[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022021608A1 - 锂离子电池正极补锂添加剂及其制备方法和锂离子电池 - Google Patents

锂离子电池正极补锂添加剂及其制备方法和锂离子电池 Download PDF

Info

Publication number
WO2022021608A1
WO2022021608A1 PCT/CN2020/119884 CN2020119884W WO2022021608A1 WO 2022021608 A1 WO2022021608 A1 WO 2022021608A1 CN 2020119884 W CN2020119884 W CN 2020119884W WO 2022021608 A1 WO2022021608 A1 WO 2022021608A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
positive electrode
ion battery
nickel
composite
Prior art date
Application number
PCT/CN2020/119884
Other languages
English (en)
French (fr)
Inventor
陈俊奇
夏凡
钱超
岳敏
Original Assignee
深圳市研一新材料有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市研一新材料有限责任公司 filed Critical 深圳市研一新材料有限责任公司
Priority to EP20947573.0A priority Critical patent/EP4191708A4/en
Priority to JP2023504719A priority patent/JP7559211B2/ja
Priority to US18/007,346 priority patent/US20230290949A1/en
Priority to KR1020237006592A priority patent/KR20230061361A/ko
Publication of WO2022021608A1 publication Critical patent/WO2022021608A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Complex oxides containing nickel and at least one other metal element
    • C01G53/42Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a lithium ion battery material, a preparation method thereof, and a lithium ion battery, in particular to a lithium ion battery positive electrode additive material, a preparation method thereof, and a lithium ion battery.
  • Lithium-ion batteries (batteries) are widely used in various electronic products due to their high energy density and long cycle life. With the rapid development of large-scale mobile power sources such as electric vehicles, electric machinery, and drones, higher requirements for high energy and high power are put forward.
  • cathode and anode materials with high specific capacity such as silicon, tin, aluminum, and oxides as new anode materials.
  • some of the lithium released from the positive electrode forms an irreversible lithium-containing passivation film SEI on the surface of the negative electrode, resulting in the loss of active lithium, thereby reducing the available energy of the battery.
  • the prior art approach is to pre-supplement the positive electrode or the negative electrode with lithium.
  • the negative electrode lithium supplement is generally the reaction of metal lithium powder, foil, sheet and negative electrode material.
  • this method has the problems that the chemical stability of the lithiation reagent is poor, and the active lithium powder has a large safety hazard.
  • Lithium supplementation for the positive electrode is generally to mix the supplementary lithium material with the positive electrode material in proportion, and make a battery cell after sizing. During the first charging process, excess lithium is released to supplement the lithium consumed by the formation of the SEI film on the negative electrode surface. lithium.
  • the positive electrode lithium supplement does not need to change the existing battery production process, so it has the characteristics of low cost, simplicity and high safety, and has more industrial application prospects.
  • the preparation method of the positive electrode lithium supplementary material in the prior art has the problem of complicated process, and needs to go through multiple mixing, crushing and sintering processes, and the obtained positive electrode lithium supplementary material is not of high purity and cannot meet the requirements of industrial production.
  • the preparation method of the lithium-replenishing material Li 2 NiO 2 and the lithium ion capacitor using the Li 2 NiO 2 are made of Li 2 O and NiO as raw materials, ball-milled in a protective atmosphere, sintered at high temperature, and then added Al 2 O 3 is continuously ball-milled in a protective atmosphere, and then sintered at high temperature to obtain the target Li 2 NiO 2 .
  • the shortcomings of this method are: Li 2 NiO 2 is prepared by high temperature sintering using Li 2 O, NiO and Al 2 O 3 as raw materials The synthesis is difficult, the obtained Li 2 NiO 2 contains many impurities, and it is difficult to improve the synthesis purity.
  • Another example is the positive electrode sheet disclosed in Chinese Patent Publication No. 109786746A, the lithium ion battery positive electrode supplementary material and its preparation method, the positive electrode lithium supplementary material matrix and the carbon source are mixed with ethanol as a solvent to obtain a mixed solution, and the mixed solution is volatilized to remove the solvent. After calcination in an inert atmosphere, a lithium-ion battery positive electrode material with carbon coating on the surface is obtained.
  • the disadvantage is that it is extremely difficult to use Li 2 CO 3 as a raw material to prepare lithium oxide with a purity of > 99.9%, and the reproducibility is extremely poor.
  • the residual Li 2 CO 3 has a high content, and using it as a lithium source to prepare Li 2 NiO 2 will result in a high content of carbonate radicals, which will adversely affect the processing and preparation of batteries and battery performance.
  • Li 2 NiO 2 disclosed in Chinese Patent Publication No. 110218078A and its preparation method and application, including the following steps: S1. Using Li 2 O, Ni 2 CO 3 , and Al(OH) 3 as raw materials, using Acetone is a solvent, and after mixing, ball-milling is performed in a protective atmosphere; S2. The ball-milled product is dried to obtain powder; S3. The powder is pre-fired at a low temperature in a protective atmosphere; S4. The pre-fired product is ball-milled in a protective atmosphere , take out the ball-milled product and press it into a tablet; S5.
  • step Sinter the product obtained in step S4 at high temperature to obtain the target lithium-replenishing material Li 2 NiO 2 .
  • This method needs to be prepared by multiple sintering, and involves the use of organic acetone as a solvent , the complex process is not easy to implement mass production, and it is easy to cause environmental pollution.
  • the purpose of the present invention is to provide a lithium ion battery positive electrode lithium supplementing additive, a preparation method and a lithium ion battery, and the problem to be solved is to improve the purity of Li 2 NiO 2 and reduce the cost.
  • the present invention adopts the following technical solutions: a lithium ion battery positive electrode supplementary additive, the purity of Li 2 NiO 2 is more than 95%, the total amount of residual alkali is less than 3%, the gram capacity of the first charge is 420-465mAh/g, and the irreversible capacity is 260-260%. 340mAh/g.
  • the lithium ion battery positive electrode supplementary lithium additive of the present invention is characterized in that: it is obtained by the following preparation method, comprising the following steps:
  • the lithium raw material is heated to 400-950°C at a heating rate of 1-10°C/min under a vacuum degree of ⁇ 100pa, kept at a temperature of 15-480min, and the temperature is naturally cooled to room temperature in the furnace.
  • the lithium raw material is lithium hydroxide-lithium oxide-lithium carbonate composite, lithium hydroxide-lithium oxide-lithium oxalate composite, lithium hydroxide-lithium peroxide-lithium carbonate composite, lithium hydroxide-lithium peroxide- Lithium oxalate complex, lithium hydride-lithium oxide-lithium carbonate complex, lithium hydride-lithium oxide-lithium oxalate complex, lithium hydride-lithium peroxide-lithium carbonate complex, lithium hydride-lithium peroxide-lithium oxalate complex more than one of them;
  • Step 2 Mixing the complex lithium salt with the nickel source
  • the composite lithium salt is mixed in an argon or nitrogen protective atmosphere according to the molar ratio of the lithium source and the nickel source 1.5-2.2:1.0, the rotating speed is 500-1000rpm, and the time is 0.5-6.0h to obtain the mixture of the composite lithium salt and the nickel source. powder;
  • the nickel source is more than one of nickelous oxide, nickel trioxide, nickel dioxide, nickel hydroxide, nickel hydroxide oxide, nickel carbonate, nickel oxalate and nickel acetate;
  • the mixed powder of composite lithium salt and nickel source is heated at a rate of 1 ⁇ 10°C/min to 100 ⁇ 300°C in a protective atmosphere or an oxidizing atmosphere, and kept for 0.5 ⁇ 5.0h, and then heated at a rate of 1 ⁇ 10°C/min for 0.5 ⁇ 5.0h. min heating rate, to 600 ⁇ 800 °C, heat preservation for 5.0 ⁇ 20.0h, high temperature sintering, and the furnace is naturally cooled to room temperature to obtain sintered materials;
  • the pulverized material is demagnetized so that the content of the magnetic substance is less than 50ppb, and a lithium supplementing additive for the positive electrode of the lithium ion battery is obtained.
  • the mass purity of the lithium raw material in the first step is >99%; in the second step, the purity of argon or nitrogen is >99.995%, and the flow rate is 6L/min; in the third step, the protective atmosphere is more than one of argon or nitrogen, The gas purity is >99.995%, the flow rate is 6L/min, and the oxidizing atmosphere is a protective atmosphere with an oxygen content of 50-200 ppm; the purity of argon or nitrogen in the step 4 is >99.995%, and the flow rate is 6L/min.
  • the particle size D50 is 5.0-15.0um, and Dmax ⁇ 25.0um.
  • a preparation method of a lithium-ion battery positive electrode supplementary lithium additive comprising the following steps:
  • the lithium raw material is heated at a rate of 1-10°C/min to 400-950°C under a vacuum degree of ⁇ 100pa, kept at a temperature of 15-480min, and the vacuum degree is kept in the furnace to naturally cool down to room temperature, and then taken out and crushed to obtain a composite material.
  • Lithium salt xLiOH ⁇ yLi 2 O ⁇ zLi 2 CO 3 ⁇ wH 2 O, where x, y and z are mass fractions, 0 ⁇ x ⁇ 0.5, 0.5 ⁇ y ⁇ 1.0, 0 ⁇ z ⁇ 0.5, x+y+ z 1, w represents the crystal water content, 0 ⁇ w ⁇ 1;
  • the lithium raw material is lithium hydroxide-lithium oxide-lithium carbonate composite, lithium hydroxide-lithium oxide-lithium oxalate composite, lithium hydroxide-lithium peroxide-lithium carbonate composite, lithium hydroxide-lithium peroxide- Lithium oxalate complex, lithium hydride-lithium oxide-lithium carbonate complex, lithium hydride-lithium oxide-lithium oxalate complex, lithium hydride-lithium peroxide-lithium carbonate complex, lithium hydride-lithium peroxide-lithium oxalate complex more than one of them;
  • Step 2 Mix the complex lithium salt with the nickel source
  • the composite lithium salt is mixed in an argon or nitrogen protective atmosphere according to the molar ratio of the lithium source and the nickel source 1.5-2.2:1.0, the rotating speed is 500-1000rpm, and the time is 0.5-6.0h to obtain the mixture of the composite lithium salt and the nickel source. powder;
  • the nickel source is more than one of nickelous oxide, nickel trioxide, nickel dioxide, nickel hydroxide, nickel hydroxide oxide, nickel carbonate, nickel oxalate and nickel acetate;
  • the mixed powder of composite lithium salt and nickel source is heated at a rate of 1 ⁇ 10°C/min to 100 ⁇ 300°C in a protective atmosphere or an oxidizing atmosphere, and kept for 0.5 ⁇ 5.0h, and then heated at a rate of 1 ⁇ 10°C/min for 0.5 ⁇ 5.0h.
  • the sintered material is dispersed in an argon or nitrogen protective atmosphere at a rotational speed of 800-1000 rpm for 15-30 minutes, pulverized, and sieved with 350-400 mesh to obtain a lithium ion battery positive electrode supplementary additive.
  • the method of the present invention is demagnetized after step 4, so that the content of the magnetic substance is less than 50ppb.
  • zirconium balls with a diameter of 5 mm are used for crushing, and the ball-to-material mass ratio is 10-15:1, the rotational speed is 700 rpm, and the ball is milled for 0.5 h.
  • the quality purity of the lithium raw material in step 1 of the method of the present invention is greater than 99%; in the second step, the purity of argon or nitrogen is greater than 99.995%, and the flow rate is 6L/min; in the third step, the protective atmosphere is one of argon or nitrogen. Above, the gas purity is more than 99.995%, the flow rate is 6L/min, and the oxidizing atmosphere is a protective atmosphere with an oxygen content of 50-200 ppm; the purity of argon or nitrogen in the step 4 is more than 99.995%, and the flow rate is 6L/min.
  • the particle size D50 is 5.0-15.0um, and Dmax ⁇ 25.0um.
  • a lithium ion battery is provided with a positive electrode, and a lithium supplementing additive is added to the positive electrode active material of the positive electrode.
  • the present invention adopts composite lithium salt as the lithium raw material, including mixing, sintering and crushing, the obtained Li 2 NiO 2 has a purity of more than 95%, the total amount of residual alkali is less than 3%, and the gram capacity of the first charge is 420-465mAh. /g, the irreversible capacity is 260-340mAh/g, the preparation method is simple, easy to control, low cost, environmentally friendly, and beneficial to industrial production.
  • FIG. 1 is an XRD pattern of the composite lithium salt of Example 1 of the present invention.
  • FIG. 2 is an XRD pattern of the lithium supplementing additive for the positive electrode of the lithium ion battery in Example 1 of the present invention.
  • FIG. 3 is a SEM image of the lithium supplementing additive for the positive electrode of the lithium ion battery according to Example 1 of the present invention.
  • FIG. 4 is a charge-discharge curve diagram of Example 1 of the present invention.
