WO2021075619A1 - Anode, secondary battery comprising same, and manufacturing method therefor - Google Patents
Anode, secondary battery comprising same, and manufacturing method therefor Download PDFInfo
- Publication number
- WO2021075619A1 WO2021075619A1 PCT/KR2019/014204 KR2019014204W WO2021075619A1 WO 2021075619 A1 WO2021075619 A1 WO 2021075619A1 KR 2019014204 W KR2019014204 W KR 2019014204W WO 2021075619 A1 WO2021075619 A1 WO 2021075619A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal layer
- metal
- porous
- negative electrode
- electrode
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/054—Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/043—Processes of manufacture in general involving compressing or compaction
- H01M4/0435—Rolling or calendering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0438—Processes of manufacture in general by electrochemical processing
- H01M4/044—Activating, forming or electrochemical attack of the supporting material
- H01M4/0445—Forming after manufacture of the electrode, e.g. first charge, cycling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1395—Processes of manufacture of electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/387—Tin or alloys based on tin
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/40—Alloys based on alkali metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/40—Alloys based on alkali metals
- H01M4/405—Alloys based on lithium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/46—Alloys based on magnesium or aluminium
- H01M4/466—Magnesium based
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention is a negative electrode comprising a porous metal layer having a porous three-dimensional network structure in which micro active material particles including a metal capable of absorbing and releasing alkali metal or alkaline earth metal ions by alloying and dealloying with an alkali metal or alkaline earth metal are interconnected. , To a method for manufacturing the same, and a secondary battery including the same.
- lithium secondary batteries having high energy density and voltage are widely used.
- the present invention has been devised to solve the above-described problems, a high-capacity negative electrode comprising a porous metal layer capable of absorbing and releasing alkali metal or alkaline earth metal ions by alloying and dealloying with an alkali metal or alkaline earth metal, a method of manufacturing the same, and It is intended to provide a secondary battery including this.
- a negative electrode according to an embodiment of the present invention includes a porous metal layer including a metal capable of absorbing and releasing alkali metal or alkaline earth metal ions by alloying and dealloying with an alkali metal or alkaline earth metal.
- the porous metal layer may have a porous three-dimensional network structure in which rod-shaped metal microparticles are interconnected.
- the porous metal layer may have an average pore diameter of 0.1 to 200 ⁇ m.
- the porous metal layer may have a porosity of 50 to 90% by volume.
- the metal microparticles may have an average diameter of 0.1 to 5 ⁇ m.
- the metal microparticles may have an average length of 0.5 to 20 ⁇ m.
- the metal microparticles may have an average aspect ratio (length/diameter) of 1 to 10.
- the porous metal layer may include at least 90% by weight of a metal selected from the group including Ga, Ge, In, Sn, Sb, Tl, Pb, and Bi based on 100% by weight of the total porous metal layer.
- the porous metal layer may include at least 90% by weight of the metal represented by Formula 1 below based on 100% by weight of the total porous metal layer.
- A is Li, Na, Mg, K, or Ca
- B is selected from the group containing Ga, Ge, In, Sn, Sb, Tl, Pb, and Bi, and x may be 0 to 6 days have.
- the porous metal layer may include at least 90% by weight of the metal represented by the following Chemical Formula 2 or 3, based on 100% by weight of the total porous metal layer.
- Y may be 0 to 1
- z may be 0 to 3.
- a method of manufacturing a secondary battery includes the steps of configuring a half-cell including a negative electrode including a metal layer and a metal electrode, and forming the half-cell. Charging and discharging two or more times to convert the metal layer into a porous metal layer, and a full-cell including a negative electrode including the porous metal layer, a positive electrode including a positive electrode active material, and an electrolyte. It includes the step of manufacturing.
- the metal layer may include a metal capable of absorbing and releasing alkali metal or alkaline earth metal ions by alloying and dealloying with an alkali metal or alkaline earth metal.
- the metal electrode may include an alkali metal or an alkaline earth metal.
- the step of converting the metal layer into a porous metal layer may be performing a cycle in which the cathode and the metal electrode are electrically connected to be fully charged and completely discharged.
- the metal layer may be converted into a porous three-dimensional network structure in which rod-shaped metal microparticles are interconnected.
- the method may further include a step of manufacturing a negative electrode including a metal layer by rolling a metal foil.
- the manufacturing of the negative electrode may include forming a metal layer to a thickness of 25 ⁇ m to 2 mm. Specifically, it may be 27 ⁇ m to 2 mm.
- a secondary battery according to an embodiment of the present invention may include a positive electrode, an electrolyte, and a negative electrode according to an embodiment of the present invention.
- the electrolyte may include a metal salt and an ether-based solvent.
- the ether solvent is dimethoxyethane (DME), 1,3-dioxolane (1,3-dioxolane), tetraethylene glycol dimethyl ether (TEGDME), diethylene glycol dimethyl ether (Diethylene glycol). dimethyl ether, DEGDME), triethylene glycol dimethyl ether (TEGDME), polyethylene glycol dimethyl ether (PEGDME), polyethylene oxide (PEO), and a mixture thereof. Can be.
- DME dimethoxyethane
- TEGDME tetraethylene glycol dimethyl ether
- DEGDME diethylene glycol dimethyl ether
- TEGDME triethylene glycol dimethyl ether
- PEGDME polyethylene glycol dimethyl ether
- PEO polyethylene oxide
- a separator may be further included between the anode and the cathode.
- the separation membrane may be a nanoporous separation membrane having pores of 10 nm to 100 nm. Specifically, it may be 20nm to 100nm, 50nm to 100nm, or 80nm to 100nm.
- the separation membrane may be a microporous separation membrane having pores of 1 ⁇ m to 50 ⁇ m. Specifically, it may be 3 ⁇ m to 50 ⁇ m, 5 ⁇ m to 50 ⁇ m, 10 ⁇ m to 50 ⁇ m, or 15 ⁇ m to 50 ⁇ m.
- the thickness of the nanopore separation membrane may be 5 ⁇ m to 1 mm. Specifically, it may be 10 ⁇ m to 1 mm, 15 ⁇ m to 1 mm, 20 ⁇ m to 1 mm, and 25 ⁇ m to 1 mm.
- the micropore separation membrane may have a pore size of 1 ⁇ m to 50 ⁇ m. Specifically, it may be 3 ⁇ m to 50 ⁇ m, 5 ⁇ m to 50 ⁇ m, 8 ⁇ m to 50 ⁇ m, or 10 ⁇ m to 50 ⁇ m.
- the microporous separation membrane may have a thickness of 0.2mm to 2mm. Specifically, it may be 0.5mm to 2mm, 0.8mm to 2mm, or 1mm to 2mm.
- the separation membrane may be a multiple separation membrane including a nanoporous separation membrane and a microporous separation membrane.
- a negative electrode according to an embodiment of the present invention, and a secondary battery including the same, are porous three-dimensional metal microparticles that can absorb and release alkali metal or alkaline earth metal ions by alloying and dealloying with an alkali metal or alkaline earth metal.
- the porous metal layer having a network structure cracking or pulverization due to volume change of the active material does not occur in the charging/discharging process, cycle characteristics can be improved, and high capacity and high energy can be obtained.
- the method of manufacturing an anode of the present invention does not include a conventional nano-ization process of an active material in manufacturing an active material layer composed of fine particles, it is possible to facilitate the manufacturing process and reduce manufacturing cost.
- 1 is a diagram showing a rod-shaped metal microparticle.
- FIG. 2 is a view showing the structure of a cathode porous metal layer according to an embodiment of the present invention.
- Example 3 is an actual photograph of the negative electrode porous metal layer in Example 1.
- Example 4 is a SEM photograph of the cathode Sn porous metal layer in Example 1.
- Example 5 shows the EDS spectrum of the negative electrode porous metal layer in Example 1.
- Example 6 is a SEM photograph of a state in which the cathode Sn porous metal layer of Example 1 completely reacted with Na electrochemically.
- Example 7 shows the EDS spectrum result of Example 1 in which the cathode porous metal layer was discharged with sodium to 1 mV (Na 3.75 Sn).
- Example 8 is a graph of charging and discharging of the negative electrode of Example 1.
- Example 11 is a cycle graph of the negative electrode of Example 1 and the negative electrode of Comparative Example 1.
- Example 13 is a SEM photograph of the anode Bi porous metal layer in Example 2.
- Example 14 is an XRD pattern of the anode Bi porous metal layer in Example 2.
- Example 15 is a graph of charging and discharging of the negative electrode of Example 2.
- 16 is a graph of 1 to 100 cycles of the negative electrode of Example 2.
- 17 is a diagram showing a half-cell structure.
- 18 is a diagram showing the structure of a full-cell.
- the metal layer is used to include a plate-like (plate-shaped) metal having a thickness and an area.
- a network structure means that particles have a physically interconnected form. In this way, when the active material particles are physically interconnected, a connection between the active material particles may be formed electrically.
- the alloying material absorbs sodium by electrochemically reacting and alloying with an alkali metal or alkaline earth metal such as sodium, and electrochemically absorbs sodium and the like by electrochemically releasing sodium and the like by dealloying, It means a material that can be released.
- These alloying materials are gallium (Ga, gallium), germanium (Ge, germanium), indium (In, indium), tin (Sn, tin), antimony (Sb, antimony), thallium (Tl, thallium), It may be selected from the group including lead (Pb, lead), bismuth (Bi, bismuth), and alloys thereof.
- metals listed above metals capable of reversibly absorbing and releasing alkali metal or alkaline earth metal ions by alloying and dealloying with alkali metal or alkaline earth metal may be included therein.
- Materials that can be absorbed and released through the alloying and dealloying reactions with the alloying material may be alkali metals and alkaline earth metals, and the alloying and dealloying reactions have the following chemical reaction formula.
- A is an alkali metal or alkaline earth metal
- M is an alloying material
- the ion capacity of the alloying material may vary depending on the type of the alloying material.
- the alloying material may have a different capacity depending on the degree of sodiumization.
- the volume of the alloying material (M) expands when alloyed with an alkali metal or alkaline earth metal such as sodium (A x M), and returns to the original alloying material (M) during dealloying and decreases in volume. Therefore, when the alloying material is applied as an electrode active material, when charging and discharging the battery, alloying and dealloying occurs in the electrode active material, causing an intrinsic problem of causing volume change of volume expansion and contraction in the alloying material. Let it.
- the volume change due to charging and discharging causes internal stress in the alloyed material, which leads to the generation of cracks in the electrode active material (layer), and finally, the crack grows, and the electrode active material (layer)
- This splitting leads to a process in which the electrode active material is pulverized into smaller particles.
- Such pulverization of the electrode active material (layer) causes a problem that the electrode active material (layer) is disconnected from the current collector or the conductive material in the electrode.
- electrons are not supplied from the current collector, it is placed in a state in which the electrochemical reaction can no longer be performed, and as the charging and discharging proceeds repeatedly, a rapid decrease in capacity occurs.
- an electrode having an alloying mechanism has a short charge/discharge cycle life.
- a method of making the active material into fine particles may be considered.
- a polymer binder is used to fix the powder electrode active material to the current collector, and a conductive material for improving conductivity is further included.
- these polymeric binders and conductive materials are materials that do not react electrochemically, and since the content of the active material in the electrode decreases, the total capacity of the electrode is reduced.
- a porous structure may be designed using the electrode active material, the same material, and the dissimilar material.
- the porous structure is designed using the same material, there is a problem that a fine powdering technique is required, and the manufacturing process becomes complicated.
- a material that does not react electrochemically is added to the electrode, thereby reducing the total capacity of the electrode.
- the compression process since the electrode using powder has a low tap density, the compression process must be entered. Even if the electrode is compressed, the processing density of the electrode using powder must be lower than that of an electrode made of a single mass. It is also generally very difficult to increase the processing density of an electrode containing them. For the same reason, it is difficult to increase the thickness in order to improve the loading amount of electrodes per area.
- an electrode active material having a high capacity by including an electrode active material having a high capacity, a high capacity electrode may be realized, and a negative electrode for a secondary battery having improved charge/discharge cycle characteristics due to a stable porous structure may be provided.
