WO2021006312A1 - 庫内空気調節装置 - Google Patents
庫内空気調節装置 Download PDFInfo
- Publication number
- WO2021006312A1 WO2021006312A1 PCT/JP2020/026842 JP2020026842W WO2021006312A1 WO 2021006312 A1 WO2021006312 A1 WO 2021006312A1 JP 2020026842 W JP2020026842 W JP 2020026842W WO 2021006312 A1 WO2021006312 A1 WO 2021006312A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oxygen concentration
- air
- storage
- internal air
- refrigerator
- Prior art date
Links
- 238000004378 air conditioning Methods 0.000 title claims abstract description 11
- 239000001301 oxygen Substances 0.000 claims abstract description 286
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 286
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 283
- 238000011084 recovery Methods 0.000 claims description 157
- 235000013305 food Nutrition 0.000 claims description 45
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 21
- 239000005977 Ethylene Substances 0.000 claims description 21
- 235000019589 hardness Nutrition 0.000 claims 1
- 238000000034 method Methods 0.000 description 55
- 230000007423 decrease Effects 0.000 description 21
- 238000009423 ventilation Methods 0.000 description 17
- 238000012986 modification Methods 0.000 description 14
- 230000004048 modification Effects 0.000 description 13
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- 239000003507 refrigerant Substances 0.000 description 10
- 238000005057 refrigeration Methods 0.000 description 9
- 241000282414 Homo sapiens Species 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 239000001569 carbon dioxide Substances 0.000 description 5
- 235000012055 fruits and vegetables Nutrition 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 241000282412 Homo Species 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 238000004320 controlled atmosphere Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 235000013399 edible fruits Nutrition 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 238000010977 unit operation Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23B—PRESERVATION OF FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES; CHEMICAL RIPENING OF FRUIT OR VEGETABLES
- A23B7/00—Preservation of fruit or vegetables; Chemical ripening of fruit or vegetables
- A23B7/14—Preserving or ripening with chemicals not covered by group A23B7/08 or A23B7/10
- A23B7/144—Preserving or ripening with chemicals not covered by group A23B7/08 or A23B7/10 in the form of gases, e.g. fumigation; Compositions or apparatus therefor
- A23B7/148—Preserving or ripening with chemicals not covered by group A23B7/08 or A23B7/10 in the form of gases, e.g. fumigation; Compositions or apparatus therefor in a controlled atmosphere, e.g. partial vacuum, comprising only CO2, N2, O2 or H2O
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D88/00—Large containers
- B65D88/74—Large containers having means for heating, cooling, aerating or other conditioning of contents
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F8/00—Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
- F24F8/60—Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by adding oxygen
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23B—PRESERVATION OF FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES; CHEMICAL RIPENING OF FRUIT OR VEGETABLES
- A23B7/00—Preservation of fruit or vegetables; Chemical ripening of fruit or vegetables
- A23B7/14—Preserving or ripening with chemicals not covered by group A23B7/08 or A23B7/10
- A23B7/144—Preserving or ripening with chemicals not covered by group A23B7/08 or A23B7/10 in the form of gases, e.g. fumigation; Compositions or apparatus therefor
- A23B7/152—Preserving or ripening with chemicals not covered by group A23B7/08 or A23B7/10 in the form of gases, e.g. fumigation; Compositions or apparatus therefor in a controlled atmosphere comprising other gases in addition to CO2, N2, O2 or H2O ; Elimination of such other gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/30—Controlling by gas-analysis apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D2588/00—Large container
- B65D2588/74—Large container having means for heating, cooling, aerating or other conditioning of contents
- B65D2588/743—Large container having means for heating, cooling, aerating or other conditioning of contents blowing or injecting heating, cooling or other conditioning fluid inside the container
- B65D2588/746—Large container having means for heating, cooling, aerating or other conditioning of contents blowing or injecting heating, cooling or other conditioning fluid inside the container with additional treatment function
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D88/00—Large containers
- B65D88/74—Large containers having means for heating, cooling, aerating or other conditioning of contents
- B65D88/745—Large containers having means for heating, cooling, aerating or other conditioning of contents blowing or injecting heating, cooling or other conditioning fluid inside the container
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D11/00—Self-contained movable devices, e.g. domestic refrigerators
- F25D11/003—Transport containers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D17/00—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
- F25D17/04—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
- F25D17/042—Air treating means within refrigerated spaces
Definitions
- This disclosure relates to an air conditioner inside the refrigerator.
- the freshness of perishables stored in the storage has been maintained by controlling the environment inside the storage (specifically, the temperature of the air inside the storage, the composition of the air inside the storage, etc.).
- the refrigerating apparatus disclosed in Patent Document 1 targets a container used for marine transportation and the like, and controls the temperature and composition (specifically, oxygen concentration and carbon dioxide concentration) of the air inside the container. To do.
- the oxygen concentration of the air inside the refrigerator is often lower than the oxygen concentration of the atmosphere. In such a case, it is necessary to raise the oxygen concentration of the air inside the refrigerator to a value close to the oxygen concentration of the atmosphere before performing the work of removing the stored matter from the storage. This is because if the oxygen concentration in the air inside the refrigerator remains significantly lower than that in the atmosphere, workers cannot enter the storage.
- a sudden change in the oxygen concentration of the air inside the refrigerator may adversely affect the freshness of the stored items.
- the stored food is fruits and vegetables
- the oxygen concentration in the air inside the refrigerator rises sharply, the amount of metabolism of the fruits and vegetables may sharply increase and the freshness may drop sharply.
- the purpose of the present disclosure is to suppress a decrease in the freshness of the stored material in the process of raising the oxygen concentration of the air inside the refrigerator to a value close to the oxygen concentration of the atmosphere.
- the first aspect of the present disclosure is to supply low oxygen concentration air having a lower oxygen concentration than the outside air of the storage (1) to the storage (1), and to supply the inside air of the storage (1).
- the target is the air conditioner (40) in the refrigerator that keeps the oxygen concentration within the target oxygen concentration range lower than the standard concentration. Then, the oxygen concentration recovery operation for increasing the oxygen concentration of the air inside the storage (1) from the target oxygen concentration range to the reference concentration is performed, and in the oxygen concentration recovery operation, the storage is performed.
- a controller that adjusts at least one of the flow rate and oxygen concentration of the low oxygen concentration air supplied into the refrigerator (1), or the flow rate of the outside air supplied into the refrigerator (1). It is characterized by having (50).
- the air conditioner (40) in the refrigerator performs an oxygen concentration recovery operation.
- the internal air regulator (40) performs a predetermined operation in order to raise the oxygen concentration of the internal air kept in the target oxygen concentration range lower than the reference concentration to the standard concentration. I do.
- the controller (50) of the air conditioner (40) in the refrigerator “at least one of the flow rate and the oxygen concentration of the low oxygen concentration air supplied into the refrigerator (1)” or “ Adjust the flow rate of the outside air supplied to the inside of the storage (1). Therefore, according to this aspect, the rate of increase in the oxygen concentration of the internal air during the oxygen concentration recovery operation of the internal air conditioner (40) can be controlled, and the freshness of the stored product during the oxygen concentration recovery operation can be controlled. The decrease can be suppressed.
- the controller (50) has at least one of the flow rate and the oxygen concentration of the low oxygen concentration air supplied into the storage (1).
- the flow rate of the outside air supplied to the inside of the storage (1) is adjusted so that the rate of increase of the oxygen concentration of the inside air becomes equal to or less than a predetermined upper limit speed. ..
- the controller (50) of the second aspect performs a predetermined operation so that the rate of increase of the oxygen concentration in the refrigerator air becomes equal to or less than a predetermined upper limit speed. As a result, a rapid change in the metabolic amount of the stored product can be suppressed, and a decrease in the freshness of the stored product can be suppressed.
- a third aspect of the present disclosure is that in the first or second aspect, the storage (1) is a shipping container, and a position detector (60) that detects the position of the storage (1).
- the controller (50) starts the oxygen concentration recovery operation by using the position of the storage (1) detected by the position detector (60) during transportation of the storage (1). It is characterized by judging.
- the controller (50) determines the start of the oxygen concentration recovery operation by using the position of the storage (1) detected by the position detector (60). Based on the position of the storage (1) detected by the position detector (60), the controller (50) can determine, for example, that the storage (1), which is a shipping container, has arrived at the destination. Therefore, when the storage (1) arrives at the destination and there is a high possibility that a human will enter the storage (1) in the near future, the oxygen concentration recovery operation can be started. Therefore, according to this aspect, the oxygen concentration recovery operation of the internal air conditioner (40) can be started at an appropriate timing.
- the storage (1) is a container for transportation
- the controller (50) is the air conditioner (40) in the storage.
- the condition regarding the time from the stop of the power supply to the refrigerator to the restart of the power supply to the air conditioner (40) in the refrigerator shall be at least one of the conditions for starting the oxygen concentration recovery operation. It is a feature.
- the storage (1) which is a transportation container, from a ship to land
- the storage (1) is moved with the power supply to the air conditioner (40) in the storage stopped. This is done, and after the storage (1) is placed in place, the power supply to the internal air conditioner (40) is resumed. Therefore, if the time elapsed from the time when the power supply to the internal air conditioner (40) is stopped to the time when the electric power supply to the internal air conditioner (40) is restarted is monitored, it will be possible in the near future. It is possible to estimate whether or not a human will enter the storage (1) to perform work.
- the controller (50) of the fourth aspect relates to the time from when the power supply to the internal air conditioner (40) is stopped to when the electric power supply to the internal air conditioner (40) is restarted.
- the condition shall be at least one of the conditions for starting the oxygen concentration recovery operation. Therefore, according to the present embodiment, the oxygen concentration recovery operation can be started when there is a high possibility that a human will enter the storage (1) in the near future. Therefore, according to this aspect, the oxygen concentration recovery operation of the internal air conditioner (40) can be started at an appropriate timing.