  • the preparation method of the lithium ion battery positive electrode lithium supplement additive Li 2 NiO 2 of the present invention comprises the following steps:
  • Lithium raw materials are lithium hydroxide-lithium oxide-lithium carbonate complex, lithium hydroxide-lithium oxide-lithium oxalate complex, lithium hydroxide-lithium peroxide-lithium carbonate complex, lithium hydroxide-lithium peroxide-lithium oxalate Compounds, lithium hydride-lithium oxide-lithium carbonate complexes, lithium hydride-lithium oxide-lithium oxalate complexes, lithium hydride-lithium peroxide-lithium carbonate complexes, lithium hydride-lithium peroxide-lithium oxalate complexes More than one, the mass purity is >99%. Compounds refer to mechanical mixtures.
  • the lithium raw material in the embodiment of the present invention adopts the battery-grade lithium raw material of Jiangxi Ganfeng Lithium Industry Co., Ltd.
  • the lithium raw material is heated at a rate of 1-10°C/min to 400-950°C under a vacuum degree of ⁇ 100pa, and the temperature is kept for 15-480min.
  • the sample was taken out as a blocky solid, and the zirconium ball with a diameter of 5 mm was used for crushing. According to the mass ratio of the ball to the material of 10-15:1, the rotation speed was 700 rpm, and the ball was milled for 0.5 h to obtain a composite lithium salt xLiOH ⁇ yLi 2 O ⁇ zLi 2 CO 3 ⁇ wH 2 O.
  • lithium raw material is decomposed and transformed into a composite lithium salt (lithium source) containing lithium oxide, lithium hydroxide, and lithium carbonate that meets the requirements of the proportion, so that in the sintering process of step 3, lithium oxide and nickel source
  • a composite lithium salt lithium source
  • lithium oxide, lithium hydroxide, and lithium carbonate that meets the requirements of the proportion
  • Step 3 Sintering, when the temperature is more than 450°C, lithium hydroxide will melt into a liquid, which will bring a certain fluidity in the mixed lithium complex salt and nickel source, drive the diffusion of the complex lithium salt, and increase the complex lithium salt and nickel.
  • Step 2 Mix the complex lithium salt with the nickel source
  • the nickel source is one or more of nickel oxide, nickel trioxide, nickel dioxide, nickel hydroxide, nickel hydroxide oxide, nickel carbonate, nickel oxalate and nickel acetate.
  • the purity of argon or nitrogen is more than 99.995%, and the flow rate is 6L/min.
  • the lithium source and the nickel source are fully mixed to obtain uniform distribution of lithium and nickel components, which can improve the degree of diffusion reaction between lithium and nickel during the sintering process, and improve the purity of the lithium supplementary additive for the positive electrode of the lithium ion battery.
  • the mixed powder of composite lithium salt and nickel source is heated at a rate of 1 to 10°C/min to 100 to 300°C in a protective atmosphere or an oxidizing atmosphere, and kept for 0.5 to 5.0 hours.
  • the purpose is to remove residues in the mixed powder.
  • the moisture and volatiles are reduced, and the residual alkali is reduced; then the temperature rises at a rate of 1 to 10 °C/min to 600 to 800 °C, the temperature is kept for 5.0 to 20.0 h, and sintered at high temperature to ensure the full reaction between the composite lithium salt and the nickel source.
  • the furnace is naturally cooled to room temperature in a protective atmosphere or an oxidizing atmosphere to obtain a sintered material.
  • the protective atmosphere is one or more of argon or nitrogen, the gas purity is >99.995%, and the flow rate is 6L/min.
  • the oxidizing atmosphere is a protective atmosphere with an oxygen content of 50 to 200 ppm.
  • the lithium hydroxide will melt into a liquid, which will bring a certain fluidity in the mixed powder, which will drive the diffusion of the lithium source and increase the contact between the lithium oxide and the nickel source.
  • the reaction is more sufficient, and the presence of a trace amount of lithium carbonate is conducive to the synergistic diffusion of lithium hydroxide and lithium oxide during the sintering process.
  • the necessity of preparing a composite lithium salt in step 1 is as follows: (1) If Li 2 O is simply used as the lithium source, since Li 2 O is an inorganic oxide, its melting point is as high as 1567°C, and during the whole sintering process All of them are in a solid state, and the provided lithium can only pass through the solid-phase diffusion reaction, and the kinetic reaction is slow and the degree of reaction is limited; (2) If LiOH is used as the raw material, a large amount of water will be released during the sintering process, resulting in the final product.
  • the agglomeration of Li 2 NiO 2 is serious and difficult to process, which greatly reduces the purity of the final product Li 2 NiO 2 and increases the content of residual alkali; (3) If the simple mixing of raw materials Li 2 O+LiOH+Li 2 CO 3 is used directly without sintering Lithium raw material, the raw materials Li 2 O, LiOH, Li 2 CO 3 are still separated substances, which cannot play a good synergistic effect in the sintering process. The provided lithium source is still in a solid-phase diffusion state.
  • the sintered material is crushed by a 1000-type high-speed mixer of Wuxi Xinguang Powder Technology Co., Ltd. in a protective atmosphere of argon or nitrogen, and dispersed at a speed of 800-1000rpm for 15-30min, in an argon or nitrogen protective atmosphere,
  • the 350-type mechanical pulverizer of Yixing Jingxin Powder Machinery Equipment Co., Ltd. is used for crushing, and the vibrating screener of Xinxiang Weiliang Screening Machinery Co., Ltd. is used to screen 350-400 mesh, the particle size D50 is 5.0-15.0um, Dmax ⁇ 25.0um to obtain crushed material.
  • the purity of argon or nitrogen is more than 99.995%, and the flow rate is 6L/min.
  • a demagnetizer to demagnetize the pulverized material so that the content of magnetic substances is less than 50ppb, put the demagnetized pulverized material into an aluminum-plastic bag, and use a vacuum sealing machine to pack to obtain Li 2 NiO 2 , a positive lithium supplementary additive for lithium ion batteries.
  • the lithium ion battery positive electrode lithium supplementary additive prepared by the method of the invention is observed by using the FEI inspect F50 scanning electron microscope of the United States to test the SEM; Then use the tool GSAS software to refine and quantitatively analyze the composition content, calculate the product purity and impurity content ratio; use the Mettler G20S titrator to test the residual alkali content of the material; use the new Patek dry method to test the particle size of the material, and ICP to test the magnetic substance content.
  • the lithium ion battery positive lithium supplementary additive obtained in the example and the lithium supplementary additive of the comparative example were used as the positive electrode material, and the lithium sheet was used as the negative electrode sheet to prepare a CR2032 button battery, and its first charge-discharge gram capacity and coulombic efficiency were tested.
  • NMP solution of N-methylpyrrolidone with a solid content of 30% and stir evenly to obtain
  • the positive electrode slurry was uniformly coated on aluminum foil, dried under vacuum at 120° C. for 10 h, and punched into a 10 mm diameter disc as a positive electrode sheet.
  • the positive electrode sheet, the metal lithium sheet with a diameter of 16 mm for the negative electrode sheet, the Celgard 2400 microporous polypropylene membrane and the electrolyte 1mol/L LiPF6/EC+DMC are assembled in an argon gas glove box in a volume ratio of 1:1 to form a CR2032 button type battery.
  • the lithium ion battery positive electrode supplementary additive of the present invention has the mass purity of Li 2 NiO 2 >95%, the total amount of residual alkali (residual lithium) ⁇ 3%, the gram capacity of the first charge is 420-465mAh/g, and the irreversible capacity is 260-340mAh /g.
  • the lithium raw material 0.8LiOH-0.1Li 2 O-0.1Li 2 CO 3 was raised to 650°C at a heating rate of 6°C/min in a vacuum environment with a vacuum degree of 30pa, kept for 240min, kept in vacuum and cooled to room temperature and then taken out.
  • the ball-to-material ratio is 10:1
  • the speed is 700rpm
  • the ball mill is pulverized for 0.5h to obtain a composite lithium salt.
  • the composition and content of the composite lithium salt are quantitatively analyzed by XRD test and GSAS software, and the purity and the ratio of the composite lithium salt are calculated. It is 0.193LiOH ⁇ 0.788Li 2 O ⁇ 0.019Li 2 CO 3 .
  • Step 2 Mix the complex lithium salt with the nickel source
  • the mixed powder of the composite lithium salt and the nickel source was heated at a rate of 1°C/min to 100°C in a nitrogen atmosphere for 0.5h, and then heated at a rate of 1°C/min to 600°C and kept for 20.0h. Continue to naturally cool down to room temperature in the furnace in a nitrogen atmosphere to obtain a sintered material.
  • the morphology is single crystal spherical or rod-like particles, and the particle size is about 8.0um.
  • the total residual alkali content was 1.055% by titrator analysis.
  • the test results are shown in Table 1.
  • Example 1 As shown in Figure 4, after testing, the gram capacity of Example 1 was 430 mAh/g for the first charge, 105 mAh/g for the first discharge, 325 mAh/g for the available irreversible capacity, and 24.4% for the first Coulomb efficiency. The test results are shown in Table 1.
  • the lithium raw material 0.8LiOH-0.1Li 2 O-0.1Li 2 C 2 O 4 was raised to 950°C at a heating rate of 5°C/min in a vacuum environment with a vacuum degree of 90pa, kept for 15 minutes, and kept in vacuum to cool down to room temperature.
  • a heating rate of 5°C/min in a vacuum environment with a vacuum degree of 90pa, kept for 15 minutes, and kept in vacuum to cool down to room temperature.
  • 5mm zirconium balls with a ball-to-material ratio of 15:1, a rotating speed of 700rpm, and ball mill for 0.5h to obtain a composite lithium salt.
  • the composite lithium salt is refined and quantitatively analyzed by XRD test and GSAS software.
  • the salt ratio was 0.068LiOH ⁇ 0.900Li2O ⁇ 0.032Li2CO3 .
  • Step 2 Mixing the complex lithium salt with the nickel source
  • the lithium source to the nickel source 2.1:1.0 weigh 335.7 g of the composite lithium salt and 926.9 g of nickel hydroxide, mix them in an argon protective atmosphere, the mixing speed is 1000 rpm, and the mixing time is 2.0 h to obtain the composite lithium salt and nickel source of mixed powder.
  • the mixed powder of the composite lithium salt and the nickel source was heated at a rate of 5°C/min to 300°C in an argon atmosphere for 2.0h, and then heated at a rate of 5°C/min to 750°C and kept for 20.0h. , and continue to naturally cool down to room temperature in the furnace in an argon atmosphere to obtain a sintered material.
  • the positive electrode of the lithium ion battery of Example 2 contains Li 2 NiO 2 as a lithium supplementing additive, and the content of Li 2 NiO 2 is 97.9%.
  • the total content of residual alkali was 2.119% by titrator analysis.
  • the test results are shown in Table 1.
  • Example 2 After testing, the first charging gram capacity of Example 2 is 435mAh/g, the first discharging gram capacity is 150mAh/g, the available irreversible capacity is 285mAh/g, and the first coulombic efficiency is 34.5%.
  • the test results are shown in Table 1.
  • the lithium raw material 0.8LiOH-0.1Li 2 O 2 -0.1Li 2 CO 3 was raised to 800°C at a heating rate of 3°C/min in a vacuum environment with a vacuum degree of 40pa, kept for 60min, kept in vacuum and cooled to room temperature and taken out , using 5mm zirconium balls, with a ball-to-material ratio of 15:1, a rotating speed of 700rpm, and ball milling for 0.5h to obtain a composite lithium salt.
  • the composite lithium salt is refined and quantitatively analyzed by XRD test and GSAS software. The content is calculated, the purity, and the composite lithium salt The ratio is 0.100LiOH ⁇ 0.895Li 2 O ⁇ 0.005Li 2 CO 3 .
  • Step 2 Mix the complex lithium salt with the nickel source
  • the molar ratio of the lithium source and the nickel source 2.2:1.0 weigh 341.6 g of the composite lithium salt and 827.0 g of nickel trioxide, mix them in an argon atmosphere, the mixing speed is 900 rpm, and the mixing time is 1.0 h to obtain the composite lithium salt and Mixed powder of nickel source.
  • the mixed powder of the composite lithium salt and the nickel source was heated at a rate of 2°C/min to 200°C in an argon atmosphere, kept for 1.0h, and then heated at a rate of 2°C/min to 700°C and kept for 15.0h , and continue to naturally cool down to room temperature in the furnace in an argon atmosphere to obtain a sintered material.
  • the positive electrode of the lithium ion battery of Example 3 contains Li 2 NiO 2 as a lithium supplementing additive, and the content of Li 2 NiO 2 is 98.2%.
  • the total content of residual alkali was 1.786% by titrator analysis. The test results are shown in Table 1.
  • Example 3 After testing, the first charging gram capacity of Example 3 is 465mAh/g, the first discharging gram capacity is 125mAh/g, the available irreversible capacity is 340mAh/g, and the first coulombic efficiency is 26.9%.
  • the test results are shown in Table 1.