- an electrode active material layer having a porous structure in which fine electrode active material particles are interconnected without using micronized electrode active material powder so that a high-capacity negative electrode for secondary battery and a battery including the same can be manufactured by a simple method. You can provide a way to do it.
- the negative electrode according to an embodiment of the present invention includes a porous metal layer including a metal capable of reversibly absorbing and releasing alkali metal or alkaline earth metal ions by alloying and dealloying with an alkali metal or alkaline earth metal.
- the porous metal layer has a porous three-dimensional network structure in which rod-shaped metal microparticles are interconnected.
- the metal capable of absorbing and releasing alkali metal or alkaline earth metal ions by alloying and dealloying with the alkali metal or alkaline earth metal may be a metal including an alloying material.
- FIG. 2 is a view showing the structure of a porous metal layer of a negative electrode according to an embodiment of the present invention.
- the porous metal layer of the negative electrode according to the exemplary embodiment of the present invention has a porous three-dimensional network structure in which rod-shaped metal active material particles are three-dimensionally interconnected.
- Such a three-dimensional network structure may have a structure that is continuously connected not only in the thickness direction (longitudinal direction) but also in the area direction (transverse direction) of the porous metal layer.
- the porous metal layer includes a metal capable of absorbing and releasing alkali metal or alkaline earth metal ions by alloying and dealloying with an alkali metal or alkaline earth metal, and thus can implement a high capacity.
- the alkali metal or alkaline earth metal may be selected from the group including Li, Na, Mg, K, or Ca.
- the metal capable of absorbing and releasing alkali metal or alkaline earth metal ions by alloying and dealloying with the alkali metal or alkaline earth metal may be an alloying material.
- the alloying material may be Ga, Ge, In, Sn, Sb, Tl, Pb, or Bi. These metals have the advantage of realizing a high theoretical capacity by alloying with an alkali metal or an alkaline earth metal.
- the porous metal layer has a porous structure in which micro metal particles are interconnected, the porous metal layer itself may serve as an active material layer and a current collector. Accordingly, the negative electrode including the porous metal layer may further include a current collector, but is not limited thereto.
- the current collector may be copper, stainless steel, aluminum, a metal coated with carbon, carbon fiber, or carbon paper. .
- the present invention is not limited thereto, and may include those that can be applied based on common technical knowledge in the relevant technical field.
- the negative electrode according to an embodiment of the present invention may have a porous three-dimensional network structure in which a porous metal layer is connected to each other in a rod-shaped metal microparticle.
- the active material layer when the alloyed material is applied as an electrode active material, the active material layer may be pulverized and the active material may be separated from the current collector due to a large volume change during charging and discharging, and the electrical connection of the active material layer may be disconnected. That is, there is a problem that the electrode performance is remarkably deteriorated as the number of charging and discharging increases.
- the porous metal layer of the present application may provide a space capable of accommodating a volume change during charging and discharging as described above.
- the active material layer having the porous structure of the present application increases the specific surface area of the active material layer, thereby increasing the contact area with the electrolyte, decreasing the current per unit area, decreasing the internal resistance, reducing the overvoltage, and improving the charging and discharging speed.
- the active material layer Even if the active material layer has a porous structure, the active material layer may be cracked due to a change in volume.
- the porous structure of the present application can significantly reduce the breakage of the active material particles and the active material layer structure due to the stability of the structure despite a change in volume during charging and discharging, and improve charge/discharge cycle characteristics.
- the porous metal layer of the negative electrode according to an embodiment of the present invention may have the following characteristics.
- the porous metal layer may have an average pore diameter of 0.1 to 200 ⁇ m. Specifically, it may be 0.1 to 150 ⁇ m, 0.1 to 100 ⁇ m, 0.1 to 50 ⁇ m, 0.1 to 30 ⁇ m, 0.1 to 20 ⁇ m, 1 to 15 ⁇ m, 1 to 10 ⁇ m, or 1 to 5 ⁇ m.
- the porous metal layer may have a porosity of 50 to 90% by volume. Specifically, it may be 60 to 90% by volume, 70 to 90% by volume, 70 to 85% by volume, or 72 to 81% by volume.
- the metal microparticles may have an average diameter of 0.1 to 5 ⁇ m. Specifically, it may be 0.1 to 3 ⁇ m, 0.3 to 3 ⁇ m, 0.5 to 2 ⁇ m, or 0.5 to 1.5 ⁇ m.
- the metal microparticles may have an average length of 0.5 to 20 ⁇ m. Specifically, it may be 0.5 to 15 ⁇ m, 0.5 to 10 ⁇ m, 0.5 to 5 ⁇ m, 0.5 to 3 ⁇ m, or 1 to 3 ⁇ m. If the length of the metal microparticles is too long, the possibility of occurrence of structural breakage may increase because the volume expansion rate in the longitudinal direction is large during alloying.
- the metal microparticles may have an average aspect ratio (length/diameter) of 1 to 10. Specifically, it may be 1 to 8, 1 to 7, 1 to 5, 1 to 3, 1.1 to 10, 1.1 to 9, 1.1 to 7, 1.1 to 4, or 1.1 to 3.
- the rod-shaped microparticles are randomly connected, and the particles may have a structure having a bonding angle of more than 0° and less than 180° at most of the contact points.
- the pressure applied to the contact point due to volume expansion (especially, expansion in the longitudinal direction of the rod-shaped particles) during alloying decreases compared to the case where the angle is 180°
- the active material is reduced by reducing the breakage of the contact point and rod-shaped particles.
- the crushing of the (layer) can be suppressed, and the charge/discharge cycle characteristics can be improved.
- This structure may be due to the fact that most of the contact points having an angle of 180° between particles disappear in the step of repeatedly charging and discharging in a half-cell to be described later.
- the angle between particles refers to an angle formed by two or more rod-shaped particles based on a contact point, and in the case of a contact point where two particles are connected, it refers to a numerical value of the smaller angle.
- each rod-shaped microparticle has a structure in which 5 or less particles are mainly connected at a contact point where each rod-shaped microparticle is connected, and preferably, it may have a structure in which 2 to 3 particles are connected.
- the pressure applied to the contact point during volume expansion may increase, and the contact point forming an angle of 180° between particles increases.
- the occurrence of cracking and cracking of the porous structure may increase.
- the active material layer of the negative electrode manufactured according to an embodiment of the present invention forms a half-cell using a negative electrode including a metal layer, and repeatedly charges and discharges the same, thereby converting the metal layer into a porous metal layer.
- the metal layer repeatedly contracts and expands, and the metal layer is caused by factors such as heat of reaction generated during alloying and dealloying, and resistance at the contact point generated during charging and discharging of the half-cell. In, a sintering reaction occurs, forming a tight bond between the particles.
- unstable contacts and particles are broken and adhered to other particles, and the process of maintaining stable contacts and particles is repeated. Accordingly, it is expected that the finally obtained porous metal layer will have a very stable three-dimensional network porous structure of the present invention having solid contact points between the particles in the form of rods.
- Example 4 is a tin porous metal layer (Example 1) manufactured according to an exemplary embodiment of the present disclosure, and it can be seen that rod-shaped particles have a porous three-dimensional network structure connected to each other.
- the negative electrode porous metal layer of the present application has a stable structure in which no structural breakage occurs even when the active material layer is expanded by alloying. Even if the number of charge/discharge increases in the negative electrode including the porous metal layer having such a stable structure, pulverization and separation of the electrode active material (layer), and electrical disconnection of the active material layer may be significantly reduced, resulting in improved charge/discharge cycle characteristics. Can contribute to
- fine metal particles having a diameter smaller than the length of the metal microparticles are attached to the surface, or fine metal particles having a diameter smaller than the length of the metal microparticles protrude from the surface of the metal microparticles. It may have a surface. Specifically, the average particle diameter of the fine metal particles may be 0.1 to 5 ⁇ m. As described above, this may be formed in the process of repeatedly charging and discharging the half-cells, whereby unstable contacts and particles are broken and adhered to other particles during repetitive contraction and expansion of the metal layer.
- the rod-shaped Bi micro metal particles having an average diameter of 1.4 ⁇ m and an average length of 2.3 ⁇ m have fine particles with an average particle diameter of 0.5 ⁇ m protruding from the surface.
- the porous metal layer may include at least 90% by weight of a metal selected from the group including Ga, Ge, In, Sn, Sb, Tl, Pb, and Bi based on 100% by weight of the total porous metal layer. Specifically, it may be 90 to 100% by weight, 92 to 100% by weight, 95 to 100% by weight, 97 to 100% by weight, 99 to 100% by weight, or 99.5 to 100% by weight. In this case, since the content of the active material in the electrode is high, the electrode capacity can be improved.
- the shape of the porous metal layer may be formed by the manufacturing method according to an exemplary embodiment of the present invention, but may not be limited thereto.
- the porous metal layer of the present invention does not have a three-dimensional porous structure in which microparticles are mutually aggregated, or an active material is finely powdered and applied as a composition by controlling the shape of the particles or compressed to form a metal active material layer.
- a porous metal layer composed of micro-sized active material particles having the above shape may be formed from the metal layer. Therefore, since the process for fine powdering is not included, manufacturing cost can be reduced, and an active material layer and an electrode that do not contain a material that does not react electrochemically such as a binder can be formed, thus contributing to capacity improvement. I can.
- a negative electrode including a porous metal layer having a three-dimensional network structure was prepared by combining Sn microparticles with each other. Looking at the SEM photograph of the surface of the porous metal layer according to the embodiment of the present invention, the porous metal layer of the embodiment provides a space capable of sufficiently accommodating changes in the volume of the active material when Na ions are absorbed by the porous three-dimensional network structure in which metal microparticles are interconnected. It was confirmed that the structure of the porous metal layer did not collapse even when alloyed. In addition, it was confirmed that the charge/discharge cycle characteristics can be maintained even though Sn having a large volume change during alloying was applied as the active material.
- the porous metal layer may include at least 90% by weight of a metal selected from the group including Ga, Ge, In, Sn, Sb, Tl, Pb, and Bi based on 100% by weight of the total porous metal layer. Specifically, one or two or more metals selected from the group including Ga, Ge, In, Sn, Sb, Tl, Pb, and Bi may be included.
- the content of the metal selected from the group containing Ga, Ge, In, Sn, Sb, Tl, Pb, and Bi is 97 to 100% by weight, 99 to 100% by weight, or 99.5 to 100% by weight based on 100% by weight of the total porous metal layer. It may contain 100% by weight.
- a porous metal layer manufactured according to an embodiment of the present invention and a negative electrode including the same unlike the active material layer manufactured using fine powder active material particles in the related art, it does not contain a conductive material and/or a binder that does not contribute to electrode capacity. I can. Therefore, it is possible to improve the electrode capacity.
- the porous metal layer may include at least 90% by weight of the metal represented by the following Formula 1 based on 100% by weight of the total porous metal layer.
- the x may be 0 to 6. Specifically, it may be greater than 0 and less than or equal to 6.
- the porous metal layer may include 90% by weight or more of the metal represented by the following Formula 2 or 3 based on 100% by weight of the total porous metal layer.
- the A may be an alkali metal and an alkaline earth metal.
- B may be selected from the group including Ga, Ge, In, Sn, Sb, Tl, Pb, and Bi.
- the y may be 0 to 1. Specifically, it may be greater than 0 and less than or equal to 1.
- the z may be 0 to 3. Specifically, it may be greater than 0 and 3 or less.
- One specific embodiment of the present invention to be described later discloses a negative electrode in which the porous porous metal layer contains 100% by weight of Bi. Another embodiment of the negative electrode of the present invention discloses that the porous metal layer contains 92% by weight of Sn and Na as the balance.
- the negative electrode according to the exemplary embodiment of the present invention may have a capacity retention rate of 95% or more after 80 charging and discharging times. Specifically, it may be 95 to 100%, 95% or more and less than 100%, 99.3% or more and less than 100%, 99% to 99.9%, or 99.3% to 99.9%.
