[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022171158A1 - 自动清洁设备清洁方法及装置、介质及电子设备 - Google Patents

自动清洁设备清洁方法及装置、介质及电子设备 Download PDF

Info

Publication number
WO2022171158A1
WO2022171158A1 PCT/CN2022/075772 CN2022075772W WO2022171158A1 WO 2022171158 A1 WO2022171158 A1 WO 2022171158A1 CN 2022075772 W CN2022075772 W CN 2022075772W WO 2022171158 A1 WO2022171158 A1 WO 2022171158A1
Authority
WO
WIPO (PCT)
Prior art keywords
automatic cleaning
cleaning device
cleaning
area
surface medium
Prior art date
Application number
PCT/CN2022/075772
Other languages
English (en)
French (fr)
Inventor
王磊
侯峥韬
王恺靖
何扬
Original Assignee
北京石头创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110184703.4A external-priority patent/CN113679290B/zh
Priority claimed from CN202110184845.0A external-priority patent/CN113693495A/zh
Application filed by 北京石头创新科技有限公司 filed Critical 北京石头创新科技有限公司
Priority to EP22752318.0A priority Critical patent/EP4292499A1/en
Priority to US18/546,036 priority patent/US20240122431A1/en
Publication of WO2022171158A1 publication Critical patent/WO2022171158A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4052Movement of the tools or the like perpendicular to the cleaning surface
    • A47L11/4055Movement of the tools or the like perpendicular to the cleaning surface for lifting the tools to a non-working position
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4011Regulation of the cleaning machine by electric means; Control systems and remote control systems therefor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4036Parts or details of the surface treating tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4061Steering means; Means for avoiding obstacles; Details related to the place where the driver is accommodated
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4063Driving means; Transmission means therefor
    • A47L11/4066Propulsion of the whole machine
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4063Driving means; Transmission means therefor
    • A47L11/4069Driving or transmission means for the cleaning tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4072Arrangement of castors or wheels
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/408Means for supplying cleaning or surface treating agents
    • A47L11/4088Supply pumps; Spraying devices; Supply conduits
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/24Arrangements for determining position or orientation
    • G05D1/241Means for detecting physical contact, e.g. touch sensors or bump sensors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/617Safety or protection, e.g. defining protection zones around obstacles or avoiding hazards
    • G05D1/639Resolving or avoiding being stuck or obstructed
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/06Control of the cleaning action for autonomous devices; Automatic detection of the surface condition before, during or after cleaning
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2105/00Specific applications of the controlled vehicles
    • G05D2105/10Specific applications of the controlled vehicles for cleaning, vacuuming or polishing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2107/00Specific environments of the controlled vehicles
    • G05D2107/40Indoor domestic environment
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2109/00Types of controlled vehicles
    • G05D2109/10Land vehicles

