[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021213196A1 - 线性压缩机的散热组件 - Google Patents

线性压缩机的散热组件 Download PDF

Info

Publication number
WO2021213196A1
WO2021213196A1 PCT/CN2021/086426 CN2021086426W WO2021213196A1 WO 2021213196 A1 WO2021213196 A1 WO 2021213196A1 CN 2021086426 W CN2021086426 W CN 2021086426W WO 2021213196 A1 WO2021213196 A1 WO 2021213196A1
Authority
WO
WIPO (PCT)
Prior art keywords
linear compressor
housing
plate
fluid
heat dissipation
Prior art date
Application number
PCT/CN2021/086426
Other languages
English (en)
French (fr)
Inventor
哈恩·格雷戈里·威廉
Original Assignee
海尔智家股份有限公司
青岛海尔电冰箱有限公司
海尔美国电器解决方案有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海尔智家股份有限公司, 青岛海尔电冰箱有限公司, 海尔美国电器解决方案有限公司 filed Critical 海尔智家股份有限公司
Priority to CN202180030414.7A priority Critical patent/CN115427688A/zh
Priority to EP21793601.2A priority patent/EP4141260A4/en
Priority to AU2021260292A priority patent/AU2021260292B2/en
Publication of WO2021213196A1 publication Critical patent/WO2021213196A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • F04B35/045Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0223Lubrication characterised by the compressor type
    • F04B39/023Hermetic compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0223Lubrication characterised by the compressor type
    • F04B39/0276Lubrication characterised by the compressor type the pump being of the reciprocating piston type, e.g. oscillating, free-piston compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • F04B39/064Cooling by a cooling jacket in the pump casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/121Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/128Crankcases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/023Compressor arrangements of motor-compressor units with compressor of reciprocating-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0223Lubrication characterised by the compressor type
    • F04B39/023Hermetic compressors
    • F04B39/0261Hermetic compressors with an auxiliary oil pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/02Compression machines, plants or systems with non-reversible cycle with compressor of reciprocating-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/073Linear compressors