  • the lithium raw material 0.8LiOH-0.1Li 2 O-0.1Li 2 C 2 O 4 was raised to 700°C at a heating rate of 10°C/min in a vacuum environment with a vacuum degree of 20pa, maintained for 120min, and kept the vacuum and cooled to room temperature. Take out, use 5mm zirconium balls, use a ball-to-material ratio of 11:1, a speed of 700rpm, and ball mill for 0.5h to obtain a composite lithium salt. After XRD test and GSAS software, the composite lithium salt is refined and quantitatively analyzed for its composition and content, and its purity is calculated. The salt ratio was 0.116LiOH ⁇ 0.852Li2O ⁇ 0.032Li2CO3 .
  • Step 2 Mix the complex lithium salt with the nickel source
  • the mixed powder of composite lithium salt and nickel source was heated at a rate of 10°C/min to 150°C in a nitrogen atmosphere for 3.0h, and then heated at a rate of 10°C/min to 850°C and kept for 5.0h. Continue to naturally cool down the furnace to room temperature in a nitrogen atmosphere to obtain a sintered material.
  • the positive electrode of the lithium ion battery of Example 4 contains Li 2 NiO 2 as a lithium supplementing additive, and the content of Li 2 NiO 2 is 96.3%.
  • the total content of residual alkali was 2.785% as analyzed by titrator. The test results are shown in Table 1.
  • Example 4 After testing, the first charging gram capacity of Example 4 is 423 mAh/g, the first discharging gram capacity is 110 mAh/g, the available irreversible capacity is 313 mAh/g, and the first coulombic efficiency is 26.0%.
  • the test results are shown in Table 1.
  • the lithium raw material 0.4LiH-0.1Li 2 O-0.5Li 2 CO 3 was raised to 400°C at a heating rate of 1°C/min in a vacuum environment with a vacuum degree of 10pa, kept for 480min, kept in vacuum and cooled to room temperature, and then taken out.
  • the ball-to-material ratio is 13:1
  • the speed is 700rpm
  • the ball mill is crushed for 0.5h to obtain a composite lithium salt.
  • the composite lithium salt is quantitatively analyzed by XRD test and GSAS software. It is 0.075LiOH ⁇ 0.500Li 2 O ⁇ 0.425Li 2 CO 3 ⁇ 1H 2 O.
  • Step 2 Mix the complex lithium salt with the nickel source
  • the molar ratio of the lithium source to the nickel source 1.8:1.0 weigh 450.1 g of the composite lithium salt and 916.9 g of nickel hydroxide oxide, mix them in a nitrogen protective atmosphere, the mixing speed is 600 rpm, and the mixing time is 4.0 h to obtain the composite lithium salt and the nickel source. mixed powder.
  • the mixed powder of composite lithium salt and nickel source was heated at a rate of 3°C/min to 250°C in a nitrogen atmosphere for 4.0h, and then heated at a rate of 3°C/min to 690°C and kept for 8.0h. Continue to naturally cool down the furnace to room temperature in a nitrogen atmosphere to obtain a sintered material.
  • the positive electrode of the lithium ion battery of Example 5 contains Li 2 NiO 2 as a lithium supplementing additive, and the content of Li 2 NiO 2 is 97.2%.
  • the total residual alkali content was 1.901% by titrator analysis.
  • the test results are shown in Table 1.
  • Example 5 After testing, the first charging gram capacity of Example 5 is 429 mAh/g, the first discharging gram capacity is 125 mAh/g, the available irreversible capacity is 304 mAh/g, and the first coulombic efficiency is 29.1%.
  • the test results are shown in Table 1.
  • the lithium raw material 0.8LiH-0.1Li 2 O-0.1Li 2 C 2 O 4 was raised to 550°C at a heating rate of 8°C/min in a vacuum environment with a vacuum degree of 70pa, kept for 550min, and kept in vacuum and cooled to room temperature.
  • a heating rate of 8°C/min in a vacuum environment with a vacuum degree of 70pa, kept for 550min, and kept in vacuum and cooled to room temperature.
  • 5mm zirconium balls with a ball-to-material ratio of 14:1, a rotating speed of 700rpm, and ball mill for 0.5h to obtain a composite lithium salt.
  • the composite lithium salt is refined and quantitatively analyzed by XRD test and GSAS software, and the purity is calculated.
  • the salt ratio was 0.418LiOH ⁇ 0.550Li2O ⁇ 0.032Li2CO3 ⁇ 0.5H2O .
  • Step 2 Mix the complex lithium salt with the nickel source
  • the molar ratio of the lithium source to the nickel source of 1.6:1.0, weigh 291.3 g of the composite lithium salt and 1187.0 g of nickel carbonate, mix them in an argon atmosphere, the mixing speed is 700 rpm, and the mixing time is 5.0 h to obtain the composite lithium salt and the nickel source. mixed powder.
  • the mixed powder of the composite lithium salt and the nickel source was heated at a rate of 4°C/min to 280°C in an argon atmosphere, kept for 5.0h, and then heated at a rate of 4°C/min to 780°C and kept for 10.0h , and continue to naturally cool down to room temperature in the furnace in an argon atmosphere to obtain a sintered material.
  • the positive electrode of the lithium ion battery of Example 6 has a lithium supplementing additive Li 2 NiO 2 , and the content of Li 2 NiO 2 is 98.1%.
  • the total content of residual alkali was 2.538% by titrator analysis.
  • the test results are shown in Table 1.
  • Example 6 After testing, the gram capacity of Example 6 was 455mAh/g for the first charge, 137mAh/g for the first discharge, 318mAh/g for the available irreversible capacity, and 30.1% for the first Coulomb efficiency. The test results are shown in Table 1.
  • the lithium raw material 0.8LiH-0.1Li 2 O 2 -0.1Li 2 CO 3 was raised to 780°C at a heating rate of 4°C/min in a vacuum environment with a vacuum degree of 80pa, kept for 150min, kept in vacuum and cooled to room temperature and then taken out , using 5mm zirconium balls, with a ball-to-material ratio of 10:1, a rotating speed of 700rpm, and ball mill pulverization for 0.5h to obtain a composite lithium salt.
  • the composite lithium salt is refined and quantitatively analyzed by XRD test and GSAS software. The content, the calculated purity, the composite lithium salt The ratio is 0.120LiOH ⁇ 0.875Li 2 O ⁇ 0.005Li 2 CO 3 .
  • Step 2 Mix the complex lithium salt with the nickel source
  • the mixed powder of composite lithium salt and nickel source was heated at a rate of 6°C/min to 160°C in an oxygen atmosphere for 1.5h, and then heated at a rate of 6°C/min to 660°C and kept for 12.0h. Continue to naturally cool down the furnace to room temperature in an oxygen atmosphere to obtain a sintered material.
  • the oxidizing atmosphere has an oxygen content of 100 ppm.
  • the positive electrode of the lithium ion battery of Example 7 contains Li 2 NiO 2 as a lithium supplementing additive, and the content of Li 2 NiO 2 is 95.9%.
  • the total residual alkali content was 2.177% by titrator analysis.
  • the test results are shown in Table 1.
  • Example 7 After testing, the gram capacity of Example 7 was 420 mAh/g for the first charge, 160 mAh/g for the first discharge, 260 mAh/g for the available irreversible capacity, and 38.1% for the first Coulomb efficiency. The test results are shown in Table 1.
  • the lithium raw material 0.8LiH-0.1Li 2 O-0.1Li 2 C 2 O 4 was raised to 900°C at a heating rate of 2°C/min in a vacuum environment with a vacuum degree of 50pa, kept for 30min, and kept in vacuum to cool down to room temperature.
  • a heating rate of 2°C/min in a vacuum environment with a vacuum degree of 50pa, kept for 30min, and kept in vacuum to cool down to room temperature.
  • 5mm zirconium balls with a ball-to-material ratio of 15:1, a rotating speed of 700rpm, and ball mill for 0.5h to obtain a composite lithium salt.
  • the composite lithium salt is refined and quantitatively analyzed by XRD test and GSAS software.
  • the salt ratio was 0.048LiOH ⁇ 0.950Li2O ⁇ 0.002Li2CO3 .
  • Step 2 Mix the complex lithium salt with the nickel source
  • the mixed powder of composite lithium salt and nickel source was heated at a rate of 8°C/min to 230°C in a nitrogen atmosphere for 2.5h, and then heated to 730°C at a rate of 8°C/min and kept for 18.0h. Continue to naturally cool down to room temperature in the furnace in a nitrogen atmosphere to obtain a sintered material.
  • the lithium supplementing additive Li 2 NiO 2 has a Li 2 NiO 2 content of 96.7%.
  • the total content of residual alkali was 1.393% by titrator analysis.
  • the test results are shown in Table 1.
  • Example 8 After testing, the gram capacity of Example 8 was 428 mAh/g for the first charge, 157 mAh/g for the first discharge, 271 mAh/g for the available irreversible capacity, and 36.7% for the first Coulomb efficiency. The test results are shown in Table 1.
  • lithium oxide with a purity of 99.9% as the lithium raw material, take 50.27g of lithium oxide and 228.47g of nickelous oxide, mix the powders, and under a nitrogen atmosphere, raise the temperature to 200°C at a heating rate of 2°C/min and keep it for 1h. Then, the temperature was raised to 750°C at a heating rate of 2°C/min and kept for 10 hours. After the heat preservation was completed, it was cooled to room temperature to obtain the lithium supplementing additive of Comparative Example 1.
  • the lithium-supplementing additive of Comparative Example 1 has a Li 2 NiO 2 content of 85.6%, and its total residual alkali content is 9.019% as analyzed by a titrator.
  • the test results are shown in Table 1.
  • the lithium-replenishing additive of Comparative Example 1 has a secondary charge capacity of 350mAh/g, a first discharge capacity of 130mAh/g, an available irreversible capacity of 220mAh/g, and an initial Coulomb efficiency of 37.1%.
  • the test results are shown in Table 1.
  • the lithium-supplementing additive of Comparative Example 2 has a Li 2 NiO 2 content of 62.3%, and its total residual alkali content is 12.846% as analyzed by a titrator.
  • the test results are shown in Table 1.
  • the lithium-replenishing additive of Comparative Example 2 has a gram capacity of 290mAh/g for the first charge, a gram capacity of 120mAh/g for the first discharge, an available irreversible capacity of 170mAh/g, and a first Coulomb efficiency of 41.4%.
  • the test results are shown in Table 1.
  • the lithium-ion battery positive electrode lithium-supplementing additive Li 2 NiO 2 of Example 1 is selected as the lithium-replenishing additive, NCM811 is selected as the positive electrode active material, and the addition amount of the lithium-replenishing additive is 3wt% of the mass of the positive electrode active material.
  • the negative active material silicon oxide, capacity 500mAh/g, first effect 90%
  • the negative electrode slurry was obtained, coated on copper foil, dried in vacuum at 120° C. for 10 h, cut and pressed to obtain negative electrode sheets.
  • the positive electrode sheet, negative electrode sheet and separator Celgard 2400 microporous polypropylene film and electrolyte 1mol/L LiPF6/EC+DMC in a volume ratio of 1:1 were wound, packaged, baked, injected, pre-sealed and aged.
  • the lithium ion battery positive electrode lithium supplement additive Li 2 NiO 2 obtained in the example has low residual alkali content, low content of LiOH and Li 2 CO 3 , the prepared positive electrode slurry has good fluidity, is not easy to gel, and the soft pack battery produces small gas output .
  • the lithium-ion battery positive electrode lithium-supplementing additive Li 2 NiO 2 of Example 4 was selected as the lithium-supplementing additive, and a soft-pack lithium-ion battery was prepared by the same method as in Test Example 1, and the test showed that the first charge and discharge gram capacities were respectively 206 , 158mAh/g, the first efficiency is 76.7%.
  • the test results are shown in Table 2.
  • the lithium ion battery positive electrode lithium supplement additive Li 2 NiO 2 obtained in the example has low residual alkali content, low content of LiOH and Li 2 CO 3 , the prepared positive electrode slurry has good fluidity, is not easy to gel, and the soft pack battery produces small gas output .
  • the lithium-supplementing additive of Comparative Example 1 was selected as the lithium-supplementing additive, and a soft-pack lithium-ion battery was prepared by the same method as in Test Example 1. After testing, the gram capacities of the first charge and discharge were 195 and 169mAh/g, respectively, and the first efficiency was 86.7 %. The test results are shown in Table 2. Compared with the examples, the lithium-supplementing additive of the comparative example has a higher residual alkali content and higher amounts of LiOH and Li 2 CO 3 , and the prepared positive electrode slurry has general fluidity and is easier to gel.
  • the lithium ion battery positive electrode lithium supplementing additive Li 2 NiO 2 of the present invention compared with the preparation method of the comparative example, the lithium ion battery positive electrode lithium supplementing additive Li 2 NiO 2 has a significantly improved purity, and a residual alkali content.
  • the gram capacity of lithium-ion batteries has been greatly improved for the first charge.
  • the lithium ion battery positive electrode lithium supplementary additive Li 2 NiO 2 of the present invention is used in a soft pack lithium ion battery, and the gram capacity of the first charging is compared with the lithium supplementing additive of the comparative example.
  • the first discharge gram capacity remains at the same level, so more irreversible capacity is available.
  • the more the first efficiency loss is caused by the lithium supplementation additive the more lithium can be supplemented into the negative electrode material, and the better the lithium supplementation effect is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种锂离子电池正极补锂添加剂及其制备方法和锂离子电池,要解决的问题是提高Li 2NiO 2纯度,降低成本。本发明的锂离子电池正极补锂添加剂,Li 2NiO 2纯度>95%,残碱总量<3%,首次充电克容量为420~465mAh/g,不可逆容量为260~340mAh/g。本发明的制备方法,包括以下步骤:复合锂盐的制备,复合锂盐与镍源混合,烧结,破碎,得到锂离子电池正极补锂添加剂。本发明的锂离子电池,在正极的正极活性材料中添加有本发明的锂离子电池正极补锂添加剂。本发明与现有技术相比,锂原料采用复合锂盐,包含混合、烧结和破碎,得到的Li 2NiO 2纯度>95%,残碱总量<3%,首次充电克容量为420~465mAh/g,不可逆容量为260~340mAh/g,制备方法简单,容易控制,成本低,环保,有利于工业化生产。