Definitions

  • the present disclosure relates to the field of smart homes, and in particular, to an automatic cleaning device cleaning method, an automatic cleaning device cleaning device, a computer-readable storage medium, and an electronic device.
  • the purpose of the present disclosure is to provide an automatic cleaning device cleaning method, an automatic cleaning device cleaning device, a computer-readable storage medium, and an electronic device, which can solve at least one of the above-mentioned technical problems.
  • the specific plans are as follows:
  • the present disclosure provides an automatic cleaning device cleaning method for cleaning a dual-zone cleaning mode including a first surface medium area and a second surface medium area, including:
  • the automatic cleaning device After the automatic cleaning device enters the dual-area cleaning mode, determining whether the second surface medium area exists according to a stored map in the automatic cleaning device;
  • the automatic cleaning device is controlled to clean the first surface media area.
  • determining whether there is the second surface medium area according to the stored map in the automatic cleaning device includes:
  • the automatic cleaning device is controlled to enter the position of the second surface medium area recorded in the stored map, and detect whether the second surface medium area exists.
  • the second surface medium area is deleted from the stored map to update the stored map.
  • the method further includes:
  • the automatic cleaning device is controlled to continue cleaning the first surface medium areas until the first surface medium areas are cleaned.
  • the method further includes:
  • the cleaning robot In the process of cleaning the second surface medium area, if the second surface medium area is a cross-block area, the restriction of the block is ignored, and the cleaning robot is controlled to clean the entire second surface medium area.
  • the method further includes:
  • the automatic cleaning device detects the second surface medium area in the process of cleaning along the wall, ignore the second surface medium area, and control the automatic cleaning device to continue cleaning along the wall until the cleaning along the wall end to exit the along-wall cleaning mode;
  • the automatic cleaning device is controlled to enter the dual zone cleaning mode.
  • the second surface media area is stored in the stored map.
  • cleaning the second surface medium area includes:
  • the remainder of the second surface media area is cleaned.
  • an automatic cleaning device cleaning device for cleaning a dual-area cleaning mode including a first surface medium area and a second surface medium area, including:
  • an area determination module configured to determine whether the second surface medium area exists according to a stored map in the automatic cleaning device after the automatic cleaning device enters the dual-region cleaning mode
  • a first cleaning control module configured to clean the second surface medium area if the second surface medium area exists; after the second surface medium area is cleaned, mark it as a cleaned area, and determine whether it exists The next second surface medium area, if there is one, clean the next second surface medium area until all the second surface medium areas are completely cleaned;
  • the second cleaning control module is used for controlling the automatic cleaning device to clean the first surface medium area.
  • the present disclosure provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, implements the above-mentioned method for cleaning an automatic cleaning device.
  • the present disclosure provides an electronic device, comprising:
  • a memory for storing executable instructions for the processor
  • the processor is configured to execute the above-mentioned automatic cleaning device cleaning method by executing the executable instructions.
  • the automatic cleaning device when the automatic cleaning device cleans the first surface medium region and the second surface medium region, the automatic cleaning device can be controlled to first clean the second surface medium region.
  • the first surface medium area is cleaned, thereby reducing the number of times the automatic cleaning equipment controls the lifting and lowering of the wet cleaning module, improving the cleaning efficiency and prolonging the automatic cleaning equipment. service life.
  • an automatic cleaning device control method comprising:
  • first data is obtained according to the current running wheel state data of the automatic cleaning device
  • second data is obtained according to the current airframe state data of the automatic cleaning device
  • the automatic cleaning device is controlled to enter an accelerated escape mode.
  • determining whether the automatic cleaning device is trapped includes:
  • the method further includes:
  • the difference between the first data and the second data is greater than a first threshold and lasts for a first preset time, it is determined that the automatic cleaning device is trapped.
  • the method further includes:
  • obtaining the theoretical output power of the motor according to the current running wheel state data of the automatic cleaning device includes:
  • the theoretical output power of the motor is determined according to the current traveling distance of the traveling wheel of the automatic cleaning device.
  • the method further includes:
  • the difference between the first data and the second data is less than a third threshold and lasts for a third preset time, and the main brush current of the automatic cleaning device exceeds the fourth threshold and lasts for a fourth preset time, Then it is determined that the automatic cleaning device is trapped.
  • the acceleration escape mode includes controlling the automatic cleaning device to accelerate immediately after deceleration.
  • the method further includes:
  • the accelerated escape mode is turned off when the automatic cleaning device is located on the medium prone to misjudgment.
  • determining whether the automatic cleaning device is on a medium prone to misjudgment includes:
  • acquiring the first data according to the current running wheel state data of the automatic cleaning device includes:
  • the first data in the current running wheel state is acquired according to the running wheel sensor data of the automatic cleaning device.
  • acquiring the second data according to the current airframe state data of the automatic cleaning device includes:
  • the current airframe state data is acquired according to the state sensor on the automatic cleaning device, and then the second data is determined according to the current airframe state data.
  • the state sensor includes a gyroscope, a motor power sensor, a cliff sensor, or a touch sensor.
  • an automatic cleaning equipment control device comprising:
  • a data acquisition module configured to acquire first data according to the current running wheel state data of the automatic cleaning device, and obtain second data according to the current airframe state data of the automatic cleaning device when the automatic cleaning device is cleaning;
  • a state determination module configured to determine whether the automatic cleaning device is trapped according to the first data and the second data
  • a control escape module is configured to control the automatic cleaning device to enter an accelerated escape mode if the automatic cleaning device is trapped.
  • the present disclosure provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, implements the automatic cleaning device according to the fifth aspect or any of its exemplary embodiments Control Method.
  • the present disclosure provides an electronic device, comprising:
  • a memory for storing executable instructions for the processor
  • the processor is configured to execute the automatic cleaning device control method according to the fifth aspect or any of its exemplary embodiments by executing the executable instructions.
  • the automatic cleaning device In the method for controlling an automatic cleaning device provided by an exemplary embodiment of the present disclosure, during the cleaning process of the automatic cleaning device, if the first data obtained according to the current running wheel state data is different from the second data obtained according to the current airframe state data, Then it can be judged that the automatic cleaning device is trapped; at this time, the automatic cleaning device can be helped to get out of the trap through the accelerated escape mode, so as to reduce the probability of the automatic cleaning device getting stuck.
  • FIG. 1 is a perspective view of an automatic cleaning device according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a bottom structure of an automatic cleaning device according to an embodiment of the present disclosure
  • FIG. 3 is an oblique view of a one-side drive wheel assembly according to an embodiment of the present disclosure
  • FIG. 4 is a front view of a side drive wheel assembly of one embodiment of the present disclosure.
  • FIG. 5 is an oblique view of a dust box according to an embodiment of the present disclosure.
  • FIG. 6 is a perspective view of a fan according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of an open state of a dust box according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a combined state of a dust box and a fan according to an embodiment of the present disclosure
  • FIG. 9 is an exploded view of an automatic cleaning device according to an embodiment of the present disclosure.
  • FIG. 10 is a structural diagram of an automatic cleaning equipment support platform according to an embodiment of the present disclosure.
  • FIG. 11 is a structural diagram of a vibration member of an automatic cleaning device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of a cleaning head driving mechanism based on a crank-slider mechanism according to another embodiment of the present disclosure
  • FIG. 13 is a schematic diagram of a cleaning head driving mechanism based on a double crank mechanism according to another embodiment of the present disclosure
  • FIG. 14 is a schematic diagram of a cleaning head driving mechanism based on a crank mechanism according to another embodiment of the present disclosure.
  • 15 is a schematic diagram of a raised state of an automatic cleaning device according to an embodiment of the present disclosure.
  • 16 is a schematic diagram of a sinking state of an automatic cleaning device according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic diagram of a raised state of a four-link lifting structure according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic diagram of the sinking state of the four-link lifting structure according to an embodiment of the present disclosure.
  • FIG. 19 shows a flowchart of a method for cleaning an automatic cleaning device according to an embodiment of the present disclosure
  • FIG. 20 shows a schematic structural diagram of the initialization area after scanning the second surface medium area according to an embodiment of the present disclosure
  • Figure 21 shows a schematic structural diagram of a merged region obtained based on the initialization region shown in Figure 20;
  • Fig. 22 shows a block diagram of a cleaning device for automatic cleaning equipment according to an embodiment of the present disclosure
  • FIG. 23 shows a schematic block diagram of an electronic device according to an embodiment of the present disclosure.
  • FIG. 24 shows a flowchart of a method for controlling an automatic cleaning device according to an embodiment of the present disclosure
  • Fig. 25 shows a flowchart of the operation steps of a method for controlling an automatic cleaning device according to an embodiment of the present disclosure
  • Fig. 26 shows a block diagram of an automatic cleaning device control device according to an embodiment of the present disclosure
  • FIG. 27 shows a schematic block diagram of an electronic device according to an embodiment of the present disclosure.
  • first, second, third, etc. may be used to describe . . . in the embodiments of the present disclosure, these . . . should not be limited to these terms. These terms are only used to distinguish ...
  • the first... may also be referred to as the second..., and similarly, the second... may also be referred to as the first... without departing from the scope of the embodiments of the present disclosure.
  • the words “if”, “if” as used herein may be interpreted as “at” or “when” or “in response to determining” or “in response to detecting”.
  • the phrases “if determined” or “if detected (the stated condition or event)” can be interpreted as “when determined” or “in response to determining” or “when detected (the stated condition or event),” depending on the context )” or “in response to detection (a stated condition or event)”.
  • Figures 1 to 2 are schematic structural diagrams of an automatic cleaning device according to an exemplary embodiment.
  • the automatic cleaning device may be a vacuum robot, or mopping/sweeping.
  • the automatic cleaning equipment may include a mobile platform 100 , a sensing system 120 , a control system 130 , a driving system 140 , a cleaning module 150 , an energy system 160 and a human-computer interaction system 170 . in:
  • the mobile platform 100 may be configured to automatically move along the target direction on the operating surface.
  • the operating surface may be the surface to be cleaned by the automatic cleaning device.
  • the automatic cleaning device can be a mopping robot, and the automatic cleaning device works on the ground, where the ground is the operating surface; the automatic cleaning device can also be a window cleaning robot, and the automatic cleaning device is in the building.
  • the outer surface of the glass works, the glass is the operation surface; the automatic cleaning equipment can also be a pipe cleaning robot, and the automatic cleaning equipment works on the inner surface of the pipe, and the inner surface of the pipe is the operation surface.
  • the following description in this application takes a floor mopping robot as an example for illustration.
  • the mobile platform 100 may be an autonomous mobile platform or a non-autonomous mobile platform.
  • the autonomous mobile platform means that the mobile platform 100 itself can automatically and adaptively make operational decisions according to unexpected environmental inputs; the non-autonomous mobile platform itself cannot make adaptive decisions according to unexpected environmental inputs. Operational decisions, but can execute a given procedure or operate according to a certain logic.
  • the target direction may be determined autonomously by the automatic cleaning device; when the mobile platform 100 is a non-autonomous mobile platform, the target direction may be set by the system or manually.
  • the mobile platform 100 includes a forward portion 111 and a rearward portion 110 .
  • Perception system 120 includes position determination device 121 located above mobile platform 100, buffer 122 located at forward portion 111 of mobile platform 100, cliff sensors 123 and ultrasonic sensors (not shown), infrared sensors located at the bottom of mobile platform 100 (not shown in the figure), magnetometer (not shown in the figure), accelerometer (not shown in the figure), gyroscope (not shown in the figure), odometer (not shown in the figure) and other sensors
  • the device provides various position information and motion state information of the machine to the control system 130 .
  • the automatic cleaning device can travel on the ground by various combinations of movements relative to the following three mutually perpendicular axes defined by the mobile platform 100: lateral axis x, Front and rear axis y and center vertical axis z.
  • the forward drive direction along the front-rear axis y is designated “forward” and the rearward drive direction along the front-rear axis y is designated “rear”.
  • the transverse axis x extends substantially along the axis defined by the center point of the drive wheel assembly 141 between the right and left wheels of the automatic cleaning apparatus.
  • the automatic cleaning device can rotate around the x-axis.
  • the automatic cleaning device can be rotated about the z-axis. In the forward direction of the automatic cleaning device, when the automatic cleaning device is inclined to the right of the Y-axis, it is “turn right", and when the automatic cleaning device is inclined to the left of the y-axis, it is “turn left”.
  • cliff sensors 123 are provided on the bottom of the mobile platform 100 and at the front and rear of the driving wheel assembly 141 , and the cliff sensors 123 are used to prevent the automatic cleaning device from falling when it retreats, so that the automatic cleaning device can be avoided. damaged.
  • the aforementioned "front” refers to the same side with respect to the traveling direction of the automatic cleaning device, and the aforementioned “rear” refers to the opposite side with respect to the traveling direction of the automatic cleaning device.
  • the location determination device 121 includes, but is not limited to, a camera and a laser ranging device (LDS Laser Direct Structuring).
  • LDS Laser Direct Structuring LDS Laser Direct Structuring
  • Each component in the perception system 120 can operate independently, or can operate together to achieve the purpose function more accurately.
  • the surface to be cleaned is identified by the cliff sensor 123 and the ultrasonic sensor to determine the physical properties of the surface to be cleaned, including surface medium, cleanliness, etc., and can be combined with cameras, laser ranging devices, etc. for more accurate determination.
  • the ultrasonic sensor can determine whether the surface to be cleaned is a carpet. If the ultrasonic sensor determines that the surface to be cleaned is a carpet material, the control system 130 controls the automatic cleaning device to perform carpet mode cleaning.
  • the forward portion 111 of the mobile platform 100 is provided with a bumper 122.
  • the bumper 122 detects the travel path of the automatic cleaning device via a sensor system, such as an infrared sensor.
  • a sensor system such as an infrared sensor.
  • the control system 130 is provided on a circuit board in the mobile platform 100, and includes a computing processor, such as a central processing unit, an application processor, an application processing unit that communicates with non-transitory memory, such as hard disk, flash memory, random access memory,
  • the device is configured to receive the environmental information sensed by the plurality of sensors from the perception system 120, and use a positioning algorithm, such as SLAM, to map the real-time situation in the environment where the automatic cleaning device is located according to the obstacle information fed back by the laser ranging device. map, and autonomously determine a driving path according to the environmental information and the environmental map, and then control the driving system 140 to perform operations such as forward, backward, and/or steering according to the autonomously determined driving path. Further, the control system 130 may also decide whether to start the cleaning module 150 to perform the cleaning operation according to the environmental information and the environmental map.
  • control system 130 can combine the distance information and speed information fed back by the buffer 122 , the cliff sensor 123 and the ultrasonic sensor, infrared sensor, magnetometer, accelerometer, gyroscope, odometer and other sensing devices to comprehensively judge that the sweeper is currently in What working state, such as crossing the threshold, on the carpet, on the cliff, stuck above or below, the dust box is full, picked up, etc., will also give specific next action strategies for different situations, so that automatic cleaning The work of the device is more in line with the owner's requirements, and there is a better user experience. Further, the control system can plan the most efficient and reasonable cleaning path and cleaning method based on the real-time map information drawn by SLAM, which greatly improves the cleaning efficiency of automatic cleaning equipment.
  • the drive system 140 may execute drive commands to steer the automated cleaning apparatus across the ground based on specific distance and angular information, such as x, y, and theta components.
  • 3 and 4 are a perspective view and a front view of a side drive wheel assembly 141 in an embodiment of the disclosure.
  • the drive system 140 includes a drive wheel assembly 141, and the drive system 140 can control the left wheel and the right wheel at the same time.
  • the drive system 140 preferably includes a left drive wheel assembly and a right drive wheel assembly, respectively.
  • the left and right drive wheel assemblies are arranged symmetrically along the transverse axis defined by the mobile platform 100 .
  • the drive wheel assembly includes a housing and a connecting frame, and a drive motor 146 is respectively disposed in the drive wheel assembly.
  • the drive motor 146 is located outside the drive wheel assembly 141, and the axis of the drive motor 146 is located in the section of the drive wheel assembly.
  • the drive wheel assembly 141 may also be connected to a circuit for measuring drive current and an odometer.
  • the automatic cleaning equipment may include one or more steering assemblies 142, and the steering assemblies 142 may be driven wheels or driving wheels, and their structural forms Including but not limited to caster wheels, the steering assembly 142 may be located in front of the drive wheel assembly 141 .
  • Drive motor 146 provides power for rotation of drive wheel assembly 141 and/or steering assembly 142 .
  • the driving wheel assembly 141 can be detachably connected to the mobile platform 100 for easy disassembly and maintenance.
  • the drive wheel may have an offset drop suspension system, movably fastened, eg, rotatably attached, to the automatic cleaning device moving platform 100, and grounded to a certain degree by elastic elements 143, such as tension springs or compression springs The force maintains the contact and traction with the ground, and at the same time, the cleaning module 150 of the automatic cleaning device also contacts the surface to be cleaned with a certain pressure.
  • the energy system 160 includes rechargeable batteries, such as nickel-metal hydride batteries and lithium batteries.
  • the rechargeable battery can be connected with a charging control circuit, a battery pack charging temperature detection circuit and a battery undervoltage monitoring circuit, and the charging control circuit, the battery pack charging temperature detection circuit, and the battery undervoltage monitoring circuit are then connected with the single-chip microcomputer control circuit.
  • the host is charged by connecting to the charging pile through the charging electrode arranged on the side or below of the fuselage.
  • the human-computer interaction system 170 includes buttons on the host panel, and the buttons are used for user selection of functions; it may also include a display screen and/or indicator lights and/or horns, and the display screen, indicator lights and horns can show the user the current state of the machine or Feature selections; may also include mobile client programs.
  • the mobile phone client can show the user a map of the environment where the equipment is located, as well as the location of the machine, which can provide users with more abundant and user-friendly function items.
  • the cleaning module 150 may include the dry cleaning module 151 and/or the wet cleaning module 400 .
  • the dry cleaning module 151 includes a roller brush, a dust box, a fan, and an air outlet.
  • the roller brush with certain interference with the ground sweeps up the garbage on the ground and rolls it up to the front of the suction port between the roller brush and the dust box, and then is sucked into the dust box by the suction gas generated by the fan and passing through the dust box.
  • the dust removal ability of the sweeper can be characterized by the dust pickup efficiency DPU (Dust pickup efficiency).
  • the wind utilization rate of the formed air duct is affected by the type and power of the fan, which is a complex system design problem. Compared with ordinary plug-in vacuum cleaners, the improvement of dust removal capacity is more meaningful for cleaning automatic cleaning equipment with limited energy.
  • the dry cleaning module may also include a side brush 157 having an axis of rotation angled relative to the ground for moving debris into the rolling brush area of the cleaning module 150.
  • FIG. 5 is a schematic diagram of the structure of the dust box 152 in the dry cleaning module
  • FIG. 6 is a schematic diagram of the structure of the fan 156 in the dry cleaning module
  • FIG. 7 is a schematic diagram of the opened state of the dust box 152
  • FIG. 8 It is a schematic diagram of the assembled state of the dust box and the fan.
  • the roller brush that has a certain interference with the ground sweeps up the garbage on the ground and rolls it up to the front of the dust suction port 154 between the roller brush and the dust box 152, and then is generated by the structure of the fan 156 and passes through the dust box 152.
  • the suction gas The dust box 152 is inhaled, and the garbage is isolated by the filter screen 153 on the side of the dust box 152 close to the dust suction port 154.
  • the filter screen 153 completely isolates the dust suction port from the air outlet, and the filtered air enters the fan 156 through the air outlet 155.
  • the dust suction port 154 of the dust box 152 is located in front of the machine, the air outlet 155 is located at the side of the dust box 152, and the air suction port of the fan 156 is opposite to the air outlet of the dust box.
  • the front panel of the dust box 152 can be opened for cleaning the garbage in the dust box 152 .
  • the filter screen 153 and the box body of the dust box 152 are detachably connected to facilitate the removal and cleaning of the filter screen.
  • the wet cleaning module 400 is configured to clean at least a part of the operation surface in a wet cleaning manner; wherein, the wet cleaning module 400 includes: a cleaning head 410, A driving unit 420, wherein the cleaning head 410 is used to clean at least a part of the operation surface, and the driving unit 420 is used to drive the cleaning head 410 to reciprocate along a target surface, and the target surface is a part of the operation surface .
  • the cleaning head 410 reciprocates along the surface to be cleaned, and the contact surface between the cleaning head 410 and the surface to be cleaned is provided with a cleaning cloth or a cleaning plate, which generates high-frequency friction with the surface to be cleaned through the reciprocating motion, thereby removing the surface to be cleaned. stains.
  • the reciprocating motion may be repeated motion along any one or more directions within the operation surface, or may be vibration perpendicular to the operation surface, which is not strictly limited.
  • the driving unit 420 includes: a driving platform 421 connected to the bottom surface of the moving platform 100 for providing driving force; a supporting platform 422 detachably connected to the driving platform 421 for supporting The cleaning head 410 can be lifted and lowered under the driving of the driving platform 421 .
  • An elevating module is arranged between the cleaning module 150 and the mobile platform 100, so that the cleaning module 150 can better contact the surface to be cleaned, or different cleaning strategies are adopted for the surface to be cleaned of different materials.
  • the dry cleaning module 151 can be connected to the mobile platform 100 through a passive lifting module. When the cleaning equipment encounters an obstacle, the dry cleaning module 151 can more easily overcome the obstacle through the lifting module.
  • the wet cleaning module 400 can be connected to the mobile platform 100 through an active lifting module. When the wet cleaning module 400 does not work temporarily, or encounters a surface to be cleaned that cannot be cleaned by the wet cleaning module 400 At the time, the wet cleaning module 400 is lifted up by the active lifting module and separated from the surface to be cleaned, so as to realize the change of the cleaning means.
  • the driving platform 421 includes: a motor 4211, which is arranged on the side of the driving platform 421 close to the moving platform 100, and outputs power through the motor output shaft; a driving wheel 4212, which is connected with the The motor output shaft is connected, and the driving wheel 4212 is an asymmetrical structure; the vibration member 4213 is arranged on the opposite side of the driving platform 421 to the motor 4211, and is connected with the driving wheel 4212. 4212 realizes reciprocating motion under asymmetrical rotation.
  • the drive platform 421 may further include a drive wheel and a gear mechanism.
  • the gear mechanism 235 may connect the motor 4211 and the driving wheel 4212 .
  • the motor 4211 can directly drive the driving wheel 4212 to perform a rotary motion, or indirectly drive the driving wheel 4212 to perform a rotary motion through a gear mechanism.
  • the gear mechanism may be one gear, or may be a gear set composed of multiple gears.
  • the motor 4211 transmits the power to the cleaning head 410, the driving platform 421, the supporting platform 422, the water supply mechanism, the water tank and the like at the same time through the power transmission device.
  • the energy system 160 provides power and energy for the motor 4211 and is controlled by the control system 130 as a whole.
  • the power transmission device may be a gear drive, a chain drive, a belt drive, or a worm gear or the like.
  • the motor 4211 includes a forward output mode and a reverse output mode. In the forward output mode, the motor 4211 rotates in the forward direction. In the reverse output mode, the motor 4211 rotates in the reverse direction. In the forward output mode of the motor 4211, the motor 4211 passes through the power transmission device.
