的RACH occasion index确定;又例如,对于方式二、方式五或方式八,RA-RNTI取值与第一RACH资源在第一频域资源还是第二频域资源、以及在该频域资源上的时频位置或RACH occasion index确定,即第一频域资源和第二频域资源上相同RACH occasion index对应不同RA-RNTI;又例如,对于方式三、方式六或方式九,RA-RNTI取值与第一RACH资源的RACH occasion在联合计数模式中排序(即index)有关。
可选地,终端设备检测获取第二DCI之后,在第二DCI指示的频域资源、该频域资源内的一个时频位置去接收第二PDSCH,并译码第二PDSCH。解析第二PDSCH的内容,如果其中一个字段包含本终端设备发送的RACH preamble index,则认为该字段是给本终端设备的,执行后续步骤。
可选的,该方法还包括:
S810:网络设备向所述终端设备发送第二PDSCH,所述第二PDSCH包含随机接入响应RAR,所述RAR携带第四频域资源的指示信息;
所述RAR通过所述第二PDSCH承载,所述RAR用于调度第一物理上行共享信道PUSCH,所述第四频域资源属于第一频域资源或第二频域资源。
相应的,终端设备接收随机接入响应RAR,根据第四频域资源的指示信息确定用于发送第一PUSCH的第四频域资源。
S811:终端设备确定上行定时提前TA,从RAR中获得RAR UL grant,根据RAR UL grant发送第一PUSCH。
终端设备在第四频域资源上发送所述第一PUSCH。
可选地,终端设备根据RAR中指示的TA,确定上行定时同步,即上行时间轴相比于下行时间抽的提前量,或者说,同一个时域符号,上行传输时刻相比于下行接收时刻的提前量。
可选地,上述RAR UL grant指示第一PUSCH所在频域资源,即第一PUSCH在第一频域资源还是第二频域资源上发送。可选地,所述RAR UL grant还携带其他信息,例如所述第一PUSCH在对应频域资源上的时域位置、频域位置、调制方式等。这样,网络设备可以根据两个频域资源的帧结构选择具有上行部分且上行部分最近的频域资源来发送第一PUSCH,从而降低第一PUSCH发送时延。
可选地,终端设备根据RAR UL grant指示发送第一PUSCH,所述第一PUSCH携带消息3,例如,所述第一PUSCH携带终端设备ID。
相应的,网络设备在所述第四频域资源上接收所述第一PUSCH。
S812:网络设备在第四PDCCH监测位置集合中的PDCCH监测位置发送第三DCI;和/或
网络设备在第五PDCCH监测位置集合中的PDCCH监测位置发送第三DCI;
其中,所述第三DCI调度第三PDSCH;所述第四PDCCH监测位置集合中的PDCCH监测位置在第一频域资源上且位于第三子时间窗内,所述第五PDCCH监测位置集合中的PDCCH监测位置在第二频域资源上且位于第四子时间窗内,所述第三子时间和所述第四子时间窗根据所述第一PUSCH时域位置确定。
相应的,终端设备在第四PDCCH监测位置集合中的PDCCH监测位置检测第三DCI;和/或,在第五PDCCH监测位置集合中的PDCCH监测位置检测第三DCI。
可选地,终端设备直接确定一个第二时间窗,适用于两个频域资源,或者,一个第三子时间窗和一个第四子时间窗,分别适用于第一频域资源和第二频域资源。
