WO2021192960A1 - 触媒及びジエン化合物の製造方法 - Google Patents
触媒及びジエン化合物の製造方法 Download PDFInfo
- Publication number
- WO2021192960A1 WO2021192960A1 PCT/JP2021/008994 JP2021008994W WO2021192960A1 WO 2021192960 A1 WO2021192960 A1 WO 2021192960A1 JP 2021008994 W JP2021008994 W JP 2021008994W WO 2021192960 A1 WO2021192960 A1 WO 2021192960A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- raw material
- diene compound
- group
- reaction
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/08—Silica
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/066—Zirconium or hafnium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/20—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
- B01J35/23—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/647—2-50 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/651—50-500 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/653—500-1000 nm
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/20—Silicates
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/20—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/20—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
- C07C1/24—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by elimination of water
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F236/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F236/02—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F236/04—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
- C08F236/10—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L9/00—Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
- C08L9/06—Copolymers with styrene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2235/00—Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
- B01J2235/15—X-ray diffraction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2235/00—Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
- B01J2235/30—Scanning electron microscopy; Transmission electron microscopy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/20—Particle morphology extending in two dimensions, e.g. plate-like
- C01P2004/24—Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/54—Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/16—Pore diameter
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2521/00—Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
- C07C2521/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2521/00—Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
- C07C2521/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- C07C2521/08—Silica
Definitions
- the present invention relates to a catalyst and a method for producing a diene compound using the catalyst.
- butadiene such as 1,3-butadiene, which is a typical example of a diene compound, is used as a raw material for styrene-butadiene rubber (SBR) and the like.
- SBR styrene-butadiene rubber
- butadiene has been purified from the C4 distillate.
- the C4 fraction is a fraction produced as a by-product during naphtha cracking, which produces ethylene from petroleum.
- the amount of shale gas used increased, the amount of oil used decreased.
- the production of butadiene obtained from petroleum naphtha cracking has also decreased. Therefore, an alternative method for producing a diene compound such as 1,3-butadiene is required.
- Patent Documents 1 to 3 disclose catalysts suitable for this reaction.
- Production Example 1 of Patent Document 1 discloses a catalyst in which Hf, Cu and Zn are supported on silica which is a porous carrier, and Examples of Patent Document 2 disclose Zn, Zr. And solid catalysts carrying metals such as alkaline earth metals are disclosed. Further, in the examples of Patent Document 3, a catalyst in which Ta, Zr, and Hf are supported on silica as a carrier is disclosed.
- an object of the present invention is to provide a catalyst capable of efficiently producing butadiene without a decrease in the yield of butadiene even in continuous operation for a long time.
- the present inventors have conducted diligent research in order to solve the above problems. As a result, they have found that the above-mentioned problems can be solved by a catalyst having a specific composite oxide structure containing a predetermined element, and have completed the present invention. That is, the present invention has the following aspects.
- Periodic Table A scale-like particle containing at least one element X selected from the group consisting of groups 3 to 6 and at least one element Z selected from the group consisting of group 14 elements.
- a method for producing a diene compound which comprises producing a diene compound from a raw material gas containing alcohol by using the catalyst according to any one of the above [1] to [11].
- SBR styrene-butadiene rubber
- BR butadiene rubber
- a diene compound, particularly butadiene can be produced in a high yield by suppressing an overreaction with a polymer. Further, by suppressing the overreaction, deterioration of cork is suppressed, the catalyst life is long, and continuous operation for a long time can be enabled. That is, it is possible to provide a catalyst capable of efficiently producing butadiene because the yield of butadiene does not easily decrease even in continuous operation for a long time.
- the catalyst according to the present embodiment contains at least one element X selected from the group consisting of groups 3 to 6 of the periodic table and at least one element Z selected from the group consisting of group 14 elements.
- a catalyst containing scaly particles containing the scaly particles and having pores in the thickness direction of the scaly particles.
- pores can be formed in the thickness direction of the scaly shape, and the pore length depends on the thickness, so that the thickness of the scaly shape is controlled. By doing so, the pore length can be controlled.
- the catalyst of the present invention can control the pore length to an appropriate length, the pore length is long enough to proceed with the reaction, and the pore length is set so that the overreaction does not occur because the pore length is too long. Can be controlled. Since the overreaction does not proceed and the appropriate reaction proceeds, the yield of the required product can be increased, coke deterioration can be suppressed, and the catalyst life can be extended. Further, the catalyst of the present invention may have a scaly shape, and for example, a scaly catalyst can be easily produced by using a composite oxide described later.
- the catalyst may be scaly, and the active species may be an element constituting a composite oxide, or a scaly carrier is formed and the active species is supported on the carrier. You may. In the case of a composite oxide in which the active species are arranged in the skeleton, the dispersibility of the active species is high and aggregation is unlikely to occur, which is preferable. As described above, since the catalyst of the present invention has a scaly shape, pores can be controlled and active species can be highly dispersed, so that a good yield and a long-term catalyst life can be achieved. Can be achieved. Hereinafter, each component will be described in detail.
- the element X is a Group 3 element such as scandium (Sc), ittrium (Y), lantern (La), and cerium (Ce); and a Group 4 element such as titanium (Ti), zirconium (Zr), and hafnium (Hf). Elements; Group 5 elements such as vanadium (V), niobium (Nb) and tantalum (Ta); Group 6 elements such as chromium (Cr), molybdenum (Mo) and tungsten (W). Of these, Group 3 elements, Group 4 elements, and Group 5 elements are preferable, Group 4 elements and Group 5 elements are more preferable, and Group 4 elements are even more preferable.
- the Group 4 element is preferably Ti, Zr, Hf, and the Group 5 element is preferably Nb, Ta.
- Zr and Hf are preferable. These elements may be a single element of one kind, or may have a plurality of two or more kinds of elements. Moreover, when it has a plurality of elements, it may be a plurality of elements in the same group, or may be a combination with an element of another group. For example, among the elements of Group 4, it may be a combination of Zr and Hf, or a combination of Hf of Group 4 and Ta or Nb of Group 5. In the present invention, a combination of Hf and Zr is particularly preferable, and this combination provides particularly excellent activity and catalyst life. It is considered that Zr has an effect of making the catalyst scaly when forming a composite oxide, and Hf functions as an active species of the catalyst.
- the element Z is an element selected from the Group 14 elements, and specific examples thereof include carbon (C), silicon (Si), germanium (Ge), and tin (Sn). Of these, the element Z is preferably C or Si, and more preferably Si. The above-mentioned element Z may be contained alone or in combination of two or more.
- the element X is Hf and Zr, and the element Z is Si.
- the molar content of element X ( ⁇ X / (X + Z) ⁇ ⁇ 100) with respect to the total amount (mol) of element X and element Z in the catalyst is preferably 1.0 to 10.0 mol%. It is more preferably 2.0 to 9.0 mol%, further preferably 5.0 to 6.0 mol%. When two or more kinds of element X are contained in combination, the sum of them is calculated, and when two or more kinds of element Z are contained in combination, the sum of them is used to calculate the above molar content.
- the catalyst of the present invention is characterized in that it has a scaly shape, and its structure is not particularly limited as long as it has a scaly shape.
- As one of the methods for forming the catalyst into a scale shape there is a method for forming a composite oxide with the elements X and Z.
- composite oxide refers to an oxide in which two or more elements (metals, etc.) including element X and element Z coexist, and has a crystal structure in which element X and element Z are bonded via oxygen. It is preferable to have.
- the element Z is the main component forming the skeleton of the catalyst according to the present invention, and has a structure in which a part of the element Z is replaced with the element X.
- Element X is the active species of this catalyst and is highly dispersed and does not aggregate because it forms part of the skeleton of the composite oxide.
- a supported catalyst in which the element X is supported on the surface of the carrier containing the element Z is not included in the above-mentioned "composite oxide", but a scaly carrier containing the element Z is formed.
- the catalyst carrying the element X is one aspect of the present invention as long as it has a scaly shape.
- the catalyst of the present invention may contain elements other than element X and element Z, such as zinc (Zn), as constituent elements of the composite oxide as long as the effects of the present invention are not impaired.
- the constituent elements of the composite oxide include elements other than element X and element Z (hereinafter, also referred to as "other elements")
- the molar ratios of element X, element Z, and other elements are as described above.
- the molar ratio of element Z is reduced by the molar ratio of other elements.
- the molar ratio of element X is preferably the same regardless of whether or not it contains other elements. This is the same even when two or more other elements are contained.
- the catalyst of the present invention is characterized in that the catalyst shape is scaly and has pores in the thickness direction.
- the scaly shape is a flaky shape, and refers to a structure having an extremely thin thickness with respect to the diameter of a plane as shown in FIGS. 1 (a) and 1 (b), for example.
- the average aspect ratio (longest diameter / thickness in the plane direction) is preferably 2.5 or more, more preferably 5 or more, and even more preferably 10 or more.
- the upper limit of the average aspect ratio is not particularly limited and is preferably 50 or less.
- the average aspect ratio can be calculated by statistically processing with a scanning electron micrograph (SEM) as shown in FIGS. 1 (a) and 1 (b).
- the catalyst of the present invention has a scaly shape, the dispersibility of the active species is high, and the frequency of contact with the raw material is increased, so that the activity is high.
- the active species are uniformly dispersed, the reaction proceeds uniformly, overreaction is suppressed, and cork formation is suppressed. Therefore, it is considered that the yield is high and the catalyst life is very long.
- the average thickness of the catalyst (scaly particles) of the present invention is preferably 50 to 600 nm.
- the range of the thickness is an important factor for controlling the pore length of the pores in the thickness direction, and the pore length described later is linked to the thickness. Since the pore length is preferably 50 to 600 nm as described later, the thickness of the catalyst is also preferably 50 nm to 600 nm, more preferably 75 to 400 nm, and even more preferably 100 to 200 nm.
- the average thickness of the scaly particles can be measured by the method described in Examples.
- scaly primary particles gather to some extent to form secondary particles. It is difficult to disperse in the form of primary particles, while secondary particles are stable.
- FIG. 1 (c) A TEM photograph of the pores of the present invention is shown in FIG. 1 (c). It can be seen that the pores are lined up in the scaly thickness direction.
- the pores in the thickness direction of the scaly particles in the catalyst of the present invention preferably have a pore length of 50 to 600 nm. Since the inside of the pores is the reaction field of this catalyst, it is considered that the reaction proceeds in the process of passing through the raw materials. Therefore, in order for the reaction to proceed sufficiently, the pore length is preferably 50 nm or more. From the above viewpoint, the pore length is more preferably 75 nm or more, and further preferably 100 nm or more.
- the pore length is more preferably 400 nm or less, and further preferably 200 nm or less.
- the "polymer" produced by the overreaction refers to unsaturated carbides and saturated carbides having 5 or more carbon atoms, such as pentadiene, pentane, pentane, hexadiene, hexatriene, hexene, and hexane.
- the pores of the catalyst according to the present invention are preferably mesopores. Since the catalyst has mesopores, the diffusibility of the raw material gas (alcohol or the like) into the catalyst is improved, and the contact area between the raw material gas and the catalyst is increased. As a result, the raw material conversion rate and the diene compound selectivity are improved even when the alcohol concentration is high.
- the average pore diameter of the catalyst is 2 to 50 nm, preferably 2 to 30 nm, more preferably 2 to 20 nm, and even more preferably 2 to 15 nm. At this time, the value measured by the following method shall be adopted as the "average pore diameter" of the catalyst.
- the average pore diameter is calculated from the total pore volume (total pore volume of the catalyst) and the BET specific surface area. Specifically, it can be calculated by assuming that the pore shape is cylindrical (BJH method). When the BET specific surface area A1 is used as the side area of the cylinder and the total pore volume V1 is used as the volume of the cylinder, the average pore diameter can be calculated by 4V1 / A1.
- the total pore volume of the catalyst is preferably 0.1 to 10.0 mL / g, more preferably 0.1 to 5.0 mL / g, and 0.1 to 2.0 mL / g. Is more preferable.
- the total pore volume is 0.1 mL / g or more, the diffusibility of the raw material gas containing alcohol is improved, and the raw material conversion rate and the diene compound selectivity are further increased.
- the total pore volume is 10.0 mL / g or less, the contact area between the alcohol and the catalyst becomes large, and the raw material conversion rate and the diene compound selectivity further increase.
- the “total pore volume” of the catalyst shall be a value measured by the gas adsorption method.
- the gas adsorption method is a method in which nitrogen gas is used as an adsorption gas, nitrogen molecules are adsorbed on the surface of the catalyst, and the pore distribution is measured from the condensation of the molecules.
- the specific surface area of the catalyst is preferably 100 to 10000 m 2 / g, more preferably 200 to 5000 m 2 / g, still more preferably 200 to 1500 m 2 / g, and 700 to 1200 m 2 / g. Is particularly preferable.
- the specific surface area is 100 m 2 / g or more, a sufficient amount of active sites are present on the catalyst surface, so that the raw material conversion rate and the diene compound selectivity are further increased.
- the raw material conversion rate increases even if the content of the raw material is high, and for example, even 100% by volume shows a high raw material conversion rate.
- the specific surface area means the BET specific surface area measured by the BET type gas adsorption method using nitrogen as an adsorbed gas.
- the product of the total pore volume of the catalyst and the specific surface area is preferably 10 to 100,000 mL ⁇ m 2 / g 2 , more preferably 20 to 25,000 mL ⁇ m 2 / g 2 , and more preferably 20 to 2000 mL ⁇ m. It is more preferably 2 / g 2.
- the product is 10 mL ⁇ m 2 / g 2 or more, a sufficient amount of active sites are present on the catalyst surface and the diffusibility of the raw material gas containing alcohol is improved. Will increase further.
- the product is 100,000 mL ⁇ m 2 / g 2 or less, the contact area between the raw material gas and the catalyst tends to be sufficient, and the raw material conversion rate and the diene compound selectivity are further increased.
- the mesopore volume ratio ((total mesopore volume / total pore volume) ⁇ 100) of the catalyst is preferably 50% or more, more preferably 50 to 100%, and 80 to 100%. It is more preferably present, and particularly preferably 90 to 100%.
- the mesopore floor area ratio is 50% or more, sufficient mesopores are present in the catalyst, and the diffusibility of the raw material gas containing alcohol is improved, so that the raw material conversion rate and the diene compound selectivity are further increased.
- the mesopore floor area ratio can be controlled by the ratio of raw materials (compound containing X, compound containing Z, etc.) used in the manufacturing method described later, the firing temperature in the firing step, and the like.
- the ratio (I / H) of I to the half-value width H of the diffraction peak is preferably 5000 or more.
- the shape and regularity of the mesopores can be confirmed by observing the catalyst with a transmission electron microscope (TEM).
- the above-mentioned catalyst is preferably a catalyst for synthesizing a diene compound that synthesizes a diene compound from a raw material gas containing alcohol.
- the alcohol preferably contains ethanol as described later, and more preferably ethanol.
- the diene compound a conjugated diene compound is preferable, and 1,3-butadiene is particularly preferable as described later.
- the catalyst according to the present embodiment is not particularly limited as long as it is a method capable of producing particles having a scale shape containing the element X and the element Z.
- a composite oxide composed of a specific ratio of element X and element Z has a scaly shape.
- the method for producing such a composite oxide include a method for producing such a composite oxide through a solid colloid preparation step and a firing step. Hereinafter, each step will be described.
- the solid colloid preparation step comprises a compound containing at least one element X selected from the group consisting of groups 3 to 6 of the periodic table and at least one element Z selected from the group consisting of group 14 elements. This is a step of distilling at least a part of the solvent with respect to a raw material solution containing a compound, a surfactant, and a solvent containing water to obtain a solid colloid.
- the raw material solution is a compound containing at least one element X selected from the group consisting of groups 3 to 6 of the periodic table and a compound containing at least one element Z selected from the group consisting of group 14 elements. , A surfactant, and a solvent containing water.
- the raw material solution may further contain a compound containing other elements (for example, a compound containing zinc), an acidic solution, a basic solution, and the like.
- the ratio of any one of the elements X to the element Z is preferably 1/100 to 9/100 in terms of molar ratio, and is 2/100 to 7/100. Is more preferable, and 3/100 to 6/100 is even more preferable.
- the second element X is an element different from any one of the above-mentioned elements, and is preferably a Group 4 or Group 5 element, more preferably a Group 4 element, and even more preferably Hf.
- the production method of the present invention will be described below.
- water and an acidic solution or a basic solution are added to a predetermined amount of the surfactant, and the surfactant is dissolved by stirring at a predetermined speed (for example, about 50 to 200 rpm) under normal temperature and pressure conditions.
- the acidic solution or the basic solution is added so that the acidity or basic concentration in the prepared raw material solution is 0.001 mol / L to 10 mol / L (preferably 0.01 to 5 mol / L). Is preferable.
- the acidic solution or basic solution promotes the hydrolysis of precursors such as a compound containing element X and a compound containing element Z, but if it is within the above range, the hydrolysis rate of the metal precursor increases. As a result, agglomeration of single metal oxides is prevented, and a composite oxide can be efficiently obtained.
