[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022144950A1 - 車両制御装置、車両制御方法、およびプログラム - Google Patents

車両制御装置、車両制御方法、およびプログラム Download PDF

Info

Publication number
WO2022144950A1
WO2022144950A1 PCT/JP2020/049079 JP2020049079W WO2022144950A1 WO 2022144950 A1 WO2022144950 A1 WO 2022144950A1 JP 2020049079 W JP2020049079 W JP 2020049079W WO 2022144950 A1 WO2022144950 A1 WO 2022144950A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
mode
driving mode
driving
driver
Prior art date
Application number
PCT/JP2020/049079
Other languages
English (en)
French (fr)
Inventor
翔 比田勝
利和 諏訪
巨樹 中島
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to CN202080106054.XA priority Critical patent/CN116490415A/zh
Priority to US18/268,619 priority patent/US20240300524A1/en
Priority to PCT/JP2020/049079 priority patent/WO2022144950A1/ja
Priority to JP2022524108A priority patent/JPWO2022144950A1/ja
Publication of WO2022144950A1 publication Critical patent/WO2022144950A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • B60W30/12Lane keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/10Interpretation of driver requests or demands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/10Number of lanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration

Definitions

  • the present invention relates to a vehicle control device, a vehicle control method, and a program.
  • Patent Document 1 An in-vehicle system including an automatic driving possibility notification unit for notifying the information is disclosed (Patent Document 1).
  • the information stored in the map is used to mechanically notify the possibility of automatic driving, but the actual traffic situation is more complicated and it is not possible to perform appropriate control according to the road structure. There was a case.
  • the present invention has been made in consideration of such circumstances, and one of the objects of the present invention is to provide a vehicle control device, a vehicle control method, and a program capable of performing appropriate control according to a road structure. do.
  • the vehicle control device, the vehicle control method, and the program according to the present invention have adopted the following configurations.
  • the vehicle control device according to one aspect of the present invention has a recognition unit that recognizes a situation around the vehicle and an operation that controls steering and acceleration / deceleration of the vehicle without depending on the operation of the driver of the vehicle.
  • the control unit and the vehicle operation mode are determined to be one of a plurality of operation modes including a first operation mode and a second operation mode, and the second operation mode is imposed on the driver.
  • the task is a light operation mode as compared with the first operation mode, and at least a part of the plurality of operation modes including the second operation mode is controlled by the operation control unit.
  • the recognition unit includes a mode determining unit that changes the driving mode of the vehicle to a driving mode in which the task is more severe when the task related to the determined driving mode is not executed by the driver, and the recognition unit is within the reference range. Recognizing the lanes that can travel in the same direction as the existing vehicle, the mode determination unit determines the number of lanes recognized by the recognition unit when the operation mode of the vehicle is the second operation mode. Based on this, it is a vehicle control device that changes the driving mode of the vehicle from the second driving mode to the first driving mode.
  • the mode determination unit changes the operation mode in the operation control unit from the second operation mode to the second operation mode.
  • the operation mode is changed to 1.
  • the mode determination unit has the lane in which the number of lanes exceeds the second reference value and exists within the range around the vehicle recognized by the recognition unit.
  • the operation mode in the operation control unit is changed from the second operation mode to the first operation mode.
  • the reference range includes a range from the vehicle to the front reference distance and a range from the vehicle to the rear to the rear reference distance.
  • the vehicle control device has a recognition unit that recognizes a situation around the vehicle and an operation that controls steering and acceleration / deceleration of the vehicle without depending on the operation of the driver of the vehicle.
  • the control unit and the vehicle operation mode are determined to be one of a plurality of operation modes including a first operation mode and a second operation mode, and the second operation mode is imposed on the driver.
  • the task is a light operation mode as compared with the first operation mode, and at least a part of the plurality of operation modes including the second operation mode is controlled by the operation control unit.
  • the recognition unit includes a mode determining unit that changes the driving mode of the vehicle to a driving mode in which the task is more severe when the task related to the determined driving mode is not executed by the driver, and the recognition unit is within the reference range. Recognizing a branch point in a lane that can travel in the same direction as the existing vehicle, the mode determining unit recognizes the branch recognized by the recognition unit when the driving mode of the vehicle is the second driving mode. It is a vehicle control device that changes the operation mode of the vehicle from the second operation mode to the first operation mode when the number of locations exceeds the fourth reference value.
  • the second operation mode is at least an operation mode in which the operator that accepts the steering operation by the driver is not gripped, and the first operation mode is not imposed.
  • the operation mode is an operation mode in which at least one of steering and acceleration / deceleration of the vehicle is required by the driver, or an operation mode in which the driver is obliged to grip the operator. It is a thing.
  • the computer mounted on the vehicle recognizes the situation around the vehicle, and the vehicle is steered and applied without depending on the operation of the driver of the vehicle.
  • the deceleration is controlled, the driving mode of the vehicle is determined to be one of a plurality of driving modes including a first driving mode and a second driving mode, and the second driving mode is imposed on the driver.
  • the task to be performed is a light operation mode as compared with the first operation mode, and at least a part of the plurality of operation modes including the second operation mode does not depend on the operation of the driver of the vehicle.
  • the driving mode of the vehicle is changed to a driving mode in which the task is more severe. Then, at the time of the recognition, the lane that can travel in the same direction as the vehicle existing in the reference range is recognized, and when the driving mode of the vehicle is the second driving mode, the recognized lane is recognized. It is a vehicle control method that changes the driving mode of the vehicle from the second driving mode to the first driving mode based on the number of the above.
  • the computer mounted on the vehicle recognizes the situation around the vehicle, and the vehicle is steered and applied without depending on the operation of the driver of the vehicle.
  • the deceleration is controlled, the driving mode of the vehicle is determined to be one of a plurality of driving modes including a first driving mode and a second driving mode, and the second driving mode is imposed on the driver.
  • the task to be performed is a light operation mode as compared with the first operation mode, and at least a part of the plurality of operation modes including the second operation mode does not depend on the operation of the driver of the vehicle.
  • the driving mode of the vehicle is changed to a driving mode in which the task is more severe.
  • the recognition is recognized. This is a vehicle control method for changing the operation mode of the vehicle from the second operation mode to the first operation mode when the number of the branch points exceeds the fourth reference value.
  • the program according to one aspect of the present invention causes a computer mounted on the vehicle to recognize the situation around the vehicle, and steers and accelerates / decelerates the vehicle without depending on the operation of the driver of the vehicle.
  • Controlled to determine the driving mode of the vehicle to be one of a plurality of driving modes including a first driving mode and a second driving mode the second driving mode is imposed on the driver.
  • the task is a light driving mode as compared with the first driving mode, and at least a part of the plurality of driving modes including the second driving mode does not depend on the operation of the driver of the vehicle.
  • the driving mode of the vehicle is changed to a driving mode in which the task is more severe.
  • the lanes existing in the reference range and capable of traveling in the same direction as the vehicle are recognized, and when the driving mode of the vehicle is the second driving mode, the number of the recognized lanes is recognized. Is a program for changing the driving mode of the vehicle from the second driving mode to the first driving mode based on the above.
  • the program according to one aspect of the present invention causes a computer mounted on the vehicle to recognize the situation around the vehicle, and steers and accelerates / decelerates the vehicle without depending on the operation of the driver of the vehicle.
  • Controlled to determine the driving mode of the vehicle to be one of a plurality of driving modes including a first driving mode and a second driving mode the second driving mode is imposed on the driver.
  • the task is a light driving mode as compared with the first driving mode, and at least a part of the plurality of driving modes including the second driving mode does not depend on the operation of the driver of the vehicle.
  • the driving mode of the vehicle is changed to a driving mode in which the task is more severe.
  • the branch point in the lane that exists in the reference range and can travel in the same direction as the vehicle is recognized, and when the operation mode of the vehicle is the second operation mode, the recognition is performed.
  • This is a program for changing the operation mode of the vehicle from the second operation mode to the first operation mode when the number of branch points exceeds the fourth reference value.
  • FIG. 1 is a configuration diagram of a vehicle system 1 using the vehicle control device according to the embodiment.
  • the vehicle on which the vehicle system 1 is mounted is, for example, a vehicle such as a two-wheeled vehicle, a three-wheeled vehicle, or a four-wheeled vehicle, and the drive source thereof is an internal combustion engine such as a diesel engine or a gasoline engine, an electric motor, or a combination thereof.
  • the electric motor operates by using the electric power generated by the generator connected to the internal combustion engine or the electric power generated by the secondary battery or the fuel cell.
  • the vehicle system 1 includes, for example, a camera 10, a radar device 12, a LIDAR (Light Detection and Ringing) 14, an object recognition device 16, a communication device 20, an HMI (Human Machine Interface) 30, and a vehicle sensor 40. , Navigation device 50, MPU (Map Positioning Unit) 60, driver monitor camera 70, driving controller 80, automatic driving control device 100, traveling driving force output device 200, braking device 210, steering device 220. And prepare. These devices and devices are connected to each other by multiple communication lines such as CAN (Controller Area Network) communication lines, serial communication lines, wireless communication networks, and the like.
  • CAN Controller Area Network
  • the camera 10 is a digital camera that uses a solid-state image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • the camera 10 is attached to an arbitrary position of the vehicle on which the vehicle system 1 is mounted (hereinafter referred to as the own vehicle M).
  • the own vehicle M When photographing the front, the camera 10 is attached to the upper part of the front windshield, the back surface of the rear-view mirror, and the like.
  • the camera 10 periodically and repeatedly images the periphery of the own vehicle M, for example.
  • the camera 10 may be a stereo camera.
  • the radar device 12 radiates radio waves such as millimeter waves around the own vehicle M, and also detects radio waves (reflected waves) reflected by the object to detect at least the position (distance and direction) of the object.
  • the radar device 12 is attached to an arbitrary position on the own vehicle M.
  • the radar device 12 may detect the position and velocity of the object by the FM-CW (Frequency Modified Continuous Wave) method.
  • FM-CW Frequency Modified Continuous Wave
  • the LIDAR14 irradiates the periphery of the own vehicle M with light (or an electromagnetic wave having a wavelength close to that of light) and measures scattered light.
  • the LIDAR 14 detects the distance to the object based on the time from light emission to light reception.
  • the emitted light is, for example, a pulsed laser beam.
  • the LIDAR 14 is attached to any position on the own vehicle M.
  • the object recognition device 16 performs sensor fusion processing on the detection results of a part or all of the camera 10, the radar device 12, and the LIDAR 14, and recognizes the position, type, speed, and the like of the object.
  • the object recognition device 16 outputs the recognition result to the automatic operation control device 100.
  • the object recognition device 16 may output the detection results of the camera 10, the radar device 12, and the LIDAR 14 to the automatic operation control device 100 as they are.
  • the object recognition device 16 may be omitted from the vehicle system 1.
  • the communication device 20 communicates with another vehicle existing in the vicinity of the own vehicle M by using, for example, a cellular network, a Wi-Fi network, Bluetooth (registered trademark), DSRC (Dedicated Short Range Communication), or wirelessly. Communicates with various server devices via the base station.
  • a cellular network for example, a Wi-Fi network, Bluetooth (registered trademark), DSRC (Dedicated Short Range Communication), or wirelessly.
  • the HMI 30 presents various information to the occupants of the own vehicle M and accepts input operations by the occupants.
  • the HMI 30 includes various display devices, speakers, buzzers, touch panels, switches, keys and the like.
  • the vehicle sensor 40 includes a vehicle speed sensor that detects the speed of the own vehicle M, an acceleration sensor that detects the acceleration, a yaw rate sensor that detects the angular velocity around the vertical axis, an orientation sensor that detects the direction of the own vehicle M, and the like.
  • the navigation device 50 includes, for example, a GNSS (Global Navigation Satellite System) receiver 51, a navigation HMI 52, and a route determination unit 53.
  • the navigation device 50 holds the first map information 54 in a storage device such as an HDD (Hard Disk Drive) or a flash memory.
  • the GNSS receiver 51 identifies the position of the own vehicle M based on the signal received from the GNSS satellite.
  • the position of the own vehicle M may be specified or complemented by an INS (Inertial Navigation System) using the output of the vehicle sensor 40.
  • the navigation HMI 52 includes a display device, a speaker, a touch panel, keys, and the like.
  • the navigation HMI 52 may be partially or wholly shared with the above-mentioned HMI 30.
  • the route determination unit 53 has a route from the position of the own vehicle M (or an arbitrary position input) specified by the GNSS receiver 51 to the destination input by the occupant using the navigation HMI 52 (hereinafter,).
  • the route on the map) is determined with reference to the first map information 54.
  • the first map information 54 is, for example, information in which a road shape is expressed by a link indicating a road and a node connected by the link.
  • the first map information 54 may include road curvature, POI (Point Of Interest) information, and the like.
  • the route on the map is output to MPU60.
  • the navigation device 50 may provide route guidance using the navigation HMI 52 based on the route on the map.
  • the navigation device 50 may be realized by, for example, the function of a terminal device such as a smartphone or a tablet terminal owned by an occupant.
  • the navigation device 50 may transmit the current position and the destination to the navigation server via the communication device 20 and acquire a route equivalent to the route on the map from the navigation server.
  • the MPU 60 includes, for example, a recommended lane determination unit 61, and holds the second map information 62 in a storage device such as an HDD or a flash memory.
  • the recommended lane determination unit 61 divides the route on the map provided by the navigation device 50 into a plurality of blocks (for example, divides the route into 100 [m] units with respect to the vehicle traveling direction), and refers to the second map information 62. Determine the recommended lane for each block.
  • the recommended lane determination unit 61 determines which lane to drive from the left. When a branch point exists on the route on the map, the recommended lane determination unit 61 determines the recommended lane so that the own vehicle M can travel on a reasonable route to proceed to the branch destination.
  • the second map information 62 is map information with higher accuracy than the first map information 54.
  • the second map information 62 includes, for example, information on the center of the lane, information on the boundary of the lane, and the like.
  • the second map information 62 includes road information, traffic regulation information, address information (address / zip code), facility information, telephone number information, information on prohibited sections in which mode A or mode B, which will be described later, is prohibited. You can do it.
  • the second map information 62 may be updated at any time by the communication device 20 communicating with another device.
  • the driver monitor camera 70 is, for example, a digital camera that uses a solid-state image sensor such as a CCD or CMOS.
  • the driver monitor camera 70 is a position and orientation in which the head of an occupant (hereinafter referred to as a driver) seated in the driver's seat of the own vehicle M can be imaged from the front (in the direction in which the face is imaged), and is arbitrary in the own vehicle M. It can be attached to a place.
  • the driver monitor camera 70 is attached to the upper part of the display device provided in the central portion of the instrument panel of the own vehicle M.
  • the driving controller 80 includes, for example, an accelerator pedal, a brake pedal, a shift lever, and other controls in addition to the steering wheel 82.
  • a sensor for detecting the amount of operation or the presence or absence of operation is attached to the operation controller 80, and the detection result is the automatic operation control device 100, or the traveling driving force output device 200, the brake device 210, and the steering device. It is output to a part or all of 220.
  • the steering wheel 82 is an example of an “operator that accepts a steering operation by the driver”. The operator does not necessarily have to be annular, and may be in the form of a deformed steering wheel, a joystick, a button, or the like.
  • a steering grip sensor 84 is attached to the steering wheel 82.
  • the steering grip sensor 84 is realized by a capacitance sensor or the like, and automatically outputs a signal capable of detecting whether or not the driver is gripping the steering wheel 82 (meaning that the steering wheel 82 is in contact with the steering wheel 82). It is output to the operation control device 100.
  • the automatic operation control device 100 includes, for example, a first control unit 120 and a second control unit 160.
  • the first control unit 120 and the second control unit 160 are realized by, for example, a hardware processor such as a CPU (Central Processing Unit) executing a program (software), respectively.
  • a hardware processor such as a CPU (Central Processing Unit) executing a program (software), respectively.
  • Some or all of these components are hardware (circuit parts) such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), and GPU (Graphics Processing Unit). It may be realized by (including circuits), or it may be realized by the cooperation of software and hardware.
  • the program may be stored in advance in a storage device (a storage device including a non-transient storage medium) such as an HDD or a flash memory of the automatic operation control device 100, or may be detachable such as a DVD or a CD-ROM. It is stored in a storage medium, and may be installed in the HDD or flash memory of the automatic operation control device 100 by mounting the storage medium (non-transient storage medium) in the drive device.