可选地,终端设备在第一频域资源上、第三子时间窗内确定第四PDCCH监测位置集合,在第二频域资源上、第四子时间窗内确定第五PDCCH监测位置集合。如果终端设备支持同时在两个频域资源上检测第三DCI,则终端设备对所有确定的有效监测位置进行第三DCI检测;如果终端设备不支持同时在两个频域资源上检测第三DCI,则终端设备按照一定准则确定在第一频域资源还是第二频域资源检测第三DCI,确定方法和S809中类似。
一个实施例中,当所述第四PDCCH监测集合中第五监测位置和第五PDCCH监测集合中第六监测位置时域重叠,在第七监测位置上发送所述第三DCI;
其中,当所述第四PDCCH监测集合中第五监测位置和第五PDCCH监测集合中第六监测位置时域重叠,所述第五监测位置所在符号为下行符号或灵活符号,且所述第六监测位置所在符号包含上行符号时,在所述第五监测位置上检测所述第三DCI;或者,当所述第四 PDCCH监测集合中第五监测位置和第五PDCCH监测集合中第六监测位置时域重叠,所述第五监测位置所在符号为下行符号或灵活符号,且所述第六监测位置所在符号为下行符号或者灵活符号时,在第七监测位置上的监测位置发送所述第三DCI,所述第七监测位置是第五监测位置和第六监测位置中一个预设的监测位置。
可选地,第三DCI使用TC-RNTI加扰,终端设备根据TC-RNTI检测第三DCI,所述TC-RNTI取值由步骤S810中的RAR指示。
可选地,终端设备成功检测到给自己的第三DCI后,根据第三DCI指示去接收第三PDSCH,所述第三PDSCH携带竞争解决标识,当该竞争解决标识与S811中终端设备上报的终端设备ID相同时,终端设备认为竞争解决成功。
可选地,如果终端设备成功检测到给自己的第三DCI,所述第三DCI携带第六频域资源的指示信息,则执行下面步骤。
S813:终端设备根据第三PDSCH译码结果生成反馈信息HARQ-ACK,在所述第六频域资源上发送第二PUCCH,所述第二PUCCH承载第三PDSCH的反馈信息。
所述第六频域资源属于第一频域资源或第二频域资源。
相应的,网络设备在所述第六频域资源上接收所述第三PDSCH的反馈信息HARQ-ACK。
可选地,上述反馈信息包括ACK和NACK,分别表示第三PDSCH译码成功和译码失败。
可选地,上述第三DCI中携带指示第六频域资源的信息,即第三DCI指示第二PUCCH在第一频域资源还是第二频域资源上发送。可选地,所述第三DCI还携带其他信息,例如所述第二PUCCH在对应频域资源上的时域位置、频域位置、调制方式等。这样,网络设备可以根据两个频域资源的帧结构选择具有上行部分且上行部分最近的频域资源来发送第一PUCCH,从而降低第二PUCCH发送时延。
可以理解的是图7和图8对应的实施例及详细的实现方式可以独立使用或者互相结合使用;图7和图8对应的实现方式也可以进行组合。
可以理解的是,为了实现上述实施例中功能,网络设备和终端设备包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图9和图10为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中终端设备或网络设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1所示的终端120a-120j中的一个,也可以是如图1所示的基站110a或110b,还可以是应用于终端或基站的模块(如芯片)。
如图9所示,通信装置900包括处理单元910和收发单元920。通信装置900用于实现上述图7或图8中所示的方法实施例中终端设备或网络设备的功能。