- a fifth aspect of the present disclosure is a state detector that detects a state index indicating the state of the perishables (7) stored in the storage (1) in any one of the first to fourth aspects. (15) is provided, and the controller (50) adjusts the rate of increase in the oxygen concentration of the internal air in the oxygen concentration recovery operation based on the state index detected by the state detector (15). It is characterized by that.
- the controller (50) indicates the rate of increase in the oxygen concentration of the internal air in the oxygen concentration recovery operation as a state index indicating the state of the fresh food (7) stored in the storage (1). Adjust based on. Therefore, according to this aspect, it is possible to suppress a decrease in freshness of the fresh food (7) due to an increase in the oxygen concentration of the internal air during the oxygen concentration recovery operation of the internal air adjusting device (40).
- the state detector (15) uses the ethylene concentration of the internal air and the fresh food as a state index indicating the state of the fresh food (7). It is characterized by detecting at least one of the sugar content of (7), the acidity of the fresh food (7), and the hardness of the fresh food (7).
- the state detector detects at least one of the ethylene concentration of the air inside the refrigerator, the sugar content of the fresh food, the acidity of the fresh food, and the hardness of the fresh food as a state index. ..
- a seventh aspect of the present disclosure is characterized in that, in the first aspect, the oxygen concentration recovery operation is performed before the door of the storage (1) is opened.
- the internal air conditioner (40) performs the oxygen concentration recovery operation before the door of the storage (1) is opened.
- FIG. 1 is a schematic cross-sectional view of a transportation container provided with the internal air conditioning device of the first embodiment.
- FIG. 2 is a piping system diagram of a refrigerant circuit included in the container refrigeration device of the first embodiment.
- FIG. 3 is a block diagram showing a configuration of a controller included in the internal air adjusting device of the first embodiment.
- FIG. 4 is a flow chart showing oxygen concentration recovery control performed by the controller of the first embodiment.
- FIG. 5 is a schematic cross-sectional view of a transportation container provided with the internal air conditioning device of the second embodiment.
- FIG. 6 is a flow chart showing oxygen concentration recovery control performed by the controller of the second embodiment.
- FIG. 7 is a flow chart showing oxygen concentration recovery control performed by the controller of the third embodiment.
- Embodiment 1 The first embodiment will be described.
- the internal air conditioning device (40) of the present embodiment is incorporated in the container refrigerating device (20).
- This internal air control device (40) is provided in the transportation container (1) for so-called CA (Controlled Atmosphere) transportation together with the container refrigeration device (20).
- CA Controlled Atmosphere
- the transportation container (1) provided with the in-compartment air control device (40) of the present embodiment is used for transporting the fresh food (7).
- This shipping container (1) constitutes a storage.
- Perishables (7) to be transported in the shipping container (1) are mainly fruits and vegetables such as fruits and vegetables.
- the transportation container (1) of the present embodiment is a container for shipping by ship.
- the container body (2) of the shipping container (1) is formed in the shape of an elongated rectangular parallelepiped box. One end face of the container body (2) is open, and a container refrigerating device (20) is attached so as to close the open end.
- the internal space of the container body (2) constitutes a luggage compartment (5) for storing the cargo (6).
- the freight (6) is a box of perishables (7).
- a floor board (3) for loading the cargo (6) is placed at the bottom of the luggage compartment (5).
- An underfloor flow path (4) for flowing the air blown out by the container refrigerating device (20) is formed between the floor plate (3) and the bottom plate of the container body (2).
- the underfloor flow path (4) is a flow path extending in the longitudinal direction of the container body (2) along the bottom plate of the container body (2).
- One end of the underfloor flow path (4) is connected to the outlet (34) of the container refrigeration device (20), and the other end is the space above the floor plate (3) (that is, the space where the cargo (6) is accommodated. ).
- the container refrigerating apparatus (20) includes a casing (30), a refrigerant circuit (21) for performing a refrigerating cycle, an outside fan (26), and an inside fan (27). ..
- the casing (30) includes a casing body (31) and a back plate (32).
- the casing (30) is provided with a refrigerant circuit (21), an outside fan (26), and an inside fan (27).
- the lower part of the casing body (31) is recessed toward the luggage compartment (5) side of the shipping container (1).
- the lower part of the casing body (31) forms an external equipment room (35) that communicates with the external space of the transportation container (1).
- An outside fan (26) is arranged in this outside equipment room (35).
- the back plate (32) is a roughly rectangular flat plate-shaped member.
- the back plate (32) is arranged closer to the luggage compartment (5) of the transportation container (1) than the casing body (31), and forms an internal air flow path (36) with the casing body (31). To do.
- the upper end of the air flow path (36) in the refrigerator constitutes the suction port (33) of the casing (30), and the lower end thereof constitutes the outlet (34) of the casing (30).
- the air flow path (36) in the refrigerator communicates with the luggage compartment (5) via the suction port (33) and communicates with the underfloor flow path (4) via the air outlet (34).
- An internal fan (27) is arranged above the internal air flow path (36).
- the refrigerant circuit (21) is formed by connecting the compressor (22), the condenser (23), the expansion valve (24), and the evaporator (25) with a pipe. It is a closed circuit.
- the compressor (22) When the compressor (22) is operated, the refrigerant circulates in the refrigerant circuit (21), and a steam compression refrigeration cycle is performed.
- the condenser (23) is arranged on the suction side of the outside fan (26) in the outside equipment room (35), and the evaporator (25) is the inside air flow path (36). It is placed below the internal fan (27) in. Further, although not shown in FIG. 1, the compressor (22) is arranged in the external equipment room (35).
- the container refrigeration device (20) is equipped with an internal temperature sensor (37) and an internal humidity sensor (38).
- the internal temperature sensor (37) and the internal humidity sensor (38) are arranged on the upstream side of the evaporator (25) in the internal air flow path (36).
- the internal temperature sensor (37) measures the temperature of the internal air sucked from the suction port (33) into the internal air flow path (36).
- the internal humidity sensor (38) measures the relative humidity of the internal air sucked from the suction port (33) into the internal air flow path (36).
- the container refrigerating device (20) operates to cool the air inside the luggage compartment (5).
- the refrigerant circuit (21) of the container refrigeration device (20) the refrigerant circulates and the refrigeration cycle is performed.
- the internal air sent to the internal air flow path (36) by the internal fan (27) is cooled by the refrigerant in the evaporator (25) and passes through the air outlet (34) and the underfloor flow path (4). It is supplied to the luggage compartment (5).
- the refrigerant dissipates heat to the outside air that has flowed into the outside equipment room (35) by the outside fan (26).
- the internal air conditioner (40) is a device that adjusts the composition of air in the shipping container (1).
- the internal air adjusting device (40) includes a main body unit (41), a ventilation exhaust pipe (45), a GPS receiver (60), and a controller (50).
- the main unit (41) is installed in the external equipment room (35) of the container refrigerating device (20).
- the main body unit (41) of the internal air conditioner (40) has two suction cylinders, a pressurizing pump that supplies pressurized air to the suction cylinders, and decompression that sucks air from the suction cylinders.
- the pump is housed.
- the internal air regulator (40) uses the external air (that is, the atmosphere) as a raw material to generate modified air having a composition different from that of the external air by the so-called PSA (Pressure Swing Adsorption) method.
- PSA Pressure Swing Adsorption
- This modified air has a higher nitrogen concentration than the outside air and a lower oxygen concentration than the outside air.
- the modified air is low oxygen concentration air.
- the main body unit (41) is provided with an outside air suction port (42) for taking in outside air into the main body unit (41). Further, the supply pipe (43) and the oxygen discharge pipe (44) are connected to the main body unit (41).
- the supply pipe (43) is a pipe for introducing the modified air generated in the main body unit (41) into the luggage compartment (5), and its end opens in the internal air flow path (36).
- the oxygen discharge pipe (44) is a pipe for discharging the high oxygen concentration air generated in the main body unit (41) to the outside of the refrigerator, and the end thereof opens to the outside equipment room (35).
- the ventilation exhaust pipe (45) is a pipe for discharging the air inside the container (1) for transportation to the outside. One end of the ventilation exhaust pipe (45) opens to the air flow path (36) inside the refrigerator, and the other end opens to the equipment room (35) outside the refrigerator.
- the ventilation exhaust pipe (45) is provided with a ventilation exhaust valve (46).
- the ventilation exhaust valve (46) is an on-off valve composed of a solenoid valve.
- the air conditioner (40) in the refrigerator includes an oxygen concentration sensor (47) and a carbon dioxide concentration sensor (48).
- the oxygen concentration sensor (47) and the carbon dioxide concentration sensor (48) are arranged on the upstream side of the evaporator (25) in the internal air flow path (36).
- the oxygen concentration sensor (47) measures the oxygen concentration of the internal air sucked from the suction port (33) into the internal air flow path (36).
- the carbon dioxide concentration sensor (48) measures the carbon dioxide concentration of the air inside the refrigerator sucked from the suction port (33) into the air flow path (36) inside the refrigerator.
- the air conditioner (40) in the refrigerator is equipped with a state index sensor (15).
- This state index sensor (15) is a state detector.
- the state index sensor (15) is a sensor that measures a state index, which is a physical quantity indicating the freshness of fresh food (7).
- the state index sensor (15) of the present embodiment measures the ethylene concentration in the refrigerator air as a state index.
- the internal air conditioner (40) includes a GPS receiver (60).
- the GPS receiver (60) is provided in the main unit (41).
- the GPS receiver (60) receives an output signal of a GPS (Global Positioning System) satellite, and calculates the position of the GPS receiver (60) based on the received output signal.
- the GPS receiver (60) is a position detector that detects the position of the shipping container (1).
- the controller (50) controls the operation of the air conditioner (40) in the refrigerator.
- the controller (50) includes an arithmetic processing unit (51) and a memory unit (54).
- the arithmetic processing unit (51) is, for example, a microprocessor composed of an integrated circuit.
- the arithmetic processing unit (51) functions as a normal control unit (52) and an oxygen concentration recovery control unit (53) by executing a predetermined program.
- the memory unit (54) is, for example, a semiconductor memory composed of an integrated circuit.