  • a storage device a storage device including a non-transient storage medium
  • a storage device such as an HDD or a flash memory of the automatic operation control device 100
  • It is stored in a storage medium, and may be installed in the HDD or flash memory of the automatic operation control device 100 by mounting the storage medium (non-transient storage medium) in the drive device.
  • the automatic driving control device 100 is an example of a "vehicle control device"
  • a combination of an action plan generation unit 140 and a second control unit 160 is an example of a "driving control unit”.
  • FIG. 2 is a functional configuration diagram of the first control unit 120 and the second control unit 160.
  • the first control unit 120 includes, for example, a recognition unit 130, an action plan generation unit 140, and a mode determination unit 150.
  • the first control unit 120 realizes a function by AI (Artificial Intelligence) and a function by a model given in advance in parallel. For example, the function of "recognizing an intersection” is executed in parallel with the recognition of an intersection by deep learning or the like and the recognition based on predetermined conditions (there are signals that can be matched with patterns, road markings, etc.). It may be realized by scoring and comprehensively evaluating. This ensures the reliability of automated driving.
  • AI Artificial Intelligence
  • the recognition unit 130 recognizes the position, speed, acceleration, and other states of objects around the own vehicle M based on the information input from the camera 10, the radar device 12, and the LIDAR 14 via the object recognition device 16. do.
  • the position of the object is recognized as, for example, a position on absolute coordinates with the representative point (center of gravity, center of drive axis, etc.) of the own vehicle M as the origin, and is used for control.
  • the position of the object may be represented by a representative point such as the center of gravity or a corner of the object, or may be represented by a region.
  • the "state" of an object may include the object's acceleration, jerk, or "behavioral state” (eg, whether it is changing lanes or is about to change lanes).
  • the recognition unit 130 recognizes, for example, the lane (traveling lane) in which the own vehicle M is traveling.
  • the recognition unit 130 has a road lane marking pattern (for example, an arrangement of a solid line and a broken line) obtained from the second map information 62 and a road lane marking around the own vehicle M recognized from the image captured by the camera 10. By comparing with the pattern of, the driving lane is recognized.
  • the recognition unit 130 may recognize the traveling lane by recognizing not only the road marking line but also the running road boundary (road boundary) including the road marking line, the shoulder, the median strip, the guardrail, and the like. In this recognition, the position of the own vehicle M acquired from the navigation device 50 and the processing result by the INS may be added.
  • the recognition unit 130 recognizes stop lines, obstacles, red lights, tollhouses, and other road events.
  • the recognition unit 130 When recognizing the traveling lane, the recognition unit 130 recognizes the position and posture of the own vehicle M with respect to the traveling lane.
  • the recognition unit 130 determines, for example, the deviation of the reference point of the own vehicle M from the center of the lane and the angle formed with respect to the line connecting the center of the lane in the traveling direction of the own vehicle M with respect to the relative position of the own vehicle M with respect to the traveling lane. And may be recognized as a posture. Instead of this, the recognition unit 130 recognizes the position of the reference point of the own vehicle M with respect to any side end portion (road division line or road boundary) of the traveling lane as the relative position of the own vehicle M with respect to the traveling lane. You may.
  • the recognition unit 130 includes, for example, a lane capable of traveling in the same direction as the traveling lane (hereinafter referred to as the main lane), a traveling lane or a lane branching from the main lane (hereinafter referred to as a branch lane), and traveling. Recognize the lane that merges into the lane or main lane (hereinafter referred to as the merging lane).
  • the recognition unit 130 recognizes the same direction as the traveling direction of the own vehicle M, that is, the branch lane or the merging lane in front of the own vehicle M and the rear branch lane or the merging lane in which the own vehicle M has traveled. ..
  • the action plan generation unit 140 travels in the recommended lane determined by the recommended lane determination unit 61, and the own vehicle M automatically (driver) so as to be able to respond to the surrounding conditions of the own vehicle M.
  • the target trajectory contains, for example, a speed element.
  • the target track is expressed as an arrangement of points (track points) to be reached by the own vehicle M in order.
  • the track point is a point to be reached by the own vehicle M for each predetermined mileage (for example, about several [m]) along the road, and separately, for a predetermined sampling time (for example, about 0 comma number [sec]).
  • Target velocity and target acceleration are generated as part of the target trajectory.
  • the track point may be a position to be reached by the own vehicle M at the sampling time at a predetermined sampling time. In this case, the information of the target velocity and the target acceleration is expressed by the interval of the orbital points.
  • the action plan generation unit 140 may set an event for automatic driving when generating a target trajectory.
  • Autonomous driving events include constant speed driving events, low speed following driving events, lane change events, branching events, merging events, takeover events, and the like.
  • the action plan generation unit 140 generates a target trajectory according to the activated event.
  • the mode determination unit 150 determines the operation mode of the own vehicle M to be one of a plurality of operation modes in which the task imposed on the driver is different.
  • the mode determination unit 150 includes, for example, a driver state determination unit 152 and a mode change processing unit 154. These individual functions will be described later.
  • FIG. 3 is a diagram showing an example of the correspondence relationship between the driving mode, the control state of the own vehicle M, and the task.
  • the operation mode of the own vehicle M includes, for example, five modes from mode A to mode E.
  • the degree of automation of the control state that is, the operation control of the own vehicle M, is highest in mode A, then in the order of mode B, mode C, and mode D, and is lowest in mode E.
  • the task imposed on the driver is the mildest in mode A, followed by mode B, mode C, and mode D in that order, and mode E is the most severe.
  • the control state is not automatic operation, so the automatic operation control device 100 is responsible for ending the control related to automatic operation and shifting to operation support or manual operation.
  • the contents of each operation mode will be illustrated.
  • mode A the vehicle is in an automatic driving state, and neither forward monitoring nor gripping of the steering wheel 82 (steering gripping in the figure) is imposed on the driver.
  • the driver is required to be in a position to quickly shift to manual operation in response to a request from the system centered on the automatic operation control device 100.
  • automated driving as used herein means that both steering and acceleration / deceleration are controlled without depending on the driver's operation.
  • the front means the space in the traveling direction of the own vehicle M that is visually recognized through the front windshield.
  • Mode A is a condition that the own vehicle M is traveling at a predetermined speed (for example, about 50 [km / h]) or less on a motorway such as an expressway, and there is a vehicle in front to be followed. It is an operation mode that can be executed when is satisfied, and may be referred to as TJP (Traffic Jam Pilot). When this condition is no longer satisfied, the mode determination unit 150 changes the operation mode of the own vehicle M to the mode B.
  • TJP Traffic Jam Pilot
  • Mode B the driver is in a driving support state, and the driver is tasked with monitoring the front of the own vehicle M (hereinafter referred to as forward monitoring), but is not tasked with gripping the steering wheel 82.
  • mode C the driving support state is set, and the driver is tasked with the task of forward monitoring and the task of gripping the steering wheel 82.
  • Mode D is a driving mode that requires a certain degree of driving operation by the driver with respect to at least one of steering and acceleration / deceleration of the own vehicle M.
  • driving support such as ACC (Adaptive Cruise Control) or LKAS (Lane Keeping Assist System) is provided.
  • mode E both steering and acceleration / deceleration are in a state of manual operation that requires a driving operation by the driver.
  • mode D and mode E the driver is naturally tasked with monitoring the front of the vehicle M.
  • the automatic driving control device 100 executes the lane change according to the driving mode.
  • the lane change includes a lane change (1) according to a system request and a lane change (2) according to a driver request.
  • the lane change (1) is to change the lane for overtaking and to proceed toward the destination, which is performed when the speed of the vehicle in front is smaller than the standard with respect to the speed of the own vehicle.
  • There is a lane change (a lane change due to a change in the recommended lane).
  • the lane change (2) changes the lane of the own vehicle M toward the operation direction when the direction indicator is operated by the driver when the conditions related to the speed and the positional relationship with the surrounding vehicles are satisfied. It is something that makes you.
  • the automatic driving control device 100 does not execute either the lane change (1) or (2) in the mode A.
  • the automatic driving control device 100 executes both the lane change (1) and (2) in modes B and C.
  • the driving support device (not shown) does not execute the lane change (1) but executes the lane change (2) in the mode D. In mode E, neither lane change (1) nor (2) is executed.
  • the mode determination unit 150 changes the operation mode of the own vehicle M to an operation mode in which the task is more severe when the task related to the determined operation mode (hereinafter referred to as the current operation mode) is not executed by the driver.
  • mode A when the driver is in a position where he / she cannot shift to manual driving in response to a request from the system (for example, when he / she continues to look outside the permissible area, or when a sign that driving becomes difficult is detected.
  • the mode determination unit 150 uses the HMI 30 to urge the driver to shift to manual driving, and if the driver does not respond, the own vehicle M is brought to the shoulder of the road and gradually stopped, and automatic driving is stopped. Take control. After the automatic driving is stopped, the own vehicle is in the mode D or E, and the own vehicle M can be started by the manual operation of the driver.
  • stop automatic operation the same applies to "stop automatic operation”.
  • the mode determination unit 150 urges the driver to monitor the front using the HMI 30, and if the driver does not respond, the vehicle M is brought to the shoulder and gradually stopped. , Stop automatic operation, and so on. If the driver is not monitoring the front in mode C, or is not gripping the steering wheel 82, the mode determination unit 150 uses the HMI 30 to give the driver forward monitoring and / or grip the steering wheel 82. If the driver does not respond, the vehicle M is brought closer to the road shoulder and gradually stopped, and automatic driving is stopped.
  • the driver state determination unit 152 monitors the driver's state for the above mode change, and determines whether or not the driver's state is in a state corresponding to the task. For example, the driver state determination unit 152 analyzes the image captured by the driver monitor camera 70 and performs posture estimation processing, and whether or not the driver is in a position where he / she cannot shift to manual driving in response to a request from the system. To judge. The driver state determination unit 152 analyzes the image captured by the driver monitor camera 70, performs line-of-sight estimation processing, and determines whether or not the driver is monitoring the front.
  • the mode change processing unit 154 performs various processes for changing the mode. For example, the mode change processing unit 154 instructs the action plan generation unit 140 to generate a target trajectory for shoulder stop, gives an operation instruction to a driving support device (not shown), and gives an action to the driver. HMI30 is controlled to encourage.
  • the second control unit 160 sets the traveling driving force output device 200, the brake device 210, and the steering device 220 so that the own vehicle M passes the target trajectory generated by the action plan generation unit 140 at the scheduled time. Control.
  • the second control unit 160 includes, for example, an acquisition unit 162, a speed control unit 164, and a steering control unit 166.
  • the acquisition unit 162 acquires the information of the target trajectory (orbit point) generated by the action plan generation unit 140 and stores it in a memory (not shown).
  • the speed control unit 164 controls the traveling driving force output device 200 or the brake device 210 based on the speed element associated with the target trajectory stored in the memory.
  • the steering control unit 166 controls the steering device 220 according to the degree of bending of the target trajectory stored in the memory.
  • the processing of the speed control unit 164 and the steering control unit 166 is realized by, for example, a combination of feedforward control and feedback control.
  • the steering control unit 166 executes a combination of feedforward control according to the curvature of the road in front of the own vehicle M and feedback control based on the deviation from the target track.
  • the traveling driving force output device 200 outputs the traveling driving force (torque) for the vehicle to travel to the drive wheels.
  • the traveling driving force output device 200 includes, for example, a combination of an internal combustion engine, an electric motor, a transmission, and the like, and an ECU (Electronic Control Unit) that controls them.
  • the ECU controls the above configuration according to the information input from the second control unit 160 or the information input from the operation controller 80.
  • the brake device 210 includes, for example, a brake caliper, a cylinder that transmits hydraulic pressure to the brake caliper, an electric motor that generates hydraulic pressure in the cylinder, and a brake ECU.
  • the brake ECU controls the electric motor according to the information input from the second control unit 160 or the information input from the operation controller 80 so that the brake torque corresponding to the braking operation is output to each wheel.
  • the brake device 210 may include a mechanism for transmitting the hydraulic pressure generated by the operation of the brake pedal included in the operation operator 80 to the cylinder via the master cylinder as a backup.
  • the brake device 210 is not limited to the configuration described above, and may be an electronically controlled hydraulic brake device that controls the actuator according to the information input from the second control unit 160 to transmit the hydraulic pressure of the master cylinder to the cylinder. ..
  • the steering device 220 includes, for example, a steering ECU and an electric motor.
  • the electric motor for example, exerts a force on the rack and pinion mechanism to change the direction of the steering wheel.
  • the steering ECU drives the electric motor according to the information input from the second control unit 160 or the information input from the operation controller 80, and changes the direction of the steering wheel.
  • modes A to C is an example of a "second operation mode” in the claims, and any or more of modes C to E is a "first operation mode” in the claims.
  • mode C is the “second operation mode” in the claims
  • first operation mode in the claims is either mode D or E.
  • the recognition unit 130 recognizes the lane in which another vehicle that may be involved in the traveling of the own vehicle M is traveling.
  • the recognition unit 130 recognizes a lane that is a lane that can travel in the same direction as the traveling direction of the own vehicle M and that exists within a range (reference range) of a reference distance with respect to the own vehicle M.
  • FIG. 4 is a diagram for explaining the lane recognized by the recognition unit 130 according to the first embodiment.
  • a series of continuous arrows indicate a lane.
  • the own vehicle M is traveling in a plurality of main lanes in the direction of travel TD.
  • the recognition unit 130 recognizes each of the lane L existing within the range of the front reference distance DF in front of the own vehicle M and the lane L existing within the range of the rear reference distance DR behind the own vehicle M.
  • the front reference distance DF is a longer distance than the rear reference distance DR.
  • the front reference distance DF and the rear reference distance DR are both distances of about several hundred [m].
  • the recognition unit 130 recognizes the lanes L-1 to L-12 within the range of the front reference distance DF.
  • the lanes L-1 to L-5 are the main lanes.
  • the lane L-1 is the traveling lane of the own vehicle M
  • the lanes L-2 to L-5 are the main lanes capable of traveling in the same direction as the traveling lane of the own vehicle M.
  • Lanes L-6 to L-10 are branch lanes that branch off from the main lane.
  • Lanes L-11 and L-12 are merging lanes that join the main lane.
  • the recognition unit 130 recognizes lanes L-13 to L-16 within the range of the rear reference distance DR. At this time, the recognition unit 130 does not recognize the lanes L-1 to L-5 already recognized in the front reference distance DF in the rear reference distance DR.
  • the lanes L-13 and L-14 are merging lanes that join the main lane.
  • Lanes L-15 and L-16 are branch lanes that branch off from the main lane.
  • the recognition unit 130 outputs information about the recognized lane (hereinafter referred to as lane information) to the mode determination unit 150.
  • the lane information includes at least information on the number of recognized lanes L (hereinafter, the number of lanes).
  • the lane information includes, for example, lane classification information indicating whether each recognized lane L is a main lane, a branch lane, or a merging lane, or a range in which the lane L is a front reference distance DF or a rear reference distance DR. Even if it includes lane position information indicating the positional relationship with the own vehicle M such as the distance from the position of the own vehicle M in each lane L (may include information on the front or the rear). good.
  • the mode determination unit 150 changes the driving mode of the own vehicle M based on the lane information output by the recognition unit 130. More specifically, the mode determination unit 150 determines whether or not the current driving mode of the own vehicle M is mode A or B, and the number of lanes included in the lane information exceeds the first reference value.
  • the first reference value is, for example, a value of several [lanes] to several tens [lanes].
  • the first reference value may be a fixed value, such as the speed at which the own vehicle M is traveling, the presence or absence of other vehicles traveling in the same driving lane or the main lane, the number of main lanes, and the like. It may be determined according to the situation in which the vehicle M is currently traveling.
  • the mode determination unit 150 changes the current driving mode of the own vehicle M from mode A or B to mode C. Change to.
  • the driver monitors the front and grips the steering wheel 82. As a result, the driver can operate the steering wheel 82 by himself / herself even if there is a change in the surrounding environment.
  • the mode determination unit 150 may change the operation mode from mode A or B to mode D or E instead of changing the operation mode from mode A or B to mode C. In this case, the mode determination unit 150 may change to mode C and then to mode D or E before changing the operation mode from mode A or B to mode D or E.
  • the mode determination unit 150 changes the operation mode changed to mode C to mode A or B again on condition that the number of lanes included in the lane information output by the recognition unit 130 is equal to or less than the first reference value. You may. As a result, the convenience of the own vehicle M can be improved.