当通信装置900用于实现图7所示的方法实施例中终端设备的功能时:收发单元920 用于接收第一公共信号;处理单元910用于根据第一下行公共信号的频域资源确定第二下行公共信号的频域资源;所述收发单元920还用于在第二下行公共信号的频域资源接收第二下行公共信号。
当通信装置900用于实现图7所示的方法实施例中网络设备的功能时:收发单元920用于向终端设备发送第一类下行公共信号和第二类下行公共信号,所述第一类下行公共信号包含一个或多个公共信号;所述第二类下行公共信号包含一个或多个公共信号;其中所述第二类公共信号的频域资源与第一类下行公共信号的频域资源相关。
当通信装置900用于实现图8所示的方法实施例中终端设备的功能时:收发单元920用于接收第一下行公共信号和系统信息,在随机接入资源集合中的第一随机接入资源上发送第一随机接入资源对应的随机接入前导码;其中,所述第一下行公共信号指示调度系统信息的控制信息的时频位置,所述系统信息携带指示第一频域资源和第二频域资源的信息,所述第一频域资源与所述第二频域资源对应的上下行配置不同;所述随机接入资源集合包括所述第一频域资源上的随机接入资源和所述第二频域资源上的随机接入资源。
处理单元910用于在随机接入资源集合中确定所述第一随机接入资源及对应的随机接入前导码。
当通信装置900用于实现图8所示的方法实施例中网络设备的功能时:收发单元920用于向终端设备发送第一下行公共信号和系统信息;所述第一下行公共信号指示调度系统信息的控制信息的时频位置,所述系统信息携带指示第一频域资源和第二频域资源的信息,其中,所述第一频域资源与所述第二频域资源对应的上下行配置不同;处理单元910用于在随机接入资源集合中确定所述第一随机接入资源。所述收发单元920还用于在第一随机接入资源上接收所述第一随机接入资源对应的随机接入前导码;其中,所述第一随机接入资源属于随机接入资源子集,所述随机接入资源子集为随机接入资源集合的子集,所述随机接入资源集合包括所述第一频域资源上的随机接入资源和所述第二频域资源上的随机接入资源。
收发单元920用于收发信息,处理单元910用于数据处理或逻辑处理,有关上述处理单元910和收发单元920更详细的描述可以直接参考图7或8所示的方法实施例中相关描述直接得到,这里不加赘述。
如图10所示,通信装置1000包括处理器1010和接口电路1020。处理器1010和接口电路1020之间相互耦合。可以理解的是,接口电路1020可以为收发器或输入输出接口。可选的,通信装置1000还可以包括存储器1030,用于存储处理器1010执行的指令或存储处理器1010运行指令所需要的输入数据或存储处理器1010运行指令后产生的数据。
当通信装置1000用于实现图7或8所示的方法时,处理器1010用于实现上述处理单元910的功能,接口电路1020用于实现上述收发单元920的功能。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
当上述通信装置为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中 网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给网络设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (33)