- the compound containing the element X is added at a predetermined speed while stirring the aqueous solution in which the surfactant is dissolved at a predetermined speed under normal temperature and pressure conditions.
- the stirring speed when stirring at a predetermined speed is preferably 10 to 2000 rpm, more preferably 10 to 1000 rpm, and even more preferably 10 to 500 rpm.
- the addition rate when the compound containing the element X is added at a predetermined rate is preferably 0.1 to 100 mg / min, more preferably 0.1 to 50 mg / min, and 0. It is more preferably 1 to 20 mg / min. Within the above range, agglutination between single metal oxides can be prevented while the addition rate is practical, and a composite oxide can be efficiently obtained.
- the concentration of the compound containing the element X in the prepared raw material solution is preferably in the range of 0.0025 to 0.1 mol / L.
- concentration is 0.0025 mol / L or more, a metal (element X) is sufficiently present when the element Z such as a silica raw material is hydrolyzed, so that a scaly catalyst is likely to be formed.
- concentration is 0.1 mol / L or less, aggregation of metals (element X) is unlikely to occur.
- the concentration is more preferably 0.005 to 0.05 mol / L, and further preferably 0.01 to 0.025 mol / L.
- the present invention is made by satisfying at least one of the requirements of the ratio of the element X to the element Z, the addition rate of the compound containing the element X, and the concentration of the compound containing the element X.
- the catalyst of the invention can be effectively produced.
- the compound containing the element Z is added at a predetermined speed while stirring at a predetermined speed under normal temperature and pressure conditions to prepare a raw material solution. do.
- the addition rate when the compound containing the element Z is added at a predetermined rate is preferably 0.01 to 10 g / min, more preferably 0.01 to 5 g / min, and 0.01. It is more preferably ⁇ 1 g / min.
- the hydrolysis reaction rate of the compound containing the element Z is prevented from becoming too high, the reaction becomes easy around the surfactant, and mesopores are easily formed.
- it is at least the lower limit of the above range it is possible to prevent hydrolysis with moisture in the air during addition.
- the concentration of the compound containing the element Z in the prepared raw material solution is preferably in the range of 0.001 to 1000 g / L, and more preferably in the range of 0.01 to 100 g / L.
- the hydrolysis reaction rate of the compound containing the element Z is prevented from becoming too high, the reaction becomes easy around the surfactant, and mesopores are easily formed.
- it is at least the lower limit of the above range it is possible to prevent hydrolysis with moisture in the air during addition.
- the compound containing the element Z is more preferably 0.05 to 50 so that the mass ratio with the surfactant (compound containing the element Z / surfactant) is preferably 0.01 to 100. As such, it is more preferably added so as to be 0.1 to 10.
- the compound containing the element Z is likely to react around the surfactant, and mesopores are easily formed. If it is equal to or more than the lower limit of the above range, it is possible to prevent an oxide (silica, etc.) containing element Z from being partially formed due to an excessive amount of surfactant, resulting in a divided structure. Mesopores are likely to be formed in the catalyst.
- the stirring speed of the raw material solution when adding the compound containing the element Z is preferably 10 to 2000 rpm, more preferably 10 to 1000 rpm, and even more preferably 10 to 500 rpm.
- the compound containing the element Z is not hydrolyzed too quickly, the interaction with the surfactant is generated, sufficient mesopores are obtained, and the specific surface area can be increased.
- the raw material solution is aged to obtain a suspension.
- the suspension becomes a suspension when a compound containing element X, a compound containing element Z, and the like in the above-mentioned raw material solution are hydrolyzed and condensed with water to obtain a solid content.
- aging means allowing the raw material solution to stand.
- the aging temperature of the raw material solution is preferably 30 to 200 ° C, more preferably 35 to 150 ° C.
- the aging time of the raw material solution is preferably 2 hours to 10 days, more preferably 10 hours to 5 days.
- the aging may be carried out in two stages. For example, the first aging is carried out by allowing the mixture to stand at 30 to 90 ° C. for 1 hour to 5 days, and then the temperature is raised to a temperature higher than that of the first aging at 90 ° C. to 200 ° C. and the mixture is allowed to stand for 1 hour to 5 days. May be aged.
- the compound containing the element X is not particularly limited, but is an inorganic salt such as chloride, sulfide, nitrate and carbonate of the element X; such as oxalate, acetylacetonate salt, dimethylglioxime salt and ethylenediamine acetate.
- inorganic salt such as chloride, sulfide, nitrate and carbonate of the element X; such as oxalate, acetylacetonate salt, dimethylglioxime salt and ethylenediamine acetate.
- organic salts such as organic salt, chelate compounds; carbonyl compounds; cyclopentadienyl compounds; ammine complexes; alkoxide compounds; alkyl compounds and the like.
- titanium chloride TiCl 2 , TiCl 3 , TiCl 4
- zirconium chloride ZrCl 2
- hafnium chloride HfCl 4
- niobium chloride NbCl 5
- tantalum chloride TaCl 5
- vanadium chloride VCl.
- Titanium Chloride WCl 5
- Scandium Nitrate Sc (NO 3 ) 3
- Lantern Nitrate La (NO 3 ) 3
- Cerium Nitrate Ce (NO 3) 3)
- the above-mentioned compound containing the element X may be used alone or in combination of two or more.
- the amount of the compound containing the element X to be used is preferably 0.1 to 20 mol%, preferably 0.5 to 15 mol%, based on the total amount (molar) of the compound containing the element X and the compound containing the element Z. %, More preferably 0.5 to 6 mol%, and particularly preferably 0.7 to 4 mol%.
- the sum thereof is preferably included in the above range.
- the compound containing the element Z is not particularly limited, but is an inorganic salt such as chloride, sulfide, nitrate and carbonate of the element Z; such as oxalate, acetylacetonate salt, dimethylglioxime salt and ethylenediamine acetate.
- inorganic salt such as chloride, sulfide, nitrate and carbonate of the element Z; such as oxalate, acetylacetonate salt, dimethylglioxime salt and ethylenediamine acetate.
- organic salts such as oxalate, acetylacetonate salt, dimethylglioxime salt and ethylenediamine acetate.
- organic salts such as oxalate, acetylacetonate salt, dimethylglioxime salt and ethylenediamine acetate.
- organic salts such as oxalate, acetylacetonate salt, dimethylglioxime salt and ethylenediamine a
- the alkoxide compound containing silicon is preferably a compound represented by the following general formula (1). Si (OR) 4 ... (1)
- R independently represents an alkyl group.
- the alkyl group is preferably an alkyl group having 1 to 4 carbon atoms, and more preferably an ethyl group.
- Specific examples of the silicon-containing alkoxide compound include tetramethoxysilane, tetraethoxysilane, and tetrapropoxysilane. Of these, it is preferable to use tetraethoxysilane.
- the above-mentioned compound containing the element Z may be used alone or in combination of two or more.
- the amount of the compound containing the element Z to be used is preferably 80 to 99.9 mol%, preferably 85 to 99.5 mol, based on the total amount (molar) of the compound containing the element X and the compound containing the element Z. It is more preferably%, and further preferably 94 to 99.5 mol%. When two or more compounds containing the element Z are contained in combination, the sum thereof is preferably included in the above range.
- the compound containing zinc is not particularly limited, but is an inorganic salt such as zinc chloride, sulfide, nitrate and carbonate; and an organic salt such as oxalate, acetylacetonate salt, dimethylglycim salt and ethylenediamine acetate.
- examples thereof include chelate compounds; carbonyl compounds; cyclopentadienyl compounds; ammine complexes; alkoxide compounds; alkyl compounds and the like.
- Specific examples thereof include zinc chloride (ZnCl 2 ), zinc sulfide (ZnS), zinc nitrate (Zn (NO 3 ) 2 ) and the like.
- the above-mentioned zinc-containing compounds may be used alone or in combination of two or more.
- the amount of the compound containing zinc to be used is preferably 0.1 to 20 mol%, preferably 0, based on the total amount (molar) of the compound containing element X, the compound containing element Z, and the compound containing zinc. It is more preferably .5 to 15 mol%, and even more preferably 0.5 to 6 mol%.
- a catalyst having mesopores By using a surfactant in the production of the catalyst, a catalyst having mesopores can be obtained. More specifically, micelles are formed by the addition of a surfactant, and a precursor of a composite oxide is formed on the surface using the obtained micelles as a template. By firing such a precursor, which will be described later, the surfactant can be removed to produce a catalyst having mesopores.
- the shape of the micelle is spherical, cylindrical, lamellar, gyroid, or vesicle depending on its concentration.
- the surfactant is not particularly limited, and examples thereof include a cationic surfactant and a nonionic surfactant.
- examples of the cationic surfactant include cationic surfactants conventionally used for synthesizing mesoporous silica such as MCM-41, SBA-15, and FMS-16.
- the nonionic surfactant is not particularly limited, and examples thereof include a polyalkylene oxide block copolymer containing an alkylene oxide chain as a constituent, a compound in which the end of the block copolymer is etherified with alcohol, phenol, or the like.
- a polyalkylene oxide block copolymer containing an alkylene oxide chain as a constituent a compound in which the end of the block copolymer is etherified with alcohol, phenol, or the like.
- the alkylene oxide chain contained as a constituent unit one type may be used alone, or two or more types may be used in combination.
- a nonionic surfactant from the viewpoint of stability of the crystal structure of the pore wall forming the mesopores of the obtained composite oxide, it is preferable to use a nonionic surfactant, and a polyalkylene oxide block copolymer should be used. Is more preferable. From the viewpoint of the stability of the crystal structure of the pore wall forming the mesopores of the obtained composite oxide, polyethylene oxide chain (CH 2 CH 2 O) m and polypropylene oxide chain (CH 2 CH (CH 3 ) O) It is more preferable to use a polyalkylene oxide block copolymer having n as a constituent unit.
- m and n are 1 to 1000, preferably m is 1 to 200, n is 1 to 100, more preferably m is 1 to 200, n is 1 to 100, and m + n is 2 to 300.
- the end of the polymer may be etherified with a hydrogen atom, a hydroxyl group, or an alcohol or phenol.
- the polyalkylene oxide block copolymer represented by the following general formula (2) is represented from the viewpoint of the stability of the crystal structure of the pore wall forming the mesopores of the obtained composite oxide. Is preferable. HO ((CH 2 CH 2 O) r (CH 2 CH (CH 3 ) O) s (CH 2 CH 2 O) t ) H ... (2) From the viewpoint of forming the above-mentioned preferable average pore diameter of the synthetic catalyst of the present invention, r is preferably 1 to 100, s is preferably 1 to 100, and t is 1 to 100. Is preferable. Further, r + s + t is preferably 3 to 300.
- the method for obtaining the polyalkylene oxide block copolymer is not particularly limited, and a method produced by a conventionally known production method may be used, or a commercially available product may be used.
- Commercially available products of polyalkylene oxide block copolymers include, for example, product name P123 manufactured by BASF; [(HO (CH 2 CH 2 O) 20 (CH 2 CH (CH 3 ) O) 70 (CH 2 CH 2 O) 20 ). H], product name P85; [(HO (CH 2 CH 2 O) 26 (CH 2 CH (CH 3 ) O) 39 (CH 2 CH 2 O) 26 ) H], product name P103 [(HO (CH 2) CH 2 O) 56 (CH 2 CH (CH 3 ) O) 17 (CH 2 CH 2 O) 56 H)].
- the above-mentioned surfactants may be used alone or in combination of two or more.
- the shape and pore diameter of the mesopores can be controlled by appropriately changing the type of the above-mentioned surfactant and the like.
- the amount of the surfactant used is based on the mass ratio of the compound containing the element Z described above to the surfactant (compound containing the element Z / surfactant) with respect to 100 parts by mass of the solvent. It is preferably 3 to 20 parts by mass, more preferably 5 to 18 parts by mass, and even more preferably 7 to 15 parts by mass. When the amount of the surfactant used is 3 parts by mass or more, the mesopores can be made uniform, which is preferable. On the other hand, when the amount of the surfactant used is 20 parts by mass or less, it is preferable because it can be dissolved.
- the solvent includes water. Further, the solvent may further contain an organic solvent.
- the water is not particularly limited, but ion-exchanged water from which metal ions and the like have been removed or distilled water is preferable.
- the organic solvent is not particularly limited, and examples thereof include aliphatic linear alcohols such as methanol, ethanol, n-propanol, and n-hexanol. Of these, the organic solvent is preferably methanol or ethanol from the viewpoint of handleability.
- One type of the organic solvent may be used alone, or two or more types may be used in combination.
- the amount of water used is preferably 5 to 35 parts by mass and more preferably 5 to 20 parts by mass with respect to 1 part by mass of the surfactant.
- the amount of water used is 5 parts by mass or more, the surfactant can be dissolved, which is preferable.
- the amount of water used is 35 parts by mass or less, the mesopores can be made uniform, which is preferable.
- the amount of water used is preferably 100 mol% to 10000 mol%, more preferably 1000 to 8000 mol%, based on the total amount (mol) of the compound containing the element X and the compound containing the element Z.
- the amount of water used is 100 mol% or more, it is preferable because it can be hydrolyzed.
- the amount of water used is 10,000 mol% or less, the solid content does not dissolve, which is preferable.
- the amount of the organic solvent used is preferably 10 to 50% by volume, more preferably 10 to 25% by volume, based on water.
- the amount of the organic solvent used is 10% by volume or more, the element X and the element Z can be dissolved, which is preferable.
- the amount of the organic solvent used is 50% by volume or less, it is preferable because it can be hydrolyzed.
- the acidic solution has a function of promoting the formation of solid content by hydrolysis, which will be described later.
- the acidic solution is not particularly limited, and examples thereof include an aqueous solution in which an inorganic acid such as hydrogen chloride, sulfuric acid, nitric acid, and phosphoric acid is dissolved.
- the amount of the acidic solution used is such that the number of moles of the acid contained in the acidic solution is 0.01 to 10.0 mol% with respect to the total amount (mol) of the compound containing the element X and the compound containing the element Z.
- the amount is preferably 0.1 to 8.0 mol%, and more preferably 0.1 to 8.0 mol%.
- the basic solution has a function of promoting the formation of solid content by hydrolysis, which will be described later. Usually, either one of the above-mentioned acidic solution and basic solution is used.
- the basic solution is not particularly limited, and examples thereof include an aqueous solution in which an inorganic base such as sodium hydroxide, calcium carbonate, and ammonia is dissolved.
- the amount of the basic solution used is preferably 0.01 to 10.0 mol% with respect to the total amount (mol) of the compound containing the element X and the compound containing the element Z, which is 0.1. More preferably, the amount is about 8.0 mol%.
- the solid colloid can be obtained by filtering the suspension described above, washing it appropriately, and drying it. By passing through the solid colloid in this way, the uniformity of the catalyst can be improved as compared with the case where the suspension is directly calcined.
- a "solid colloid" means that the amount of a solvent contained in a solid colloid is 5% or less with respect to the total volume of the solid colloid.
- the drying temperature for obtaining the solid colloid is preferably 20 to 200 ° C, more preferably 50 to 150 ° C.
- the drying time is preferably 1 hour to 10 days, more preferably 2 hours to 5 days. Within the above range, the solvent is removed, a sufficient mesopore diameter can be easily obtained in the next firing process, and the specific surface area can be increased.
- the firing step is a step of firing the solid colloid.
- the firing temperature is preferably 200 to 800 ° C, more preferably 400 to 600 ° C.
- the firing temperature is 200 ° C. or higher, impurities derived from the surfactant do not remain or hardly remain in the catalyst, which is preferable.
- the firing temperature is 800 ° C. or lower, the stability of the crystal structure of the pore walls forming the mesopores of the catalyst can be improved, which is preferable.
- the rate of temperature rise to the firing temperature is preferably 0.1 to 100 ° C./min, more preferably 0.5 to 50 ° C./min, and 1 to 20 ° C./min. Is even more preferable.
- a temperature difference between the surface and the inside of the molded product does not occur, and a sufficient mesopore diameter can be obtained.
- the specific surface area of the catalyst can also be increased.
- the firing time is preferably 10 minutes to 2 days, more preferably 1 to 10 hours.
- the firing time is 10 minutes or more, impurities derived from the surfactant do not remain or hardly remain in the catalyst, which is preferable.
- the firing time is 2 days or less, the stability of the crystal structure of the pore wall forming the mesopores of the catalyst can be improved, which is preferable.
- the equipment for producing a diene compound includes a reaction tube filled with the above-mentioned catalyst. With such a manufacturing apparatus, a diene compound is manufactured from a raw material gas containing a raw material.
- the butadiene manufacturing apparatus 10 of the present embodiment (hereinafter, simply referred to as “manufacturing apparatus 10”) includes a reaction pipe 1, a supply pipe 3, a discharge pipe 4, a temperature control unit 5, and a pressure control unit 6.
- the reaction tube 1 is provided with a reaction bed 2 inside.
- the reaction bed 2 is filled with the synthetic catalyst of the present invention.
- the supply pipe 3 is connected to the reaction pipe 1.