- the negative electrode according to the exemplary embodiment of the present invention may have a capacity retention rate of 95% or more after 80 charging and discharging times. Specifically, it may be 95 to 100%, 95% or more and less than 100%, 99.3% or more and less than 100%, 99% to 99.9%, or 99.3% to 99.9%.
- the negative electrode according to the exemplary embodiment of the present invention may have a capacity of 80% or more of the theoretical capacity. Specifically, it may be 80% to 100%, 80% or more, and less than 100%, 80% to 99.9%, or 85% to 99.9%.
- a method of manufacturing a secondary battery includes the steps of configuring a negative electrode including a porous metal layer and a half-cell including a metal electrode; Converting the metal layer into a porous metal layer by charging and discharging the half-cell two or more times; And preparing a full-cell including the negative electrode converted into the porous type, a positive electrode including a positive electrode active material, and an electrolyte.
- the porous metal layer includes a metal capable of absorbing and releasing alkali metal or alkaline earth metal ions by alloying and dealloying with an alkali metal or alkaline earth metal, and the metal electrode includes an alkali metal or alkaline earth metal.
- the metal capable of absorbing and releasing alkali metal or alkaline earth metal ions by alloying and dealloying with the alkali metal or alkaline earth metal may be selected from the group including Ga, Ge, In, Sn, Sb, Tl, Pb, and Bi. have.
- the alkali metal or alkaline earth metal may include those selected from the group containing Li, Na, and Mg.
- the negative electrode according to the exemplary embodiment of the present invention may realize a high capacity by alloying and dealloying with an alkali metal or alkaline earth metal.
- the half-cell may have a structure as shown in FIG. 17.
- the full-cell may have a structure as shown in FIG. 18.
- the number of times of charging and discharging and the porous structure of the formed porous metal layer may vary according to the type of metal included in the metal layer and the type of metal electrode.
- the porous metal layer may be converted into a porous three-dimensional network structure in which rod-shaped metal microparticles are interconnected.
- an active material layer composed of micro-sized active material particles can be manufactured without using an expensive and complicated process of finely powdering the active material and manufacturing an electrode active material layer by using it.
- the step of converting the metal layer into a porous metal layer may be performing a cycle in which the cathode and the metal electrode are electrically connected to be fully charged and completely discharged.
- a cathode including the metal layer may be disposed on an anode, and the metal electrode may be disposed on a cathode to constitute a half-cell.
- the volume expansion amount of the metal layer varies depending on the amount of alkali metal ions or alkaline earth metal ions absorbed and released during charging and discharging.
- micro-sized particles are interconnected even with a short period of time and a small number of charge and discharge times, thereby manufacturing a porous metal layer having a three-dimensional network structure.
- the negative electrode including the metal layer includes a separator between the metal electrode as the counter electrode and constitutes a half-cell to perform charging and discharging, the current collector and the fine size of the current collector and the fine-sized The limited space of the separator having pores prevents the separation of the metal layer and the metal active material particles, and supports the shape of the metal layer.
- Configuring the half-cell It may be to further include the step of preparing a negative electrode including a metal layer previously.
- the method of forming the metal layer may be by rolling, plating, sputtering, or aerosol.
- the step of preparing the negative electrode including the porous metal layer may include manufacturing a negative electrode including the metal layer by rolling a metal foil.
- a metal layer can be simply formed on the current collector, a metal layer having a desired thickness and area can be easily formed, metal fragments can be easily recycled by pressure welding, and electrode capacity can be easily designed. have.
- the capacity and energy of the battery are determined by the electrode, and since the thickness of the electrode means the specific gravity of the electrode in the battery, the capacity and energy of the battery may increase as the thickness of the electrode increases.
- the manufacturing of the negative electrode may include forming a metal layer to a thickness of 25 ⁇ m to 2 mm. After the step of manufacturing the anode, the shape and thickness of the metal layer may be changed through the step of assembling the half-cell to convert the metal layer into a porous metal layer, so the thickness of the metal layer formed in the step of manufacturing the cathode may be determined by the following steps. It needs to be set in consideration.
- the electrode may be easily torn, and the electrode may be completely broken due to pores. If the thickness is too thick, it is difficult to expand the inside of the metal active material, and since ion transfer may be very slow, an electrochemical reaction, that is, a charge/discharge rate may be significantly reduced.
- a secondary battery according to an embodiment of the present invention includes a positive electrode; Electrolytes; And a negative electrode according to an embodiment of the present invention.
- the negative electrode includes a current collector and a porous metal layer including a metal capable of absorbing and releasing alkali metal or alkaline earth metal ions by alloying and dealloying with an alkali metal or alkaline earth metal.
- the porous metal layer has a porous three-dimensional network structure in which rod-shaped metal microparticles are interconnected.
- the electrolyte may include a metal salt and an ether-based solvent.
- the metal salt may be selected from the group including NaPF 6 , NaClO 4 , NaCF 3 SO 3 , NaBF 4 , LiPF 6 , LiCF 3 SO 3 , LiBF 4, and LiTFSI.
- the ether solvent may be selected from the group including DME, TEGDME, DEGDME, PEGDME, and PEO.
- DME dimethoxyethane
- TEGDME 1,3-dioxolane
- DEGDME tetraethylene glycol dimethyl ether
- TEGDME diethylene glycol dimethyl ether
- TEGDME triethylene glycol dimethyl ether
- PEGDME polyethylene glycol dimethyl ether
- PEO polyethylene oxide
- the anode is CuS. It may include those selected from the group including Cu 2 S, NiS, Ni 3 S 2 , NiS 2 , TiS 2 , and MoS 3.
- the secondary battery according to the exemplary embodiment of the present invention may further include a separator between the positive electrode and the negative electrode.
- the separation membrane may be a nanoporous separation membrane.
- the nanopore separation membrane may have a pore size of 10 nm to 100 nm.
- the pulverized metal layer particles may serve as a physical barrier so that the pulverized metal layer particles are not separated from the negative electrode according to battery charging and discharging. Accordingly, the pulverized metal layer particles may be attached to the metal layer to continuously serve as an active material, and a charge/discharge cycle life may be improved. If the pores of the separator are too large, the pulverized metal layer particles may be separated or separated from the negative electrode and the cycle characteristics may be deteriorated. If the pores of the separator are too small, impregnation of the electrolyte is difficult and the contact area between the electrolyte and the electrode decreases. Ion transfer may not be smooth, and consequently, ion conduction required for driving the battery may not be satisfied.
- the thickness of the nanopore separation membrane may be 5 ⁇ m to 1 mm. When the above range is satisfied, it serves as a sufficient physical barrier to prevent separation from the pulverized metal layer, thereby contributing to improvement of cycle characteristics.
- Celgard 2400 (thickness 25 ⁇ m, pores 100 nm or less) was used as a nanopore separation membrane.
- the separation membrane may be a microporous separation membrane.
- the micropore separation membrane may have a pore size of 1 ⁇ m to 50 ⁇ m.
- the microporous separation membrane may have a thickness of 0.2mm to 2mm.
- the microporous separator may prevent a short circuit inside the battery due to the formation of dendrite generated on the electrode surface during the charging and discharging process.
- a glass fiber filter (about 1 mm in thickness, 10 ⁇ m or more pores) was used as a microporous separation membrane.
- a plurality of microporous separation membranes and/or microporous separation membranes may be included.
- a triple separation membrane (Celgard 2400 / glass fiber filter / Celgard 2400) in which nanoporous separation membranes are positioned on both sides of one microporous separation membrane, respectively, was used.
- the nanoporous separation membrane may be in contact with each electrode, and a microporous separation membrane may be positioned between the two nanoporous separation membranes.
- the role of the glass fiber filter may delay the time of internal short circuit due to sodium metal or dendritic phase of the anode.
- Celgard 2400 in contact with the anode can suppress the formation of dendritic phase of the anode.
- Celgard 2400 in contact with the cathode prevents the metal layer particles pulverized with nano pores from separating from the cathode and can delay the internal short circuit due to the formation of dendritic phase of the anode.
- Example 1 Cathode including Sn porous metal layer
- a Sn foil metal layer having a thickness of 27 ⁇ m was formed by rolling Sn metal, and then a negative electrode having a diameter of 6 mm including the Sn foil metal layer was manufactured by punching the Sn metal layer.
- a half-cell was constructed using the negative electrode. Specifically, by connecting the cathode including the Sn foil metal layer and the Na metal electrode, applying a current of 0.1 C-rate to perform charging and discharging 100 times, thereby repeatedly absorbing and discharging Na to the Sn foil metal layer to obtain Sn The foil metal layer was converted to a porous Sn porous metal layer.
- the Sn foil metal layer contracts and expands repeatedly, and in this process, crushing and recombination are repeated. It happens. Parts with mechanically unstable structures in contraction or expansion become small particles by cracking or crushing again, and these small particles recombine to form a new shape. On the other hand, when contracting or expanding, the part that is joined in a stable structure does not cause cracks or crushing even after repeated expansion and contraction, and maintains its original shape. After sufficiently repeated charging and discharging, the porous metal layer has a structure that is stable against volume expansion and contraction.
- the volume of the porous metal layer of the negative electrode according to an embodiment of the present invention reacts with sodium to expand (discharge) or decreases the volume due to the release of sodium (charge), the occurrence of cracking or crushing is significantly reduced.
- a decrease in discharge capacity is suppressed, and charging/discharging cycle characteristics may be improved.
- the structure that is stable against volume expansion and contraction appears as a porous three-dimensional network structure in which rod-shaped Sn metal microparticles are interconnected in a unique way.
- a network structure means that particles have a physically interconnected form. In this way, when the active material particles are physically interconnected, a connection between the active material particles may be formed electrically.
- the shape, particle size, or porosity of the porous metal layer may vary according to the number of times of charging and discharging and the type of metal of the metal layer.
- Example 3 is a real photograph of the porous metal layer of the negative electrode of Example 1. It can be seen that it is a porous metal layer having a three-dimensional network structure interconnected in the area direction and thickness direction of the electrode without visible cracks.
- the average pore diameter is 2 ⁇ m, and the porosity of the active material layer is 81% by volume.
- the rod-shaped Sn micro-metal particles have an average diameter of 0.8 ⁇ m, an average length of 1.2 ⁇ m, and the aspect ratio (length/diameter) of the rod-shaped micro particles is 1.3.
- the bonding direction of the rod-shaped metal particles at the contact point is indicated by a red arrow.
- the rod-shaped Sn micro-metal particles have a porous three-dimensional network structure by being interconnected in a random direction rather than a straight line in which the angle between the particles is 180 degrees.
- 1 to 5 rod-shaped particles are connected at each contact point (connection site) to form a three-dimensional porous structure.
- this porous structure and porosity not only provide a space to accommodate the increased volume when the porous metal layer reacts with an alkali metal or alkaline earth metal to expand the volume, but also provides a structure that is stable against volume expansion. By having it, it is possible to reduce cracking or pulverization of active material particles or structures due to charging and discharging, and suppressing capacity reduction during charging/discharging cycles.
- Figure 5 shows the EDS spectrum of the porous metal layer of Example 1 negative electrode.
- Example 1 The composition of the porous metal layer of the negative electrode is represented by Na 0.08 Sn. That is, 92% by weight of Sn and the balance Na are included with respect to 100% by weight of the porous metal layer.
- the Cu peak shown in FIG. 5 is a peak due to the SEM holder, and the C peak and the O peak correspond to peaks independent of the porous metal layer as a result of electrolyte or oxidation.
- Figure 5 is a measurement of the EDS spectrum of the porous metal layer in a state in which the negative electrode of Example 1 was not washed. Na is considered to be due to an electrolyte, or to remain in the active material layer without being released after being absorbed by the active material layer in the step of converting to the porous porous metal layer. That is, it is found that the Sn content in the porous metal layer substantially exceeds 92% by weight with respect to 100% by weight of the porous metal layer.