  1. 一种通信方法,其特征在于,包括:
    接收第一下行公共信号,所述第一下行公共信号指示调度系统信息的控制信息的时频位置;
    接收所述系统信息,所述系统信息携带指示第一频域资源和第二频域资源的信息,其中,所述第一频域资源与所述第二频域资源对应的上下行配置不同;
    在随机接入资源集合中的第一随机接入资源上发送第一随机接入资源对应的随机接入前导码,其中,所述随机接入资源集合包括所述第一频域资源上的随机接入资源和所述第二频域资源上的随机接入资源。
  2. 如权利要求1所述的方法,其特征在于,还包括:
    确定下行公共信号资源子集,所述下行公共信号资源子集包括第一频域资源上的下行公共信号资源和/或第二频域资源上的下行公共信号资源;
    确定所述随机接入资源集合与所述下行公共信号资源子集的关联关系,所述关联关系包括所述下行公共信号资源子集中的下行公共信号资源与随机接入资源集合中的随机接入资源子集的对应关系;
    根据所述关联关系,确定与第一下行公共信号资源对应的随机接入资源子集,所述第一下行公共信号资源为所述第一下行公共信号所对应的资源,所述第一下行公共信号的资源是所述下行公共信号资源子集中的一个资源,所述随机接入资源子集中的随机接入资源均属于所述随机接入资源集合,所述随机接入资源子集包括所述第一随机接入资源。
  3. 根据权利要求2所述方法,其特征在于,所述确定下行公共信号资源子集,包括:
    接收第一指示信息和第二指示信息,根据所述第一指示信息确定第一下行公共信号资源子集,所述第一下行公共信号资源子集中的下行公共信号属于第一频域资源,根据所述第二指示信息确定第二下行公共信号资源子集,所述第二下行公共信号资源子集中的下公共信号属于第二频域资源,所述下行公共信号资源子集是所述第一下行公共信号资源子集和所述第二下行公共信号资源子集的并集。
  4. 根据权利要求2或3所述方法,其特征在于,
    所述关联关系包括第一关联关系、第二关联关系、第三关联关系或第四关联关系中的至少一个,所述第一关联关系为第一频域资源上第一随机接入资源集合与第一下行公共信号资源子集的关联关系,所述第二关联关系为第二频域资源上第二随机接入资源集合与第一下行公共信号资源子集的关联关系,所述第三关联关系为第一频域资源上第一随机接入资源集合与第二下行公共信号资源子集的关联关系,所述第四关联关系为第二频域资源上第二随机接入资源集合与第二下行公共信号资源子集的关联关系。
  5. 根据权利要求2所述方法,其特征在于,所述确定下行公共信号资源子集,包括:
    接收第三指示信息,根据第三指示信息确定所述第三下行公共信号资源子集,所述下行公共信号资源子集等于所述第三下行公共信号资源子集,所述第三下行公共信号资源子集为第三下行公共信号资源集合的子集,所述第三下行公共信号资源集合对应第三下行公共信号样式,所述第三下行公共信号资源集合包含第一频域资源上的下行公共信号资源和第二频域资源上的下行公共信号资源。
  6. 根据权利要求5所述方法,其特征在于,还包括:
    接收下行公共信号样式指示信息,所述下行公共信号样式指示信息指示所述第三下行公共信号样式的索引,所述第三下行公共信号样式用于定义所述第三下行公共信号集合中每个公共信号在所述第一频域资源或所述第二频域资源的时域位置。
  7. 根据权利要求1-6任一所述方法,其特征在于,所述方法还包括:
    在第二物理下行控制信道PDCCH监测位置集合中的PDCCH监测位置检测第二下行控制信息DCI;和/或,
    在第三PDCCH监测位置集合中的PDCCH监测位置检测第二DCI;
    其中,所述第二DCI用于调度第二物理下行共享信道PDSCH,所述第二PDCCH监测位置集合中的PDCCH监测位置在所述第一频域资源上且位于第一子时间窗内,所述第三PDCCH监测位置集合中的PDCCH监测位置在所述第二频域资源上且位于第二子时间窗内,所述第一子时间窗和所述第二子时间窗是根据所述第一随机接入资源确定的。
  8. 根据权利要求7所述方法,其特征在于,