- the discharge pipe 4 is connected to the reaction pipe 1.
- the temperature control unit 5 is connected to the reaction tube 1.
- the discharge pipe 4 includes a pressure control unit 6.
- the reaction bed 2 may have only the catalyst according to the present embodiment, or may have a catalyst other than the catalyst according to the present embodiment together with the catalyst according to the present embodiment. It may also have a diluent.
- the diluent prevents the catalyst from overheating.
- the diluent is, for example, quartz sand, alumina balls, aluminum balls, aluminum shots and the like.
- the mass ratio represented by the diluent / catalyst for synthesis is determined in consideration of each type, specific gravity and the like, and is preferably 0.5 to 5, for example.
- the reaction bed may be a fixed bed, a moving bed, a fluidized bed, or the like.
- the reaction tube 1 is preferably made of a material that is inert to the raw material gas and the synthesized product.
- the reaction tube 1 preferably has a shape that can withstand heating at about 100 to 600 ° C. or pressurization at about 10 MPa.
- the reaction tube 1 is, for example, a substantially cylindrical member made of stainless steel.
- the supply pipe 3 is a supply means for supplying the raw material gas into the reaction pipe 1.
- the supply pipe 3 is, for example, a pipe made of stainless steel or the like.
- the discharge pipe 4 is a discharge means for discharging the gas containing the product synthesized in the reaction bed 2.
- the discharge pipe 4 is, for example, a pipe made of stainless steel or the like.
- the temperature control unit 5 may be any as long as the reaction bed 2 in the reaction tube 1 can be set to an arbitrary temperature.
- the temperature control unit 5 controls, for example, the temperature of an electric furnace or the like (not shown) provided around the reaction tube 1 to adjust the reaction bed 2 in the reaction tube 1 to an arbitrary temperature.
- the pressure control unit 6 may be any pressure that can make the pressure in the reaction tube 1 an arbitrary pressure.
- the pressure control unit 6 is, for example, a known pressure valve or the like.
- the manufacturing apparatus 10 may be provided with a well-known device such as a gas flow rate control unit that adjusts the gas flow rate, such as mass flow.
- a method for producing a diene compound includes contacting the catalyst according to the present invention with a raw material gas containing alcohol to produce a diene compound.
- the amount of the catalyst used is preferably 0.1 to 10 g / g ⁇ h and more preferably 1 to 5 g / g ⁇ h with respect to the raw material gas.
- the amount of the catalyst used is 0.1 g / g ⁇ h or more, the reaction conversion rate can be improved, which is preferable.
- the amount of the catalyst used is 10 g / g ⁇ h or less, it is preferable because by-production of by-products can be suppressed.
- the raw material gas contains alcohol.
- the raw material gas may further contain an inert gas or the like.
- the alcohol is not particularly limited, and examples thereof include alcohols having 1 to 6 carbon atoms. Specific examples of the alcohol include methanol, ethanol, propanol, butanol, pentanol, hexanol and the like. As a general rule, the obtained diene compound differs depending on the alcohol used. For example, when ethanol is used, butadiene is obtained. Also, when propanol is used, hexadiene is obtained. If butanol is also used, octadiene is obtained. Alcohol may be used alone or in combination of two or more, but is preferably used alone from the viewpoint of suppressing side reactions.
- the concentration of alcohol in the raw material gas is preferably 10% by volume or more, preferably 15% by volume or more, more preferably 20% by volume or more, and more preferably 30% by volume, based on 100% by volume of the raw material gas. Most preferably, it is by volume or more. When two or more alcohols are used in combination, the sum thereof is preferably included in the above range.
- the inert gas is not particularly limited, and examples thereof include nitrogen gas and argon gas. These inert gases may be used alone or in combination of two or more.
- the concentration of the inert gas is preferably 90% by volume or less, more preferably 30 to 90% by volume, still more preferably 50 to 90% by volume, based on 100% by volume of the raw material gas. It is particularly preferably 60 to 80% by volume.
- the mode in which the catalyst and the raw material gas are brought into contact with each other is not particularly limited, but for example, it is preferable to allow the raw material gas to flow through the reaction bed in the reaction tube and bring the catalyst for synthesis of the reaction bed into contact with the raw material gas. ..
- the mode of contacting in this way is not particularly limited, and for example, a fixed bed, a fluidized bed, or the like can be preferably used.
- the temperature (reaction temperature) at which the catalyst and the raw material gas are brought into contact is preferably 100 to 600 ° C, more preferably 200 to 500 ° C, and even more preferably 250 to 450 ° C.
- reaction temperature is 100 ° C. or higher, the reaction rate is sufficiently increased and the diene compound can be produced more efficiently, which is preferable.
- reaction temperature is 600 ° C. or lower, deterioration of the catalyst can be prevented or suppressed, which is preferable.
- the pressure (reaction pressure) at the time of contacting the catalyst and the raw material gas is preferably 0.1 to 10 MPa, more preferably 0.1 to 3 MPa.
- reaction pressure is 0.1 MPa or more, the reaction rate is increased and the diene compound can be produced more efficiently, which is preferable.
- reaction pressure is 10 MPa or less, deterioration of the catalyst can be prevented or suppressed, which is preferable.
- the space velocity (SV) of the raw material gas in the reaction bed is usually adjusted appropriately in consideration of the reaction pressure and the reaction temperature, but it may be 0.1 to 10000 h -1 in terms of standard conditions. preferable.
- the temperature control unit 5 and the pressure control unit 6 set the inside of the reaction tube 1 to an arbitrary temperature and an arbitrary pressure.
- the gasified raw material gas 20 is supplied from the supply pipe 3 into the reaction pipe 1.
- the raw material comes into contact with the catalyst for synthesis and reacts to form a diene compound such as butadiene.
- the product gas 22 containing a diene compound such as butadiene is discharged from the discharge pipe 4.
- the product gas 22 may contain a compound such as acetaldehyde, propylene, or ethylene.
- the produced gas containing the diene compound (produced gas 22 in FIG. 3) is purified by gas-liquid separation, distillation purification, or the like, if necessary, to remove unreacted raw materials and by-products.
- the present invention can also produce a diene compound from bioethanol to reduce the environmental load.
- SBR styrene-butadiene rubber
- BR butadiene rubber
- the average diameter (nm) and average thickness (nm) of the catalysts obtained in each example were measured by scanning electron microscope (SEM) observation. Specifically, three scanning electron microscope (SEM) images (observation images) in which 20 or more primary particles obtained in each example are confirmed are arbitrarily selected, and 10 particles are randomly selected for each. Is selected, and the diameter (nm) and thickness (nm) of the 10 particles are measured. The average diameter (nm) and average thickness (nm) of the primary particles were determined from the average value of the obtained total data. If the diameters of the selected particles are not uniform, the diameter of the circumscribed circle of the particles is adopted as the diameter of each particle. Moreover, it was confirmed from the transmission electron microscope (TEM) image that the pores were formed in the thickness direction.
- SEM scanning electron microscope
- 3.4 g of the catalyst was filled in a stainless cylindrical reaction tube having a diameter of 1/2 inch (1.27 cm) and a length of 15.7 inches (40 cm) to form a reaction bed.
- the reaction temperature temperature of the reaction bed
- the reaction pressure pressure of the reaction bed
- the raw material gas was supplied to the reaction tube at SV1200 L / hr / catalyst amount (L-catalyst) to obtain a produced gas.
- the raw material gas was a mixed gas of 30% by volume of ethanol (gas equivalent) and 70% by volume of nitrogen (gas equivalent).
- the recovered produced gas was analyzed by gas chromatography to determine the yield of BD ([conversion rate] ⁇ [selectivity of BD]).
- the "BD selectivity” is a percentage of the number of moles of the raw material consumed in the reaction using the catalyst, which is occupied by the number of moles of the raw material converted to butadiene.
- the "conversion rate (raw material conversion rate)” is a percentage of the number of moles of the raw material contained in the raw material gas, which is occupied by the number of moles consumed.