Definitions

  • the invention relates to a linear compressor, and in particular to a heat dissipation system for the linear compressor.
  • Some refrigeration appliances include a sealing system for cooling the refrigeration compartment of the refrigeration appliance.
  • These sealed systems generally include a compressor that generates compressed refrigerant during the operation of the sealed system.
  • the compressed refrigerant flows to the evaporator.
  • the refrigerant exchanges heat with the refrigerating compartment to cool the refrigerating compartment and the food products therein.
  • some refrigeration appliances include linear compressors for compressing refrigerant.
  • Linear compressors generally include pistons and drive coils. The drive coil generates a force that causes the piston to slide forward and backward in the compartment. During the movement of the piston in the compartment, the piston compresses the refrigerant.
  • the compressor housing usually includes an oil or lubricant supply system to lubricate the piston in order to reduce the friction loss caused by the friction of the piston against the wall of the compartment.
  • This friction loss may have a negative impact on the efficiency of related refrigeration appliances.
  • linear compressors often encounter performance problems. For example, when the oil is heated during compressor operation, the oil may be atomized or may splash around in other ways, which may cause mechanical loss in the spring or cause reliability issues related to entrainment of oil droplets into the suction port .
  • Some linear compressors include an external heat exchanger that allows hot oil to pass outside the casing, but these heat exchangers are complicated in structure, expensive, and prone to leakage.
  • a linear compressor defining an axial direction and a vertical direction.
  • the linear compressor includes: a casing defining an oil pan for collecting lubricant; a pump for circulating the lubricant flow in the casing, the pump including a pump inlet located in the oil pan; and a heat dissipation assembly, the heat dissipation assembly including :
  • the plate is mounted on the inner surface of the housing; and a fluid passage is defined between the plate and the inner surface of the housing, the fluid passage having a fluid inlet for receiving the lubricant flow and draining the lubricant flow back Fluid outlet in the oil pan.
  • a heat dissipation assembly of a linear compressor includes: a housing defining an oil pan for collecting lubricant; a heat dissipation assembly including: a plate mounted on the inner surface of the housing; and a fluid passage defined between the plate and the inner surface of the housing In between, the fluid passage has a fluid inlet for receiving the lubricant flow and a fluid outlet for draining the lubricant flow back into the oil pan.
  • Fig. 1 is a front perspective view of a refrigerating appliance according to an exemplary embodiment of the present invention.
  • Fig. 2 is a schematic diagram of some parts of the exemplary refrigeration appliance of Fig. 1.
  • Fig. 3 is a cross-sectional perspective view of a linear compressor according to an exemplary embodiment of the present invention.
  • FIG. 4 is another cross-sectional perspective view of the exemplary linear compressor in FIG. 3 according to the exemplary embodiment of the present invention.
  • Figure 5 is a perspective view of a linear compressor according to an exemplary embodiment of the present invention, with the compressor removed for clarity.
  • FIG. 6 is a cross-sectional view of the exemplary linear compressor in FIG. 3 according to an exemplary embodiment of the present invention, with the piston in an extended position.
  • Fig. 7 is a cross-sectional view of the exemplary linear compressor in Fig. 3 according to an exemplary embodiment of the present invention, with the piston in a retracted position.
  • FIG. 8 is a schematic cross-sectional view of the exemplary linear compressor in FIG. 3 according to an exemplary embodiment of the present invention, the linear compressor including a heat dissipation assembly.
  • FIG. 9 provides a perspective view of the plate of the exemplary heat dissipation assembly in FIG. 8 according to the exemplary embodiment of the present invention.
  • Fig. 10 provides a cross-sectional view of a plate of the exemplary heat dissipation assembly of Fig. 8 according to an exemplary embodiment of the present invention, wherein the plate is mounted to the housing.
  • FIG. 1 depicts a refrigeration appliance 10, which includes the sealed refrigeration system 60 shown in FIG. 2.
  • the term "refrigeration appliance” is used in this text in a general sense to cover any form of refrigeration appliances, such as refrigerators, refrigerator/freezer combinations, and traditional refrigerators of any style or model.
  • the present invention is not limited to use in electrical appliances. Therefore, the present invention can be used for any other suitable purposes, such as vapor compression in an air conditioning unit or air compression in an air compressor.
  • the refrigeration appliance 10 is depicted as a vertical refrigerator having a cabinet or box 12 that defines a number of internal refrigeration storage compartments.
  • the refrigerating appliance 10 includes an upper food preservation compartment 14 having a door 16 and a lower freezing compartment 18 having an upper drawer 20 and a lower drawer 22.
  • the drawers 20 and 22 are "pull-out" drawers because they can be manually moved into and out of the freezer compartment 18 on a suitable sliding mechanism.
  • FIG. 2 is a schematic diagram of some parts of the refrigeration appliance 10, including a sealed refrigeration system 60 of the refrigeration appliance 10.
  • the machine room 62 contains components for performing a vapor compression cycle to cool air. These components include a compressor 64, a condenser 66, an expansion device 68, and an evaporator 70 connected in series and filled with refrigerant.
  • the refrigeration system 60 may include additional components, for example, at least one additional evaporator, compressor, expansion device, and/or condenser.
  • the refrigeration system 60 may include two evaporators.
  • the refrigerant flows into the compressor 64, and the compressor 64 operates to increase the pressure of the refrigerant.
  • This compression of the refrigerant increases its temperature, which decreases after the refrigerant passes through the condenser 66.
  • heat exchange is performed with the surrounding air to cool the refrigerant.
  • the fan 72 is used to draw air through the condenser 66 to provide forced convection, so as to perform faster and more effective heat exchange between the refrigerant in the condenser 66 and the surrounding air. Therefore, as those skilled in the art will understand, increasing the air flow through the condenser 66 can increase the efficiency of the condenser 66, for example, by improving the cooling of the refrigerant contained therein.
  • the expansion device 68 receives refrigerant from the condenser 66.
  • the refrigerant enters the evaporator 70 from the expansion device 68.
  • the pressure of the refrigerant drops. Due to the pressure drop and phase change of the refrigerant, the evaporator 70 has a lower temperature than the chambers 14 and 18 of the refrigeration appliance 10. In this way, cooling air is generated, and the chambers 14 and 18 of the refrigerating appliance 10 are cooled by the cooling air. Therefore, the evaporator 70 is a type of heat exchanger that can transfer heat from the air passing through the evaporator 70 to the refrigerant flowing through the evaporator 70.
  • the vapor compression cycle components, associated fans, and associated chambers in the refrigeration circuit are sometimes referred to as sealed refrigeration systems, which are operable to force cold air through the compartments 14, 18 ( Figure 1).
  • the refrigeration system 60 depicted in FIG. 2 is provided as an example only. Therefore, other configurations to use the refrigeration system are also within the scope of the present invention.
  • FIGS. 3 to 7 the linear compressor 100 will be described according to an exemplary embodiment of the present invention.
  • Figures 3 and 4 provide a cross-sectional perspective view of the linear compressor 100
  • Figure 5 provides a perspective view of the linear compressor 100, in which the compressor housing or housing 102 has been removed for clarity
  • Figures 6 and 7 Provide a cross-sectional view of the linear compressor with the piston in the extended position and the retracted position, respectively.
  • the linear compressor 100 is only used as an exemplary embodiment herein in order to describe various aspects of the present invention.
  • the linear compressor 100 can be modified and changed without going beyond the scope of the present invention.
  • the housing 102 may include a lower or lower housing 104 and an upper or upper housing 106, which are combined to form a basic structure for accommodating the various components of the linear compressor 100 Closed cavity 108.
  • the cavity 108 may be a sealed or airtight housing that accommodates the working components of the linear compressor 100, and may obstruct or prevent the refrigerant from leaking or escaping from the refrigeration system 60.
  • the linear compressor 100 generally defines an axial direction A, a radial direction R, and a circumferential direction C. It should be understood that the linear compressor 100 described and illustrated herein is only for describing aspects of the present invention. The linear compressor 100 can be modified and changed without going beyond the scope of the present invention.
  • the linear compressor 100 includes a housing 110 extending along the axial direction A between a first end 112 and a second end 114.
  • the housing 110 includes a cylinder 117 that defines a compartment 118.
  • the cylinder 117 is located at or near the first end 112 of the housing 110.
  • the compartment 118 extends longitudinally along the axial direction A.
  • the linear compressor 100 may be operated to increase the fluid pressure in the compartment 118 of the linear compressor 100.
  • the linear compressor 100 can be used to compress any suitable fluid, such as refrigerant or air.
  • the linear compressor 100 can be used in a refrigeration appliance, such as the refrigeration appliance 10 (FIG. 1 ), in which the linear compressor 100 can be used as the compressor 64 (FIG. 2 ).
  • the linear compressor 100 includes a stator 120 of an electric motor, which is mounted or fixed to a housing 110.
  • the stator 120 generally includes an outer back iron 122 and a driving coil 124, both of which extend around the circumference C in the housing 110.
  • the linear compressor 100 also includes one or more valves that permit refrigerant to enter and leave the compartment 118 during the operation of the linear compressor 100.
  • a discharge muffler 126 is located at the end of the compartment 118 for regulating the flow of refrigerant out of the compartment 118, and a suction valve 128 (for clarity, only shown in FIGS. 6-7) regulates the entry into the compartment 118 Refrigerant flow.
  • the piston 130 has a piston head 132, and the piston 130 is slidably received in the compartment 118 of the cylinder 117.
  • the piston 130 can move along the axial direction A.
  • the piston head 132 compresses the refrigerant in the compartment 118.
  • the piston head 132 can slide in the compartment 118 along the axial direction A toward the bottom dead center position (for example, see Figure 7), that is, the piston head 132 Expansion stroke.
  • the linear compressor 100 may include additional piston heads and/or additional compartments at the opposite end of the linear compressor 100. Therefore, in an alternative exemplary embodiment, the linear compressor 100 may have multiple piston heads.
  • the linear compressor 100 further includes a mover 140, which is generally driven by the stator 120 to compress the refrigerant.
  • the mover 140 may include an inner back iron 142 located in the stator 120 of the electric motor.