    当所述第二PDCCH监测位置集合中的第二监测位置和第三PDCCH监测位置集合中的第三监测位置时域重叠,所述第二监测位置所在符号为下行符号或灵活符号,且所述第三监测位置所在符号包含上行符号时,在所述第二监测位置上检测所述第二DCI;或,
    当所述第二PDCCH监测位置集合中的第二监测位置和第三PDCCH监测位置集合中的第三监测位置时域重叠,所述第二监测位置所在符号为下行符号或灵活符号,且所述第三监测位置所在符号也为下行符号或灵活符号时,在第四监测位置上监测所述第二DCI,所述第四监测位置为所述第二监测位置和所述第三监测位置中的一个。
  9. 根据权利要求7或8所述方法,其特征在于,
    所述第二DCI由随机接入无线网络临时标识RA-RNTI加扰,所述RA-RNTI的取值根据所述第一随机接入资源所在频域资源和所述第一随机接入资源在所述所在频域资源内的时频位置确定。
  10. 根据权利要求7-9任一所述方法,其特征在于,所述方法还包括:
    接收随机接入响应RAR,所述RAR在所述第二PDSCH中承载,所述RAR用于调度第一物理上行共享信道PUSCH,所述RAR携带指示第四频域资源的指示信息,所述第四频域资源属于所述第一频域资源或所述第二频域资源;
    在所述第四频域资源上发送所述第一PUSCH。
  11. 根据权利要求1-10任一所述方法,其特征在于,所述方法还包括:
    在第四PDCCH监测位置集合中的PDCCH监测位置检测第三DCI;和/或
    在第五PDCCH监测位置集合中的PDCCH监测位置检测第三DCI;
    其中,所述第三DCI调度第三PDSCH;所述第四PDCCH监测位置集合中的PDCCH监测位置在第一频域资源上且位于第三子时间窗内,所述第五PDCCH监测位置集合中的PDCCH监测位置在第二频域资源上且位于第四子时间窗内,所述第三子时间和所述第四子时间窗根据所述第一PUSCH时域位置确定。
  12. 根据权利要求11所述方法,其特征在于,
    当所述第四PDCCH监测集合中第五监测位置和第五PDCCH监测集合中第六监测位置时 域重叠,所述第五监测位置所在符号为下行符号或灵活符号,且所述第六监测位置所在符号包含上行符号时,在所述第五监测位置上检测所述第三DCI;或者,
    当所述第四PDCCH监测集合中第五监测位置和第五PDCCH监测集合中第六监测位置时域重叠,所述第五监测位置所在符号为下行符号或灵活符号,且所述第六监测位置所在符号为下行符号或者灵活符号时,在第七监测位置检测所述第三DCI,所述第七监测位置是第五监测位置和第六监测位置中一个预设的监测位置。
  13. 根据权利要求11或12所述方法,其特征在于,所述第三DCI携带指示第六频域资源的信息,所述第六频域资源属于第一频域资源或第二频域资源,所述方法还包括:
    在第六频域资源上发送所述第三PDSCH的反馈信息。
  14. 一种通信方法,其特征在于,包括:
    发送第一下行公共信号,所述第一下行公共信号指示调度系统信息的控制信息的时频位置;
    发送所述系统信息,所述系统信息携带指示第一频域资源和第二频域资源的信息,其中,所述第一频域资源与所述第二频域资源对应的上下行配置不同;
    在第一随机接入资源上接收所述第一随机接入资源对应的随机接入前导码,其中,所述第一随机接入资源属于随机接入资源子集,所述随机接入资源子集为随机接入资源集合的子集,所述随机接入资源集合包括所述第一频域资源上的随机接入资源和所述第二频域资源上的随机接入资源。
  15. 根据权利要求14所述方法,其特征在于,还包括:
    根据随机接入资源集合与下行公共信号资源子集的关联关系,确定与第一下行公共信号的资源对应的随机接入资源子集;所述关联关系包括所述下行公共信号资源子集中的下行公共信号资源与随机接入资源集合中的随机接入资源子集的对应关系;所述第一下行公共信号的资源为所述第一下行公共信号所对应的资源,所述第一下行公共信号的资源是所述下行公共信号资源子集中的一个资源。
  16. 根据权利要求15所述方法,其特征在于,