- FIG. 6 is a SEM photograph of a state in which the Sn porous metal layer of the negative electrode of Example 1 was completely electrochemically reacted with Na to 1 mV (full discharge, Na 3.75 Sn). It can be seen that the size and number of pores in the porous metal layer were reduced by the maximum expansion of the Sn metal microparticles by reaction with Na, but the pores were still secured. In particular, even though the volume has expanded, no cracks or crushed small particles can be observed. That is, it can be seen that the porous active material layer of the negative electrode of the present invention maintains a very stable structure without breaking or collapsing the structure even with volume expansion.
- the average pore diameter of the Na 3.75 Sn active material layer of Example 1 was 0.5 ⁇ m, and the porosity was 10% by volume. Accordingly, the porous metal layer of Example 1 provides a sufficient space to accommodate volume expansion due to reaction with an alkali metal or alkaline earth metal, and at the same time, an inherent stable internal stress that occurs during volume expansion and contraction can be dispersed. It can be seen that it has a structure.
- Example 7 shows the EDS spectrum result of the state in which the porous metal layer of the negative electrode of Example 1 was discharged with sodium to 1 mV (Na 3.75 Sn).
- the composition is Na x Sn, and the range of x can be up to 3.75.
- the Cu peaks shown in FIG. 7 are peaks due to the SEM holder, and the C peaks, O peaks, P peaks, and F peaks are peaks independent of the porous metal layer as a result of electrolyte or oxidation.
- Example 8 is a graph of charging and discharging of the negative electrode of Example 1.
- the configuration of the battery is a sodium metal counter electrode, a separator layer impregnated with an electrolyte, and a negative electrode of Example 1 are sequentially stacked to show a charging/discharging curve at a current of 0.1 C-rate in the first cycle.
- Example 1 It can be seen that the negative electrode has a charge capacity and a discharge capacity of 692 mAh/g, and it can be seen that it has a very reversible charge and discharge capacity.
- Example 1 In order to compare and confirm the effect of the structure of the porous metal layer of the negative electrode, a porous tin negative electrode including the tin active material of Comparative Example 1 was prepared using tin powder. Specifically, a mixture of tin powder and NaCl powder having 150 nm particles was prepared in the form of pellets compressed at 15 ton in a 50 mm x 1.5 mm frame. Then, by removing NaCl with distilled water, a porous electrode composed of only the tin active material of Comparative Example 1 was prepared.
- tin particles having an average diameter of 150 nm and the particles are aggregated with each other to form a porous tin negative electrode having a structure in which 500 to 1 ⁇ m secondary particles and 200 to 1 ⁇ m pores coexist. .
- Example 11 is a graph showing the cycle characteristics of the negative electrode of Example 1 and the negative electrode of Comparative Example 1.
- Example 1 The negative electrode had an initial capacity of 692 mAh/g during 80 cycles, a maximum capacity of 757 mAh/g, and a minimum capacity of 601 mAh/g during the cycle. That is, in the case of Example 1, a capacity of 600 mAh/g or more was shown for 80 cycles, which corresponds to about 1.6 to 2 times the theoretical capacity of 372 mAh/g of a conventional graphite negative electrode for a lithium ion battery.
- Example 1 In the case of the negative electrode, it can be seen that the capacity retention rate after 80 charging and discharging was 99.3%, which has excellent cycle characteristics.
- the negative electrode of Comparative Example 1 is discharged at about 1 mAh/g for 6 cycles, and charging does not occur. It can be seen that this is because the electrode of Comparative Example 1 includes the Sn active material layer having a porous structure, but the structure of the active material layer is not maintained due to volume change due to charging and discharging, and cracking and crushing occur.
- the active material layer of the negative electrode of Example 1 has a stable porous structure with a tight bond, and thus, is a high-capacity negative electrode with improved charge/discharge cycle characteristics.
- the active material layer since 4 or less columnar tin particles are bonded in a random direction at each contact point between the columnar particles, it can be confirmed that stress can be effectively dispersed during volume expansion.
- the negative electrode of Comparative Example 1 has a structure that is difficult to disperse stress because a plurality of particles are bonded in various directions so that the bonding site of the metal particles is not distinguished, and more than four particles are bonded to the bonding site. That is, it can be seen that even if the electrode has a simple porous structure, it is difficult to maintain a stable structure by effectively distributing the stress upon expansion.
- Example 2 Anode including Bi porous metal layer
- Bi metal was rolled to a thickness of 2 mm to form a Bi metal foil layer, which was punched to prepare a 5 X 5 mm square cathode including the Bi foil metal layer.
- a half-cell was constructed using the negative electrode. Specifically, the cathode including the Bi foil metal layer and the Na metal electrode were connected. By applying a current of 0.01 C-rate and performing charging and discharging four times, the Bi foil metal layer was converted into a Bi porous metal layer.
- the rod-shaped Bi micro metal particles have an average diameter of 1.4 ⁇ m, an average length of 2.3 ⁇ m, and the aspect ratio (length/diameter) of the rod-shaped micro particles is 1.6.
- the rod-shaped Bi micro metal particles are interconnected in random directions to have a porous three-dimensional network structure. At each contact point (connection site), 1 to 5 rod-shaped particles are connected to form a three-dimensional porous structure.
- such a porous structure and porosity may contribute to improvement of electrode cycle characteristics by providing a space capable of accommodating an increased volume when the porous metal layer reacts with an alkali metal or alkaline earth metal to expand the volume. More specifically, it can be seen that the rod-shaped Bi micro metal particles have a protruding shape of fine particles having an average particle diameter of 0.5 ⁇ m on the surface.
- Example 15 is a graph of charging and discharging of the negative electrode of Example 2.
- the configuration of the battery is a sodium metal counter electrode, a separator layer impregnated with an electrolyte, and a negative electrode of Example 2 are sequentially stacked to show a charging/discharging curve at a current of 0.1 C-rate in the first cycle. It shows the charge/discharge graph at 0.01 C-rate of the 1st cycle.
- Example 2 It can be seen that the negative electrode has a charge capacity of 366 mAh/g and a discharge capacity of 352 mAh/g, and it can be seen that it has a very reversible charge and discharge capacity.
- 16 is a graph showing the cycle characteristics of 1 to 100 cycles of the negative electrode of Example 2. Charging and discharging proceeded at a current of 0.1 C-rate, and the initial capacity was 330 mAh/g, even after 100 cycles, 330 mAh/g, and the average capacity was 340 mAh/g, indicating a capacity of 85% of the theoretical capacity. In addition, it can be seen that the discharge capacity is maintained even after 100 cycles, and the capacity retention rate is 99.8%.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
An anode according to one embodiment of the present invention comprises a porous metal layer comprising a metal capable of absorbing and desorbing an alkali metal or alkaline earth metal ions by being alloyed and dealloyed with an alkali metal or an alkaline earth metal, wherein the porous metal layer has a porous three-dimensional network structure in which rod-shaped metal microparticles are interconnected.
Description
본 발명은 알칼리 금속 또는 알칼리 토금속과 합금화 및 탈합금화에 의해 알칼리 금속 또는 알칼리 토금속 이온을 흡수 방출할 수 있는 금속을 포함하는 마이크로 활물질 입자가 상호 연결된 다공성 3차원 네트워크 구조를 가지는 다공성 금속층을 포함하는 음극, 이의 제조 방법, 및 이를 포함하는 이차 전지에 관한 것이다. The present invention is a negative electrode comprising a porous metal layer having a porous three-dimensional network structure in which micro active material particles including a metal capable of absorbing and releasing alkali metal or alkaline earth metal ions by alloying and dealloying with an alkali metal or alkaline earth metal are interconnected. , To a method for manufacturing the same, and a secondary battery including the same.
각종 휴대 전자기기, 및 전기자동차 등이 연구 개발됨에 따라 에너지 저장 기술의 필요성은 더욱 증가하고 있으며, 이에 따라 높은 에너지 밀도와 전압을 가지는 리튬 이차 전지가 널리 사용되고 있다. As various portable electronic devices and electric vehicles are researched and developed, the need for energy storage technology is further increasing, and accordingly, lithium secondary batteries having high energy density and voltage are widely used.
그러나, 리튬의 높은 가격과 한정된 매장량 때문에, 차세대 전지로서 비교적 낮은 가격과 높은 에너지 밀도를 가지는 소듐을 사용하는 소듐 이온전지에 대한 활발한 연구가 이뤄지고 있다. However, due to the high price and limited reserves of lithium, active research on sodium ion batteries using sodium having a relatively low price and high energy density as a next-generation battery is being conducted.
그러나, 리튬 이온전지에서 사용되는 흑연 음극을 소듐 이온전지에 적용하더라도, 종래 리튬 이온전지에서와 같은 높은 용량을 달성할 수 없을 뿐만 아니라, 높은 에너지를 갖는 전지를 개발할 수 없는 문제점이 있다.However, even if a graphite negative electrode used in a lithium ion battery is applied to a sodium ion battery, there is a problem that not only a high capacity as in the conventional lithium ion battery cannot be achieved, and a battery having high energy cannot be developed.
이에, 소듐 이온전지 등에 적용하더라도 높은 용량을 달성할 수 있는 새로운 음극의 개발이 필요한 실정이다. Accordingly, there is a need to develop a new anode capable of achieving high capacity even when applied to a sodium ion battery or the like.
본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로, 알칼리 금속 또는 알칼리 토금속과 합금화 및 탈합금화에 의해 알칼리 금속 또는 알칼리 토금속 이온을 흡수 방출할 수 있는 다공성 금속층을 포함하는 고용량 음극, 이의 제조 방법 및 이를 포함하는 이차 전지를 제공하고자 한다. The present invention has been devised to solve the above-described problems, a high-capacity negative electrode comprising a porous metal layer capable of absorbing and releasing alkali metal or alkaline earth metal ions by alloying and dealloying with an alkali metal or alkaline earth metal, a method of manufacturing the same, and It is intended to provide a secondary battery including this.
본 발명의 일 구현예에 따른 음극은 알칼리 금속 또는 알칼리 토금속과 합금화 및 탈합금화에 의해 알칼리 금속 또는 알칼리 토금속 이온을 흡수 방출할 수 있는 금속을 포함하는 다공성 금속층;을 포함한다. A negative electrode according to an embodiment of the present invention includes a porous metal layer including a metal capable of absorbing and releasing alkali metal or alkaline earth metal ions by alloying and dealloying with an alkali metal or alkaline earth metal.
상기 다공성 금속층은 막대형태의 금속 마이크로 입자가 상호 연결된 다공성 3차원 네트워크 구조인 것일 수 있다. The porous metal layer may have a porous three-dimensional network structure in which rod-shaped metal microparticles are interconnected.
상기 다공성 금속층은 기공 평균 직경이 0.1 내지 200 μm 인 것일 수 있다. The porous metal layer may have an average pore diameter of 0.1 to 200 μm.
상기 다공성 금속층은 기공도가 50 내지 90 부피% 인 것일 수 있다. The porous metal layer may have a porosity of 50 to 90% by volume.
상기 금속 마이크로 입자는 평균 직경이 0.1 내지 5 μm 인 것일 수 있다. The metal microparticles may have an average diameter of 0.1 to 5 μm.
상기 금속 마이크로 입자는 평균 길이가 0.5 내지 20 μm 인 것일 수 있다. The metal microparticles may have an average length of 0.5 to 20 μm.
상기 금속 마이크로 입자는 평균 종횡비(길이/직경)가 1 내지 10인 것일 수 있다. The metal microparticles may have an average aspect ratio (length/diameter) of 1 to 10.
상기 다공성 금속층은 Ga, Ge, In, Sn, Sb, Tl, Pb, 및 Bi를 포함하는 군에서 선택된 금속을 전체 다공성 금속층 100 중량% 기준으로 90 중량% 이상 포함하는 것일 수 있다. The porous metal layer may include at least 90% by weight of a metal selected from the group including Ga, Ge, In, Sn, Sb, Tl, Pb, and Bi based on 100% by weight of the total porous metal layer.