  • the cleaning head 410 and the water supply mechanism in the wet cleaning assembly 400 can be simultaneously driven to move synchronously.
  • the driving platform 421 further includes: a connecting rod 4214, extending along the edge of the driving platform 421, connecting the driving wheel 4212 and the vibration member 4213, so that the vibration member 4213 extends to a preset position, wherein , the extension direction of the vibration member 4213 is perpendicular to the connecting rod 4214 .
  • the motor 4211 is connected with the driving wheel 4212 , the vibration member 4213 , the connecting rod 4214 and the vibration buffer device 4215 through the power transmission device.
  • the motor 4211 starts to rotate forward, the motor 4211 drives the connecting rod 4214 to reciprocate along the surface of the drive platform 421 through the drive wheel 4212, and the vibration buffer device 4215 drives the vibration member 4213 along the drive platform 421.
  • the surface reciprocates, the vibrating member 4213 reciprocates along the surface of the support platform 422 with the cleaning substrate 4221, and the cleaning substrate 4221 reciprocates along the surface to be cleaned with the active area 412.
  • the clean water pump makes clean water flow out from the clean water tank, and sprinkles clean water on the cleaning head 410 through the water outlet device 4217, and the cleaning head 410 cleans the surface to be cleaned by reciprocating motion.
  • the cleaning intensity/efficiency of the automatic cleaning equipment can also be automatically and dynamically adjusted according to the working environment of the automatic cleaning equipment.
  • the automatic cleaning equipment can realize dynamic adjustment according to the physical information of the surface to be cleaned detected by the sensing system 120 .
  • the sensing system 120 can detect the flatness of the surface to be cleaned, the material of the surface to be cleaned, whether there is oil and dust, etc., and transmit the information to the control system 130 of the automatic cleaning device.
  • the control system 130 can instruct the automatic cleaning equipment to automatically and dynamically adjust the rotational speed of the motor and the transmission ratio of the power transmission device according to the working environment of the automatic cleaning equipment, thereby adjusting the preset reciprocating period of the reciprocating motion of the cleaning head 410 .
  • the preset reciprocating period can be automatically and dynamically adjusted to be longer, and the water volume of the water pump can be automatically and dynamically adjusted to be smaller; when the automatic cleaning device is on a less flat ground During operation, the preset reciprocating period can be automatically and dynamically adjusted to be shorter, and the water volume of the pump can be automatically and dynamically adjusted to be larger. This is because flat surfaces are easier to clean than less flat surfaces, so cleaning uneven surfaces requires faster reciprocation (ie, higher frequency) of cleaning head 410 and a larger volume of water.
  • the preset reciprocating period can be automatically and dynamically adjusted to be longer, and the water volume of the pump can be automatically and dynamically adjusted to be smaller; when the automatic cleaning device 100 is working on the ground, the The preset reciprocating period can be automatically and dynamically adjusted to be shorter, and the water volume of the pump can be automatically and dynamically adjusted to be larger.
  • the cleaning head 410 needs to perform fewer reciprocating movements, and the water pump can provide a relatively small amount of water to clean the desktop. clean.
  • the supporting platform 422 includes a cleaning substrate 4221 , which is freely movable on the supporting platform 422 , and the cleaning substrate 4221 reciprocates under the vibration of the vibration member 4213 .
  • the cleaning substrate 4221 includes: an assembly notch (not shown), which is arranged at a position in contact with the vibration member 4213 , when the support platform 422 is connected to the drive platform 421 , the vibration The member 4213 is assembled in the assembly notch, so that the cleaning substrate 4221 can reciprocate synchronously with the vibration member 4213 .
  • FIG. 12 illustrates another cleaning head drive mechanism 800 based on a crank-slider mechanism according to various embodiments of the present application.
  • the drive mechanism 800 may be applied to the drive platform 421 .
  • the driving mechanism 800 includes a driving wheel 4212, a vibration member 4213, a cleaning substrate 4221, a chute 4222 (a first chute) and a chute 4223 (a second chute).
  • the chutes 4222 and 4223 are opened on the support platform 422 . Both ends of the cleaning substrate 4221 include sliders 525 (first sliders) and sliders 528 (second sliders), respectively.
  • the sliders 525 and 528 are respectively a protrusion at both ends of the cleaning substrate 4221 .
  • the sliding block 525 is inserted in the sliding groove 4222 and can slide along the sliding groove 4222 ;
  • the sliding block 4223 is inserted in the sliding groove 4223 and can slide along the sliding groove 4223 .
  • the chute 4222 and the chute 4223 are on the same line. In some embodiments, the chute 4222 and the chute 4223 are not on the same line. In some embodiments, the chute 4222 and the chute 4223 extend in the same direction.
  • the extending direction of the sliding groove 4222 and the sliding groove 4223 is the same as the extending direction of the cleaning substrate 4221 . In some embodiments, the extending directions of the sliding grooves 4222 and the sliding grooves 4223 are different from the extending directions of the cleaning substrate 4221 . In some embodiments, the extending directions of the chute 4222 and the chute 4223 are different. For example, as shown in FIG. 12 , the extension direction of the chute 4222 is the same as the extension direction of the cleaning substrate 4221 , and the extension direction of the chute 4223 and the extension direction of the chute 4222 are at a certain angle.
  • the vibrating member 4213 includes a rotating end 512 and a sliding end 514 .
  • the rotating end 512 is connected with the driving wheel 4212 through a first pivot shaft 516
  • the sliding end 514 is connected with the cleaning substrate 4221 through a second pivot shaft 518 .
  • the rotation center of the driving wheel 4212 is point O
  • the pivot center of the first pivot shaft 516 is point A.
  • Point O and point A do not coincide, and the distance between them is the preset distance d.
  • the point A When the driving wheel 4212 rotates, the point A performs a circular rotary motion accordingly.
  • the rotary end 512 performs a circular rotary motion following the point A; the sliding end 514 drives the cleaning substrate 4221 to perform sliding motion through the second pivot shaft 518 .
  • the slider 525 for cleaning the substrate 4221 reciprocates linearly along the chute 4222 ; the slider 528 performs a reciprocating linear motion along the chute 4223 .
  • the moving speed of the moving platform 210 is V0, and the moving direction is the target direction.
  • the overall displacement of the cleaning substrate 4221 is substantially perpendicular to the target direction.
  • the overall displacement of the cleaning substrate 4221 includes both being perpendicular to the target direction and parallel to the target direction. component in the target direction.
  • a vibration buffering device 4215 is included, which is arranged on the connecting rod 4214 and is used to reduce vibration in a specific direction. In this embodiment, it is used to reduce vibration in the direction of the moving component perpendicular to the target direction of the automatic cleaning device.
  • FIG. 13 shows another cleaning head driving mechanism 600 based on a double crank mechanism according to various embodiments of the present application.
  • the drive mechanism 600 may be applied to the drive platform 421 .
  • the driving mechanism 600 includes a driving wheel 4212 (a first driving wheel), a driving wheel 4212' (a second driving wheel), and a cleaning substrate 4221.
  • the cleaning substrate 4221 has two ends. The first end is connected to the drive wheel 4212 through a pivot shaft 624 (first pivot shaft); the second end is connected to the drive wheel 4212' through a pivot shaft 626 (second pivot shaft).
  • the rotation center of the driving wheel 4212 is point O
  • the pivot center of the pivot shaft 624 is point A. Point O and point A do not coincide, and the distance between them is the preset distance d.
  • the center of rotation of the drive wheel 236 is the point O'
  • the center of rotation of the pivot shaft 626 is the point A'. Point O' and point A' do not coincide, and the distance between them is the preset distance d.
  • points A, A', O, and O' lie on the same plane. Therefore, the driving wheel 4212, the driving wheel 4212' and the cleaning substrate 4221 may form a double crank mechanism (or parallelogram mechanism), wherein the cleaning substrate 4221 acts as a coupling lever and the driving wheels 4212 and 4212' act as two cranks.
  • a vibration buffering device 4215 is included, which is arranged on the connecting rod 4214 and is used to reduce vibration in a specific direction. In this embodiment, it is used to reduce vibration in the direction of the moving component perpendicular to the target direction of the automatic cleaning device.
  • FIG. 14 shows a drive mechanism 700 based on a crank-slider mechanism according to various embodiments of the present application.
  • the drive mechanism 700 may be applied to the drive platform 421 .
  • the driving mechanism 700 includes a driving wheel 4212 , a cleaning substrate 4221 and a chute 4222 .
  • the chute 4222 is opened on the support platform 422 .
  • the cleaning substrate 4221 includes a swivel end 4227 and a sliding end 4226 .
  • the swivel end 4227 is connected to the drive wheel 4212 by the pivot shaft 4228.
  • the pivot center of the driving wheel 4212 is point O
  • the pivot center of the pivot shaft 4228 at the pivot end is point A. Point O and point A do not coincide, and the distance between them is the preset distance d.
  • Sliding end 4226 includes slider 4225.
  • the slider 4225 is a protrusion on the sliding end 4226 .
  • the slider 4225 is inserted into the chute 4222 and can slide along the chute 4222 . Therefore, the driving wheel 4221, the cleaning base plate 4221, the slider 4225 and the chute 4222 constitute a crank-slider mechanism.
  • the driving wheel 4212 rotates, point A performs a circular rotary motion.
  • the rotary end 4227 of the cleaning substrate 4221 performs a circular rotary motion following the point A; and the slider 4225 slides in the chute 4222 to perform a reciprocating linear motion.
  • the cleaning substrate 4221 starts to reciprocate.
  • the direction of the chute 4222 is approximately perpendicular to the target direction of the moving speed of the mobile platform, thus, the linear movement of the sliding end 4226 includes a component perpendicular to the target direction, and the circular swivel movement of the swivel end 4227 simultaneously Includes components perpendicular to the target direction and parallel to the target direction.
  • the moving speed of the mobile platform is V0, and the moving direction is the target direction; and the chute 4222 is approximately perpendicular to the target direction.
  • the reciprocating motion of the cleaning substrate 4221 as a whole has both a movement component parallel to the target direction of the automatic cleaning device and a movement component perpendicular to the target direction of the automatic cleaning device.
  • a vibration buffering device 4215 is included, which is arranged on the connecting rod 4214 and is used to reduce vibration in a specific direction. In this embodiment, it is used to reduce vibration in the direction of the moving component perpendicular to the target direction of the automatic cleaning device.
  • the support platform 422 further includes: an elastic disassembly button 4229, which is disposed on at least one side of the support platform 422, and is used to detachably connect the support platform 422 to the claw 4216 of the drive platform 421. .
  • At least one assembling area 4224 is disposed on the supporting platform 422 for assembling the cleaning head 410 .
  • Mounting region 4224 may be formed of an adhesive material with an adhesive layer.
  • the cleaning head 410 includes: an active area 412 , which is connected to the cleaning substrate 4221 and reciprocates along the cleaning surface under the driving of the cleaning substrate 4221 .
  • the active area 412 is disposed at a substantially central position of the cleaning head 410 .
  • An adhesive layer is provided on the side where the active area 412 is connected to the cleaning substrate 4221 , and the active area 412 and the cleaning substrate 4221 are connected through the adhesive layer.
  • the cleaning head 410 further includes: a fixing area 411 connected to the bottom of the support platform 422 through the at least one assembly area 4224 , and the fixing area 411 cleans the at least a portion of the operating surface.
  • the cleaning head 410 further includes: a flexible connecting portion 413 disposed between the fixed area 411 and the active area 412 for connecting the fixed area 411 and the active area 412 .
  • the cleaning head 410 further includes: a sliding latch 414 extending along the edge of the cleaning head 410 and detachably installed at the latching position 4225 of the support platform 422 .
  • the cleaning head 410 can be made of a certain elastic material, and the cleaning head 410 is fixed on the surface of the support platform 422 through an adhesive layer, thereby realizing reciprocating motion. When the cleaning head 410 is in operation, the cleaning head 410 is always in contact with the surface to be cleaned.
  • the water supply mechanism includes a water outlet device 4217, and the water outlet device 4217 can be directly or indirectly connected with the cleaning liquid outlet of the water tank (not shown), that is, the liquid outlet of the clean water tank, wherein the cleaning liquid can pass through the cleaning liquid of the water tank.
  • the outlet flows to the water outlet device 4217, and can be evenly coated on the surface to be cleaned by the water outlet device.
  • a connecting piece (not shown in the figure) may be provided on the water outlet device, and the water outlet device is connected to the cleaning liquid outlet of the water tank through the connecting piece.
  • the water outlet device is provided with a distribution port.
  • the distribution port can be a continuous opening or a combination of several broken small openings.
  • the distribution port can be provided with several nozzles.
  • the cleaning liquid flows to the distribution port through the cleaning liquid outlet of the water tank and the connecting piece of the water outlet device, and is evenly coated on the operating surface through the distribution port.
  • the water supply mechanism may further include a clean water pump 4219 and/or a clean water pump pipe 4218 , and the clean water pump 4219 may communicate with the clean liquid outlet of the water tank directly or through the clean water pump pipe 4218 .
  • the clean water pump 4219 may be connected to the connection of the water outlet, and may be configured to draw the cleaning fluid from the water tank to the water outlet.
  • the clean water pump can be a gear pump, a vane pump, a plunger pump, a peristaltic pump, and the like.
  • the water supply mechanism draws out the cleaning liquid in the clean water tank through the clean water pump 4219 and the clean water pump pipe 4218, and transports it to the water outlet device. to wet the cleaning head and the surface to be cleaned. Stains on the wetted surface to be cleaned can be cleaned more easily.
  • the power/flow rate of the clean water pump can be adjusted.
  • the cleaning head can reciprocate, so that the surface to be cleaned can be repeatedly cleaned, so that in the movement trajectory of the automatic cleaning equipment, one pass through a certain area can achieve multiple
  • the cleaning effect is greatly enhanced, especially for areas with more stains, the cleaning effect is obvious.
  • the present disclosure provides a liftable automatic cleaning device, including: a moving platform 100 configured to automatically move on an operation surface; a wet cleaning module 400 movably connected through a four-link lifting structure 500 On the mobile platform 100, it is configured to clean at least a part of the operation surface by a wet cleaning method; wherein, the four-link lifting structure 500 is a parallelogram structure, which is used to make the wet cleaning module 400 in the Switching between a rising state and a sinking state, the rising state is when the wet cleaning module 400 leaves the operation surface, as shown in FIG. 15 ; the sinking state is when the wet cleaning module 400 is attached to the Operation surface, as shown in Figure 16.
  • the four-link lifting structure 500 includes: a first connecting end 501 for providing main power to switch the wet cleaning module 400 between a rising state and a sinking state; a second connection end 501
  • the connecting end 502 is disposed opposite to the first connecting end 501 and rotates under the action of the main power.
  • the first connection end 501 and the second connection end 502 are located on two sides of the wet cleaning module 400 respectively, and the wet cleaning module 400 is raised or lowered by stably providing a lifting force.
  • the first connecting end 501 includes a first bracket 5011, which is fixedly connected to the bottom of the mobile platform 100; the first bracket 5011 is roughly in the shape of a “ji”, and the first bracket 5011 includes: a cross beam 50111, a first vertical
  • the beams 50114 and the second longitudinal beams 50115 and the tail ends of the first longitudinal beams 50114 and the second longitudinal beams 50115 are respectively connected to the mobile platform 100 by bolts, so as to provide supporting force when the wet cleaning module 400 is lifted and lowered.
  • the first connecting end 501 further includes a first connecting rod pair 5012 , one end of the first connecting rod pair 5012 is rotatably connected to the first bracket 5011 , and the other end is rotatably connected to the wet cleaning module 400 .
  • the first connecting rod pair 5012 can be a hollow structure, which can reduce the overall weight of the lifting end.
  • the first connecting rod pair 5012 includes a first connecting rod 50121 and a second connecting rod 50122 that are arranged in parallel, and the first ends of the first connecting rod 50121 and the second connecting rod 50122 can be connected through movable studs. It is rotatably connected to the first longitudinal beam 50114, and the second ends of the first connecting rod 50121 and the second connecting rod 50122 are rotatably connected to the wet cleaning module 400 through movable studs.
  • both ends of the first connecting rod 50121 and the second connecting rod 50122 are respectively provided with through holes with a diameter larger than that of the movable stud, so that the movable stud can rotate freely in the through hole, and the movable stud passes through the through hole
  • the rear is fixedly connected to the first longitudinal beam 50114 .
  • the lifting structure 500 further includes a pulling cable 42194, which is used to provide a pulling power to rotate the first connecting rod pair 5012 within a preset angle.
  • the cable 42194 includes a cable motor terminal 50131, which is connected to the drive unit 420, such as a gear winding connected to the motor output shaft, and realizes telescopic movement under the rotation of the motor.
  • the cable bracket terminal 50132 is connected to the first bracket 5011, and the motor makes the second ends of the first connecting rod 50121 and the second connecting rod 50122 rise or sink through the cable 42194.
  • the first bracket 5011 further includes: a chute 50112 extending along the surface of the cross beam 50111, and a snap hole 50113 extending through the cross beam 50111 and disposed at the extended end of the chute 50112 for accommodating and Snap the cable bracket terminal 50132, the cable 42194 is connected to the first ends of the first connecting rod 50121 and the second connecting rod 50122 through the sliding groove 50112 and the clamping hole 50113, and the sliding groove 50112 can restrict The moving direction of the cable ensures the stability of the lifting and lowering of the module, and the width of the chute should match the thickness of the cable.
  • the second connecting end 502 includes: a second bracket 5021, which is fixedly connected to the bottom of the mobile platform 100; a second connecting rod pair 5022, one end of which is rotatably connected to the second bracket 5021, The other end is rotatably connected to the wet cleaning module 400 ; the second connecting rod pair 5022 rotates with the rotation of the first connecting rod pair 5012 .
  • the second connecting rod pair 5022 can be a hollow structure, which can reduce the overall weight of the lifting end.
  • the second connecting rod pair 5022 includes a third connecting rod 50221 and a fourth connecting rod 50222 arranged in parallel, and the first ends of the third connecting rod 50221 and the fourth connecting rod 50222 are rotatable through movable studs
  • the second end of the third connecting rod 50221 and the fourth connecting rod 50222 are rotatably connected to the wet cleaning module 400 through movable studs.
  • both ends of the third connecting rod 50221 and the fourth connecting rod 50222 are respectively provided with through holes with a diameter larger than that of the movable stud, so that the movable stud can rotate freely in the through hole, and the movable stud passes through the through hole
  • the latter is fixedly connected to the second bracket 5021 and the wet cleaning module 400 .
  • the first connecting end 501 When the first connecting end 501 is rotated under the driving of the motor 4211, the first ends of the third connecting rod 50221 and the fourth connecting rod 50222 rotate around the movable stud at the first end at the same time, and the third connecting rod 50221 The second end of the fourth connecting rod 50222 rotates around the movable stud at the second end at the same time, so that the wet cleaning module 400 is raised.
  • the first connecting end 501 releases the tension
  • the third connecting rod 50221 and the fourth connecting rod 50222 rotate in the opposite direction around the movable stud at the same time, and descend under the action of gravity, so that the wet cleaning module 400 sinks.
  • the wet cleaning module can be raised and lowered relative to the mobile platform, and when the mopping task is performed, the wet cleaning module is lowered to make the wet cleaning module In contact with the ground, when the mopping task is completed, lift the wet cleaning module to separate the wet cleaning module from the ground, so as to avoid the increased resistance due to the existence of the cleaning module when the cleaning equipment moves freely on the surface to be cleaned. .
  • the lifting module can clean the wet cleaning module according to different surfaces to be cleaned. For surfaces such as floor tiles, put the wet cleaning module down for cleaning, so as to achieve a more comprehensive cleaning effect.
  • the automatic cleaning equipment needs to control the lifting and lowering of the wet cleaning module according to different surface media during the cleaning process. For example, when cleaning the carpet surface, the wet cleaning module needs to be lifted; When it reaches the floor surface, the wet cleaning module needs to be lowered. If it is reciprocating cleaning according to the "zigzag" shape, the automatic cleaning equipment needs to frequently control the lifting and lowering of the wet cleaning module, which leads to the time-consuming cleaning process and shortens the automatic cleaning equipment. service life.
  • FIG. 19 there is shown a flowchart of an automatic cleaning device cleaning method provided by an exemplary embodiment of the present disclosure, and the automatic cleaning device cleaning method is used for cleaning a double surface medium area including a first surface medium area and a second surface medium area.
  • Area cleaning mode which can include the following steps:
  • Step S2010 after the automatic cleaning device enters the dual-area cleaning mode, according to the stored map in the automatic cleaning device, determine whether there is a second surface medium area;
  • Step S2020 if there is a second surface medium area, clean the second surface medium area
  • Step S2030 after the cleaning of the second surface medium area is completed, mark it as a cleaned area, and determine whether there is a next second surface medium area, and if so, clean the next second surface medium area until all the second surface medium area All areas are cleaned;
  • Step S2040 controlling the automatic cleaning device to clean the first surface medium area.
  • the automatic cleaning device when the automatic cleaning device cleans the first surface medium region and the second surface medium region, the automatic cleaning device can be controlled to clean the second surface medium region first, and then the second surface medium region can be controlled to be cleaned by the automatic cleaning device. After the surface medium area is completely cleaned, the first surface medium area is cleaned, thereby reducing the number of times the automatic cleaning equipment controls the lifting and lowering of the wet cleaning module, improving the cleaning efficiency and prolonging the service life of the automatic cleaning equipment.
  • the first surface medium here is one or more of floor surface media such as wooden floors, ceramic tiles, and cement surfaces; the second surface medium is one of floor surface media such as carpets that is different from the first surface medium. or more.
  • the automatic cleaning device After the automatic cleaning device enters the room, it will first enter the wall-to-wall cleaning mode, and in the wall-to-wall cleaning mode, the automatic cleaning device can obtain a room map. If the automatic cleaning device contains a stored map, the room map needs to be compared with the stored map. If the matching degree between the two is high, for example, the matching ratio is more than 90%, the stored map will be used as the basis. Room cleaning.
  • the degree of matching is insufficient, for example, the proportion of matching is below 90%, the room map needs to be redrawn and the second surface medium area within the room needs to be drawn.
  • the method for drawing the second surface medium area may include: using the second surface medium area identification device to scan the boundary of the second surface medium area, for example, using the carpet identification device 103 to scan the boundary of the carpet area. Boundary scan. After scanning, the initialization area 2100 as shown in FIG. 20 can be produced according to the scanned boundary, and the initialization area 2100 is recorded in the automatic cleaning equipment.
  • boundary coordinates of the initialization area 2100 may be merged, for example, adjacent boundary coordinates may be merged into one coordinate to obtain a merged area 2200 that is smoother than the boundary of the initialization area as shown in FIG. 21 as the second surface Media area map updates a stored map, or generates a new room map.
  • the automatic cleaning device when the automatic cleaning device is controlled to enter the cleaning mode along the wall, if the automatic cleaning device detects the second surface medium area during the cleaning process along the wall, the second surface medium area is ignored first, and the automatic cleaning device is controlled to continue. Clean along the wall until the cleaning along the wall is finished to exit the cleaning along the wall mode.
  • the automatic cleaning device can also mark the detected second surface medium area, and judge whether the second surface medium area exists in the stored map, if not, then the second surface medium area Surface media areas are stored in a stored map for reference when cleaning.
  • the automatic cleaning device is controlled to enter the dual-zone cleaning mode. After the automatic cleaning device enters the dual-area cleaning mode, it can be determined whether there is a second surface medium area in the stored map according to the stored map in the automatic cleaning device, and if there is a second surface medium area, the automatic cleaning device is controlled to enter the The location of the second surface medium area recorded in the map is stored, and it is detected whether the second surface medium area still exists, and if so, the automatic cleaning device is controlled to clean the second surface medium area. If not present, the second surface media area is deleted from the stored map to update the stored map.
  • the automatic cleaning device in the process of cleaning the second surface medium region by the automatic cleaning device, can be controlled to first clean the boundary region of the second surface medium region in the second surface medium region, that is, the boundary of the second surface medium region. Inside, to delineate the area of the second surface medium area; after the boundary area is cleaned, control the automatic cleaning equipment to clean the rest of the second surface medium area within the delineated area of the second surface medium area.
  • the automatic cleaning device when the automatic cleaning device cleans the remaining areas of the medium area of the second surface, the automatic cleaning device can be controlled to clean in a "zigzag" manner of straight-turn-straight-turn-turn.
  • other cleaning methods may also be set according to actual conditions, which are not particularly limited in the exemplary embodiments of the present disclosure.