    所述系统信息还携带第一指示信息和第二指示信息,所述第一指示信息指示第一下行公共信号资源子集的位置信息,所述第二指示信息指示第二下行公共信号资源子集的位置信息,所述第一下行公共信号资源子集中的下行公共信号属于第一频域资源,所述第二下行公共信号资源子集中的下行公共信号属于第二频域资源,所述下行公共信号资源子集是所述第一下行公共信号资源子集和所述第二下行公共信号资源子集的并集。
  17. 根据权利要求15或16所述方法,其特征在于,
    所述关联关系包括第一关联关系、第二关联关系、第三关联关系或第四关联关系中的至少一个,所述第一关联关系为第一频域资源上第一随机接入资源集合与第一下行公共信号资源子集的关联关系,所述第二关联关系为第二频域资源上第二随机接入资源集合与第一下行公共信号资源子集的关联关系,所述第三关联关系为第一频域资源上第一随机接入资源集合与第二下行公共信号资源子集的关联关系,所述第四关联关系为第二频域资源上第二随机接入资源集合与第二下行公共信号资源子集的关联关系。
  18. 根据权利要求15所述方法,其特征在于,
    所述系统信息还携带第三指示信息,所述第三指示信息指示第三下行公共信号资源子集的位置信息,所述下行公共信号资源子集等于所述第三下行公共信号资源子集,所述第三下行公共信号资源子集为第三下行公共信号资源集合的子集,所述第三下行公共信号资源集合对应第三下行公共信号样式,所述第三下行公共信号资源集合包含的公共信号资源位于所述第一频域资源和所述第二频域资源。
  19. 根据权利要求18所述方法,其特征在于,还包括:
    发送公共信号样式指示信息,所述下行公共信号样式指示信息指示所述第三下行公共信号样式的索引,所述第三下行公共信号样式用于定义所述第三下行公共信号集合中每个公共信号在所述第一频域资源或所述第二频域资源的时域位置。
  20. 根据权利要求14-19任一所述方法,其特征在于,所述方法还包括:
    在第二物理下行控制信道PDCCH监测位置集合中的PDCCH监测位置发送第二下行控制信息DCI;和/或,
    在第三PDCCH监测位置集合中的PDCCH监测位置发送第二DCI;
    其中,所述第二DCI用于调度第二物理下行共享信道PDSCH,所述第二PDCCH监测位置集合中的PDCCH监测位置在所述第一频域资源上且位于第一子时间窗内,所述第三PDCCH监测位置集合中的PDCCH监测位置在所述第二频域资源上且位于第二子时间窗内,所述第一子时间窗和所述第二子时间窗是根据所述第一随机接入资源确定的。
  21. 根据权利要求20所述方法,其特征在于,还包括:
    当所述第二PDCCH监测位置集合中的第二监测位置和第三PDCCH监测位置集合中的第三监测位置时域重叠,所述第二监测位置所在符号为下行符号或灵活符号,且所述第三监测位置所在符号包含上行符号时,在所述第二监测位置上发送所述第二DCI;或,
    当所述第二PDCCH监测位置集合中的第二监测位置和第三PDCCH监测位置集合中的第三监测位置时域重叠,所述第二监测位置所在符号为下行符号或灵活符号,且所述第三监测位置所在符号也为下行符号或灵活符号时,在第四监测位置上发送所述第二DCI,所述第四监测位置为所述第二监测位置和所述第三监测位置中的一个。
  22. 根据权利要求20或21所述方法,其特征在于,
    所述第二DCI由随机接入无线网络临时标识RA-RNTI加扰,所述RA-RNTI的取值根据所述第一随机接入资源所在频域资源和所述第一随机接入资源在所述所在频域资源内的时频位置确定。
  23. 根据权利要求20-22任一所述方法,其特征在于,所述方法还包括:
    向所述终端设备发送随机接入响应RAR,所述RAR在所述第二PDSCH中承载,所述RAR用于调度第一物理上行共享信道PUSCH,所述RAR携带第四频域资源的指示信息,所述第四频域资源属于第一频域资源或第二频域资源;
    在第四频域资源上接收所述第一PUSCH。
  24. 根据权利要求23所述方法,其特征在于,所述方法还包括:
    在第四PDCCH监测位置集合中的PDCCH监测位置发送第三DCI;和/或
    在第五PDCCH监测位置集合中的PDCCH监测位置发送第三DCI;