  • the outer back iron 122 and/or the drive coil 124 may extend around the inner back iron 142, for example along the circumferential direction C.
  • the inner back iron 142 also has an outer surface facing the outer back iron 122 and/or the driving coil 124.
  • at least one driving magnet 144 is mounted to the inner back iron 142 at the outer surface 137 of the inner back iron 142.
  • the driving magnet 144 may face and/or be exposed to the driving coil 124.
  • the driving magnet 144 may be spaced apart from the driving coil 124 by an air gap, for example, with an air gap along the radial direction R. Therefore, an air gap may be defined between the opposing surfaces of the driving magnet 144 and the driving coil 124.
  • the driving magnet 144 can also be installed or fixed to the inner back iron 142 so that the outer surface of the driving magnet 144 is substantially flush with the outer surface of the inner back iron 142. Therefore, the driving magnet 144 can be embedded in the inner back iron 142.
  • the magnetic field from the drive coil 124 may have to only pass through a single air gap between the outer back iron 122 and the inner back iron 142.
  • the linear compressor 100 may be more efficient.
  • the drive coil 124 extends around the inner back iron 142, for example, along the circumferential direction C.
  • the inner back iron 142 may extend in the circumferential direction C around the driving coil 124.
  • the drive coil 124 is operable to move the inner back iron 142 along the axial direction A during the operation of the drive coil 124.
  • a current source (not shown) can be used to induce a current in the drive coil 124 to generate a magnetic field, which engages with the drive magnet 144 and causes the piston 130 to move along the axial direction A, so as to compress the cooling in the compartment 118. Agents, as described above and will be understood by those skilled in the art.
  • the magnetic field of the driving coil 124 may be engaged with the driving magnet 144 so as to move the inner back iron 142 and the piston head 132 along the axial direction A during the operation of the driving coil 124. Therefore, during the operation of the driving coil 124, by moving the inner back iron 142 along the axial direction A, the driving coil 124 can slide the piston 130 between the top dead center position and the bottom dead center position.
  • the linear compressor 100 may include various components for permitting and/or regulating the operation of the linear compressor 100.
  • the linear compressor 100 includes a controller (not shown) configured to regulate the operation of the linear compressor 100.
  • the controller for example, is in operative communication with an electric motor (for example, the drive coil 124 of the electric motor). Therefore, by inducing a current in the drive coil 124, the controller selectively activates the drive coil 124 to compress the refrigerant with the piston 130 as described above.
  • the controller includes a memory and one or more processors, such as a microprocessor, a CPU, and a general-purpose or special-purpose microprocessor that is operable to execute programming instructions or micro-control codes associated with the operation of the linear compressor 100.
  • the memory can be random access memory, such as DRAM, or read-only memory, such as ROM or FLASH.
  • the processor executes programming instructions stored in the memory.
  • the memory may be a separate component from the processor, or may be included on the processor's board.
  • the controller may be configured to not use a microprocessor, for example, not to use a combination of discrete analog and/or digital logic circuits (such as switches, amplifiers, integrators, comparators, flip-flops, AND gates, etc.) ) Perform control functions instead of relying on software.
  • a microprocessor for example, not to use a combination of discrete analog and/or digital logic circuits (such as switches, amplifiers, integrators, comparators, flip-flops, AND gates, etc.) ) Perform control functions instead of relying on software.
  • the inner back iron 142 further includes an outer cylinder 146 and an inner sleeve 148.
  • the outer cylinder 146 defines the outer surface of the inner back iron 142 and has an inner surface disposed opposite to the outer surface of the outer cylinder 146.
  • the inner sleeve 148 is located on the inner surface of the outer cylinder 146 or at the inner surface of the outer cylinder 146.
  • the first interference fit between the outer cylinder 146 and the inner sleeve 148 may couple or fix the outer cylinder 146 and the inner sleeve 148 together.
  • the inner sleeve 148 may be welded, glued, fastened, or connected to the outer barrel 146 via any other suitable mechanism or method.
  • the outer barrel 146 may be constructed from or using any suitable material.
  • the outer cylinder 146 may be constructed from or using multiple (e.g., ferromagnetic) laminations. These laminations are distributed along the circumferential direction C so as to form an outer cylinder 146, which are installed or fixed to each other by means of rings pressed on the ends of the laminations.
  • the outer cylinder 146 may define a recess extending inward from the outer surface of the outer cylinder 146 in the radial direction R.
  • the driving magnet 144 is located in a recess on the outer cylinder 146, for example, so that the driving magnet 144 is embedded in the outer cylinder 146.
  • the linear compressor 100 further includes a pair of plane springs 150.
  • Each planar spring 150 may be coupled to a corresponding end of the inner back iron 142 along the axial direction A, for example.
  • the planar spring 150 supports the inner back iron 142.
  • the inner back iron 142 is suspended in the stator or the motor of the linear compressor 100 by the plane spring 150, so that the movement of the inner back iron 142 along the radial direction R is blocked or restricted, while the movement along the axial direction A is relatively opposite. Unblocked. Therefore, the rigidity of the plane spring 150 along the radial direction R may be substantially higher than the rigidity along the axial direction A.
  • the planar spring 150 can, for example, be along the radial direction R, assisting in maintaining the uniform air gap between the drive magnet 144 and the drive coil 124 sex.
  • the plane spring 150 can also assist in preventing the lateral pulling force of the motor from being transmitted to the piston 130 and reacting as a friction loss in the cylinder 117.
  • the flexible base 160 is mounted to and extends through the inner back iron 142.
  • the flexible base 160 is mounted to the inner back iron 142 via the inner sleeve 148. Therefore, the flexible base 160 may be coupled (eg, threaded) to the inner sleeve 148 at the middle portion of the inner sleeve 148 and/or the flexible base 160 in order to mount or fix the flexible base 160 to the inner sleeve 148.
  • the flexible base 160 may assist in forming the coupling 162.
  • the coupling 162 connects the inner back iron 142 and the piston 130, thereby transmitting the movement of the inner back iron 142 (for example, along the axial direction A) to the piston 130.
  • the coupling 162 may be a flexible coupling having flexibility or flexibility along the radial direction R.
  • the coupling 162 may have sufficient flexibility along the radial direction R so as to transmit little or no movement of the inner back iron 142 along the radial direction R to the piston 130 through the coupling 162. In this way, the lateral pulling force of the motor is separated from the piston 130 and/or the cylinder 117, and the friction between the piston 130 and the cylinder 117 can be reduced.
  • the piston head 132 of the piston 130 has a cylindrical side wall 170 of the piston.
  • the cylindrical side wall 170 may extend along the axial direction A from the piston head 132 toward the inner back iron 142.
  • the outer surface of the cylindrical side wall 170 may slide at the compartment 118 on the cylinder 117, and the inner surface of the cylindrical side wall 170 may be disposed opposite to the outer surface of the cylindrical side wall 170. Therefore, the outer surface of the cylindrical side wall 170 may face away from the center of the cylindrical side wall 170 in the radial direction R, and the inner surface of the cylindrical side wall 170 may face the center of the cylindrical side wall 170 in the radial direction R.
  • the flexible base 160 extends between the first end 172 and the second end 174, for example along the axial direction A.
  • the inner surface of the cylindrical side wall 170 defines a ball seat 176 near the first end.
  • the coupling 162 also includes a ball head 178.
  • the ball head 178 is located at the first end 172 of the flexible base 160 and can contact the flexible base 160 at the first end 172 of the flexible base 160.
  • the ball head 178 may contact the piston 130 at the ball seat 176 of the piston 130.
  • the ball head 178 may rest on the ball seat 176 of the piston 130 so that the ball head 178 can slide and/or rotate on the ball seat 176 of the piston 130.
  • the ball head 178 may have a frusto-spherical surface disposed next to the ball seat 176 of the piston 130, and the shape of the ball seat 176 may be complementary to the frusto-spherical surface of the ball head 178.
  • the truncated spherical surface of the ball head 178 can slide and/or rotate on the ball seat 176 of the piston 130.
  • the relative movement between the flexible base 160 and the piston 130 at the interface between the ball head 178 of the piston 130 and the ball seat 176 can be reduced.
  • the friction between the piston 130 and the cylinder 117 For example, when the axis of the piston 130 sliding in the cylinder 117 is angled with respect to the axis of the reciprocating movement of the inner back iron 142, the frusto-spherical surface of the ball head 178 can slide on the ball seat 176 of the piston 130 to be relative to the inner back iron.
  • the rigid connection between the iron 142 and the piston 130 reduces the friction between the piston 130 and the cylinder 117.
  • the first end 172 of the flexible base 160 away from the flexible base 160 is connected to the inner back iron 142.
  • the flexible base 160 may be connected to the inner back iron 142 at the second end 174 of the flexible base 160 or between the first end 172 and the second end 174 of the flexible base 160.
  • the flexible base 160 is located at or inside the piston 130 at the first end 172 of the flexible base 160, as discussed in more detail below.
  • the flexible base 160 includes a tubular wall 190 between the inner back iron 142 and the piston 130.
  • the channel 192 in the tubular wall 190 is configured to guide a compressible fluid such as refrigerant or air to the piston head 132 and/or to the piston 130 through the flexible base 160.
  • the inner back iron 142 may be installed to the flexible base 160 such that the inner back iron 142 extends around the tubular wall 190 at the middle portion of the flexible base 160 between the first end 172 and the second end 174 of the flexible base 160.
  • the passage 192 may extend between the first end 172 and the second end 174 of the flexible base 160 within the tubular wall 190, so that the compressible fluid can flow through the passage 192 from the first end 172 of the flexible base 160 to the flexible base 160.
  • the second end 174 of the sex base 160 In this way, during the operation of the linear compressor 100, the compressible fluid can flow through the inner back iron 142 within the flexible base 160.
  • the muffler 194 may be located in the channel 192 in the tubular wall 190 to reduce the noise of the compressible fluid flowing through the channel 192.
  • the piston head 132 also defines at least one opening 196.
  • the opening 196 of the piston head 132 extends through the piston head 132 along the axial direction A, for example. Therefore, during the operation of the linear compressor 100, the flow of fluid can pass through the piston head 132 and enter the compartment 118 via the opening 196 of the piston head 132. In this way, during the operation of the linear compressor 100, the fluid (ie, the fluid compressed by the piston head 132 in the compartment 118) can flow in the passage 192 through the flexible base 160 and the inner back iron 142 to the piston 130.