  • the cleaned second surface medium area can be marked as a cleaned area, and it can be judged whether There is a next second surface medium area, if there is, the next second surface medium area is cleaned, until all the second surface medium areas in the room are cleaned, the automatic cleaning device can be controlled to clean the first surface medium area.
  • an uncleaned second surface medium area may be detected.
  • the automatic cleaning device is controlled to clean the uncleaned second surface medium area. and store the uncleaned second surface media area in the stored map for use in the next cleaning. After all the uncleaned second surface medium areas are cleaned, the automatic cleaning device is controlled to continue cleaning the first surface medium areas until the first surface medium areas are cleaned.
  • the automatic cleaning device in the process of cleaning the first surface medium area, can control the automatic cleaning device to clean in a “zigzag” manner of straight-turn-straight-turn according to the first surface medium area delineated by the cleaning along the wall .
  • other cleaning methods may also be set according to actual conditions, which are not particularly limited in the exemplary embodiments of the present disclosure.
  • a coloring algorithm may be used to mark the cleaned area, or other methods may be used to mark the cleaned area, which is not particularly limited by the exemplary embodiment of the present disclosure.
  • the spanning block may include spanning different rooms, that is, the second surface medium area occupies part of the area of at least two rooms, then the restriction of the two rooms can be ignored, and the cleaning robot is controlled first to remove the entire second surface medium After the area is cleaned, the second surface medium area is marked as a cleaned area, and the second surface medium area will not be cleaned during the cleaning process of the following two houses.
  • the second surface medium area such as a carpet
  • the wet cleaning module by preferentially cleaning the second surface medium area, for example, the second surface medium area such as a carpet can be cleaned when the wet cleaning module is lifted; after that, Then lower the wet cleaning module to clean the first surface medium area, that is, only need to control the wet cleaning module to switch between lifting and lowering once to complete the entire cleaning process, avoiding frequent switching, thereby improving. It improves the cleaning efficiency and prolongs the service life of the automatic cleaning equipment.
  • the automatic cleaning device also includes other functions that help realize the overall operation, which will not be repeated in this exemplary embodiment.
  • an automatic cleaning device cleaning device is also provided, which is arranged in the automatic cleaning device and is used for cleaning in a dual-zone cleaning mode including a first surface medium region and a second surface medium region.
  • the automatic cleaning device cleaning device 2300 may include: an area determination module 2301, a first cleaning control module 2302 and a second cleaning control module 2303, wherein:
  • an area determination module 2301 configured to determine whether there is a second surface medium area according to a stored map in the automatic cleaning device after the automatic cleaning device enters the dual-region cleaning mode;
  • the first cleaning control module 2302 is used to clean the second surface medium area if there is a second surface medium area; after the second surface medium area is cleaned, mark it as a cleaned area, and determine whether there is a next second surface Media area, if exists, clean the next second surface media area until all second surface media areas are cleaned;
  • the second cleaning control module 2303 is used to control the automatic cleaning device to clean the first surface medium area.
  • an electronic device capable of implementing the above method is also provided.
  • aspects of the present disclosure may be implemented as a system, method or program product. Therefore, various aspects of the present disclosure can be embodied in the following forms: a complete hardware implementation, a complete software implementation (including firmware, microcode, etc.), or a combination of hardware and software aspects, which may be collectively referred to herein as implementations "circuit", “module” or "system”.
  • the electronic device 2400 according to this embodiment of the present disclosure is described below with reference to FIG. 23 .
  • the electronic device 2400 shown in FIG. 23 is only an example, and should not impose any limitation on the functions and scope of use of the embodiments of the present disclosure.
  • electronic device 2400 takes the form of a general purpose computing device.
  • Components of the electronic device 2400 may include, but are not limited to: the above-mentioned at least one processing unit 2410, the above-mentioned at least one storage unit 2420, a bus 2430 connecting different system components (including the storage unit 2420 and the processing unit 2410), and a display unit 2440.
  • the storage unit 2420 stores program codes, which can be executed by the processing unit 2410, so that the processing unit 2410 executes various examples according to the present disclosure described in the above-mentioned “Example Methods” section of this specification steps of sexual implementation.
  • the processing unit 2410 may perform step S2010 as shown in FIG.
  • step S2020 if there is a second surface medium area, clean the second surface medium area
  • step S2030 after the second surface medium area is cleaned, mark it as a cleaned area, and determine whether there is a next second surface medium area, if If there is, clean the next second surface medium area until all the second surface medium areas are cleaned
  • step S2040 control the automatic cleaning device to clean the first surface medium area.
  • the storage unit 2420 may include a readable medium in the form of a volatile storage unit, such as a random access storage unit (RAM) 24201 and/or a cache storage unit 24202, and may further include a read only storage unit (ROM) 24203.
  • RAM random access storage unit
  • ROM read only storage unit
  • the storage unit 2420 may also include a program/utility 24204 having a set (at least one) of program modules 24205 including, but not limited to, an operating system, one or more application programs, other program modules, and program data, An implementation of a network environment may be included in each or some combination of these examples.
  • the bus 2430 may be representative of one or more of several types of bus structures, including a memory cell bus or memory cell controller, a peripheral bus, a graphics acceleration port, a processing unit, or a local area using any of a variety of bus structures bus.
  • the electronic device 2400 may also communicate with one or more external devices 2470 (eg, keyboards, pointing devices, Bluetooth devices, etc.), with one or more devices that enable a user to interact with the electronic device 2400, and/or with Any device (eg, router, modem, etc.) that enables the electronic device 2400 to communicate with one or more other computing devices. Such communication may take place through input/output (I/O) interface 2450 . Also, the electronic device 2400 may communicate with one or more networks (eg, a local area network (LAN), a wide area network (WAN), and/or a public network such as the Internet) through a network adapter 2460 . As shown, network adapter 2460 communicates with other modules of electronic device 2400 via bus 2430. It should be understood that, although not shown, other hardware and/or software modules may be used in conjunction with electronic device 2400, including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, RAID systems, tape drives and data backup storage systems.
  • the resistance of automatic cleaning equipment is generally small when cleaning smooth ground, but when cleaning carpets, especially high-pile carpets, or mats, clothing, etc., the chassis of the automatic cleaning equipment is easily in contact with the long hairs on the carpet, so It will increase the resistance of the automatic cleaning equipment to travel.
  • the automatic cleaning equipment including the wet cleaning module also has a water tank. When the water tank is filled with water, it will undoubtedly increase the resistance of the automatic cleaning equipment to travel. Under the action of these resistances, the automatic cleaning equipment is very easy to get stuck and unable to move.
  • FIG. 24 a flowchart of a method for controlling an automatic cleaning device provided by an exemplary embodiment of the present disclosure is shown, which may specifically include the following steps:
  • Step S2510 when the automatic cleaning device is cleaning, obtain the first data according to the current running wheel state data of the automatic cleaning device, and obtain the second data according to the current body state data of the automatic cleaning device;
  • Step S2520 according to the first data and the second data, determine whether the automatic cleaning device is trapped
  • Step S2530 if the automatic cleaning device is trapped, control the automatic cleaning device to enter an accelerated escape mode.
  • the automatic cleaning device In the method for controlling an automatic cleaning device provided by an exemplary embodiment of the present disclosure, during the cleaning process of the automatic cleaning device, if the first data obtained according to the current running wheel state data is different from the second data obtained according to the current airframe state data, Then it can be judged that the automatic cleaning device is trapped; at this time, the automatic cleaning device can be helped to get out of the trap through the accelerated escape mode, so as to reduce the probability of the automatic cleaning device getting stuck.
  • the automatic cleaning device control method is not only used in the scenario where the automatic cleaning device cleans surface medium areas such as long-pile carpets, but also in the scenario where the automatic cleaning device crosses a threshold, a small step, or is stuck by an obstacle. Any scenario that can be rescued by the method for controlling an automatic cleaning device provided by the exemplary embodiment of the present disclosure falls within the protection scope of the exemplary embodiment of the present disclosure.
  • the running wheels of the automatic cleaning equipment will generally be idling.
  • the first data is usually different from the second data obtained according to the current airframe state data. Therefore, whether the automatic cleaning device is trapped can be determined according to the difference between the first data and the second data.
  • the first state when the automatic cleaning device is in a rotating state, the theoretical angular velocity of the traveling wheel is obtained as the first data according to the current state data of the traveling wheel of the automatic cleaning device; generally, the automatic cleaning device is trapped but not stopped. , the traveling wheel will be in an idling state.
  • the traveling wheel sensor will obtain the traveling wheel sensor data such as the rotating speed of the traveling wheel, and the angular velocity of the traveling wheel can be determined according to the rotating speed of the traveling wheel.
  • the rotational speed is n rev/min
  • the angular velocity ⁇ n*2 ⁇ /60 radians/second. Since the angular velocity here is obtained when the running wheel is idling, it is not the angular velocity in the real situation, so it is called the theoretical angular velocity.
  • the actual angular velocity of the traveling wheel can also be obtained as the second data according to the current airframe state data of the automatic cleaning device.
  • the airframe state data is generally obtained by the state sensor on the airframe. Therefore, the state of the automatic cleaning device can be obtained according to the state of the automatic cleaning device.
  • the sensor data obtains the second data in the current airframe state; for example, the angular velocity actually generated by the walking wheel can be calculated according to the current airframe state data measured by the gyroscope on the automatic cleaning device.
  • the state sensor includes a variety of sensors for measuring state data, such as a gyroscope, a motor power sensor, a cliff sensor or a touch sensor.
  • the first and second data obtained above are the same, but on a medium that is easy to slip, such as a long-pile carpet, the first data is usually greater than the second data due to the resistance of the medium. data.
  • the acceleration and escape mode may include controlling the automatic cleaning device to accelerate immediately after decelerating. In the case of instant acceleration after deceleration, the static friction force of the automatic cleaning equipment on the medium will be converted into sliding friction force.
  • the sliding friction force is less than the maximum static friction force, when the automatic cleaning equipment is in the sliding friction force, even if the At the same acceleration in the case of static friction, the automatic cleaning equipment is also easier to get out of trouble, that is, it comes out of the current idling state, which can increase the probability of the automatic cleaning equipment getting out of trouble and reduce the occurrence of the automatic cleaning equipment being trapped.
  • the above-mentioned processes of detection, data calculation, and instant acceleration after deceleration are all completed automatically by the automatic cleaning equipment, so that the probability of failure of the automatic cleaning equipment can be reduced, and the automation degree of the automatic cleaning equipment can be improved. , which can improve the user experience.
  • the size of the first threshold and the first preset time can be set according to the actual situation.
  • the first threshold can be 2-10 radians/second, and the first preset time can be 3-6 seconds, etc.
  • the present disclosure The exemplary embodiment is not particularly limited thereto.
  • the second state when the automatic cleaning device slips and is trapped when it is in a straight forward state, the theoretical output power of the motor is obtained as the first data according to the current running wheel state data of the automatic cleaning device; On the carpet with high resistance, if the automatic cleaning equipment walks a certain distance, the output power required is generally less than the actual output power of the motor of the automatic cleaning equipment. That is to say, the output power of the motor calculated according to the current walking distance of the walking wheel obtained by the walking wheel sensor belongs to the theoretical output power of the motor, which will be smaller than the actual output power of the motor obtained according to the current airframe state data of the automatic cleaning device. That is, the first data will be smaller than the second data.
  • the automatic cleaning device if the difference between the first data and the second data is smaller than the second threshold for a second preset time, it is determined that the automatic cleaning device is trapped. At this time, the automatic cleaning device needs to be controlled to enter an accelerated escape mode to help the automatic cleaning device escape from the current trapped state.
  • the specific situation of the accelerated escape mode has been described in detail in the above-mentioned embodiments, and will not be repeated here.
  • the second threshold is the power value, and the size of the second threshold and the second preset time can be set according to the actual situation.
  • the second threshold can be 5-10W, and the first preset time can be 3- 6 seconds, etc., which are not particularly limited in the exemplary embodiment of the present disclosure.
  • the third state when the automatic cleaning device encounters an obstacle and is in a backward state, in the case where the automatic cleaning device is trapped in the backward direction, for example, when it is trapped by the long hair of a long-pile carpet and slips;
  • the theoretical output power of the motor can be obtained according to the current running wheel state data of the automatic cleaning device as the first data; the actual output power of the motor can be obtained according to the current airframe state data of the automatic cleaning device as the first data.
  • Second data And the first data will be smaller than the second data.
  • the automatic cleaning device When the automatic cleaning device encounters an obstacle and retreats, the automatic cleaning device usually needs to continuously accelerate and retreat to avoid being stuck. That is to say, whether the automatic cleaning device has been There may be misjudgments.
  • the judgment of the main brush current of the automatic cleaning device is also included, and on a medium such as a high-pile carpet, automatic cleaning
  • the rotation of the main brush of the equipment will also be greatly resisted, resulting in an increase in the current. Therefore, by adding the judgment of the main brush current, the accuracy of the judgment of whether the automatic cleaning equipment is trapped during the backward state can be increased, and the probability of misjudgment can be reduced.
  • the main brush current of the automatic cleaning device exceeds the fourth threshold and lasts for the fourth preset time, it is determined that the automatic cleaning device is trapped.
  • the third threshold is the power value, and the size of the third threshold and the third preset time can be set according to the actual situation, for example, the third threshold can be 7-15W, and the first preset time can be 3- 6 seconds etc.
  • the fourth threshold is the current value, the size of the fourth threshold and the fourth preset time can be set according to the actual situation, and the fourth preset time can be equal to the third preset time, or can be greater than the third preset time, the present disclosure
  • the exemplary embodiment is not particularly limited thereto.
  • the probability that the automatic cleaning device enters the accelerated escape mode is reduced.
  • Exemplary embodiments of the present disclosure also add a step of eliminating false positives to reduce the automatic cleaning device simply being caught by foreign objects on the low-pile carpet, or under other circumstances, when the automatic cleaning device accelerates immediately after deceleration The probability of a dangerous situation arising from rushing a long distance.
  • being trapped by the medium refers to the situation in which the automatic cleaning equipment is trapped by the medium such as the high-pile carpet and slips.
  • the result of the instant acceleration after deceleration can be calculated according to the accelerometer on the automatic cleaning device, for example, the change peak value of the accelerometer on the automatic cleaning device can be calculated.
  • the peak value of the change exceeds the threshold value, indicating that the acceleration of the automatic cleaning equipment is large and the fluctuation is large.
  • the side reflects that the medium resistance of the automatic cleaning equipment is small, and it is not necessarily a medium such as a long-pile carpet. At this time, the automatic cleaning equipment can be determined.
  • the size of the threshold value may be specifically set according to the performance of the automatic cleaning device, which is not particularly limited in the exemplary embodiment of the present disclosure.
  • Step S2601 the automatic cleaning device enters a cleaning state;
  • the first data is obtained from the state data of the traveling wheels, and at the same time, step S2603 is entered, and the second data is obtained according to the current airframe state data of the automatic cleaning equipment; then, step S2604 is entered, that is, judgment condition 1, according to the first data and the second data, It is determined whether the automatic cleaning device is trapped; if it is, that is, it is trapped, go to step S2605, and control the automatic cleaning device to enter an accelerated escape mode to escape from the trap.
  • step S2606 can also be entered, that is, judgment condition 2, to judge whether it is a misjudgment caused by not being trapped by the medium, and if so, enter step S2607 to turn off the accelerated escape mode.
  • the method for controlling an automatic cleaning device provided by an exemplary embodiment of the present disclosure, during the cleaning process of the automatic cleaning device, not only determines whether the automatic cleaning device is trapped by the medium in which it is located, but also eliminates misjudgment caused by non-medium. This improves the accuracy of judgment; and by setting different judgment criteria in different states, it can further increase the accuracy of whether it is trapped, improve the efficiency of automatic cleaning equipment to get out of trouble, and avoid misjudgment caused by non-media. danger and prolong the service life of automatic cleaning equipment.
  • the automatic cleaning device also includes other functions that help realize the overall operation, which will not be repeated in this exemplary embodiment.
  • an automatic cleaning device control device is also provided.
  • the automatic cleaning device control device 2700 may include: a data acquisition module 2701 , a state determination module 2702 , and a control device for getting out of trouble Module 2703, where:
  • the data acquisition module 2701 is used to acquire first data according to the current running wheel status data of the automatic cleaning equipment, and obtain second data according to the current airframe status data of the automatic cleaning equipment when the automatic cleaning equipment is cleaning;
  • a state determination module 2702 configured to determine whether the automatic cleaning device is trapped according to the first data and the second data
  • a control escape module 2703 is configured to control the automatic cleaning device to enter an accelerated escape mode if the automatic cleaning device is trapped.
  • an electronic device capable of implementing the above method is also provided.
  • aspects of the present disclosure may be implemented as a system, method or program product. Therefore, various aspects of the present disclosure can be embodied in the following forms: a complete hardware implementation, a complete software implementation (including firmware, microcode, etc.), or a combination of hardware and software aspects, which may be collectively referred to herein as implementations "circuit", “module” or "system”.
  • FIG. 27 An electronic device 2800 according to this embodiment of the present disclosure is described below with reference to FIG. 27 .
  • the electronic device 2800 shown in FIG. 27 is only an example, and should not impose any limitations on the functions and scope of use of the embodiments of the present disclosure.
  • electronic device 2800 takes the form of a general purpose computing device.
  • Components of the electronic device 2800 may include, but are not limited to: the above-mentioned at least one processing unit 2810 , the above-mentioned at least one storage unit 2820 , a bus 2830 connecting different system components (including the storage unit 2820 and the processing unit 2810 ), and a display unit 2840 .
  • the storage unit 2820 stores program codes, which can be executed by the processing unit 2810, so that the processing unit 2810 executes various examples according to the present disclosure described in the above-mentioned "Exemplary Methods" section of this specification steps of sexual implementation.
  • the processing unit 2810 can perform step S2510 as shown in FIG. 24 , when the automatic cleaning device is cleaning, obtain the first data according to the current running wheel status data of the automatic cleaning device, and according to the current body of the automatic cleaning device The second data is obtained from the status data; step S2520, according to the first data and the second data, determine whether the automatic cleaning device is trapped; step S2530, if the automatic cleaning device is trapped, control the automatic cleaning device to enter an accelerated escape mode.
  • the storage unit 2820 may include a readable medium in the form of a volatile storage unit, such as a random access storage unit (RAM) 28201 and/or a cache storage unit 28202, and may further include a read only storage unit (ROM) 28203.
  • RAM random access storage unit
  • ROM read only storage unit
  • the storage unit 2820 may also include a program/utility 28204 having a set (at least one) of program modules 28205 including, but not limited to, an operating system, one or more application programs, other program modules, and program data, An implementation of a network environment may be included in each or some combination of these examples.
  • the bus 2830 may be representative of one or more of several types of bus structures, including a memory cell bus or memory cell controller, a peripheral bus, a graphics acceleration port, a processing unit, or a local area using any of a variety of bus structures bus.
  • the electronic device 2800 may also communicate with one or more external devices 2870 (eg, keyboards, pointing devices, Bluetooth devices, etc.), with one or more devices that enable a user to interact with the electronic device 2800, and/or with Any device (eg, router, modem, etc.) that enables the electronic device 2800 to communicate with one or more other computing devices. Such communication may occur through input/output (I/O) interface 2850. Also, the electronic device 2800 may communicate with one or more networks (eg, a local area network (LAN), a wide area network (WAN), and/or a public network such as the Internet) through a network adapter 2860 . As shown, network adapter 2860 communicates with other modules of electronic device 2800 via bus 2830. It should be understood that, although not shown, other hardware and/or software modules may be used in conjunction with electronic device 2800, including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, RAID systems, tape drives and data backup storage systems.
  • the exemplary embodiments described herein may be implemented by software, or may be implemented by software combined with necessary hardware. Therefore, the technical solutions according to the embodiments of the present disclosure may be embodied in the form of software products, and the software products may be stored in a non-volatile storage medium (which may be CD-ROM, U disk, mobile hard disk, etc.) or on the network , including several instructions to cause a computing device (which may be a personal computer, a server, a terminal device, or a network device, etc.) to execute the method according to an embodiment of the present disclosure.
  • a computing device which may be a personal computer, a server, a terminal device, or a network device, etc.
  • a computer-readable storage medium on which a program product capable of implementing the above-described method of the present specification is stored.
  • various aspects of the present disclosure may also be implemented in the form of a program product comprising program code for causing the program product to run on a terminal device when the program product is run on a terminal device.
  • the terminal device performs the steps according to various exemplary embodiments of the present disclosure described in the above-mentioned "Example Method" section of this specification.
  • a program product for implementing the above method according to an embodiment of the present disclosure may adopt a portable compact disc read only memory (CD-ROM) and include program codes, and may run on a terminal device, such as a personal computer.
  • CD-ROM compact disc read only memory
  • the program product of the present disclosure is not limited thereto, and in this document, a readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
  • the program product may employ any combination of one or more readable media.
  • the readable medium may be a readable signal medium or a readable storage medium.
  • the readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or a combination of any of the above. More specific examples (non-exhaustive list) of readable storage media include: electrical connections with one or more wires, portable disks, hard disks, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory), optical fiber, portable compact disk read only memory (CD-ROM), optical storage devices, magnetic storage devices, or any suitable combination of the foregoing.
  • a computer readable signal medium may include a propagated data signal in baseband or as part of a carrier wave with readable program code embodied thereon. Such propagated data signals may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a readable signal medium can also be any readable medium, other than a readable storage medium, that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device.
  • Program code embodied on a readable medium may be transmitted using any suitable medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
  • Program code for performing the operations of the present disclosure may be written in any combination of one or more programming languages, including object-oriented programming languages—such as Java, C++, etc., as well as conventional procedural Programming Language - such as the "C" language or similar programming language.
  • the program code may execute entirely on the user computing device, partly on the user device, as a stand-alone software package, partly on the user computing device and partly on a remote computing device, or entirely on the remote computing device or server execute on.
  • the remote computing device may be connected to the user computing device through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computing device (eg, using an Internet service provider business via an Internet connection).
  • LAN local area network
  • WAN wide area network