    其中,所述第三DCI调度第三PDSCH;所述第四PDCCH监测位置集合中的PDCCH监测 位置在第一频域资源上且位于第三子时间窗内,所述第五PDCCH监测位置集合中的PDCCH监测位置在第二频域资源上且位于第四子时间窗内,所述第三子时间和所述第四子时间窗根据所述第一PUSCH时域位置确定。
  25. 根据权利要求24所述方法,其特征在于,
    当所述第四PDCCH监测集合中第五监测位置和第五PDCCH监测集合中第六监测位置时域重叠,所述第五监测位置所在符号为下行符号或灵活符号,且所述第六监测位置所在符号包含上行符号时,在所述第五监测位置上检测所述第三DCI;或者,
    当所述第四PDCCH监测集合中第五监测位置和第五PDCCH监测集合中第六监测位置时域重叠,所述第五监测位置所在符号为下行符号或灵活符号,且所述第六监测位置所在符号为下行符号或者灵活符号时,在第七监测位置发送所述第三DCI,所述第七监测位置是第五监测位置和第六监测位置中一个预设的监测位置。
  26. 根据权利要求24或25所述方法,其特征在于,所述第三DCI携带第六频域资源的指示信息,所述第六频域资源属于第一频域资源或第二频域资源,所述方法还包括:
    在所述第六频域资源上接收所述第三PDSCH的反馈信息HARQ-ACK,所述第六频域资源属于第一频域资源或第二频域资源。
  27. 一种通信装置,其特征在于,包括用于执行如权利要求1至13中任一项所述方法的模块。
  28. 一种通信装置,其特征在于,包括用于执行如权利要求14至26中任一项所述方法的模块。
  29. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至13中任一项所述的方法。
  30. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求14至26中任一项所述的方法。
  31. 一种存储有指令的计算机可读存储介质,当所述指令在通信装置上运行时,使得所述通信装置执行如权利要求1-26任一项所述的方法。
  32. 一种计算机程序,其特征在于,当所述计算机程序被通信装置执行时,实现如权利要求1至26中任一项所述的方法。
  33. 一种通信系统,包括如权利要求27或29所述的通信装置,和如权利要求28或30所述的通信装置。
PCT/CN2021/081626 2021-03-18 2021-03-18 一种通信方法、装置和系统 WO2022193254A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21930846.7A EP4301065A4 (en) 2021-03-18 2021-03-18 COMMUNICATION METHOD, DEVICE AND SYSTEM
PCT/CN2021/081626 WO2022193254A1 (zh) 2021-03-18 2021-03-18 一种通信方法、装置和系统
CN202180095701.6A CN117099435A (zh) 2021-03-18 2021-03-18 一种通信方法、装置和系统
US18/467,802 US20240008097A1 (en) 2021-03-18 2023-09-15 Communication method, apparatus, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/081626 WO2022193254A1 (zh) 2021-03-18 2021-03-18 一种通信方法、装置和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/467,802 Continuation US20240008097A1 (en) 2021-03-18 2023-09-15 Communication method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2022193254A1 true WO2022193254A1 (zh) 2022-09-22