상기 다공성 금속층은 하기 화학식 1로 표시되는 금속을 전체 다공성 금속층 100 중량% 기준으로 90 중량% 이상 포함하는 것일 수 있다. The porous metal layer may include at least 90% by weight of the metal represented by Formula 1 below based on 100% by weight of the total porous metal layer.
[화학식 1] [Formula 1]
상기 A는 Li, Na, Mg, K, 또는 Ca 이고, 상기 B는 Ga, Ge, In, Sn, Sb, Tl, Pb, 및 Bi를 포함하는 군에서 선택된 것이고, 상기 x는 0 내지 6 일 수 있다. Wherein A is Li, Na, Mg, K, or Ca, and B is selected from the group containing Ga, Ge, In, Sn, Sb, Tl, Pb, and Bi, and x may be 0 to 6 days have.
더욱 구체적으로, 상기 다공성 금속층은 하기 화학식 2 또는 화학식 3으로 표시되는 금속을 전체 다공성 금속층 100 중량% 기준으로 90 중량% 이상 포함하는 것일 수 있다. More specifically, the porous metal layer may include at least 90% by weight of the metal represented by the following Chemical Formula 2 or 3, based on 100% by weight of the total porous metal layer.
[화학식 2][Formula 2]
[화학식 3][Formula 3]
상기 y는 0 내지 1이고, 상기 z는 0 내지 3일 수 있다. Y may be 0 to 1, and z may be 0 to 3.
본 발명의 일 구현예에 따른 이차 전지의 제조방법은, 금속층을 포함하는 음극, 및 금속 전극을 포함하는 하프-셀(half-cell)를 구성하는 단계, 상기 하프-셀(half-cell)을 2회 이상 충전 및 방전을 수행하여, 상기 금속층을 다공성 금속층으로 전환하는 단계, 및 상기 다공성 금속층을 포함하는 음극, 양극 활물질을 포함하는 양극, 및 전해질을 포함하는 풀-셀(full-cell)을 제조하는 단계를 포함한다. A method of manufacturing a secondary battery according to an embodiment of the present invention includes the steps of configuring a half-cell including a negative electrode including a metal layer and a metal electrode, and forming the half-cell. Charging and discharging two or more times to convert the metal layer into a porous metal layer, and a full-cell including a negative electrode including the porous metal layer, a positive electrode including a positive electrode active material, and an electrolyte. It includes the step of manufacturing.
상기 금속층은 알칼리 금속 또는 알칼리 토금속과 합금화 및 탈합금화에 의해 알칼리 금속 또는 알칼리 토금속 이온을 흡수 방출할 수 있는 금속을 포함할 수 있다. The metal layer may include a metal capable of absorbing and releasing alkali metal or alkaline earth metal ions by alloying and dealloying with an alkali metal or alkaline earth metal.
상기 금속 전극은 알칼리 금속 또는 알칼리 토금속을 포함하는 것일 수 있다. The metal electrode may include an alkali metal or an alkaline earth metal.
상기 금속층을 다공성 금속층으로 전환하는 단계는 상기 음극과 금속 전극을 전기적으로 연결하여 완전 충전과 완전 방전으로 사이클을 진행하는 것일 수 있다. The step of converting the metal layer into a porous metal layer may be performing a cycle in which the cathode and the metal electrode are electrically connected to be fully charged and completely discharged.
상기 금속층을 다공성 금속층으로 전환하는 단계에서 상기 금속층은 막대형태의 금속 마이크로 입자가 상호 연결된 다공성 3차원 네트워크 구조로 전환되는 것일 수 있다. In the step of converting the metal layer into a porous metal layer, the metal layer may be converted into a porous three-dimensional network structure in which rod-shaped metal microparticles are interconnected.
상기 하프-셀(half-cell)을 구성하는 단계 이전에 금속 포일을 압연하여 금속층을 포함하는 음극을 제조하는 단계를 더 포함하는 것일 수 있다. Prior to the step of configuring the half-cell, the method may further include a step of manufacturing a negative electrode including a metal layer by rolling a metal foil.
상기 음극을 제조하는 단계는 금속층을 25 μm 내지 2mm 두께로 형성하는 것일 수 있다. 구체적으로, 27 μm 내지 2 mm 일 수 있다. The manufacturing of the negative electrode may include forming a metal layer to a thickness of 25 μm to 2 mm. Specifically, it may be 27 μm to 2 mm.
본 발명의 일 구현예에 따른 이차 전지는 양극, 전해질, 및 본 발명의 일 구현예에 따른 음극을 포함하는 것일 수 있다. A secondary battery according to an embodiment of the present invention may include a positive electrode, an electrolyte, and a negative electrode according to an embodiment of the present invention.
상기 전해질은 금속염, 및 에테르계 용매를 포함하는 것일 수 있다. The electrolyte may include a metal salt and an ether-based solvent.
상기 에테르계 용매는 디메톡시에탄(Dimethoxyethane, DME), 1, 3-다이옥솔란(1,3-dioxolane), 테트라에틸렌 글리콜 디메틸 에테르(tetraethylene glycol dimethyl ether, TEGDME), 디에틸렌 글리콜 디메틸 에테르(Diethylene glycol dimethyl ether, DEGDME), 트리에틸렌 글리콜 디메틸 에테르(Triethylene glycol dimethyl ether, TEGDME), 폴리에틸렌 글리콜 디메틸 에테르(Polyethylene glycol dimethyl ether, PEGDME), 폴리에틸렌옥사이드(Polyethyleneoxide, PEO) 및 이들의 혼합물을 포함하는 군에서 선택된 것일 수 있다. The ether solvent is dimethoxyethane (DME), 1,3-dioxolane (1,3-dioxolane), tetraethylene glycol dimethyl ether (TEGDME), diethylene glycol dimethyl ether (Diethylene glycol). dimethyl ether, DEGDME), triethylene glycol dimethyl ether (TEGDME), polyethylene glycol dimethyl ether (PEGDME), polyethylene oxide (PEO), and a mixture thereof. Can be.
상기 양극과 음극 사이에 분리막을 더 포함할 수 있다.A separator may be further included between the anode and the cathode.
상기 분리막은 기공이 10nm 내지 100nm 인 나노 기공 분리막인 것일 수 있다. 구체적으로, 20nm 내지 100nm, 50nm 내지 100nm, 또는 80nm 내지 100nm일 수 있다. The separation membrane may be a nanoporous separation membrane having pores of 10 nm to 100 nm. Specifically, it may be 20nm to 100nm, 50nm to 100nm, or 80nm to 100nm.
상기 분리막은 기공이 1μm 내지 50μm인 마이크로 기공 분리막인 것일 수 있다. 구체적으로, 3μm 내지 50μm, 5μm 내지 50μm, 10μm 내지 50μm, 또는 15μm 내지 50μm 일 수 있다. The separation membrane may be a microporous separation membrane having pores of 1 μm to 50 μm. Specifically, it may be 3 μm to 50 μm, 5 μm to 50 μm, 10 μm to 50 μm, or 15 μm to 50 μm.
상기 나노 기공 분리막의 두께는 5μm 내지 1mm일 수 있다. 구체적으로, 10μm 내지 1mm, 15μm 내지 1mm, 20μm 내지 1mm, 25μm 내지 1mm 일 수 있다. The thickness of the nanopore separation membrane may be 5 μm to 1 mm. Specifically, it may be 10 μm to 1 mm, 15 μm to 1 mm, 20 μm to 1 mm, and 25 μm to 1 mm.
상기 마이크로 기공 분리막은 기공이 1μm 내지 50μm인 것일 수 있다. 구체적으로, 3μm 내지 50μm, 5μm 내지 50μm, 8μm 내지 50μm, 또는 10μm 내지 50μm일 수 있다. The micropore separation membrane may have a pore size of 1 μm to 50 μm. Specifically, it may be 3 μm to 50 μm, 5 μm to 50 μm, 8 μm to 50 μm, or 10 μm to 50 μm.
상기 마이크로 기공 분리막은 두께가 0.2mm 내지 2mm인 것일 수 있다. 구체적으로, 0.5mm 내지 2mm, 0.8mm 내지 2mm, 또는 1mm 내지 2mm일 수 있다. The microporous separation membrane may have a thickness of 0.2mm to 2mm. Specifically, it may be 0.5mm to 2mm, 0.8mm to 2mm, or 1mm to 2mm.
상기 분리막은 나노 기공 분리막 및 마이크로 기공 분리막을 포함하는 다중 분리막일 수 있다. The separation membrane may be a multiple separation membrane including a nanoporous separation membrane and a microporous separation membrane.
본 발명의 일 구현예에 따른 음극, 및 이를 포함하는 이차 전지는 알칼리 금속 또는 알칼리 토금속과 합금화 및 탈합금화에 의해 알칼리 금속 또는 알칼리 토금속 이온을 흡수 방출할 수 있는 금속 마이크로 입자가 상호 연결된 다공성 3차원 네트워크 구조를 가지는 다공성 금속층을 포함함으로써, 충·방전 과정에서 활물질의 부피 변화에 의한 균열이나 분쇄가 일어나지 않고, 사이클 특성이 향상될 수 있으며, 높은 용량 및 높은 에너지를 가질 수 있다. A negative electrode according to an embodiment of the present invention, and a secondary battery including the same, are porous three-dimensional metal microparticles that can absorb and release alkali metal or alkaline earth metal ions by alloying and dealloying with an alkali metal or alkaline earth metal. By including the porous metal layer having a network structure, cracking or pulverization due to volume change of the active material does not occur in the charging/discharging process, cycle characteristics can be improved, and high capacity and high energy can be obtained.
또한, 본 발명의 음극 제조방법은 미세 입자로 구성된 활물질층을 제조함에 있어서, 종래의 활물질 나노화 공정을 포함하지 않으므로, 제조 공정 편의 도모, 및 제조 비용 절감이 가능하다.In addition, since the method of manufacturing an anode of the present invention does not include a conventional nano-ization process of an active material in manufacturing an active material layer composed of fine particles, it is possible to facilitate the manufacturing process and reduce manufacturing cost.
도 1은 막대형태의 금속 마이크로 입자를 나타낸 그림이다. 1 is a diagram showing a rod-shaped metal microparticle.
도 2은 본 발명의 일 구현예에 따른 음극 다공성 금속층의 구조를 나타낸 도면이다.2 is a view showing the structure of a cathode porous metal layer according to an embodiment of the present invention.
도 3은 실시예 1 음극 다공성 금속층의 실물 사진이다.3 is an actual photograph of the negative electrode porous metal layer in Example 1.
도 4는 실시예 1 음극 Sn 다공성 금속층의 SEM 사진이다.4 is a SEM photograph of the cathode Sn porous metal layer in Example 1.
도 5는 실시예 1 음극 다공성 금속층 EDS 스펙트럼을 나타낸 것이다.5 shows the EDS spectrum of the negative electrode porous metal layer in Example 1.
도 6는 실시예 1 음극 Sn 다공성 금속층이 Na와 전기화학적으로 완전히 반응한 상태의 SEM사진이다.6 is a SEM photograph of a state in which the cathode Sn porous metal layer of Example 1 completely reacted with Na electrochemically.
도 7은 실시예 1 음극 다공성 금속층을 1 mV까지 소듐과 방전한 상태(Na3.75Sn)의 EDS 스펙트럼 결과를 나타낸다. 7 shows the EDS spectrum result of Example 1 in which the cathode porous metal layer was discharged with sodium to 1 mV (Na 3.75 Sn).
도 8은 실시예 1 음극의 충·방전 그래프이다. 8 is a graph of charging and discharging of the negative electrode of Example 1.
도 9는 비교예 1 음극의 활물질층 SEM 사진이다. 9 is a SEM photograph of an active material layer of a negative electrode of Comparative Example 1.
도 10은 비교예 1 의 0.1 C-rate에서 충방전 그래프이다. 10 is a graph of charging and discharging at 0.1 C-rate of Comparative Example 1.
도 11은 실시예 1 음극과 비교예 1 음극의 사이클 그래프이다.11 is a cycle graph of the negative electrode of Example 1 and the negative electrode of Comparative Example 1.