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Electric Vacuum Cleaner (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种自动清洁设备清洁方法、自动清洁设备清洁装置、计算机可读存储介质及电子设备(2800)。清洁方法包括:在自动清洁设备进入双区域清洁模式后,根据自动清洁设备中的已存储地图,确定是否存在第二表面介质区域(S2010);如果存在第二表面介质区域,则清洁第二表面介质区域(S2020);在第二表面介质区域清洁完成后,标记为已清洁区域,并判断是否存在下一个第二表面介质区域,如果存在则清洁下一个第二表面介质区域,直到所有的第二表面介质区域全部清洁完(S2030);控制自动清洁设备清洁第一表面介质区域(S2040)。能够提高自动清洁设备清洁的效率。

Description

自动清洁设备清洁方法及装置、介质及电子设备
相关申请的交叉引用
本申请要求于2021年2月10日递交的中国专利申请202110184845.0以及2021年2月10日递交的中国申请202110184703.4的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开涉及智能家居领域,具体而言,涉及一种自动清洁设备清洁方法、自动清洁设备清洁装置、计算机可读存储介质及电子设备。
背景技术
近年来,随着计算机技术与人工智能科学的飞速发展,智能机器人技术逐渐成为现代机器人研究领域的热点。其中,扫地机器人作为智能机器人中最实用化的一种,能凭借一定的人工智能,自动完成地面的清理工作。
目前,越来越多的家庭铺设了地毯,在对含有地毯的房间进行清洁的过程中,需要根据地毯和地板不同的介质进行清洁模式切换,导致清洁过程效率低下。
发明内容
本公开的目的在于提供一种自动清洁设备清洁方法、自动清洁设备清洁装置、计算机可读存储介质及电子设备,能够解决上述提到的至少一个技术问题。具体方案如下:
根据本公开的具体实施方式,第一方面,本公开提供一种自动清洁设备清洁方法,用于清洁包括第一表面介质区域和第二表面介质区域的双区域清洁模式,包括:
在自动清洁设备进入所述双区域清洁模式后,根据所述自动清洁设备中的已存储地图,确定是否存在所述第二表面介质区域;
如果存在所述第二表面介质区域,则清洁所述第二表面介质区域;
在所述第二表面介质区域清洁完成后,标记为已清洁区域,并判断是否存在下一个所述第二表面介质区域,如果存在则清洁下一个所述第二表面介质区域,直到所有的所述第二表面介质区域全部清洁完;
控制所述自动清洁设备清洁所述第一表面介质区域。
可选的,根据所述自动清洁设备中的已存储地图,确定是否存在所述第二表面介质区域包括:
确定所述已存储地图中是否具有所述第二表面介质区域;
如果具有所述第二表面介质区域,则控制所述自动清洁设备进入所述已存储地图中记录的所述第二表面介质区域的位置,并检测所述第二表面介质区域是否存在。
可选的,如果未检测到所述第二表面介质区域,则将所述第二表面介质区域从所述已存储地图中删除,以更新所述已存储地图。
可选的,在控制所述自动清洁设备清洁所述第一表面介质区域的过程中,所述方法还包括:
检测是否还存在未清洁的第二表面介质区域;
如果存在所述未清洁的第二表面介质区域,则控制所述自动清洁设备清洁所述未清洁的第二表面介质区域,并将所述未清洁的第二表面介质区域存储于所述已存储地图中;
在所有的所述未清洁的第二表面介质区域清洁完后,控制所述自动清洁设备继续清洁所述第一表面介质区域,直到所述第一表面介质区域清洁完毕。
可选的,所述方法还包括:
在清洁所述第二表面介质区域的过程中,如果所述第二表面介质区域为跨区块区域,则忽略区块的限制,控制所述清洁机器人清洁整个所述第二表面介质区域。
可选的,在自动清洁设备进入所述双区域清洁模式之前,所述方法还包括:
控制所述自动清洁设备进入沿墙清洁模式;
如果所述自动清洁设备在沿墙清洁过程中,检测到所述第二表面介质区域,则忽略所述第二表面介质区域,控制所述自动清洁设备继续沿墙清洁,直到所述沿墙清洁结束退出所述沿墙清洁模式;
控制所述自动清洁设备进入所述双区域清洁模式。
可选的,在所述沿墙清洁过程中,标记检测到的所述第二表面介质区域,并确定所述已存储地图中是否存在所述第二表面介质区域;
如果不存在,则将所述第二表面介质区域存储于所述已存储地图中。
可选的,清洁所述第二表面介质区域包括:
在所述第二表面介质区域内,清洁所述第二表面介质区域的边界区域;
在所述边界区域清洁完后,清洁所述第二表面介质区域的其余区域。
第二方面,本公开提供一种自动清洁设备清洁装置,用于清洁包括第一表面介质区域和第二表面介质区域的双区域清洁模式,包括:
区域确定模块,用于在自动清洁设备进入所述双区域清洁模式后,根据所述自动清洁设备中的已存储地图,确定是否存在所述第二表面介质区域;
第一清洁控制模块,用于如果存在所述第二表面介质区域,则清洁所述第二表面介质区域;在所述第二表面介质区域清洁完成后,标记为已清洁区域,并判断是否存在下一个所述第二表面介质区域,如果存在则清洁下一个所述第二表面介质区域,直到所有的所述第二表面介质区域全部清洁完;
第二清洁控制模块,用于控制所述自动清洁设备清洁所述第一表面介质区域。
第三方面,本公开提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述的自动清洁设备清洁方法。
第四方面,本公开提供一种电子设备,包括:
处理器;以及
存储器,用于存储所述处理器的可执行指令;
其中,所述处理器配置为经由执行所述可执行指令来执行上述的自动清洁设备清洁方法。
与现有技术相比,本公开示例性实施方式提供的自动清洁设备清洁方法,在自动清洁设备清洁包括第一表面介质区域和第二表面介质区域的时候,可以控制自动清洁设备先清洁第二表面介质区域,在第二表面介质区域全部清洁完之后,再清洁第一表面介质区域,从而减少了自动清洁设备控制湿式清洁模组升降的次数,提高了清洁效率,也延长了自动清洁设备的使用寿命。
根据第五方面,本公开提供一种自动清洁设备控制方法,包括:
在自动清洁设备进行清洁时,根据所述自动清洁设备的当前行走轮状态数据获取第一数据,根据所述自动清洁设备的当前机身状态数据获取第二数据;
根据所述第一数据和所述第二数据,确定所述自动清洁设备是否被困;
如果所述自动清洁设备被困,则控制所述自动清洁设备进入加速脱困模式。
在一示例性实施例中,根据所述第一数据和所述第二数据,确定所述自动清洁设备是否被困包括:
根据所述第一数据和所述第二数据的差值,确定所述自动清洁设备是否被困。
在一示例性实施例中,所述方法还包括:
在所述自动清洁设备处于旋转状态时,根据所述自动清洁设备的当前行走轮状态数据获取行走轮的理论角速度作为所述第一数据;
根据所述自动清洁设备的当前机身状态数据获取所述行走轮的实际角速度作为所述第二数据;
若所述第一数据与所述第二数据的差值大于第一阈值,且持续第一预设时间,则确定所述自动清洁设备被困。
在一示例性实施例中,所述方法还包括:
在所述自动清洁设备处于直线前进状态时,根据所述自动清洁设备的当前行走轮状态数据获取电机的理论输出功率作为所述第一数据;
根据所述自动清洁设备的当前机身状态数据获取所述电机的实际输出功率作为所述第二数据;
若所述第一数据与所述第二数据的差值小于第二阈值,且持续第二预设时间,则确定所述自动清洁设备被困。
在一示例性实施例中,根据所述自动清洁设备的当前行走轮状态数据获取电机理论输 出功率包括:
根据所述自动清洁设备的行走轮当前的行走距离,确定所述电机理论输出功率。
在一示例性实施例中,所述方法还包括:
在所述自动清洁设备遇到障碍物处于后退状态时,根据所述自动清洁设备的当前行走轮状态数据获取电机的理论输出功率作为所述第一数据;
根据所述自动清洁设备的当前机身状态数据获取所述电机的实际输出功率作为所述第二数据;
若所述第一数据与所述第二数据的差值小于第三阈值并持续第三预设时间,且所述自动清洁设备的主刷电流超过第四阈值并持续第四预设时间时,则确定所述自动清洁设备被困。
在一示例性实施例中,所述加速脱困模式包括控制所述自动清洁设备减速后瞬间加速。
在一示例性实施例中,所述方法还包括:
根据所述减速后瞬间加速的结果,确定所述自动清洁设备是否处于易产生误判的介质上;
如果确定所述自动清洁设备处于所述易产生误判的介质上,则在所述自动清洁设备处于所述易产生误判的介质上时,关闭所述加速脱困模式。
在一示例性实施例中,根据所述减速后瞬间加速的结果,确定所述自动清洁设备是否处于易产生误判的介质上包括:
在所述减速后瞬间加速后,若所述自动清洁设备上的加速度计的变化峰值超过阀值,则确定所述自动清洁设备处于易产生误判的介质上。
在一示例性实施例中,根据所述自动清洁设备的当前行走轮状态数据获取第一数据包括:
根据所述自动清洁设备的行走轮传感器数据获取当前行走轮状态下的所述第一数据。
在一示例性实施例中,根据所述自动清洁设备的当前机身状态数据获取第二数据包括:
根据所述自动清洁设备上的状态传感器获取当前机身状态数据,再根据所述当前机身状态数据确定所述第二数据。
在一示例性实施例中,所述状态传感器包括陀螺仪、电机功率传感器、悬崖传感器或触碰传感器。
根据第六方面,本公开提供一种自动清洁设备控制装置,包括:
数据获取模块,用于在自动清洁设备进行清洁时,根据所述自动清洁设备的当前行走轮状态数据获取第一数据,根据所述自动清洁设备的当前机身状态数据获取第二数据;
状态确定模块,用于根据所述第一数据和所述第二数据,确定所述自动清洁设备是否被困;
控制脱困模块,用于如果所述自动清洁设备被困,则控制所述自动清洁设备进入加速脱困模式。
根据第七方面,本公开提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现第五方面或其任一示例性实施例所述的自动清洁设备控制方法。
根据第八方面,本公开提供一种电子设备,包括:
处理器;以及
存储器,用于存储所述处理器的可执行指令;
其中,所述处理器配置为经由执行所述可执行指令来执行第五方面或其任一示例性实施例所述的自动清洁设备控制方法。
本公开示例性实施方式提供的自动清洁设备控制方法,在自动清洁设备在清洁过程中,如果根据当前行走轮状态数据获取的第一数据,与根据当前机身状态数据获取的第二数据不同,则可以判断该自动清洁设备被困;此时,可以通过加速脱困模式帮助自动清洁设备脱困,以减小自动清洁设备卡死的情况发生的概率。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1为本公开的一个实施例的自动清洁设备的斜视图;
图2为本公开的一个实施例的自动清洁设备的底部结构的示意图;
图3为本公开的一个实施例的一侧驱动轮组件的斜视图;
图4为本公开的一个实施例的一侧驱动轮组件的正视图;
图5为本公开的一个实施例的尘盒的斜视图;
图6为本公开的一个实施例的风机的斜视图;
图7为本公开的一个实施例的尘盒的打开状态示意图;
图8为本公开的一个实施例的尘盒、风机组合状态示意图;
图9为本公开的一个实施例的自动清洁设备的爆炸图;
图10为本公开的一个实施例的自动清洁设备支撑平台的结构图;
图11为本公开的一个实施例的自动清洁设备震动件的结构图;
图12为本公开的另一实施例的基于曲柄滑块机构的清洁头驱动机构示意图;
图13为本公开的另一实施例的基于双曲柄机构的清洁头驱动机构示意图;
图14为本公开的另一实施例的基于曲柄机构的清洁头驱动机构示意图;
图15为本公开的一个实施例的自动清洁设备的升起状态示意图;
图16为本公开的一个实施例的自动清洁设备的下沉状态示意图;
图17为本公开的一个实施例的四连杆升降结构升起状态示意图;
图18为本公开的一个实施例的四连杆升降结构下沉状态示意图;
图19示出了根据本公开一实施例示出的一种自动清洁设备清洁方法的流程图;
图20示出了根据本公开一实施例示出的扫描第二表面介质区域后的初始化区域结构示意图;
图21示出了基于图20所示的初始化区域获得的合并区域的结构示意图;
图22示出了根据本公开一实施例示出的一种自动清洁设备清洁装置的框图;
图23示出了根据本公开一实施例示出的电子设备的模块示意图。
图24示出了根据本公开一实施例示出的一种自动清洁设备控制方法的流程图;
图25示出了根据本公开一实施例示出的一种自动清洁设备控制方法的操作步骤流程图;
图26示出了根据本公开一实施例示出的一种自动清洁设备控制装置的框图;
图27示出了根据本公开一实施例示出的电子设备的模块示意图。
具体实施方式
为了使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开作进一步地详细描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
在本公开实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义,“多种”一般包含至少两种。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应当理解,尽管在本公开实施例中可能采用术语第一、第二、第三等来描述……,但这些……不应限于这些术语。这些术语仅用来将……区分开。例如,在不脱离本公开实施例范围的情况下,第一……也可以被称为第二……,类似地,第二……也可以被称为第一……。
取决于语境,如在此所使用的词语“如果”、“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定” 或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的商品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种商品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的商品或者装置中还存在另外的相同要素。
图1-图2是根据一示例性实施例示出的一种自动清洁设备的结构示意图,如图1-图2所示,自动清洁设备可以是真空吸地机器人、也可以是拖地/刷地机器人、也可以是爬窗机器人等等,该自动清洁设备可以包含移动平台100、感知系统120、控制系统130、驱动系统140、清洁模组150、能源系统160和人机交互系统170。其中:
移动平台100可以被配置为在操作面上自动沿着目标方向移动。所述操作面可以为自动清洁设备待清洁的表面。在一些实施例中,自动清洁设备可以为拖地机器人,则自动清洁设备在地面上工作,所述地面为所述操作面;自动清洁设备也可以是擦窗机器人,则自动清洁设备在建筑的玻璃外表面工作,所述玻璃为所述操作面;自动清洁设备也可以是管道清洁机器人,则自动清洁设备在管道的内表面工作,所述管道内表面为所述操作面。纯粹是为了展示的需要,本申请中下面的描述以拖地机器人为例进行说明。
在一些实施例中,移动平台100可以是自主移动平台,也可以是非自主移动平台。所述自主移动平台是指移动平台100本身可以根据预料之外的环境输入自动地及适应性地做出操作决策;所述非自主移动平台本身不能根据预料之外的环境输入适应性地做出操作决策,但可以执行既定的程序或者按照一定的逻辑运行。相应地,当移动平台100为自主移动平台时,所述目标方向可以是自动清洁设备自主决定的;当移动平台100为非自主移动平台时,所述目标方向可以是系统或人工设置的。当所述移动平台100是自主移动平台时,所述移动平台100包括前向部分111和后向部分110。
感知系统120包括位于移动平台100上方的位置确定装置121、位于移动平台100的前向部分111的缓冲器122、位于移动平台底部的悬崖传感器123和超声传感器(图中未示出)、红外传感器(图中未示出)、磁力计(图中未示出)、加速度计(图中未示出)、陀螺仪(图中未示出)、里程计(图中未示出)等传感装置,向控制系统130提供机器的各种位置信息和运动状态信息。
为了更加清楚地描述自动清洁设备的行为,进行如下方向定义:自动清洁设备可通过相对于由移动平台100界定的如下三个相互垂直轴的移动的各种组合在地面上行进:横向轴x、前后轴y及中心垂直轴z。沿着前后轴y的前向驱动方向标示为“前向”,且沿着前后轴y的后向驱动方向标示为“后向”。横向轴x实质上是沿着由驱动轮组件141的中心点界定的轴心在自动清洁设备的右轮与左轮之间延伸。其中,自动清洁设备可以绕x轴转动。当自动清洁设备的前向部分向上倾斜,后向部分向下倾斜时为“上仰”,且当自动清洁设备的前向部分向下倾斜,后向部分向上倾斜时为“下俯”。另外,自动清洁设备可 以绕z轴转动。在自动清洁设备的前向方向上,当自动清洁设备向Y轴的右侧倾斜为“右转”,当自动清洁设备向y轴的左侧倾斜为“左转”。
如图2所示,在移动平台100底部上并且在驱动轮组件141的前方和后方设置有悬崖传感器123,该悬崖传感器123用于防止在自动清洁设备后退时发生跌落,从而能够避免自动清洁设备受到损坏。前述的“前方”是指相对于自动清洁设备行进方向相同的一侧,前述的“后方”是指相对于自动清洁设备行进方向相反的一侧。
位置确定装置121包括但不限于摄像头、激光测距装置(LDS Laser Direct Structuring)。
感知系统120中的各个组件,既可以独立运作,也可以共同运作以更准确的实现目的功能。通过悬崖传感器123和超声波传感器对待清洁表面进行识别,以确定待清洁表面的物理特性,包括表面介质、清洁程度等等,并可以结合摄像头、激光测距装置等进行更准确的判定。
例如,可以通过超声波传感器对待清洁表面是否为地毯进行判断,若超声波传感器判断待清洁表面为地毯材质,则控制系统130控制自动清洁设备进行地毯模式清洁。
移动平台100的前向部分111设置有缓冲器122,在清洁过程中驱动轮组件141推进自动清洁设备在地面行走时,缓冲器122经由传感器系统,例如红外传感器,检测自动清洁设备的行驶路径中的一或多个事件(或对象),自动清洁设备可通过由缓冲器122检测到的事件(或对象),例如障碍物、墙壁,而控制驱动轮组件141使自动清洁设备来对所述事件(或对象)做出响应,例如远离障碍物。
控制系统130设置在移动平台100内的电路主板上,包括与非暂时性存储器,例如硬盘、快闪存储器、随机存取存储器,通信的计算处理器,例如中央处理单元、应用处理器,应用处理器被配置为接收感知系统120传来的所述多个传感器的感受到的环境信息,根据激光测距装置反馈的障碍物信息等利用定位算法,例如SLAM,绘制自动清洁设备所在环境中的即时地图,并根据所述环境信息和环境地图自主决定行驶路径,然后根据所述自主决定的行驶路径控制驱动系统140进行前进、后退和/或转向等操作。进一步地,控制系统130还可以根据所述环境信息和环境地图决定是否启动清洁模组150进行清洁操作。
具体地,控制系统130可以结合缓冲器122、悬崖传感器123和超声传感器、红外传感器、磁力计、加速度计、陀螺仪、里程计等传感装置反馈的距离信息、速度信息综合判断扫地机当前处于何种工作状态,如过门槛,上地毯,位于悬崖处,上方或者下方被卡住,尘盒满,被拿起等等,还会针对不同情况给出具体的下一步动作策略,使得自动清洁设备的工作更加符合主人的要求,有更好的用户体验。进一步地,控制系统能基于SLAM绘制的即时地图信息规划最为高效合理的清扫路径和清扫方式,大大提高自动清洁设备的清扫效率。
驱动系统140可基于具体的距离和角度信息,例如x、y及θ分量,执行驱动命令而操纵自动清洁设备跨越地面行驶。图3、图4为本公开一实施例中一侧驱动轮组件141的斜视图和正视图,如图所示,驱动系统140包含驱动轮组件141,驱动系统140可以同时 控制左轮和右轮,为了更为精确地控制机器的运动,优选驱动系统140分别包括左驱动轮组件和右驱动轮组件。左、右驱动轮组件沿着由移动平台100界定的横轴对称设置。所述驱动轮组件包括壳体及连接架,所述驱动轮组件内分别设置有驱动马达146,所述驱动马达146位于驱动轮组件141外侧,且驱动马达146的轴心位于驱动轮组件的截面投影内,驱动轮组件141还可以连接测量驱动电流的电路和里程计。
为了自动清洁设备能够在地面上更为稳定地运动或者更强的运动能力,自动清洁设备可以包括一个或者多个转向组件142,转向组件142可为从动轮,也可为驱动轮,其结构形式包括但不限于万向轮,转向组件142可以位于驱动轮组件141的前方。
驱动马达146为驱动轮组件141和/或转向组件142的转动提供动力。
驱动轮组件141可以可拆卸地连接到移动平台100上,方便拆装和维修。驱动轮可具有偏置下落式悬挂系统,以可移动方式紧固,例如以可旋转方式附接,到自动清洁设备移动平台100,并通过弹性元件143,如拉簧或者压簧以一定的着地力维持与地面的接触及牵引,同时自动清洁设备的清洁模组150也以一定的压力接触待清洁表面。
能源系统160包括充电电池,例如镍氢电池和锂电池。充电电池可以连接有充电控制电路、电池组充电温度检测电路和电池欠压监测电路,充电控制电路、电池组充电温度检测电路、电池欠压监测电路再与单片机控制电路相连。主机通过设置在机身侧方或者下方的充电电极与充电桩连接进行充电。
人机交互系统170包括主机面板上的按键,按键供用户进行功能选择;还可以包括显示屏和/或指示灯和/或喇叭,显示屏、指示灯和喇叭向用户展示当前机器所处状态或者功能选择项;还可以包括手机客户端程序。对于路径导航型清洁设备,在手机客户端可以向用户展示设备所在环境的地图,以及机器所处位置,可以向用户提供更为丰富和人性化的功能项。
清洁模组150可包括干式清洁模组151和/或湿式清洁模组400。
如图5-图8所示,干式清洁模组151包括滚刷、尘盒、风机、出风口。与地面具有一定干涉的滚刷将地面上的垃圾扫起并卷带到滚刷与尘盒之间的吸尘口前方,然后被风机产生并经过尘盒的有吸力的气体吸入尘盒。扫地机的除尘能力可用垃圾的清扫效率DPU(Dust pickup efficiency)进行表征,清扫效率DPU受滚刷结构和材料影响,受吸尘口、尘盒、风机、出风口以及四者之间的连接部件所构成的风道的风力利用率影响,受风机的类型和功率影响,是个复杂的系统设计问题。相比于普通的插电吸尘器,除尘能力的提高对于能源有限的清洁自动清洁设备来说意义更大。因为除尘能力的提高直接有效降低了对于能源要求,也就是说原来充一次电可以清扫80平米地面的机器,可以进化为充一次电清扫180平米甚至更多。并且减少充电次数的电池的使用寿命也会大大增加,使得用户更换电池的频率也会增加。更为直观和重要的是,除尘能力的提高是最为明显和重要的用户体验,用户会直接得出扫得是否干净/擦得是否干净的结论。干式清洁模组还可包含具有旋转轴的边刷157,旋转轴相对于地面成一定角度,以用于将碎屑移动到清洁模组150的 滚刷区域中。
图5为所述干式清洁模组中的尘盒152的结构示意图,图6为所述干式清洁模组中的风机156的结构示意图,图7为尘盒152的打开状态示意图,图8为尘盒、风机组装状态示意图。
与地面具有一定干涉的滚刷将地面上的垃圾扫起并卷带到滚刷与尘盒152之间的吸尘口154前方,然后被风机156结构产生并经过尘盒152的有吸力的气体吸入尘盒152,垃圾被滤网153隔离在尘盒152内部靠近吸尘口154一侧,滤网153将吸尘口与出风口完全隔离,经过过滤后的空气通过出风口155进入风机156。
典型的,尘盒152的吸尘口154位于机器前方,出风口155位于尘盒152侧方,风机156的吸风口与尘盒的出风口相对接。
尘盒152的前面板可以打开,用于清理尘盒152内的垃圾。
所述滤网153与尘盒152的盒体为可拆卸连接,方便滤网拆卸和清洗。