- the memory unit (54) stores a program for causing the control (50) to execute a predetermined operation and data necessary for the operation of the control (50).
- the internal air conditioner (40) is capable of performing normal operation and oxygen concentration recovery operation.
- the normal operation is an operation in which the oxygen concentration of the internal air is lowered to a predetermined target range (for example, a range of 5% ⁇ 1%) to keep the oxygen concentration of the internal air within the target range.
- a predetermined target range for example, a range of 5% ⁇ 1%) to keep the oxygen concentration of the internal air within the target range.
- the internal air conditioner (40) interrupts the supply of modified air (air having an oxygen concentration lower than that of the atmosphere generated in the main unit (41)) to the luggage compartment (5). Keep the oxygen concentration in the air within the target range.
- the oxygen concentration recovery operation is an operation that raises the oxygen concentration of the air inside the refrigerator from the target range to the reference concentration (for example, 21%, which is the same as the oxygen concentration of the atmosphere).
- the reference concentration is usually set to a value of 16% or more and 21% or less.
- the oxygen concentration recovery operation is performed to allow humans to enter the luggage compartment (5).
- the internal air conditioner (40) raises the oxygen concentration of the internal air to a reference concentration by supplying the external air (atmosphere) to the luggage compartment (5).
- the internal air conditioner (40) controls the rate of increase in the oxygen concentration of the internal air by adjusting the flow rate of the external air supplied to the luggage compartment (5).
- the normal control unit (52) controls the components of the internal air conditioner (40) during normal operation.
- the normal control unit (52) pulls down the oxygen concentration in the refrigerator air from 21% (atmospheric oxygen concentration) to the target range (for example, 5% ⁇ 1%). I do.
- the normal control unit (52) operates the main body unit (41) and opens the ventilation exhaust valve (46).
- the main unit (41) supplies the generated modified air to the luggage compartment (5).
- the air in the luggage compartment (5) is discharged to the outside of the transportation container (1) through the ventilation exhaust pipe (45).
- the air in the luggage compartment (5) is replaced with the modified air having a lower oxygen concentration than the atmosphere, and the oxygen concentration in the air inside the refrigerator is lowered.
- the normal control unit (52) stops the main unit (41) and the ventilation exhaust valve (46). ) Close.
- the normal control unit (52) performs a concentration maintenance operation for keeping the oxygen concentration of the air inside the refrigerator within the target range (for example, 5% ⁇ 1%).
- the oxygen concentration in the air inside the refrigerator gradually decreases while the main unit (41) is stopped. Therefore, when the measured value of the oxygen concentration sensor (47) reaches the lower limit of the target range (for example, 5% -1%) while the main body unit (41) is stopped, the normal control unit (52) usually performs the main body unit (for example, 5% -1%). 41) is activated and the ventilation exhaust valve (46) is opened. The main unit (41) supplies the modified air or the outside air (atmosphere) whose oxygen concentration is higher than the upper limit of the target range to the luggage compartment (5). As a result, the oxygen concentration in the air inside the refrigerator rises.
- the normal control unit (52) stops the main unit (41) and the ventilation exhaust valve (46). ) Close. In the concentration maintenance operation, the normal control unit (52) repeats these operations.
- the oxygen concentration recovery control unit (53) determines whether to start the oxygen concentration recovery operation in the internal air conditioner (40), and sets the constituent devices of the internal air conditioner (40) during the oxygen concentration recovery operation. Control.
- the operation performed by the oxygen concentration recovery control unit (53) will be described with reference to the flow chart of FIG.
- Step ST1> When the delivery of the perishables (7) into the luggage compartment (5) is completed and the normal control unit (52) starts the pull-down operation, the oxygen concentration recovery control unit (53) performs the process of step ST1.
- the oxygen concentration recovery control unit (53) reads the measured value of the state index sensor (15) (in this embodiment, the measured value of the ethylene concentration in the air inside the refrigerator).
- the oxygen concentration recovery control unit (53) stores the read measured value of the state index sensor (15) in the memory unit (54) as the initial ethylene concentration (Et_1).
- the oxygen concentration recovery control unit (53) performs the process of step ST2.
- the oxygen concentration recovery control unit (53) acquires the port entry location information.
- the port entry location information is information (for example, latitude and longitude) indicating the location of the port that is the destination of the shipping container (1).
- the oxygen concentration recovery control unit (53) acquires the port entry location information input by the operator on the operation panel or the like of the container refrigeration device (20), and stores the acquired port entry location information in the memory unit (54).
- the oxygen concentration recovery control unit (53) performs the process of step ST3.
- the oxygen concentration recovery control unit (53) compares the position information acquired from the GPS receiver (60) with the port entry location information acquired in step ST2.
- the position information acquired from the GPS receiver (60) is information (for example, latitude and longitude) indicating the current position of the shipping container (1).
- the oxygen concentration recovery control unit (53) continues to compare the location information acquired from the GPS receiver (60) with the port entry location information. .. On the other hand, if the location information acquired from the GPS receiver (60) substantially matches the port entry location information, it can be determined that the transportation container (1) has arrived at the destination. Therefore, in this case, the oxygen concentration recovery control unit (53) performs the process of the next step ST4.
- Step ST4> the transportation container (1) is connected to a power source, and electric power is supplied to the container refrigerating device (20) and the internal air conditioning device (40).
- the shipping container (1) is temporarily disconnected from the power source. In this state, the supply of electric power to the container refrigerating device (20) and the internal air regulating device (40) is stopped.
- the shipping container (1) is unloaded from the ship by a crane in a state of being disconnected from the power source, and then transported to the container depot at the port. At the container depot, the shipping container (1) is reconnected to the power source, and the container refrigerating device (20) and the internal air conditioning device (40) are re-powered.
- the oxygen concentration recovery control unit (53) of the present embodiment sets the condition regarding the elapsed time from when the power supply to the internal air adjusting device (40) is stopped to when it is restarted, to the internal air adjusting device (40). It is one of the conditions for starting the oxygen concentration recovery operation in 40).
- the oxygen concentration recovery control unit (53) states that "the elapsed time from when the power supply to the internal air conditioner (40) is stopped to when it is restarted is N minutes (for example, 30 minutes). Judge the success or failure of the condition "that is all.” If this condition is not met, the oxygen concentration recovery control unit (53) continues to monitor the elapsed time from when the power supply to the internal air conditioner (40) is stopped to when it is restarted. On the other hand, when this condition is satisfied, the oxygen concentration recovery control unit (53) performs the process of the next step ST5.
- Step ST5 In the process of step ST5, the oxygen concentration recovery control unit (53) reads the measured value of the state index sensor (15) (in this embodiment, the measured value of the ethylene concentration in the air inside the refrigerator). The oxygen concentration recovery control unit (53) stores the read measured value of the state index sensor (15) in the memory unit (54) as the current ethylene concentration (Et_2).
- Step ST6 the oxygen concentration recovery control unit (53) performs the process of step ST6.
- the oxygen concentration recovery control unit (53) compares the value (Et_2 / Et_1) obtained by dividing the current ethylene concentration (Et_2) by the initial ethylene concentration (Et_1) with the predetermined upper reference value (Rv_2). To do.
- Fresh food (7) releases ethylene as its freshness decreases. Therefore, it can be estimated that the greater the increase in the ethylene concentration in the air inside the refrigerator, the lower the freshness of the fresh food (7). That is, it can be estimated that the larger Et_2 / Et_1, the greater the degree of decrease in freshness.
- the oxygen concentration recovery control unit (53) performs the process of step ST7.
- Et_2 / Et_1 is less than the upper reference value (Rv_2) (Et_2 / Et_1 ⁇ Rv_2)
- the oxygen concentration recovery control unit (53) performs the process of step ST8.
- the oxygen concentration recovery control unit (53) causes the internal air conditioner (40) to execute the oxygen concentration recovery operation. Specifically, the oxygen concentration recovery control unit (53) operates a pump provided in the main body unit (41) of the internal air adjusting device (40) to supply the external air to the luggage compartment (5). , Open the ventilation exhaust valve (46) and exhaust the air inside the refrigerator to the outside of the transportation container (1). As a result, the air inside the luggage compartment (5) is gradually replaced with the outside air (atmosphere), and the oxygen concentration of the inside air rises.
- the oxygen concentration recovery control unit (53) continues to supply outside air to the luggage compartment (5) until the measured value of the oxygen concentration sensor (47) reaches a predetermined reference concentration.
- the reference concentration is an oxygen concentration set so as not to adversely affect human beings, and is set to a value of 16% or more.
- the reference concentration is preferably set in the range of 18% or more and 21% or less.
- the oxygen concentration recovery control unit (53) sends the flow rate of the outside air supplied to the luggage compartment (5) so that the rate of increase in the oxygen concentration of the inside air becomes equal to or less than a predetermined upper limit speed.
- the upper limit speed is set to a value such that the time required for the oxygen concentration to reach the reference concentration is 8 hours or more. For example, when the oxygen concentration of the current chamber air is 5% and the reference concentration is 21%, the upper limit speed is set to 2% or less per hour.
- the oxygen concentration recovery control unit (53) calculates the rate of increase in the oxygen concentration of the air inside the refrigerator based on the time course of the measured value of the oxygen concentration sensor (47), and the calculated rate of increase in the oxygen concentration is equal to or less than the upper limit.
- the flow rate of the outside air supplied to the luggage compartment (5) is adjusted so as to be.
- the oxygen concentration recovery control unit (53) reduces the flow rate of the outside air supplied to the luggage compartment (5).
- the oxygen concentration recovery control unit (53) reduces the flow rate of the outside air supplied to the luggage compartment (5).
- the oxygen concentration recovery control unit (53) sets the upper limit speed to a relatively low value, and suppresses the rate of increase in the oxygen concentration of the air inside the refrigerator during the oxygen concentration recovery operation. As a result, the decrease in freshness of the fresh food (7) during the oxygen concentration recovery operation can be suppressed to a low level.