  • the suction valve 128 (FIGS. 6-7) may be located on the piston head 132 to regulate the flow of compressible fluid into the compartment 118 through the opening 196.
  • a lubrication system 200 that can be used with the linear compressor 100 will be described.
  • the lubrication system 200 is configured to circulate a lubricant such as oil through working parts or moving parts of the linear compressor 100 to reduce friction, improve efficiency, and the like.
  • a lubricant such as oil
  • the lubrication system 200 is described herein with respect to the linear compressor 100, it should be understood that aspects of the lubrication system 200 are applicable to any other suitable compressor or machine that requires continuous lubrication.
  • the housing 102 generally defines an oil pan 202 configured to collect oil (as identified herein by reference numeral 204, see FIG. 8).
  • an oil pan 202 is defined in the bottom of the lower housing 104.
  • the lubrication system 200 further includes a pump 206 for continuously circulating the oil 204 through the parts of the linear compressor 100 that need to be lubricated.
  • the pump 206 includes a pump inlet 208 that is located near the bottom of the housing 102 within the oil pan 202.
  • the pump 206 may draw the oil 204 from the oil pan 202 through the pump inlet 208 via the supply conduit 210 (FIG. 9) before circulating the oil 204 through the linear compressor 100.
  • FIG. 9 supply conduit 210
  • the lubrication system 200 may include any suitable number of supply conduits, nozzles, and other distribution features to provide oil to various components throughout the linear compressor 100 204.
  • the pump inlet 208 is arranged very close to and facing the bottom of the lower housing 104. In this way, the pump 206 can easily suck in the oil 204 even if the oil level is low.
  • the linear compressor 100 may be configured to contain the oil 204 that does not exceed the maximum oil injection line 212.
  • the highest oil injection line 212 is identified in FIG. 8, which may extend, for example, below half of the lower housing 104, below a quarter of the lower housing 104, or lower.
  • the pump 206 can circulate the oil 204 throughout the linear compressor 100, after which the oil 204 will seep or flow out of the working parts and collect in the oil pan 202 before recirculation.
  • the lubrication system 200 includes various features for processing, filtering, or conditioning the oil 204 during recirculation, such as various filters, screens, and the like.
  • the pump 206 is illustrated as being located within the oil pan, the pump 206 may be located in any other location and may include a fluid passage that draws the oil 204 from the oil pan 202.
  • the linear compressor 100 may include a suction port 220 for receiving a refrigerant flow.
  • the suction port 220 may be defined on the housing 102, such as on the lower housing 104, and may be configured to receive a refrigerant supply duct to provide refrigerant to the cavity 108.
  • the flexible base 160 includes a tubular wall 190 that defines a passage 192 for guiding compressible fluid such as refrigerant gas to the piston head 132 through the flexible base 160. In this way, the ideal flow path of the refrigerant gas is through the suction port 220, through the passage 192, through the opening 196, and into the compartment 118.
  • the suction valve 128 can block the opening 196 during the compression stroke, and the discharge valve 116 can permit the compressed gas to leave the compartment 118 when the desired pressure is reached.
  • the flexible base 160 may further define a channel inlet 230 which is disposed near the second end 174 of the flexible base 160 for sucking gas from the suction port 220 or the cavity 108 into the channel 192.
  • the channel inlet 230 may be an opening on the flexible base 160 that extends substantially in a vertical plane and opens toward the suction port 220.
  • the channel inlet 230 and the suction inlet 220 may be substantially located in the same horizontal plane.
  • the suction port 220 and the channel inlet 230 are also arranged near the midpoint of the housing 102 along the vertical direction V.
  • the suction port 220 and the channel inlet 230 may be positioned in any other suitable positions within the housing 102.
  • the linear compressor 100 may further include features for discharging or dissipating oil or lubricant or heat accumulated elsewhere in the linear compressor 100.
  • the linear compressor 100 includes a heat dissipation assembly 240 that is located in the cavity 108 and helps to promote the discharge of heat energy from the cavity 108 to the outside of the casing 102.
  • a heat dissipation assembly 240 is described herein, it should be understood that changes and modifications may be made to the heat dissipation assembly 240 without departing from the scope of the present invention.
  • the heat dissipation assembly 240 includes a plate 242 mounted to the inner surface 244 of the housing 102.
  • the plate 242 and the housing 102 together define one or more fluid passages 246.
  • the fluid passage 246 is at least partially defined by the plate 242 and the inner surface 244 of the housing 102 and defined therebetween.
  • Each fluid passage 246 may include a fluid inlet 248 for receiving a flow of lubricant (as identified herein by reference numeral 204) and a fluid outlet 252 for discharging the lubricant 204 back into the oil pan 202.
  • the heat dissipation assembly 240 is described below as being used with the lubrication system 200 of the linear compressor 100. However, it should be understood that various aspects of the heat dissipation assembly 240 may be used in other compressors and other lubrication systems without departing from the scope of the present invention.
  • the heat dissipation assembly 240 discharges or discharges the heat absorbed from the lubricant 204 during the operation of the linear compressor 100.
  • the hot lubricant 204 may be transferred directly from the moving parts of the linear compressor 100 to the fluid inlet 248.
  • the heat dissipation assembly 240 may have any suitable mechanism, ducts, or other features for collecting the lubricant 204 and directing it into the fluid inlet 248.
  • the heat dissipation assembly 240 may include a supply tube 254 that provides fluid between a hot oil collection point (for example, generally identified herein by the reference numeral 256) and the fluid inlet 248 Connected.
  • the hot oil collection point 256 may be an oil discharge port 258 defined on the housing 110 through which the heated lubricant 204 is discharged.
  • the supply tube 254 may be a flexible tube, one end of which is connected to the inlet boss 260 of the plate 242 that defines the fluid inlet 248, and the other end is connected to the oil outlet 258 or another heat outlet. Oil collection point 256.
  • the linear compressor 100 may include a collecting tray or a collecting tank for collecting the lubricant 204 heated during operation, and this collecting tray may direct the heated lubricant 204 to the supply pipe 254 or fluid inlet 248.
  • the fluid passage 246 may have any suitable size, shape, and configuration for maximizing the heat transfer of the heated lubricant 204.
  • the fluid passage 246 is serpentine to increase the thermal contact area.
  • the fluid passage 246 may be curvilinear, arcuate, wavy, zigzag, or any other suitable shape. Generally speaking, the fluid passage 246 flows downward so that gravity can assist the flow of the lubricant 204 to the fluid outlet 252.
  • the fluid inlet 242 is located at the top of the plate 242 along the vertical direction V
  • the fluid outlet 252 is located at the bottom of the plate 242 along the vertical direction V, for example, near the bottom of the oil pan 202.
  • the fluid outlet 252 is located directly above the maximum injection line 212 so that the heated lubricant 204 freely passes through the fluid outlet 252 to collect in the oil pan 202.
  • the heat dissipation assembly 240 may include any suitable number of fluid passages 246.
  • the plate 242 may be composed of any material rigid enough to maintain the fluid passage 246 containing the lubricant 204 therein.
  • the plate 242 can be formed by injection molding, for example, using a suitable plastic material (such as injection molding grade polybutylene terephthalate (PBT), nylon 6, impact-resistant polystyrene (HIPS) or acrylonitrile butadiene Styrene (ABS)).
  • a suitable plastic material such as injection molding grade polybutylene terephthalate (PBT), nylon 6, impact-resistant polystyrene (HIPS) or acrylonitrile butadiene Styrene (ABS)
  • these parts may be compression molded using, for example, sheet molding compound (SMC) thermosetting plastic or other thermoplastics.
  • the plate 242 may be composed of metal or any other suitable rigid material (such as a metal sheet).
  • the plate 242 may have a lower thermal conductivity than the housing 102.
  • the plate 242 is usually an insulating material, which generally reduces the heat transferred from the fluid passage 246 back into the cavity 108.
  • the heat from the lubricant 204 tends to flow directly through the housing 102 to the surrounding environment.
  • the plate 242 may include a thin stamped metal sheet 262, or may be constructed of a relatively thin material in other ways.
  • the plate 242 in order to increase the thermal resistance of the plate 242 including the metal sheet 262, the plate 242 may further include a heat insulating cover 264 located above the stamped metal sheet 262.
  • the plate 242 may define a plate thickness 270 and the housing 102 may define a housing thickness 272.
  • the plate thickness 270 may be greater than the housing thickness 272, for example, in order to improve the thermal insulation performance of the plate 242 with respect to the housing 102 and increase the possibility of discharging heat through the housing 102.
  • the plate thickness 270 is between about 1 to 5 times, between about 2 to 4 times, or about 3 times the thickness of the housing 272.
  • other suitable panel sizes, shapes, and configurations are possible.
  • the plate 242 may be bent to match the contour of the inner surface 244 of the housing 102.
  • the heat dissipation assembly 240 may include a plurality of plates 242, which are located at different positions in the housing 102, so as to dissipate heat at these positions.
  • the size and position of the plate 242 can be changed according to the space limitation in the cavity 108.
  • the plate 242 may be thicker in an area where the space restriction is small.
  • the plate 242 is installed on the lower housing 104. In this way, the installation process of the supply pipe 254 can be simplified.
  • other suitable plate positions and configurations are possible.
  • the fluid passage 246 can be defined between the housing 102 and the plate 242 in any manner.
  • the plate 242 may define a plate groove 280 that defines a fluid passage 246.
  • the housing 102 may further define a housing groove 282 to define a part of the fluid passage 246.
  • the grooves 280, 282 may be used together or alternatively.
  • the fluid passage may be defined in any other suitable way.
  • the plate 242 may be installed to the housing 102 in any suitable manner.
  • one or more mechanical fasteners may be used to mount the plate 242 to the housing 202.
  • the mechanical fastener may include one or more studs 290 formed as part of the housing 102 or otherwise attached to the housing 102.
  • One or more threaded nuts 292 may be configured to engage with the studs 290 to secure the plate 242 to the housing 102.
  • the housing 102 may define a plurality of brackets that allow the plate 242 to safely slide into a fixed position.
  • the bracket may be an L-shaped bracket 294 (which is schematically shown in FIG. 9 ), which extends in the vertical direction V and defines a groove for receiving the plate 242.
  • other suitable ways for mounting the plate 242 to the housing 102 are possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compressor (AREA)