如图9-图11所示,本公开提供的湿式清洁模组400,被配置为采用湿式清洁方式清洁所述操作面的至少一部分;其中,所述湿式清洁模组400包括:清洁头410、驱动单元420,其中,清洁头410用于清洁所述操作面的至少一部分,驱动单元420用于驱动所述清洁头410沿着目标面往复运动的,所述目标面为所述操作面的一部分。所述清洁头410沿待清洁表面做往复运动,清洁头410与待清洁表面的接触面表面设有清洁布或清洁板,通过往复运动与待清洁表面产生高频摩擦,从而去除待清洁表面上的污渍。往复运动可以是沿操作面内任意一个或多个方向的反复运动,也可以是垂直于操作面的震动,对此不做严格限制。
如图9所示,所述驱动单元420包括:驱动平台421,连接于所述移动平台100底面,用于提供驱动力;支撑平台422,可拆卸的连接于所述驱动平台421,用于支撑所述清洁头410,且可以在驱动平台421的驱动下实现升降。
清洁模组150与移动平台100间设有升降模组,用于使清洁模组150更好的与待清洁表面接触,或者针对不同材质的待清洁表面采用不同的清洁策略。
所述干式清洁模组151可以通过被动式升降模组与所述移动平台100相连接,当清洁设备遇到障碍时,干式清洁模组151可以通过升降模组更便捷的越过障碍。
所述湿式清洁模组400可以通过主动式升降模组与所述移动平台100相连接,当湿式清洁模组400暂时不参与工作,或者遇到无法采用湿式清洁模组400进行清洁的待清洁表面时,通过主动式升降模组将湿式清洁模组400升起,与待清洁表面分离,从而实现清洁手段的变化。
如图10-图11所示,所述驱动平台421包括:电机4211,设置于所述驱动平台421的靠近所述移动平台100一侧,通过电机输出轴输出动力;驱动轮4212,与所述电机输出轴连接,所述驱动轮4212为非对称结构;震动件4213,设置于所述驱动平台421的与所述电机4211相反的一侧,与所述驱动轮4212连接,在所述驱动轮4212非对称的转动下 实现往复运动。
驱动平台421可以进一步包括驱动轮和齿轮机构。齿轮机构235可以连接电机4211和驱动轮4212。电机4211可以直接带动驱动轮4212做回转运动,也可以通过齿轮机构间接带动驱动轮4212做回转运动。本领域普通技术人员可以理解,齿轮机构可以为一个齿轮,也可以是多个齿轮组成的齿轮组。
电机4211通过动力传送装置将动力同时传递给清洁头410、驱动平台421、支撑平台422、送水机构、水箱等。能源系统160为电机4211提供动力和能源,并由控制系统130进行整体控制。所述动力传送装置可以是齿轮传动、链传动、带传动,也可以是蜗轮蜗杆等等。
电机4211包括正向输出模式和反向输出模式,正向输出模式时电机4211正向旋转,反向输出模式时电机4211反向旋转,电机4211的正向输出模式中,电机4211通过动力传送装置能同时带动湿式清洁组件400中的清洁头410、送水机构同步运动。
进一步的,所述驱动平台421还包括:连接杆4214,沿所述驱动平台421边缘延伸,连接所述驱动轮4212与所述震动件4213,使所述震动件4213延伸至预设位置,其中,所述震动件4213延伸方向与所述连接杆4214垂直。
电机4211通过动力传送装置与驱动轮4212、震动件4213、连接杆4214及震动缓冲装置4215连接。当湿式清洁组件400启动时,电机4211启动工作开始正转,电机4211通过驱动轮4212带动连接杆4214沿着驱动平台421表面做往复运动,同时震动缓冲装置4215带动震动件4213沿着驱动平台421表面做往复运动,震动件4213带着清洁基板4221沿着支撑平台422表面做往复运动,清洁基板4221带着活动区域412沿着待清洁表面做往复运动。此时,清水泵使清水从清水箱流出,并通过出水装置4217将清水洒在清洁头410上,清洁头410则通过往复运动清洁待清洁表面。
自动清洁设备的清洁强度/效率也可以根据自动清洁设备的工作环境自动动态调整。比如自动清洁设备可以根据感知系统120检测待清洁表面的物理信息实现动态调整。例如,感知系统120可以检测待清洁表面的平整度、待清洁表面的材质、是否有油污和灰尘,等等信息,并将这些信息传给自动清洁设备的控制系统130。相应地,控制系统130可以指挥自动清洁设备根据自动清洁设备的工作环境自动动态调整电机的转速及动力传送装置的传动比,因而调整所述清洁头410往复运动的预设往复周期。
例如,当自动清洁设备在平坦的地面上工作时,所述预设往复周期可以自动动态调整地较长、水泵的水量可以自动动态调整地较小;当自动清洁设备在不太平坦的地面上工作时,所述预设往复周期可以自动动态调整地较短、水泵的水量可以自动动态调整地较大。这是因为,相对于不太平坦的地面,平面的地面较容易清洁,因此清洁不平坦地面需要清洁头410更快的往复运动(即更高的频率)和更大的水量。
又例如,当自动清洁设备在桌面上工作时,所述预设往复周期可以自动动态调整地较长、水泵的水量可以自动动态调整地较小;当自动清洁设备100在地面工作时,所述预设 往复周期可以自动动态调整地较短、水泵的水量可以自动动态调整地较大。这是因为,相对于地面,桌面的灰尘、油污较少,构成桌面的材质也较容易清洁,因此需要清洁头410进行较少次数的往复运动、水泵提供相对较少的水量就能将桌面清理干净。
所述支撑平台422包括:清洁基板4221,可自由活动的设置于所述支撑平台422,所述清洁基板4221在所述震动件4213的震动下做往复运动。可选的,所述清洁基板4221包括:装配缺口(未图示),设置于与所述震动件4213接触的位置,当所述支撑平台422连接于所述驱动平台421上时,所述震动件4213装配于所述装配缺口,使得清洁基板4221可以随着震动件4213同步往复运动。
图12示出了根据本申请多个实施例的另一种基于曲柄滑块机构的清洁头驱动机构800。驱动机构800可以应用在驱动平台421上。驱动机构800包括驱动轮4212、震动件4213、清洁基板4221、滑槽4222(第一滑槽)和滑槽4223(第二滑槽)。
滑槽4222、4223开在支撑平台422上。清洁基板4221的两端分别包括滑块525(第一滑块)和滑块528(第二滑块)。滑块525、528分别为在清洁基板4221两端的一个凸起。滑块525插入在滑槽4222内并且可以沿着滑槽4222滑动;滑块4223插入在滑槽4223内,并且可以沿着滑槽4223滑动。在一些实施例中,滑槽4222同滑槽4223在同一直线上。在一些实施例中,滑槽4222和滑槽4223不在同一直线上。在一些实施例中,滑槽4222同滑槽4223沿着同一方向延伸。在一些实施例中,滑槽4222同滑槽4223的延伸方向同清洁基板4221的延伸方向相同。在一些实施例中,滑槽4222同滑槽4223的延伸方向同清洁基板4221的延伸方向不同。在一些实施例中,滑槽4222同滑槽4223的延伸方向不同。比如,图12所示,滑槽4222的延伸方向同清洁基板4221的延伸方向相同,而滑槽4223的延伸方向同滑槽4222的延伸方向呈一定角度。
震动件4213包括回转端512和滑动端514。回转端512同驱动轮4212通过第一枢轴516连接,滑动端514同清洁基板4221通过第二枢轴518连接。
驱动轮4212的回转中心为O点,第一枢轴516的枢转中心为A点。O点和A点不重合,他们之间的距离为预设距离d。
当驱动轮4212转动时,A点随之做圆形回转运动。相应地,回转端512跟着A点做圆形回转运动;滑动端514则通过第二枢轴518带动清洁基板4221做滑动运动。相应地,清洁基板4221的滑块525沿着滑槽4222做往复直线运动;滑块528沿着滑槽4223做往复线性运动。在图4中,移动平台210的移动速度为V0,移动方向为目标方向。根据一些实施例,当滑槽4223和滑槽4222分别近似垂直于移动平台210的移动速度V0的方向时,清洁基板4221的整体位移大体上垂直于所述目标方向。根据另一些实施例,当滑槽4223和滑槽4222中的任意一个滑槽同所述目标方向呈90度以外的其他角度时,清洁基板4221的整体位移同时包括垂直于所述目标方向和平行于所述目标方向的分量。
进一步的,包括震动缓冲装置4215,设置于所述连接杆4214上,用于减轻特定方向上的震动,本实施例中,用于减轻自动清洁设备目标方向垂直的移动分量方向上的震动。
图13示出了根据本申请多个实施例的另一种基于双曲柄机构的清洁头驱动机构600。驱动机构600可以应用在驱动平台421上。驱动机构600包括驱动轮4212(第一驱动轮)、驱动轮4212’(第二驱动轮)、和清洁基板4221。
清洁基板4221有两端。第一端同驱动轮4212通过枢轴624(第一枢轴)连接;第二端同驱动轮4212’通过枢轴626(第二枢轴)连接。驱动轮4212的回转中心为O点,枢轴624的枢转中心为A点。O点和A点不重合,他们之间的距离为预设距离d。驱动轮236的回转中心为O’点,枢轴626的枢转中心为A’点。O’点和A’点不重合,他们之间的距离为预设距离d。在一些实施例中,A点、A’点、O点和O’点位于同一平面上。因此,驱动轮4212、驱动轮4212’和清洁基板4221可形成双曲轴机构(或平行四边形机构),其中清洁基板4221用作耦合杆,驱动轮4212和4212’充当两个曲柄。
进一步的,包括震动缓冲装置4215,设置于所述连接杆4214上,用于减轻特定方向上的震动,本实施例中,用于减轻自动清洁设备目标方向垂直的移动分量方向上的震动。
图14示出了根据本申请多个实施例的一种基于曲柄滑块机构的驱动机构700。驱动机构700可以应用在驱动平台421上。所述驱动机构700包括驱动轮4212、清洁基板4221和滑槽4222。
滑槽4222开在支撑平台422上。清洁基板4221包括回转端4227和滑动端4226。回转端4227通过枢轴4228连接在驱动轮4212上。其中,驱动轮4212的回转中心为O点,回转端枢轴4228枢转中心为A点。O点和A点不重合,他们之间的距离为预设距离d。滑动端4226包括滑块4225。滑块4225为在滑动端4226上的一个凸起。滑块4225插入在滑槽4222内并且可以沿着滑槽4222滑动。因此,驱动轮4221、清洁基板4221和滑块4225和滑槽4222组成曲柄滑块机构。
当驱动轮4212转动时,A点做圆形回转运动。相应地,清洁基板4221的回转端4227跟着A点做圆形回转运动;而滑块4225则跟着在滑槽4222中滑动,做往复线性运动。其结果是清洁基板4221开始做往复运动。根据一些实施例,滑槽4222近似垂直于移动平台的移动速度所述目标方向的方向,因此,滑动端4226的线性移动包括垂直于所述目标方向的分量,回转端4227的圆形回转运动同时包括垂直于所述目标方向和平行于所述目标方向的分量。
在图14中,移动平台的移动速度为V0,移动方向为目标方向;而滑槽4222近似垂直于目标方向。此时,清洁基板4221整体上做的往复运动既有同自动清洁设备目标方向平行的移动分量,又有同自动清洁设备目标方向垂直的移动分量。
进一步的,包括震动缓冲装置4215,设置于所述连接杆4214上,用于减轻特定方向上的震动,本实施例中,用于减轻自动清洁设备目标方向垂直的移动分量方向上的震动。
进一步的,所述支撑平台422还包括:弹性拆卸按钮4229,设置于所述支撑平台422的至少一侧,用于使所述支撑平台422可拆卸的连接于所述驱动平台421的卡爪4216。至少一个装配区域4224,设置于所述支撑平台422,用于装配所述清洁头410。装配区域4224 可以为具有粘结层的粘结材料形成。
如图9所示,所述清洁头410包括:活动区域412,与所述清洁基板4221连接,在所述清洁基板4221的驱动下沿着所述清洁表面往复运动。活动区域412设置于清洁头410大致中央位置。所述活动区域412与所述清洁基板4221连接的一侧设置有粘结层,所述活动区域412与所述清洁基板4221通过所述粘结层连接。
可选的,所述清洁头410还包括:固定区域411,通过所述至少一个装配区域4224连接于所述支撑平台422底部,所述固定区域411随着所述支撑平台422的移动清洁所述操作面的至少一部分。
进一步的,所述清洁头410还包括:柔性连接部413,设置于所述固定区域411和所述活动区域412之间,用于连接所述固定区域411和所述活动区域412。所述清洁头410还包括:滑动卡扣414,沿所述清洁头410边缘延伸,可拆卸的安装于所述支撑平台422的卡接位置4225。
如图9所示,清洁头410可以用有一定弹性的材料制成,清洁头410通过粘贴层固定于支撑平台422的表面,从而实现往复运动。在清洁头410工作时,清洁头410始终接触待清洁表面。
所述送水机构包括出水装置4217,出水装置4217可以与水箱(未图示)的清洁液出口即清水箱的出液口直接或间接连接,其中,所述清洁液可以经水箱的所述清洁液出口流向出水装置4217,并可以通过出水装置均匀地涂在所述待清洁表面上。出水装置上可以设有连接件(图中未示出),出水装置通过所述连接件与水箱的清洁液出口连接。出水装置上设有分配口,分配口可以是连续的开口,也可以由若干断开的小开口组合而成,分配口处可以设有若干喷嘴。所述清洁液经水箱的所述清洁液出口和出水装置的所述连接件流向分配口,经所述分配口均匀地涂在所述操作面上。
送水机构还可以包括清水泵4219和/或清水泵管4218,清水泵4219与水箱的清洁液出口可以直接连通,也可以通过清水泵管4218连通。
清水泵4219可以同出水装置的所述连接件连接,并且可以被配置为从水箱中抽取所述清洁液至出水装置。清水泵可为齿轮泵、叶片泵、柱塞泵、蠕动泵等等。
送水机构通过清水泵4219和清水泵管4218将清水箱中的清洁液抽出,并运送到出水装置,所述出水装置4217可以为喷头、滴水孔、浸润布等,并将水均匀散布在清洁头上,从而湿润清洁头与待清洁表面。湿润后的待清洁表面上的污渍能够更容易的被清洁干净。在湿式清洁组件400中,清水泵的功率/流量可以调整。
上述在湿式清洁模组中,通过增加驱动单元、震动区域,使清洁头可以往复运动,从而可以在待清洁表面进行反复清洁,使得在自动清洁设备运动轨迹中,一次通过某一区域可以实现多次清洁,从而大大增强了清洁效果,特别是对于污渍比较多的区域,清洁效果明显。
根据本公开的具体实施方式,本公开提供一种可升降自动清洁设备,包括:移动平台 100,被配置为在操作面上自动移动;湿式清洁模组400,通过四连杆升降结构500活动连接于所述移动平台100上,被配置为采用湿式清洁方式清洁所述操作面的至少一部分;其中,所述四连杆升降结构500为平行四边形结构,用于使所述湿式清洁模组400在上升状态和下沉状态间切换,所述上升状态为所述湿式清洁模组400离开所述操作面,如图15所示;所述下沉状态为所述湿式清洁模组400贴合所述操作面,如图16所示。
如图17-图18所示,所述四连杆升降结构500包括:第一连接端501,用于提供主动力使所述湿式清洁模组400在上升状态和下沉状态间切换;第二连接端502,与所述第一连接端501相对设置,在所述主动力作用下旋转。第一连接端501和第二连接端502分别位于湿式清洁模组400的两侧,通过稳定的提供升降力使湿式清洁模组400上升或下降。
具体的,所述第一连接端501包括第一支架5011,固定连接于所述移动平台100底部;第一支架5011大致为“几”字形结构,第一支架5011包括:横梁50111、第一纵梁50114和第二纵梁50115,第一纵梁50114和第二纵梁50115的尾端分别通过螺栓固定连接于移动平台100,提供湿式清洁模组400升降时的支撑力。
所述第一连接端501还包括第一连接杆对5012,第一连接杆对5012一端可转动地连接于所述第一支架5011,另一端可转动地连接于所述湿式清洁模组400。所述第一连接杆对5012可以为镂空结构,可减轻升降端的整体重量。
可选的,所述第一连接杆对5012包括平行设置的第一连接杆50121和第二连接杆50122,所述第一连接杆50121和第二连接杆50122的第一端通过活动螺柱可转动地连接于所述第一纵梁50114,所述第一连接杆50121和第二连接杆50122的第二端通过活动螺柱可转动地连接于所述湿式清洁模组400。例如,第一连接杆50121和第二连接杆50122的两端分别开有直径大于活动螺柱直径的通孔,使得活动螺柱可以在该通孔内自由转动,活动螺柱穿过该通孔后固定连接于第一纵梁50114。当电机4211通过拉索向第一端提供拉力时,所述第一连接杆50121和第二连接杆50122的第一端同时绕第一端的活动螺柱旋转,第二端在拉索的拉力下上升,使湿式清洁模组400升起。当电机4211通过拉索向第一端释放拉力时,所述第一连接杆50121和第二连接杆50122的第一端同时绕第一端的活动螺柱反向旋转,第二端在重力作用下下降,使湿式清洁模组400下沉。
所述升降结构500还包括拉索42194,用于提供提拉动力,使所述第一连接杆对5012在预设角度内转动。所述拉索42194包括:拉索电机端子50131,与所述驱动单元420相连接,例如与电机输出轴连接的齿轮缠绕连接,在电机的转动下实现伸缩运动。拉索支架端子50132与所述第一支架5011相连接,所述电机通过所述拉索42194使所述第一连接杆50121和第二连接杆50122的第二端上升或下沉。
可选的,所述第一支架5011还包括:滑槽50112,沿所述横梁50111表面延伸,以及,卡孔50113,贯穿所述横梁50111设置于所述滑槽50112延伸末端,用于收纳并卡扣所述拉索支架端子50132,所述拉索42194通过所述滑槽50112及卡孔50113与所述第一连接杆50121和第二连接杆50122的第一端连接,滑槽50112能够限制拉索的移动方向,保证 模组升降的稳定性,滑槽的宽度与拉索的粗细匹配为宜。
如图17所示,所述第二连接端502包括:第二支架5021,固定连接于所述移动平台100底部;第二连接杆对5022,一端可转动地连接于所述第二支架5021,另一端可转动地连接于所述湿式清洁模组400;所述第二连接杆对5022随着所述第一连接杆对5012的转动而转动。所述第二连接杆对5022可以为镂空结构,可减轻升降端的整体重量。
具体的,所述第二连接杆对5022包括平行设置的第三连接杆50221和第四连接杆50222,所述第三连接杆50221和第四连接杆50222的第一端通过活动螺柱可转动地连接于所述第二支架5021,所述第三连接杆50221和第四连接杆50222的第二端通过活动螺柱可转动地连接于所述湿式清洁模组400。例如,第三连接杆50221和第四连接杆50222的两端分别开有直径大于活动螺柱直径的通孔,使得活动螺柱可以在该通孔内自由转动,活动螺柱穿过该通孔后固定连接于第二支架5021和湿式清洁模组400。当第一连接端501在电机4211的驱动下转动时,所述第三连接杆50221和第四连接杆50222的第一端同时绕第一端的活动螺柱旋转,所述第三连接杆50221和第四连接杆50222的第二端同时绕第二端的活动螺柱旋转,使湿式清洁模组400升起。当第一连接端501释放拉力时,所述第三连接杆50221和第四连接杆50222的同时绕活动螺柱反向旋转,在重力作用下下降,使湿式清洁模组400下沉。
通过设置于湿式清洁模组和移动平台之间的四连杆升降结构,能够使湿式清洁模组相对于移动平台升降,在执行拖地任务的时候,将湿式清洁模组降下使湿式清洁模组与地面接触,当执行完毕拖地任务的时候,将湿式清洁模组升起使湿式清洁模组与地面分离,避免清洁设备在被清洁面上自由移动时由于清洁模组的存在而增大阻力。
配合表面介质传感器等能够检测待清洁表面的表面类型的传感器,升降模组能够将湿式清洁模组根据不同的待清洁表面进行清洁操作,如在地毯表面将湿式清洁模组抬升,并在地板/地砖等表面将湿式清洁模组放下进行清洁,从而实现更为全面的清洁效果。
对于包含不同表面介质区域的情况,自动清洁设备在清洁过程中,需要根据不同的表面介质控制湿式清洁模组的升降,例如,在清洁到地毯表面时,需要将湿式清洁模组抬升;在清洁到地板表面时,需要将湿式清洁模组降下,如果是按照“之”字型的往复清洁,那么自动清洁设备需要频繁地控制湿式清洁模组升降,导致清洁过程费时,还会缩短自动清洁设备的使用寿命。
基于此,参照图19,示出了本公开示例性实施方式提供的自动清洁设备清洁方法的流程图,该自动清洁设备清洁方法用于清洁包括第一表面介质区域和第二表面介质区域的双区域清洁模式,具体可以包括以下步骤:
步骤S2010、在自动清洁设备进入双区域清洁模式后,根据自动清洁设备中的已存储地图,确定是否存在第二表面介质区域;
步骤S2020、如果存在第二表面介质区域,则清洁第二表面介质区域;
步骤S2030、在第二表面介质区域清洁完成后,标记为已清洁区域,并判断是否存在 下一个第二表面介质区域,如果存在则清洁下一个第二表面介质区域,直到所有的第二表面介质区域全部清洁完;
步骤S2040、控制自动清洁设备清洁第一表面介质区域。
本公开示例性实施方式提供的自动清洁设备清洁方法,在自动清洁设备清洁包括第一表面介质区域和第二表面介质区域的时候,可以控制自动清洁设备先清洁第二表面介质区域,在第二表面介质区域全部清洁完之后,再清洁第一表面介质区域,从而减少了自动清洁设备控制湿式清洁模组升降的次数,提高了清洁效率,也延长了自动清洁设备的使用寿命。
其中,此处的第一表面介质为木质地板、瓷砖、水泥表面等地板表面介质中的一种或多种;第二表面介质为与第一表面介质不同的地毯等地板表面介质中的一种或多种。
现结合本公开示例性实施方式提供的自动清洁设备清洁方法,将一个自动清洁设备进入一个包含双介质区域的房间后的整个的清洁过程进行说明:
首先,自动清洁设备进入该房间后,会先进入沿墙清洁模式,在该沿墙清洁模式下,自动清洁设备可以获取房间地图。如果该自动清洁设备中包含有已存储地图,则需要将房间地图与已存储地图进行比较,如果两者的匹配程度较高,例如匹配的比例在90%以上,则以已存储地图为基础进行房间清扫。
然而,如果匹配程度不够,例如匹配的比例在90%以下,则需要重新绘制房间地图,并将房间内的第二表面介质区域绘制出来。
在本公开示例性实施方式中,对第二表面介质区域的绘制方法可以包括:使用第二表面介质区域识别装置对第二表面介质区域的边界进行扫描,例如使用地毯识别装置103对地毯区域的边界进行扫描。扫描后,根据扫描的边界可以生产如图20所示的初始化区域2100,并在自动清洁设备中记录初始化区域2100。
接着,可以将初始化区域2100的边界坐标进行合并,例如可以是将相邻的边界坐标合并为一个坐标,获得如图21所示的比初始化区域的边界更平顺的合并区域2200,作为第二表面介质区域地图更新已存储地图,或者生成新的房间地图。
需要说明的是,在控制自动清洁设备进入沿墙清洁模式时,如果自动清洁设备在沿墙清洁过程中,检测到第二表面介质区域,则先忽略第二表面介质区域,控制自动清洁设备继续沿墙清洁,直到沿墙清洁结束退出沿墙清洁模式。另外,自动清洁设备在沿墙清洁过程中,还可以对检测到的第二表面介质区域进行标记,并判断已存储地图中是否存在该第二表面介质区域,如果不存在,则将该第二表面介质区域存储于已存储地图中,以便清洁时参考。
在本公开示例性实施方式中,在沿墙清洁模式结束后,控制自动清洁设备进入双区域清洁模式。在自动清洁设备进入双区域清洁模式后,可以根据自动清洁设备中的已存储地图,确定已存储地图中是否具有第二表面介质区域,如果具有第二表面介质区域,则控制自动清洁设备进入已存储地图中记录的第二表面介质区域的位置,并检测该第二表面介质 区域是否还存在,如果存在,则控制自动清洁设备清洁第二表面介质区域。如果不存在,则将第二表面介质区域从已存储地图中删除,以更新已存储地图。
可选的,在自动清洁设备清洁第二表面介质区域的过程中,可以控制自动清洁设备在第二表面介质区域内,先清洁第二表面介质区域的边界区域,即第二表面介质区域的边界内侧,以圈定第二表面介质区域范围;在边界区域清洁完后,再在圈定的第二表面介质区域范围内,控制自动清洁设备清洁第二表面介质区域的其余区域。
其中,自动清洁设备在清洁第二表面介质区域的其余区域的时候,可以控制自动清洁设备以直行-掉头-直行-掉头的“之”字形方式进行清洁。或者也可以根据实际情况设定其他的清洁方式,本公开示例性实施方式对此不作特殊限定。