Description

锂离子电池正极补锂添加剂及其制备方法和锂离子电池 技术领域
本发明涉及一种锂离子电池材料及其制备方法和锂离子电池,特别是一种锂离子电池正极添加剂材料及其制备方法和锂离子电池。
背景技术
锂离子电池(电池)因其较高的能量密度、较长的循环使用寿命的特点,广泛应用于各类电子产品。随着电动汽车、电动机械、无人机等大型移动电源的快速发展,对高能量和大功率提出了更高的要求。
为了满足高比能量电池的设计要求,最有效的方式是选择高比容量的正极和负极材料,例如选择硅、锡、铝、氧化物作为新型负极材料。但是在锂电池的首次充电过程中,从正极释放出的锂,有部分在负极表面形成了不可逆转的含锂钝化膜SEI,造成了活性锂损失,从而降低了电池的可利用能量。
为了弥补这部分锂损失,现有技术的做法是通过对正极或负极进行预补锂。负极补锂一般是将金属锂粉、箔、片与负极材料发生反应。但这种方式存在锂化试剂化学稳定性差,活泼锂粉存在较大的安全隐患的问题。正极补锂一般是将补锂材料与正极材料按比例混合,调浆后制成电芯,在首次充电过程中,释放出过量的锂,补充负极表面形成SEI膜所消耗的锂,从而完成补锂。相比于负极补锂,正极补锂无需改变现有电池生产的工艺,因而具有成本低、简单化、安全性高的特点,更加具有工业应用前景。然而现有技术正极补锂材料的制备方法,存在工艺过程复杂的问题,需经过多次混合、破碎、烧结工序,且所得正极补锂材料纯度不高,不能满足工业化生产要求。
如中国专利公开号108735526A公开的补锂材料Li 2NiO 2的制备方法、使用该Li 2NiO 2的锂离子电容器,以Li 2O、NiO为原料,在保护气氛中球磨后高温烧结,再加入Al 2O 3继续在保护气氛中球磨,然后高温烧结得到目标物Li 2NiO 2,此方法存在的不足为:以Li 2O、NiO和Al 2O 3为原料经高温烧结制备Li 2NiO 2合成困难,所得Li 2NiO 2的杂质多,合成纯度难以提高。
又如中国专利公开号109786746A公开的正极片、锂离子电池正极补锂材料及其制备方法,将正极补锂材料基体和碳源以乙醇为溶剂进行混合,获得混合溶液,将混合溶液挥发掉溶剂后在惰性气氛中煅烧,获得表面具有碳包覆的锂离子电池正极补锂材料,存在的不足是用Li 2CO 3为原料制备纯度>99.9%的氧化锂极其困难,重现性极差,且残留Li 2CO 3含量高,将其用于锂源制备Li 2NiO 2会导致碳酸根含量高,对电池的加工制备及电池性能都带来不良影响。
再如中国专利公开号110218078A公开的一种补锂材料Li 2NiO 2及其制备方法及应用,包括如下步骤:S1.以Li 2O、Ni 2CO 3、Al(OH) 3为原料,以丙酮为溶剂,混合后在保护气氛中进行球磨;S2.将球磨产物烘干,得到粉体;S3.将粉体在保护气氛中进行低温预烧;S4.将预烧产物在保护气氛中球磨,取出球磨后的产 物压制成片;S5.将步骤S4得到的产物高温烧结,得到目标物补锂材料Li 2NiO 2,此方法则需要通过多次烧结制备,且涉及到使用有机物丙酮作为溶剂,其工艺复杂不易实行量产,容易造成环境污染。
发明目的
本发明的目的是提供一种锂离子电池正极补锂添加剂及其制备方法和锂离子电池,要解决的问题是提高Li 2NiO 2纯度,降低成本。
本发明采用以下技术方案:一种锂离子电池正极补锂添加剂,Li 2NiO 2纯度>95%,残碱总量<3%,首次充电克容量为420~465mAh/g,不可逆容量为260~340mAh/g。
本发明的锂离子电池正极补锂添加剂,其特征在于:采用以下制备方法得到,包括以下步骤:
步骤一,复合锂盐的制备
室温下,将锂原料在真空度<100pa下,以1~10℃/min升温速度,至400~950℃,保温15~480min,炉内自然降温至室温,采用直径为5mm的锆球,按照球料质量比10~15:1,转速700rpm,球磨0.5h,得到复合锂盐xLiOH·yLi 2O·zLi 2CO 3·wH 2O,其中,x、y、z为质量分数,0<x<0.5,0.5≤y<1.0,0<z<0.5,x+y+z=1,w表示结晶水含量,0≤w≤1;
所述锂原料为氢氧化锂-氧化锂-碳酸锂复合物、氢氧化锂-氧化锂-草酸锂复合物、氢氧化锂-过氧化锂-碳酸锂复合物、氢氧化锂-过氧化锂-草酸锂复合物、氢化锂-氧化锂-碳酸锂复合物、氢化锂-氧化锂-草酸锂复合物、氢化锂-过氧化锂-碳酸锂复合物、氢化锂-过氧化锂-草酸锂复合物中的一种以上;
步骤二,复合锂盐与镍源混合
将复合锂盐,按照锂源与镍源的摩尔比1.5~2.2:1.0,在氩气或氮气保护气氛中混合,转速500~1000rpm,时间0.5~6.0h,得到复合锂盐与镍源的混合粉体;
所述镍源是氧化亚镍、三氧化二镍、二氧化镍、氢氧化镍、氧化氢氧化镍、碳酸镍、草酸镍和乙酸镍中的一种以上;
步骤三,烧结
将复合锂盐与镍源的混合粉体在保护性气氛或氧化气氛中,以1~10℃/min升温速度,至100~300℃,保温0.5~5.0h,然后再以1~10℃/min升温速度,至600~800℃,保温5.0~20.0h,高温烧结,炉内自然降温到室温,得到烧结材料;
步骤四,破碎
将烧结材料在氩气或氮气保护性气氛中,以转速800~1000rpm,打散15~30min,粉碎,过筛350~400目,粒度D50为5.0~15.0um,Dmax<25.0um,得到粉碎料;
步骤五,除磁
对粉碎料除磁,使其磁性物质含量<50ppb,得到锂离子电池正极补锂添加剂。
所述步骤一的锂原料质量纯度>99%;所述步骤二氩气或氮气的纯度>99.995%,流量6L/min;所述步骤三保护性气氛为氩气或氮气中的一种以上,气体纯度>99.995%,流量为6L/min,氧化气氛为含氧量为50~200ppm的保护气氛;所述步骤四氩气或氮气的纯度>99.995%,流量6L/min。
所述步骤四过筛350~400目,粒度D50为5.0~15.0um,Dmax<25.0um。
一种锂离子电池正极补锂添加剂的制备方法,包括以下步骤:
步骤一,复合锂盐的制备
室温下,将锂原料在真空度<100pa下,以1~10℃/min升温速度,至400~950℃,保温15~480min,保持真空度炉内自然降温至室温后取出,破碎,得到复合锂盐xLiOH·yLi 2O·zLi 2CO 3·wH 2O,其中,x、y、z为质量分数,0<x<0.5,0.5≤y<1.0,0<z<0.5,x+y+z=1,w表示结晶水含量,0≤w≤1;
所述锂原料为氢氧化锂-氧化锂-碳酸锂复合物、氢氧化锂-氧化锂-草酸锂复合物、氢氧化锂-过氧化锂-碳酸锂复合物、氢氧化锂-过氧化锂-草酸锂复合物、氢化锂-氧化锂-碳酸锂复合物、氢化锂-氧化锂-草酸锂复合物、氢化锂-过氧化锂-碳酸锂复合物、氢化锂-过氧化锂-草酸锂复合物中的一种以上;
步骤二,复合锂盐与镍源混合
将复合锂盐,按照锂源与镍源的摩尔比1.5~2.2:1.0,在氩气或氮气保护气氛中混合,转速500~1000rpm,时间0.5~6.0h,得到复合锂盐与镍源的混合粉体;
所述镍源是氧化亚镍、三氧化二镍、二氧化镍、氢氧化镍、氧化氢氧化镍、碳酸镍、草酸镍和乙酸镍中的一种以上;
步骤三,烧结
将复合锂盐与镍源的混合粉体在保护性气氛或氧化气氛中,以1~10℃/min升温速度,至100~300℃,保温0.5~5.0h,然后再以1~10℃/min升温速度,至600~800℃,保温5.0~20.0h,炉内自然降温到室温,得到烧结材料;
步骤四,破碎
将烧结材料在氩气或氮气保护性气氛中,转速800~1000rpm,打散15~30min,粉碎,过筛350~400目,得到锂离子电池正极补锂添加剂。
本发明的方法步骤四后除磁,使其磁性物质含量<50ppb。
本发明的方法步骤一破碎采用直径为5mm的锆球,按照球料质量比10~15:1,转速700rpm,球磨0.5h。
本发明的方法步骤一的锂原料质量纯度>99%;所述步骤二氩气或氮气的纯度>99.995%,流量6L/min;所述步骤三保护性气氛为氩气或氮气中的一种以上,气体纯度>99.995%,流量为6L/min,氧化气氛为含氧量为50~200ppm的保护气氛;所述步骤四氩气或氮气的纯度>99.995%,流量6L/min。
本发明的方法步骤四过筛350~400目,粒度D50为5.0~15.0um,Dmax<25.0um。
一种锂离子电池,设有正极,在正极的正极活性材料中添加有补锂添加剂,所述补锂添加剂本发明的锂离子电池正极补锂添加剂。
本发明与现有技术相比,锂原料采用复合锂盐,包含混合、烧结和破碎,得到的Li 2NiO 2纯度>95%,残碱总量<3%,首次充电克容量为420~465mAh/g,不可逆容量为260~340mAh/g,制备方法简单,容易控制,成本低,环保,有利于工业化生产。
附图说明
图1是本发明实施例1的复合锂盐的XRD图。
图2是本发明实施例1的锂离子电池正极补锂添加剂的XRD图。
图3是本发明实施例1的锂离子电池正极补锂添加剂的SEM图。
图4是本发明实施例1的充放电曲线图。
具体实施方式
下面结合附图和实施例对本发明作进一步详细说明。本发明的锂离子电池正极补锂添加剂Li 2NiO 2的制备方法,包括以下步骤:
步骤一,复合锂盐的制备
复合锂盐为混合物xLiOH·yLi 2O·zLi 2CO 3·wH 2O,其中,x、y、z为质量分数,0<x<0.5,0.5≤y<1.0,0<z<0.5,x+y+z=1,w表示结晶水含量,0≤w≤1。
锂原料为氢氧化锂-氧化锂-碳酸锂复合物、氢氧化锂-氧化锂-草酸锂复合物、氢氧化锂-过氧化锂-碳酸锂复合物、氢氧化锂-过氧化锂-草酸锂复合物、氢化锂-氧化锂-碳酸锂复合物、氢化锂-氧化锂-草酸锂复合物、氢化锂-过氧化锂-碳酸锂复合物、氢化锂-过氧化锂-草酸锂复合物中的一种以上,质量纯度>99%。复合物是指机械混合物。本发明实施例中的锂原料采用江西赣锋锂业股份有限公司的电池级锂原料。
室温(20℃)下,将锂原料在真空度<100pa下,以1~10℃/min升温速度,至400~950℃,保温15~480min,保持真空度炉内自然降温至室温后取出,取出样品为块状固体,破碎采用直径为5mm的锆球,按照球料质量比10~15:1,转速700rpm,球磨0.5h,得到复合锂盐xLiOH·yLi 2O·zLi 2CO 3·wH 2O。
控制保温的温度及时间,使锂原料分解转变为含有符合比例要求的氧化锂、氢氧化锂、碳酸锂的复合锂盐(锂源),使得在步骤三的烧结过程中,氧化锂与镍源之间如Li 2O+NiO=Li 2NiO 2的反应最容易实现,也是烧结制备得到锂离子电池正极补锂添加剂的关键。步骤三烧结,当温度>450℃时,氢氧化锂会熔解成液体,在混合的复合锂盐和镍源中会带来一定的流动性,带动复合锂盐扩散,增加了复合锂盐与镍源之间的接触,使得如Li 2O+NiO=Li 2NiO 2,LiOH+NiO=Li 2NiO 2+H 2O的反应更加充分;而微量的碳酸锂存在有利于氢氧化锂及氧化锂在烧结过程中协同扩散。
步骤二,复合锂盐与镍源混合
将复合锂盐xLiOH·yLi 2O·zLi 2CO 3·wH 2O,按照锂源与镍源的摩尔比1.5~2.2:1.0在氩气或氮气保护气氛中混合,混合转速500~1000rpm,混合时间0.5~6.0h,得到复合锂盐与镍源的混合粉体。
镍源是氧化亚镍、三氧化二镍、二氧化镍、氢氧化镍、氧化氢氧化镍、碳酸镍、草酸镍和乙酸镍中的一种以上。
氩气或氮气的纯度>99.995%,流量6L/min。
将锂源与镍源充分混合,得到锂、镍成分均匀分布,可以提高在烧结过程中锂、镍之间的扩散反应程度,提高锂离子电池正极补锂添加剂纯度。
步骤三,烧结