- Step ST8> the oxygen concentration recovery control unit (53) divides the current ethylene concentration (Et_2) by the initial ethylene concentration (Et_1) (Et_2 / Et_1) into a predetermined lower reference value (Rv_1) and Compare with the upper reference value (Rv_2).
- step ST6 it can be estimated that the larger the increase in the ethylene concentration in the refrigerator air, the lower the freshness of the fresh food (7). That is, it can be estimated that the smaller Et_2 / Et_1, the smaller the degree of decrease in freshness.
- the oxygen concentration recovery control unit (53) when Et_2 / Et_1 is larger than the lower reference value (Rv_1) and smaller than the upper reference value (Rv_2) (Rv_1 ⁇ Et_2 / Et_1 ⁇ Rv_2), the oxygen concentration recovery control unit (53) is in step ST9. Perform processing. On the other hand, when Et_2 / Et_1 is equal to or less than the lower reference value (Rv_1) (Et_2 / Et_1 ⁇ Rv_1), the oxygen concentration recovery control unit (53) performs the process of step ST10.
- Step ST9 the oxygen concentration recovery control unit (53) causes the internal air conditioner (40) to execute the oxygen concentration recovery operation. Similar to the process in step ST7, the oxygen concentration recovery control unit (53) supplies the outside air to the luggage compartment (5) through the supply pipe (43) and the inside air through the ventilation exhaust pipe (45). Discharge to the outside of the transportation container (1). Further, the oxygen concentration recovery control unit (53) sends the outside air to the luggage compartment (5) until the measured value of the oxygen concentration sensor (47) reaches a predetermined reference concentration, as in the process of step ST7. Continue to supply.
- the oxygen concentration recovery control unit (53) sends the flow rate of the outside air supplied to the luggage compartment (5) so that the rate of increase in the oxygen concentration of the inside air becomes equal to or less than a predetermined upper limit speed.
- the upper limit speed is set to a value such that the time required for the oxygen concentration to reach the reference concentration is 4 hours or more. For example, when the oxygen concentration of the current chamber air is 5% and the reference concentration is 21%, the upper limit speed is set to 4% or less per hour.
- the oxygen concentration recovery control unit (53) calculates the rate of increase of the oxygen concentration in the refrigerator air based on the time-dependent change of the measured value of the oxygen concentration sensor (47) in the same manner as in the process of step ST7, and the calculated oxygen concentration. Adjust the flow rate of the outside air supplied to the luggage compartment (5) so that the rising speed of is less than or equal to the upper limit speed.
- the oxygen concentration recovery control unit (53) sets the upper limit speed to a medium value, and sets the rising speed of the oxygen concentration in the refrigerator air to a medium value during the oxygen concentration recovery operation. As a result, it is possible to shorten the time until the oxygen concentration in the refrigerator air reaches the reference concentration to the extent possible without significantly reducing the freshness of the fresh food (7) during the oxygen concentration recovery operation.
- Step ST10 In the process of step ST10, the oxygen concentration recovery control unit (53) causes the internal air conditioner (40) to execute the oxygen concentration recovery operation. Similar to the process in step ST7, the oxygen concentration recovery control unit (53) supplies the outside air to the luggage compartment (5) through the supply pipe (43) and the inside air through the ventilation exhaust pipe (45). Discharge to the outside of the transportation container (1).
- the oxygen concentration recovery control unit (53) keeps the flow rate of the outside air supplied to the luggage compartment (5) at the maximum flow rate. Similar to the process in step ST7, the oxygen concentration recovery control unit (53) supplies the outside air to the luggage compartment (5) until the measured value of the oxygen concentration sensor (47) reaches a predetermined reference concentration. to continue.
- the oxygen concentration recovery control unit (53) keeps the flow rate of the outside air supplied to the luggage compartment (5) at the maximum flow rate. As a result, the time required for the oxygen concentration in the refrigerator air to reach the reference concentration can be shortened.
- the internal air regulator (40) of the present embodiment supplies low oxygen concentration air having a lower oxygen concentration than the external air to the transportation container (1), and oxygen in the internal air of the transportation container (1). Keep the concentration within the target oxygen concentration range below the reference concentration.
- the air conditioner (40) in the refrigerator is configured to perform an oxygen concentration recovery operation.
- the oxygen concentration recovery operation is an operation in which the oxygen concentration in the air inside the shipping container (1) is raised from the target oxygen concentration range to the reference concentration.
- the internal air conditioner (40) of the present embodiment includes a controller (50).
- the controller (50) regulates the flow rate of the outside air supplied to the inside of the transport container (1) in the oxygen concentration recovery operation.
- the internal air regulator (40) performs a predetermined operation in order to raise the oxygen concentration of the internal air kept in the target oxygen concentration range lower than the reference concentration to the standard concentration. I do.
- the controller (50) of the internal air conditioner (40) regulates the flow rate of the external air supplied into the internal container (1) for transportation in the oxygen concentration recovery operation. Therefore, according to the present embodiment, it is possible to control the rate of increase in the oxygen concentration of the internal air during the oxygen concentration recovery operation of the internal air regulator (40), and the fresh food (7) during the oxygen concentration recovery operation. ) Can suppress the decrease in freshness.
- the controller (50) of the present embodiment adjusts the flow rate of the outside air supplied into the inside of the transportation container (1) so that the rate of increase in the oxygen concentration of the inside air becomes equal to or less than a predetermined upper limit speed. Adjust. By suppressing the rate of increase in oxygen concentration in the refrigerator air to the upper limit or less, a rapid change in the metabolic amount of the stored product can be suppressed, and a decrease in the freshness of the stored product can be suppressed.
- the internal air conditioning device (40) of the present embodiment includes a GPS receiver (60) that detects the position of the shipping container (1).
- the controller (50) of the present embodiment determines the start of the oxygen concentration recovery operation by using the position of the transportation container (1) detected by the GPS receiver (60) during the transportation of the transportation container (1). To do.
- the controller (50) of the present embodiment determines the start of the oxygen concentration recovery operation by using the position of the transportation container (1) detected by the GPS receiver (60).
- the controller (50) can determine that the shipping container (1) has arrived at the destination based on the position of the shipping container (1) detected by the GPS receiver (60). Therefore, when the transportation container (1) arrives at the destination and there is a high possibility that a human will enter the transportation container (1) in the near future, the oxygen concentration recovery operation can be started. Therefore, according to this aspect, the oxygen concentration recovery operation of the internal air conditioner (40) can be started at an appropriate timing.
- the controller (50) of the present embodiment sets conditions regarding the time from when the power supply to the internal air conditioner (40) is stopped until when the electric power supply to the internal air conditioner (40) is restarted. It is at least one of the conditions for starting the oxygen concentration recovery operation.
- the transportation container (1) of the present embodiment when the transportation container (1) of the present embodiment is moved from a ship to land, the transportation container (1) is moved with the power supply to the internal air conditioner (40) stopped. This is done, and after the shipping container (1) is placed in place, the power supply to the internal air conditioner (40) is resumed. Therefore, if the time elapsed from the time when the power supply to the internal air conditioner (40) is stopped to the time when the electric power supply to the internal air conditioner (40) is restarted is monitored, it will be possible in the near future. It is possible to estimate whether or not a human will enter the transportation container (1) to perform work.
- the controller (50) of the present embodiment is a condition relating to the time from when the power supply to the internal air conditioner (40) is stopped to when the electric power supply to the internal air conditioner (40) is restarted. Is at least one of the conditions for starting the oxygen concentration recovery operation. Therefore, according to the present embodiment, the oxygen concentration recovery operation can be started when there is a high possibility that a human will enter the transportation container (1) in the near future. Therefore, according to the present embodiment, the oxygen concentration recovery operation of the internal air conditioner (40) can be started at an appropriate timing.
- the internal air adjusting device (40) of the present embodiment includes a state index sensor (15).
- the state index sensor (15) detects a state index indicating the state of the perishables (7) stored in the shipping container (1).
- the controller (50) adjusts the rate of increase in the oxygen concentration of the internal air in the oxygen concentration recovery operation based on the state index detected by the state index sensor (15).
- the controller (50) of the present embodiment determines the rate of increase in the oxygen concentration of the air inside the refrigerator in the oxygen concentration recovery operation based on a state index indicating the state of the fresh food (7) stored in the transportation container (1). To adjust. Therefore, according to the present embodiment, it is possible to suppress a decrease in the freshness of the stored product due to an increase in the oxygen concentration of the internal air during the oxygen concentration recovery operation of the internal air adjusting device (40).
- the internal air conditioner (40) of the present embodiment is configured to perform the oxygen concentration recovery operation before the door of the transportation container (1) is opened.
- the internal air conditioner (40) performs the oxygen concentration recovery operation before the door of the transportation container (1) is opened for humans to enter the transportation container (1). By doing so, the oxygen concentration in the air inside the refrigerator can be raised to the reference concentration.
- Embodiment 2 >> The second embodiment will be described.
- the state index sensor (15) and the oxygen concentration recovery control unit (53) of the controller (50) are combined with the internal air adjusting device (40) of the first embodiment. ) Is different.
- the difference between the internal air adjusting device (40) of the present embodiment and the internal air adjusting device (40) of the first embodiment will be described.
- the state index sensor (15) of the present embodiment measures the sugar content of the fresh food (7) as a state index.
- a near-infrared spectrometer that irradiates the object with near-infrared rays and measures the sugar content of the object based on the wavelength of the near-infrared rays absorbed by the object can be used.
- the internal air adjusting device (40) of the present embodiment includes a plurality of (three in the present embodiment) state index sensors (15).
- One state index sensor (15) is provided for each of a plurality of (three in this embodiment) cargo (6) arranged at different positions.
- the oxygen concentration recovery control unit (53) of the controller (50) of the present embodiment is configured to adjust the rate of increase in the oxygen concentration of the air inside the refrigerator based on the sugar content of the fresh food (7).
- step ST1, step ST5, step ST6, and step ST8 are different from the processes shown in the flow chart of FIG.
- the processing performed by the oxygen concentration recovery control unit (53) of the present embodiment will be described as being different from the processing shown in the flow chart of FIG.