  • the mode determination unit 150 may prompt the driver to operate the HMI 30 as a condition for changing the operation mode from the mode C to the mode A or B. As a result, it is possible to suppress the disturbance of control due to the switching of the operation mode.
  • FIG. 5 is a flowchart showing an example of the flow of processing executed by the mode determination unit 150 according to the first embodiment.
  • the change process of this flowchart is repeatedly executed, for example, while the automatic operation control device 100 is operating.
  • the mode determination unit 150 determines whether or not the current driving mode of the own vehicle M is mode A or B (step S100). In step S100, if the current driving mode of the own vehicle M is not mode A or B, the mode determination unit 150 repeats the determination in step S100.
  • step S100 when it is determined in step S100 that the current driving mode of the own vehicle M is mode A or B, the mode determination unit 150 acquires the lane information output by the recognition unit 130 (step S102). Then, the mode determination unit 150 determines whether or not the number of lanes included in the acquired lane information exceeds the first reference value (step S104). If it is determined in step S104 that the number of lanes does not exceed the first reference value, the mode determination unit 150 returns the process to step S100.
  • step S104 determines whether the number of lanes exceeds the first reference value. If it is determined in step S104 that the number of lanes exceeds the first reference value, the mode determination unit 150 changes the driving mode of the own vehicle M to mode C (step S106).
  • the mode determination unit 150 acquires the lane information output by the recognition unit 130 again (step S108).
  • the process of step S108 may be performed after a predetermined time has elapsed after changing the operation mode of the own vehicle M to mode C in the process of step S106.
  • the predetermined time is, for example, a time of about several [sec] to a dozen [sec].
  • the predetermined time may be, for example, the time until the number of lanes recognized by the recognition unit 130 becomes a different value.
  • the mode determination unit 150 determines whether or not the number of lanes included in the lane information acquired again is equal to or less than the first reference value (step S110). If it is determined in step S110 that the number of lanes is not equal to or less than the first reference value, the mode determination unit 150 returns the process to step S100. That is, the mode determination unit 150 maintains the changed current travel mode (mode C).
  • step S110 when it is determined in step S110 that the number of lanes is equal to or less than the first reference value, the mode determination unit 150 changes the driving mode of the own vehicle M to mode A or B (step S112), and steps the process. Return to S100.
  • the mode determination unit 150 has the first number of lanes in the same direction as the traveling direction of the own vehicle M currently traveling when the current operation mode of the own vehicle M is mode A or B. If it exceeds the reference value, the operation mode of the own vehicle M is changed to mode C. As a result, the driver is in a state of monitoring the front and gripping the steering wheel 82, and can respond to changes in the surrounding environment. As a result, the automatic driving control device 100 can perform appropriate control according to the road structure.
  • the mode determination unit 150 in the first embodiment changes the operation mode of the own vehicle M to the mode C based on the number of lanes recognized by the recognition unit 130 when the own vehicle M is traveling in the mode A or B. do.
  • the mode determination unit 150 according to the second embodiment may further narrow down the number of lanes recognized by the recognition unit 130 to the periphery of the own vehicle M, determine the mode, and change the driving mode to the mode C.
  • the mode determination unit 150 sets the range around the own vehicle M (hereinafter referred to as the peripheral range) to the range of the main lane including the traveling lane in which the own vehicle M is traveling, and the front and rear of the own vehicle M.
  • the range should be the sum of the range of each peripheral distance.
  • the mode determination unit 150 determines whether or not the current driving mode of the own vehicle M is mode A or B, and the number of lanes included in the lane information exceeds the second reference value. Then, when the number of lanes exceeds the second reference value, the mode determination unit 150 is a lane that combines the main lane and the lane in which a branch point from the main lane lane or a merging point with the main lane lane exists in the peripheral range. The operation mode is changed depending on whether or not the number exceeds the third reference value.
  • the second reference value is, for example, a value of about several tens [lanes]
  • the third reference value is, for example, a value of about several [lanes].
  • the second reference value and the third reference value may be fixed values as in the first reference value of the first embodiment, the speed at which the own vehicle M is traveling, the same traveling lane or the main lane. It may be determined according to the situation in which the own vehicle M is currently traveling, such as the presence or absence of other vehicles traveling on the vehicle and the number of lanes on the main lane.
  • FIG. 6 is a diagram for explaining a case where the lane recognized by the recognition unit 130 according to the second embodiment is narrowed down to the periphery of the own vehicle M. Also in FIG. 6, a series of continuous arrows indicate a lane.
  • FIG. 6 shows the peripheral distance DP in front of and behind the own vehicle M and the peripheral range PA in the scene shown in FIG. 4 in the first embodiment.
  • the peripheral distance DP is a distance shorter than the front reference distance DF and the rear reference distance DR.
  • the peripheral distance DP is a distance of about one hundred to several hundred [m]. In the scene shown in FIG.
  • the lane L existing in the peripheral range PA is the main lane L-1 to L-5 including the traveling lane of the own vehicle M, and the peripheral distance DP in front of the own vehicle M.
  • the mode determination unit 150 changes the driving mode of the own vehicle M based on the number of lanes of the lane L existing in the peripheral range PA.
  • FIG. 7 is a flowchart showing an example of the flow of processing executed by the mode determination unit 150 according to the second embodiment. Similar to the change process of the first embodiment, the change process of this flowchart is also repeatedly executed, for example, while the automatic operation control device 100 is operating. This flowchart includes the same processing as the change processing of the first embodiment. Therefore, the same step number is assigned to the process similar to the change process of the first embodiment in this flowchart, and the description of the same process again will be omitted.
  • the mode determination unit 150 determines whether or not the number of lanes included in the lane information acquired in step S102 exceeds the second reference value (step S200). If it is determined in step S200 that the number of lanes does not exceed the second reference value, the mode determination unit 150 returns the process to step S100.
  • step S200 when it is determined in step S200 that the number of lanes exceeds the second reference value, the mode determination unit 150 sets the number of lanes included in the lane information acquired in step S102 to the lane of the peripheral range PA of the own vehicle M. Narrow down to the number (step S202).
  • the process of step S202 is performed, for example, by extracting the lane L in the peripheral range PA from each lane L included in the lane information based on the lane division information and the lane position information included in the lane information. Alternatively, it may be performed by instructing the recognition unit 130 to recognize the lane L in the peripheral range PA again and acquiring the lane information from the recognition unit 130.
  • the mode determination unit 150 determines whether or not the number of lanes in the peripheral range PA narrowed down in step S202 exceeds the third reference value (step S204). If it is determined in step S204 that the number of lanes in the peripheral range PA does not exceed the third reference value, the mode determination unit 150 advances the process to step S108.
  • the mode determination unit 150 changes the driving mode of the own vehicle M to mode C (step S106).
  • the mode determination unit 150 performs the processes of steps S108 to S112 in the same manner as the change process of the first embodiment.
  • the second reference value is used in the process of step S110, but the third reference value may be used.
  • the mode determination unit 150 of the second embodiment is in the same direction as the traveling direction of the own vehicle M currently traveling when the current operation mode of the own vehicle M is the mode A or B.
  • the second reference value it is further determined whether or not the number of lanes in the vicinity exceeds the third reference value, and when the number of lanes in the vicinity exceeds the third reference value, the own vehicle Change the operation mode of M to mode C.
  • the driver is in a state of monitoring the front and gripping the steering wheel 82 as in the change process of the first embodiment, and can respond to changes in the surrounding environment.
  • the automatic driving control device 100 according to the second embodiment can perform appropriate control according to the road structure as in the first embodiment.
  • step S200 it is determined that the number of lanes of the lane L existing within the range of the front reference distance DF and the rear reference distance DR recognized by the recognition unit 130 in step S200 exceeds the second reference value.
  • step S204 the driving mode of the own vehicle M is changed from mode A or B to mode C.
  • the mode determination unit 150 changes the driving mode of the own vehicle M from mode A or B to mode C when it is determined in step S200 that the number of lanes exceeds the second reference value, and further, step S204.
  • the driving mode of the own vehicle M may be changed from mode C to mode D or E.
  • the mode determination unit 150 in the first embodiment or the second embodiment has an operation mode of the own vehicle M based on the number of lanes recognized by the recognition unit 130 when the own vehicle M is traveling in the mode A or B. To mode C. Alternatively (or in addition), the mode determination unit 150 may change the driving mode to mode C by using other lane information regarding the lane recognized by the recognition unit 130. As described above, when the recognition unit 130 recognizes the lane L existing within the range of the front reference distance DF and the rear reference distance DR, the recognition unit 130 divides each lane L (main lane, branch lane, or merging lane). ) Is also recognized.
  • the recognition unit 130 can output the lane information including the lane division information to the mode determination unit 150. Therefore, the mode determination unit 150 operates in place of the number of lanes recognized by the recognition unit 130, or based on the number of branch lanes recognized by the recognition unit 130, that is, the number of branch points from the main lane. The mode can be changed to mode C.
  • FIG. 8 is a diagram for explaining a branch lane (branch location) recognized by the recognition unit 130 according to the third embodiment. Also in FIG. 8, a series of continuous arrows indicate a lane.
  • FIG. 8 shows a branch point B from the main lane recognized by the recognition unit 130 in the scene shown in FIG. 4 in the first embodiment. Even when the recognition unit 130 recognizes the branch point B, the front reference distance DF is a longer distance than the rear reference distance DR. When the recognition unit 130 recognizes the branch point B, for example, the forward reference distance DF may be set to a longer distance than the forward reference distance DF in the first embodiment.
  • the recognition unit 130 recognizes the lanes L-6 to L-10 within the range of the forward reference distance DF as branch lanes branching from the main lane. Then, the recognition unit 130 includes a branch point B-1 at which the lanes L-6 and L-7 branch from the main lane, a branch point B-2 at which the lane L-8 branches from the main lane, a lane L-9, and the lane L-9. Each of the branch points B-2 where L-10 branches from the main lane is recognized. Further, in the scene shown in FIG. 8, the recognition unit 130 recognizes the lanes L-15 and L-16 in the range of the rear reference distance DR as branch lanes branching from the main lane. Then, the recognition unit 130 recognizes the branch point B-4 at which the lanes L-15 and L-16 branch from the main lane.
  • the recognition unit 130 outputs the lane information including the information of each recognized branch point B to the mode determination unit 150.
  • the information of the branch point B included in the lane information includes at least information on the number of recognized branch points B (hereinafter, the number of branches).
  • the information of the branch point B included in the lane information includes, for example, information indicating whether each recognized branch point B is a branch point B existing in the range of the front reference distance DF or the rear reference distance DR. It may include information indicating the positional relationship with the own vehicle M such as the distance from the position of the own vehicle M at each branch point B (may include information on the front or the rear).
  • the mode determination unit 150 operates the own vehicle M based on the number of branches of the branch lane existing in the reference distance range (reference range) represented by the information of the branch point B included in the lane information output by the recognition unit 130. Change the mode. More specifically, in the mode determination unit 150, the current driving mode of the own vehicle M is mode A or B, and the number of branches represented by the information of the branch point B included in the lane information exceeds the fourth reference value. Judge whether or not.
  • the fourth reference value is, for example, a value of about several [locations].
  • the fourth reference value may be a fixed value as in the first reference value of the first embodiment, the speed at which the own vehicle M is traveling, and the same traveling lane or main lane. It may be determined according to the situation in which the own vehicle M is currently traveling, such as the presence or absence of other vehicles and the number of lanes on the main lane.
  • FIG. 9 is a flowchart showing an example of the flow of processing executed by the mode determination unit 150 according to the third embodiment. Similar to the change process of the first embodiment, the change process of this flowchart is also repeatedly executed, for example, while the automatic operation control device 100 is operating. Since this flowchart includes the same process as the change process of the first embodiment, the same step number is assigned to the same process as the change process of the first embodiment, and the description thereof will be omitted again.
  • the mode determination unit 150 determines whether or not the number of branches represented by the information of the branch portion B included in the lane information acquired in step S102 exceeds the fourth reference value (step). S300). If it is determined in step S300 that the number of branches does not exceed the fourth reference value, the mode determination unit 150 returns the process to step S100.
  • step S300 if it is determined in step S300 that the number of branches exceeds the fourth reference value, the mode determination unit 150 changes the driving mode of the own vehicle M to mode C (step S106).
  • the mode determination unit 150 acquires the lane information output by the recognition unit 130 again (step S108). Similar to the change process of the first embodiment, the process of step S108 in the change process of the third embodiment has elapsed a predetermined time after the operation mode of the own vehicle M is changed to the mode C in the process of step S106. You may go later.
  • the predetermined time in the change process of the third embodiment may be, for example, the time until the number of branches recognized by the recognition unit 130 becomes a different value.
  • the mode determination unit 150 determines whether or not the number of branches represented by the information of the branch portion B included in the lane information acquired again is equal to or less than the fourth reference value (step S310). If it is determined in step S310 that the number of branches is not equal to or less than the fourth reference value, the mode determination unit 150 returns the process to step S100. That is, even in the change process of the third embodiment, the mode determination unit 150 maintains the changed current traveling mode (mode C).
  • step S310 when it is determined in step S310 that the number of branches is equal to or less than the fourth reference value, the mode determination unit 150 changes the operation mode of the own vehicle M to mode A or B (step S112), and steps the process. Return to S100.
  • the mode determination unit 150 of the third embodiment is in the same direction as the traveling direction of the own vehicle M currently traveling when the current operation mode of the own vehicle M is the mode A or B.
  • the operation mode of the own vehicle M is changed to mode C.
  • the driver is in a state of monitoring the front and gripping the steering wheel 82 as in the change process of the first embodiment, and can respond to changes in the surrounding environment.
  • the automatic driving control device 100 according to the third embodiment can perform appropriate control according to the road structure as in the first embodiment.
  • the branch of the branch point B existing within the range of the front reference distance DF and the rear reference distance DR recognized by the recognition unit 130 in step S300.
  • the mode determination unit 150 of the third embodiment may change the operation mode of the own vehicle M in two steps, for example, as in the second embodiment. That is, the mode determination unit 150 of the third embodiment changes the operation mode of the own vehicle M from mode A or B to mode C in the first stage, and in the second stage, similarly to the change process of the second embodiment.
  • the driving mode of the own vehicle M may be changed from mode C to mode D or E.
  • the method of recognizing the branch portion B and the number of branches of the recognition unit 130, the processing of the mode determination unit 150, and the like may be equivalent to those in the second embodiment described above.
  • the recognition unit 130 determines the lane (or branch point) in which another vehicle that may be involved in the traveling of the own vehicle M is traveling. recognize. Then, in the automatic driving control device 100 of the embodiment, the mode determination unit 150 itself is based on the information of the lane recognized by the recognition unit 130 when the current operation mode of the own vehicle M is the mode A or B. Change the driving mode of the vehicle M. As a result, the automatic driving control device 100 of the embodiment can perform appropriate control according to the road structure.
  • a storage device that stores the program and With a hardware processor, By executing the program stored in the storage device by the hardware processor. Recognize the situation around the vehicle and It controls the steering and acceleration / deceleration of the vehicle without depending on the operation of the driver of the vehicle.
  • the driving mode of the vehicle is determined to be one of a plurality of driving modes including a first driving mode and a second driving mode, and the second driving mode is the task assigned to the driver. It is a light driving mode as compared with the first driving mode, and at least a part of the plurality of driving modes including the second driving mode is steering and steering of the vehicle without depending on the operation of the driver of the vehicle. It is done by controlling acceleration / deceleration.
  • the driving mode of the vehicle is changed to a driving mode in which the task is more severe.
  • the lane that is within the reference range and can travel in the same direction as the vehicle is recognized.
  • the driving mode of the vehicle is the second driving mode
  • the driving mode of the vehicle is changed from the second driving mode to the first driving mode based on the recognized number of lanes.
  • a vehicle control unit configured as such.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Abstract