Abstract

一种线性压缩机包括:壳体,限定出用于收集润滑剂的油盘;和泵,用于使润滑剂在壳体内循环。散热组件或热交换组件包括安装在壳体下部上的板件,以在板件和壳体之间限定出一个或多个流体通路。从线性压缩机的工作部件中收集热油,并使该热油通过一个或多个流体通路,以在热油返回油盘之前通过壳体排放热量。

Description

线性压缩机的散热组件 技术领域
本发明涉及线性压缩机,具体涉及用于线性压缩机的散热系统。
背景技术
某些制冷电器包括用于冷却制冷电器的制冷间室的密封系统。这些密封系统一般包括压缩机,该压缩机在密封系统运行期间产生压缩的制冷剂。该压缩的制冷剂流向蒸发器,在蒸发器中,制冷剂与制冷间室之间进行热交换,对制冷间室和其中的食物制品进行冷却。最近,某些制冷电器包括用于压缩制冷剂的线性压缩机。线性压缩机一般包括活塞和驱动线圈。驱动线圈产生使活塞在间室内向前和向后滑动的力。活塞在间室内运动期间,活塞压缩制冷剂。
压缩机壳体内通常包括油或润滑剂供应系统,用于润滑活塞,以便减少因活塞紧靠间室壁摩擦引起的摩擦损失,这种摩擦损失可能会对相关制冷电器的效率产生负面影响。然而,当油温较高时,这种线性压缩机常常会遭遇性能问题。例如,当油在压缩机运行期间受热时,油可能被雾化或者可能以其他方式四处飞溅,这可能会导致弹簧中出现机械损失,或者导致与将油滴夹带到吸入口中有关的可靠性问题。某些线性压缩机包括外部热交换器,该外部热交换器使热油在壳体外部经过,但是这些热交换器结构复杂、成本高昂且易于泄漏。
因此,需要一种具有改进性能的特征的线性压缩机。更特别地,一种具有用于从油中散热的改进系统的线性压缩机将会特别有益。
发明内容
本发明的各方面和优点将在以下描述中进行部分阐述,或者通过该描述清晰呈现,或通过实施本发明充分了解。
在本公开的一个示例性方面,提供一种限定轴向和竖直方向的线性压缩机。该线性压缩机包括:壳体,限定用于收集润滑剂的油盘;泵,用于使润滑剂流在壳体内循环,该泵包括位于油盘内的泵入口;和散热组件,散热组件包括:板件,安装到壳体的内表面上;和流体通路,限定在板件和壳体的内表面之间,该流体通路具有用于接收润滑剂流的流体入口和将润滑剂流排回油盘中的流体出口。
在本公开的另一个示例性方面,提供一种线性压缩机的散热组件。该线性压缩机包括:壳体,限定用于收集润滑剂的油盘;散热组件包括:板件,安装到壳体的内表面上;和流体通路,限定 在板件和壳体的内表面之间,该流体通路具有用于接收润滑剂流的流体入口和将润滑剂流排回油盘中的流体出口。
参考以下描述和所附权利要求,将更好地理解本发明的上述和其他特征、方面和优点。并入本说明书中并构成本说明书一部分的附图,示出了本发明的实施例,并与描述一起用于说明本发明的原理。
附图说明
在参考附图的说明书中,针对本领域普通技术人员阐述了本发明的完整、可行公开内容,其中包括其最佳方式。
图1是根据本发明的示例性实施例的制冷电器前立体图。
图2是图1的示例性制冷电器的某些部件示意图。
图3是根据本发明的示例性实施例的线性压缩机截面透视图。
图4是图3中根据本发明的示例性实施例的示例性线性压缩机的另一个截面透视图。
图5是根据本发明的示例性实施例的线性压缩机的透视图,其中为了清楚起见已移除压缩机。
图6是图3中根据本发明的示例性实施例的示例性线性压缩机的截面图,其中活塞处于伸展位置。
图7是图3中根据本发明的示例性实施例的示例性线性压缩机的截面图,其中活塞处于收缩位置。
图8是图3中根据本发明的示例性实施例的示例性线性压缩机的横截面示意图,该线性压缩机包括散热组件。
图9提供了图8中根据本发明的示例性实施例的示例性散热组件的板件透视图。
图10提供了图8中根据本发明的示例性实施例的示例性散热组件的板件横截面图,其中该板件安装到壳体。
本说明书和附图中重复使用附图标记旨在表示本发明的相同或相似特征或元件。
具体实施方式
在将详细介绍本发明的实施例,这些实施例的一个或多个示例已在附图中示出。所提供的每个示例均用于说明本发明,而不是用于限制本发明。实际上,对于本领域技术人员而言将显而易 见的是,在不脱离本发明范围或精神的情况下,可以对本发明进行各种修改和改变。举例来说,作为一个实施例的一部分示出或描述的特征,可以和另一个实施例组合使用,以形成其它实施例。因此,本发明旨在涵盖处于所附权利要求及其等同物的范围内的此类修改和变型。
图1描绘了制冷电器10,其包括图2所示的密封式制冷系统60。应当理解,术语“制冷电器”在本文中以一般意义使用以涵盖任何形式的制冷电器,如冷冻机、冰箱/冷冻机组合、以及任何样式或型号的传统冰箱。另外,应当理解,本发明不限于在电器中使用。因此,本发明可用于任何其他合适的目的,如空调机组内的蒸气压缩或空气压缩机内的空气压缩。
在图1所示的示例性实施例中,将制冷电器10描绘成具有柜体或箱体12的立式冰箱,该柜体或箱体12限定许多内部制冷储藏室。特别地,制冷电器10包括具有门16的上部食物保鲜室14和具有上部抽屉20和下部抽屉22的下部冷冻室18。抽屉20和22为“拉出”式抽屉,因为二者可以在适当的滑动机构上被手动移入和移出冷冻室18。
图2是制冷电器10某些部件的示意图,其中包括制冷电器10的密封式制冷系统60。机械室62包含用于执行蒸气压缩循环来冷却空气的部件。这些部件包括以串联方式连接并填充有制冷剂的压缩机64、冷凝器66、膨胀装置68和蒸发器70。如本领域技术人员将理解的,制冷系统60可包括附加部件,例如,至少一个附加蒸发器、压缩机、膨胀装置和/或冷凝器。作为示例,制冷系统60可包括两个蒸发器。
在制冷系统60内,制冷剂流入压缩机64,压缩机64运行以增加制冷剂的压力。这种对制冷剂的压缩使其温度升高,该温度在制冷剂流经冷凝器66后降低。在冷凝器66内,与周围空气进行热交换,以冷却制冷剂。如箭头AC所示,使用风扇72吸动空气使其穿过冷凝器66,以便提供强制对流,从而在冷凝器66内的制冷剂与周围空气之间进行更快速、更有效的热交换。因此,如本领域技术人员将理解的,增加穿过冷凝器66的空气流可以例如通过改善其所含制冷剂的冷却来提高冷凝器66的效率。
膨胀装置68(例如,阀门、毛细管或其他限制装置)从冷凝器66中接收制冷剂。制冷剂从膨胀装置68进入蒸发器70。在离开膨胀装置68并进入蒸发器70时,制冷剂的压力下降。由于制冷剂发生压降和相变,蒸发器70相对于制冷电器10的腔室14和18而言温度更低。如此产生冷却空气,并由该冷却空气对制冷电器10的腔室14和18进行制冷。因此,蒸发器70是一类可将热量从经过蒸发器70的空气传递到流过蒸发器70的制冷剂中的热交换器。
总的说来,制冷回路中的蒸汽压缩循环部件、相关风扇和相关腔室有时称为密封式制冷系统, 该系统可操作成迫使冷空气通过间室14、18(图1)。图2中描绘的制冷系统60仅作为示例提供。因此,要使用制冷系统的其他配置也在本发明的范围内。
转到图3至图7,将根据本发明的示例性实施例对线性压缩机100进行描述。具体地,图3和图4提供了线性压缩机100的截面透视图;图5提供了线性压缩机100的透视图,其中为了清楚起见已移除压缩机外壳或壳体102;图6和图7分别提供活塞处于伸展位置和收缩位置时的线性压缩机的截面图。应当理解,本文仅将线性压缩机100用作示例性实施例,以便对本发明的各方面进行描述。在不超出本发明范围的情况下,可以对线性压缩机100进行修改和改变。
如图3和图4中的示例所示,壳体102可包括下部或下部壳体104和上部或上部壳体106,二者结合在一起构成形成用于容纳线性压缩机100的各个部件的基本封闭的腔体108。具体地,例如,腔体108可以是容纳线性压缩机100工作部件的密封或气密外壳,并可阻碍或防止制冷剂从制冷系统60中泄漏或逸出。另外,线性压缩机100一般限定轴向A、径向R和周向C。应当理解,本文描述和图示的线性压缩机100仅为了描述本发明的各方面。在不超出本发明范围的情况下,可以对线性压缩机100进行修改和改变。
转到图3至图7,将根据示例性实施例对线性压缩机100的各个零件和工作部件进行说明。如图所示,线性压缩机100包括壳体110,该壳体110沿着轴向A在第一端部112和第二端部114之间延伸。壳体110包括限定间室118的气缸117。气缸117位于壳体110的第一端部112或其附近。间室118沿着轴向A纵向延伸。如下文更详细讨论的,线性压缩机100可操作成增加线性压缩机100的间室118内的流体压力。线性压缩机100可用于压缩任何合适的流体,如制冷剂或空气。特别地,线性压缩机100可用于制冷电器中,如制冷电器10(图1),在该制冷电器10中,线性压缩机100可以用作压缩机64(图2)。
线性压缩机100包括电动机的定子120,该电动机安装或固定到壳体110上。例如,定子120一般包括外部背铁122和驱动线圈124,二者在壳体110内绕周向C延伸。线性压缩机100还包括准许制冷剂在线性压缩机100运行期间进入和离开间室118的一个或多个阀门。例如,排放消声器126位于间室118的端部,用于调节从间室118流出的制冷剂流,而吸入阀128(清楚起见,仅在图6至图7中示出)调节进入间室118的制冷剂流。
活塞130具有活塞头132,活塞130可滑动地收容在气缸117的间室118内。特别地,活塞130可以沿着轴向A活动。在活塞头132在间室118内滑动期间,活塞头132压缩间室118内的制冷剂。作为示例,从上止点位置开始(例如,参见图6),活塞头132可以在间室118内沿着 轴向A朝向下止点位置滑动(例如,参见图7),即活塞头132的膨胀冲程。当活塞头132到达下止点位置时,活塞头132改变方向并在间室118中朝向上止点位置滑回,即,活塞头132的压缩冲程。应当理解,线性压缩机100可以在线性压缩机100的相对端包括附加活塞头和/或附加间室。因此,在备选的示例性实施例中,线性压缩机100可以具有多个活塞头。