将复合锂盐与镍源的混合粉体在保护性气氛或氧化气氛中,以1~10℃/min升温速度,至100~300℃,保温0.5~5.0h,目的是去除混合粉体中残留的水分及挥发物,降低残碱;然后再以1~10℃/min升温速度,至600~800℃,保温5.0~20.0h,高温烧结,保证复合锂盐与镍源的充分反应,继续在保护性气氛或氧化气氛中炉内自然降温到室温,得到烧结材料。
保护性气氛为氩气或氮气中的一种以上,气体纯度>99.995%,流量为6L/min。氧化气氛为含氧量为50~200ppm的保护气氛。
烧结过程中,当温度>450℃时,氢氧化锂会熔解成液体,在混合粉体中会带来一定的流动性,带动锂源扩散,增加了氧化锂与镍源之间的接触,使得反应更加充分,而微量的碳酸锂存在有利于氢氧化锂及氧化锂在烧结过程中协同扩散。对此,步骤一中制备复合锂盐的必要性,原因如下:(1)若单纯以Li 2O作为锂源,由于Li 2O是无机氧化物,其熔点高达1567℃,在整个烧结过程中均为固相状态,所提供的锂只能通过固相扩散反应,动力学上反应较慢且反应程度有限;(2)若单纯以LiOH作为原料,会在烧结过程释放大量水分,导致最终产品Li 2NiO 2结块严重难以加工,大大降低最终产品Li 2NiO 2纯度及增加残碱含量;(3)若不经过烧结而直接用原料Li 2O+LiOH+Li 2CO 3的简单混合作为锂原料,各原料Li 2O、LiOH、Li 2CO 3间仍为分离的物质,在烧结过程不能起到良好的协同作用,LiOH溶解后流动带来的锂源扩散面有限,Li 2O所提供的锂源仍为固相扩散状态。
步骤四,破碎
将烧结材料在氩气或氮气保护性气氛中,采用无锡新光粉体科技有限公司的1000型高速混合机破碎,以转速800~1000rpm,打散15~30min,在氩气或氮气保护气氛中,采用宜兴市精新粉体机械设备有限公司的350型机械粉碎机粉碎,采用新乡市伟良筛分机械有限公司的振动筛分机过筛350~400目,粒度D50为5.0~15.0um,Dmax<25.0um,得到粉碎料。
氩气或氮气的纯度>99.995%,流量6L/min。
步骤五,除磁
使用除磁机对粉碎料除磁,使其磁性物质含量<50ppb,将除磁后的粉碎料装入铝塑袋,使用真空封包机包装,得到锂离子电池正极补锂添加剂Li 2NiO 2
本发明方法制备得到的锂离子电池正极补锂添加剂,采用美国FEI inspect F50扫描电镜测试SEM观察形貌;采用荷兰PANalytical公司的X’pert Pro型X射线衍射仪,得到XRD图测试物相组成,然后使用工具GSAS软件精修定量分析组成含量,计算产品纯度及杂质含量比例;采用梅特勒G20S滴定仪测试材料的残碱含量;采用新帕泰克干法粒度仪测试物料粒度,ICP测试磁性物质含量。
分别将实施例得到的锂离子电池正极补锂添加剂和对比例的补锂添加剂作为正极材料,锂片作为负极片,制备成CR2032扣式电池,测试其首次充放电克容量及库伦效率。库伦效率越低则说明不可逆容量越高,用于补锂的效果越好。
按锂离子电池正极补锂添加剂或补锂添加剂:导电剂SP:粘结剂PVDF=85:5:10的质量比,配成固含量为30%的N-甲基吡咯烷酮NMP溶液,搅拌均匀得到正极浆料,均匀涂布于铝箔上,真空下120℃干燥10h,冲切成直径10mm的圆片作为正极片。将正极片、负极片直径16mm的金属锂片、隔膜Celgard 2400微孔聚丙烯膜和电解液1mo1/L LiPF6/EC+DMC按体积比1:1,在氩气手套箱中组装成CR2032型扣式电池。
保持25℃恒温,电压范围3.0~4.3V,按0.05C恒流恒压充电,测试CR2032型扣式电池充、放电克容量,计算不可逆容量(首次充电容量-首次放电容量=不可逆容量),计算首次库伦效率。
本发明的锂离子电池正极补锂添加剂,Li 2NiO 2质量纯度>95%,残碱(残锂)总量<3%,首次充电克容量为420~465mAh/g,不可逆容量为260~340mAh/g。
实施例1
步骤一,复合锂盐的制备
将锂原料0.8LiOH-0.1Li 2O-0.1Li 2CO 3,在真空度为30pa的真空环境下,以6℃/min升温速率升到650℃,保温240min,保持真空降温至室温后取出,采用5mm锆球,以球料比10:1,转速700rpm,球磨粉碎0.5h,得到复合锂盐,经XRD测试及GSAS软件对复合锂盐精修定量分析组成含量,计算纯度,复合锂盐比例为0.193LiOH·0.788Li 2O·0.019Li 2CO 3
如图1所示,经XRD测试,出现了LiOH、Li 2O和Li 2CO 3的复合锂盐物相,其中,2θ=32.58°对应于LiOH的(101)面,2θ=33.61°对应Li 2O的(111)面,2θ=31.94°对应Li 2CO 3的(002)面。
步骤二,复合锂盐与镍源混合
按照锂源与镍源的摩尔比2.0:1.0,称取复合锂盐327.3g与氧化亚镍746.9g,在氮气保护气氛中混合,混合转速500rpm,混合时间0.5h,得到复合锂盐与镍源的混合粉体。
步骤三,烧结
将复合锂盐与镍源的混合粉体在氮气气氛中,以1℃/min升温速度,至100℃,保温0.5h,然后再以1℃/min升温速度,至600℃,保温20.0h,继续在氮气气氛中炉内自然降温到室温,得到烧结材料。
步骤四,破碎
将烧结材料在氮气保护性气氛中,以转速800rpm,打散15min,在氮气保护气氛中粉碎,过筛400目,粒度D50为8.0um、Dmax=21.0um,得到粉碎料。
步骤五,除磁
使用除磁机对粉碎料除磁,使其磁性物质总量15ppb,将除磁后的粉碎料装入铝塑袋,使用真空封包机包装,得到锂离子电池正极补锂添加剂Li 2NiO 2
实施例1的锂离子电池正极补锂添加剂Li 2NiO 2,如图2所示,经XRD测试,主要为Li 2NiO 2的衍射峰,其中2θ=25.75°对应于Li 2NiO 2的(101)面,2θ=43.38°对应于NiO的(200)面。使用工具GSAS软件精修定量分析组成含量,Li 2NiO 2成分含量97.5%。如图3所示,形貌为单晶球状或棒状颗粒,粒径约8.0um。通过滴定仪分析其残碱总含量为1.055%。测试结果见表1。
如图4所示,经测试,实施例1的首次充电克容量430mAh/g,首次放电克容量为105mAh/g,可利用的不可逆容量为325mAh/g,首次库伦效率为24.4%。测试结果见表1。
实施例2
步骤一,复合锂盐的制备
将锂原料0.8LiOH-0.1Li 2O-0.1Li 2C 2O 4,在真空度为90pa的真空环境下,以5℃/min升温速率升到950℃,保温15min,保持真空降温至室温后取出,采用5mm锆球,以球料比15:1,转速700rpm,球磨粉碎0.5h,得到复合锂盐,经XRD测试及GSAS软件对复合锂盐精修定量分析组成含量,计算纯度,复合锂盐比例为0.068LiOH·0.900Li 2O·0.032Li 2CO 3
步骤二,复合锂盐与镍源混合
按照锂源与镍源的摩尔比2.1:1.0,称取复合锂盐335.7g和氢氧化镍926.9g,在氩气保护气氛中混合,混合转速1000rpm,混合时间2.0h,得到复合锂盐与镍源的混合粉体。
步骤三,烧结
将复合锂盐与镍源的混合粉体在氩气气氛中,以5℃/min升温速度,至300℃,保温2.0h,然后再以5℃/min升温速度,至750℃,保温20.0h,继续在氩气气氛中炉内自然降温到室温,得到烧结材料。
步骤四,破碎
将烧结材料在氩气保护性气氛中,以转速1000rpm,打散30min,在氩气保护气氛中粉碎,过筛350目,粒度D50=5.0um,Dmax=20.0um,得到粉碎料。
步骤五,除磁
使用除磁机对粉碎料除磁,使其磁性物质总量20ppb,将除磁后的粉碎料装入铝塑袋,使用真空封包机包装,得到锂离子电池正极补锂添加剂Li 2NiO 2
实施例2的锂离子电池正极补锂添加剂Li 2NiO 2,Li 2NiO 2成分含量97.9%。通过滴定仪分析其残碱总含量为2.119%。测试结果见表1。
经测试,实施例2的首次充电克容量435mAh/g,首次放电克容量为150mAh/g,可利用的不可逆容量为285mAh/g,首次库伦效率为34.5%。测试结果 见表1。
实施例3
步骤一,复合锂盐的制备
将锂原料0.8LiOH-0.1Li 2O 2-0.1Li 2CO 3,在真空度为40pa的真空环境下,以3℃/min升温速率升到800℃,保温60min,保持真空降温至室温后取出,采用5mm锆球,以球料比15:1,转速700rpm,球磨粉碎0.5h,得到复合锂盐,经XRD测试及GSAS软件对复合锂盐精修定量分析组成含量,计算纯度,复合锂盐比例为0.100LiOH·0.895Li 2O·0.005Li 2CO 3
步骤二,复合锂盐与镍源混合
按照锂源与镍源的摩尔比2.2:1.0,称取复合锂盐341.6g和三氧化二镍827.0g,在氩气保护气氛中混合,混合转速900rpm,混合时间1.0h,得到复合锂盐与镍源的混合粉体。
步骤三,烧结
将复合锂盐与镍源的混合粉体在氩气气氛中,以2℃/min升温速度,至200℃,保温1.0h,然后再以2℃/min升温速度,至700℃,保温15.0h,继续在氩气气氛中炉内自然降温到室温,得到烧结材料。
步骤四,破碎
将烧结材料在氩气保护性气氛中,以转速900rpm,打散20min,在氩气保护气氛中粉碎,过筛400目,粒度D50=13.0um,Dmax=23.0um,得到粉碎料。
步骤五,除磁
使用除磁机对粉碎料除磁,使其磁性物质总量18ppb,将除磁后的粉碎料装入铝塑袋,使用真空封包机包装,得到锂离子电池正极补锂添加剂Li 2NiO 2
实施例3的锂离子电池正极补锂添加剂Li 2NiO 2,Li 2NiO 2成分含量98.2%。通过滴定仪分析其残碱总含量为1.786%。测试结果见表1。
经测试,实施例3的首次充电克容量465mAh/g,首次放电克容量为125mAh/g,可利用的不可逆容量为340mAh/g,首次库伦效率为26.9%。测试结果见表1。
实施例4
步骤一,复合锂盐的制备
将锂原料0.8LiOH-0.1Li 2O-0.1Li 2C 2O 4,在真空度为20pa的真空环境下,以10℃/min升温速率升到700℃,保温120min,保持真空降温至室温后取出,采用5mm锆球,以球料比11:1,转速700rpm,球磨粉碎0.5h,得到复合锂盐,经XRD测试及GSAS软件对复合锂盐精修定量分析组成含量,计算纯度,复合锂盐比例为0.116LiOH·0.852Li 2O·0.032Li 2CO 3
步骤二,复合锂盐与镍源混合
按照锂源与镍源的摩尔比1.5:1.0,称取复合锂盐243.6g和二氧化镍906.9g,在氮气保护气氛中混合,混合转速800rpm,混合时间3.0h,得到复合锂盐与镍 源的混合粉体。
步骤三,烧结
将复合锂盐与镍源的混合粉体在氮气气氛中,以10℃/min升温速度,至150℃,保温3.0h,然后再以10℃/min升温速度,至850℃,保温5.0h,继续在氮气气氛中炉内自然降温到室温,得到烧结材料。
步骤四,破碎
将烧结材料在氮气保护性气氛中,以转速850rpm,打散20min,在氮气保护气氛中粉碎,过筛350目,D50=10.0um,Dmax=24.0um,得到粉碎料。
步骤五,除磁
使用除磁机对粉碎料除磁,使其磁性物质总量30ppb,将除磁后的粉碎料装入铝塑袋,使用真空封包机包装,得到锂离子电池正极补锂添加剂Li 2NiO 2
实施例4的锂离子电池正极补锂添加剂Li 2NiO 2,Li 2NiO 2成分含量96.3%。通过滴定仪分析其残碱总含量为2.785%。测试结果见表1。
经测试,实施例4的首次充电克容量423mAh/g,首次放电克容量为110mAh/g,可利用的不可逆容量为313mAh/g,首次库伦效率为26.0%。测试结果见表1。