Family

ID=83321364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081626 WO2022193254A1 (zh) 2021-03-18 2021-03-18 一种通信方法、装置和系统

Country Status (4)

Country Link
US (1) US20240008097A1 (zh)
EP (1) EP4301065A4 (zh)
CN (1) CN117099435A (zh)
WO (1) WO2022193254A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024082349A1 (en) * 2022-11-04 2024-04-25 Lenovo (Beijing) Limited Methods and apparatuses for resource allocation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105430590A (zh) * 2014-09-01 2016-03-23 电信科学技术研究院 一种传输以及配置突发周期业务的方法及设备
US20180124829A1 (en) * 2015-04-30 2018-05-03 Lg Electronics Inc. Method and apparatus for configuring random access channel in short tti or contention based uplink transmission in wireless communication system
CN111436135A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 数据传输方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102126958B1 (ko) * 2017-03-22 2020-06-25 엘지전자 주식회사 무선 통신 시스템에서 랜덤 액세스 프리앰블을 송수신하는 방법 및 이를 위한 장치
WO2019098681A1 (ko) * 2017-11-14 2019-05-23 엘지전자 주식회사 시간 분할 듀플렉싱을 지원하는 협대역 iot 시스템에서 랜덤 액세스 프리앰블을 전송하기 위한 방법 및 이를 위한 장치
EP3678316A1 (en) * 2017-11-17 2020-07-08 LG Electronics Inc. -1- Method for transmitting and receiving physical random access channel and device therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105430590A (zh) * 2014-09-01 2016-03-23 电信科学技术研究院 一种传输以及配置突发周期业务的方法及设备
US20180124829A1 (en) * 2015-04-30 2018-05-03 Lg Electronics Inc. Method and apparatus for configuring random access channel in short tti or contention based uplink transmission in wireless communication system
CN111436135A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 数据传输方法及装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ERICSSON, ST ERICSSON: "Random access with carrier aggregation", 3GPP DRAFT; R2-100429 RANDOM ACCESS WITH CARRIER AGGREGATION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Valencia, Spain; 20100118 - 20100122, 12 January 2010 (2010-01-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP050604932 *
ERICSSON: "Remaining details on RACH procedure", 3GPP DRAFT; R1-1720941_REMAINING DETAILS ON RACH PROCEDURE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, Nevada, US; 20171227 - 20171201, 18 November 2017 (2017-11-18), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 24, XP051370315 *
HUAWEI, HISILICON: "System design aspects on duplexing flexibility", 3GPP DRAFT; R1-1704243, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, USA; 20170403 - 20170407, 2 April 2017 (2017-04-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051242395 *
See also references of EP4301065A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024082349A1 (en) * 2022-11-04 2024-04-25 Lenovo (Beijing) Limited Methods and apparatuses for resource allocation

Also Published As

Publication number Publication date
CN117099435A (zh) 2023-11-21
EP4301065A1 (en) 2024-01-03
EP4301065A4 (en) 2024-05-01
US20240008097A1 (en) 2024-01-04

Similar Documents

Publication Publication Date Title
RU2687033C1 (ru) Передача ответного сообщения произвольного доступа
US11882592B2 (en) Method and apparatus for determining preambles and RACH occasions for 2 step random access
JP2023537067A (ja) 周波数領域リソース決定方法、デバイス、及び記憶媒体
CN108810827B (zh) 获取系统信息的方法和装置
US10952168B2 (en) Method for transmitting downlink control signal and apparatus
WO2022022610A1 (zh) 一种同步信号块的传输方法和通信装置
EP4171144A1 (en) Physical downlink control channel (pdcch) monitoring method and apparatus, and terminal
US20220330291A1 (en) Method and apparatus of communication for reduced-capability user equipment in wireless communication system
US20220272659A1 (en) Method and apparatus for monitoring paging occasion in a wireless communication system
WO2023284490A1 (zh) 一种通信方法和装置
US20240008097A1 (en) Communication method, apparatus, and system
WO2023011213A1 (zh) 一种资源配置方法、装置及相关设备
US20220361236A1 (en) Random access preamble transmission method and apparatus
US20240236939A9 (en) Method and apparatus for paging procedure in wireless communication system
WO2023088117A1 (zh) 一种初始接入方法和装置
WO2024032329A1 (zh) 通信方法、装置及系统
US20240314849A1 (en) Initial access method and apparatus
WO2023193546A1 (zh) 通信方法及装置、存储介质
WO2023066028A1 (zh) 一种通信方法及装置
US20240251406A1 (en) Communication method and communication apparatus
US20240334491A1 (en) Communication method and apparatus for xdd user equipment in wireless communication system
WO2024208168A1 (zh) 通信方法、装置及存储介质
US20240147352A1 (en) Method and apparatus for si acquisition for network energy savings in wireless communication system
WO2024093741A1 (zh) 通信方法、装置、系统及存储介质
WO2022193924A1 (zh) 无线通信的方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21930846

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180095701.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021930846

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 202317066144

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2021930846

Country of ref document: EP

Effective date: 20230928

NENP Non-entry into the national phase

Ref country code: DE