通常,在一个房间中,可能存在不止一个第二表面介质区域,此时,在清洁完上述第二表面介质区域后,可将清洁完的第二表面介质区域标记为已清洁区域,并判断是否存在下一个第二表面介质区域,如果存在则清洁下一个第二表面介质区域,直到房间中所有的第二表面介质区域全部清洁完之后,可以控制自动清洁设备对第一表面介质区域进行清洁。
在自动清洁设备清洁第一表面介质区域的过程中,可能会检测到未清洁的第二表面介质区域,此时,如果存在未清洁的第二表面介质区域,则控制自动清洁设备清洁该未清洁的第二表面介质区域,并将未清洁的第二表面介质区域存储于已存储地图中,以供下次清洁使用。直至所有的未清洁的第二表面介质区域清洁完后,控制自动清洁设备继续清洁第一表面介质区域,直到第一表面介质区域清洁完毕。
其中,自动清洁设备在清洁第一表面介质区域的过程中,可以根据沿墙清洁所圈定的第一表面介质区域,控制自动清洁设备以直行-掉头-直行-掉头的“之”字形方式进行清洁。或者也可以根据实际情况设定其他的清洁方式,本公开示例性实施方式对此不作特殊限定。
在实际应用中,在标记已清洁区域的过程中,可以使用涂色算法来对已清洁区域进行标记,也可以使用其他方法进行标记,本公开示例性实施方式对此不作特殊限定。
在本公开示例性实施方式中,在清洁第二表面介质区域的过程中,如果第二表面介质区域为跨区块区域,则忽略区块的限制,控制清洁机器人清洁整个第二表面介质区域。其中,跨区块可以包括跨不同的房间,也就是说,该第二表面介质区域占据至少两个房间的部分区域,那么可以忽略两个房间的限制,先控制清洁机器人将整个第二表面介质区域清洁完,并将该第二表面介质区域标记为已清洁区域,在之后两个房子的清洁过程中,不再对该第二表面介质区域进行清洁。
本公开示例性实施方式提供的自动清洁设备清洁方法,通过优先对第二表面介质区域进行清洁,例如,可以在湿式清洁模组抬升的情况下对地毯等第二表面介质区域进行清洁;之后,再将湿式清洁模组降下,对第一表面介质区域进行清洁,即只需要控制湿式清洁模组在抬升和降下之间一次切换就可完成整个清洁过程,避免了频繁切换的情况发生,从而 提高了清洁的效率,延长了自动清洁设备的使用寿命。
在实际应用中,自动清洁设备还包括帮助实现整体运行的其他功能,本示例性实施方式对此不做赘述。
需要说明的是,尽管在附图中以特定顺序描述了本公开中方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等。
在本公开的示例性实施例中,还提供了一种自动清洁设备清洁装置,设置于自动清洁设备中,用于包括第一表面介质区域和第二表面介质区域的双区域清洁模式的清洁中,如图22所示,所述自动清洁设备清洁装置2300可以包括:区域确定模块2301、第一清洁控制模块2302以及第二清洁控制模块2303,其中:
区域确定模块2301,用于在自动清洁设备进入双区域清洁模式后,根据自动清洁设备中的已存储地图,确定是否存在第二表面介质区域;
第一清洁控制模块2302,用于如果存在第二表面介质区域,则清洁第二表面介质区域;在第二表面介质区域清洁完成后,标记为已清洁区域,并判断是否存在下一个第二表面介质区域,如果存在则清洁下一个第二表面介质区域,直到所有的第二表面介质区域全部清洁完;
第二清洁控制模块2303,用于控制自动清洁设备清洁第一表面介质区域。
上述中各自动清洁设备清洁装置模块的具体细节已经在对应的自动清洁设备清洁方法中进行了详细的描述,因此此处不再赘述。
应当注意,尽管在上文详细描述中提及了用于执行的设备的若干模块或者单元,但是这种划分并非强制性的。实际上,根据本公开的实施方式,上文描述的两个或更多模块或者单元的特征和功能可以在一个模块或者单元中具体化。反之,上文描述的一个模块或者单元的特征和功能可以进一步划分为由多个模块或者单元来具体化。
在本公开的示例性实施例中,还提供了一种能够实现上述方法的电子设备。
所属技术领域的技术人员能够理解,本公开的各个方面可以实现为系统、方法或程序产品。因此,本公开的各个方面可以具体实现为以下形式,即:完全的硬件实施方式、完全的软件实施方式(包括固件、微代码等),或硬件和软件方面结合的实施方式,这里可以统称为“电路”、“模块”或“系统”。
下面参照图23来描述根据本公开的这种实施方式的电子设备2400。图23显示的电子设备2400仅仅是一个示例,不应对本公开实施例的功能和使用范围带来任何限制。
如图23所示,电子设备2400以通用计算设备的形式表现。电子设备2400的组件可以包括但不限于:上述至少一个处理单元2410、上述至少一个存储单元2420、连接不同系统组件(包括存储单元2420和处理单元2410)的总线2430、显示单元2440。
其中,所述存储单元2420存储有程序代码,所述程序代码可以被所述处理单元2410 执行,使得所述处理单元2410执行本说明书上述“示例性方法”部分中描述的根据本公开各种示例性实施方式的步骤。例如,所述处理单元2410可以执行如图19中所示的步骤S2010、在自动清洁设备进入双区域清洁模式后,根据自动清洁设备中的已存储地图,确定是否存在第二表面介质区域;步骤S2020、如果存在第二表面介质区域,则清洁第二表面介质区域;步骤S2030、在第二表面介质区域清洁完成后,标记为已清洁区域,并判断是否存在下一个第二表面介质区域,如果存在则清洁下一个第二表面介质区域,直到所有的第二表面介质区域全部清洁完;步骤S2040、控制自动清洁设备清洁第一表面介质区域。
存储单元2420可以包括易失性存储单元形式的可读介质,例如随机存取存储单元(RAM)24201和/或高速缓存存储单元24202,还可以进一步包括只读存储单元(ROM)24203。
存储单元2420还可以包括具有一组(至少一个)程序模块24205的程序/实用工具24204,这样的程序模块24205包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
总线2430可以为表示几类总线结构中的一种或多种,包括存储单元总线或者存储单元控制器、外围总线、图形加速端口、处理单元或者使用多种总线结构中的任意总线结构的局域总线。
电子设备2400也可以与一个或多个外部设备2470(例如键盘、指向设备、蓝牙设备等)通信,还可与一个或者多个使得用户能与该电子设备2400交互的设备通信,和/或与使得该电子设备2400能与一个或多个其它计算设备进行通信的任何设备(例如路由器、调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口2450进行。并且,电子设备2400还可以通过网络适配器2460与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器2460通过总线2430与电子设备2400的其它模块通信。应当明白,尽管图中未示出,可以结合电子设备2400使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。
通常,自动清洁设备在清洁光滑地面上时阻力一般较小,但在清洁地毯,特别是长绒毛地毯,或者垫子、衣物等时,自动清洁设备的底盘极易与地毯上的长毛接触,从而会增大自动清洁设备行进的阻力。另外,包括湿式清洁模组的自动清洁设备还带有水箱,水箱在加满水的情况下,无疑也会增大自动清洁设备行进的阻力。在这些阻力的作用下,自动清洁设备极易卡住而无法行动。
基于上述情况,参照图24,示出了本公开示例性实施方式提供的自动清洁设备控制方法的流程图,具体可以包括以下步骤:
步骤S2510、在自动清洁设备进行清洁时,根据自动清洁设备的当前行走轮状态数据获取第一数据,根据自动清洁设备的当前机身状态数据获取第二数据;
步骤S2520、根据第一数据和第二数据,确定自动清洁设备是否被困;
步骤S2530、如果自动清洁设备被困,则控制自动清洁设备进入加速脱困模式。
本公开示例性实施方式提供的自动清洁设备控制方法,在自动清洁设备在清洁过程中,如果根据当前行走轮状态数据获取的第一数据,与根据当前机身状态数据获取的第二数据不同,则可以判断该自动清洁设备被困;此时,可以通过加速脱困模式帮助自动清洁设备脱困,以减小自动清洁设备卡死的情况发生的概率。
该自动清洁设备控制方法不仅用于自动清洁设备清洁长绒毛地毯等表面介质区域的场景,还用于自动清洁设备越过门槛、小台阶,或者被障碍物所卡的场景下。凡是通过本公开示例性实施方式提供的自动清洁设备控制方法可以脱困的场景,均落入本公开示例性实施方式的保护范围内。
在本公开示例性实施方式中,当自动清洁设备在清洁过程中被困而出现打滑状态时,一般自动清洁设备的行走轮会出现空转的情况,此时,根据当前行走轮状态数据获取的第一数据,与根据当前机身状态数据获取的第二数据通常是不同的,因此,根据第一数据和第二数据的差值就可以判断自动清洁设备是否被困。
下面结合不同的状态来说明具体的判断自动清洁设备是否被困的过程:
第一种状态:在自动清洁设备处于旋转状态的情况下,根据自动清洁设备的当前行走轮状态数据获取行走轮的理论角速度作为第一数据;一般,自动清洁设备被困但没有停机的状态下,行走轮会处于空转状态,此时,根据行走轮状态数据,即行走轮传感器会获取行走轮的转速等行走轮传感器数据,并根据行走轮的转速可以确定出行走轮的角速度,例如,在转速为n转/分的情况下,角速度ω=n*2π/60弧度/秒。此处的角速度由于是在行走轮空转的状态下获得的,并非真实情况下的角速度,因此称之为理论角速度。
同时,也可以根据自动清洁设备的当前机身状态数据获取行走轮的实际角速度作为第二数据,机身状态数据一般是由机身上的状态传感器获得的,因此,可以根据自动清洁设备的状态传感器数据获取当前机身状态下的第二数据;例如,可以根据自动清洁设备上的陀螺仪测量的当前机身状态数据,计算得到行走轮实际上真实所产生的角速度。其中,状态传感器包括陀螺仪、电机功率传感器、悬崖传感器或触碰传感器等多种进行状态数据测量的传感器。
一般在硬质地面等非打滑情况下,上述获得的第一数据和第二数据是相同,但在长绒毛地毯等容易打滑的介质上,由于介质的阻力,导致第一数据通常会大于第二数据。
在本公开示例性实施方式中,若第一数据与第二数据的差值大于第一阈值,且持续第一预设时间,则确定该自动清洁设备被困。此时,需要控制自动清洁设备进入加速脱困模式。其中,加速脱困模式可以包括控制自动清洁设备减速后瞬间加速。在减速后瞬间加速的情况下,会使自动清洁设备在介质上的静摩擦力转化为滑动摩擦力,由于滑动摩擦力小于最大静摩擦力,在自动清洁设备处于滑动摩擦力的情况下,即使采用与静摩擦力的情况下同样的加速度,自动清洁设备也更容易脱困,即从当前空转的状态中出来,从而可以加大自动清洁设备脱困的概率,减少自动清洁设备被困的情况发生。
在本公开示例性实施方式中,上述检测、数据计算,以及减速后瞬间加速的过程均是自动清洁设备自动完成的,从而可以减小自动清洁设备发生故障的概率,提高自动清洁设备的自动化程度,进而可以提升用户体验。
在实际应用中,第一阈值和第一预设时间的大小可以根据实际情况设置,例如第一阈值可以在2-10弧度/秒,第一预设时间可以是3-6秒等,本公开示例性实施方式对此不作特殊限定。
另外,通过第一预设时间的设置,可以排除自动清洁设备越过一些较小的障碍物而发生误判等的情况。
第二种状态:在自动清洁设备处于直线前进状态时出现打滑而被困的情况下,根据自动清洁设备的当前行走轮状态数据获取电机的理论输出功率作为第一数据;通常,在长绒毛地毯等阻力较大的地毯上,自动清洁设备行走一定的距离,所需要的输出功率一般会小于自动清洁设备的电机实际所输出的功率。也就是说,根据行走轮传感器获取的行走轮的当前行走距离所计算而来的电机的输出功率属于电机理论输出功率,会小于根据自动清洁设备的当前机身状态数据获取的电机实际输出功率,即第一数据会小于第二数据。
在本公开示例性实施方式中,若第一数据与第二数据的差值小于第二阈值,且持续第二预设时间,则确定自动清洁设备被困。此时,需要控制自动清洁设备进入加速脱困模式以帮助自动清洁设备脱离当前被困状态。其中,加速脱困模式的具体情况已经在上述实施方式中进行了详细描述,此处不再赘述。
在实际应用中,第二阈值为功率值,且第二阈值和第二预设时间的大小则可以根据实际情况设置,例如第二阈值可以在5-10W,第一预设时间可以是3-6秒等,本公开示例性实施方式对此不作特殊限定。
第三种状态:在自动清洁设备遇到障碍物处于后退状态时,在自动清洁设备在后退被困的情况下,例如,被长绒毛地毯的长毛所困出现打滑的情况下;同样如第二种状态中前进时出现打滑的情况,可以根据自动清洁设备的当前行走轮状态数据获取电机的理论输出功率作为第一数据;根据自动清洁设备的当前机身状态数据获取电机的实际输出功率作为第二数据。并且第一数据会小于第二数据。
在自动清洁设备遇到障碍物后退的过程中,自动清洁设备通常需要连续做出加速后退动作才能避免被卡,也就是说单纯根据第一数据和第二数据的大小来确定自动清洁设备是否被困可能会存在误判的情况。
因此,在本公开示例性实施方式中,在判断第一数据和第二数据的大小的基础上,还包括了对自动清洁设备的主刷电流的判断,在长绒毛地毯等介质上,自动清洁设备的主刷转动也会受到很大阻力导致电流增加,因此,通过加入主刷电流的判断,可以增加自动清洁设备在后退状态过程中是否被困判断的准确率,减小误判的概率。
在本公开示例性实施方式中,若第一数据与第二数据的差值小于第三阈值并持续第三预设时间,且自动清洁设备的主刷电流超过第四阈值并持续第四预设时间时,则确定自动 清洁设备被困。
在实际应用中,第三阈值为功率值,且第三阈值和第三预设时间的大小则可以根据实际情况设置,例如第三阈值可以在7-15W,第一预设时间可以是3-6秒等。第四阈值为电流值,第四阈值和第四预设时间的大小可以根据实际情况设置,且第四预设时间可以与第三预设时间相等,也可以大于第三预设时间,本公开示例性实施方式对此不作特殊限定。
在实际应用中,在自动清洁设备的主刷卡入异物的情况下,也会导致主刷电流的增大,自动清洁设备在过坎或者其它场景下也会导致电机的输出功率增大,因此,为了减小本公开示例性实施方式提供的自动清洁设备控制方法对于自动清洁设备是否被介质所困的误判,减小自动清洁设备进入加速脱困模式的概率。本公开示例性实施方式还增加了对误判情况的排除步骤,以减小自动清洁设备只是被短绒毛地毯上的异物所卡,或者其他情况下,导致的在减速后瞬间加速时自动清洁设备冲出较长距离而带来的危险情况发生的概率。其中,被介质所困指的是自动清洁设备被长绒毛地毯等介质困住而出现打滑的情况。
在本公开示例性实施方式中,可以根据自动清洁设备上的加速度计计算减速后瞬间加速后的结果,例如,计算自动清洁设备上的加速度计的变化峰值,若自动清洁设备上的加速度计的变化峰值超过阀值,说明自动清洁设备的加速度较大,波动较大,侧面反映了自动清洁设备所在的介质阻力较小,并不一定是长绒毛地毯等介质,此时,可以确定自动清洁设备处于易产生误判的介质上;如果确定自动清洁设备处于易产生误判的介质上,则在自动清洁设备处于该易产生误判的介质上时,关闭加速脱困模式,避免加速脱困模式开启时产生误判而带来危险,也可以延长自动清洁设备的使用寿命。
在实际应用中,阀值的大小可以根据自动清洁设备的性能具体设定,本公开示例性实施方式对此不作特殊限定。
参照图25,示出了本公开示例性实施方式提供的自动清洁设备控制方法的操作步骤,具体可以包括以下步骤:步骤S2601,自动清洁设备进入清洁状态;进入步骤S2602,根据自动清洁设备的当前行走轮状态数据获取第一数据,同时,进入步骤S2603,根据自动清洁设备的当前机身状态数据获取第二数据;接着,进入步骤S2604,即判断条件1,根据第一数据和第二数据,确定自动清洁设备是否被困;如果是,即被困,则进入步骤S2605,控制自动清洁设备进入加速脱困模式以脱困。在步骤S2605之后,还可以进入步骤S2606,即判断条件2,判断是否是非介质所困而导致的误判,如果是,则进入步骤S2607,关闭加速脱困模式。
本公开示例性实施方式提供的自动清洁设备控制方法,在自动清洁设备在清洁过程中,不仅判断了自动清洁设备是否被其所在的介质困住的情况,还排除了非介质导致的误判的情况,从而提高了判断的准确率;并且通过在不同状态下设置不同的判断标准,可以进一步增加是否被困的准确率,提高自动清洁设备脱困的效率,也避免非介质导致的误判带来的危险,延长了自动清洁设备的使用寿命。
在实际应用中,自动清洁设备还包括帮助实现整体运行的其他功能,本示例性实施方 式对此不做赘述。
需要说明的是,尽管在附图中以特定顺序描述了本公开中方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等。
在本公开的示例性实施例中,还提供了一种自动清洁设备控制装置,如图26所示,所述自动清洁设备控制装置2700可以包括:数据获取模块2701、状态确定模块2702以及控制脱困模块2703,其中:
数据获取模块2701,用于在自动清洁设备进行清洁时,根据所述自动清洁设备的当前行走轮状态数据获取第一数据,根据所述自动清洁设备的当前机身状态数据获取第二数据;
状态确定模块2702,用于根据所述第一数据和所述第二数据,确定所述自动清洁设备是否被困;
控制脱困模块2703,用于如果所述自动清洁设备被困,则控制所述自动清洁设备进入加速脱困模式。
上述中各自动清洁设备控制装置模块的具体细节已经在对应的自动清洁设备控制方法中进行了详细的描述,因此此处不再赘述。
应当注意,尽管在上文详细描述中提及了用于执行的设备的若干模块或者单元,但是这种划分并非强制性的。实际上,根据本公开的实施方式,上文描述的两个或更多模块或者单元的特征和功能可以在一个模块或者单元中具体化。反之,上文描述的一个模块或者单元的特征和功能可以进一步划分为由多个模块或者单元来具体化。
在本公开的示例性实施例中,还提供了一种能够实现上述方法的电子设备。
所属技术领域的技术人员能够理解,本公开的各个方面可以实现为系统、方法或程序产品。因此,本公开的各个方面可以具体实现为以下形式,即:完全的硬件实施方式、完全的软件实施方式(包括固件、微代码等),或硬件和软件方面结合的实施方式,这里可以统称为“电路”、“模块”或“系统”。
下面参照图27来描述根据本公开的这种实施方式的电子设备2800。图27显示的电子设备2800仅仅是一个示例,不应对本公开实施例的功能和使用范围带来任何限制。
如图27所示,电子设备2800以通用计算设备的形式表现。电子设备2800的组件可以包括但不限于:上述至少一个处理单元2810、上述至少一个存储单元2820、连接不同系统组件(包括存储单元2820和处理单元2810)的总线2830、显示单元2840。
其中,所述存储单元2820存储有程序代码,所述程序代码可以被所述处理单元2810执行,使得所述处理单元2810执行本说明书上述“示例性方法”部分中描述的根据本公开各种示例性实施方式的步骤。例如,所述处理单元2810可以执行如图24中所示的步骤S2510、在自动清洁设备进行清洁时,根据自动清洁设备的当前行走轮状态数据获取第一 数据,根据自动清洁设备的当前机身状态数据获取第二数据;步骤S2520、根据第一数据和第二数据,确定自动清洁设备是否被困;步骤S2530、如果自动清洁设备被困,则控制自动清洁设备进入加速脱困模式。
存储单元2820可以包括易失性存储单元形式的可读介质,例如随机存取存储单元(RAM)28201和/或高速缓存存储单元28202,还可以进一步包括只读存储单元(ROM)28203。
存储单元2820还可以包括具有一组(至少一个)程序模块28205的程序/实用工具28204,这样的程序模块28205包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
总线2830可以为表示几类总线结构中的一种或多种,包括存储单元总线或者存储单元控制器、外围总线、图形加速端口、处理单元或者使用多种总线结构中的任意总线结构的局域总线。
电子设备2800也可以与一个或多个外部设备2870(例如键盘、指向设备、蓝牙设备等)通信,还可与一个或者多个使得用户能与该电子设备2800交互的设备通信,和/或与使得该电子设备2800能与一个或多个其它计算设备进行通信的任何设备(例如路由器、调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口2850进行。并且,电子设备2800还可以通过网络适配器2860与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器2860通过总线2830与电子设备2800的其它模块通信。应当明白,尽管图中未示出,可以结合电子设备2800使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。
通过以上的实施方式的描述,本领域的技术人员易于理解,这里描述的示例实施方式可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,根据本公开实施方式的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、终端装置、或者网络设备等)执行根据本公开实施方式的方法。
在本公开的示例性实施例中,还提供了一种计算机可读存储介质,其上存储有能够实现本说明书上述方法的程序产品。在一些可能的实施方式中,本公开的各个方面还可以实现为一种程序产品的形式,其包括程序代码,当所述程序产品在终端设备上运行时,所述程序代码用于使所述终端设备执行本说明书上述“示例性方法”部分中描述的根据本公开各种示例性实施方式的步骤。
根据本公开的实施方式的用于实现上述方法的程序产品,其可以采用便携式紧凑盘只读存储器(CD-ROM)并包括程序代码,并可以在终端设备,例如个人电脑上运行。然而,本公开的程序产品不限于此,在本文件中,可读存储介质可以是任何包含或存储程序的有 形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
所述程序产品可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以为但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。
计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了可读程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。可读信号介质还可以是可读存储介质以外的任何可读介质,该可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、有线、光缆、RF等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言的任意组合来编写用于执行本公开操作的程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、C++等,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN),连接到用户计算设备,或者,可以连接到外部计算设备(例如利用因特网服务提供商来通过因特网连接)。
此外,上述附图仅是根据本公开示例性实施例的方法所包括的处理的示意性说明,而不是限制目的。易于理解,上述附图所示的处理并不表明或限制这些处理的时间顺序。另外,也易于理解,这些处理可以是例如在多个模块中同步或异步执行的。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其他实施例。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限。