車両の周辺の状況を認識する認識部と、車両の運転者の操作に依らずに車両の操舵および加減速を制御する運転制御部と、車両の運転モードを、第1の運転モードと、第2の運転モードとを含む複数の運転モードのいずれかに決定するモード決定部と、を備え、認識部は、基準範囲内に存在する車両と同じ方向に走行可能な車線を認識し、モード決定部は、車両の運転モードが第2の運転モードである場合、認識部により認識された車線の数に基づいて、第2の運転モードから第1の運転モードに車両の運転モードを変更する、車両制御装置。

Description

車両制御装置、車両制御方法、およびプログラム
 本発明は、車両制御装置、車両制御方法、およびプログラムに関する。
 従来、自車が通過した道路について高精度地図情報の有無を繰り返し判定する格納判定処理部と、繰り返し判定された結果を示す情報を取得する格納情報取得処理部と、格納情報取得処理部によって取得した情報を通知する自動運転可否通知部とを備える車載システムの発明が開示されている(特許文献1)。
特開2018-189594号公報
 従来の技術では、地図に格納された情報で機械的に自動運転可否を通知しているが、実際の交通局面はより複雑なものであり、道路構造に応じた適切な制御をすることができない場合があった。
 本発明は、このような事情を考慮してなされたものであり、道路構造に応じた適切な制御をすることができる車両制御装置、車両制御方法、およびプログラムを提供することを目的の一つとする。
 この発明に係る車両制御装置、車両制御方法、およびプログラムは、以下の構成を採用した。
 (1):この発明の一態様に係る車両制御装置は、車両の周辺の状況を認識する認識部と、前記車両の運転者の操作に依らずに前記車両の操舵および加減速を制御する運転制御部と、前記車両の運転モードを、第1の運転モードと、第2の運転モードとを含む複数の運転モードのいずれかに決定し、前記第2の運転モードは前記運転者に課されるタスクが前記第1の運転モードに比して軽度な運転モードであり、少なくとも前記第2の運転モードを含む前記複数の運転モードの一部は前記運転制御部により制御されるものであり、前記決定した運転モードに係るタスクが運転者により実行されない場合に、よりタスクが重度な運転モードに前記車両の運転モードを変更するモード決定部と、を備え、前記認識部は、基準範囲内に存在する前記車両と同じ方向に走行可能な車線を認識し、前記モード決定部は、前記車両の運転モードが前記第2の運転モードである場合、前記認識部により認識された前記車線の数に基づいて、前記第2の運転モードから前記第1の運転モードに前記車両の運転モードを変更する、車両制御装置である。
 (2):上記(1)の態様において、前記モード決定部は、前記車線の数が第1基準値を超える場合に、前記運転制御部における前記運転モードを前記第2の運転モードから前記第1の運転モードに変更するものである。
 (3):上記(1)の態様において、前記モード決定部は、前記車線の数が第2基準値を超え、且つ前記認識部により認識された前記車両の周辺の範囲内に存在する前記車線の数が第3基準値を超える場合に、前記運転制御部における前記運転モードを前記第2の運転モードから前記第1の運転モードに変更するものである。
 (4):上記(1)の態様において、前記基準範囲は、前記車両から前方に向けて前方基準距離までの範囲と、前記車両から後方に向けて後方基準距離までの範囲とを含むものである。
 (5):上記(4)の態様において、前記前方基準距離は、前記後方基準距離よりも長いものである。
 (6):この発明の一態様に係る車両制御装置は、車両の周辺の状況を認識する認識部と、前記車両の運転者の操作に依らずに前記車両の操舵および加減速を制御する運転制御部と、前記車両の運転モードを、第1の運転モードと、第2の運転モードとを含む複数の運転モードのいずれかに決定し、前記第2の運転モードは前記運転者に課されるタスクが前記第1の運転モードに比して軽度な運転モードであり、少なくとも前記第2の運転モードを含む前記複数の運転モードの一部は前記運転制御部により制御されるものであり、前記決定した運転モードに係るタスクが運転者により実行されない場合に、よりタスクが重度な運転モードに前記車両の運転モードを変更するモード決定部と、を備え、前記認識部は、基準範囲内に存在する前記車両と同じ方向に走行可能な車線における分岐箇所を認識し、前記モード決定部は、前記車両の運転モードが前記第2の運転モードである場合、前記認識部により認識された前記分岐箇所の数が第4基準値を超える場合に、前記第2の運転モードから前記第1の運転モードに前記車両の運転モードを変更する、車両制御装置である。
 (7):上記(1)または(6)の態様において、前記第2の運転モードは、少なくとも、前記運転者による操舵操作を受け付ける操作子の把持が課されない運転モードであり、前記第1の運転モードは、前記運転者により、前記車両の操舵と加減速との内、少なくとも一方の運転操作が必要な運転モード、あるいは、前記運転者による前記操作子の把持が課される運転モードであるものである。
 (8):この発明の一態様に係る車両制御方法は、車両に搭載されたコンピュータが、車両の周辺の状況を認識し、前記車両の運転者の操作に依らずに前記車両の操舵および加減速を制御し、前記車両の運転モードを、第1の運転モードと、第2の運転モードとを含む複数の運転モードのいずれかに決定し、前記第2の運転モードは前記運転者に課されるタスクが前記第1の運転モードに比して軽度な運転モードであり、少なくとも前記第2の運転モードを含む前記複数の運転モードの一部は前記車両の運転者の操作に依らずに前記車両の操舵および加減速を制御することで行われるものであり、前記決定した運転モードに係るタスクが運転者により実行されない場合に、よりタスクが重度な運転モードに前記車両の運転モードを変更し、前記認識する際に、基準範囲内に存在する前記車両と同じ方向に走行可能な車線を認識し、前記車両の運転モードが前記第2の運転モードである場合、前記認識された前記車線の数に基づいて、前記第2の運転モードから前記第1の運転モードに前記車両の運転モードを変更する、車両制御方法である。
 (9):この発明の一態様に係る車両制御方法は、車両に搭載されたコンピュータが、車両の周辺の状況を認識し、前記車両の運転者の操作に依らずに前記車両の操舵および加減速を制御し、前記車両の運転モードを、第1の運転モードと、第2の運転モードとを含む複数の運転モードのいずれかに決定し、前記第2の運転モードは前記運転者に課されるタスクが前記第1の運転モードに比して軽度な運転モードであり、少なくとも前記第2の運転モードを含む前記複数の運転モードの一部は前記車両の運転者の操作に依らずに前記車両の操舵および加減速を制御することで行われるものであり、前記決定した運転モードに係るタスクが運転者により実行されない場合に、よりタスクが重度な運転モードに前記車両の運転モードを変更し、前記認識する際に、基準範囲内に存在する前記車両と同じ方向に走行可能な車線における分岐箇所を認識し、前記車両の運転モードが前記第2の運転モードである場合、前記認識された前記分岐箇所の数が第4基準値を超える場合に、前記第2の運転モードから前記第1の運転モードに前記車両の運転モードを変更する、車両制御方法である。
 (10):この発明の一態様に係るプログラムは、車両に搭載されたコンピュータに、車両の周辺の状況を認識させ、前記車両の運転者の操作に依らずに前記車両の操舵および加減速を制御させ、前記車両の運転モードを、第1の運転モードと、第2の運転モードとを含む複数の運転モードのいずれかに決定させ、前記第2の運転モードは前記運転者に課されるタスクが前記第1の運転モードに比して軽度な運転モードであり、少なくとも前記第2の運転モードを含む前記複数の運転モードの一部は前記車両の運転者の操作に依らずに前記車両の操舵および加減速を制御することで行われるものであり、前記決定した運転モードに係るタスクが運転者により実行されない場合に、よりタスクが重度な運転モードに前記車両の運転モードを変更させ、前記認識する際に、基準範囲内に存在する前記車両と同じ方向に走行可能な車線を認識させ、前記車両の運転モードが前記第2の運転モードである場合、前記認識させた前記車線の数に基づいて、前記第2の運転モードから前記第1の運転モードに前記車両の運転モードを変更させる、プログラムである。
 (11):この発明の一態様に係るプログラムは、車両に搭載されたコンピュータに、車両の周辺の状況を認識させ、前記車両の運転者の操作に依らずに前記車両の操舵および加減速を制御させ、前記車両の運転モードを、第1の運転モードと、第2の運転モードとを含む複数の運転モードのいずれかに決定させ、前記第2の運転モードは前記運転者に課されるタスクが前記第1の運転モードに比して軽度な運転モードであり、少なくとも前記第2の運転モードを含む前記複数の運転モードの一部は前記車両の運転者の操作に依らずに前記車両の操舵および加減速を制御することで行われるものであり、前記決定した運転モードに係るタスクが運転者により実行されない場合に、よりタスクが重度な運転モードに前記車両の運転モードを変更させ、前記認識する際に、基準範囲内に存在する前記車両と同じ方向に走行可能な車線における分岐箇所を認識させ、前記車両の運転モードが前記第2の運転モードである場合、前記認識させた前記分岐箇所の数が第4基準値を超える場合に、前記第2の運転モードから前記第1の運転モードに前記車両の運転モードを変更させる、プログラムである。
 上述した(1)~(11)の態様によれば、道路構造に応じた適切な制御をすることができる。
実施形態に係る車両制御装置を利用した車両システムの構成図である。 第1制御部および第2制御部の機能構成図である。 運転モードと自車両の制御状態、およびタスクの対応関係の一例を示す図である。 第1実施形態に係る認識部が認識する車線について説明するための図である。 第1実施形態に係るモード決定部により実行される処理の流れの一例を示すフローチャートである。 第2実施形態に係る認識部が認識した車線を自車両の周辺に絞る場合について説明するための図である。 第2実施形態に係るモード決定部により実行される処理の流れの一例を示すフローチャートである。 第3実施形態に係る認識部が認識する分岐車線について説明するための図である。 第3実施形態に係るモード決定部により実行される処理の流れの一例を示すフローチャートである。
 以下、図面を参照し、本発明の車両制御装置、車両制御方法、およびプログラムの実施形態について説明する。
 [全体構成]
 図1は、実施形態に係る車両制御装置を利用した車両システム1の構成図である。車両システム1が搭載される車両は、例えば、二輪や三輪、四輪等の車両であり、その駆動源は、ディーゼルエンジンやガソリンエンジンなどの内燃機関、電動機、或いはこれらの組み合わせである。電動機は、内燃機関に連結された発電機による発電電力、或いは二次電池や燃料電池の放電電力を使用して動作する。
 車両システム1は、例えば、カメラ10と、レーダ装置12と、LIDAR(Light Detection and Ranging)14と、物体認識装置16と、通信装置20と、HMI(Human Machine Interface)30と、車両センサ40と、ナビゲーション装置50と、MPU(Map Positioning Unit)60と、ドライバモニタカメラ70と、運転操作子80と、自動運転制御装置100と、走行駆動力出力装置200と、ブレーキ装置210と、ステアリング装置220とを備える。これらの装置や機器は、CAN(Controller Area Network)通信線等の多重通信線やシリアル通信線、無線通信網等によって互いに接続される。図1に示す構成はあくまで一例であり、構成の一部が省略されてもよいし、更に別の構成が追加されてもよい。
 カメラ10は、例えば、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の固体撮像素子を利用したデジタルカメラである。カメラ10は、車両システム1が搭載される車両(以下、自車両M)の任意の箇所に取り付けられる。前方を撮像する場合、カメラ10は、フロントウインドシールド上部やルームミラー裏面等に取り付けられる。カメラ10は、例えば、周期的に繰り返し自車両Mの周辺を撮像する。カメラ10は、ステレオカメラであってもよい。
 レーダ装置12は、自車両Mの周辺にミリ波などの電波を放射すると共に、物体によって反射された電波(反射波)を検出して少なくとも物体の位置(距離および方位)を検出する。レーダ装置12は、自車両Mの任意の箇所に取り付けられる。レーダ装置12は、FM-CW(Frequency Modulated Continuous Wave)方式によって物体の位置および速度を検出してもよい。
 LIDAR14は、自車両Mの周辺に光(或いは光に近い波長の電磁波)を照射し、散乱光を測定する。LIDAR14は、発光から受光までの時間に基づいて、対象までの距離を検出する。照射される光は、例えば、パルス状のレーザー光である。LIDAR14は、自車両Mの任意の箇所に取り付けられる。
 物体認識装置16は、カメラ10、レーダ装置12、およびLIDAR14のうち一部または全部による検出結果に対してセンサフュージョン処理を行って、物体の位置、種類、速度などを認識する。物体認識装置16は、認識結果を自動運転制御装置100に出力する。物体認識装置16は、カメラ10、レーダ装置12、およびLIDAR14の検出結果をそのまま自動運転制御装置100に出力してよい。車両システム1から物体認識装置16が省略されてもよい。
 通信装置20は、例えば、セルラー網やWi-Fi網、Bluetooth(登録商標)、DSRC(Dedicated Short Range Communication)などを利用して、自車両Mの周辺に存在する他車両と通信し、或いは無線基地局を介して各種サーバ装置と通信する。
 HMI30は、自車両Mの乗員に対して各種情報を提示すると共に、乗員による入力操作を受け付ける。HMI30は、各種表示装置、スピーカ、ブザー、タッチパネル、スイッチ、キーなどを含む。
 車両センサ40は、自車両Mの速度を検出する車速センサ、加速度を検出する加速度センサ、鉛直軸回りの角速度を検出するヨーレートセンサ、自車両Mの向きを検出する方位センサ等を含む。