如图所示,线性压缩机100还包括动子140,该动子140一般由定子120驱动以压缩制冷剂。具体地,例如,动子140可包括位于电动机的定子120中的内部背铁142。特别地,外部背铁122和/或驱动线圈124可以围绕内部背铁142延伸,例如沿着周向C。内部背铁142还具有朝向外部背铁122和/或驱动线圈124的外表面。例如,至少一个驱动磁体144在内部背铁142的外表面137处安装到内部背铁142上。
驱动磁体144可以面向和/或暴露于驱动线圈124。特别地,驱动磁体144可以与驱动线圈124间隔开空气间隙,例如沿着径向R间隔开空气间隙。因此,空气间隙可以限定在驱动磁体144和驱动线圈124的相对表面之间。驱动磁体144还可以安装或固定到内部背铁142上,使得驱动磁体144的外表面与内部背铁142的外表面基本上齐平。因此,驱动磁体144可以嵌入到内部背铁142内。以这种方式,在线性压缩机100运行期间,来自驱动线圈124的磁场可能必须仅通过外部背铁122和内部背铁142之间的单个空气间隙。相对于在驱动磁体两侧都具有空气间隙的线性压缩机,线性压缩机100可能更加高效。
如图3中所示,驱动线圈124围绕内部背铁142延伸,例如沿着周向C延伸。在备选示例性实施例中,内部背铁142可以围绕驱动线圈124沿着周向C延伸。驱动线圈124可操作成在驱动线圈124运行期间使内部背铁142沿着轴向A运动。作为示例,可以通过电流源(未示出)在驱动线圈124内诱导出电流来产生磁场,该磁场与驱动磁体144接合并促使活塞130沿着轴向A运动,以便压缩间室118内的制冷剂,如上所述以及本领域技术人员将理解的。特别地,驱动线圈124的磁场可以与驱动磁体144接合,以便在驱动线圈124运行期间,使内部背铁142和活塞头132沿着轴向A运动。因此,在驱动线圈124运行期间,通过使内部背铁142沿着轴向A运动,驱动线圈124可以使活塞130在上止点位置和下止点位置之间滑动。
线性压缩机100可包括用于准许和/或调节线性压缩机100运行的各个部件。特别地,线性压缩机100包括控制器(未示出),该控制器配置成调节线性压缩机100的运行。控制器例如与电动机(例如,电动机的驱动线圈124)可操作地通信。因此,通过在驱动线圈124中诱导电流,控制器可选择地激活驱动线圈124,以便如上所述地利用活塞130压缩制冷剂。
控制器包括存储器和一个或多个处理器,例如微处理器、CPU,可操作成执行与线性压缩机100运行相关联的编程指令或微控制代码的通用或专用微处理器。存储器可以为随机存取存储器,如DRAM之类的;或只读存储器,如ROM或FLASH。处理器执行存储在存储器中的编程指令。存储器可以是与处理器分离的部件,或可包括在处理器的板载中。另选地,控制器可以构造成不使用微处理器,例如,不使用分立的模拟和/或数字逻辑电路的组合(如开关、放大器、积分器、比较器、触发器、“与”门等)执行控制功能,而不是依靠软件。
内部背铁142进一步包括外部筒体146和内部套筒148。外部筒体146限定内部背铁142的外表面,并具有与外部筒体146外表面相对设置的内表面。内部套筒148位于外部筒体146内表面上或外部筒体146的内表面处。外部筒体146和内部套筒148之间的第一干涉配合可以将外部筒体146和内部套筒148联接或固定在一起。在备选的示例性实施例中,可以经由任何其他合适的机构或方法将内部套筒148焊接、胶合、紧固或连接到外部筒体146。
外部筒体146可以由或利用任何合适的材料构造。例如,外部筒体146可以由或利用多个(如铁磁性)叠片构造。这些叠片沿着周向C分布以便形成外部筒体146,利用压在叠片的端部上的环彼此安装或固定在一起。外部筒体146可以限定沿着径向R从外部筒体146的外表面向内延伸的凹部。驱动磁体144位于外部筒体146上的凹部中,例如,使得驱动磁体144嵌入在外部筒体146内。
线性压缩机100还包括一对平面弹簧150。每个平面弹簧150都可例如沿着轴向A联接到内部背铁142的相应端。在驱动线圈124运行期间,平面弹簧150支撑内部背铁142。特别地,内部背铁142通过平面弹簧150悬挂在线性压缩机100的定子或电动机内,使得内部背铁142沿着径向R的运动受阻或受限,而沿着轴向A的运动却相对畅通。因此,平面弹簧150沿着径向R的刚度基本上可以比沿着轴向A的刚度更高。以这种方式,在电动机运行期间以及在内部背铁142在轴向A上运动期间,平面弹簧150可例如沿着径向R,辅助维持驱动磁体144和驱动线圈124之间的空气间隙的均匀性。平面弹簧150还可以辅助阻止电动机的侧向拉力传递到活塞130,并在气缸117中作为摩擦损失发生反作用。
挠性底座160安装到并延伸穿过内部背铁142。特别地,挠性底座160经由内部套筒148安装到内部背铁142上。因此,挠性底座160可以在内部套筒148和/或挠性底座160的中间部分处联接(如螺纹连接)到内部套筒148,以便将挠性底座160安装或固定到内部套筒148。挠性底座160可以辅助形成联轴器162。联轴器162连接内部背铁142和活塞130,从而将内部背铁 142的运动(如沿着轴向A)传递到活塞130。
联轴器162可以是沿着径向R具有柔性或挠性的柔性联轴器。特别地,联轴器162沿着径向R可以具有充分的柔性,从而将内部背铁142沿着径向R的很少运动或不将其运动通过联轴器162传递到活塞130。以这种方式,使电动机的侧向拉力与活塞130和/或气缸117分离,并可减小活塞130与气缸117之间的摩擦。
如图中所示,活塞130的活塞头132具有活塞圆柱形侧壁170。圆柱形侧壁170可以沿着轴向A从活塞头132朝向内部背铁142延伸。圆柱形侧壁170的外表面可以在气缸117上的间室118处滑动,并且圆柱形侧壁170的内表面可以与圆柱形侧壁170的外表面相对设置。因此,圆柱形侧壁170的外表面可以沿着径向R背离圆柱形侧壁170的中心,并且圆柱形侧壁170的内表面可以沿着径向R面向圆柱形侧壁170的中心。
挠性底座160在第一端部172和第二端部174之间延伸,例如沿着轴向A。根据示例性实施例,圆柱形侧壁170的内表面靠近第一端部限定出球座176。另外,联轴器162还包括球头178。具体地,例如,球头178位于挠性底座160的第一端部172处,并可在挠性底座160的第一端部172处接触挠性底座160。另外,球头178可以在活塞130的球座176处接触活塞130。特别地,球头178可以搁置在活塞130的球座176上,使得球头178可以在活塞130的球座176上滑动和/或旋转。例如,球头178可以具有紧靠活塞130的球座176设置的截头球形表面,并且球座176的形状可以和球头178的截头球形表面互补。球头178的截头球形表面可以在活塞130的球座176上滑动和/或旋转。
例如,与挠性底座160和活塞130之间的固定连接相比,在活塞130的球头178和球座176之间的界面处在挠性底座160和活塞130之间的相对运动可以减小活塞130和气缸117之间的摩擦。例如,当活塞130在气缸117内滑动的轴线相对于内部背铁142往复运动的轴线成角度时,球头178的截头球形表面可以在活塞130的球座176上滑动,以相对于内部背铁142和活塞130之间的刚性连接,减小活塞130和气缸117之间的摩擦。
挠性底座160远离挠性底座160的第一端部172连接到内部背铁142。例如,挠性底座160可以在挠性底座160的第二端部174处或者在挠性底座160的第一端部172和第二端部174之间连接到内部背铁142。相反,挠性底座160在挠性底座160的第一端部172处位于活塞130处或其内部,如下文更详细讨论的。
另外,挠性底座160包括内部背铁142和活塞130之间的管状壁190。管状壁190内的通道 192配置成用于将制冷剂或空气之类的可压缩流体通过挠性底座160引向活塞头132和/或引入活塞130。内部背铁142可以安装到挠性底座160,使得内部背铁142在挠性底座160的第一端部172和第二端部174之间的挠性底座160的中间部分围绕管状壁190延伸。通道192可以在管状壁190内在挠性底座160的第一端部172和第二端部174之间延伸,使得可压缩流体可通过通道192从挠性底座160的第一端部172流到挠性底座160的第二端部174。以这种方式,在线性压缩机100运行期间,可压缩流体可以流过挠性底座160内的内部背铁142。消声器194可以位于管状壁190内的通道192内,以减少流过通道192的可压缩流体的噪声。
活塞头132还限定至少一个开口196。活塞头132的开口196例如沿着轴向A延伸穿过活塞头132。因此,在线性压缩机100运行期间,流体的流动可以经由活塞头132的开口196穿过活塞头132进入间室118。以这种方式,在线性压缩机100运行期间,流体(即在间室118内由活塞头132压缩的流体)流可以在通道192内通过挠性底座160和内部背铁142流到活塞130。如上文中所解释的,吸入阀128(图6至图7)可以位于活塞头132上,以调节通过开口196进入间室118的可压缩流体流。
仍然参考图3至图7并还参考图8,将对可以和线性压缩机100一起使用的润滑系统200进行描述。具体而言,润滑系统200配置成用于使油之类的润滑剂循环通过线性压缩机100的工作部件或运动部件,以减小摩擦、提高效率等。尽管本文针对线性压缩机100描述了润滑系统200,但应当理解,润滑系统200的各方面适用于需要连续润滑的任何其他合适压缩机或机器。