- the evaluation of the catalyst was performed based on the yield of butadiene. The higher the yield, the better the catalytic activity. Further, the difference obtained by subtracting the yield after 1 hour from the start of the reaction from the yield after 20 hours from the start of the reaction was defined as the amount of change in yield (%). The closer this value is to 0, the more the decrease in yield with respect to the elapsed time is suppressed, and the longer the catalyst life is.
- Example 1 2 g of P123 ([(HO (CH 2 CH 2 O) 20 (CH 2 CH (CH 3 ) O) 70 (CH 2 CH 2 O) 20 ) H], manufactured by BASF) was charged into the beaker as a surfactant. , 65 mL of water and 35 mL of 2N hydrochloric acid were added thereto, and the mixture was stirred at a rate of 100 rpm under normal temperature and pressure conditions to dissolve the surfactant.
- hafnium chloride (HfCl 4 ) and zirconium chloride (ZrCl 4 ) were added at a rate of 10 mg / min, 64 mg / 225 mg, respectively. Added in order. After visually confirming that all of hafnium chloride and zirconium chloride were dissolved, the mixture was stirred at a rate of 100 rpm under normal temperature and pressure conditions, and 4.2 g of tetraethoxysilane was added at an addition rate of 0.1 g / min.
- a raw material solution was prepared.
- the concentration of hafnium chloride in the raw material solution was 0.64 g / L
- the concentration of zirconium chloride was 2.25 g / L
- the concentration of tetraethoxysilane was 4.8 g / L
- the concentration of hydrochloric acid was 0.7 mol / L.
- Example 2 A catalyst was produced and evaluated in the same manner as in Example 1 except that the zirconium chloride (ZrCl 4) used in Example 1 was changed to 117 mg. The results are shown in Table 1. The catalyst formed a composite oxide and was scaly.
- ZrCl 4 zirconium chloride
- Example 3 A catalyst was produced and evaluated in the same manner as in Example 1 except that the zirconium chloride (ZrCl 4) used in Example 1 was changed to 78 mg. The results are shown in Table 1. The catalyst formed a composite oxide and was scaly.
- ZrCl 4 zirconium chloride
- Comparative Example 1 A catalyst which is a composite oxide containing Hf and Si was produced in the same manner as in Example 1 except that zirconium chloride (ZrCl 4) was not used in Example 1, and the catalyst was evaluated. The results are shown in Table 1. Although the catalyst forms a composite oxide, its shape was tubular as shown in FIGS. 2 (a) and 2 (b). Further, as is clear from the TEM photograph of FIG. 2C, the pores are formed in the length direction of the tube, and it can be seen that the direction of the pores is completely different from that of the catalyst of the present invention.
- ZrCl 4 zirconium chloride
- Comparative Example 2 A catalyst was produced in the same manner as in Example 1 except that the zirconium chloride (ZrCl 4) used in Example 1 was changed to 466 mg. The catalyst did not crystallize and was amorphous. The evaluation results of the catalyst are shown in Table 1.
- the scaly catalysts of Examples 1 to 3 have an extremely small yield change and a long catalyst life. It is considered that this is because the catalyst of the present invention has a scaly shape, so that the pore length of the pores, which is mainly considered to be the reaction field in the thickness direction thereof, can be controlled. Since the pore length is appropriate, a raw material such as ethanol reacts in the pores to generate butadiene and the like, and then can be rapidly separated from the pores, so that overreaction to the polymer is suppressed. It is considered that this is because caulking, which is the main cause of catalyst deterioration, is suppressed.
- the catalysts of Comparative Examples 1 and 2 showed a tube shape instead of a scaly shape as shown in FIG. It was found that these catalysts had a large amount of change in yield and that the catalysts deteriorated significantly with the passage of reaction time as compared with the catalysts of the present invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
- Nanotechnology (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Dispersion Chemistry (AREA)
Abstract
周期表第3~6族からなる群から選択される少なくとも1種の元素Xと、第14族元素からなる群から選択される少なくとも1種の元素Zと、を含み、鱗片状であって、かつ厚み方向に細孔を有する触媒である。 重合体への過反応を抑えジエン化合物、特にブタジエンを高収率で製造できる触媒を提供することができる。
Description
本発明は、触媒及び当該触媒を用いたジエン化合物の製造方法に関する。
ジエン化合物の代表例である1,3-ブタジエン等のブタジエンは、スチレン-ブタジエンゴム(SBR)等の原料として用いられている。従来、ブタジエンは、C4留分から精製されていた。C4留分は、石油からエチレンを製造するナフサクラッキングの際に副生する留分である。しかし、シェールガスの利用量の増加に伴って石油の利用量が減少した。その結果、石油のナフサクラッキングで得られるブタジエンの生産量も減少している。このため、1,3-ブタジエン等のジエン化合物を製造するための代替方法が求められている。
1,3-ブタジエンを製造する方法として、エタノールを原料として製造する方法があり、例えば、特許文献1~3には、この反応に好適な触媒が開示されている。例えば、特許文献1の製造例1には、多孔質担体であるシリカにHf、Cu及びZnを担持した触媒が開示されており、特許文献2の実施例には、シリカ担体にZn、Zr、及びアルカリ土類金属などの金属を担持した固体触媒が開示されている。また、特許文献3の実施例には、担体であるシリカにTa、Zr、Hfをそれぞれ担持した触媒が開示されている。
特許文献1~3に記載されるブタジエン合成用触媒は、長時間の連続運転において、ブタジエンの収率が低く、改善の余地がある。
そこで、本発明の課題は、長時間の連続運転であっても、ブタジエンの収率が低下しにくく、ブタジエンを効率的に製造し得る触媒を提供することにある。
そこで、本発明の課題は、長時間の連続運転であっても、ブタジエンの収率が低下しにくく、ブタジエンを効率的に製造し得る触媒を提供することにある。
本発明者らは、上記課題を解決するべく、鋭意研究を行った。その結果、所定の元素を含む特定の複合酸化物構造を有する触媒により上記課題が解決されることを見出し、本発明を完成させるに至った。すなわち、本発明は、以下の態様を有する。
[1]周期表第3~6族からなる群から選択される少なくとも1種の元素Xと、第14族元素からなる群から選択される少なくとも1種の元素Zと、を含む鱗片状の粒子を含む触媒であって、該鱗片状粒子の厚み方向に細孔を有する触媒。
[2]前記鱗片状粒子の平均厚みが50~600nmである上記[1]に記載の触媒。
[3]前記鱗片状粒子が複合酸化物である上記[1]又は[2]に記載の触媒。
[4]前記元素Xが周期表第4族の金属からなる群から選択される少なくとも1種である上記[1]~[3]のいずれか一つに記載の触媒。
[5]前記元素XがHf及びZrから選択される少なくとも1種である上記[1]~[4]のいずれか一つに記載の触媒。
[6]前記元素ZがSiである上記[1]~[5]のいずれか一つに記載の触媒。
[7]前記鱗片状粒子の平均アスペクト比が2.5以上である上記[1]~[6]のいずれか一つに記載の触媒。
[8]アルコールを含む原料ガスからジエン化合物を合成するジエン化合物合成用触媒である、上記[1]~[7]のいずれか一つに記載の触媒。
[9]前記アルコールがエタノールであり、かつ前記ジエン化合物が共役ジエン化合物である、上記[8]に記載の触媒。
[10]前記鱗片状粒子を1次粒子とする2次粒子を形成している上記[1]~[9]のいずれか一つに記載の触媒。
[11]前記細孔の平均細孔長が50~600nmである上記[1]~[10]のいずれか一つに記載の触媒。
[12]上記[1]~[11]のいずれか一つに記載の触媒を用いて、アルコールを含む原料ガスからジエン化合物を製造するジエン化合物の製造方法。
[13]前記アルコールがエタノールであり、かつ前記ジエン化合物が共役ジエン化合物である、上記[12]に記載のジエン化合物の製造方法。
[14]前記共役ジエン化合物が、1,3-ブタジエンである上記[13]に記載の製造方法。
[15]上記[14]に記載の1,3-ブタジエンを原料ガスとして、スチレン-ブタジエンゴム(SBR)又はブタジエンゴム(BR)を製造する方法。
[1]周期表第3~6族からなる群から選択される少なくとも1種の元素Xと、第14族元素からなる群から選択される少なくとも1種の元素Zと、を含む鱗片状の粒子を含む触媒であって、該鱗片状粒子の厚み方向に細孔を有する触媒。
[2]前記鱗片状粒子の平均厚みが50~600nmである上記[1]に記載の触媒。
[3]前記鱗片状粒子が複合酸化物である上記[1]又は[2]に記載の触媒。
[4]前記元素Xが周期表第4族の金属からなる群から選択される少なくとも1種である上記[1]~[3]のいずれか一つに記載の触媒。
[5]前記元素XがHf及びZrから選択される少なくとも1種である上記[1]~[4]のいずれか一つに記載の触媒。
[6]前記元素ZがSiである上記[1]~[5]のいずれか一つに記載の触媒。
[7]前記鱗片状粒子の平均アスペクト比が2.5以上である上記[1]~[6]のいずれか一つに記載の触媒。
[8]アルコールを含む原料ガスからジエン化合物を合成するジエン化合物合成用触媒である、上記[1]~[7]のいずれか一つに記載の触媒。
[9]前記アルコールがエタノールであり、かつ前記ジエン化合物が共役ジエン化合物である、上記[8]に記載の触媒。
[10]前記鱗片状粒子を1次粒子とする2次粒子を形成している上記[1]~[9]のいずれか一つに記載の触媒。
[11]前記細孔の平均細孔長が50~600nmである上記[1]~[10]のいずれか一つに記載の触媒。
[12]上記[1]~[11]のいずれか一つに記載の触媒を用いて、アルコールを含む原料ガスからジエン化合物を製造するジエン化合物の製造方法。
[13]前記アルコールがエタノールであり、かつ前記ジエン化合物が共役ジエン化合物である、上記[12]に記載のジエン化合物の製造方法。
[14]前記共役ジエン化合物が、1,3-ブタジエンである上記[13]に記載の製造方法。
[15]上記[14]に記載の1,3-ブタジエンを原料ガスとして、スチレン-ブタジエンゴム(SBR)又はブタジエンゴム(BR)を製造する方法。
本発明の触媒によれば、重合体への過反応を抑え、ジエン化合物、特にブタジエンを高収率で製造できる。また、過反応を抑えることによって、コーク劣化が抑制され、触媒寿命が長く、長時間の連続運転を可能とすることができる。すなわち、長時間の連続運転であっても、ブタジエンの収率が低下しにくく、ブタジエンを効率的に製造し得る触媒を提供することができる。
以下、本発明の実施の形態について詳細に説明するが、以下の記載は本発明の実施態様の一例であり、本発明はこれらの内容に限定されず、その要旨の範囲内で変形して実施することができる。
<触媒>
本実施形態に係る触媒は、周期表第3~6族からなる群から選択される少なくとも1種の元素Xと、第14族元素からなる群から選択される少なくとも1種の元素Zと、を含む鱗片状の粒子を含む触媒であって、該鱗片状粒子の厚み方向に細孔を有する触媒である。
本発明の触媒は、触媒粒子の形状が鱗片状であることによって、鱗片形状の厚み方向に細孔を形成することができ、しかも細孔長は厚みに依存するので、鱗片形状の厚みを制御することで、細孔長が制御できる。細孔内は反応場となるので、原料が細孔に入って活性点で反応し、生成物が細孔から脱離する。本発明の触媒は、細孔長を適当な長さに制御することができるため、反応を進めるのに十分な長さであり、かつ長すぎて過反応が起こらないように、細孔長を制御することができる。過反応が進まず、適度な反応が進むため、必要とする生成物の収率が上がり、かつコーク劣化を抑制することができ、触媒寿命を延長することができる。
また、本発明の触媒は、鱗片形状を有していればよく、例えば、後述する複合酸化物とすることによって、鱗片状の触媒を製造しやすい。なお、触媒体が鱗片状であればよく、活性種が複合酸化物を構成する元素であってもよいし、鱗片状の担体を形成しておいて、これに活性種を担持するものであってもよい。なお、活性種を骨格に配置した複合酸化物の場合には、活性種の分散性が高く、かつ凝集が起こりにくいために好ましい。
以上のように、本発明の触媒は、鱗片形状を有することで、細孔の制御ができ、かつ、活性種の高分散化が可能であるため、良好な収率と長期間の触媒寿命を達成することができる。
以下、各構成要素について詳細に説明する。
本実施形態に係る触媒は、周期表第3~6族からなる群から選択される少なくとも1種の元素Xと、第14族元素からなる群から選択される少なくとも1種の元素Zと、を含む鱗片状の粒子を含む触媒であって、該鱗片状粒子の厚み方向に細孔を有する触媒である。
本発明の触媒は、触媒粒子の形状が鱗片状であることによって、鱗片形状の厚み方向に細孔を形成することができ、しかも細孔長は厚みに依存するので、鱗片形状の厚みを制御することで、細孔長が制御できる。細孔内は反応場となるので、原料が細孔に入って活性点で反応し、生成物が細孔から脱離する。本発明の触媒は、細孔長を適当な長さに制御することができるため、反応を進めるのに十分な長さであり、かつ長すぎて過反応が起こらないように、細孔長を制御することができる。過反応が進まず、適度な反応が進むため、必要とする生成物の収率が上がり、かつコーク劣化を抑制することができ、触媒寿命を延長することができる。
また、本発明の触媒は、鱗片形状を有していればよく、例えば、後述する複合酸化物とすることによって、鱗片状の触媒を製造しやすい。なお、触媒体が鱗片状であればよく、活性種が複合酸化物を構成する元素であってもよいし、鱗片状の担体を形成しておいて、これに活性種を担持するものであってもよい。なお、活性種を骨格に配置した複合酸化物の場合には、活性種の分散性が高く、かつ凝集が起こりにくいために好ましい。
以上のように、本発明の触媒は、鱗片形状を有することで、細孔の制御ができ、かつ、活性種の高分散化が可能であるため、良好な収率と長期間の触媒寿命を達成することができる。
以下、各構成要素について詳細に説明する。
(触媒の構成元素X及びZ)
元素Xとしては、スカンジウム(Sc)、イットリウム(Y)、ランタン(La)、セリウム(Ce)等の第3族元素;チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)等の第4族元素;バナジウム(V)、ニオブ(Nb)、タンタル(Ta)等の第5族元素;クロム(Cr)、モリブデン(Mo)、タングステン(W)等の第6族元素が挙げられる。これらのうち、第3族元素、第4族元素、第5族元素であることが好ましく、第4族元素、第5族元素であることがより好ましく、第4族元素がさらに好ましい。第4族元素としては、Ti、Zr、Hfが好ましく、第5族元素としては、Nb、Taが好ましい。特には、第4族の元素のうち、Zr及びHfが好ましい。
これらの元素は、1種単独の元素であってもよいし、複数の2種以上の元素を有していてもよい。また、複数の元素を有する場合に、同一族内の複数の元素であってもよいし、他の族の元素との組み合わせであってもよい。例えば、第4族の元素のうち、ZrとHfの組み合わせや、第4族のHfと第5族のTaやNbとの組み合わせであってもよい。