实施例5
步骤一,复合锂盐的制备
将锂原料0.4LiH-0.1Li 2O-0.5Li 2CO 3,在真空度为10pa的真空环境下,以1℃/min升温速率升到400℃,保温480min,保持真空降温至室温后取出,采用5mm锆球,以球料比13:1,转速700rpm,球磨粉碎0.5h,得到复合锂盐,经XRD测试及GSAS软件对复合锂盐精修定量分析组成含量,计算纯度,复合锂盐比例为0.075LiOH·0.500Li 2O·0.425Li 2CO 3·1H 2O。
步骤二,复合锂盐与镍源混合
按照锂源与镍源的摩尔比1.8:1.0,称取复合锂盐450.1g和氧化氢氧化镍916.9,在氮气保护气氛中混合,混合转速600rpm,混合时间4.0h,得到复合锂盐与镍源的混合粉体。
步骤三,烧结
将复合锂盐与镍源的混合粉体在氮气气氛中,以3℃/min升温速度,至250℃,保温4.0h,然后再以3℃/min升温速度,至690℃,保温8.0h,继续在氮气气氛中炉内自然降温到室温,得到烧结材料。
步骤四,破碎
将烧结材料在氮气保护性气氛中,以转速950rpm,打散15min,在氮气保护气氛中粉碎,过筛375目,D50=12.0um,Dmax=20.0um,得到粉碎料。
步骤五,除磁
使用除磁机对粉碎料除磁,使其磁性物质总量25ppb,将除磁后的粉碎料装入铝塑袋,使用真空封包机包装,得到锂离子电池正极补锂添加剂Li 2NiO 2
实施例5的锂离子电池正极补锂添加剂Li 2NiO 2,Li 2NiO 2成分含量97.2%。通过滴定仪分析其残碱总含量为1.901%。测试结果见表1。
经测试,实施例5的首次充电克容量429mAh/g,首次放电克容量为125mAh/g,可利用的不可逆容量为304mAh/g,首次库伦效率为29.1%。测试结果见表1。
实施例6
步骤一,复合锂盐的制备
将锂原料0.8LiH-0.1Li 2O-0.1Li 2C 2O 4,在真空度为70pa的真空环境下,以8℃/min升温速率升到550℃,保温550min,保持真空降温至室温后取出,采用5mm锆球,以球料比14:1,转速700rpm,球磨粉碎0.5h,得到复合锂盐,经XRD测试及GSAS软件对复合锂盐精修定量分析组成含量,计算纯度,复合锂盐比例为0.418LiOH·0.550Li 2O·0.032Li 2CO 3·0.5H 2O。
步骤二,复合锂盐与镍源混合
按照锂源与镍源的摩尔比1.6:1.0,称取复合锂盐291.3g和碳酸镍1187.0g,在氩气保护气氛中混合,混合转速700rpm,混合时间5.0h,得到复合锂盐与镍源的混合粉体。
步骤三,烧结
将复合锂盐与镍源的混合粉体在氩气气氛中,以4℃/min升温速度,至280℃,保温5.0h,然后再以4℃/min升温速度,至780℃,保温10.0h,继续在氩气气氛中炉内自然降温到室温,得到烧结材料。
步骤四,破碎
将烧结材料在氩气保护性气氛中,以转速800rpm,打散20min,在氩气保护气氛中粉碎,过筛400目,D50=15.0um,Dmax=20.0um,得到粉碎料。
步骤五,除磁
使用除磁机对粉碎料除磁,使其磁性物质总量45ppb,将除磁后的粉碎料装入铝塑袋,使用真空封包机包装,得到锂离子电池正极补锂添加剂Li 2NiO 2
实施例6的锂离子电池正极补锂添加剂Li 2NiO 2,Li 2NiO 2成分含量98.1%。通过滴定仪分析其残碱总含量为2.538%。测试结果见表1。
经测试,实施例6的首次充电克容量455mAh/g,首次放电克容量为137mAh/g,可利用的不可逆容量为318mAh/g,首次库伦效率为30.1%。测试结果见表1。
实施例7
步骤一,复合锂盐的制备
将锂原料0.8LiH-0.1Li 2O 2-0.1Li 2CO 3,在真空度为80pa的真空环境下,以4℃/min升温速率升到780℃,保温150min,保持真空降温至室温后取出,采用5mm锆球,以球料比10:1,转速700rpm,球磨粉碎0.5h,得到复合锂盐,经XRD测试及GSAS软件对复合锂盐精修定量分析组成含量,计算纯度,复合锂盐比例为0.120LiOH·0.875Li 2O·0.005Li 2CO 3
步骤二,复合锂盐与镍源混合
按照锂源与镍源的摩尔比1.7:1.0,称取复合锂盐265.7g和草酸镍1467.1g,在氮气保护气氛中混合,混合转速650rpm,混合时间6.0h,得到复合锂盐与镍源的混合粉体。
步骤三,烧结
将复合锂盐与镍源的混合粉体在氧气气氛中,以6℃/min升温速度,至160℃,保温1.5h,然后再以6℃/min升温速度,至660℃,保温12.0h,继续在氧气气氛中炉内自然降温到室温,得到烧结材料。氧化气氛为含氧量为100ppm。
步骤四,破碎
将烧结材料在氮气保护性气氛中,以转速1000rpm,打散30min,在氮气保护气氛中粉碎,过筛400目,D50=6.0um,Dmax=21.0u,得到粉碎料。
步骤五,除磁
使用除磁机对粉碎料除磁,使其磁性物质总量35ppb,将除磁后的粉碎料装入铝塑袋,使用真空封包机包装,得到锂离子电池正极补锂添加剂Li 2NiO 2
实施例7的锂离子电池正极补锂添加剂Li 2NiO 2,Li 2NiO 2成分含量95.9%。通过滴定仪分析其残碱总含量为2.177%。测试结果见表1。
经测试,实施例7的首次充电克容量420mAh/g,首次放电克容量为160mAh/g,可利用的不可逆容量为260mAh/g,首次库伦效率为38.1%。测试结果见表1。
实施例8
步骤一,复合锂盐的制备
将锂原料0.8LiH-0.1Li 2O-0.1Li 2C 2O 4,在真空度为50pa的真空环境下,以2℃/min升温速率升到900℃,保温30min,保持真空降温至室温后取出,采用5mm锆球,以球料比15:1,转速700rpm,球磨粉碎0.5h,得到复合锂盐,经XRD测试及GSAS软件对复合锂盐精修定量分析组成含量,计算纯度,复合锂盐比例为0.048LiOH·0.950Li 2O·0.002Li 2CO 3
步骤二,复合锂盐与镍源混合
按照锂源与镍源的摩尔比1.9:1.0,称取复合锂盐288.9g和乙酸镍1768.4g,在氮气保护气氛中混合,混合转速850rpm,混合时间2.5h,得到复合锂盐与镍源的混合粉体。
步骤三,烧结
将复合锂盐与镍源的混合粉体在氮气气氛中,以8℃/min升温速度,至230℃,保温2.5h,然后再以8℃/min升温速度,至730℃,保温18.0h,继续在氮气气氛中炉内自然降温到室温,得到烧结材料。
步骤四,破碎
将烧结材料在氮气保护性气氛中,以转速95000rpm,打散25min,在氮气保护气氛中粉碎,过筛400目,D50=7.0um,Dmax=22.0um,得到粉碎料。
步骤五,除磁
使用除磁机对粉碎料除磁,使其磁性物质总量42ppb,将除磁后的粉碎料装入铝塑袋,使用真空封包机包装,得到锂离子电池正极补锂添加剂Li 2NiO 2
实施例8的锂离子电池正极补锂添加剂Li 2NiO 2,Li 2NiO 2成分含量96.7%。通过滴定仪分析其残碱总含量为1.393%。测试结果见表1。
经测试,实施例8的首次充电克容量428mAh/g,首次放电克容量为157mAh/g,可利用的不可逆容量为271mAh/g,首次库伦效率为36.7%。测试结果见表1。
对比例1
用纯度为99.9%的电池级氧化锂为锂原料,取氧化锂50.27g与氧化亚镍228.47g,将粉末混合,在氮气气氛下,以2℃/min升温速率升到200℃并保温1h,然后以2℃/min升温速率升到750℃并保温10h,保温结束后冷却至室温得到对比例1的补锂添加剂。
对比例1的补锂添加剂,Li 2NiO 2成分含量85.6%,通过滴定仪分析其残碱总含量为9.019%。测试结果见表1。
经测试,对比例1的补锂添加剂次充电克容量350mAh/g,首次放电克容量为130mAh/g,可利用的不可逆容量为220mAh/g,首次库伦效率为37.1%。测试结果见表1。
对比例2
用纯度为99.9%的电池级氢氧化锂为锂原料,取氢氧氧化锂240.38g与氧化镍357.13g,将粉末混合,在氮气气氛下,以3℃/min升温速率升到100℃并保温1.5h,然后以2℃/min升温速率升到680℃并保温10h,保温结束后冷却至室温得到对比例2的补锂添加剂。
对比例2的补锂添加剂,Li 2NiO 2成分含量62.3%,通过滴定仪分析其残碱总含量为12.846%。测试结果见表1。
经测试,对比例2的补锂添加剂首次充电克容量290mAh/g,首次放电克容量为120mAh/g,可利用的不可逆容量为170mAh/,首次库伦效率为41.4%。测试结果见表1。
试验例1
选用实施例1的锂离子电池正极补锂添加剂Li 2NiO 2作为补锂添加剂,选用NCM811为正极活性材料,补锂添加剂的添加量为正极活性材料质量的3wt%,添加到正极中,整体作为复合正极活性材料,在露点-10℃的低湿房中,按复合正极活性材料:导电剂SP:粘结剂PVDF=97.2:1.5:1.3的质量比,配成固含量为70%的N-甲基吡咯烷酮NMP溶液,搅拌均匀得到正极浆料,涂布于铝箔上,真空120℃干燥10h,分切并压制得到正极片。按负极活性材料(氧化亚硅,容量500mAh/g,首效90%):SP:CMC:SBR=96:1:1:2的质量比,配成固含量为45%的水系溶液,搅拌均匀得到负极浆料,涂布于铜箔上,真空120℃干燥10h,分切并压制得到负极片。将正极片、负极片与隔膜Celgard 2400微孔 聚丙烯膜和电解液1mo1/L LiPF6/EC+DMC按体积比1:1,经过卷绕、封装、烘烤、注液、预封、陈化、化成、二封、分容工序,制备得到软包锂离子电池,进行测试,得首次充放电克容量分别为208、160mAh/g,首次效率为76.9%。测试结果见表2。实施例得到的锂离子电池正极补锂添加剂Li 2NiO 2残碱量低,含有LiOH和Li 2CO 3的量低,制备的正极浆料流动性好,不易凝胶,软包电池产气量小。
试验例2
选用选用实施例4的锂离子电池正极补锂添加剂Li 2NiO 2作为补锂添加剂,采用与试验例1相同的方法制备得到软包锂离子电池,进行测试,得首次充放电克容量分别为206、158mAh/g,首次效率为76.7%。测试结果见表2。实施例得到的锂离子电池正极补锂添加剂Li 2NiO 2残碱量低,含有LiOH和Li 2CO 3的量低,制备的正极浆料流动性好,不易凝胶,软包电池产气量小。
试验例3
选用对比例1的补锂添加剂作为补锂添加剂,采用与试验例1相同的方法制备得到软包锂离子电池,进行测试,得首次充放电克容量分别为195、169mAh/g,首次效率为86.7%。测试结果见表2。对比例的补锂添加剂残碱量相比实施例较高,含有LiOH和Li 2CO 3的量高,制备的正极浆料流动性一般,较易凝胶。
表1实施例与对比例的数据对比
Figure PCTCN2020119884-appb-000001
由表1的数据对比知,使用本发明的锂离子电池正极补锂添加剂Li 2NiO 2,相比对比例的制备方法,锂离子电池正极补锂添加剂Li 2NiO 2纯度明显提高,残碱含量大幅下降,锂离子电池首次充电克容量大幅提升。
表2试验例数据对比
Figure PCTCN2020119884-appb-000002
由表2的数据对比知,使用本发明的锂离子电池正极补锂添加剂Li 2NiO 2,应用于软包锂离子电池中,首次充电克容量相比对比例的补锂添加剂,首次充电克容量大大提升,而首次放电克容量保持同一相同水平,因此,可利用的不可逆容量更多。补锂添加剂造成的首次效率损失越多,可补充到负极材料中的锂则越多,补锂效果就越好。