- Step ST1> the oxygen concentration recovery control unit (53) reads the measured value of the state index sensor (15) (in this modified example, the measured value of the sugar content of the fresh food (7)).
- the oxygen concentration recovery control unit (53) of the present embodiment reads the measured values of the three state index sensors (15), and sets the arithmetic mean of the read three measured values as the initial sugar content (Sc_1) in the memory unit (54). To memorize.
- Step ST5> the oxygen concentration recovery control unit (53) reads the measured value of the state index sensor (15) (in this embodiment, the measured value of the sugar content of the fresh food (7)).
- the oxygen concentration recovery control unit (53) of the present embodiment reads the measured values of the three state index sensors (15), and sets the arithmetic mean of the read three measured values as the current sugar content (Sc_2) in the memory unit (54). To memorize.
- Step ST6> the oxygen concentration recovery control unit (53) compares the value (Sc_2 / Sc_1) obtained by dividing the current sugar content (Sc_2) by the initial sugar content (Sc_1) with a predetermined upper reference value (Rv_2).
- the sugar content of fresh produce (7) such as fruits increases as its freshness decreases. Therefore, it can be estimated that the greater the increase in the sugar content of the fresh food (7), the lower the freshness of the fresh food (7). That is, it can be estimated that the larger Sc_2 / Sc_1, the greater the degree of decrease in freshness.
- the oxygen concentration recovery control unit (53) performs the process of step ST7.
- the oxygen concentration recovery control unit (53) performs the process of step ST8.
- the upper reference value (Rv_2) of the present embodiment is different from the upper reference value (Rv_2) of the first embodiment.
- Step ST8> the oxygen concentration recovery control unit (53) divides the current sugar content (Sc_2) by the initial sugar content (Sc_1) (Sc_2 / Sc_1) into the predetermined lower reference value (Rv_1) and upper reference. Compare with the value (Rv_2).
- step ST6 it can be estimated that the larger the increase in the sugar content of the fresh food (7), the lower the freshness of the fresh food (7). That is, it can be estimated that the smaller Sc_2 / Sc_1, the smaller the degree of decrease in freshness.
- the oxygen concentration recovery control unit (53) is in step ST9. Perform processing.
- the oxygen concentration recovery control unit (53) performs the process of step ST10.
- the lower reference value (Rv_1) of the present embodiment is different from the lower reference value (Rv_1) of the first embodiment.
- Embodiment 3 The third embodiment will be described.
- the state index sensor (15) and the oxygen concentration recovery control unit (53) of the controller (50) are combined with the internal air adjusting device (40) of the second embodiment. ) Is different.
- the difference between the internal air adjusting device (40) of the present embodiment and the internal air adjusting device (40) of the second embodiment will be described.
- the state index sensor (15) of the present embodiment measures the acidity of the fresh food (7) as a state index.
- a near-infrared spectrometer that irradiates the object with near-infrared rays and measures the acidity of the object based on the wavelength of the near-infrared rays absorbed by the object can be used.
- the state index sensors (15) of the present embodiment are provided one by one for a plurality of (three in the present embodiment) cargoes (6) arranged at different positions.
- the oxygen concentration recovery control unit (53) of the controller (50) of the present embodiment is configured to adjust the rate of increase in the oxygen concentration of the air inside the refrigerator based on the acidity of the fresh food (7).
- step ST1 The operation of the oxygen concentration recovery control unit (53) of this modified example will be described with reference to the flow chart of FIG.
- step ST1 the processes of step ST1, step ST5, step ST6, and step ST8 are different from the processes shown in the flow chart of FIG.
- the processing performed by the oxygen concentration recovery control unit (53) of this modification will be described as being different from the processing shown in the flow chart of FIG.
- Step ST1> the oxygen concentration recovery control unit (53) reads the measured value of the state index sensor (15) (in this modification, the measured value of the acidity of the fresh food (7)).
- the oxygen concentration recovery control unit (53) of the present embodiment reads the measured values of the three state index sensors (15), and sets the arithmetic mean of the read three measured values as the initial acidity (Ac_1) in the memory unit (54). To memorize.
- Step ST5> the oxygen concentration recovery control unit (53) reads the measured value of the state index sensor (15) (in this embodiment, the measured value of the acidity of the fresh food (7)).
- the oxygen concentration recovery control unit (53) of the present embodiment reads the measured values of the three state index sensors (15), and sets the arithmetic mean of the read three measured values as the current acidity (Ac_2) in the memory unit (54). To memorize.
- Step ST6> the oxygen concentration recovery control unit (53) compares the value (Ac_1 / Ac_2) obtained by dividing the initial acidity (Ac_1) by the current acidity (Ac_2) with a predetermined upper reference value (Rv_2).
- the acidity of fresh produce (7) such as fruits decreases as the freshness decreases. Therefore, it can be estimated that the greater the decrease in the sugar content of the fresh food (7), the lower the freshness of the fresh food (7). That is, it can be estimated that the larger Ac_1 / Ac_2, the greater the degree of decrease in freshness.
- the oxygen concentration recovery control unit (53) performs the process of step ST7.
- the oxygen concentration recovery control unit (53) performs the process of step ST8.
- the upper reference value (Rv_2) of the present embodiment is different from the upper reference value (Rv_2) of the second embodiment.
- Step ST8> the oxygen concentration recovery control unit (53) divides the initial acidity (Ac_1) by the current acidity (Ac_2) into the predetermined lower reference value (Rv_1) and upper reference. Compare with the value (Rv_2).
- step ST6 it can be estimated that the greater the decrease in the sugar content of the fresh food (7), the lower the freshness of the fresh food (7). That is, it can be estimated that the smaller Ac_1 / Ac_2, the smaller the degree of decrease in freshness.
- the oxygen concentration recovery control unit (53) is in step ST9. Perform processing.
- the oxygen concentration recovery control unit (53) performs the process of step ST10.
- the lower reference value (Rv_1) of the present embodiment is different from the lower reference value (Rv_1) of the second embodiment.
- the state index sensor (15) may be a sensor that measures the hardness of the fresh food (7) as a state index.
- the oxygen concentration recovery control unit (53) of this modified example performs a predetermined operation using the measured value of the hardness of the fresh food (7) measured by the state index sensor (15).
- the oxygen concentration recovery control unit (53) of this modified example stores the arithmetic mean of the measured values of the three state index sensors (15) as the initial hardness in the process of step ST1 shown in the flow chart of FIG.
- the arithmetic mean of the measured values of the three state index sensors (15) is stored in the memory unit (54) as the current hardness.
- the oxygen concentration recovery control unit (53) of this modification uses the initial hardness instead of the initial acidity (Ac_1) and uses the current hardness instead of the current acidity (Ac_2) to perform the processes of steps ST6 and ST8. I do.
- the internal air adjusting device (40) of each of the above embodiments supplies the modified air generated in the main unit (41) to the luggage compartment (5) in the oxygen concentration recovery operation, thereby supplying the oxygen concentration of the internal air. May be configured to raise.
- the internal air regulator (40) of this modification adjusts one or both of the oxygen concentration and the flow rate of the modified air supplied to the luggage compartment (5) to adjust the oxygen concentration recovery operation of the internal air during the oxygen concentration recovery operation. Control the rate of increase in oxygen concentration.
- the transportation container (1) to which the internal air conditioner (40) of each of the above embodiments and modifications is attached is not limited to that for ship transportation, and may be for land transportation. .. Further, the installation target of these in-compartment air control devices (40) is not limited to the transportation container (1). That is, these in-compartment air control devices (40) may be installed in, for example, a refrigerated warehouse or a commercial refrigerator.
- the internal air conditioner (40) of each of the above embodiments and modifications is not limited to one that produces modified air (low oxygen concentration air) by the PSA method.
- the air conditioner (40) in the refrigerator may be configured to generate modified air (low oxygen concentration air) by using, for example, a gas separation membrane.
- This gas separation membrane has a characteristic that "the permeation rate of nitrogen is faster than the permeation rate of oxygen".
- the air conditioner (40) in the refrigerator of this modified example supplies air having a high nitrogen concentration that has passed through the gas separation membrane to the luggage compartment (5) as modified air, and has a high oxygen concentration that has not passed through the gas separation membrane. Exhaust air to the outside of the refrigerator.
- the oxygen concentration recovery control unit (53) is used as an internal air adjusting device (50) when an oxygen concentration recovery command is input by the operator. It may be configured to cause 40) to perform an oxygen concentration recovery operation.
- This oxygen concentration recovery command is issued by, for example, an operator pressing an operation command button provided on the operation panel of the container refrigerating device (20) or the internal air adjusting device (40). ) Is input to the controller (50).
- the oxygen concentration recovery control unit (53) does not perform the operations from step ST1 to step ST4 in FIG.
- the operation of step ST10 is performed from.
- the oxygen concentration recovery control unit (53) reads the ethylene concentration in the refrigerator air measured by the state index sensor (15) in step ST5.
- the oxygen concentration recovery control unit (53) is one of three oxygen concentration recovery operations (specifically, step ST7 and step ST9) in which the rate of increase in oxygen concentration is different from each other according to the value of ethylene concentration. , Or the oxygen concentration recovery operation in step ST10) is selected and caused to be executed by the internal air conditioner (40).
- Steps ST5 to ST10 are performed.
- the oxygen concentration recovery control unit (53) does not perform the operations from step ST1 to step ST4 in FIG. The operations of steps ST5 to ST10 are performed.
- the present disclosure is useful for the air conditioner in the refrigerator.