 ナビゲーション装置50は、例えば、GNSS(Global Navigation Satellite System)受信機51と、ナビHMI52と、経路決定部53とを備える。ナビゲーション装置50は、HDD(Hard Disk Drive)やフラッシュメモリなどの記憶装置に第1地図情報54を保持している。GNSS受信機51は、GNSS衛星から受信した信号に基づいて、自車両Mの位置を特定する。自車両Mの位置は、車両センサ40の出力を利用したINS(Inertial Navigation System)によって特定または補完されてもよい。ナビHMI52は、表示装置、スピーカ、タッチパネル、キーなどを含む。ナビHMI52は、前述したHMI30と一部または全部が共通化されてもよい。経路決定部53は、例えば、GNSS受信機51により特定された自車両Mの位置(或いは入力された任意の位置)から、ナビHMI52を用いて乗員により入力された目的地までの経路(以下、地図上経路)を、第1地図情報54を参照して決定する。第1地図情報54は、例えば、道路を示すリンクと、リンクによって接続されたノードとによって道路形状が表現された情報である。第1地図情報54は、道路の曲率やPOI(Point Of Interest)情報などを含んでもよい。地図上経路は、MPU60に出力される。ナビゲーション装置50は、地図上経路に基づいて、ナビHMI52を用いた経路案内を行ってもよい。ナビゲーション装置50は、例えば、乗員の保有するスマートフォンやタブレット端末等の端末装置の機能によって実現されてもよい。ナビゲーション装置50は、通信装置20を介してナビゲーションサーバに現在位置と目的地を送信し、ナビゲーションサーバから地図上経路と同等の経路を取得してもよい。
 MPU60は、例えば、推奨車線決定部61を含み、HDDやフラッシュメモリなどの記憶装置に第2地図情報62を保持している。推奨車線決定部61は、ナビゲーション装置50から提供された地図上経路を複数のブロックに分割し(例えば、車両進行方向に関して100[m]毎に分割し)、第2地図情報62を参照してブロックごとに推奨車線を決定する。推奨車線決定部61は、左から何番目の車線を走行するといった決定を行う。推奨車線決定部61は、地図上経路に分岐箇所が存在する場合、自車両Mが、分岐先に進行するための合理的な経路を走行できるように、推奨車線を決定する。
 第2地図情報62は、第1地図情報54よりも高精度な地図情報である。第2地図情報62は、例えば、車線の中央の情報あるいは車線の境界の情報等を含んでいる。第2地図情報62には、道路情報、交通規制情報、住所情報(住所・郵便番号)、施設情報、電話番号情報、後述するモードAまたはモードBが禁止される禁止区間の情報などが含まれてよい。第2地図情報62は、通信装置20が他装置と通信することにより、随時、アップデートされてよい。
 ドライバモニタカメラ70は、例えば、CCDやCMOS等の固体撮像素子を利用したデジタルカメラである。ドライバモニタカメラ70は、自車両Mの運転席に着座した乗員(以下、運転者)の頭部を正面から(顔面を撮像する向きで)撮像可能な位置および向きで、自車両Mにおける任意の箇所に取り付けられる。例えば、ドライバモニタカメラ70は、自車両Mのインストルメントパネルの中央部に設けられたディスプレイ装置の上部に取り付けられる。
 運転操作子80は、例えば、ステアリングホイール82の他、アクセルペダル、ブレーキペダル、シフトレバー、その他の操作子を含む。運転操作子80には、操作量あるいは操作の有無を検出するセンサが取り付けられており、その検出結果は、自動運転制御装置100、もしくは、走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220のうち一部または全部に出力される。ステアリングホイール82は、「運転者による操舵操作を受け付ける操作子」の一例である。操作子は、必ずしも環状である必要は無く、異形ステアリングホイールやジョイスティック、ボタンなどの形態であってもよい。ステアリングホイール82には、ステアリング把持センサ84が取り付けられている。ステアリング把持センサ84は、静電容量センサなどにより実現され、運転者がステアリングホイール82を把持している(力を加えられる状態で接していることをいう)か否かを検知可能な信号を自動運転制御装置100に出力する。
 自動運転制御装置100は、例えば、第1制御部120と、第2制御部160とを備える。第1制御部120と第2制御部160は、それぞれ、例えば、CPU(Central Processing Unit)などのハードウェアプロセッサがプログラム(ソフトウェア)を実行することにより実現される。これらの構成要素のうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、GPU(Graphics Processing Unit)などのハードウェア(回路部;circuitryを含む)によって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。プログラムは、予め自動運転制御装置100のHDDやフラッシュメモリなどの記憶装置(非一過性の記憶媒体を備える記憶装置)に格納されていてもよいし、DVDやCD-ROMなどの着脱可能な記憶媒体に格納されており、記憶媒体(非一過性の記憶媒体)がドライブ装置に装着されることで自動運転制御装置100のHDDやフラッシュメモリにインストールされてもよい。自動運転制御装置100は「車両制御装置」の一例であり、行動計画生成部140と第2制御部160を合わせたものが「運転制御部」の一例である。
 図2は、第1制御部120および第2制御部160の機能構成図である。第1制御部120は、例えば、認識部130と、行動計画生成部140と、モード決定部150とを備える。第1制御部120は、例えば、AI(Artificial Intelligence;人工知能)による機能と、予め与えられたモデルによる機能とを並行して実現する。例えば、「交差点を認識する」機能は、ディープラーニング等による交差点の認識と、予め与えられた条件(パターンマッチング可能な信号、道路標示などがある)に基づく認識とが並行して実行され、双方に対してスコア付けして総合的に評価することで実現されてよい。これによって、自動運転の信頼性が担保される。
 認識部130は、カメラ10、レーダ装置12、およびLIDAR14から物体認識装置16を介して入力された情報に基づいて、自車両Mの周辺にある物体の位置、および速度、加速度等の状態を認識する。物体の位置は、例えば、自車両Mの代表点(重心や駆動軸中心など)を原点とした絶対座標上の位置として認識され、制御に使用される。物体の位置は、その物体の重心やコーナー等の代表点で表されてもよいし、領域で表されてもよい。物体の「状態」とは、物体の加速度やジャーク、あるいは「行動状態」(例えば車線変更をしている、またはしようとしているか否か)を含んでもよい。
 認識部130は、例えば、自車両Mが走行している車線(走行車線)を認識する。例えば、認識部130は、第2地図情報62から得られる道路区画線のパターン(例えば実線と破線の配列)と、カメラ10によって撮像された画像から認識される自車両Mの周辺の道路区画線のパターンとを比較することで、走行車線を認識する。認識部130は、道路区画線に限らず、道路区画線や路肩、縁石、中央分離帯、ガードレールなどを含む走路境界(道路境界)を認識することで、走行車線を認識してもよい。この認識において、ナビゲーション装置50から取得される自車両Mの位置やINSによる処理結果が加味されてもよい。認識部130は、一時停止線、障害物、赤信号、料金所、その他の道路事象を認識する。
 認識部130は、走行車線を認識する際に、走行車線に対する自車両Mの位置や姿勢を認識する。認識部130は、例えば、自車両Mの基準点の車線中央からの乖離、および自車両Mの進行方向の車線中央を連ねた線に対してなす角度を、走行車線に対する自車両Mの相対位置および姿勢として認識してもよい。これに代えて、認識部130は、走行車線のいずれかの側端部(道路区画線または道路境界)に対する自車両Mの基準点の位置などを、走行車線に対する自車両Mの相対位置として認識してもよい。
 認識部130は、走行車線に加えて、例えば、走行車線の進行方向と同じ方向に走行可能な車線(以下、本線車線)、走行車線や本線車線から分岐する車線(以下、分岐車線)、走行車線や本線車線に合流する車線(以下、合流車線)を認識する。認識部130は、自車両Mの進行方向と同じ方向、つまり、自車両Mの前方の分岐車線や合流車線と、自車両Mが走行してきた後方の分岐車線や合流車線とのそれぞれを認識する。
 行動計画生成部140は、原則的には推奨車線決定部61により決定された推奨車線を走行し、更に、自車両Mの周辺状況に対応できるように、自車両Mが自動的に(運転者の操作に依らずに)将来走行する目標軌道を生成する。目標軌道は、例えば、速度要素を含んでいる。例えば、目標軌道は、自車両Mの到達すべき地点(軌道点)を順に並べたものとして表現される。軌道点は、道なり距離で所定の走行距離(例えば数[m]程度)ごとの自車両Mの到達すべき地点であり、それとは別に、所定のサンプリング時間(例えば0コンマ数[sec]程度)ごとの目標速度および目標加速度が、目標軌道の一部として生成される。軌道点は、所定のサンプリング時間ごとの、そのサンプリング時刻における自車両Mの到達すべき位置であってもよい。この場合、目標速度や目標加速度の情報は軌道点の間隔で表現される。
 行動計画生成部140は、目標軌道を生成するにあたり、自動運転のイベントを設定してよい。自動運転のイベントには、定速走行イベント、低速追従走行イベント、車線変更イベント、分岐イベント、合流イベント、テイクオーバーイベントなどがある。行動計画生成部140は、起動させたイベントに応じた目標軌道を生成する。
 モード決定部150は、自車両Mの運転モードを、運転者に課されるタスクが異なる複数の運転モードのいずれかに決定する。モード決定部150は、例えば、運転者状態判定部152と、モード変更処理部154とを備える。これらの個別の機能については後述する。
 図3は、運転モードと自車両Mの制御状態、およびタスクの対応関係の一例を示す図である。自車両Mの運転モードには、例えば、モードAからモードEの5つのモードがある。制御状態すなわち自車両Mの運転制御の自動化度合いは、モードAが最も高く、次いでモードB、モードC、モードDの順に低くなり、モードEが最も低い。この逆に、運転者に課されるタスクは、モードAが最も軽度であり、次いでモードB、モードC、モードDの順に重度となり、モードEが最も重度である。モードDおよびEでは自動運転でない制御状態となるため、自動運転制御装置100としては自動運転に係る制御を終了し、運転支援または手動運転に移行させるまでが責務である。以下、それぞれの運転モードの内容について例示する。
 モードAでは、自動運転の状態となり、運転者には前方監視、ステアリングホイール82の把持(図ではステアリング把持)のいずれも課されない。但し、モードAであっても運転者は、自動運転制御装置100を中心としたシステムからの要求に応じて速やかに手動運転に移行できる体勢であることが要求される。ここで言う自動運転とは、操舵、加減速のいずれも運転者の操作に依らずに制御されることをいう。前方とは、フロントウインドシールドを介して視認される自車両Mの進行方向の空間を意味する。モードAは、例えば、高速道路などの自動車専用道路において、所定速度(例えば50[km/h]程度)以下で自車両Mが走行しており、追従対象の前走車両が存在するなどの条件が満たされる場合に実行可能な運転モードであり、TJP(Traffic Jam Pilot)と称される場合もある。この条件が満たされなくなった場合、モード決定部150は、モードBに自車両Mの運転モードを変更する。
 モードBでは、運転支援の状態となり、運転者には自車両Mの前方を監視するタスク(以下、前方監視)が課されるが、ステアリングホイール82を把持するタスクは課されない。モードCでは、運転支援の状態となり、運転者には前方監視のタスクと、ステアリングホイール82を把持するタスクが課される。モードDは、自車両Mの操舵と加減速のうち少なくとも一方に関して、ある程度の運転者による運転操作が必要な運転モードである。例えば、モードDでは、ACC(Adaptive Cruise Control)やLKAS(Lane Keeping Assist System)といった運転支援が行われる。モードEでは、操舵、加減速ともに運転者による運転操作が必要な手動運転の状態となる。モードD、モードEともに、当然ながら運転者には自車両Mの前方を監視するタスクが課される。
 自動運転制御装置100(および運転支援装置(不図示))は、運転モードに応じた自動車線変更を実行する。自動車線変更には、システム要求による自動車線変更(1)と、運転者要求による自動車線変更(2)がある。自動車線変更(1)には、前走車両の速度が自車両の速度に比して基準以上に小さい場合に行われる、追い越しのための自動車線変更と、目的地に向けて進行するための自動車線変更(推奨車線が変更されたことによる自動車線変更)とがある。自動車線変更(2)は、速度や周辺車両との位置関係等に関する条件が満たされた場合において、運転者により方向指示器が操作された場合に、操作方向に向けて自車両Mを車線変更させるものである。
 自動運転制御装置100は、モードAにおいて、自動車線変更(1)および(2)のいずれも実行しない。自動運転制御装置100は、モードBおよびCにおいて、自動車線変更(1)および(2)のいずれも実行する。運転支援装置(不図示)は、モードDにおいて、自動車線変更(1)は実行せず自動車線変更(2)を実行する。モードEにおいて、自動車線変更(1)および(2)のいずれも実行されない。
 モード決定部150は、決定した運転モード(以下、現運転モード)に係るタスクが運転者により実行されない場合に、よりタスクが重度な運転モードに自車両Mの運転モードを変更する。