本発明では、特にHfとZrの組み合わせが好ましく、この組み合わせであると、特に優れた活性及び触媒寿命が得られる。なお、Zrは複合酸化物を形成する際に、触媒を鱗片状にする効果を有するものと考えられ、Hfは触媒の活性種として機能しているものと考えられる。
元素Xとしては、スカンジウム(Sc)、イットリウム(Y)、ランタン(La)、セリウム(Ce)等の第3族元素;チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)等の第4族元素;バナジウム(V)、ニオブ(Nb)、タンタル(Ta)等の第5族元素;クロム(Cr)、モリブデン(Mo)、タングステン(W)等の第6族元素が挙げられる。これらのうち、第3族元素、第4族元素、第5族元素であることが好ましく、第4族元素、第5族元素であることがより好ましく、第4族元素がさらに好ましい。第4族元素としては、Ti、Zr、Hfが好ましく、第5族元素としては、Nb、Taが好ましい。特には、第4族の元素のうち、Zr及びHfが好ましい。
これらの元素は、1種単独の元素であってもよいし、複数の2種以上の元素を有していてもよい。また、複数の元素を有する場合に、同一族内の複数の元素であってもよいし、他の族の元素との組み合わせであってもよい。例えば、第4族の元素のうち、ZrとHfの組み合わせや、第4族のHfと第5族のTaやNbとの組み合わせであってもよい。
本発明では、特にHfとZrの組み合わせが好ましく、この組み合わせであると、特に優れた活性及び触媒寿命が得られる。なお、Zrは複合酸化物を形成する際に、触媒を鱗片状にする効果を有するものと考えられ、Hfは触媒の活性種として機能しているものと考えられる。
また、元素Zは、第14族元素から選択される元素であり、具体的には、炭素(C)、ケイ素(Si)、ゲルマニウム(Ge)、スズ(Sn)等が挙げられる。
これらのうち、元素Zは、C、Siであることが好ましく、Siであることがより好ましい。
なお、上述の元素Zは単独で含んでいても、2種以上組み合わせて含んでいてもよい。
これらのうち、元素Zは、C、Siであることが好ましく、Siであることがより好ましい。
なお、上述の元素Zは単独で含んでいても、2種以上組み合わせて含んでいてもよい。
前記元素X及びZの特に好ましい組み合わせとしては、元素XがHf及びZrであり、元素ZがSiである。
触媒中の元素Xと元素Zとの合計量(モル)に対する元素Xのモル含有率({X/(X+Z)}×100)は、1.0~10.0モル%であることが好ましく、2.0~9.0モル%であることがより好ましく、5.0~6.0モル%であることがさらに好ましい。
なお、元素Xを2種以上組み合わせて含む場合はそれらの和、元素Zを2種以上組み合わせて含む場合はそれらの和で上記のモル含有率を計算する。
なお、元素Xを2種以上組み合わせて含む場合はそれらの和、元素Zを2種以上組み合わせて含む場合はそれらの和で上記のモル含有率を計算する。
(触媒の構造)
本発明の触媒は、形状が鱗片状であることが特徴であり、鱗片形状を有するものであれば、その構造は特に限定されない。
触媒を鱗片形状とする方法の一つとして、前記元素X及びZによって、複合酸化物を形成する方法がある。
本明細書における「複合酸化物」とは、元素X及び元素Zを含む2種以上の元素(金属等)が共存する酸化物をいい、元素X及び元素Zが酸素を介して結合した結晶構造を有することが好ましい。ここで、元素Zは本発明に係る触媒の骨格を形成する主成分であり、その一部が元素Xに置き換わった構造をとっていると推察される。元素Xは本触媒の活性種であり、複合酸化物の骨格の一部を形成するために、非常に高分散であり、また凝集することがない。
また、例えば、元素Zを含む担体の表面に元素Xが担持された担持触媒は、上記「複合酸化物」には含まれないが、元素Zを含む鱗片状の担体を形成しておき、これに元素Xを担持した触媒は、鱗片形状であれば本発明の一態様である。
本発明の触媒は、形状が鱗片状であることが特徴であり、鱗片形状を有するものであれば、その構造は特に限定されない。
触媒を鱗片形状とする方法の一つとして、前記元素X及びZによって、複合酸化物を形成する方法がある。
本明細書における「複合酸化物」とは、元素X及び元素Zを含む2種以上の元素(金属等)が共存する酸化物をいい、元素X及び元素Zが酸素を介して結合した結晶構造を有することが好ましい。ここで、元素Zは本発明に係る触媒の骨格を形成する主成分であり、その一部が元素Xに置き換わった構造をとっていると推察される。元素Xは本触媒の活性種であり、複合酸化物の骨格の一部を形成するために、非常に高分散であり、また凝集することがない。
また、例えば、元素Zを含む担体の表面に元素Xが担持された担持触媒は、上記「複合酸化物」には含まれないが、元素Zを含む鱗片状の担体を形成しておき、これに元素Xを担持した触媒は、鱗片形状であれば本発明の一態様である。
本発明の触媒は、本発明の効果を損なわない範囲で、複合酸化物の構成元素として、元素X、元素Z以外の元素、例えば亜鉛(Zn)等を含んでもよい。
なお、複合酸化物の構成元素として、元素X、元素Z以外の元素(以下、「他の元素」とも称する)を含む場合、元素X、元素Z、および他の元素のモル比は、上記の通り、他の元素のモル比だけ元素Zのモル比が少なくなることが好ましい。換言すれば、元素Xのモル比は、他の元素を含むか否かにかかわらず、同等のモル比であることが好ましい。このことは他の元素を2以上含む場合であっても同様である。
なお、複合酸化物の構成元素として、元素X、元素Z以外の元素(以下、「他の元素」とも称する)を含む場合、元素X、元素Z、および他の元素のモル比は、上記の通り、他の元素のモル比だけ元素Zのモル比が少なくなることが好ましい。換言すれば、元素Xのモル比は、他の元素を含むか否かにかかわらず、同等のモル比であることが好ましい。このことは他の元素を2以上含む場合であっても同様である。
(触媒の形状)
本発明の触媒は、触媒形状が鱗片状であり、かつ厚み方向に細孔を有することを特徴とする。
鱗片状とは、薄片の形状であって、例えば、図1(a)及び(b)に示すような、平面の径に対して、厚みが極めて薄い構造をいう。平均アスペクト比(平面方向の最も長い径/厚み)が2.5以上であることが好ましく、5以上であることがより好ましく、10以上であることがさらに好ましい。平均アスペクト比の上限値に関して、特に制限はなく、50以下であることが好ましい。
なお、平均アスペクト比は、図1(a)及び(b)に示すような走査型電子顕微鏡写真(SEM)により、統計的に処理することで、算出することができる。
本発明の触媒は、鱗片状であることで、活性種の分散性が高く、原料との接触頻度が増大するために、活性が高くなる。また、活性種が均一に分散していることから、反応が均一に進行し、過反応が抑えられ、コーク生成が抑制される。したがって、高い収率を示し、かつ触媒寿命が非常に長くなると考えられる。
本発明の触媒は、触媒形状が鱗片状であり、かつ厚み方向に細孔を有することを特徴とする。
鱗片状とは、薄片の形状であって、例えば、図1(a)及び(b)に示すような、平面の径に対して、厚みが極めて薄い構造をいう。平均アスペクト比(平面方向の最も長い径/厚み)が2.5以上であることが好ましく、5以上であることがより好ましく、10以上であることがさらに好ましい。平均アスペクト比の上限値に関して、特に制限はなく、50以下であることが好ましい。
なお、平均アスペクト比は、図1(a)及び(b)に示すような走査型電子顕微鏡写真(SEM)により、統計的に処理することで、算出することができる。
本発明の触媒は、鱗片状であることで、活性種の分散性が高く、原料との接触頻度が増大するために、活性が高くなる。また、活性種が均一に分散していることから、反応が均一に進行し、過反応が抑えられ、コーク生成が抑制される。したがって、高い収率を示し、かつ触媒寿命が非常に長くなると考えられる。
本発明の触媒(鱗片状粒子)の平均厚みは、50~600nmが好ましい。当該厚みの範囲は、厚み方向の細孔の細孔長を制御するために重要な因子であり、後述する細孔長は、厚みに連動する。細孔長は、後述するように50~600nmが好ましいため、触媒の厚みも50nm~600nmが好ましく、75~400nmがより好ましく、100~200nmがさらに好ましい。
なお、鱗片状粒子の平均厚みは、実施例に記載の方法により、測定することができる。
なお、鱗片状粒子の平均厚みは、実施例に記載の方法により、測定することができる。
また、本発明の触媒は、図1(a)及び(b)に示すように、鱗片状の1次粒子が、ある程度集まって2次粒子を形成することが好ましい。1次粒子の形で分散するのは困難であり、一方、2次粒子は安定である。
(細孔)
本発明の細孔に関して、図1(c)にTEM写真を示す。鱗片状の厚み方向に細孔が並んでいることがわかる。
本発明の触媒における、鱗片状粒子の厚み方向の細孔としては、細孔長が50~600nmであることが好ましい。細孔内は、本触媒の反応場であるため、原料が通り抜ける過程で反応が進行すると考えられる。したがって、反応を十分に進行させるためには、細孔長が50nm以上であることが好ましい。以上の観点から、細孔長は75nm以上であることがより好ましく、100nm以上であることがさらに好ましい。
一方、細孔長が長すぎると、過反応が進行する可能性が生じ、重合体の生成、さらにはコーキングが起こり、触媒の劣化につながる。細孔長が600nm以下であると、このような過反応の進行を抑制することができる。以上の観点から、細孔長は、400nm以下であることがより好ましく、200nm以下であることがさらに好ましい。
なお、過反応により生成する「重合体」とは、ペンタジエン、ペンテン、ペンタン、ヘキサジエン、ヘキサトリエン、ヘキセン、ヘキサン等といった炭素数が5以上の不飽和炭化物、飽和炭化物をいう。
本発明の細孔に関して、図1(c)にTEM写真を示す。鱗片状の厚み方向に細孔が並んでいることがわかる。
本発明の触媒における、鱗片状粒子の厚み方向の細孔としては、細孔長が50~600nmであることが好ましい。細孔内は、本触媒の反応場であるため、原料が通り抜ける過程で反応が進行すると考えられる。したがって、反応を十分に進行させるためには、細孔長が50nm以上であることが好ましい。以上の観点から、細孔長は75nm以上であることがより好ましく、100nm以上であることがさらに好ましい。
一方、細孔長が長すぎると、過反応が進行する可能性が生じ、重合体の生成、さらにはコーキングが起こり、触媒の劣化につながる。細孔長が600nm以下であると、このような過反応の進行を抑制することができる。以上の観点から、細孔長は、400nm以下であることがより好ましく、200nm以下であることがさらに好ましい。
なお、過反応により生成する「重合体」とは、ペンタジエン、ペンテン、ペンタン、ヘキサジエン、ヘキサトリエン、ヘキセン、ヘキサン等といった炭素数が5以上の不飽和炭化物、飽和炭化物をいう。
また、本発明に係る触媒の細孔は、メソ細孔であることが好ましい。触媒がメソ細孔を有することにより、原料ガス(アルコール等)の触媒中への拡散性が向上するとともに、原料ガスと触媒との接触面積が大きくなる。その結果、アルコール濃度が高い場合であっても、原料転化率およびジエン化合物選択率が向上する。触媒の平均細孔直径は2~50nm、好ましくは2~30nm、より好ましくは2~20nm、さらに好ましくは2~15nmである。この際、触媒の「平均細孔直径」は、以下の方法により測定された値を採用するものとする。すなわち、平均細孔直径は、全細孔容積(触媒の細孔容積の合計)とBET比表面積とから算出される。
具体的には、細孔形状を円筒形であると仮定することにより算出することができる(BJH法)。円筒形の側面積としてBET比表面積A1を、円筒形の体積として全細孔容積V1を使用すると、平均細孔直径は、4V1/A1により算出することができる。
具体的には、細孔形状を円筒形であると仮定することにより算出することができる(BJH法)。円筒形の側面積としてBET比表面積A1を、円筒形の体積として全細孔容積V1を使用すると、平均細孔直径は、4V1/A1により算出することができる。
なお、触媒の全細孔容積は、0.1~10.0mL/gであることが好ましく、0.1~5.0mL/gであることがより好ましく、0.1~2.0mL/gであることがさらに好ましい。全細孔容積が0.1mL/g以上であれば、アルコールを含む原料ガスの拡散性が向上し、原料転化率とジエン化合物選択率がさらに高まる。一方、全細孔容積が10.0mL/g以下であると、アルコール-触媒間の接触面積が大きくなり、原料転化率とジエン化合物選択率がさらに高まる。本明細書において、触媒の「全細孔容積」は、ガス吸着法により測定される値を採用するものとする。この際、ガス吸着法とは、窒素ガスを吸着ガスとして使用し、触媒の表面に窒素分子を吸着させ、分子の凝縮から細孔分布を測定する方法である。
触媒の比表面積は、100~10000m2/gであることが好ましく、200~5000m2/gであることがより好ましく、200~1500m2/gであることがさらに好ましく、700~1200m2/gであることが特に好ましい。
比表面積が100m2/g以上であると、触媒表面に充分な量の活性点が存在するため、原料転化率とジエン化合物選択率がさらに高まる。その結果、原料ガス100体積%(気体換算)に対し、原料の含有量が高濃度であっても原料転化率が高まり、例えば100体積%でも高い原料転化率を示す。一方、比表面積が10000m2/g以下であると、原料ガスと触媒との間の接触面積が大きくなり、原料転化率とジエン化合物選択率がさらに高まる。
なお、本明細書において、「比表面積」は、窒素を吸着ガスとし、BET式ガス吸着法により測定されるBET比表面積を意味する。
比表面積が100m2/g以上であると、触媒表面に充分な量の活性点が存在するため、原料転化率とジエン化合物選択率がさらに高まる。その結果、原料ガス100体積%(気体換算)に対し、原料の含有量が高濃度であっても原料転化率が高まり、例えば100体積%でも高い原料転化率を示す。一方、比表面積が10000m2/g以下であると、原料ガスと触媒との間の接触面積が大きくなり、原料転化率とジエン化合物選択率がさらに高まる。
なお、本明細書において、「比表面積」は、窒素を吸着ガスとし、BET式ガス吸着法により測定されるBET比表面積を意味する。
触媒の全細孔容積と比表面積との積は、10~100000mL・m2/g2であることが好ましく、20~25000mL・m2/g2であることがより好ましく、20~2000mL・m2/g2であることがさらに好ましい。上記積が10mL・m2/g2以上であると、触媒表面に充分な量の活性点が存在し、かつアルコールを含む原料ガスの拡散性が向上するため、原料転化率とジエン化合物選択率がさらに高まる。一方、上記積が100000mL・m2/g2以下であると、原料ガスと触媒との接触面積が充分となりやすく、原料転化率とジエン化合物選択率がさらに高まる。
触媒のメソ細孔容積率((全メソ細孔容積/全細孔容積)×100)は、50%以上であることが好ましく、50~100%であることがより好ましく、80~100%であることがさらに好ましく、90~100%であることが特に好ましい。メソ細孔容積率が50%以上であると、触媒に充分なメソ細孔が存在し、アルコールを含む原料ガスの拡散性が向上するため、原料転化率とジエン化合物選択率がさらに高まる。
なお、メソ細孔容積率は、後述する製造方法における原料(Xを含む化合物、Zを含む化合物等)の使用比率、焼成工程の焼成温度等により制御することができる。
触媒のメソ細孔の形状、及びメソ細孔を形成する細孔壁が結晶構造を有しているか否かは、X線回折による回折ピークを観察することにより確認することができる。具体的には、メソ細孔を形成する細孔壁が結晶構造を有する場合、X線回折法により、θ=6°以下(好ましくは0.1°~6°、より好ましくは0.1°~1°)の低角度範囲においてメソ細孔の周期構造に由来するピークが観察されることが好ましい。
具体的には、X線回折法を用いて観測されるX線回折プロファイルにおいて、θ=6°以下の低角度範囲に、少なくとも1つの回折ピークが観測され、この少なくとも1つの回折ピークのピーク強度Iと回折ピークの半値幅Hとの比(I/H)が、5000以上であることが好ましい。
また、透過型電子顕微鏡(TEM)により触媒を観察することで、メソ細孔の形状、規則性を確認することができる。
具体的には、X線回折法を用いて観測されるX線回折プロファイルにおいて、θ=6°以下の低角度範囲に、少なくとも1つの回折ピークが観測され、この少なくとも1つの回折ピークのピーク強度Iと回折ピークの半値幅Hとの比(I/H)が、5000以上であることが好ましい。
また、透過型電子顕微鏡(TEM)により触媒を観察することで、メソ細孔の形状、規則性を確認することができる。
<触媒の用途>
上述の触媒は、好ましくはアルコールを含む原料ガスからジエン化合物を合成するジエン化合物合成用触媒であることが好ましい。この際、アルコールとしては、後述するようにエタノールを含むことが好ましく、エタノールであることがより好ましい。また、ジエン化合物としては、共役ジエン化合物が好ましく、特には、後述するように、1,3-ブタジエンであることが好ましい。
上述の触媒は、好ましくはアルコールを含む原料ガスからジエン化合物を合成するジエン化合物合成用触媒であることが好ましい。この際、アルコールとしては、後述するようにエタノールを含むことが好ましく、エタノールであることがより好ましい。また、ジエン化合物としては、共役ジエン化合物が好ましく、特には、後述するように、1,3-ブタジエンであることが好ましい。
<触媒の製造方法>
本実施形態に係る触媒は、元素Xと元素Zを含む鱗片形状を有する粒子を製造し得る方法であれば、特に限定されるものではない。例えば、特定の比率の元素Xと元素Zで構成される、複合酸化物は鱗片形状を有する。このような複合酸化物を製造する方法としては、固形コロイド調製工程と、焼成工程とを経て製造される方法が挙げられる。以下、各工程について説明する。
本実施形態に係る触媒は、元素Xと元素Zを含む鱗片形状を有する粒子を製造し得る方法であれば、特に限定されるものではない。例えば、特定の比率の元素Xと元素Zで構成される、複合酸化物は鱗片形状を有する。このような複合酸化物を製造する方法としては、固形コロイド調製工程と、焼成工程とを経て製造される方法が挙げられる。以下、各工程について説明する。
[固形コロイド調製工程]
固形コロイド調製工程は、周期表第3~6族からなる群から選択される少なくとも1種の元素Xを含む化合物と、第14族元素からなる群から選択される少なくとも1種の元素Zを含む化合物と、界面活性剤と、水を含む溶媒と、を含む原料溶液に対し、上記溶媒の少なくとも一部を留去して固形コロイドを得る工程である。
固形コロイド調製工程は、周期表第3~6族からなる群から選択される少なくとも1種の元素Xを含む化合物と、第14族元素からなる群から選択される少なくとも1種の元素Zを含む化合物と、界面活性剤と、水を含む溶媒と、を含む原料溶液に対し、上記溶媒の少なくとも一部を留去して固形コロイドを得る工程である。
(原料溶液)
上記原料溶液は、周期表第3~6族からなる群から選択される少なくとも1種の元素Xを含む化合物と、第14族元素からなる群から選択される少なくとも1種の元素Zを含む化合物と、界面活性剤と、水を含む溶媒と、を含む。原料溶液は、他の元素を含む化合物(例えば、亜鉛を含む化合物)、酸性溶液、塩基性溶液等をさらに含んでいてもよい。
元素X及びZの添加量としては、元素Xのいずれか1種と元素Zの比が、モル比で1/100~9/100であることが好ましく、2/100~7/100であることがより好ましく、3/100~6/100であることがさらに好ましい。また、元素Xを2種以上使用する場合には、2種目以降の元素は任意の量を加えるとよい。
Xのいずれか1種としては、第4族又は第5族の元素が好ましく、第4族の元素がより好ましく、Zrがさらに好ましい。2種目の元素Xとしては、前述のいずれか1種の元素とは異なる元素であり、第4族又は第5族の元素が好ましく、第4族の元素がより好ましく、Hfがさらに好ましい。
上記原料溶液は、周期表第3~6族からなる群から選択される少なくとも1種の元素Xを含む化合物と、第14族元素からなる群から選択される少なくとも1種の元素Zを含む化合物と、界面活性剤と、水を含む溶媒と、を含む。原料溶液は、他の元素を含む化合物(例えば、亜鉛を含む化合物)、酸性溶液、塩基性溶液等をさらに含んでいてもよい。