도 12는 실시예 2 음극의 실제 사진이다.12 is an actual photograph of the cathode of Example 2.
도 13는 실시예 2 음극 Bi 다공성 금속층의 SEM 사진이다.13 is a SEM photograph of the anode Bi porous metal layer in Example 2.
도 14은 실시예 2 음극 Bi 다공성 금속층의 XRD 패턴이다.14 is an XRD pattern of the anode Bi porous metal layer in Example 2.
도 15는 실시예 2 음극의 충·방전 그래프이다. 15 is a graph of charging and discharging of the negative electrode of Example 2.
도 16는 실시예 2 음극의 1 내지 100회 사이클 그래프이다.16 is a graph of 1 to 100 cycles of the negative electrode of Example 2.
도 17은 하프-셀 구조를 나타낸 도면이다. 17 is a diagram showing a half-cell structure.
도 18은 풀-셀의 구조를 나타낸 도면이다. 18 is a diagram showing the structure of a full-cell.
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.Hereinafter, embodiments of the present invention will be described in detail. However, this is presented as an example, and the present invention is not limited thereby, and the present invention is only defined by the scope of the claims to be described later.
본 명세서에서, 사용되는 전문 용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 본 명세서에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.In this specification, the terminology used is only for referring to specific embodiments and is not intended to limit the present invention. Singular forms as used herein also include plural forms unless the phrases clearly indicate the opposite. In the present specification, when a certain part "includes" a certain component, it means that other components may be further included rather than excluding other components unless specifically stated to the contrary.
층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 또는 "상에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우 뿐 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 또한, 명세서 전체에서, "~상에"라 함은 대상 부분의 위 또는 아래에 위치함을 의미하는 것이며, 반드시 중력 방향을 기준으로 상 측에 위치하는 것을 의미하는 것은 아니다.When a part of a layer, film, region, plate, etc. is said to be "on" or "on" another part, this includes not only the case where the other part is "directly above", but also the case where there is another part in the middle. In addition, throughout the specification, the term "on" means that it is located above or below the target part, and does not necessarily mean that it is located above or below the direction of gravity.
본 명세서에서, 금속층은 두께 및 면적을 가지는 판상(판 형태)의 금속을 포함하는 의미로 사용한다. In the present specification, the metal layer is used to include a plate-like (plate-shaped) metal having a thickness and an area.
본 명세서에서, 네트워크 구조란 입자들이 물리적으로 상호 연결된 형태를 가지는 것을 의미한다. 이와 같이 활물질 입자들이 물리적으로 상호 연결된 형태를 가지는 경우 전기적으로도 활물질 입자들 간의 연결이 형성될 수 있다. In the present specification, a network structure means that particles have a physically interconnected form. In this way, when the active material particles are physically interconnected, a connection between the active material particles may be formed electrically.
본 명세서에서 합금화 소재는 소듐 등과 같은 알칼리 금속 또는 알칼리 토금속과 전기화학적으로 반응하여 합금화함으로써 소듐 등을 흡수하고, 탈합금화에 의하여 소듐 등을 전기화학적으로 방출함으로써, 전기화학적으로 소듐 등을 흡수하고, 방출할 수 있는 소재를 의미한다. 이러한 합금화 소재(금속 활물질)는 갈륨(Ga, gallium), 게르마늄(Ge, germanium), 인듐(In, indium), 주석 (Sn, tin), 안티몬(Sb, antimony), 탈륨(Tl, thallium), 납(Pb, lead), 비스무스(Bi, bismuth), 및 이들의 합금을 포함하는 군에서 선택되는 것일 수 있다. 다만, 상기 나열한 금속에 한정되는 것은 아니며, 알칼리 금속 또는 알칼리 토금속과 합금화 및 탈합금화에 의하여 가역적으로 알칼리 금속 또는 알칼리 토금속 이온을 흡수 방출할 수 있는 금속은 이에 포함될 수 있다. In the present specification, the alloying material absorbs sodium by electrochemically reacting and alloying with an alkali metal or alkaline earth metal such as sodium, and electrochemically absorbs sodium and the like by electrochemically releasing sodium and the like by dealloying, It means a material that can be released. These alloying materials (metal active materials) are gallium (Ga, gallium), germanium (Ge, germanium), indium (In, indium), tin (Sn, tin), antimony (Sb, antimony), thallium (Tl, thallium), It may be selected from the group including lead (Pb, lead), bismuth (Bi, bismuth), and alloys thereof. However, it is not limited to the metals listed above, and metals capable of reversibly absorbing and releasing alkali metal or alkaline earth metal ions by alloying and dealloying with alkali metal or alkaline earth metal may be included therein.
상기 합금화 소재와의 합금화 및 탈합금화 반응을 통하여 흡수 및 방출될 수 있는 물질은 알칼리 금속, 알칼리 토금속일 수 있으며, 합금화 및 탈합금화 반응은 다음의 화학반응식을 갖는다.Materials that can be absorbed and released through the alloying and dealloying reactions with the alloying material may be alkali metals and alkaline earth metals, and the alloying and dealloying reactions have the following chemical reaction formula.
xA+ M ↔ AxMxA+ M ↔ A x M
상기 화학반응식에서 A는 알칼리 금속 또는 알칼리 토금속이고, M은 합금화 소재이다. In the above chemical reaction formula, A is an alkali metal or alkaline earth metal, and M is an alloying material.
이때, x의 값이 대부분 1을 넘기 때문에 합금화 소재는 대부분 높은 이론용량을 나타낸다.At this time, most of the values of x exceed 1, so the alloying material shows a high theoretical capacity.
그 예로, 주석은 소듐과 반응하여 최종생성물 Na15Sn4(x=3.75)를 형성할 때, 847 mAh/g의 높은 이론용량을 나타낸다. 다음의 표 1은 합금화 소재의 종류에 따른 소듐화 반응 생성물, 및 이론용량을 나타낸다.For example, when tin reacts with sodium to form the final product Na 15 Sn 4 (x=3.75), it exhibits a high theoretical capacity of 847 mAh/g. Table 1 below shows sodiumation reaction products and theoretical capacity according to the type of alloying material.
하기 표 1를 보면 합금화 소재는 합금화 소재의 종류에 따라 이온 용량이 달라질 수 있음을 알 수 있다. 또한, 합금화 소재는 소듐화(sodiation)된 정도에 따라 용량(capacity)이 달라질 수 있다. Referring to Table 1 below, it can be seen that the ion capacity of the alloying material may vary depending on the type of the alloying material. In addition, the alloying material may have a different capacity depending on the degree of sodiumization.
하지만, 이러한 합금화 소재(M)는 소듐 등의 알칼리 금속 또는 알칼리 토금속과 합금화시(AxM)에 부피가 팽창하고, 탈합금화시에는 원래의 합금화 소재(M)로 되돌아가 부피가 감소한다. 따라서, 상기 합금화 소재를 전극 활물질로 적용하는 경우, 전지의 충방전할 때, 전극 활물질에서 합금화 및 탈합금화가 일어나고, 합금화 소재에 부피 팽창 및 수축의 부피변화를 발생시키는 본질적인(intrinsic) 문제를 야기시킨다. 즉, 충방전에 의한 부피변화는 합금화 소재 내에 내부응력(internal stress)을 야기시키고, 이는 전극 활물질(층)의 균열(crack) 생성으로 이어지며, 마침내는 균열이 성장하여, 전극 활물질(층)이 쪼개지고, 이는 전극 활물질이 더 작은 입자로 분쇄(pulverization)되는 과정으로 이어진다. 이 같은 전극 활물질(층)의 분쇄 등에 의하여 전극 활물질(층)이 전극 내에서 집전체나 도전재와 전기적 연결이 끊어지는 문제가 발생한다. 그리하여 집전체로부터 전자가 공급되지 않으므로, 더 이상 전기화학적 반응을 할 수 없는 상태에 놓이게 되고, 반복하여 충·방전이 진행됨에 따라 급격한 용량 감소를 일으키게 된다. 그 결과, 합금화 메카니즘을 갖는 전극은 짧은 충방전 사이클 수명을 갖게 된다. 이러한 전극 활물질의 충방전시 큰 부피 변화율로 인한 분쇄 문제를 해소하기 위하여, 활물질을 미세 입자화하는 방안을 고려할 수 있다. 그러나, 활물질을 미세 입자로 분말화하는 공정의 경우 복잡하고 고가의 공정비를 수반함으로써 전극 가격을 상승시키는 문제가 있다. 또한, 분말 전극 활물질을 사용하는 경우 분말 전극 활물질을 집전체에 고정하기 위하여 고분자 바인더를 사용하게 되며, 전도성 향상을 위한 도전재 등을 더 포함하게 된다. 그러나, 이러한 고분자 바인더 및 도전재는 전기화학적으로 반응하지 않는 물질로서, 전극 내의 활물질 함량이 감소하기 때문에 전극의 전체 용량을 감소시키는 결과가 된다. However, the volume of the alloying material (M) expands when alloyed with an alkali metal or alkaline earth metal such as sodium (A x M), and returns to the original alloying material (M) during dealloying and decreases in volume. Therefore, when the alloying material is applied as an electrode active material, when charging and discharging the battery, alloying and dealloying occurs in the electrode active material, causing an intrinsic problem of causing volume change of volume expansion and contraction in the alloying material. Let it. That is, the volume change due to charging and discharging causes internal stress in the alloyed material, which leads to the generation of cracks in the electrode active material (layer), and finally, the crack grows, and the electrode active material (layer) This splitting leads to a process in which the electrode active material is pulverized into smaller particles. Such pulverization of the electrode active material (layer) causes a problem that the electrode active material (layer) is disconnected from the current collector or the conductive material in the electrode. Thus, since electrons are not supplied from the current collector, it is placed in a state in which the electrochemical reaction can no longer be performed, and as the charging and discharging proceeds repeatedly, a rapid decrease in capacity occurs. As a result, an electrode having an alloying mechanism has a short charge/discharge cycle life. In order to solve the pulverization problem due to a large volume change rate during charging and discharging of the electrode active material, a method of making the active material into fine particles may be considered. However, in the case of a process of pulverizing an active material into fine particles, there is a problem of increasing the electrode price by entailing a complicated and expensive process cost. In addition, when the powder electrode active material is used, a polymer binder is used to fix the powder electrode active material to the current collector, and a conductive material for improving conductivity is further included. However, these polymeric binders and conductive materials are materials that do not react electrochemically, and since the content of the active material in the electrode decreases, the total capacity of the electrode is reduced.
충방전시 전극 활물질의 부피팽창을 수용할 수 있는 공간을 부여하기 위하여 전극 활물질과 동종재(同種材) 및 이종재(異種材)를 이용하여 다공성 구조를 설계할 수 있다. 그러나, 동종재를 이용하여 다공성 구조를 설계하더라도, 미세 분말화 기술이 필요하여, 제조공정이 복잡해지는 문제가 있다. 또한, 이종재를 이용하여 다공성 구조를 설계할 경우, 전극 내에 전기화학적으로 반응하지 않는 소재가 추가됨으로써, 전극의 전체 용량을 감소시키게 된다.In order to provide a space to accommodate the volume expansion of the electrode active material during charging and discharging, a porous structure may be designed using the electrode active material, the same material, and the dissimilar material. However, even if the porous structure is designed using the same material, there is a problem that a fine powdering technique is required, and the manufacturing process becomes complicated. In addition, when designing a porous structure using dissimilar materials, a material that does not react electrochemically is added to the electrode, thereby reducing the total capacity of the electrode.
또한, 분말을 이용한 전극은 가공밀도 (tap density) 가 낮기 때문에 반드시 압축공정이 들어가게 되는데, 압축 공정을 거치더라도 분말을 이용한 전극의 가공밀도는 하나의 덩어리로 이루어진 전극보다 낮을 수 밖에 없으며, 미세 입자들을 포함하는 전극의 가공밀도를 증가시키는 것도 일반적으로 매우 어렵다. 마찬가지 이유로 면적당 전극의 적재량을 향상시키기 위해 두께를 증가시키기도 어렵다.In addition, since the electrode using powder has a low tap density, the compression process must be entered. Even if the electrode is compressed, the processing density of the electrode using powder must be lower than that of an electrode made of a single mass. It is also generally very difficult to increase the processing density of an electrode containing them. For the same reason, it is difficult to increase the thickness in order to improve the loading amount of electrodes per area.