 例えば、モードAにおいて運転者が、システムからの要求に応じて手動運転に移行できない体勢である場合(例えば、許容エリア外の脇見を継続している場合や、運転困難となる予兆が検出された場合)、モード決定部150は、HMI30を用いて運転者に手動運転への移行を促し、運転者が応じなければ自車両Mを路肩に寄せて徐々に停止させ、自動運転を停止する、といった制御を行う。自動運転を停止した後は、自車両はモードDまたはEの状態になり、運転者の手動操作によって自車両Mを発進させることが可能となる。以下、「自動運転を停止」に関して同様である。モードBにおいて運転者が前方を監視していない場合、モード決定部150は、HMI30を用いて運転者に前方監視を促し、運転者が応じなければ自車両Mを路肩に寄せて徐々に停止させ、自動運転を停止する、といった制御を行う。モードCにおいて運転者が前方を監視していない場合、或いはステアリングホイール82を把持していない場合、モード決定部150は、HMI30を用いて運転者に前方監視を、および/またはステアリングホイール82を把持するように促し、運転者が応じなければ自車両Mを路肩に寄せて徐々に停止させ、自動運転を停止する、といった制御を行う。
 運転者状態判定部152は、上記のモード変更のために運転者の状態を監視し、運転者の状態がタスクに応じた状態であるか否かを判定する。例えば、運転者状態判定部152は、ドライバモニタカメラ70が撮像した画像を解析して姿勢推定処理を行い、運転者が、システムからの要求に応じて手動運転に移行できない体勢であるか否かを判定する。運転者状態判定部152は、ドライバモニタカメラ70が撮像した画像を解析して視線推定処理を行い、運転者が前方を監視しているか否かを判定する。
 モード変更処理部154は、モード変更のための各種処理を行う。例えば、モード変更処理部154は、行動計画生成部140に路肩停止のための目標軌道を生成するように指示したり、運転支援装置(不図示)に作動指示をしたり、運転者に行動を促すためにHMI30の制御をしたりする。
 第2制御部160は、行動計画生成部140によって生成された目標軌道を、予定の時刻通りに自車両Mが通過するように、走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220を制御する。
 図2に戻り、第2制御部160は、例えば、取得部162と、速度制御部164と、操舵制御部166とを備える。取得部162は、行動計画生成部140により生成された目標軌道(軌道点)の情報を取得し、メモリ(不図示)に記憶させる。速度制御部164は、メモリに記憶された目標軌道に付随する速度要素に基づいて、走行駆動力出力装置200またはブレーキ装置210を制御する。操舵制御部166は、メモリに記憶された目標軌道の曲がり具合に応じて、ステアリング装置220を制御する。速度制御部164および操舵制御部166の処理は、例えば、フィードフォワード制御とフィードバック制御との組み合わせにより実現される。一例として、操舵制御部166は、自車両Mの前方の道路の曲率に応じたフィードフォワード制御と、目標軌道からの乖離に基づくフィードバック制御とを組み合わせて実行する。
 走行駆動力出力装置200は、車両が走行するための走行駆動力(トルク)を駆動輪に出力する。走行駆動力出力装置200は、例えば、内燃機関、電動機、および変速機などの組み合わせと、これらを制御するECU(Electronic Control Unit)とを備える。ECUは、第2制御部160から入力される情報、或いは運転操作子80から入力される情報に従って、上記の構成を制御する。
 ブレーキ装置210は、例えば、ブレーキキャリパーと、ブレーキキャリパーに油圧を伝達するシリンダと、シリンダに油圧を発生させる電動モータと、ブレーキECUとを備える。ブレーキECUは、第2制御部160から入力される情報、或いは運転操作子80から入力される情報に従って電動モータを制御し、制動操作に応じたブレーキトルクが各車輪に出力されるようにする。ブレーキ装置210は、運転操作子80に含まれるブレーキペダルの操作によって発生させた油圧を、マスターシリンダを介してシリンダに伝達する機構をバックアップとして備えてよい。ブレーキ装置210は、上記説明した構成に限らず、第2制御部160から入力される情報に従ってアクチュエータを制御して、マスターシリンダの油圧をシリンダに伝達する電子制御式油圧ブレーキ装置であってもよい。
 ステアリング装置220は、例えば、ステアリングECUと、電動モータとを備える。電動モータは、例えば、ラックアンドピニオン機構に力を作用させて転舵輪の向きを変更する。ステアリングECUは、第2制御部160から入力される情報、或いは運転操作子80から入力される情報に従って、電動モータを駆動し、転舵輪の向きを変更させる。
 モードA~Cのいずれかまたは複数は、特許請求の範囲における「第2の運転モード」の一例であり、モードC~Eのいずれかまたは複数は、特許請求の範囲における「第1の運転モード」の一例である。ここで、モードCが特許請求の範囲における「第2の運転モード」である場合、特許請求の範囲における「第1の運転モード」はモードDまたはEのいずれかである。以下の説明においては、一例として、特許請求の範囲における「第2の運転モード」がモードAまたはBであり、特許請求の範囲における「第1の運転モード」がモードCであるものとする。
 <第1実施形態>
 [運転モードの制御]
 以下、自車両Mの周辺の車線の数に応じた自車両Mの運転モードの制御について説明する。以下の説明においては、自車両MがモードAまたはBで走行している場合において、モードAまたはBでの走行を終了してモードCに変更する場合について説明する。
 認識部130は、自車両Mの走行に関与する可能性がある他の車両が走行している車線を認識する。認識部130は、自車両Mの進行方向と同じ方向に走行可能な車線であって、自車両Mを基準とした基準距離の範囲(基準範囲)内に存在する車線を認識する。
 図4は、第1実施形態に係る認識部130が認識する車線について説明するための図である。図4においては、連続して連なっている一連の矢印が車線を示している。この場面において、自車両Mは複数の本線車線を進行方向TDの方向に走行している。認識部130は、自車両Mの前方における前方基準距離DFの範囲内に存在する車線Lと、自車両Mの後方における後方基準距離DRの範囲内に存在する車線Lとのそれぞれを認識する。前方基準距離DFは、後方基準距離DRよりも長い距離である。例えば、前方基準距離DFと後方基準距離DRとは、ともに数百[m]程度の距離である。
 図4の例では、認識部130は、前方基準距離DFの範囲において、車線L-1~L-12を認識する。自車両Mが図4に示した位置である場合、車線L-1~L-5は、本線車線である。この中で、車線L-1は自車両Mの走行車線であり、車線L-2~L-5は、自車両Mの走行車線と同じ方向に走行可能な本線車線である。車線L-6~L-10は、本線車線から分岐する分岐車線である。車線L-11およびL-12は、本線車線に合流する合流車線である。
 認識部130は、後方基準距離DRの範囲において、車線L-13~L-16を認識する。このとき、認識部130は、前方基準距離DFにおいてすでに認識している車線L-1~L-5は、後方基準距離DRにおいては認識しない。自車両Mが図4に示した位置である場合、車線L-13およびL-14は、本線車線に合流した合流車線である。車線L-15およびL-16は、本線車線から分岐した分岐車線である。
 認識部130は、認識した車線に関する情報(以下、車線情報)を、モード決定部150に出力する。車線情報には、少なくとも、認識した車線Lの数(以下、車線数)の情報が含まれる。車線情報には、例えば、認識したそれぞれの車線Lが本線車線、分岐車線、合流車線のいずれであるかを表す車線区分情報や、車線Lが前方基準距離DFまたは後方基準距離DRのいずれの範囲に存在する車線であるか、それぞれの車線Lにおける自車両Mの位置からの距離(前方あるいは後方の情報を含んでもよい)などの自車両Mとの位置関係を表す車線位置情報などを含んでもよい。
 モード決定部150は、認識部130により出力された車線情報に基づいて、自車両Mの運転モードを変更する。より具体的には、モード決定部150は、現在の自車両Mの運転モードがモードAまたはBであり、且つ車線情報に含まれる車線数が第1基準値を超えるか否かを判定する。第1基準値は、例えば、数[車線]から数十[車線]程度の値である。第1基準値は、固定値であってもよいし、自車両Mが走行している速度や、同じ走行車線あるいは本線車線を走行している他の車両の有無、本線車線の数など、自車両Mが現在走行している状況に応じて定められてもよい。
 モード決定部150は、自車両Mの運転モードがモードAまたはBであり、且つ車線数が第1基準値を超える場合に、現在の自車両Mの運転モードを、モードAまたはBからモードCに変更する。これにより、運転者は、車線数が第1基準値を超える範囲を通過する際に、前方を監視するとともにステアリングホイール82を把持することになる。このことにより、運転者は、周辺環境に変化があった場合でも、自身でステアリングホイール82を操作して対処することができる。
 モード決定部150は、モードAまたはBからモードCに運転モードを変更するのに代えて、モードAまたはBからモードDまたはEに運転モードを変更するようにしてもよい。この場合、モード決定部150は、モードAまたはBからモードDまたはEに運転モードを変更するまでの間に、一旦モードCに変更してから、モードDまたはEに変更してもよい。
 モード決定部150は、認識部130により出力された車線情報に含まれる車線数が第1基準値以下となったことを条件として、モードCに変更した運転モードを、再びモードAまたはBに変更してもよい。これにより、自車両Mにおける利便性を向上させることができる。モード決定部150は、モードCからモードAまたはBに運転モードを変更するための条件として、運転者におけるHMI30に対する操作を促すようにしてもよい。これにより、運転モードの切り替えによる制御の乱れが生じるのを抑制することができる。
 [運転モードの変更処理]
 図5は、第1実施形態に係るモード決定部150により実行される処理の流れの一例を示すフローチャートである。本フローチャートの変更処理は、例えば、自動運転制御装置100が作動している間、繰り返し実行される。
 まず、モード決定部150は、現在の自車両Mの運転モードがモードAまたはBであるか否かを判定する(ステップS100)。ステップS100において、現在の自車両Mの運転モードがモードAまたはBではない場合、モード決定部150は、ステップS100の判定を繰り返す。
 一方、ステップS100において、現在の自車両Mの運転モードがモードAまたはBであると判定された場合、モード決定部150は、認識部130により出力された車線情報を取得する(ステップS102)。そして、モード決定部150は、取得した車線情報に含まれる車線数が第1基準値を超えるか否かを判定する(ステップS104)。ステップS104において、車線数が第1基準値を超えないと判定された場合、モード決定部150は、処理をステップS100に戻す。
 一方、ステップS104において、車線数が第1基準値を超えると判定された場合、モード決定部150は、自車両Mの運転モードをモードCに変更する(ステップS106)。
 その後、モード決定部150は、認識部130により出力された車線情報を再度取得する(ステップS108)。このステップS108の処理は、ステップS106の処理において自車両Mの運転モードをモードCに変更した後、所定の時間が経過した後に行ってもよい。所定の時間とは、例えば、数[sec]から十数[sec]程度の時間である。所定の時間は、例えば、認識部130が認識した車線数が異なる値になるまでの時間であってもよい。
 そして、モード決定部150は、再度取得した車線情報に含まれる車線数が第1基準値以下であるか否かを判定する(ステップS110)。ステップS110において、車線数が第1基準値以下ではないと判定された場合、モード決定部150は、処理をステップS100に戻す。つまり、モード決定部150は、変更した現在の走行モード(モードC)を維持する。
 一方、ステップS110において、車線数が第1基準値以下であると判定された場合、モード決定部150は、自車両Mの運転モードをモードAまたはBに変更し(ステップS112)、処理をステップS100に戻す。
 以上説明した処理によって、モード決定部150は、現在の自車両Mの運転モードがモードAまたはBであるときに、現在走行している自車両Mの進行方向と同じ方向の車線数が第1基準値を超える場合には、自車両Mの運転モードをモードCに変更する。これにより、運転者は、前方を監視するとともにステアリングホイール82を把持する状態となり、周辺環境の変化に対応可能となる。この結果、自動運転制御装置100では、道路構造に応じた適切な制御をすることができる。
 <第2実施形態>
 第1実施形態におけるモード決定部150は、自車両MがモードAまたはBで走行しているときに、認識部130が認識した車線数に基づいて、自車両Mの運転モードをモードCに変更する。第2実施形態に係るモード決定部150は、認識部130が認識した車線数をさらに自車両Mの周辺に絞って判定して、運転モードをモードCに変更するようにしてもよい。この場合、モード決定部150は、自車両Mの周辺の範囲(以下、周辺範囲)を、自車両Mが走行している走行車線を含む本線車線の範囲と、自車両Mの前方および後方のそれぞれの周辺距離の範囲とを合わせた範囲にする。
 モード決定部150は、現在の自車両Mの運転モードがモードAまたはBであり、且つ車線情報に含まれる車線数が第2基準値を超えるか否かを判定する。そして、モード決定部150は、車線数が第2基準値を超える場合に、本線車線と、周辺範囲内に本線車線からの分岐箇所あるいは本線車線への合流箇所が存在する車線とを合わせた車線数が第3基準値を超えるか否かによって、運転モードを変更する。第2基準値は、例えば、数十[車線]程度の値であり、第3基準値は、例えば、数[車線]程度の値である。第2基準値および第3基準値は、第1実施形態の第1基準値と同様に、固定値であってもよいし、自車両Mが走行している速度や、同じ走行車線あるいは本線車線を走行している他の車両の有無、本線車線の数など、自車両Mが現在走行している状況に応じて定められてもよい。