元素X及びZの添加量としては、元素Xのいずれか1種と元素Zの比が、モル比で1/100~9/100であることが好ましく、2/100~7/100であることがより好ましく、3/100~6/100であることがさらに好ましい。また、元素Xを2種以上使用する場合には、2種目以降の元素は任意の量を加えるとよい。
Xのいずれか1種としては、第4族又は第5族の元素が好ましく、第4族の元素がより好ましく、Zrがさらに好ましい。2種目の元素Xとしては、前述のいずれか1種の元素とは異なる元素であり、第4族又は第5族の元素が好ましく、第4族の元素がより好ましく、Hfがさらに好ましい。
本発明の製造方法について、以下記載する。
(1)まず、所定量の界面活性剤に水と酸性溶液又は塩基性溶液を添加し、常温常圧条件下で所定の速度(例えば、50~200rpm程度)で撹拌して界面活性剤を溶解させる。
ここで、酸性溶液又は塩基性溶液は、作製される原料溶液における酸性度又は塩基性濃度が0.001mol/L~10mol/L(好ましくは0.01~5mol/L)となるように添加することが好ましい。酸性溶液又は塩基性溶液は、元素Xを含む化合物及び元素Zを含む化合物といった前駆体の加水分解を促進するものであるが、上記範囲内であることで、金属前駆体の加水分解速度が高まりすぎず、結果として単一金属酸化物同士での凝集が防がれ、効率よく複合酸化物が得られる。
(1)まず、所定量の界面活性剤に水と酸性溶液又は塩基性溶液を添加し、常温常圧条件下で所定の速度(例えば、50~200rpm程度)で撹拌して界面活性剤を溶解させる。
ここで、酸性溶液又は塩基性溶液は、作製される原料溶液における酸性度又は塩基性濃度が0.001mol/L~10mol/L(好ましくは0.01~5mol/L)となるように添加することが好ましい。酸性溶液又は塩基性溶液は、元素Xを含む化合物及び元素Zを含む化合物といった前駆体の加水分解を促進するものであるが、上記範囲内であることで、金属前駆体の加水分解速度が高まりすぎず、結果として単一金属酸化物同士での凝集が防がれ、効率よく複合酸化物が得られる。
(2)界面活性剤を溶解させた水溶液を常温常圧条件下で所定の速度で撹拌しながら、元素Xを含む化合物を所定の速度で加える。
ここで、所定の速度で撹拌する際の撹拌速度は、10~2000rpmであることが好ましく、10~1000rpmであることがより好ましく、10~500rpmであることがさらに好ましい。上記範囲内であることで、単一金属酸化物同士の凝集が防がれ、効率よく複合酸化物が得られる。
ここで、所定の速度で撹拌する際の撹拌速度は、10~2000rpmであることが好ましく、10~1000rpmであることがより好ましく、10~500rpmであることがさらに好ましい。上記範囲内であることで、単一金属酸化物同士の凝集が防がれ、効率よく複合酸化物が得られる。
また、元素Xを含む化合物を所定の速度で添加する際の添加速度としては、0.1~100mg/分であることが好ましく、0.1~50mg/分であることがより好ましく、0.1~20mg/分であることがさらに好ましい。上記範囲内であることで、実用的な添加速度としながら、単一金属酸化物同士での凝集が防がれ、効率よく複合酸化物が得られる。
さらに、作製される原料溶液における元素Xを含む化合物の濃度は、0.0025~0.1mol/Lの範囲とすることが好ましい。該濃度が0.0025mol/L以上であると、シリカ原料などの元素Zの加水分解に際して、金属(元素X)が十分に存在するため、鱗片状の触媒を形成しやすい。一方、当該濃度が0.1mol/L以下であると、金属(元素X)同士の凝集が起こりにくい。以上の観点から、該濃度は、0.005~0.05mol/Lであることがより好ましく、0.01~0.025mol/Lであることがさらに好ましい。
本発明に係る製造方法においては、元素Xと元素Zとの比率、元素Xを含む化合物の添加速度、及び元素Xを含む化合物の濃度のいずれかの要件を少なくとも一つ満足することで、本発明の触媒を効果的に製造することができる。
(3)元素Xを含む化合物が全て溶解したことを確認してから、常温常圧条件下で所定の速度で撹拌しながら、元素Zを含む化合物を所定の速度で加えていき原料溶液を調製する。
ここで、元素Zを含む化合物を所定の速度で加える際の添加速度は、0.01~10g/分であることが好ましく、0.01~5g/分であることがより好ましく、0.01~1g/分であることがさらに好ましい。上記範囲の上限値以下であることで、元素Zを含む化合物の加水分解反応速度が速くなりすぎるのを防ぎ、界面活性剤の周りで反応しやすくなって、メソ細孔が生成しやすくなる。上記範囲の下限値以上であることで、添加している最中に空気中の水分と加水分解してしまうのを防ぐことができる。
また、作製される原料溶液における元素Zを含む化合物の濃度は、0.001~1000g/Lの範囲とすることが好ましく、0.01~100g/Lの範囲とすることがより好ましい。上記範囲の上限値以下であることで、元素Zを含む化合物の加水分解反応速度が速くなりすぎるのを防ぎ、界面活性剤の周りで反応しやすくなって、メソ細孔が生成しやすくなる。上記範囲の下限値以上であることで、添加している最中に空気中の水分と加水分解してしまうのを防ぐことができる。
さらに、元素Zを含む化合物は、界面活性剤との質量比(元素Zを含む化合物/界面活性剤)が好ましくは0.01~100となるように、より好ましくは0.05~50となるように、さらに好ましくは0.1~10となるように添加する。上記範囲の上限値以下であることで、元素Zを含む化合物が界面活性剤の周りで反応しやすくなって、メソ細孔が形成されやすくなる。上記範囲の下限値以上であることで、界面活性剤が多すぎることにより、部分的に元素Zを含む酸化物(シリカ等)が形成されてしまい分断された構造となるのが防がれ、触媒にメソ孔が形成されやすくなる。
元素Zを含む化合物を加える際の原料溶液の撹拌速度は、10~2000rpmであることが好ましく、10~1000rpmであることがより好ましく、10~500rpmであることがさらに好ましい。上記範囲内であることで、元素Zを含む化合物の加水分解が早くなりすぎず、界面活性剤との相互作用が生じて十分なメソ細孔が得られ、比表面積も大きくすることができる。
(4)次いで、原料溶液を熟成することで、懸濁液を得る。
当該懸濁液は、既述の原料溶液中の元素Xを含む化合物、元素Zを含む化合物等が水によって加水分解、縮合が生じて固形分が得られることにより、懸濁液となる。
当該懸濁液は、既述の原料溶液中の元素Xを含む化合物、元素Zを含む化合物等が水によって加水分解、縮合が生じて固形分が得られることにより、懸濁液となる。
本明細書において、「熟成」とは、原料溶液を静置することを意味する。
この際、原料溶液の熟成温度は、30~200℃であることが好ましく、35~150℃であることがより好ましい。
また、原料溶液の熟成時間は、2時間~10日間であることが好ましく、10時間~5日間であることがより好ましい。
なお、熟成は2段階で行ってもよい。例えば、30~90℃で1時間~5日間静置して第1の熟成を行い、その後、90℃~200℃で第1の熟成よりも高温にして1時間~5日間静置する第2の熟成を行ってもよい。
この際、原料溶液の熟成温度は、30~200℃であることが好ましく、35~150℃であることがより好ましい。
また、原料溶液の熟成時間は、2時間~10日間であることが好ましく、10時間~5日間であることがより好ましい。
なお、熟成は2段階で行ってもよい。例えば、30~90℃で1時間~5日間静置して第1の熟成を行い、その後、90℃~200℃で第1の熟成よりも高温にして1時間~5日間静置する第2の熟成を行ってもよい。
以下では、原料溶液の作製に用いられる元素Xを含む化合物、元素Zを含む化合物、亜鉛を含む化合物、界面活性剤、溶媒、酸性溶液、塩基性溶液等について説明する。
(元素Xを含む化合物)
元素Xを含む化合物としては、特に制限されないが、元素Xの塩化物、硫化物、硝酸塩、炭酸塩等の無機塩;シュウ酸塩、アセチルアセトナート塩、ジメチルグリオキシム塩、エチレンジアミン酢酸塩等の有機塩;キレート化合物;カルボニル化合物;シクロペンタジエニル化合物;アンミン錯体;アルコキシド化合物;アルキル化合物等が挙げられる。
具体的には、塩化チタン(TiCl2、TiCl3、TiCl4)、塩化ジルコニウム(ZrCl2)、塩化ハフニウム(HfCl4)、塩化ニオブ(NbCl5)、塩化タンタル(TaCl5)、塩化バナジウム(VCl3)、塩化タングステン(WCl5)、硝酸スカンジウム(Sc(NO3)3)、硝酸イットリウム(Y(NO3)3)、硝酸ランタン(La(NO3)3)、硝酸セリウム(Ce(NO3)3)等が挙げられる。
上述した元素Xを含む化合物は単独で用いても、2種以上組み合わせて用いてもよい。
元素Xを含む化合物としては、特に制限されないが、元素Xの塩化物、硫化物、硝酸塩、炭酸塩等の無機塩;シュウ酸塩、アセチルアセトナート塩、ジメチルグリオキシム塩、エチレンジアミン酢酸塩等の有機塩;キレート化合物;カルボニル化合物;シクロペンタジエニル化合物;アンミン錯体;アルコキシド化合物;アルキル化合物等が挙げられる。
具体的には、塩化チタン(TiCl2、TiCl3、TiCl4)、塩化ジルコニウム(ZrCl2)、塩化ハフニウム(HfCl4)、塩化ニオブ(NbCl5)、塩化タンタル(TaCl5)、塩化バナジウム(VCl3)、塩化タングステン(WCl5)、硝酸スカンジウム(Sc(NO3)3)、硝酸イットリウム(Y(NO3)3)、硝酸ランタン(La(NO3)3)、硝酸セリウム(Ce(NO3)3)等が挙げられる。
上述した元素Xを含む化合物は単独で用いても、2種以上組み合わせて用いてもよい。
元素Xを含む化合物の使用量は、元素Xを含む化合物および元素Zを含む化合物の合計量(モル)に対して、0.1~20モル%であることが好ましく、0.5~15モル%であることがより好ましく、0.5~6モル%であることがさらに好ましく、0.7~4モル%であることが特に好ましい。なお、元素Xを含む化合物を2種以上組み合わせて含む場合には、その和が上記範囲に含まれることが好ましい。
(元素Zを含む化合物)
元素Zを含む化合物としては、特に制限されないが、元素Zの塩化物、硫化物、硝酸塩、炭酸塩等の無機塩;シュウ酸塩、アセチルアセトナート塩、ジメチルグリオキシム塩、エチレンジアミン酢酸塩等の有機塩;キレート化合物;カルボニル化合物;シクロペンタジエニル化合物;アンミン錯体;アルコキシド化合物;アルキル化合物等が挙げられる。
これらのうち、ケイ素を含むアルコキシド化合物を用いることが好ましい。
元素Zを含む化合物としては、特に制限されないが、元素Zの塩化物、硫化物、硝酸塩、炭酸塩等の無機塩;シュウ酸塩、アセチルアセトナート塩、ジメチルグリオキシム塩、エチレンジアミン酢酸塩等の有機塩;キレート化合物;カルボニル化合物;シクロペンタジエニル化合物;アンミン錯体;アルコキシド化合物;アルキル化合物等が挙げられる。
これらのうち、ケイ素を含むアルコキシド化合物を用いることが好ましい。
ケイ素を含むアルコキシド化合物としては、下記一般式(1)で表される化合物であることが好ましい。
Si(OR)4・・・(1)
式(1)中、Rは、それぞれ独立して、アルキル基を示す。アルキル基としては、炭素数が1~4のアルキル基であることが好ましく、エチル基であることがより好ましい。
具体的なケイ素を含むアルコキシド化合物としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン等が挙げられる。これらのうち、テトラエトキシシランを用いることが好ましい。
上述した元素Zを含む化合物は、単独で用いても、2種以上組み合わせて用いてもよい。
Si(OR)4・・・(1)
式(1)中、Rは、それぞれ独立して、アルキル基を示す。アルキル基としては、炭素数が1~4のアルキル基であることが好ましく、エチル基であることがより好ましい。
具体的なケイ素を含むアルコキシド化合物としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン等が挙げられる。これらのうち、テトラエトキシシランを用いることが好ましい。
上述した元素Zを含む化合物は、単独で用いても、2種以上組み合わせて用いてもよい。
元素Zを含む化合物の使用量は、元素Xを含む化合物および元素Zを含む化合物の合計量(モル)に対して、80~99.9モル%であることが好ましく、85~99.5モル%であることがより好ましく、94~99.5モル%であることがさらに好ましい。なお、元素Zを含む化合物を2種以上組み合わせて含む場合には、その和が上記範囲に含まれることが好ましい。
(亜鉛を含む化合物)
亜鉛を含む化合物としては、特に制限されないが、亜鉛の塩化物、硫化物、硝酸塩、炭酸塩等の無機塩;シュウ酸塩、アセチルアセトナート塩、ジメチルグリオキシム塩、エチレンジアミン酢酸塩等の有機塩;キレート化合物;カルボニル化合物;シクロペンタジエニル化合物;アンミン錯体;アルコキシド化合物;アルキル化合物等が挙げられる。
具体的には、塩化亜鉛(ZnCl2)、硫化亜鉛(ZnS)、硝酸亜鉛(Zn(NO3)2)等が挙げられる。
上述した亜鉛を含む化合物は、単独で用いても、2種以上組み合わせて用いてもよい。
亜鉛を含む化合物としては、特に制限されないが、亜鉛の塩化物、硫化物、硝酸塩、炭酸塩等の無機塩;シュウ酸塩、アセチルアセトナート塩、ジメチルグリオキシム塩、エチレンジアミン酢酸塩等の有機塩;キレート化合物;カルボニル化合物;シクロペンタジエニル化合物;アンミン錯体;アルコキシド化合物;アルキル化合物等が挙げられる。
具体的には、塩化亜鉛(ZnCl2)、硫化亜鉛(ZnS)、硝酸亜鉛(Zn(NO3)2)等が挙げられる。
上述した亜鉛を含む化合物は、単独で用いても、2種以上組み合わせて用いてもよい。
亜鉛を含む化合物の使用量は、元素Xを含む化合物、元素Zを含む化合物、および亜鉛を含む化合物の合計量(モル)に対して、0.1~20モル%であることが好ましく、0.5~15モル%であることがより好ましく、0.5~6モル%であることがさらに好ましい。
(界面活性剤)
触媒の製造に界面活性剤を用いることにより、メソ細孔を有する触媒を得ることができる。より詳細には、界面活性剤の添加によりミセルが形成され、得られるミセルを鋳型として表面に複合酸化物の前駆体が形成される。このような前駆体に対して後述する焼成を行うことで、界面活性剤が除去されてメソ細孔を有する触媒を製造することができる。なお、ミセルの形状は、その濃度によって、球状、シリンダー状、ラメラ状、ジャイロイド状、ベシクル状の形状となる。
触媒の製造に界面活性剤を用いることにより、メソ細孔を有する触媒を得ることができる。より詳細には、界面活性剤の添加によりミセルが形成され、得られるミセルを鋳型として表面に複合酸化物の前駆体が形成される。このような前駆体に対して後述する焼成を行うことで、界面活性剤が除去されてメソ細孔を有する触媒を製造することができる。なお、ミセルの形状は、その濃度によって、球状、シリンダー状、ラメラ状、ジャイロイド状、ベシクル状の形状となる。
界面活性剤としては、特に制限されないが、カチオン性界面活性剤、非イオン性界面活性剤等が挙げられる。
カチオン性界面活性剤としては、MCM-41、SBA-15、FMS-16等のメソポーラスシリカの合成に従来使用されるカチオン性界面活性剤が挙げられる。
カチオン性界面活性剤としては、MCM-41、SBA-15、FMS-16等のメソポーラスシリカの合成に従来使用されるカチオン性界面活性剤が挙げられる。
非イオン性界面活性剤としては、特に制限されないが、アルキレンオキシド鎖を構成成分とするポリアルキレンオキサイドブロックコポリマー、前記ブロックコポリマーの末端をアルコールやフェノール等でエーテル化した化合物等が挙げられる。
なお、構成単位として含まれるアルキレンオキシド鎖は1種類を単独で使用してもよく、2種類以上を併用してもよい。
なお、構成単位として含まれるアルキレンオキシド鎖は1種類を単独で使用してもよく、2種類以上を併用してもよい。
このうち、得られる複合酸化物のメソ細孔を形成する細孔壁の結晶構造の安定性の観点から、非イオン性界面活性剤を使用することが好ましく、ポリアルキレンオキサイドブロックコポリマーを使用することがより好ましい。得られる複合酸化物のメソ細孔を形成する細孔壁の結晶構造の安定性の観点から、ポリエチレンオキシド鎖(CH2CH2O)mとポリプロピレンオキシド鎖(CH2CH(CH3)O)nを構成単位とするポリアルキレンオキサイドブロックコポリマーを使用することがさらに好ましい。なお、上記m及びnは、1~1000であり、好ましくはmが1~200、nが1~100であり、より好ましくはmが1~200、nが1~100、m+nが2~300である。ポリマーの末端は、水素原子、水酸基、又はアルコールやフェノールでエーテル化されていてもよい。
前述のポリアルキレンオキサイドブロックコポリマーの中でも、得られる複合酸化物のメソ細孔を形成する細孔壁の結晶構造の安定性の観点から、下記一般式(2)で表されるポリアルキレンオキサイドブロックコポリマーであることが好ましい。
HO((CH2CH2O)r(CH2CH(CH3)O)s(CH2CH2O)t)H・・・(2)
本発明の合成用触媒の前述した好ましい平均細孔直径を形成する観点から、rは1~100であることが好ましく、sは1~100であることが好ましく、tは1~100であることが好ましい。また、r+s+tは、3~300であることが好ましい。
HO((CH2CH2O)r(CH2CH(CH3)O)s(CH2CH2O)t)H・・・(2)
本発明の合成用触媒の前述した好ましい平均細孔直径を形成する観点から、rは1~100であることが好ましく、sは1~100であることが好ましく、tは1~100であることが好ましい。また、r+s+tは、3~300であることが好ましい。
ポリアルキレンオキサイドブロックコポリマーを得る方法は、特に限定されず、従来公知の製造方法で製造されたものを用いてもよいし、市販品を用いてもよい。
ポリアルキレンオキサイドブロックコポリマーの市販品は、例えばBASF社製の製品名P123;[(HO(CH2CH2O)20(CH2CH(CH3)O)70(CH2CH2O)20)H]、製品名P85;[(HO(CH2CH2O)26(CH2CH(CH3)O)39(CH2CH2O)26)H]、製品名P103[(HO(CH2CH2O)56(CH2CH(CH3)O)17(CH2CH2O)56H)]である。
上述した界面活性剤は、単独で用いても、2種以上組み合わせて用いてもよい。
ポリアルキレンオキサイドブロックコポリマーの市販品は、例えばBASF社製の製品名P123;[(HO(CH2CH2O)20(CH2CH(CH3)O)70(CH2CH2O)20)H]、製品名P85;[(HO(CH2CH2O)26(CH2CH(CH3)O)39(CH2CH2O)26)H]、製品名P103[(HO(CH2CH2O)56(CH2CH(CH3)O)17(CH2CH2O)56H)]である。
上述した界面活性剤は、単独で用いても、2種以上組み合わせて用いてもよい。
上述の界面活性剤の種類等を適宜変更することでメソ細孔の形、細孔直径を制御することができる。
界面活性剤の使用量は、既述の元素Zを含む化合物と界面活性剤との質量比(元素Zを含む化合物/界面活性剤)となることを前提に、溶媒100質量部に対して、3~20質量部であることが好ましく、5~18質量部であることがより好ましく、7~15質量部であることがさらに好ましい。界面活性剤の使用量が3質量部以上であると、メソ細孔が均一にできることから好ましい。一方、界面活性剤の使用量が20質量部以下であると、溶解できることから好ましい。
(溶媒)
溶媒としては、水を含む。また溶媒は、有機溶媒をさらに含んでいてもよい。
水としては、特に限定はされないが、金属イオン等を除去したイオン交換水、又は蒸留水が好ましい。
有機溶媒としては、特に制限されないが、メタノール、エタノール、n-プロパノール、n-ヘキサノール等の脂肪族直鎖アルコールが挙げられる。
これらのうち、有機溶媒は、取り扱い性の観点から、メタノール、エタノールであることが好ましい。
上記有機溶媒は、1種類を単独で使用してもよく、2種類以上を併用してもよい。
溶媒としては、水を含む。また溶媒は、有機溶媒をさらに含んでいてもよい。
水としては、特に限定はされないが、金属イオン等を除去したイオン交換水、又は蒸留水が好ましい。
有機溶媒としては、特に制限されないが、メタノール、エタノール、n-プロパノール、n-ヘキサノール等の脂肪族直鎖アルコールが挙げられる。
これらのうち、有機溶媒は、取り扱い性の観点から、メタノール、エタノールであることが好ましい。
上記有機溶媒は、1種類を単独で使用してもよく、2種類以上を併用してもよい。
水の使用量は、界面活性剤1質量部に対して、5~35質量部であることが好ましく、5~20質量部であることがより好ましい。水の使用量が5質量部以上であると、界面活性剤が溶解できることから好ましい。一方、水の使用量が35質量部以下であると、メソ細孔が均一にできることから好ましい。