- Transport container storage
- State indicator sensor state detector
- Interior air conditioner 50
- Controller 60
- GPS receiver position detector
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- General Chemical & Material Sciences (AREA)
- Wood Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Storage Of Fruits Or Vegetables (AREA)
Abstract
Description
実施形態1について説明する。本実施形態の庫内空気調節装置(40)は、コンテナ用冷凍装置(20)に組み込まれる。この庫内空気調節装置(40)は、コンテナ用冷凍装置(20)と共に、いわゆるCA(Controlled Atmosphere)輸送を行うために輸送用コンテナ(1)に設けられる。
図1に示すように、コンテナ用冷凍装置(20)は、ケーシング(30)と、冷凍サイクルを行う冷媒回路(21)と、庫外ファン(26)と、庫内ファン(27)とを備える。
コンテナ用冷凍装置(20)は、荷室(5)内の庫内空気を冷却する運転を行う。コンテナ用冷凍装置(20)の冷媒回路(21)では、冷媒が循環して冷凍サイクルが行われる。庫内ファン(27)によって庫内空気流路(36)へ送り込まれた庫内空気は、蒸発器(25)において冷媒によって冷却され、吹出口(34)と床下流路(4)を通って荷室(5)へ供給される。凝縮器(23)では、庫外ファン(26)によって庫外機器室(35)へ流入した庫外空気に対して冷媒が放熱する。
庫内空気調節装置(40)は、輸送用コンテナ(1)内の空気の組成を調節する装置である。図1に示すように、庫内空気調節装置(40)は、本体ユニット(41)と、換気用排気管(45)と、GPS受信器(60)と、制御器(50)とを備える。本体ユニット(41)は、コンテナ用冷凍装置(20)の庫外機器室(35)に設置される。
本体ユニット(41)は、本体ユニット(41)内に庫外空気を取り込むための外気吸込口(42)を備える。また、本体ユニット(41)には、供給管(43)と酸素排出管(44)とが接続される。供給管(43)は、本体ユニット(41)において生成した修正空気を荷室(5)へ導入するための配管であって、その終端が庫内空気流路(36)に開口する。酸素排出管(44)は、本体ユニット(41)において生成した高酸素濃度空気を庫外へ排出するための配管であって、その終端が庫外機器室(35)に開口する。
換気用排気管(45)は、輸送用コンテナ(1)の庫内空気を庫外へ排出するための配管である。換気用排気管(45)は、一端が庫内空気流路(36)に開口し、他端が庫外機器室(35)に開口する。換気用排気管(45)には、換気用排気弁(46)が設けられる。換気用排気弁(46)は、電磁弁からなる開閉弁である。
庫内空気調節装置(40)は、酸素濃度センサ(47)と、二酸化炭素濃度センサ(48)とを備える。酸素濃度センサ(47)及び二酸化炭素濃度センサ(48)は、庫内空気流路(36)における蒸発器(25)の上流側に配置される。酸素濃度センサ(47)は、吸込口(33)から庫内空気流路(36)へ吸い込まれた庫内空気の酸素濃度を計測する。二酸化炭素濃度センサ(48)は、吸込口(33)から庫内空気流路(36)へ吸い込まれた庫内空気の二酸化炭素濃度を計測する。
庫内空気調節装置(40)は、GPS受信器(60)を備える。GPS受信器(60)は、本体ユニット(41)に設けられる。GPS受信器(60)は、GPS(Global Positioning System)衛星の出力信号を受信し、受信した出力信号に基づいてGPS受信器(60)の位置を算出する。このGPS受信器(60)は、輸送用コンテナ(1)の位置を検知する位置検知器である。
図3に示すように、制御器(50)は、庫内空気調節装置(40)の運転を制御する。制御器(50)は、演算処理ユニット(51)と、メモリーユニット(54)とを備える。
庫内空気調節装置(40)は、通常運転と酸素濃度回復運転とを実行可能である。
通常制御部(52)は、通常運転中に庫内空気調節装置(40)の構成機器を制御する。
通常運転が開始されると、通常制御部(52)は、庫内空気の酸素濃度を21%(大気の酸素濃度)から目標範囲(例えば、5%±1%)にまで引き下げるためのプルダウン動作を行う。
また、通常制御部(52)は、庫内空気の酸素濃度を目標範囲(例えば、5%±1%)に保つための濃度維持動作を行う。
酸素濃度回復制御部(53)は、庫内空気調節装置(40)に酸素濃度回復運転を開始させるかどうかを判断し、酸素濃度回復運転中に庫内空気調節装置(40)の構成機器を制御する。ここでは、酸素濃度回復制御部(53)が行う動作について、図4のフロー図を参照しながら説明する。
荷室(5)への生鮮物(7)の搬入が終了し、通常制御部(52)がプルダウン動作を開始すると、酸素濃度回復制御部(53)は、ステップST1の処理を行う。ステップST1の処理において、酸素濃度回復制御部(53)は、状態指標センサ(15)の計測値(本実施形態では、庫内空気のエチレン濃度の計測値)を読み込む。酸素濃度回復制御部(53)は、読み込んだ状態指標センサ(15)の計測値を、初期エチレン濃度(Et_1)としてメモリーユニット(54)に記憶させる。
次に、酸素濃度回復制御部(53)は、ステップST2の処理を行う。ステップST2の処理において、酸素濃度回復制御部(53)は、入港場所情報を取得する。入港場所情報は、輸送用コンテナ(1)の目的地である港の位置を示す情報(例えば、緯度と経度)である。酸素濃度回復制御部(53)は、コンテナ用冷凍装置(20)の操作パネル等に作業者が入力した入港場所情報を取得し、取得した入港場所情報をメモリーユニット(54)に記憶させる。
次に、酸素濃度回復制御部(53)は、ステップST3の処理を行う。ステップST3の処理において、酸素濃度回復制御部(53)は、GPS受信器(60)から取得した位置情報と、ステップST2において取得した入港場所情報とを対比する。GPS受信器(60)から取得した位置情報は、輸送用コンテナ(1)の現在の位置を示す情報(例えば、緯度と経度)である。
ここで、輸送用コンテナ(1)の輸送中は、輸送用コンテナ(1)が電源に接続され、コンテナ用冷凍装置(20)及び庫内空気調節装置(40)へ電力が供給される。輸送用コンテナ(1)を船舶から陸上へ移動させる場合は、輸送用コンテナ(1)が電源から一旦切り離される。この状態では、コンテナ用冷凍装置(20)及び庫内空気調節装置(40)に対する電力の供給が停止する。輸送用コンテナ(1)は、電源から切り離された状態でクレーンによって船舶から降ろされ、その後に港湾のコンテナ集積場へ搬送される。コンテナ集積場では、輸送用コンテナ(1)が再び電源に接続され、コンテナ用冷凍装置(20)及び庫内空気調節装置(40)に対して再び電力が供給される。
ステップST5の処理において、酸素濃度回復制御部(53)は、状態指標センサ(15)の計測値(本実施形態では、庫内空気のエチレン濃度の計測値)を読み込む。酸素濃度回復制御部(53)は、読み込んだ状態指標センサ(15)の計測値を、現在エチレン濃度(Et_2)としてメモリーユニット(54)に記憶させる。
次に、酸素濃度回復制御部(53)は、ステップST6の処理を行う。ステップST6の処理において、酸素濃度回復制御部(53)は、現在エチレン濃度(Et_2)を初期エチレン濃度(Et_1)で除した値(Et_2/Et_1)を、所定の上側基準値(Rv_2)と比較する。
ステップST7の処理において、酸素濃度回復制御部(53)は、庫内空気調節装置(40)に酸素濃度回復運転を実行させる。具体的に、酸素濃度回復制御部(53)は、庫内空気調節装置(40)の本体ユニット(41)に設けられたポンプを作動させて庫外空気を荷室(5)へ供給すると共に、換気用排気弁(46)を開いて庫内空気を輸送用コンテナ(1)の外部へ排出する。その結果、荷室(5)内の空気が庫外空気(大気)に徐々に入れ替わり、庫内空気の酸素濃度が上昇する。
ステップST8の処理において、酸素濃度回復制御部(53)は、現在エチレン濃度(Et_2)を初期エチレン濃度(Et_1)で除した値(Et_2/Et_1)を、所定の下側基準値(Rv_1)及び上側基準値(Rv_2)と比較する。
ステップST9の処理において、酸素濃度回復制御部(53)は、庫内空気調節装置(40)に酸素濃度回復運転を実行させる。ステップST7の処理と同様に、酸素濃度回復制御部(53)は、供給管(43)を通じて庫外空気を荷室(5)へ供給すると共に、換気用排気管(45)を通じて庫内空気を輸送用コンテナ(1)の外部へ排出する。また、酸素濃度回復制御部(53)は、ステップST7の処理と同様に、酸素濃度センサ(47)の計測値が所定の基準濃度に達するまで、荷室(5)に対して庫外空気を供給し続ける。
ステップST10の処理において、酸素濃度回復制御部(53)は、庫内空気調節装置(40)に酸素濃度回復運転を実行させる。ステップST7の処理と同様に、酸素濃度回復制御部(53)は、供給管(43)を通じて庫外空気を荷室(5)へ供給すると共に、換気用排気管(45)を通じて庫内空気を輸送用コンテナ(1)の外部へ排出する。
本実施形態の庫内空気調節装置(40)は、庫外空気よりも酸素濃度の低い低酸素濃度空気を輸送用コンテナ(1)へ供給し、輸送用コンテナ(1)の庫内空気の酸素濃度を基準濃度よりも低い目標酸素濃度範囲に保つ。また、庫内空気調節装置(40)は、酸素濃度回復運転を行うように構成される。酸素濃度回復運転は、輸送用コンテナ(1)の庫内空気の酸素濃度を、目標酸素濃度範囲から基準濃度にまで上昇させる運転である。本実施形態の庫内空気調節装置(40)は、制御器(50)を備える。制御器(50)は、酸素濃度回復運転において、輸送用コンテナ(1)の庫内へ供給される庫外空気の流量を調節する。
本実施形態の制御器(50)は、輸送用コンテナ(1)の庫内へ供給される庫外空気の流量を、庫内空気の酸素濃度の上昇速度が所定の上限速度以下となるように調節する。庫内空気の酸素濃度の上昇速度を上限速度以下に抑えると、貯蔵物の代謝量の急激な変化が抑えられ、貯蔵物の鮮度の低下を抑えることができる。
本実施形態の庫内空気調節装置(40)は、輸送用コンテナ(1)の位置を検知するGPS受信器(60)を備える。本実施形態の制御器(50)は、輸送用コンテナ(1)の輸送中にGPS受信器(60)が検知した輸送用コンテナ(1)の位置を用いて、酸素濃度回復運転の開始を判断する。
本実施形態の制御器(50)は、庫内空気調節装置(40)への電力供給が停止してから庫内空気調節装置(40)への電力供給が再開するまでの時間に関する条件を、酸素濃度回復運転を開始するための条件の少なくとも一つとする。
本実施形態の庫内空気調節装置(40)は、状態指標センサ(15)を備える。状態指標センサ(15)は、輸送用コンテナ(1)に収納された生鮮物(7)の状態を示す状態指標を検知する。制御器(50)は、状態指標センサ(15)が検知した状態指標に基づいて、酸素濃度回復運転における庫内空気の酸素濃度の上昇速度を調節する。
本実施形態の庫内空気調節装置(40)は、酸素濃度回復運転を、輸送用コンテナ(1)の扉が開かれる前に行うように構成される。
実施形態2について説明する。本実施形態の庫内空気調節装置(40)は、状態指標センサ(15)と、制御器(50)の酸素濃度回復制御部(53)とが、実施形態1の庫内空気調節装置(40)と異なる。ここでは、本実施形態の庫内空気調節装置(40)について、実施形態1の庫内空気調節装置(40)と異なる点を説明する。
本実施形態の状態指標センサ(15)は、生鮮物(7)の糖度を、状態指標として計測する。この状態指標センサ(15)としては、対象物に近赤外線を照射し、対象物に吸収される近赤外線の波長に基づいて対象物の糖度を計測する近赤外分光計を用いることができる。
本実施形態の制御器(50)の酸素濃度回復制御部(53)は、生鮮物(7)の糖度に基づいて庫内空気の酸素濃度の上昇速度を調節するように構成される。