 図6は、第2実施形態に係る認識部130が認識した車線を自車両Mの周辺に絞る場合について説明するための図である。図6においても、連続して連なっている一連の矢印が車線を示している。図6には、第1実施形態において図4に示した場面に、自車両Mの前方および後方の周辺距離DPと、周辺範囲PAとを示している。周辺距離DPは、前方基準距離DFや後方基準距離DRよりも短い距離である。例えば、周辺距離DPは、百から数百[m]程度の距離である。図6に示した場面において、周辺範囲PA内に存在する車線Lは、自車両Mの走行車線を含む本線車線である車線L-1~L-5と、自車両Mの前方の周辺距離DPの範囲に分岐箇所が存在する分岐車線である車線L-6~L-8と、自車両Mの後方の周辺距離DPの範囲に合流箇所が存在する合流車線である車線L-13である。モード決定部150は、周辺範囲PA内に存在する車線Lの車線数に基づいて、自車両Mの運転モードを変更する。
 [運転モードの変更処理]
 図7は、第2実施形態に係るモード決定部150により実行される処理の流れの一例を示すフローチャートである。本フローチャートの変更処理も、第1実施形態の変更処理と同様に、例えば、自動運転制御装置100が作動している間、繰り返し実行される。本フローチャートには、第1実施形態の変更処理と同様の処理を含んでいる。従って、本フローチャートにおける第1実施形態の変更処理と同様の処理には、同一のステップ番号を付与し、同様の処理に関する再度の説明は省略する。
 第2実施形態の変更処理では、モード決定部150は、ステップS102において取得した車線情報に含まれる車線数が第2基準値を超えるか否かを判定する(ステップS200)。ステップS200において、車線数が第2基準値を超えないと判定された場合、モード決定部150は、処理をステップS100に戻す。
 一方、ステップS200において、車線数が第2基準値を超えると判定された場合、モード決定部150は、ステップS102において取得した車線情報に含まれる車線数を、自車両Mの周辺範囲PAの車線数に絞り込む(ステップS202)。このステップS202の処理は、例えば、車線情報に含まれる車線区分情報と車線位置情報とに基づいて、車線情報に含まれるそれぞれの車線Lから周辺範囲PA内の車線Lを抽出することによって行ってもよいし、認識部130に周辺範囲PA内の車線Lを再度認識させるように指示して認識部130から車線情報を取得することによって行ってもよい。
 次に、モード決定部150は、ステップS202において絞り込んだ周辺範囲PA内の車線数が第3基準値を超えるか否かを判定する(ステップS204)。ステップS204において、周辺範囲PA内の車線数が第3基準値を超えないと判定された場合、モード決定部150は、処理をステップS108に進める。
 一方、ステップS204において、周辺範囲PA内の車線数が第3基準値を超えると判定された場合、モード決定部150は、自車両Mの運転モードをモードCに変更する(ステップS106)。
 その後、モード決定部150は、第1実施形態の変更処理と同様に、ステップS108~ステップS112の処理を行う。このとき、第2実施形態の変更処理では、ステップS110の処理において第2基準値を用いるが、第3基準値を用いてもよい。
 以上説明した処理によって、第2実施形態のモード決定部150は、現在の自車両Mの運転モードがモードAまたはBであるときに、現在走行している自車両Mの進行方向と同じ方向の車線数が第2基準値を超える場合には、さらに、周辺の車線数が第3基準値を超えるか否かを判定し、周辺の車線数が第3基準値を超える場合には、自車両Mの運転モードをモードCに変更する。これにより、運転者は、第1実施形態の変更処理と同様に、前方を監視するとともにステアリングホイール82を把持する状態となり、周辺環境の変化に対応可能となる。この結果、第2実施形態に係る自動運転制御装置100は、第1実施形態と同様に、道路構造に応じた適切な制御をすることができる。
 第2実施形態の変更処理では、ステップS200において認識部130が認識した前方基準距離DFと後方基準距離DRとの範囲内に存在する車線Lの車線数が第2基準値を超えると判定され、ステップS204において周辺範囲PA内の車線数が第3基準値を超えると判定された場合に、自車両Mの運転モードをモードAまたはBからモードCに変更した。しかし、モード決定部150は、例えば、ステップS200において車線数が第2基準値を超えると判定された場合に自車両Mの運転モードをモードAまたはBからモードCに変更し、さらに、ステップS204において周辺範囲PA内の車線数が第3基準値を超えると判定された場合に、自車両Mの運転モードをモードCからモードDまたはEに変更するようにしてもよい。
 <第3実施形態>
 第1実施形態または第2実施形態におけるモード決定部150は、自車両MがモードAまたはBで走行しているときに、認識部130が認識した車線数に基づいて、自車両Mの運転モードをモードCに変更する。これに代えて(または、加えて)モード決定部150は、認識部130が認識した車線に関する他の車線情報を用いて、運転モードをモードCに変更するようにしてもよい。上述したように、認識部130は、前方基準距離DFと後方基準距離DRとの範囲内に存在する車線Lを認識する際に、それぞれの車線Lの区分(本線車線、分岐車線、あるいは合流車線)も認識している。そして、認識部130は、車線区分情報を含めた車線情報をモード決定部150に出力することができる。このため、モード決定部150は、認識部130が認識した車線数に代えて、または加えて、認識部130が認識した分岐車線の数、つまり本線車線からの分岐箇所の数に基づいて、運転モードをモードCに変更することができる。
 図8は、第3実施形態に係る認識部130が認識する分岐車線(分岐箇所)について説明するための図である。図8においても、連続して連なっている一連の矢印が車線を示している。図8には、第1実施形態において図4に示した場面において認識部130が認識する本線車線からの分岐箇所Bを示している。認識部130が分岐箇所Bを認識する場合においても、前方基準距離DFは、後方基準距離DRよりも長い距離である。認識部130が分岐箇所Bを認識する場合、例えば、前方基準距離DFを、第1実施形態における前方基準距離DFよりもさらに長い距離にしてもよい。
 図8に示した場面において、認識部130は、前方基準距離DFの範囲内の車線L-6~L-10を、本線車線から分岐する分岐車線として認識する。そして、認識部130は、車線L-6およびL-7が本線車線から分岐する分岐箇所B-1と、車線L-8が本線車線から分岐する分岐箇所B-2と、車線L-9およびL-10が本線車線から分岐する分岐箇所B-2とのそれぞれを認識する。さらに、図8に示した場面において、認識部130は、後方基準距離DRの範囲の車線L-15およびL-16を、本線車線から分岐する分岐車線として認識する。そして、認識部130は、車線L-15およびL-16が本線車線から分岐する分岐箇所B-4を認識する。
 認識部130は、認識したそれぞれの分岐箇所Bの情報が含まれる車線情報を、モード決定部150に出力する。車線情報に含まれる分岐箇所Bの情報には、少なくとも、認識した分岐箇所Bの数(以下、分岐数)の情報が含まれる。車線情報に含まれる分岐箇所Bの情報には、例えば、認識したそれぞれの分岐箇所Bが前方基準距離DFまたは後方基準距離DRのいずれの範囲に存在する分岐箇所Bであるかを表す情報や、それぞれの分岐箇所Bにおける自車両Mの位置からの距離(前方あるいは後方の情報を含んでもよい)などの自車両Mとの位置関係を表す情報などを含んでもよい。
 モード決定部150は、認識部130により出力された車線情報に含まれる分岐箇所Bの情報が表す基準距離の範囲(基準範囲)に存在する分岐車線の分岐数に基づいて、自車両Mの運転モードを変更する。より具体的には、モード決定部150は、現在の自車両Mの運転モードがモードAまたはBであり、且つ車線情報に含まれる分岐箇所Bの情報が表す分岐数が第4基準値を超えるか否かを判定する。第4基準値は、例えば、数[箇所]程度の値である。第4基準値は、第1実施形態の第1基準値と同様に、固定値であってもよいし、自車両Mが走行している速度や、同じ走行車線あるいは本線車線を走行している他の車両の有無、本線車線の数など、自車両Mが現在走行している状況に応じて定められてもよい。
 [運転モードの変更処理]
 図9は、第3実施形態に係るモード決定部150により実行される処理の流れの一例を示すフローチャートである。本フローチャートの変更処理も、第1実施形態の変更処理と同様に、例えば、自動運転制御装置100が作動している間、繰り返し実行される。本フローチャートには、第1実施形態の変更処理と同様の処理を含んでいるため、第1実施形態の変更処理と同様の処理に同一のステップ番号を付与し、再度の説明は省略する。
 第3実施形態の変更処理では、モード決定部150は、ステップS102において取得した車線情報に含まれる分岐箇所Bの情報が表す分岐数が、第4基準値を超えるか否かを判定する(ステップS300)。ステップS300において、分岐数が第4基準値を超えないと判定された場合、モード決定部150は、処理をステップS100に戻す。
 一方、ステップS300において、分岐数が第4基準値を超えると判定された場合、モード決定部150は、自車両Mの運転モードをモードCに変更する(ステップS106)。
 その後、モード決定部150は、認識部130により出力された車線情報を再度取得する(ステップS108)。第3実施形態の変更処理におけるステップS108の処理は、第1実施形態の変更処理と同様に、ステップS106の処理において自車両Mの運転モードをモードCに変更した後、所定の時間が経過した後に行ってもよい。第3実施形態の変更処理における所定の時間は、例えば、認識部130が認識した分岐数が異なる値になるまでの時間であってもよい。
 そして、モード決定部150は、再度取得した車線情報に含まれる分岐箇所Bの情報が表す分岐数が第4基準値以下であるか否かを判定する(ステップS310)。ステップS310において、分岐数が第4基準値以下ではないと判定された場合、モード決定部150は、処理をステップS100に戻す。つまり、第3実施形態の変更処理においてもモード決定部150は、変更した現在の走行モード(モードC)を維持する。
 一方、ステップS310において、分岐数が第4基準値以下であると判定された場合、モード決定部150は、自車両Mの運転モードをモードAまたはBに変更し(ステップS112)、処理をステップS100に戻す。
 以上説明した処理によって、第3実施形態のモード決定部150は、現在の自車両Mの運転モードがモードAまたはBであるときに、現在走行している自車両Mの進行方向と同じ方向の分岐数が第4基準値を超える場合には、自車両Mの運転モードをモードCに変更する。これにより、運転者は、第1実施形態の変更処理と同様に、前方を監視するとともにステアリングホイール82を把持する状態となり、周辺環境の変化に対応可能となる。この結果、第3実施形態に係る自動運転制御装置100は、第1実施形態と同様に、道路構造に応じた適切な制御をすることができる。
 第3実施形態の変更処理では、第1実施形態の変更処理と同様に、ステップS300において認識部130が認識した前方基準距離DFと後方基準距離DRとの範囲内に存在する分岐箇所Bの分岐数が第4基準値を超えると判定された場合に、自車両Mの運転モードをモードAまたはBからモードCに変更した。しかし、第3実施形態のモード決定部150は、例えば、第2実施形態と同様に、二段階で自車両Mの運転モードを変更するようにしてもよい。つまり、第3実施形態のモード決定部150は、第2実施形態の変更処理と同様に、第1段階で自車両Mの運転モードをモードAまたはBからモードCに変更し、第2段階で自車両Mの運転モードをモードCからモードDまたはEに変更するようにしてもよい。この場合における認識部130の分岐箇所Bや分岐数の認識方法や、モード決定部150の処理などは、上述した第2実施形態の場合と等価なものになるようにすればよい。
 上記に述べたとおり、実施形態の自動運転制御装置100によれば、認識部130が、自車両Mの走行に関与する可能性がある他の車両が走行している車線(あるいは分岐箇所)を認識する。そして、実施形態の自動運転制御装置100では、モード決定部150が、現在の自車両Mの運転モードがモードAまたはBである場合に、認識部130が認識した車線の情報に基づいて、自車両Mの運転モードを変更する。これにより、実施形態の自動運転制御装置100では、道路構造に応じた適切な制御をすることができる。
 上記説明した実施形態は、以下のように表現することができる。
 プログラムを記憶した記憶装置と、
 ハードウェアプロセッサと、を備え、
 前記ハードウェアプロセッサが前記記憶装置に記憶されたプログラムを実行することにより、
 車両の周辺の状況を認識し、
 前記車両の運転者の操作に依らずに前記車両の操舵および加減速を制御し、
 前記車両の運転モードを、第1の運転モードと、第2の運転モードとを含む複数の運転モードのいずれかに決定し、前記第2の運転モードは前記運転者に課されるタスクが前記第1の運転モードに比して軽度な運転モードであり、少なくとも前記第2の運転モードを含む前記複数の運転モードの一部は前記車両の運転者の操作に依らずに前記車両の操舵および加減速を制御することで行われるものであり、
 前記決定した運転モードに係るタスクが運転者により実行されない場合に、よりタスクが重度な運転モードに前記車両の運転モードを変更し、
 前記認識する際に、基準範囲内に存在する前記車両と同じ方向に走行可能な車線を認識し、
 前記車両の運転モードが前記第2の運転モードである場合、前記認識された前記車線の数に基づいて、前記第2の運転モードから前記第1の運転モードに前記車両の運転モードを変更する、
 ように構成されている、車両制御装置。
 以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形および置換を加えることができる。
1・・・車両システム
10・・・カメラ
12・・・レーダ装置
14・・・LIDAR
16・・・物体認識装置
40・・・車両センサ
70・・・ドライバモニタカメラ
80・・・運転操作子
82・・・ステアリングホイール
84・・・ステアリング把持センサ
100・・・自動運転制御装置
120・・・第1制御部
130・・・認識部
140・・・行動計画生成部
150・・・モード決定部
152・・・運転者状態判定部
154・・・モード変更処理部
160・・・第2制御部