如图所示,壳体102一般限定油盘202,该油盘配置成用于收集油(如本文通过附图标记204所标识的,参见图8)。具体地,在下部壳体104的底部中限定油盘202。润滑系统200进一步包括泵206,其用于使油204连续循环通过线性压缩机100需要润滑的部件。在这一方面,例如,泵206包括泵入口208,其靠近油盘202内的壳体102的底部设置。泵206可以在使油204循环通过线性压缩机100之前,经由供应导管210(图9)通过泵入口208从油盘202中吸入油204。尽管为清楚起见仅在图中示出一个供应导管210,但应当理解,润滑系统200可以包括任何合适数量的供应导管、喷嘴和其他分配特征,以便在整个线性压缩机100中向各个部件提供油204。
显然,根据图示的实施例,泵入口208设置得非常靠近且面对下部壳体104的底部。以这种方式,即使油位较低,泵206也可以容易地吸入油204。具体地,线性压缩机100可配置成用于收容不超过最高注油线212的油204。例如,图8中标识出最高注油线212,其可例如在下部壳体104上的一半以下、下部壳体104上的四分之一以下或更低的位置延伸。在运行期间,泵206 可以使油204在整个线性压缩机100中循环,此后,油204将渗出或流出工作部件并在再循环之前聚集在油盘202中。尽管此处未图示,但应当理解,润滑系统200包括用于在再循环期间处理、过滤或调节油204的各种特征,如各种过滤器、滤网等。另外,应当理解,尽管将泵206图示为位于油盘内,但泵206可以位于任何其他位置,并可包括从油盘202中抽吸油204的流体通路。
另如图中所示,线性压缩机100可包括用于接收制冷剂流的吸入口220。具体地,吸入口220可以限定在壳体102上,如在下部壳体104上,并可配置成用于收容制冷剂供应导管以向腔体108提供制冷剂。如上文解释的,挠性底座160包括管状壁190,该管状壁190限定出通道192,该通道用于将制冷剂气体之类的可压缩流体通过挠性底座160引向活塞头132。以这种方式,制冷剂气体的理想流动路径是通过吸入口220、通过通道192、通过开口196并进入间室118。吸入阀128可以在压缩冲程期间堵塞开口196,而排放阀116可以准许压缩气体在达到所需压力时离开间室118。
挠性底座160可进一步限定通道入口230,该通道入口230靠近挠性底座160的第二端部174设置,用于将气体从吸入口220或腔体108吸入到通道192中。具体地,通道入口230可以是挠性底座160上的开口,该开口基本上在竖直平面内延伸并朝向吸入口220敞开。具体地,根据图示的实施例,通道入口230和吸入口220可以基本上位于相同的水平面内。根据图示的实施例,吸入口220和通道入口230也沿着竖直方向V靠近壳体102的中点设置。然而,应当理解,根据备选实施例,吸入口220和通道入口230可以定位在壳体102内任何其他合适的位置。
现在具体参考图8至图10,线性压缩机100可进一步包括用于排出或散出油或润滑剂或线性压缩机100内其他地方积聚的热量的特征。具体地,根据示例性实施例,线性压缩机100包括散热组件240,该散热组件240位于腔体108内并帮助促进热能从腔体108内向壳体102外部排放。尽管本文描述了示例性散热组件240,但是应当理解,在不超出本发明范围的情况下,可以对散热组件240进行改变和修改。
根据图示的实施例,散热组件240包括板件242,该板件242安装到壳体102的内表面244。一般而言,板件242和壳体102共同限定出一个或多个流体通路246。在这一方面,流体通路246至少部分地由板件242和壳体102的内表面244限定并在其之间限定。每个流体通路246可包括用于接收润滑剂流(如本文中通过附图标记204所标识的)的流体入口248和用于将润滑剂204排放回到油盘202中的流体出口252。为了对本发明的各方面进行解释,以下将散热组件240描述为与线性压缩机100的润滑系统200一起使用。然而,应当理解,在不超出本发明范围的情况 下,散热组件240的各方面可以在其他压缩机和其他润滑系统中使用。
一般而言,散热组件240将在线性压缩机100的运行期间从润滑剂204吸收的热量排出或排放。在这一方面,例如,热润滑剂204可以从线性压缩机100的运动部件直接转移到流体入口248。在这一方面,散热组件240可以具有任何合适的机构、管道或其他特征,用于收集润滑剂204并将其引导至流体入口248中。例如,根据一个示例性实施例,散热组件240可包括供应管254,该供应管254在热油收集点(例如,本文中一般通过附图标记256所标识的)和流体入口248之间提供流体连通。例如,热油收集点256可以是在壳体110上限定的排油口258,加热的润滑剂204通过该排油口258排出。在这一方面,供应管254可以是挠性管,该挠性管的一端连接到限定出流体入口248的板件242的入口凸台260上,另一端连接到排油口258或另一个热油收集点256。仍然根据其他实施例,线性压缩机100可包括收集盘或收集槽,用于对在运行期间受热后的润滑剂204进行收集,并且这种收集盘可以将受热的润滑剂204直接引导至供应管254或流体入口248中。
当润滑剂204穿过流体通路246时,来自热润滑剂204的热能可通过壳体102传递到周围环境。流体通路246可以具有任何合适的尺寸、形状和配置,用于最大限度地提高受热的润滑剂204的热传递。例如,根据图示的实施例,流体通路246是蛇形的,以增加热接触面积。仍然根据其他实施例,流体通路246可以是曲线形、弓形、波浪形、之字形或任何其他合适的形状。一般而言,流体通路246向下流动,使得重力可以帮助辅助润滑剂204流向流体出口252。例如,根据图示的实施例,流体入口242沿着竖直方向V位于板件242的顶部,流体出口252沿着竖直方向V位于板件242的底部,例如靠近油盘202的底部。具体地,根据图示的实施例,流体出口252位于最大注入线212的正上方,使得受热的润滑剂204自由地穿过流体出口252,以聚集在油盘202中。此外,尽管示出单个流体通路246,但是散热组件240可以包括任何合适数量的流体通路246。
根据示例性实施例,板件242可以由刚性足以维持在其中含有润滑剂204的流体通路246的任何材料构成。例如,板件242可通过注射成型形成,例如使用合适的塑料材料(如注射成型级聚对苯二甲酸丁二酯(PBT)、尼龙6、耐冲击聚苯乙烯(HIPS)或丙烯腈丁二烯苯乙烯(ABS))。另选地,根据示例性实施例,这些部件可例如使用片状模塑料(SMC)热固性塑料或其他热塑性塑料来压缩模制成。仍然根据其他实施例,板件242可以由金属或任何其他合适的刚性材料(如金属片)构成。
显然,根据示例性实施例,板件242可以具有比壳体102低的导热率。以这种方式,板件242通常是绝热材料,一般是减少了从流体通路246回传到腔体108中的热量。相反,来自润滑剂204的热量倾向于直接通过壳体102流到周围环境。仍然根据其他实施例,如图10中所示,板件242可包括一块薄的冲压金属片262,或可以以其他方式由相对较薄的材料构成。根据示例性实施例,为了提高包括金属片262的板件242的热阻,板件242可进一步包括位于冲压金属片262上方的绝热盖264。
另外,根据示例性实施例,板件242可以限定板件厚度270,壳体102可限定壳体厚度272。根据示例性实施例,板件厚度270可以大于壳体厚度272,例如,以便提高板件242相对于壳体102的绝热性能并增加通过壳体102排出热的可能性。例如,根据示例性实施例,板件厚度270是壳体厚度272的约1至5倍之间、约2至4倍之间或约3倍。在本发明的范围内,其他合适的板件尺寸、形状和配置是可能的。
根据示例性实施例,板件242可以弯曲以匹配壳体102的内表面244的轮廓。另外,应当理解,散热组件240可包括多个板件242,这些板件位于壳体102内的不同位置处,以便在这些位置处进行散热。另外,板件242的尺寸和位置可以根据腔体108内的空间限制而变化。例如,在空间限制较小的区域中板件242可以更厚。另外,根据图示的实施例,板件242安装在下部壳体104上。以这种方式,可以简化供应管254的安装过程。然而,在本发明的范围内,其他合适的板件位置和配置是可能的。
显然,流体通路246能够以任何方式限定在壳体102和板件242之间。在这一方面,如图8和图9中所示,板件242可以限定板件凹槽280,该板件凹槽280限定出流体通路246。相比之下,如图10中所示,壳体102还可以限定出壳体凹槽282,以限定出流体通路246的一部分。应当理解,凹槽280、282可以一起使用或替代地使用。实际上,根据其他实施例,可通过任何其他合适的方式限定流体通路。
板件242可通过任何合适的方式安装到壳体102。例如,根据本发明的示例性实施例,可以使用一个或多个机械紧固件将板件242安装到壳体202。在这一方面,如图10中所示,机械紧固件可包括一个或多个螺柱290,螺柱290形成为壳体102的一部分或者以其他方式附接到壳体102。一个或多个带螺纹的螺母292可以配置成与螺柱290相啮合,以便将板件242固定到壳体102上。仍然根据其他实施例,壳体102可以限定多个支架,这些支架使板件242安全地滑动至固定位置中。在这一方面,例如,支架可以是L形支架294(其在图9中示意性地示出),其沿 着竖直方向V延伸并限定用于收容板件242的凹槽。在本发明的范围内,用于将板件242安装到壳体102上的其他合适的方式是可能的。
本书面描述使用示例来公开本发明(包括最佳方式),可让本领域技术人员能够实践本发明,包括制造和使用任何设备或系统以及执行任何包含的方法。本发明的可授予专利权的范围由权利要求限定,并且可以包括本领域技术人员想到的其他示例。如果此类其他示例包括与权利要求的字面语言并无区别的结构元件,或者如果此类其他示例包括与权利要求的字面语言没有实质性区别的等效结构元件,此类其他示例则处于权利要求的范围内。