ステップST1の処理において、酸素濃度回復制御部(53)は、状態指標センサ(15)の計測値(本変形例では、生鮮物(7)の糖度の計測値)を読み込む。本実施形態の酸素濃度回復制御部(53)は、三つの状態指標センサ(15)の計測値を読み込み、読み込んだ三つの計測値の算術平均を、初期糖度(Sc_1)としてメモリーユニット(54)に記憶させる。
ステップST5の処理において、酸素濃度回復制御部(53)は、状態指標センサ(15)の計測値(本実施形態では、生鮮物(7)の糖度の計測値)を読み込む。本実施形態の酸素濃度回復制御部(53)は、三つの状態指標センサ(15)の計測値を読み込み、読み込んだ三つの計測値の算術平均を、現在糖度(Sc_2)としてメモリーユニット(54)に記憶させる。
ステップST6の処理において、酸素濃度回復制御部(53)は、現在糖度(Sc_2)を初期糖度(Sc_1)で除した値(Sc_2/Sc_1)を、所定の上側基準値(Rv_2)と比較する。
ステップST8の処理において、酸素濃度回復制御部(53)は、現在糖度(Sc_2)を初期糖度(Sc_1)で除した値(Sc_2/Sc_1)を、所定の下側基準値(Rv_1)及び上側基準値(Rv_2)と比較する。
実施形態3について説明する。本実施形態の庫内空気調節装置(40)は、状態指標センサ(15)と、制御器(50)の酸素濃度回復制御部(53)とが、実施形態2の庫内空気調節装置(40)と異なる。ここでは、本実施形態の庫内空気調節装置(40)について、実施形態2の庫内空気調節装置(40)と異なる点を説明する。
本実施形態の状態指標センサ(15)は、生鮮物(7)の酸度を、状態指標として計測する。この状態指標センサ(15)としては、対象物に近赤外線を照射し、対象物に吸収される近赤外線の波長に基づいて対象物の酸度を計測する近赤外分光計を用いることができる。実施形態2と同様に、本実施形態の状態指標センサ(15)は、異なる位置に配置された複数(本実施形態では三つ)の貨物(6)に一つずつ設けられる。
本実施形態の制御器(50)の酸素濃度回復制御部(53)は、生鮮物(7)の酸度に基づいて庫内空気の酸素濃度の上昇速度を調節するように構成される。
ステップST1の処理において、酸素濃度回復制御部(53)は、状態指標センサ(15)の計測値(本変形例では、生鮮物(7)の酸度の計測値)を読み込む。本実施形態の酸素濃度回復制御部(53)は、三つの状態指標センサ(15)の計測値を読み込み、読み込んだ三つの計測値の算術平均を、初期酸度(Ac_1)としてメモリーユニット(54)に記憶させる。
ステップST5の処理において、酸素濃度回復制御部(53)は、状態指標センサ(15)の計測値(本実施形態では、生鮮物(7)の酸度の計測値)を読み込む。本実施形態の酸素濃度回復制御部(53)は、三つの状態指標センサ(15)の計測値を読み込み、読み込んだ三つの計測値の算術平均を、現在酸度(Ac_2)としてメモリーユニット(54)に記憶させる。
ステップST6の処理において、酸素濃度回復制御部(53)は、初期酸度(Ac_1)を現在酸度(Ac_2)で除した値(Ac_1/Ac_2)を、所定の上側基準値(Rv_2)と比較する。
ステップST8の処理において、酸素濃度回復制御部(53)は、初期酸度(Ac_1)を現在酸度(Ac_2)で除した値(Ac_1/Ac_2)を、所定の下側基準値(Rv_1)及び上側基準値(Rv_2)と比較する。
本実施形態の庫内空気調節装置(40)において、状態指標センサ(15)は、生鮮物(7)の硬度を、状態指標として計測するセンサであってもよい。
上述した実施形態の変形例について説明する。
上記の各実施形態の庫内空気調節装置(40)は、酸素濃度回復運転において、本体ユニット(41)において生成した修正空気を荷室(5)へ供給することによって、庫内空気の酸素濃度を上昇させるように構成されていてもよい。本変形例の庫内空気調節装置(40)は、荷室(5)へ供給される修正空気の酸素濃度と流量の一方または両方を調節することによって、酸素濃度回復運転中における庫内空気の酸素濃度の上昇速度を制御する。
上記の各実施形態及び各変形例の庫内空気調節装置(40)が取り付けられる輸送用コンテナ(1)は、船舶輸送用のものには限定されず、陸上輸送用のものであってもよい。また、これらの庫内空気調節装置(40)の設置対象は、輸送用コンテナ(1)に限定されない。つまり、これらの庫内空気調節装置(40)は、例えば、冷蔵倉庫や、業務用の冷蔵庫などに設置されてもよい。
上記の各実施形態及び各変形例の庫内空気調節装置(40)は、PSA方式によって修正空気(低酸素濃度空気)を生成するものに限定されない。
上記の各実施形態及び各変形例の庫内空気調節装置(40)において、酸素濃度回復制御部(53)は、作業者によって酸素濃度回復指令が入力された場合に、庫内空気調節装置(40)に酸素濃度回復運転を実行させるように構成されていてもよい。この酸素濃度回復指令は、例えば、コンテナ用冷凍装置(20)又は庫内空気調節装置(40)の操作パネルに設けられた運転指令ボタンを作業者が押すことによって、庫内空気調節装置(40)の制御器(50)に入力される。
15 状態指標センサ(状態検知器)
40 庫内空気調節装置
50 制御器
60 GPS受信器(位置検知器)
Claims (7)
- 収納庫(1)の庫外空気よりも酸素濃度の低い低酸素濃度空気を上記収納庫(1)へ供給し、上記収納庫(1)の庫内空気の酸素濃度を基準濃度よりも低い目標酸素濃度範囲に保つ庫内空気調節装置であって、
上記収納庫(1)の庫内空気の酸素濃度を、上記目標酸素濃度範囲から上記基準濃度にまで上昇させる酸素濃度回復運転を行うように構成され、
上記酸素濃度回復運転において、上記収納庫(1)の庫内へ供給される上記低酸素濃度空気の流量と酸素濃度の少なくとも一方、または上記収納庫(1)の庫内へ供給される上記庫外空気の流量を調節する制御器(50)を備えている
ことを特徴とする庫内空気調節装置。 - 請求項1において、
上記制御器(50)は、上記収納庫(1)の庫内へ供給される上記低酸素濃度空気の流量と酸素濃度の少なくとも一方、または上記収納庫(1)の庫内へ供給される上記庫外空気の流量を、上記庫内空気の酸素濃度の上昇速度が所定の上限速度以下となるように調節する
ことを特徴とする庫内空気調節装置。 - 請求項1又は2において、
上記収納庫(1)は、輸送用コンテナであり、
上記収納庫(1)の位置を検知する位置検知器(60)を備え、
上記制御器(50)は、上記収納庫(1)の輸送中に上記位置検知器(60)が検知した上記収納庫(1)の位置を用いて、上記酸素濃度回復運転の開始を判断する
ことを特徴とする庫内空気調節装置。 - 請求項1又は2において、
上記収納庫(1)は、輸送用コンテナであり、
上記制御器(50)は、上記庫内空気調節装置(40)への電力供給が停止してから該庫内空気調節装置(40)への電力供給が再開するまでの時間に関する条件を、上記酸素濃度回復運転を開始するための条件の少なくとも一つとする
ことを特徴とする庫内空気調節装置。 - 請求項1乃至4のいずれか一つにおいて、
上記収納庫(1)に収納された生鮮物(7)の状態を示す状態指標を検知する状態検知器(15)を備え、
上記制御器(50)は、上記状態検知器(15)が検知した上記状態指標に基づいて、上記酸素濃度回復運転における上記庫内空気の酸素濃度の上昇速度を調節する
ことを特徴とする庫内空気調節装置。 - 請求項5において、
上記状態検知器(15)は、上記生鮮物(7)の状態を示す状態指標として、上記庫内空気のエチレン濃度、上記生鮮物(7)の糖度、上記生鮮物(7)の酸度、及び上記生鮮物(7)の硬度の少なくとも一つを検知する
ことを特徴とする庫内空気調節装置。 - 請求項1において、
上記酸素濃度回復運転を、上記収納庫(1)の扉が開かれる前に行うように構成されている
ことを特徴とする庫内空気調節装置。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021530727A JP7208566B2 (ja) | 2019-07-10 | 2020-07-09 | 庫内空気調節装置 |
AU2020311175A AU2020311175B2 (en) | 2019-07-10 | 2020-07-09 | Internal air adjustment device |
EP20836751.6A EP3985335A4 (en) | 2019-07-10 | 2020-07-09 | INTERIOR AIR CONDITIONER |
CN202080050000.6A CN114080360B (zh) | 2019-07-10 | 2020-07-09 | 内部空气调节装置 |
CA3145985A CA3145985C (en) | 2019-07-10 | 2020-07-09 | Internal air adjustment device |
US17/568,228 US12290078B2 (en) | 2019-07-10 | 2022-01-04 | Internal air adjustment device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019128406 | 2019-07-10 | ||
JP2019-128406 | 2019-07-10 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/568,228 Continuation US12290078B2 (en) | 2019-07-10 | 2022-01-04 | Internal air adjustment device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021006312A1 true WO2021006312A1 (ja) | 2021-01-14 |
Family
ID=74114897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/026842 WO2021006312A1 (ja) | 2019-07-10 | 2020-07-09 | 庫内空気調節装置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US12290078B2 (ja) |
EP (1) | EP3985335A4 (ja) |
JP (1) | JP7208566B2 (ja) |
CN (1) | CN114080360B (ja) |
AU (1) | AU2020311175B2 (ja) |
CA (1) | CA3145985C (ja) |
WO (1) | WO2021006312A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023031604A (ja) * | 2021-08-25 | 2023-03-09 | 東芝ライフスタイル株式会社 | 冷蔵庫 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0692408A (ja) * | 1992-09-16 | 1994-04-05 | Tokico Ltd | ガス濃度制御装置 |
JP2017024615A (ja) * | 2015-07-24 | 2017-02-02 | 三菱重工業株式会社 | 制御装置、冷凍機ユニット、冷凍機制御システム、制御方法およびプログラム |
JP2017190935A (ja) | 2016-04-15 | 2017-10-19 | ダイキン工業株式会社 | 庫内空気調節装置及びそれを備えたコンテナ用冷凍装置 |
WO2019065884A1 (ja) * | 2017-09-29 | 2019-04-04 | ダイキン工業株式会社 | 空気組成調節装置 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2284613A (en) * | 1993-12-13 | 1995-06-14 | Boc Group Plc | Liquefied nitrogen and oxygen as chilling agent |