水の使用量は、元素Xを含む化合物および元素Zを含む化合物の合計量(モル)に対して、100モル%~10000モル%が好ましく、1000~8000モル%であることがより好ましい。水の使用量が100モル%以上であると、加水分解できることから好ましい。一方、水の使用量が10000モル%以下であると、固形分が溶解しないことから好ましい。
また、溶媒として有機溶媒を含む場合、有機溶媒の使用量は、水に対して、10~50体積%であることが好ましく、10~25体積%であることがより好ましい。有機溶媒の使用量が10体積%以上であると、元素X及び元素Zが溶解できることから好ましい。一方、有機溶媒の使用量が50体積%以下であると、加水分解できることから好ましい。
(酸性溶液)
酸性溶液は、後述する加水分解による固形分の生成を促進する機能を有する。
酸性溶液としては、特に制限されないが、塩化水素、硫酸、硝酸、リン酸等の無機酸が溶解している水溶液が挙げられる。
酸性溶液は、後述する加水分解による固形分の生成を促進する機能を有する。
酸性溶液としては、特に制限されないが、塩化水素、硫酸、硝酸、リン酸等の無機酸が溶解している水溶液が挙げられる。
酸性溶液の使用量は、酸性溶液中に含まれる酸のモル数が、元素Xを含む化合物および元素Zを含む化合物の合計量(モル)に対して、0.01~10.0モル%となる量であることが好ましく、0.1~8.0モル%となる量であることがより好ましい。
(塩基性溶液)
塩基性溶液は、後述する加水分解による固形分の生成を促進する機能を有する。なお、通常、上述の酸性溶液および塩基性溶液はいずれか一方が用いられる。
塩基性溶液としては、特に制限されないが、水酸化ナトリウム、炭酸カルシウム、アンモニアなどの無機塩基が溶解している水溶液が挙げられる。
塩基性溶液は、後述する加水分解による固形分の生成を促進する機能を有する。なお、通常、上述の酸性溶液および塩基性溶液はいずれか一方が用いられる。
塩基性溶液としては、特に制限されないが、水酸化ナトリウム、炭酸カルシウム、アンモニアなどの無機塩基が溶解している水溶液が挙げられる。
塩基性溶液の使用量は、元素Xを含む化合物および元素Zを含む化合物の合計量(モル)に対して、0.01~10.0モル%となる量であることが好ましく、0.1~8.0モル%となる量であることがより好ましい。
(固形コロイドの調製)
固形コロイドは、既述の懸濁液を濾過し、適宜洗浄し、乾燥させることで得ることができる。
このように固形コロイドを経由することで、懸濁液を直接焼成する場合と比べて、触媒の均一性を高めることができる。なお、本明細書において、「固形コロイド」とは、固形コロイド中に含有される溶媒量が、固形コロイドの全体積に対して、5%以下のものを意味する。
固形コロイドは、既述の懸濁液を濾過し、適宜洗浄し、乾燥させることで得ることができる。
このように固形コロイドを経由することで、懸濁液を直接焼成する場合と比べて、触媒の均一性を高めることができる。なお、本明細書において、「固形コロイド」とは、固形コロイド中に含有される溶媒量が、固形コロイドの全体積に対して、5%以下のものを意味する。
固形コロイドを得るための乾燥温度は、20~200℃であることが好ましく、50~150℃であることがより好ましい。
乾燥時間は、1時間~10日であることが好ましく、2時間~5日間であることがより好ましい。上記範囲とすることで、溶媒が除かれ、次の焼成の過程で十分なメソ細孔径が得られやすくなり、比表面積を大きくすることができる。
乾燥時間は、1時間~10日であることが好ましく、2時間~5日間であることがより好ましい。上記範囲とすることで、溶媒が除かれ、次の焼成の過程で十分なメソ細孔径が得られやすくなり、比表面積を大きくすることができる。
[焼成工程]
焼成工程は、上記固形コロイドを焼成する工程である。固形コロイドを焼成することで、鋳型とした界面活性剤が除去されて、本実施形態に係る触媒を製造することができる。
焼成温度は、200~800℃が好ましく、400~600℃であることがより好ましい。焼成温度が200℃以上であると、触媒中に界面活性剤由来の不純物が残留しない、またはほとんどないことから好ましい。一方、焼成温度が800℃以下であると、触媒のメソ細孔を形成する細孔壁の結晶構造の安定性を向上させることができることから好ましい。
焼成工程は、上記固形コロイドを焼成する工程である。固形コロイドを焼成することで、鋳型とした界面活性剤が除去されて、本実施形態に係る触媒を製造することができる。
焼成温度は、200~800℃が好ましく、400~600℃であることがより好ましい。焼成温度が200℃以上であると、触媒中に界面活性剤由来の不純物が残留しない、またはほとんどないことから好ましい。一方、焼成温度が800℃以下であると、触媒のメソ細孔を形成する細孔壁の結晶構造の安定性を向上させることができることから好ましい。
ここで、焼成温度までの昇温速度としては、0.1~100℃/分であることが好ましく、0.5~50℃/分であることがより好ましく、1~20℃/分であることがさらに好ましい。上記範囲とすることで、成形体の表面と内部との温度差が生じず、十分なメソ細孔径を得ることができる。その結果、触媒の比表面積も大きくすることができる。
焼成時間は、10分間~2日間であることが好ましく、1~10時間であることがより好ましい。焼成時間が10分間以上であると、触媒中に界面活性剤由来の不純物が残留しない、またはほとんど残留しないことから好ましい。一方、焼成時間が2日間以内であると、触媒のメソ細孔を形成する細孔壁の結晶構造の安定性を向上させることができることから好ましい。
(ジエン化合物の製造装置)
ジエン化合物の製造装置は、上述の触媒が充填された反応管を備える。このような製造装置により、原料を含む原料ガスからジエン化合物を製造する。
ジエン化合物の製造装置は、上述の触媒が充填された反応管を備える。このような製造装置により、原料を含む原料ガスからジエン化合物を製造する。
以下、ジエン化合物の製造装置の一例であるブタジエンの製造装置について、図3に基づいて説明する。
本実施形態のブタジエンの製造装置10(以下、単に「製造装置10」という。)は、反応管1と供給管3と排出管4と温度制御部5と圧力制御部6とを備える。
反応管1は、内部に反応床2を備える。反応床2には、本発明の合成用触媒が充填されている。供給管3は反応管1に接続している。排出管4は反応管1に接続している。温度制御部5は反応管1に接続している。排出管4は、圧力制御部6を備える。
本実施形態のブタジエンの製造装置10(以下、単に「製造装置10」という。)は、反応管1と供給管3と排出管4と温度制御部5と圧力制御部6とを備える。
反応管1は、内部に反応床2を備える。反応床2には、本発明の合成用触媒が充填されている。供給管3は反応管1に接続している。排出管4は反応管1に接続している。温度制御部5は反応管1に接続している。排出管4は、圧力制御部6を備える。
反応床2は、本実施形態に係る触媒のみを有してもよいし、本実施形態に係る触媒とともに本実施形態に係る触媒以外の触媒を有していてもよい。また、希釈材をさらに有していてもよい。当該希釈材は、触媒が過度に発熱することを防止する。
希釈材は、例えば、石英砂、アルミナボール、アルミボール、アルミショット等である。
反応床2に希釈材を充填する場合、希釈材/合成用触媒で表される質量比は、それぞれの種類や比重等を勘案して決定され、例えば、0.5~5が好ましい。
なお、反応床は、固定床、移動床、流動床等のいずれでもよい。
希釈材は、例えば、石英砂、アルミナボール、アルミボール、アルミショット等である。
反応床2に希釈材を充填する場合、希釈材/合成用触媒で表される質量比は、それぞれの種類や比重等を勘案して決定され、例えば、0.5~5が好ましい。
なお、反応床は、固定床、移動床、流動床等のいずれでもよい。
反応管1は、原料ガス及び合成された生成物に対して不活性な材料からなるものが好ましい。反応管1は、100~600℃程度の加熱、又は10MPa程度の加圧に耐え得る形状のものが好ましい。反応管1は、例えば、ステンレス製の略円筒形の部材である。
供給管3は、原料ガスを反応管1内に供給する供給手段である。供給管3は、例えば、ステンレス製等の配管である。
排出管4は、反応床2で合成された生成物を含むガスを排出する排出手段である。排出管4は、例えば、ステンレス製等の配管である。
供給管3は、原料ガスを反応管1内に供給する供給手段である。供給管3は、例えば、ステンレス製等の配管である。
排出管4は、反応床2で合成された生成物を含むガスを排出する排出手段である。排出管4は、例えば、ステンレス製等の配管である。
温度制御部5は、反応管1内の反応床2を任意の温度にできるものであればよい。温度制御部5は、例えば、反応管1の周りに設けられる電気炉等(不図示)の温度を制御して、反応管1内の反応床2を任意の温度に調整する。
圧力制御部6は、反応管1内の圧力を任意の圧力にできるものであればよい。圧力制御部6は、例えば、公知の圧力弁等である。
なお、製造装置10は、マスフロー等、ガスの流量を調整するガス流量制御部等の周知の機器を備えていてもよい。
圧力制御部6は、反応管1内の圧力を任意の圧力にできるものであればよい。圧力制御部6は、例えば、公知の圧力弁等である。
なお、製造装置10は、マスフロー等、ガスの流量を調整するガス流量制御部等の周知の機器を備えていてもよい。
<ジエン化合物の製造方法>
本発明の一形態によればジエン化合物の製造方法が提供される。ジエン化合物の製造方法は、本発明に係る触媒に、アルコールを含む原料ガスを接触させてジエン化合物を製造することを含む。
本発明の一形態によればジエン化合物の製造方法が提供される。ジエン化合物の製造方法は、本発明に係る触媒に、アルコールを含む原料ガスを接触させてジエン化合物を製造することを含む。
[触媒]
触媒としては、上述したものが用いられることからここでは説明を省略する。
触媒の使用量は、原料ガスに対して、0.1~10g/g・hであることが好ましく、1~5g/g・hであることがより好ましい。触媒の使用量が0.1g/g・h以上であると、反応転化率が向上できることから好ましい。一方、触媒の使用量が10g/g・h以下であると、副生成物の副生を抑制できることから好ましい。
触媒としては、上述したものが用いられることからここでは説明を省略する。
触媒の使用量は、原料ガスに対して、0.1~10g/g・hであることが好ましく、1~5g/g・hであることがより好ましい。触媒の使用量が0.1g/g・h以上であると、反応転化率が向上できることから好ましい。一方、触媒の使用量が10g/g・h以下であると、副生成物の副生を抑制できることから好ましい。
[原料ガス]
原料ガスは、アルコールを含む。その他、原料ガスは、不活性ガス等をさらに含んでいてもよい。
原料ガスは、アルコールを含む。その他、原料ガスは、不活性ガス等をさらに含んでいてもよい。
(アルコール)
アルコールとしては、特に制限されないが、炭素数1~6のアルコールが挙げられる。アルコールの具体例としては、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール等が挙げられる。
原則として、使用するアルコールによって得られるジエン化合物が異なる。例えば、エタノールを使用する場合、ブタジエンが得られる。また、プロパノールを使用する場合、ヘキサジエンが得られる。さらにブタノールを使用する場合、オクタジエンが得られる。
アルコールは単独で用いても、2種以上組み合わせて用いてもよいが、副反応を抑制する観点から単独で用いることが好ましい。
アルコールとしては、特に制限されないが、炭素数1~6のアルコールが挙げられる。アルコールの具体例としては、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール等が挙げられる。
原則として、使用するアルコールによって得られるジエン化合物が異なる。例えば、エタノールを使用する場合、ブタジエンが得られる。また、プロパノールを使用する場合、ヘキサジエンが得られる。さらにブタノールを使用する場合、オクタジエンが得られる。
アルコールは単独で用いても、2種以上組み合わせて用いてもよいが、副反応を抑制する観点から単独で用いることが好ましい。
原料ガス中のアルコールの濃度は、原料ガス100体積%に対して、10体積%以上であることが好ましく、15体積%以上であることが好ましく、20体積%以上であることがより好ましく、30体積%以上であることが最も好ましい。なお、アルコールを2種以上組み合わせて用いる場合には、その和が上記範囲に含まれることが好ましい。本発明に係る触媒を用いることで、原料ガス中のアルコール濃度が高い場合であっても効率的に反応を進行させることができる。
(不活性ガス)
不活性ガスとしては、特に制限されないが、窒素ガス、アルゴンガス等が挙げられる。これらの不活性ガスは単独で用いても、2種以上組み合わせて用いてもよい。
不活性ガスの濃度は、原料ガス100体積%に対して、90体積%以下であることが好ましく、30~90体積%であることがより好ましく、50~90体積%であることがさらに好ましく、60~80体積%であることが特に好ましい。
不活性ガスとしては、特に制限されないが、窒素ガス、アルゴンガス等が挙げられる。これらの不活性ガスは単独で用いても、2種以上組み合わせて用いてもよい。
不活性ガスの濃度は、原料ガス100体積%に対して、90体積%以下であることが好ましく、30~90体積%であることがより好ましく、50~90体積%であることがさらに好ましく、60~80体積%であることが特に好ましい。
[接触]
触媒と原料ガスとを接触させる態様は、特に限定されないが、例えば、反応管内の反応床に原料ガスを通流させ、反応床の合成用触媒と原料ガスとを接触させる態様であることが好ましい。このように接触させる態様であれば特に限定されず、例えば、固定床や流動床などを好適に用いることができる。
触媒と原料ガスとを接触させる態様は、特に限定されないが、例えば、反応管内の反応床に原料ガスを通流させ、反応床の合成用触媒と原料ガスとを接触させる態様であることが好ましい。このように接触させる態様であれば特に限定されず、例えば、固定床や流動床などを好適に用いることができる。
触媒と原料ガスとを接触させる際の温度(反応温度)は、100~600℃であることが好ましく、200~500℃であることがより好ましく、250~450℃であることがさらに好ましい。反応温度が100℃以上であると、反応速度が充分に高まり、ジエン化合物をより効率的に製造できることから好ましい。一方、反応温度が600℃以下であると、触媒の劣化を防止または抑制できることから好ましい。
触媒と原料ガスとを接触させる際の圧力(反応圧力)は、0.1~10MPaであることが好ましく、0.1~3MPaであることがより好ましい。反応圧力が0.1MPa以上であると、反応速度が高まり、ジエン化合物をより効率的に製造できることから好ましい。一方、反応圧力が10MPa以下であると、触媒の劣化を防止または抑制できることから好ましい。
反応床中の原料ガスの空間速度(SV)は、通常、反応圧力及び反応温度を勘案して、空間速度を適宜調整するが、標準状態換算で、0.1~10000h-1とすることが好ましい。
例えば、製造装置10を用いてブタジエンを製造する場合は、温度制御部5及び圧力制御部6で反応管1内を任意の温度及び任意の圧力とする。ガス化された原料ガス20を供給管3から反応管1内に供給する。反応管1内において原料が合成用触媒に接触して反応し、ブタジエンといったジエン化合物が生成する。ブタジエンといったジエン化合物を含む生成ガス22は、排出管4から排出する。生成ガス22には、アセトアルデヒド、プロピレン、エチレン等の化合物が含まれていてもよい。
ジエン化合物を含む生成ガス(図3における生成ガス22)に対しては、必要に応じて気液分離や蒸留精製等の精製を行い、未反応の原料や副生物を除去する。
また、本発明は、バイオエタノールからジエン化合物を製造し、環境負荷を低減することもできる。
また、本発明は、バイオエタノールからジエン化合物を製造し、環境負荷を低減することもできる。
<SBR又はBRの製造方法>
本発明の製造方法により製造した1,3-ブタジエンは、その後スチレン-ブタジエンゴム(SBR)又はブタジエンゴム(BR)の原料として、好適に用いられる。
本発明の製造方法により製造した1,3-ブタジエンは、その後スチレン-ブタジエンゴム(SBR)又はブタジエンゴム(BR)の原料として、好適に用いられる。
以下、実施例によって本発明を具体的に説明するが、本発明は以下の記載によっては限定されない。
(触媒の物性評価;触媒の平均直径(nm)及び平均厚み(nm))
各実施例で得られた触媒の平均直径(nm)及び平均厚み(nm)は、走査型電子顕微鏡(SEM)観察により測定した。具体的には、各実施例で得られた1次粒子が20個以上確認される走査型電子顕微鏡(SEM)像(観察像)を任意に3枚選び、それぞれについて、ランダムに10個の粒子を選択し、該10個の粒子の直径(nm)及び厚み(nm)を測定する。得られた総データの平均値から1次粒子の平均直径(nm)及び平均厚み(nm)を求めた。なお、選択された粒子の直径が一様ではない場合には、粒子の外接円の直径を、各粒子の直径として採用する。また、厚み方向に細孔を有していることは透過型電子顕微鏡(TEM)像から確認した。
各実施例で得られた触媒の平均直径(nm)及び平均厚み(nm)は、走査型電子顕微鏡(SEM)観察により測定した。具体的には、各実施例で得られた1次粒子が20個以上確認される走査型電子顕微鏡(SEM)像(観察像)を任意に3枚選び、それぞれについて、ランダムに10個の粒子を選択し、該10個の粒子の直径(nm)及び厚み(nm)を測定する。得られた総データの平均値から1次粒子の平均直径(nm)及び平均厚み(nm)を求めた。なお、選択された粒子の直径が一様ではない場合には、粒子の外接円の直径を、各粒子の直径として採用する。また、厚み方向に細孔を有していることは透過型電子顕微鏡(TEM)像から確認した。
(触媒の反応評価:ジエン化合物の合成)
実施例1~3、及び比較例1~2で調製された触媒を用いて、エタノールを1,3-ブタジエンに変換する際の1,3-ブタジエン(BD)の収率を、反応開始1時間経過後と反応開始20時間経過後にそれぞれ測定した。
実施例1~3、及び比較例1~2で調製された触媒を用いて、エタノールを1,3-ブタジエンに変換する際の1,3-ブタジエン(BD)の収率を、反応開始1時間経過後と反応開始20時間経過後にそれぞれ測定した。
具体的には、触媒3.4gを直径1/2インチ(1.27cm)、長さ15.7インチ(40cm)のステンレス製円筒型の反応管に充填して反応床を形成した。次いで、反応温度(反応床の温度)を325℃とし、反応圧力(反応床の圧力)を0.1MPaとした。SV1200L/hr/触媒量(L-触媒)で原料ガスを反応管に供給し生成ガスを得た。原料ガスは、エタノール30体積%(気体換算)、窒素70体積%(気体換算)の混合ガスとした。
回収した生成ガスをガスクロマトグラフィーにより分析し、BDの収率([転化率]×[BDの選択率])を求めた。なお、「BDの選択率」とは、触媒を用いた反応で消費された原料のモル数のうち、ブタジエンへ変換された原料のモル数が占める百分率である。また、「転化率(原料転化率)」とは、原料ガスに含まれる原料のモル数うち、消費されたモル数が占める百分率である。
回収した生成ガスをガスクロマトグラフィーにより分析し、BDの収率([転化率]×[BDの選択率])を求めた。なお、「BDの選択率」とは、触媒を用いた反応で消費された原料のモル数のうち、ブタジエンへ変換された原料のモル数が占める百分率である。また、「転化率(原料転化率)」とは、原料ガスに含まれる原料のモル数うち、消費されたモル数が占める百分率である。
触媒の評価は、ブタジエンの収率により行った。収率が高いほど、触媒活性が良好であることを示す。また、反応開始20時間経過後の収率から反応開始1時間経過後の収率を引いた差を収率変化量(%)とした。この値が0に近いほど、経過時間に対する収率低下が抑えられていることを意味し、触媒寿命が長いことを示す。
実施例1
界面活性剤としてP123([(HO(CH2CH2O)20(CH2CH(CH3)O)70(CH2CH2O)20)H]、BASF社製)2gをビーカー内に仕込み、これに65mLの水と2N塩酸を35mL添加し、常温常圧条件下で100rpmの速度で撹拌して前記界面活性剤を溶解させた。界面活性剤を溶解させた水溶液を常温常圧条件下で100rpmの速度で撹拌しながら、塩化ハフニウム(HfCl4)と塩化ジルコニウム(ZrCl4)を10mg/分の速度で、それぞれ64mg、225mg、この順で加えた。塩化ハフニウム及び塩化ジルコニウムが全て溶解したことを目視にて確認してから、常温常圧条件下で100rpmの速度で撹拌して、テトラエトキシシランを0.1g/分の添加速度で4.2g加え原料溶液を調製した。原料溶液における塩化ハフニウムの濃度は0.64g/L、塩化ジルコニウムの濃度は2.25g/L、テトラエトキシシラン濃度は4.8g/L、塩酸濃度は0.7mol/Lであった。次いで、原料溶液を、40℃で20時間静置することで、懸濁液を得た。