더욱이, 위와 같은 방법을 모두 사용하여도, 본질적인 문제인 충방전 사이클 중 발생하는 부피변화에 의한 전극 활물질층의 분쇄, 용량 감소, 및 사이클 특성 저하 문제를 근원적으로 해결할 수 없다.Moreover, even if all of the above methods are used, it is not possible to fundamentally solve the problem of pulverization of the electrode active material layer due to volume change occurring during a charge/discharge cycle, a capacity reduction, and a decrease in cycle characteristics, which is an essential problem.
본원은 높은 용량을 가지는 전극 활물질을 포함함으로써, 고용량 전극을 실현할 수 있을 뿐만 아니라, 안정적인 다공성 구조에 의하여 향상된 충방전 사이클 특성을 가지는 이차 전지용 음극을 제공할 수 있다. In the present application, by including an electrode active material having a high capacity, a high capacity electrode may be realized, and a negative electrode for a secondary battery having improved charge/discharge cycle characteristics due to a stable porous structure may be provided.
더불어, 미세화된 전극 활물질 분말을 이용하지 않고도 미세한 전극 활물질 입자가 상호 연결된 다공성 구조의 전극 활물질층을 형성할 수 있어, 간단한 방법에 의하여 저비용으로 고용량의 이차전지용 음극 및 이를 포함하는 전지를 제조할 수 있는 방법을 제공할 수 있다. In addition, it is possible to form an electrode active material layer having a porous structure in which fine electrode active material particles are interconnected without using micronized electrode active material powder, so that a high-capacity negative electrode for secondary battery and a battery including the same can be manufactured by a simple method. You can provide a way to do it.
또한, 도전재 및/또는 바인더를 필수적으로 포함하지 않는 마이크로 사이즈의 전극 활물질 입자가 상호 연결된 다공성 구조의 전극을 제공할 수 있는 바, 전지 용량을 향상시킬 수 있다. In addition, since it is possible to provide an electrode having a porous structure in which micro-sized electrode active material particles that do not necessarily contain a conductive material and/or a binder are interconnected, it is possible to improve battery capacity.
음극cathode
본 발명의 일 구현예에 따른 음극은 및 알칼리 금속 또는 알칼리 토금속과 합금화 및 탈합금화에 의해 알칼리 금속 또는 알칼리 토금속 이온을 가역적으로 흡수하고, 방출할 수 있는 금속을 포함하는 다공성 금속층을 포함한다.The negative electrode according to an embodiment of the present invention includes a porous metal layer including a metal capable of reversibly absorbing and releasing alkali metal or alkaline earth metal ions by alloying and dealloying with an alkali metal or alkaline earth metal.
상기 다공성 금속층은 막대형태의 금속 마이크로 입자가 상호 연결된 다공성 3차원 네트워크 구조를 가진다. The porous metal layer has a porous three-dimensional network structure in which rod-shaped metal microparticles are interconnected.
상기 알칼리 금속 또는 알칼리 토금속과 합금화 및 탈합금화에 의해 알칼리 금속 또는 알칼리 토금속 이온을 흡수하고, 방출할 수 있는 금속은 합금화 소재를 포함하는 금속일 수 있다. The metal capable of absorbing and releasing alkali metal or alkaline earth metal ions by alloying and dealloying with the alkali metal or alkaline earth metal may be a metal including an alloying material.
도 2은 본 발명의 일 구현예에 따른 음극의 다공성 금속층의 구조를 나타낸 도면이다. 상술한 바와 같이, 본 발명의 일 구현예에 따른 음극의 다공성 금속층은 막대형태의 금속 활물질 입자가 3차원적으로 상호 연결된 다공성 3차원 네트워크 구조를 가짐을 알 수 있다. 이러한 3차원 네트워크 구조는 다공성 금속층의 두께 방향(종방향)뿐만 아니라, 면적방향(횡방향)으로도 연속적으로 연결된 구조를 가지는 것일 수 있다. 이러한 구조를 가짐으로써, 다공성 금속층의 전체 면적에 접하는 면 형태의 집전체를 적용하는 경우 뿐만 아니라, 필요에 따라, 다공성 금속층의 면적 중 일부의 면에만 접하는 집전체를 적용한 음극을 구현할 수 있는 이점이 있다. 2 is a view showing the structure of a porous metal layer of a negative electrode according to an embodiment of the present invention. As described above, it can be seen that the porous metal layer of the negative electrode according to the exemplary embodiment of the present invention has a porous three-dimensional network structure in which rod-shaped metal active material particles are three-dimensionally interconnected. Such a three-dimensional network structure may have a structure that is continuously connected not only in the thickness direction (longitudinal direction) but also in the area direction (transverse direction) of the porous metal layer. By having such a structure, there is an advantage of implementing a negative electrode in which a current collector in contact with only a part of the area of the porous metal layer is applied, as well as when a current collector in the form of a surface in contact with the entire area of the porous metal layer is applied. have.
또한 이러한 구조를 가짐으로써, 복수개의 음극을 면적방향(횡방향)으로 연결하여 용이하게 대면적 전극을 구성할 수 있다.In addition, by having such a structure, it is possible to easily configure a large-area electrode by connecting a plurality of cathodes in the area direction (transverse direction).
상기 다공성 금속층은 알칼리 금속 또는 알칼리 토금속과 합금화 및 탈합금화에 의해 알칼리 금속 또는 알칼리 토금속 이온을 흡수 방출할 수 있는 금속을 포함하여, 높은 용량을 구현할 수 있다. The porous metal layer includes a metal capable of absorbing and releasing alkali metal or alkaline earth metal ions by alloying and dealloying with an alkali metal or alkaline earth metal, and thus can implement a high capacity.
구체적으로 상기 알칼리 금속 또는 알칼리 토금속은 Li, Na, Mg, K, 또는 Ca 등을 포함하는 군에서 선택된 것일 수 있다. Specifically, the alkali metal or alkaline earth metal may be selected from the group including Li, Na, Mg, K, or Ca.
상기 알칼리 금속 또는 알칼리 토금속과 합금화 및 탈합금화에 의해 알칼리 금속 또는 알칼리 토금속 이온을 흡수 방출할 수 있는 금속은 합금화 소재일 수 있다. 구체적으로 상기 합금화 소재는 Ga, Ge, In, Sn, Sb, Tl, Pb, 또는 Bi일 수 있다. 이와 같은 금속들은 알칼리 금속 또는 알칼리 토금속과 합금화에 의하여 높은 이론용량을 구현할 수 있는 이점이 있다. The metal capable of absorbing and releasing alkali metal or alkaline earth metal ions by alloying and dealloying with the alkali metal or alkaline earth metal may be an alloying material. Specifically, the alloying material may be Ga, Ge, In, Sn, Sb, Tl, Pb, or Bi. These metals have the advantage of realizing a high theoretical capacity by alloying with an alkali metal or an alkaline earth metal.
다공성 금속층은 마이크로 금속 입자가 상호 연결된 다공성 구조로 이루어져 있으므로, 다공성 금속층 자체가 활물질층 역할과 함께 집전체 역할을 수행할 수 있다. 따라서, 상기 다공성 금속층을 포함하는 음극은 집전체를 더 포함할 수 있으나, 이에 한정되는 것은 아니다.상기 집전체는 구리, 스테인레스 스틸, 알루미늄, 탄소가 코팅된 금속, 탄소 섬유 또는 탄소 종이일 수 있다. 다만, 이에 한정되는 것은 아니며, 해당 기술 분야의 기술 상식에 의하여 적용될 수 있는 것을 포함할 수 있다. Since the porous metal layer has a porous structure in which micro metal particles are interconnected, the porous metal layer itself may serve as an active material layer and a current collector. Accordingly, the negative electrode including the porous metal layer may further include a current collector, but is not limited thereto. The current collector may be copper, stainless steel, aluminum, a metal coated with carbon, carbon fiber, or carbon paper. . However, the present invention is not limited thereto, and may include those that can be applied based on common technical knowledge in the relevant technical field.
본 발명의 일 구현예에 따른 음극은 다공성 금속층이 막대형태의 금속 마이크로 입자가 상호 연결된 다공성 3차원 네트워크 구조를 가지는 것일 수 있다. The negative electrode according to an embodiment of the present invention may have a porous three-dimensional network structure in which a porous metal layer is connected to each other in a rod-shaped metal microparticle.
앞서 설명한 바와 같이, 합금화 소재를 전극 활물질로 적용하는 경우 충방전시 큰 부피변화로 인하여 활물질층의 분쇄, 집전체로부터의 활물질 이탈 등이 발생하여 활물질층의 전기적 연결이 끊어질 수 있다. 즉, 충방전 횟수가 증가함에 따라 전극 성능이 현저하게 저하되는 문제가 있다. As described above, when the alloyed material is applied as an electrode active material, the active material layer may be pulverized and the active material may be separated from the current collector due to a large volume change during charging and discharging, and the electrical connection of the active material layer may be disconnected. That is, there is a problem that the electrode performance is remarkably deteriorated as the number of charging and discharging increases.
그러나, 본원의 다공성 금속층은 상기와 같은 충방전시 부피변화를 수용할 수 있는 공간을 제공할 수 있다. 또한, 이러한 본원의 다공형 구조의 활물질층은 활물질층의 비표면적을 증가시킴으로써, 전해질과의 접촉면적 증가, 단위면적당 전류 감소, 내부저항 감소, 과전압 감소 및, 충방전 속도 향상이 가능하다. However, the porous metal layer of the present application may provide a space capable of accommodating a volume change during charging and discharging as described above. In addition, the active material layer having the porous structure of the present application increases the specific surface area of the active material layer, thereby increasing the contact area with the electrolyte, decreasing the current per unit area, decreasing the internal resistance, reducing the overvoltage, and improving the charging and discharging speed.
활물질층이 다공형 구조를 가지더라도 부피변화에 따른 활물질층 깨짐이 발생할 수 있다. 그러나, 본원의 다공형 구조는 충방전시 부피 변화에도 불구하고 구조의 안정성으로 인하여 활물질 입자, 및 활물질층 구조의 깨짐을 현저히 감소시키고, 충방전 사이클 특성을 향상시킬 수 있다. Even if the active material layer has a porous structure, the active material layer may be cracked due to a change in volume. However, the porous structure of the present application can significantly reduce the breakage of the active material particles and the active material layer structure due to the stability of the structure despite a change in volume during charging and discharging, and improve charge/discharge cycle characteristics.
구체적으로 본 발명의 일 구현예에 따른 음극의 다공성 금속층은 다음과 같은 특징을 가지는 것일 수 있다. Specifically, the porous metal layer of the negative electrode according to an embodiment of the present invention may have the following characteristics.
상기 다공성 금속층은 기공 평균 직경이 0.1 내지 200 μm 일 수 있다. 구체적으로 0.1 내지 150 μm, 0.1 내지 100 μm, 0.1 내지 50 μm, 0.1 내지 30 μm, 0.1 내지 20 μm, 1 내지 15 μm, 1 내지 10 μm 또는 1 내지 5 μm 일 수 있다. The porous metal layer may have an average pore diameter of 0.1 to 200 μm. Specifically, it may be 0.1 to 150 μm, 0.1 to 100 μm, 0.1 to 50 μm, 0.1 to 30 μm, 0.1 to 20 μm, 1 to 15 μm, 1 to 10 μm, or 1 to 5 μm.
상기 다공성 금속층은 기공도가 50 내지 90 부피% 일 수 있다. 구체적으로 60 내지 90 부피%, 70 내지 90 부피%, 70 내지 85 부피% 또는 72 내지 81 부피% 일 수 있다. The porous metal layer may have a porosity of 50 to 90% by volume. Specifically, it may be 60 to 90% by volume, 70 to 90% by volume, 70 to 85% by volume, or 72 to 81% by volume.