Claims (10)

  1. 一种锂离子电池正极补锂添加剂,其特征在于:Li 2NiO 2纯度>95%,残碱总量<3%,首次充电克容量为420~465mAh/g,不可逆容量为260~340mAh/g。
  2. 根据权利要求1所述的锂离子电池正极补锂添加剂,其特征在于:采用以下制备方法得到,包括以下步骤:
    步骤一,复合锂盐的制备
    室温下,将锂原料在真空度<100pa下,以1~10℃/min升温速度,至400~950℃,保温15~480min,炉内自然降温至室温,采用直径为5mm的锆球,按照球料质量比10~15:1,转速700rpm,球磨0.5h,得到复合锂盐xLiOH·yLi 2O·zLi 2CO 3·wH 2O,其中,x、y、z为质量分数,0<x<0.5,0.5≤y<1.0,0<z<0.5,x+y+z=1,w表示结晶水含量,0≤w≤1;
    所述锂原料为氢氧化锂-氧化锂-碳酸锂复合物、氢氧化锂-氧化锂-草酸锂复合物、氢氧化锂-过氧化锂-碳酸锂复合物、氢氧化锂-过氧化锂-草酸锂复合物、氢化锂-氧化锂-碳酸锂复合物、氢化锂-氧化锂-草酸锂复合物、氢化锂-过氧化锂-碳酸锂复合物、氢化锂-过氧化锂-草酸锂复合物中的一种以上;
    步骤二,复合锂盐与镍源混合
    将复合锂盐,按照锂源与镍源的摩尔比1.5~2.2:1.0,在氩气或氮气保护气氛中混合,转速500~1000rpm,时间0.5~6.0h,得到复合锂盐与镍源的混合粉体;
    所述镍源是氧化亚镍、三氧化二镍、二氧化镍、氢氧化镍、氧化氢氧化镍、碳酸镍、草酸镍和乙酸镍中的一种以上;
    步骤三,烧结
    将复合锂盐与镍源的混合粉体在保护性气氛或氧化气氛中,以1~10℃/min升温速度,至100~300℃,保温0.5~5.0h,然后再以1~10℃/min升温速度,至600~800℃,保温5.0~20.0h,高温烧结,炉内自然降温到室温,得到烧结材料;
    步骤四,破碎
    将烧结材料在氩气或氮气保护性气氛中,以转速800~1000rpm,打散15~30min,粉碎,过筛350~400目,粒度D50为5.0~15.0um,Dmax<25.0um,得到粉碎料;
    步骤五,除磁
    对粉碎料除磁,使其磁性物质含量<50ppb,得到锂离子电池正极补锂添加剂。
  3. 根据权利要求1所述的锂离子电池正极补锂添加剂,其特征在于:所述步 骤一的锂原料质量纯度>99%;所述步骤二氩气或氮气的纯度>99.995%,流量6L/min;所述步骤三保护性气氛为氩气或氮气中的一种以上,气体纯度>99.995%,流量为6L/min,氧化气氛为含氧量为50~200ppm的保护气氛;所述步骤四氩气或氮气的纯度>99.995%,流量6L/min。
  4. 根据权利要求1所述的锂离子电池正极补锂添加剂,其特征在于:所述步骤四过筛350~400目,粒度D50为5.0~15.0um,Dmax<25.0um。
  5. 一种锂离子电池正极补锂添加剂的制备方法,包括以下步骤:
    步骤一,复合锂盐的制备
    室温下,将锂原料在真空度<100pa下,以1~10℃/min升温速度,至400~950℃,保温15~480min,保持真空度炉内自然降温至室温后取出,破碎,得到复合锂盐xLiOH·yLi 2O·zLi 2CO 3·wH 2O,其中,x、y、z为质量分数,0<x<0.5,0.5≤y<1.0,0<z<0.5,x+y+z=1,w表示结晶水含量,0≤w≤1;
    所述锂原料为氢氧化锂-氧化锂-碳酸锂复合物、氢氧化锂-氧化锂-草酸锂复合物、氢氧化锂-过氧化锂-碳酸锂复合物、氢氧化锂-过氧化锂-草酸锂复合物、氢化锂-氧化锂-碳酸锂复合物、氢化锂-氧化锂-草酸锂复合物、氢化锂-过氧化锂-碳酸锂复合物、氢化锂-过氧化锂-草酸锂复合物中的一种以上;
    步骤二,复合锂盐与镍源混合
    将复合锂盐,按照锂源与镍源的摩尔比1.5~2.2:1.0,在氩气或氮气保护气氛中混合,转速500~1000rpm,时间0.5~6.0h,得到复合锂盐与镍源的混合粉体;
    所述镍源是氧化亚镍、三氧化二镍、二氧化镍、氢氧化镍、氧化氢氧化镍、碳酸镍、草酸镍和乙酸镍中的一种以上;
    步骤三,烧结
    将复合锂盐与镍源的混合粉体在保护性气氛或氧化气氛中,以1~10℃/min升温速度,至100~300℃,保温0.5~5.0h,然后再以1~10℃/min升温速度,至600~800℃,保温5.0~20.0h,炉内自然降温到室温,得到烧结材料;
    步骤四,破碎
    将烧结材料在氩气或氮气保护性气氛中,转速800~1000rpm,打散15~30min,粉碎,过筛350~400目,得到锂离子电池正极补锂添加剂。
  6. 根据权利要求5所述的锂离子电池正极补锂添加剂的制备方法,其特征在于:所述步骤四后除磁,使其磁性物质含量<50ppb。
  7. 根据权利要求5所述的根据权利要求6所述的锂离子电池正极补锂添加剂的制备方法,其特征在于:所述步骤一破碎采用直径为5mm的锆球,按照球料质量比10~15:1,转速700rpm,球磨0.5h。
  8. 根据权利要求5所述的根据权利要求6所述的锂离子电池正极补锂添加剂的制备方法,其特征在于:所述步骤一的锂原料质量纯度>99%;所述步骤二氩气或氮气的纯度>99.995%,流量6L/min;所述步骤三保护性气氛为氩气或氮气中的一种以上,气体纯度>99.995%,流量为6L/min,氧化气氛为含氧量为50~ 200ppm的保护气氛;所述步骤四氩气或氮气的纯度>99.995%,流量6L/min。
  9. 根据权利要求5所述的根据权利要求6所述的锂离子电池正极补锂添加剂的制备方法,其特征在于:所述步骤四过筛350~400目,粒度D50为5.0~15.0um,Dmax<25.0um。
  10. 一种锂离子电池,设有正极,在正极的正极活性材料中添加有补锂添加剂,其特征在于:所述补锂添加剂采用权利要求1所述的锂离子电池正极补锂添加剂。
PCT/CN2020/119884 2020-07-29 2020-10-09 锂离子电池正极补锂添加剂及其制备方法和锂离子电池 WO2022021608A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20947573.0A EP4191708A4 (en) 2020-07-29 2020-10-09 Lithium-ion battery positive electrode lithium supplement additive, preparation method therefor, and lithium-ion battery
JP2023504719A JP7559211B2 (ja) 2020-07-29 2020-10-09 リチウムイオン電池の正極リチウム補充添加剤及びその調製方法とリチウムイオン電池
US18/007,346 US20230290949A1 (en) 2020-07-29 2020-10-09 Lithium-ion battery positive electrode lithium supplement additive, preparation method therefor, and lithium-ion battery
KR1020237006592A KR20230061361A (ko) 2020-07-29 2020-10-09 리튬 이온 배터리의 양극 리튬 보충 첨가제 및 이의 제조방법과 리튬 이온 배터리

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010741703.5A CN113571781B (zh) 2020-07-29 2020-07-29 锂离子电池正极补锂添加剂及其制备方法和锂离子电池
CN202010741703.5 2020-07-29