Claims (11)

  1.  車両の周辺の状況を認識する認識部と、
     前記車両の運転者の操作に依らずに前記車両の操舵および加減速を制御する運転制御部と、
     前記車両の運転モードを、第1の運転モードと、第2の運転モードとを含む複数の運転モードのいずれかに決定し、前記第2の運転モードは前記運転者に課されるタスクが前記第1の運転モードに比して軽度な運転モードであり、少なくとも前記第2の運転モードを含む前記複数の運転モードの一部は前記運転制御部により制御されるものであり、前記決定した運転モードに係るタスクが運転者により実行されない場合に、よりタスクが重度な運転モードに前記車両の運転モードを変更するモード決定部と、
     を備え、
     前記認識部は、基準範囲内に存在する前記車両と同じ方向に走行可能な車線を認識し、
     前記モード決定部は、前記車両の運転モードが前記第2の運転モードである場合、前記認識部により認識された前記車線の数に基づいて、前記第2の運転モードから前記第1の運転モードに前記車両の運転モードを変更する、
     車両制御装置。
  2.  前記モード決定部は、前記車線の数が第1基準値を超える場合に、前記運転制御部における前記運転モードを前記第2の運転モードから前記第1の運転モードに変更する、
     請求項1に記載の車両制御装置。
  3.  前記モード決定部は、前記車線の数が第2基準値を超え、且つ前記認識部により認識された前記車両の周辺の範囲内に存在する前記車線の数が第3基準値を超える場合に、前記運転制御部における前記運転モードを前記第2の運転モードから前記第1の運転モードに変更する、
     請求項1に記載の車両制御装置。
  4.  前記基準範囲は、前記車両から前方に向けて前方基準距離までの範囲と、前記車両から後方に向けて後方基準距離までの範囲とを含む、
     請求項1に記載の車両制御装置。
  5.  前記前方基準距離は、前記後方基準距離よりも長い、
     請求項4に記載の車両制御装置。
  6.  車両の周辺の状況を認識する認識部と、
     前記車両の運転者の操作に依らずに前記車両の操舵および加減速を制御する運転制御部と、
     前記車両の運転モードを、第1の運転モードと、第2の運転モードとを含む複数の運転モードのいずれかに決定し、前記第2の運転モードは前記運転者に課されるタスクが前記第1の運転モードに比して軽度な運転モードであり、少なくとも前記第2の運転モードを含む前記複数の運転モードの一部は前記運転制御部により制御されるものであり、前記決定した運転モードに係るタスクが運転者により実行されない場合に、よりタスクが重度な運転モードに前記車両の運転モードを変更するモード決定部と、
     を備え、
     前記認識部は、基準範囲内に存在する前記車両と同じ方向に走行可能な車線における分岐箇所を認識し、
     前記モード決定部は、前記車両の運転モードが前記第2の運転モードである場合、前記認識部により認識された前記分岐箇所の数が第4基準値を超える場合に、前記第2の運転モードから前記第1の運転モードに前記車両の運転モードを変更する、
     車両制御装置。
  7.  前記第2の運転モードは、少なくとも、前記運転者による操舵操作を受け付ける操作子の把持が課されない運転モードであり、
     前記第1の運転モードは、前記運転者により、前記車両の操舵と加減速との内、少なくとも一方の運転操作が必要な運転モード、あるいは、前記運転者による前記操作子の把持が課される運転モードである、
     請求項1または請求項6に記載の車両制御装置。
  8.  車両に搭載されたコンピュータが、
     車両の周辺の状況を認識し、
     前記車両の運転者の操作に依らずに前記車両の操舵および加減速を制御し、
     前記車両の運転モードを、第1の運転モードと、第2の運転モードとを含む複数の運転モードのいずれかに決定し、前記第2の運転モードは前記運転者に課されるタスクが前記第1の運転モードに比して軽度な運転モードであり、少なくとも前記第2の運転モードを含む前記複数の運転モードの一部は前記車両の運転者の操作に依らずに前記車両の操舵および加減速を制御することで行われるものであり、
     前記決定した運転モードに係るタスクが運転者により実行されない場合に、よりタスクが重度な運転モードに前記車両の運転モードを変更し、
     前記認識する際に、基準範囲内に存在する前記車両と同じ方向に走行可能な車線を認識し、
     前記車両の運転モードが前記第2の運転モードである場合、前記認識された前記車線の数に基づいて、前記第2の運転モードから前記第1の運転モードに前記車両の運転モードを変更する、
     車両制御方法。
  9.  車両に搭載されたコンピュータが、
     車両の周辺の状況を認識し、
     前記車両の運転者の操作に依らずに前記車両の操舵および加減速を制御し、
     前記車両の運転モードを、第1の運転モードと、第2の運転モードとを含む複数の運転モードのいずれかに決定し、前記第2の運転モードは前記運転者に課されるタスクが前記第1の運転モードに比して軽度な運転モードであり、少なくとも前記第2の運転モードを含む前記複数の運転モードの一部は前記車両の運転者の操作に依らずに前記車両の操舵および加減速を制御することで行われるものであり、
     前記決定した運転モードに係るタスクが運転者により実行されない場合に、よりタスクが重度な運転モードに前記車両の運転モードを変更し、
     前記認識する際に、基準範囲内に存在する前記車両と同じ方向に走行可能な車線における分岐箇所を認識し、
     前記車両の運転モードが前記第2の運転モードである場合、前記認識された前記分岐箇所の数が第4基準値を超える場合に、前記第2の運転モードから前記第1の運転モードに前記車両の運転モードを変更する、
     車両制御方法。
  10.  車両に搭載されたコンピュータに、
     車両の周辺の状況を認識させ、
     前記車両の運転者の操作に依らずに前記車両の操舵および加減速を制御させ、
     前記車両の運転モードを、第1の運転モードと、第2の運転モードとを含む複数の運転モードのいずれかに決定させ、前記第2の運転モードは前記運転者に課されるタスクが前記第1の運転モードに比して軽度な運転モードであり、少なくとも前記第2の運転モードを含む前記複数の運転モードの一部は前記車両の運転者の操作に依らずに前記車両の操舵および加減速を制御することで行われるものであり、
     前記決定した運転モードに係るタスクが運転者により実行されない場合に、よりタスクが重度な運転モードに前記車両の運転モードを変更させ、
     前記認識する際に、基準範囲内に存在する前記車両と同じ方向に走行可能な車線を認識させ、
     前記車両の運転モードが前記第2の運転モードである場合、前記認識させた前記車線の数に基づいて、前記第2の運転モードから前記第1の運転モードに前記車両の運転モードを変更させる、
     プログラム。
  11.  車両に搭載されたコンピュータに、
     車両の周辺の状況を認識させ、
     前記車両の運転者の操作に依らずに前記車両の操舵および加減速を制御させ、
     前記車両の運転モードを、第1の運転モードと、第2の運転モードとを含む複数の運転モードのいずれかに決定させ、前記第2の運転モードは前記運転者に課されるタスクが前記第1の運転モードに比して軽度な運転モードであり、少なくとも前記第2の運転モードを含む前記複数の運転モードの一部は前記車両の運転者の操作に依らずに前記車両の操舵および加減速を制御することで行われるものであり、
     前記決定した運転モードに係るタスクが運転者により実行されない場合に、よりタスクが重度な運転モードに前記車両の運転モードを変更させ、
     前記認識する際に、基準範囲内に存在する前記車両と同じ方向に走行可能な車線における分岐箇所を認識させ、
     前記車両の運転モードが前記第2の運転モードである場合、前記認識させた前記分岐箇所の数が第4基準値を超える場合に、前記第2の運転モードから前記第1の運転モードに前記車両の運転モードを変更させる、
     プログラム。
PCT/JP2020/049079 2020-12-28 2020-12-28 車両制御装置、車両制御方法、およびプログラム WO2022144950A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080106054.XA CN116490415A (zh) 2020-12-28 2020-12-28 车辆控制装置、车辆控制方法及程序
US18/268,619 US20240300524A1 (en) 2020-12-28 2020-12-28 Vehicle control device, vehicle control method, and storage medium
PCT/JP2020/049079 WO2022144950A1 (ja) 2020-12-28 2020-12-28 車両制御装置、車両制御方法、およびプログラム
JP2022524108A JPWO2022144950A1 (ja) 2020-12-28 2020-12-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/049079 WO2022144950A1 (ja) 2020-12-28 2020-12-28 車両制御装置、車両制御方法、およびプログラム

Publications (1)

Publication Number Publication Date
WO2022144950A1 true WO2022144950A1 (ja) 2022-07-07

Family

ID=82260341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/049079 WO2022144950A1 (ja) 2020-12-28 2020-12-28 車両制御装置、車両制御方法、およびプログラム

Country Status (4)

Country Link
US (1) US20240300524A1 (ja)
JP (1) JPWO2022144950A1 (ja)
CN (1) CN116490415A (ja)
WO (1) WO2022144950A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020160956A (ja) * 2019-03-27 2020-10-01 本田技研工業株式会社 車両制御装置、車両および車両制御方法
JP2020163908A (ja) * 2019-03-28 2020-10-08 本田技研工業株式会社 車両制御装置、車両制御方法、及びプログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020160956A (ja) * 2019-03-27 2020-10-01 本田技研工業株式会社 車両制御装置、車両および車両制御方法
JP2020163908A (ja) * 2019-03-28 2020-10-08 本田技研工業株式会社 車両制御装置、車両制御方法、及びプログラム

Also Published As

Publication number Publication date
US20240300524A1 (en) 2024-09-12
JPWO2022144950A1 (ja) 2022-07-07
CN116490415A (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
JP6942236B1 (ja) 車両制御装置、車両制御方法、およびプログラム
JP2022103505A (ja) 車両制御装置、車両制御方法、およびプログラム
US12030530B2 (en) Vehicle control device, vehicle control method, and storage medium
US11827246B2 (en) Vehicle control device, vehicle control method, and storage medium
JP7092955B1 (ja) 車両制御装置、車両制御方法、およびプログラム
JP7046289B1 (ja) 車両制御装置、車両システム、車両制御方法、およびプログラム
JP7209681B2 (ja) 車両制御装置、車両制御方法、及びプログラム
WO2022144957A1 (ja) 車両制御装置、車両制御方法、およびプログラム
US11834048B2 (en) Vehicle control device, vehicle control method, and recording medium
JP7308880B2 (ja) 車両制御装置、車両制御方法、およびプログラム
JP2024030413A (ja) 車両制御装置、車両制御方法、およびプログラム
WO2022144958A1 (ja) 車両制御装置、車両制御方法、およびプログラム
JP7048832B1 (ja) 車両制御装置、車両制御方法、およびプログラム
JP2022104431A (ja) 車両用認識装置、車両制御システム、車両用認識方法、およびプログラム
WO2022144950A1 (ja) 車両制御装置、車両制御方法、およびプログラム
JP2022103645A (ja) 車両制御装置、車両制御方法、およびプログラム
JP7075550B1 (ja) 車両制御装置、車両制御方法、およびプログラム
US20230303126A1 (en) Vehicle control device, vehicle control method, and storage medium
WO2022144974A1 (ja) 車両制御装置、車両制御方法、及びプログラム
WO2022144976A1 (ja) 車両制御装置、車両制御方法、およびプログラム
US20220315050A1 (en) Vehicle control device, route generation device, vehicle control method, route generation method, and storage medium
WO2022144954A1 (ja) 車両制御装置、車両制御方法、およびプログラム
WO2022144970A1 (ja) 車両制御装置、車両制御方法、およびプログラム
JP2022103474A (ja) 車両制御装置、車両制御方法、およびプログラム
JP2022103723A (ja) 車両制御装置、車両制御方法、およびプログラム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022524108

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967964

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080106054.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18268619

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20967964

Country of ref document: EP

Kind code of ref document: A1