Claims (20)

  1. 一种线性压缩机,限定轴向和竖直方向,所述线性压缩机包括:
    壳体,限定出用于收集润滑剂的油盘;
    泵,用于使润滑剂在所述壳体内循环,所述泵包括位于所述油盘内的泵入口;和
    散热组件,其包括:
    板件,安装到所述壳体的内表面上;和
    流体通路,限定在所述板件和所述壳体的所述内表面之间,所述流体通路具有用于接收所述润滑剂流的流体入口和将所述润滑剂流排回所述油盘中的流体出口。
  2. 根据权利要求1所述的线性压缩机,其特征在于,所述散热组件进一步包括:
    供应管,其在热油收集点和所述流体通路的所述流体入口之间提供流体连通。
  3. 根据权利要求1所述的线性压缩机,其特征在于,所述流体入口沿着所述竖直方向位于所述板件的顶部,并且所述流体出口沿着所述竖直方向位于所述板件的底部。
  4. 根据权利要求1所述的线性压缩机,其特征在于,所述流体出口靠近所述油盘的底部设置。
  5. 根据权利要求1所述的线性压缩机,其特征在于,所述流体通路是蛇形的。
  6. 根据权利要求1所述的线性压缩机,其特征在于,所述板件限定板件凹槽,所述板件凹槽部分地限定所述流体通路。
  7. 根据权利要求1所述的线性压缩机,其特征在于,所述壳体限定壳体凹槽,所述壳体凹槽部分地限定所述流体通路。
  8. 根据权利要求1所述的线性压缩机,其特征在于,所述散热组件包括:
    多个板件,其安装到所述壳体的所述内表面以限定多个流体通路。
  9. 根据权利要求1所述的线性压缩机,其特征在于,所述板件位于所述壳体的下部。
  10. 根据权利要求1所述的线性压缩机,其特征在于,所述板件弯曲以匹配所述壳体的所述内表面的轮廓。
  11. 根据权利要求1所述的线性压缩机,其特征在于,所述板件限定板件厚度,并且所述壳体限定壳体厚度,其中,所述板件厚度在所述壳体厚度的1到2倍之间。
  12. 根据权利要求1所述的线性压缩机,其特征在于,所述板件由绝热材料形成。
  13. 根据权利要求1所述的线性压缩机,其特征在于,所述板件的导热率比所述壳体的导热率低。
  14. 根据权利要求1所述的线性压缩机,其特征在于,所述板件由热塑性材料形成。
  15. 根据权利要求1所述的线性压缩机,其特征在于,所述板件由冲压金属片形成。
  16. 根据权利要求1所述的线性压缩机,其特征在于,所述散热组件进一步包括:
    绝热盖,位于所述板件上。
  17. 根据权利要求1所述的线性压缩机,进一步包括:
    多个支架,用于将板件固定在所述壳体上。
  18. 根据权利要求1所述的线性压缩机,其特征在于,使用一个或多个机械紧固件将所述板件安装到所述壳体。
  19. 一种用于线性压缩机的散热组件,所述线性压缩机包括壳体,所述壳体限定用于收集润滑剂的油盘,所述散热组件包括:
    板件,安装到所述壳体的内表面上;和
    流体通路,其限定在所述板件和所述壳体的所述内表面之间,所述流体通路具有用于接收润滑剂流的流体入口和将所述润滑剂流排回到所述油盘中的流体出口。
  20. 根据权利要求19所述的散热组件,其特征在于,所述板件由导热率比所述壳体低的绝热材料形成。
PCT/CN2021/086426 2020-04-22 2021-04-12 线性压缩机的散热组件 WO2021213196A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180030414.7A CN115427688A (zh) 2020-04-22 2021-04-12 线性压缩机的散热组件
EP21793601.2A EP4141260A4 (en) 2020-04-22 2021-04-12 THERMAL RADIATION ASSEMBLY OF A LINEAR COMPRESSOR
AU2021260292A AU2021260292B2 (en) 2020-04-22 2021-04-12 Heat radiation assembly of linear compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/855,237 2020-04-22
US16/855,237 US11421922B2 (en) 2020-04-22 2020-04-22 Heat dissipation assembly for a linear compressor

Publications (1)

Publication Number Publication Date
WO2021213196A1 true WO2021213196A1 (zh) 2021-10-28

Family

ID=78221978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086426 WO2021213196A1 (zh) 2020-04-22 2021-04-12 线性压缩机的散热组件

Country Status (5)

Country Link
US (1) US11421922B2 (zh)
EP (1) EP4141260A4 (zh)
CN (1) CN115427688A (zh)
AU (1) AU2021260292B2 (zh)
WO (1) WO2021213196A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4968223A (en) * 1988-02-04 1990-11-06 Empresa Brasiliera de Compressores Gas and oil cooling system for a hermetic compressor
US6345712B1 (en) * 2000-06-09 2002-02-12 Dana Corporation Axle assembly with liquid cooled brake
CN203098282U (zh) * 2013-01-30 2013-07-31 艾默生环境优化技术(苏州)有限公司 压缩机
CN108350879A (zh) * 2015-12-15 2018-07-31 比泽尔制冷设备有限公司 具有非圆形管的回油管
CN110118175A (zh) * 2019-06-06 2019-08-13 苏州英华特涡旋技术有限公司 一种带油冷却的涡旋压缩机

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3009072A (en) * 1958-01-28 1961-11-14 Scott L & Electromotors Ltd Fluid cooled motors
DE2545304C3 (de) * 1975-10-09 1979-01-25 Arnold 7312 Kirchheim Mueller Kältemaschine
US5653585A (en) 1993-01-11 1997-08-05 Fresco; Anthony N. Apparatus and methods for cooling and sealing rotary helical screw compressors
JPH0886298A (ja) * 1994-09-19 1996-04-02 Hitachi Ltd ドライターボ真空ポンプ
US5839327A (en) * 1995-09-18 1998-11-24 American Axle & Manufacturing, Inc. Drive axle assembly with lubricant cooling system
KR100480094B1 (ko) 1998-12-14 2005-06-08 엘지전자 주식회사 듀얼형 리니어 압축기의 냉각장치
KR100301510B1 (ko) * 1998-12-31 2001-11-15 구자홍 리니어압축기의오일유로구조
US6854955B2 (en) * 2003-01-07 2005-02-15 Sundyne Corporation Internal lubrication screw pump for hollow shaft
US20060108880A1 (en) * 2004-11-24 2006-05-25 Lg Electronics Inc. Linear compressor
KR100624734B1 (ko) * 2005-05-11 2006-09-15 엘지전자 주식회사 리니어 압축기의 윤활유 펌프
DE102009018212A1 (de) * 2009-04-21 2010-10-28 Oerlikon Leybold Vacuum Gmbh Vakuumpumpengehäuse sowie Kühlelemente-Set für ein Vakuumpumpengehäuse
BR112012017932B8 (pt) * 2010-01-20 2022-09-27 Daikin Ind Ltd Compressor
US9239054B2 (en) * 2012-11-20 2016-01-19 Emerson Climate Technologies, Inc. Scroll compressor with oil-cooled motor
KR102108194B1 (ko) * 2014-01-28 2020-05-08 현대모비스 주식회사 냉각기능을 갖는 모터
US10247464B2 (en) 2016-01-27 2019-04-02 Haier Us Appliance Solutions, Inc. Sealed system for an appliance
EP3470673B1 (en) 2017-10-11 2021-12-01 Lg Electronics Inc. Linear compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4968223A (en) * 1988-02-04 1990-11-06 Empresa Brasiliera de Compressores Gas and oil cooling system for a hermetic compressor
US6345712B1 (en) * 2000-06-09 2002-02-12 Dana Corporation Axle assembly with liquid cooled brake
CN203098282U (zh) * 2013-01-30 2013-07-31 艾默生环境优化技术(苏州)有限公司 压缩机
CN108350879A (zh) * 2015-12-15 2018-07-31 比泽尔制冷设备有限公司 具有非圆形管的回油管
CN110118175A (zh) * 2019-06-06 2019-08-13 苏州英华特涡旋技术有限公司 一种带油冷却的涡旋压缩机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4141260A4 *

Also Published As

Publication number Publication date
US11421922B2 (en) 2022-08-23
CN115427688A (zh) 2022-12-02
AU2021260292A1 (en) 2022-11-24
US20210333023A1 (en) 2021-10-28
EP4141260A1 (en) 2023-03-01
EP4141260A4 (en) 2023-07-26
AU2021260292B2 (en) 2024-06-06

Similar Documents

Publication Publication Date Title
CN114466974B (zh) 用于制冷电器的线性压缩机和制冷系统
US20150226210A1 (en) Linear compressor
RU2741527C1 (ru) Холодильник
US10247464B2 (en) Sealed system for an appliance
WO2020224400A1 (zh) 具有防油溅板的线性压缩机
US20180238313A1 (en) Compressor with a discharge muffler
US9932975B2 (en) Compressor
KR20090114044A (ko) 냉장고
WO2023274334A1 (zh) 用于往复式压缩机的吸入消音器
RU2756862C2 (ru) Холодильник
WO2021213196A1 (zh) 线性压缩机的散热组件
US20120279245A1 (en) Compact discharge device for the refrigeration compressor of an appliance
WO2022073436A1 (zh) 直线压缩机的散热组件
CN213687366U (zh) 压缩机和制冷设备
KR102485232B1 (ko) 냉장고
KR20110083913A (ko) 냉장고
WO2023131080A1 (zh) 线性压缩机和平面弹簧组件
US20240175434A1 (en) Noise reduction media for a reciprocating compressor
WO2022100542A1 (zh) 往复式压缩机及其阀门
CN114543392A (zh) 压缩机和制冷设备
WO2020207321A1 (zh) 用于电器的风扇组件及制冷电器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21793601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021260292

Country of ref document: AU

Date of ref document: 20210412

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021793601

Country of ref document: EP

Effective date: 20221122