Publications (1)

Publication Number Publication Date
WO2022021608A1 true WO2022021608A1 (zh) 2022-02-03

Family

ID=78158720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119884 WO2022021608A1 (zh) 2020-07-29 2020-10-09 锂离子电池正极补锂添加剂及其制备方法和锂离子电池

Country Status (6)

Country Link
US (1) US20230290949A1 (zh)
EP (1) EP4191708A4 (zh)
JP (1) JP7559211B2 (zh)
KR (1) KR20230061361A (zh)
CN (1) CN113571781B (zh)
WO (1) WO2022021608A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114620704A (zh) * 2022-03-14 2022-06-14 湖州南木纳米科技有限公司 一种提高电池安全性的材料及其制备方法和应用
CN114784365A (zh) * 2022-04-21 2022-07-22 江苏正力新能电池技术有限公司 一种二次电池
CN114914434A (zh) * 2022-06-30 2022-08-16 广州博粤新材料科技有限公司 一种含补锂剂的正极材料及其制备方法
CN115548479A (zh) * 2022-10-24 2022-12-30 无锡零一未来新材料技术研究院有限公司 一种补锂材料及其制备方法与应用
CN116259739A (zh) * 2023-01-10 2023-06-13 深圳市美格真空科技有限公司 含氧化锂的锂离子电池补锂剂及其制备方法
CN116477661A (zh) * 2023-01-20 2023-07-25 深圳市德方创域新能源科技有限公司 一种补锂材料及其制备方法和应用
WO2025030102A1 (en) * 2023-08-03 2025-02-06 Pure Lithium Corporation Systems and methods for rechargeable energy source systems with redox active positive electrodes

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113896256A (zh) * 2021-09-30 2022-01-07 蜂巢能源科技有限公司 一种补锂剂及其制备方法和应用
CN114079086A (zh) * 2021-11-16 2022-02-22 远景动力技术(江苏)有限公司 正极补锂添加剂、正极极片、其制备方法及锂离子电池
CN113937254A (zh) * 2021-11-16 2022-01-14 远景动力技术(江苏)有限公司 电池正极补锂添加剂、正极片、其制备方法及锂离子电池
CN114122402A (zh) * 2021-11-16 2022-03-01 远景动力技术(江苏)有限公司 锂离子电池正极补锂添加剂、正极片、其制备方法和用途
CN115286043B (zh) * 2021-11-29 2023-12-15 深圳市德方创域新能源科技有限公司 补锂添加剂前驱体及其制备方法、补锂添加剂
CN114497694A (zh) * 2021-12-29 2022-05-13 天津先众新能源科技股份有限公司 一种制造锂离子电池用的补锂剂及其制备方法
CN115064698B (zh) * 2022-07-29 2024-07-19 广东博粤新能源科技有限公司 一种正极补锂剂及其制备方法
CN115275200A (zh) * 2022-08-04 2022-11-01 四川朗晟新能源科技有限公司 一种锂电池正极材料用补锂剂及其制备方法
CN115425279A (zh) * 2022-09-30 2022-12-02 四川大学 一种牺牲型正极补锂添加剂及其制备方法与应用
CN116534913A (zh) * 2023-04-18 2023-08-04 宁夏百川新材料有限公司 一种镍酸锂正极材料的制备方法
CN118763221B (zh) * 2024-09-02 2025-03-14 宁波容百新能源科技股份有限公司 一种补锂剂及其制备方法、锂离子电池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130134949A (ko) * 2012-05-31 2013-12-10 주식회사 엘지화학 혼합 양극활물질 및 이를 포함하는 리튬이차전지
CN108735526A (zh) 2018-05-28 2018-11-02 浙江微创新能源有限公司 补锂材料Li2NiO2的制备方法、使用该Li2NiO2的锂离子电容器
CN109148823A (zh) * 2018-08-23 2019-01-04 宁波瞬能科技有限公司 一种超快充锂离子电池用电极及其制备方法和应用
CN109786746A (zh) 2018-12-25 2019-05-21 深圳市比克动力电池有限公司 正极片、锂离子电池正极补锂材料及其制备方法
CN110137488A (zh) * 2019-05-28 2019-08-16 郑州中科新兴产业技术研究院 一种锂二次电池用高镍正极材料及其制备方法
CN110218078A (zh) 2019-06-03 2019-09-10 深圳市比克动力电池有限公司 一种补锂材料Li2NiO2及其制备方法及应用
EP3629400A1 (fr) * 2018-09-28 2020-04-01 Commissariat à l'Energie Atomique et aux Energies Alternatives Procédé de préparation d'oxydes de métaux de transition lithiés
WO2020080800A1 (ko) * 2018-10-18 2020-04-23 주식회사 엘지화학 리튬 이차전지용 양극 첨가제의 제조방법 및 이로부터 제조된 리튬 이차전지용 양극 첨가제

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101595322B1 (ko) * 2013-12-31 2016-02-22 주식회사 에코프로 리튬 이차 전지용 양극 활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차 전지용 양극 활물질
KR102346153B1 (ko) 2017-11-17 2022-01-03 주식회사 엘지에너지솔루션 리튬 이차전지용 양극재에 포함되는 비가역 첨가제의 제조방법, 이에 의해 제조된 비가역 첨가제를 포함하는 양극재, 및 양극재를 포함하는 리튬 이차전지
CN108987672B (zh) 2018-08-16 2020-03-31 宁波瞬能科技有限公司 一种超快充锂离子电池用正极及其制备方法和应用
KR20200051931A (ko) 2018-11-06 2020-05-14 주식회사 포스코 리튬 화합물, 니켈계 양극 활물질, 산화 리튬의 제조 방법, 니켈계 양극 활물질의 제조 방법, 및 이를 이용한 이차 전지
CN111162249A (zh) * 2018-11-07 2020-05-15 天津国安盟固利新材料科技股份有限公司 一种提升首次放电容量的正极材料及其制备方法
CN110492072A (zh) * 2019-08-20 2019-11-22 北京卫蓝新能源科技有限公司 一种补金属离子复合合金粉末及其制备方法与应用
CN111029569B (zh) * 2019-11-11 2023-09-26 天津大学 锂离子电池补锂添加剂、电池电极及其制法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130134949A (ko) * 2012-05-31 2013-12-10 주식회사 엘지화학 혼합 양극활물질 및 이를 포함하는 리튬이차전지
CN108735526A (zh) 2018-05-28 2018-11-02 浙江微创新能源有限公司 补锂材料Li2NiO2的制备方法、使用该Li2NiO2的锂离子电容器
CN109148823A (zh) * 2018-08-23 2019-01-04 宁波瞬能科技有限公司 一种超快充锂离子电池用电极及其制备方法和应用
EP3629400A1 (fr) * 2018-09-28 2020-04-01 Commissariat à l'Energie Atomique et aux Energies Alternatives Procédé de préparation d'oxydes de métaux de transition lithiés
WO2020080800A1 (ko) * 2018-10-18 2020-04-23 주식회사 엘지화학 리튬 이차전지용 양극 첨가제의 제조방법 및 이로부터 제조된 리튬 이차전지용 양극 첨가제
CN109786746A (zh) 2018-12-25 2019-05-21 深圳市比克动力电池有限公司 正极片、锂离子电池正极补锂材料及其制备方法
CN110137488A (zh) * 2019-05-28 2019-08-16 郑州中科新兴产业技术研究院 一种锂二次电池用高镍正极材料及其制备方法
CN110218078A (zh) 2019-06-03 2019-09-10 深圳市比克动力电池有限公司 一种补锂材料Li2NiO2及其制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4191708A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114620704A (zh) * 2022-03-14 2022-06-14 湖州南木纳米科技有限公司 一种提高电池安全性的材料及其制备方法和应用
CN114620704B (zh) * 2022-03-14 2023-06-06 湖州南木纳米科技有限公司 一种提高电池安全性的材料及其制备方法和应用
CN114784365A (zh) * 2022-04-21 2022-07-22 江苏正力新能电池技术有限公司 一种二次电池
CN114784365B (zh) * 2022-04-21 2024-04-09 江苏正力新能电池技术有限公司 一种二次电池
CN114914434A (zh) * 2022-06-30 2022-08-16 广州博粤新材料科技有限公司 一种含补锂剂的正极材料及其制备方法
CN115548479A (zh) * 2022-10-24 2022-12-30 无锡零一未来新材料技术研究院有限公司 一种补锂材料及其制备方法与应用
CN115548479B (zh) * 2022-10-24 2024-03-22 无锡零一未来新材料技术研究院有限公司 一种补锂材料及其制备方法与应用
CN116259739A (zh) * 2023-01-10 2023-06-13 深圳市美格真空科技有限公司 含氧化锂的锂离子电池补锂剂及其制备方法
CN116259739B (zh) * 2023-01-10 2024-02-23 深圳市美格真空科技有限公司 含氧化锂的锂离子电池补锂剂及其制备方法
CN116477661A (zh) * 2023-01-20 2023-07-25 深圳市德方创域新能源科技有限公司 一种补锂材料及其制备方法和应用
WO2025030102A1 (en) * 2023-08-03 2025-02-06 Pure Lithium Corporation Systems and methods for rechargeable energy source systems with redox active positive electrodes

Also Published As

Publication number Publication date
JP2023534756A (ja) 2023-08-10
KR20230061361A (ko) 2023-05-08
EP4191708A1 (en) 2023-06-07
US20230290949A1 (en) 2023-09-14
CN113571781B (zh) 2023-02-17
CN113571781A (zh) 2021-10-29
EP4191708A4 (en) 2024-10-16
JP7559211B2 (ja) 2024-10-01

Similar Documents

Publication Publication Date Title
CN113571781B (zh) 锂离子电池正极补锂添加剂及其制备方法和锂离子电池
KR101964726B1 (ko) 구형 또는 구형-유사 리튬 이온 배터리 캐소드 재료 및 이의 제조 방법 및 적용
CN112499695B (zh) 一种镍钴锰三元正极材料及其制备方法和应用
EP4024519A1 (en) Positive electrode material, preparation method therefor and lithium ion battery
US12113204B2 (en) Method for producing positive electrode active material for lithium ion secondary battery, and molded body
CN115020696B (zh) 正极活性材料、电化学装置和电子设备
CN102427134A (zh) 一种LiFePO4-MXy混合导体复合物材料及其制备方法
JP7444534B2 (ja) 非水系電解質二次電池用正極活物質の製造方法、及び、成形体
CN106410182A (zh) 一种高压实密度微米级单晶三元正极材料的制备方法
Xiang et al. Improved electrochemical performance of Li1. 2Ni0. 2Mn0. 6O2 cathode material for lithium ion batteries synthesized by the polyvinyl alcohol assisted sol-gel method
JP2012116720A (ja) リチウムニッケルマンガン複合酸化物およびそれを含む二次電池用正極活物質ならびにそれらの製造方法
JP7586153B2 (ja) 非水系電解質二次電池用正極活物質の製造方法、及び、成形体
CN116706050B (zh) 中低镍单晶三元正极材料及其制备方法和电池
CN111009656A (zh) 一种稀土金属掺杂的高镍三元电池正极材料的制备方法
CN114628677A (zh) 一种铜掺杂锰酸钾电极材料、其制备方法及其在钾离子电池中的用途
WO2024087474A1 (zh) 共沉淀制备磷酸锰铁锂正极材料的方法及其应用
CN108511749B (zh) 掺杂铜镍酸锂正极材料及其制备方法和锂离子电池
CN116031380A (zh) 类多晶钠离子正极材料及其制备方法和应用
CN115602804A (zh) 一种快离子导体Li2ZrO3包覆高镍NCM锂离子电池正极材料制备方法
CN114162879A (zh) 一种微米级锂离子电池正极材料及其制备方法
JP2012116746A (ja) スピネル型リチウム・マンガン複合酸化物
CN110380041B (zh) 一种锂离子电池用分级结构正极材料的制备方法和应用
CN112897585B (zh) 一种尖晶石锰酸锂其制备方法及锂离子电池
CN118899429B (zh) 一种磷酸盐正极材料及其制备方法和锂离子电池
CN106784802A (zh) 一种合成锂离子电池正极材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947573

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023504719

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2020947573

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020947573

Country of ref document: EP

Effective date: 20230228

NENP Non-entry into the national phase

Ref country code: DE