前記懸濁液を100℃で20時間静置した後、濾過し、エタノールと水で洗浄した後、粉末をシャーレに移し、110℃の温度に保たれたオーブン中で4時間乾燥させることで固形コロイドを得た。
得られた固形コロイドを、電気炉を用いて空気雰囲気下で5℃/分の昇温速度で550℃まで昇温し、550℃で5時間、焼成することで、Hf、Zr、及びSiを含む複合酸化物である触媒を製造した。
得られた触媒は、複合酸化物を形成しており、鱗片状であった。
当該触媒について、上述した反応評価を行い、反応開始1時間経過後、及び反応開始20時間経過後のBDの収率をそれぞれ求めた。結果を第1表に示す。
界面活性剤としてP123([(HO(CH2CH2O)20(CH2CH(CH3)O)70(CH2CH2O)20)H]、BASF社製)2gをビーカー内に仕込み、これに65mLの水と2N塩酸を35mL添加し、常温常圧条件下で100rpmの速度で撹拌して前記界面活性剤を溶解させた。界面活性剤を溶解させた水溶液を常温常圧条件下で100rpmの速度で撹拌しながら、塩化ハフニウム(HfCl4)と塩化ジルコニウム(ZrCl4)を10mg/分の速度で、それぞれ64mg、225mg、この順で加えた。塩化ハフニウム及び塩化ジルコニウムが全て溶解したことを目視にて確認してから、常温常圧条件下で100rpmの速度で撹拌して、テトラエトキシシランを0.1g/分の添加速度で4.2g加え原料溶液を調製した。原料溶液における塩化ハフニウムの濃度は0.64g/L、塩化ジルコニウムの濃度は2.25g/L、テトラエトキシシラン濃度は4.8g/L、塩酸濃度は0.7mol/Lであった。次いで、原料溶液を、40℃で20時間静置することで、懸濁液を得た。
前記懸濁液を100℃で20時間静置した後、濾過し、エタノールと水で洗浄した後、粉末をシャーレに移し、110℃の温度に保たれたオーブン中で4時間乾燥させることで固形コロイドを得た。
得られた固形コロイドを、電気炉を用いて空気雰囲気下で5℃/分の昇温速度で550℃まで昇温し、550℃で5時間、焼成することで、Hf、Zr、及びSiを含む複合酸化物である触媒を製造した。
得られた触媒は、複合酸化物を形成しており、鱗片状であった。
当該触媒について、上述した反応評価を行い、反応開始1時間経過後、及び反応開始20時間経過後のBDの収率をそれぞれ求めた。結果を第1表に示す。
実施例2
実施例1で使用した塩化ジルコニウム(ZrCl4)を117mgに変更したこと以外は、実施例1と同様の方法で、触媒を製造し、触媒の評価を行った。結果を第1表に示す。なお、触媒は、複合酸化物を形成しており、鱗片状であった。
実施例1で使用した塩化ジルコニウム(ZrCl4)を117mgに変更したこと以外は、実施例1と同様の方法で、触媒を製造し、触媒の評価を行った。結果を第1表に示す。なお、触媒は、複合酸化物を形成しており、鱗片状であった。
実施例3
実施例1で使用した塩化ジルコニウム(ZrCl4)を78mgに変更したこと以外は、実施例1と同様の方法で、触媒を製造し、触媒の評価を行った。結果を第1表に示す。なお、触媒は、複合酸化物を形成しており、鱗片状であった。
実施例1で使用した塩化ジルコニウム(ZrCl4)を78mgに変更したこと以外は、実施例1と同様の方法で、触媒を製造し、触媒の評価を行った。結果を第1表に示す。なお、触媒は、複合酸化物を形成しており、鱗片状であった。
比較例1
実施例1において、塩化ジルコニウム(ZrCl4)を用いなかったこと以外は、実施例1と同様にして、Hf、及びSiを含む複合酸化物である触媒を製造し、触媒の評価を行った。結果を第1表に示す。なお、当該触媒は複合酸化物を形成しているが、図2(a)及び(b)に示すように、その形状はチューブ状であった。また、図2(C)のTEM写真から明らかなように、細孔はチューブの長さ方向にできており、本発明の触媒とは、細孔の方向が全く異なっていることがわかる。
実施例1において、塩化ジルコニウム(ZrCl4)を用いなかったこと以外は、実施例1と同様にして、Hf、及びSiを含む複合酸化物である触媒を製造し、触媒の評価を行った。結果を第1表に示す。なお、当該触媒は複合酸化物を形成しているが、図2(a)及び(b)に示すように、その形状はチューブ状であった。また、図2(C)のTEM写真から明らかなように、細孔はチューブの長さ方向にできており、本発明の触媒とは、細孔の方向が全く異なっていることがわかる。
比較例2
実施例1で使用した塩化ジルコニウム(ZrCl4)を466mgに変更した以外は、実施例1と同様の方法で、触媒を製造した。該触媒は結晶とはならず、不定形であった。触媒の評価結果を第1表に示す。
実施例1で使用した塩化ジルコニウム(ZrCl4)を466mgに変更した以外は、実施例1と同様の方法で、触媒を製造した。該触媒は結晶とはならず、不定形であった。触媒の評価結果を第1表に示す。
以上の結果より、鱗片状である実施例1~3の触媒は、収率変化量が極めて小さく、触媒寿命が長いことがわかる。これは、本発明の触媒が鱗片状であることに起因して、その厚み方向にある主に反応場と考えられる細孔の細孔長が制御できるためと考えられる。細孔長が適切であることから、エタノール等の原料が細孔内で反応して、ブタジエン等が生成し、その後速やかに細孔から離脱することができるため、重合体までの過反応が抑制され、触媒劣化の主原因であるコーキングが抑制されるためと考えられる。
一方、比較例1及び2の触媒は、図2に示されるように、鱗片状ではなく、チューブ形状を示した。これらの触媒は、収率変化量が大きく、本発明の触媒に比較して反応時間経過による触媒の劣化が著しいことがわかった。
一方、比較例1及び2の触媒は、図2に示されるように、鱗片状ではなく、チューブ形状を示した。これらの触媒は、収率変化量が大きく、本発明の触媒に比較して反応時間経過による触媒の劣化が著しいことがわかった。
1 反応管
2 反応床
3 供給管
4 排出管
5 温度制御部
6 圧力制御部
10 ブタジエンの製造装置
20 原料ガス
30 生成ガス
2 反応床
3 供給管
4 排出管
5 温度制御部
6 圧力制御部
10 ブタジエンの製造装置
20 原料ガス
30 生成ガス
Claims (15)
- 周期表第3~6族からなる群から選択される少なくとも1種の元素Xと、第14族元素からなる群から選択される少なくとも1種の元素Zと、を含む鱗片状の粒子を含む触媒であって、該鱗片状粒子の厚み方向に細孔を有する触媒。
- 前記鱗片状粒子の平均厚みが50~600nmである請求項1に記載の触媒。
- 前記鱗片状粒子が複合酸化物である請求項1又は2に記載の触媒。
- 前記元素Xが周期表第4族の金属からなる群から選択される少なくとも1種である請求項1~3のいずれか1項に記載の触媒。
- 前記元素XがHf及びZrから選択される少なくとも1種である請求項1~4のいずれか1項に記載の触媒。
- 前記元素ZがSiである請求項1~5のいずれか1項に記載の触媒。
- 前記鱗片状粒子の平均アスペクト比が2.5以上である請求項1~6のいずれか1項に記載の触媒。
- アルコールを含む原料ガスからジエン化合物を合成するジエン化合物合成用触媒である、請求項1~7のいずれか1項に記載の触媒。
- 前記アルコールがエタノールであり、かつ前記ジエン化合物が共役ジエン化合物である、請求項8に記載の触媒。
- 前記鱗片状粒子を1次粒子とする2次粒子を形成している請求項1~9のいずれか1項に記載の触媒。
- 前記細孔の平均細孔長が50~600nmである請求項1~10のいずれか1項に記載の触媒。
- 請求項1~11のいずれか1項に記載の触媒を用いて、アルコールを含む原料ガスからジエン化合物を製造するジエン化合物の製造方法。
- 前記アルコールがエタノールであり、かつ前記ジエン化合物が共役ジエン化合物である、請求項12に記載のジエン化合物の製造方法。
- 前記共役ジエン化合物が、1,3-ブタジエンである請求項13に記載の製造方法。
- 請求項14に記載の1,3-ブタジエンを原料ガスとして、スチレン-ブタジエンゴム(SBR)又はブタジエンゴム(BR)を製造する方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21776319.2A EP4129467A4 (en) | 2020-03-23 | 2021-03-08 | CATALYST AND METHOD FOR PRODUCING A DIENE COMPOUND |
US17/912,574 US20230158475A1 (en) | 2020-03-23 | 2021-03-08 | Catalyst and method for producing diene compound |
CN202180022799.2A CN115297961A (zh) | 2020-03-23 | 2021-03-08 | 催化剂及二烯化合物的制造方法 |
JP2022509504A JPWO2021192960A1 (ja) | 2020-03-23 | 2021-03-08 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-051785 | 2020-03-23 | ||
JP2020051785 | 2020-03-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021192960A1 true WO2021192960A1 (ja) | 2021-09-30 |
Family
ID=77890091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/008994 WO2021192960A1 (ja) | 2020-03-23 | 2021-03-08 | 触媒及びジエン化合物の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230158475A1 (ja) |
EP (1) | EP4129467A4 (ja) |
JP (1) | JPWO2021192960A1 (ja) |
CN (1) | CN115297961A (ja) |
WO (1) | WO2021192960A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114072228A (zh) * | 2019-06-25 | 2022-02-18 | 积水化学工业株式会社 | 催化剂、以及二烯化合物的制造方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009249268A (ja) * | 2008-04-10 | 2009-10-29 | Toyota Central R&D Labs Inc | 金属酸化物内包メソポーラスシリカカプセル |
JP2014501219A (ja) * | 2010-12-22 | 2014-01-20 | イエフペ エネルジ ヌヴェル | 金属ナノ粒子をメソ構造化酸化物マトリクス中に捕捉されて含む球状材料、および精製方法における触媒としてのその使用 |
JP2017186274A (ja) * | 2016-04-06 | 2017-10-12 | 昭和電工株式会社 | ジエン化合物の製造方法 |
JP2018202390A (ja) * | 2017-05-31 | 2018-12-27 | 古河電気工業株式会社 | オレフィンから生成される共役ジエン製造用触媒構造体、該触媒構造体を有する共役ジエン製造装置及び共役ジエン製造用触媒構造体の製造方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4442057B2 (ja) * | 2000-06-21 | 2010-03-31 | 住友化学株式会社 | 遷移金属化合物、付加重合用触媒および付加重合体の製造方法 |
KR20040110721A (ko) * | 2003-06-20 | 2004-12-31 | 주식회사 두배시스템 | 자동차 연료용 활성 촉매 및 이의 제조방법 |
CN1587044A (zh) * | 2004-09-16 | 2005-03-02 | 华东师范大学 | 一种制备硅锆介孔材料的方法 |
JP4831663B2 (ja) * | 2004-10-27 | 2011-12-07 | 独立行政法人産業技術総合研究所 | 薄板状多孔質シリカ金属複合体粒子とその製造方法 |
US7064171B1 (en) * | 2005-09-22 | 2006-06-20 | The Goodyear Tire & Rubber Company | Non-random styrene-butadiene rubber |
JP4639247B2 (ja) * | 2008-07-23 | 2011-02-23 | 石油資源開発株式会社 | 炭化水素リフォーミング用触媒およびその製造方法ならびにこれを用いた合成ガスの製法 |
FR3038851B1 (fr) * | 2015-07-13 | 2019-11-08 | IFP Energies Nouvelles | Catalyseur a base de tantale depose sur silice pour la transformation de l'ethanol en butadiene |
JP6803289B2 (ja) * | 2017-03-31 | 2020-12-23 | 日揮グローバル株式会社 | エタノールからの1,3−ブタジエン製造触媒およびプロセス |
US11465128B2 (en) * | 2018-01-12 | 2022-10-11 | Sekisui Chemical Co., Ltd. | Catalyst, method for producing same, and method for producing diene compound using said catalyst |
-
2021
- 2021-03-08 CN CN202180022799.2A patent/CN115297961A/zh active Pending
- 2021-03-08 US US17/912,574 patent/US20230158475A1/en active Pending
- 2021-03-08 JP JP2022509504A patent/JPWO2021192960A1/ja not_active Withdrawn
- 2021-03-08 WO PCT/JP2021/008994 patent/WO2021192960A1/ja unknown
- 2021-03-08 EP EP21776319.2A patent/EP4129467A4/en not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009249268A (ja) * | 2008-04-10 | 2009-10-29 | Toyota Central R&D Labs Inc | 金属酸化物内包メソポーラスシリカカプセル |
JP2014501219A (ja) * | 2010-12-22 | 2014-01-20 | イエフペ エネルジ ヌヴェル | 金属ナノ粒子をメソ構造化酸化物マトリクス中に捕捉されて含む球状材料、および精製方法における触媒としてのその使用 |
JP2017186274A (ja) * | 2016-04-06 | 2017-10-12 | 昭和電工株式会社 | ジエン化合物の製造方法 |
JP2018202390A (ja) * | 2017-05-31 | 2018-12-27 | 古河電気工業株式会社 | オレフィンから生成される共役ジエン製造用触媒構造体、該触媒構造体を有する共役ジエン製造装置及び共役ジエン製造用触媒構造体の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4129467A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP4129467A4 (en) | 2024-04-17 |
EP4129467A1 (en) | 2023-02-08 |
JPWO2021192960A1 (ja) | 2021-09-30 |
US20230158475A1 (en) | 2023-05-25 |
CN115297961A (zh) | 2022-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7305558B2 (ja) | 触媒及びその製造方法、並びに前記触媒を用いたジエン化合物の製造方法 | |
JP5250535B2 (ja) | 薄型多層カーボンナノチューブ製造用触媒組成物 | |
US10399855B2 (en) | Carbon nanotubes having larger diameter and lower bulk density and process for preparing same | |
JP5837620B2 (ja) | 触媒 | |
JP2011516378A (ja) | ナノ結晶モリブデン混合酸化物の製造方法 | |
JP7174947B2 (ja) | 固体触媒およびブタジエンの製造方法 | |
WO2021192960A1 (ja) | 触媒及びジエン化合物の製造方法 | |
CN113559875A (zh) | 加氢催化剂及其制备方法和应用 | |
US10569255B2 (en) | Hydrocarbon synthesis catalyst, its preparation process and its use | |
JP7197507B2 (ja) | 触媒及びその製造方法並びに前記触媒を用いたジエン化合物の製造方法 | |
JP6656074B2 (ja) | アリル型不飽和アルコールの脱水による共役ジエン化合物の製造方法 | |
US20180339905A1 (en) | Multi-metal catalyst composition for production of morphology controlled cnts and process thereof | |
JP7602460B2 (ja) | 触媒及びジエン化合物の製造方法 | |
CN113562751A (zh) | 改性拟薄水铝石及其制备方法和改性氧化铝及加氢催化剂 | |
CN1112968C (zh) | 具有两相结构的多金属氧化物复合物 | |
WO2019142865A1 (ja) | 触媒、及び前記触媒を用いたジエン化合物の製造方法 | |
EP4082661A1 (en) | Dlm-1 molecular sieve, manufacturing method therefor, and use thereof | |
CN113559889A (zh) | 改性含磷拟薄水铝石及其制备方法和改性含磷氧化铝及加氢催化剂 | |
WO2022196717A1 (ja) | 触媒、触媒の製造方法、ジエン化合物の製造方法、ポリマーの製造方法、ポリマー成形品の製造方法、触媒性能測定方法および長寿命化方法 | |
Farag et al. | Textural characterizations and catalytic properties of quasispherical nanosized molybdenum disulfide | |
CN110038624B (zh) | 加氢裂化催化剂的制法 | |
CN113559892A (zh) | 复合载体及其制备方法和含有复合载体的加氢催化剂及其应用 | |
JP2018095604A (ja) | 共役ジエン化合物の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21776319 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022509504 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021776319 Country of ref document: EP Effective date: 20221024 |