NL9402111A (nl) * | 1994-12-13 | 1996-07-01 | Inst Voor Agrotech Onderzoek | Stelsel voor het regelen van de luchtsamenstelling binnen een bewaarruimte voor ademende plantaardige produkten. |
JP3726224B2 (ja) * | 1998-03-26 | 2005-12-14 | エスペック株式会社 | 低酸素室の空気供給装置及び空気供給方法 |
US7866258B2 (en) * | 2003-06-10 | 2011-01-11 | Maersk Container Industri A/S | Apparatus for controlling the composition of gases within a container |
US7089751B2 (en) * | 2004-04-23 | 2006-08-15 | Carrier Corporation | Automatic fresh air exchange system |
US20080220133A1 (en) * | 2007-03-05 | 2008-09-11 | Gary Bruce Carman | Food sanitation system |
CN201366050Y (zh) * | 2009-03-10 | 2009-12-23 | 中国医学科学院阜外心血管病医院 | 提供间歇性低氧环境的动物实验装置 |
US8739694B2 (en) * | 2010-10-26 | 2014-06-03 | James C. Schaefer | Dynamic control system and method for controlled atmosphere room |
CN202244044U (zh) * | 2011-08-12 | 2012-05-30 | 中国船舶重工集团公司第七○二研究所 | 水下封闭环境生命支持系统自动供氧控制器 |
WO2014004513A1 (en) | 2012-06-25 | 2014-01-03 | Rsc Industries Inc. | Cooling system and methods for cooling interior volumes of cargo trailers |
JP2015072103A (ja) * | 2013-10-03 | 2015-04-16 | ダイキン工業株式会社 | コンテナ用冷凍装置 |
US20170127705A1 (en) * | 2014-06-11 | 2017-05-11 | Thermo King Corporation | Atmosphere control in transport unit |
SG11201706653UA (en) * | 2015-02-27 | 2017-09-28 | Daikin Ind Ltd | Refrigeration device for container |
GB201608735D0 (en) * | 2016-05-18 | 2016-06-29 | Univ Leuven Kath | Automatical in situ leakage disturbance correction for crops or produce in a confined space |
CN206193515U (zh) * | 2016-11-26 | 2017-05-24 | 柏玉兰 | 新型温室大棚温度和二氧化碳浓度调节装置 |
EP3646932B1 (en) * | 2017-07-21 | 2023-06-14 | Daikin Industries, Ltd. | In-vehicle air conditioner and cooling device for container |
CN206974999U (zh) * | 2017-07-24 | 2018-02-06 | 浙江国际海运职业技术学院 | 船舶货舱气体监测系统 |
WO2019065879A1 (ja) * | 2017-09-29 | 2019-04-04 | ダイキン工業株式会社 | 庫内空気調節装置 |
EP3919826A3 (en) * | 2017-09-29 | 2022-07-27 | Daikin Industries, Ltd. | Air composition adjusting device |
CN109728874B (zh) | 2017-10-31 | 2021-08-31 | 华为技术有限公司 | 一种比特块处理方法及节点 |
JP7087064B2 (ja) | 2018-11-09 | 2022-06-20 | 153 コリア カンパニー リミテッド | 強制給餌の飼育方式を使用していないカモの肝を用いたフォアグラ、その組成物及びその製造方法 |
ES2963593T3 (es) * | 2018-12-30 | 2024-04-01 | Thermo King Llc | Sistemas activos de atmósfera controlada |
-
2020
- 2020-07-09 CA CA3145985A patent/CA3145985C/en active Active
- 2020-07-09 JP JP2021530727A patent/JP7208566B2/ja active Active
- 2020-07-09 EP EP20836751.6A patent/EP3985335A4/en active Pending
- 2020-07-09 WO PCT/JP2020/026842 patent/WO2021006312A1/ja unknown
- 2020-07-09 CN CN202080050000.6A patent/CN114080360B/zh active Active
- 2020-07-09 AU AU2020311175A patent/AU2020311175B2/en active Active
-
2022
- 2022-01-04 US US17/568,228 patent/US12290078B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0692408A (ja) * | 1992-09-16 | 1994-04-05 | Tokico Ltd | ガス濃度制御装置 |
JP2017024615A (ja) * | 2015-07-24 | 2017-02-02 | 三菱重工業株式会社 | 制御装置、冷凍機ユニット、冷凍機制御システム、制御方法およびプログラム |
JP2017190935A (ja) | 2016-04-15 | 2017-10-19 | ダイキン工業株式会社 | 庫内空気調節装置及びそれを備えたコンテナ用冷凍装置 |
WO2019065884A1 (ja) * | 2017-09-29 | 2019-04-04 | ダイキン工業株式会社 | 空気組成調節装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3985335A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023031604A (ja) * | 2021-08-25 | 2023-03-09 | 東芝ライフスタイル株式会社 | 冷蔵庫 |
JP7397031B2 (ja) | 2021-08-25 | 2023-12-12 | 東芝ライフスタイル株式会社 | 冷蔵庫 |
Also Published As
Publication number | Publication date |
---|---|
US12290078B2 (en) | 2025-05-06 |
JPWO2021006312A1 (ja) | 2021-01-14 |
AU2020311175A1 (en) | 2022-02-10 |
CN114080360B (zh) | 2023-06-27 |
CN114080360A (zh) | 2022-02-22 |
EP3985335A1 (en) | 2022-04-20 |
CA3145985C (en) | 2024-04-30 |
AU2020311175B2 (en) | 2023-04-06 |
US20220125064A1 (en) | 2022-04-28 |
CA3145985A1 (en) | 2021-01-14 |
JP7208566B2 (ja) | 2023-01-19 |
EP3985335A4 (en) | 2023-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2635535B2 (ja) | 冷凍コンテナ用庫内環境制御システム | |
CN104204697B (zh) | 检测制冷剂损失的方法 | |
US10905141B2 (en) | Controlled atmosphere system and method for controlling the same | |
CA2941324C (en) | Cooling system with low temperature load | |
US20100107661A1 (en) | Method for operating transport refrigeration unit with remote evaporator | |
EP3240979B1 (en) | Method for controlling, transport unit | |
US9982919B2 (en) | Cooling system with low temperature load | |
US12319121B2 (en) | Quality determination device | |
CN107975954B (zh) | 空调系统控制方法及装置 | |
EP3371527B1 (en) | Transport refrigeration system and method of operating | |
JP7602326B2 (ja) | 冷蔵コンテナ内の雰囲気を制御する方法 | |
WO2021006312A1 (ja) | 庫内空気調節装置 | |
JP2006266661A (ja) | 冷凍装置およびその運転方法 | |
WO2019103045A1 (ja) | 気密性評価装置、庫内空気調節装置、及び冷凍装置 | |
WO2020009183A1 (ja) | 庫内環境制御システム | |
JP2022040585A (ja) | 空気組成調整装置、冷凍装置、及び輸送用コンテナ | |
JP7089208B1 (ja) | 庫内空気調節装置、冷凍装置、及び輸送用コンテナ | |
US20230392841A1 (en) | Transportation refrigeration unit and method of measuring quantity of refrigerant in the same | |
JP7064154B2 (ja) | 空気組成調整装置、冷凍装置、コンテナ、及び空気組成調整方法 | |
JP2018536138A (ja) | 冷凍システム用の経済化デバイス制御 | |
JP2022040484A (ja) | 空気組成調整装置、冷凍装置、及びコンテナ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20836751 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021530727 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 3145985 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2020836751 Country of ref document: EP Effective date: 20220113 |