Claims (11)

  1. 一种自动清洁设备清洁方法,用于清洁包括第一表面介质区域和第二表面介质区域的双区域清洁模式,其特征在于,包括:
    在自动清洁设备进入所述双区域清洁模式后,根据所述自动清洁设备中的已存储地图,确定是否存在所述第二表面介质区域;
    如果存在所述第二表面介质区域,则清洁所述第二表面介质区域;
    在所述第二表面介质区域清洁完成后,标记为已清洁区域,并判断是否存在下一个所述第二表面介质区域,如果存在则清洁下一个所述第二表面介质区域,直到所有的所述第二表面介质区域全部清洁完;
    控制所述自动清洁设备清洁所述第一表面介质区域。
  2. 根据权利要求1所述的自动清洁设备清洁方法,其特征在于,根据所述自动清洁设备中的已存储地图,确定是否存在所述第二表面介质区域包括:
    确定所述已存储地图中是否具有所述第二表面介质区域;
    如果具有所述第二表面介质区域,则控制所述自动清洁设备进入所述已存储地图中记录的所述第二表面介质区域的位置,并检测所述第二表面介质区域是否存在。
  3. 根据权利要求2所述的自动清洁设备清洁方法,其特征在于,如果未检测到所述第二表面介质区域,则将所述第二表面介质区域从所述已存储地图中删除,以更新所述已存储地图。
  4. 根据权利要求1-3任一项所述的自动清洁设备清洁方法,其特征在于,在控制所述自动清洁设备清洁所述第一表面介质区域的过程中,所述方法还包括:
    检测是否还存在未清洁的第二表面介质区域;
    如果存在所述未清洁的第二表面介质区域,则控制所述自动清洁设备清洁所述未清洁的第二表面介质区域,并将所述未清洁的第二表面介质区域存储于所述已存储地图中;
    在所有的所述未清洁的第二表面介质区域清洁完后,控制所述自动清洁设备继续清洁所述第一表面介质区域,直到所述第一表面介质区域清洁完毕。
  5. 根据权利要求1所述的自动清洁设备清洁方法,其特征在于,所述方法还包括:
    在清洁所述第二表面介质区域的过程中,如果所述第二表面介质区域为跨区块区域,则忽略区块的限制,控制所述清洁机器人清洁整个所述第二表面介质区域。
  6. 根据权利要求1所述的自动清洁设备清洁方法,其特征在于,在自动清洁设备进入所述双区域清洁模式之前,所述方法还包括:
    控制所述自动清洁设备进入沿墙清洁模式;
    如果所述自动清洁设备在沿墙清洁过程中,检测到所述第二表面介质区域,则忽略所述第二表面介质区域,控制所述自动清洁设备继续沿墙清洁,直到所述沿墙清洁结束退出所述沿墙清洁模式;
    控制所述自动清洁设备进入所述双区域清洁模式。
  7. 根据权利要求6所述的自动清洁设备清洁方法,其特征在于,在所述沿墙清洁过程中,标记检测到的所述第二表面介质区域,并确定所述已存储地图中是否存在所述第二表面介质区域;
    如果不存在,则将所述第二表面介质区域存储于所述已存储地图中。
  8. 根据权利要求1所述的自动清洁设备清洁方法,其特征在于,清洁所述第二表面介质区域包括:
    在所述第二表面介质区域内,清洁所述第二表面介质区域的边界区域;
    在所述边界区域清洁完后,清洁所述第二表面介质区域的其余区域。
  9. 一种自动清洁设备清洁装置,用于清洁包括第一表面介质区域和第二表面介质区域的双区域清洁模式,其特征在于,包括:
    区域确定模块,用于在自动清洁设备进入所述双区域清洁模式后,根据所述自动清洁设备中的已存储地图,确定是否存在所述第二表面介质区域;
    第一清洁控制模块,用于如果存在所述第二表面介质区域,则清洁所述第二表面介质区域;在所述第二表面介质区域清洁完成后,标记为已清洁区域,并判断是否存在下一个所述第二表面介质区域,如果存在则清洁下一个所述第二表面介质区域,直到所有的所述第二表面介质区域全部清洁完;
    第二清洁控制模块,用于控制所述自动清洁设备清洁所述第一表面介质区域。
  10. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1-8任一项所述的自动清洁设备清洁方法。
  11. 一种电子设备,其特征在于,包括:
    处理器;以及
    存储器,用于存储所述处理器的可执行指令;
    其中,所述处理器配置为经由执行所述可执行指令来执行权利要求1-8任一项所述的自动清洁设备清洁方法。
PCT/CN2022/075772 2021-02-10 2022-02-10 自动清洁设备清洁方法及装置、介质及电子设备 WO2022171158A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22752318.0A EP4292499A1 (en) 2021-02-10 2022-02-10 Cleaning method and apparatus for automatic cleaning device, medium, and electronic device
US18/546,036 US20240122431A1 (en) 2021-02-10 2022-02-10 Cleaning method and apparatus for automatic cleaning device, medium, and electronic device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110184845.0 2021-02-10
CN202110184703.4 2021-02-10
CN202110184703.4A CN113679290B (zh) 2021-02-10 2021-02-10 自动清洁设备控制方法及装置、介质及电子设备
CN202110184845.0A CN113693495A (zh) 2021-02-10 2021-02-10 自动清洁设备清洁方法及装置、介质及电子设备

Publications (1)

Publication Number Publication Date
WO2022171158A1 true WO2022171158A1 (zh) 2022-08-18

Family

ID=82837469

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/075772 WO2022171158A1 (zh) 2021-02-10 2022-02-10 自动清洁设备清洁方法及装置、介质及电子设备
PCT/CN2022/075777 WO2022171159A1 (zh) 2021-02-10 2022-02-10 自动清洁设备控制方法及装置、介质及电子设备

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/075777 WO2022171159A1 (zh) 2021-02-10 2022-02-10 自动清洁设备控制方法及装置、介质及电子设备

Country Status (3)

Country Link
US (2) US20240122431A1 (zh)
EP (2) EP4292500A1 (zh)
WO (2) WO2022171158A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102551591A (zh) * 2010-11-24 2012-07-11 三星电子株式会社 保洁机器人及其控制方法
US20170215680A1 (en) * 2016-01-28 2017-08-03 Pixart Imaging Inc. Automatic clean machine control method and automatic clean machine
CN109984685A (zh) * 2019-04-11 2019-07-09 云鲸智能科技(东莞)有限公司 清洁控制方法、装置、清洁机器人和存储介质
CN110279347A (zh) * 2019-05-21 2019-09-27 深圳市银星智能科技股份有限公司 一种清扫方法、清洁机器人及计算机存储介质
CN110772178A (zh) * 2019-09-25 2020-02-11 深圳市无限动力发展有限公司 扫地机清扫的方法、装置、计算机设备和存储介质
CN111035327A (zh) * 2019-12-31 2020-04-21 深圳飞科机器人有限公司 清洁机器人、地毯检测方法及计算机可读存储介质
CN113693495A (zh) * 2021-02-10 2021-11-26 北京石头世纪科技股份有限公司 自动清洁设备清洁方法及装置、介质及电子设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9480380B2 (en) * 2013-12-04 2016-11-01 Samsung Electronics Co., Ltd. Cleaning robot and control method thereof
CN105982624B (zh) * 2015-12-30 2019-04-16 小米科技有限责任公司 自动清洁设备的防卡死处理方法及装置、自动清洁设备
CN107997691A (zh) * 2017-12-05 2018-05-08 北京奇虎科技有限公司 堵转处理方法、装置及清洁机器人
CN111427357A (zh) * 2020-04-14 2020-07-17 北京石头世纪科技股份有限公司 一种机器人避障方法、装置和存储介质
CN111487969B (zh) * 2020-04-22 2023-05-05 珠海一微半导体股份有限公司 机器人以非平行方式沿边行走的异常检测方法和处理方法
CN113679290B (zh) * 2021-02-10 2022-11-08 北京石头创新科技有限公司 自动清洁设备控制方法及装置、介质及电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102551591A (zh) * 2010-11-24 2012-07-11 三星电子株式会社 保洁机器人及其控制方法
US20170215680A1 (en) * 2016-01-28 2017-08-03 Pixart Imaging Inc. Automatic clean machine control method and automatic clean machine
CN109984685A (zh) * 2019-04-11 2019-07-09 云鲸智能科技(东莞)有限公司 清洁控制方法、装置、清洁机器人和存储介质
CN110279347A (zh) * 2019-05-21 2019-09-27 深圳市银星智能科技股份有限公司 一种清扫方法、清洁机器人及计算机存储介质
CN110772178A (zh) * 2019-09-25 2020-02-11 深圳市无限动力发展有限公司 扫地机清扫的方法、装置、计算机设备和存储介质
CN111035327A (zh) * 2019-12-31 2020-04-21 深圳飞科机器人有限公司 清洁机器人、地毯检测方法及计算机可读存储介质
CN113693495A (zh) * 2021-02-10 2021-11-26 北京石头世纪科技股份有限公司 自动清洁设备清洁方法及装置、介质及电子设备

Also Published As

Publication number Publication date
EP4292500A1 (en) 2023-12-20
WO2022171159A1 (zh) 2022-08-18
EP4292499A1 (en) 2023-12-20
US20240115100A1 (en) 2024-04-11
US20240122431A1 (en) 2024-04-18

Similar Documents

Publication Publication Date Title
US11612295B2 (en) Autonomous cleaning device
WO2022171157A1 (zh) 区域地图绘制方法及装置、介质及电子设备
WO2022171144A1 (zh) 自动清洁设备控制方法及装置、介质及电子设备
WO2022170713A1 (zh) 自动清洁设备控制方法及装置、介质及电子设备
CN113693495A (zh) 自动清洁设备清洁方法及装置、介质及电子设备
WO2022170722A1 (zh) 一种自动清洁设备
CN113679290B (zh) 自动清洁设备控制方法及装置、介质及电子设备
CN113693494B (zh) 地图绘制方法及装置、介质及电子设备
WO2022170712A1 (zh) 清洁机器人脱困方法及装置、介质及电子设备
WO2022170715A1 (zh) 清洁机器人脱困方法及装置、介质及电子设备
WO2022171158A1 (zh) 自动清洁设备清洁方法及装置、介质及电子设备
WO2022171145A1 (zh) 地图绘制方法及装置、介质及电子设备
WO2022170714A1 (zh) 清洁机器人脱困方法及装置、介质及电子设备
WO2022171146A1 (zh) 一种自动清洁设备
WO2022171105A1 (zh) 一种自动清洁设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752318

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18546036

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022752318

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022752318

Country of ref document: EP

Effective date: 20230911