상기 금속 마이크로 입자는 평균 직경이 0.1 내지 5 μm 일 수 있다. 구체적으로 0.1 내지 3 μm, 0.3 내지 3 μm, 0.5 내지 2 μm, 또는 0.5 내지 1.5 μm 일 수 있다. The metal microparticles may have an average diameter of 0.1 to 5 μm. Specifically, it may be 0.1 to 3 μm, 0.3 to 3 μm, 0.5 to 2 μm, or 0.5 to 1.5 μm.
상기 금속 마이크로 입자는 평균 길이가 0.5 내지 20 μm 일 수 있다. 구체적으로 0.5 내지 15 μm, 0.5 내지 10 μm, 0.5 내지 5 μm, 0.5 내지 3 μm 또는 1 내지 3 μm 일 수 있다. 금속 마이크로 입자의 길이가 너무 긴 경우 합금화시 길이 방향의 부피 팽창율이 크기 때문에 구조 깨짐 발생 가능성이 증가할 수 있다. The metal microparticles may have an average length of 0.5 to 20 μm. Specifically, it may be 0.5 to 15 μm, 0.5 to 10 μm, 0.5 to 5 μm, 0.5 to 3 μm, or 1 to 3 μm. If the length of the metal microparticles is too long, the possibility of occurrence of structural breakage may increase because the volume expansion rate in the longitudinal direction is large during alloying.
상기 범위를 만족함으로써 충방전시 부피 변화에 따른 입자, 및 접점의 깨짐 발생을 감소시킬 수 있고, 활물질(층)이 분쇄되는 문제가 감소할 수 있다. By satisfying the above range, it is possible to reduce the occurrence of cracking of particles and contact points according to a change in volume during charge/discharge, and a problem in which the active material (layer) is pulverized can be reduced.
상기 금속 마이크로 입자는 평균 종횡비(길이/직경)가 1 내지 10일 수 있다. 구체적으로 1 내지 8, 1 내지 7, 1 내지 5, 1 내지 3, 1.1 내지 10, 1.1 내지 9, 1.1 내지 7, 1.1 내지 4, 또는 1.1 내지 3일 수 있다. The metal microparticles may have an average aspect ratio (length/diameter) of 1 to 10. Specifically, it may be 1 to 8, 1 to 7, 1 to 5, 1 to 3, 1.1 to 10, 1.1 to 9, 1.1 to 7, 1.1 to 4, or 1.1 to 3.
상기 막대형태의 마이크로 입자들이 무작위로 연결되어, 대부분의 접점에서 입자들이 0° 초과, 및 180° 미만의 결합각을 가지는 구조일 수 있다. 이 경우 합금화시 부피팽창(특히, 막대형태 입자 길이방향의 팽창)에 의해 접점에 가해지는 압력이 각도가 180° 를 이루는 경우에 비해 감소하기 때문에 접점, 및 막대형태 입자의 깨짐을 감소시킴으로써, 활물질(층)의 분쇄를 억제하고, 충방전 사이클 특성을 향상시킬 수 있다. 이러한 구조는 후술하는 하프-셀에서 반복적으로 충방전을 수행하는 단계에서 입자 간의 각도가 180° 인 접점이 대부분 소멸되기 때문일 수 있다.The rod-shaped microparticles are randomly connected, and the particles may have a structure having a bonding angle of more than 0° and less than 180° at most of the contact points. In this case, since the pressure applied to the contact point due to volume expansion (especially, expansion in the longitudinal direction of the rod-shaped particles) during alloying decreases compared to the case where the angle is 180°, the active material is reduced by reducing the breakage of the contact point and rod-shaped particles. The crushing of the (layer) can be suppressed, and the charge/discharge cycle characteristics can be improved. This structure may be due to the fact that most of the contact points having an angle of 180° between particles disappear in the step of repeatedly charging and discharging in a half-cell to be described later.
본 명세서에서 입자 간의 각도란 접점을 기준으로 2 이상의 막대형태의 입자가 이루는 각을 의미하며, 2개의 입자가 연결된 접점의 경우 각도가 작은 쪽의 수치값을 의미한다. In the present specification, the angle between particles refers to an angle formed by two or more rod-shaped particles based on a contact point, and in the case of a contact point where two particles are connected, it refers to a numerical value of the smaller angle.
또한, 각 막대형태의 마이크로 입자가 연결된 접점에서 주로 5개 이하의 입자들이 연결되는 구조를 가지며, 바람직하게는 2 내지 3개의 입자가 연결되는 구조를 가질 수 있다. 접점에서 연결되는 막대형태의 마이크로 입자의 개수가 증가할수록 부피 팽창시 접점에 가해지는 압력이 증가할 수 있고, 입자 간의 180° 의 각도를 이루는 접점이 증가하게 되는 바, 접점, 및 막대형태 입자의 깨짐, 및 다공 구조의 깨짐 발생이 증가할 수 있다. In addition, each rod-shaped microparticle has a structure in which 5 or less particles are mainly connected at a contact point where each rod-shaped microparticle is connected, and preferably, it may have a structure in which 2 to 3 particles are connected. As the number of rod-shaped microparticles connected at the contact point increases, the pressure applied to the contact point during volume expansion may increase, and the contact point forming an angle of 180° between particles increases. The occurrence of cracking and cracking of the porous structure may increase.
본 발명의 일 구현에에 따라 제조된 음극의 활물질층은 금속층을 포함하는 음극을 이용하여 하프-셀을 구성하고, 이를 반복적으로 충방전함으로써, 금속층이 다공성 금속층으로 전환되는 단계를 거치게 된다. 상기 하프-셀을 반복적으로 충방전 수행함으로써, 상기 금속층은 수축과 팽창을 반복하게 되고, 합금화 및 탈합금화시 발생하는 반응열, 하프셀 충방전 수행시 발생하는 접점 부위에서의 저항 등의 요인으로 금속층에서는 소결반응이 일어나, 입자들 간의 단단한 결합을 형성하게 된다. 또한, 반복적인 수축 팽창 과정에서 불안정한 접점 및 입자는 부서져 다른 입자에 부착되고 안정한 접점 및 입자는 유지되는 과정이 반복된다. 이에 따라 최종적으로 수득되는 다공성 금속층은 막대형태의 입자간 단단한 접점을 가지는 매우 안정적인 본원의 3차원 네트워크 다공형 구조를 가지게 되는 것으로 예상된다. The active material layer of the negative electrode manufactured according to an embodiment of the present invention forms a half-cell using a negative electrode including a metal layer, and repeatedly charges and discharges the same, thereby converting the metal layer into a porous metal layer. By repeatedly charging and discharging the half-cell, the metal layer repeatedly contracts and expands, and the metal layer is caused by factors such as heat of reaction generated during alloying and dealloying, and resistance at the contact point generated during charging and discharging of the half-cell. In, a sintering reaction occurs, forming a tight bond between the particles. In addition, during the repetitive contraction and expansion process, unstable contacts and particles are broken and adhered to other particles, and the process of maintaining stable contacts and particles is repeated. Accordingly, it is expected that the finally obtained porous metal layer will have a very stable three-dimensional network porous structure of the present invention having solid contact points between the particles in the form of rods.
도 4는 본원의 일 구현예에 따라 제조된 주석 다공성 금속층(실시예 1)이며, 막대형태의 입자가 상호 연결된 다공성 3차원 네트워크 구조를 가지는 것을 확인할 수 있다. 4 is a tin porous metal layer (Example 1) manufactured according to an exemplary embodiment of the present disclosure, and it can be seen that rod-shaped particles have a porous three-dimensional network structure connected to each other.
도 6은 도 4의 실시예 1 주석 다공성 금속층이 소듐과 합금화된 상태이며, 활물질의 팽창에 의하여 막대형태의 입자가 커지고 기공 부피가 감소하였으나, 깨짐없이 구조가 유지되고 있음을 확인할 수 있다. 즉, 본원의 음극 다공성 금속층은 합금화에 의해 활물질층이 팽창한 경우에도 구조의 깨짐이 발생하지 않는 안정한 구조를 가짐을 알 수 있다. 이와 같은 안정적인 구조의 다공성 금속층을 포함하는 음극은 충방전 횟수가 증가하더라도, 전극 활물질(층)의 분쇄, 이탈, 및 활물질층의 전기적 연결 단절이 현저히 감소될 수 있으므로, 결과적으로 충방전 사이클 특성 향상에 기여할 수 있다.6 is a state in which the porous tin metal layer of Example 1 of FIG. 4 was alloyed with sodium, and the rod-shaped particles increased and the pore volume decreased due to the expansion of the active material, but it can be seen that the structure is maintained without cracking. That is, it can be seen that the negative electrode porous metal layer of the present application has a stable structure in which no structural breakage occurs even when the active material layer is expanded by alloying. Even if the number of charge/discharge increases in the negative electrode including the porous metal layer having such a stable structure, pulverization and separation of the electrode active material (layer), and electrical disconnection of the active material layer may be significantly reduced, resulting in improved charge/discharge cycle characteristics. Can contribute to
상기 막대형태의 금속 마이크로 입자는 표면에 금속 마이크로 입자의 길이보다 작은 직경을 가지는 미세 금속 입자가 부착된 형태, 또는 금속 마이크로 입자 길이보다 직경이 작은 미세 금속 입자가 금속 마이크로 입자 표면에 돌출된 형태의 표면을 가지는 것일 수 있다. 구체적으로, 상기 미세 금속 입자의 평균 입경은 0.1 내지 5 μm 인 것일 수 있다. 이는 앞서 설명한 바와 같이, 하프-셀을 반복적으로 충방전 수행함으로써, 금속층의 반복적인 수축, 및 팽창 과정에서 불안정한 접점 및 입자가 부서져 다른 입자에 부착되는 과정에서 형성되는 것일 수 있다. In the rod-shaped metal microparticles, fine metal particles having a diameter smaller than the length of the metal microparticles are attached to the surface, or fine metal particles having a diameter smaller than the length of the metal microparticles protrude from the surface of the metal microparticles. It may have a surface. Specifically, the average particle diameter of the fine metal particles may be 0.1 to 5 μm. As described above, this may be formed in the process of repeatedly charging and discharging the half-cells, whereby unstable contacts and particles are broken and adhered to other particles during repetitive contraction and expansion of the metal layer.
도 13을 보면, 평균직경 1.4 μm 이고, 평균 길이가 2.3 μm 인 막대형태의 Bi 마이크로 금속 입자는 표면에 평균 입자 직경이 0.5 μm 인 미세 입자가 돌출된 형태를 가지는 것을 확인할 수 있다.Referring to FIG. 13, it can be seen that the rod-shaped Bi micro metal particles having an average diameter of 1.4 μm and an average length of 2.3 μm have fine particles with an average particle diameter of 0.5 μm protruding from the surface.
상기 다공성 금속층은 Ga, Ge, In, Sn, Sb, Tl, Pb, 및 Bi를 포함하는 군에서 선택된 금속을 전체 다공성 금속층 100 중량% 기준으로 90 중량% 이상 포함하는 것일 수 있다. 구체적으로, 90 내지 100 중량%, 92 내지 100 중량%, 95 내지 100 중량%, 97 내지 100 중량%, 99 내지 100 중량%, 또는 99.5 내지 100 중량%일 수 있다. 이 경우 전극 내의 활물질 함량이 높으므로 전극 용량을 향상시킬 수 있다. The porous metal layer may include at least 90% by weight of a metal selected from the group including Ga, Ge, In, Sn, Sb, Tl, Pb, and Bi based on 100% by weight of the total porous metal layer. Specifically, it may be 90 to 100% by weight, 92 to 100% by weight, 95 to 100% by weight, 97 to 100% by weight, 99 to 100% by weight, or 99.5 to 100% by weight. In this case, since the content of the active material in the electrode is high, the electrode capacity can be improved.
이러한 다공성 금속층의 형태는, 본 발명의 일 구현예에 따른 제조방법에 의하여 형성된 것일 수 있으나, 이에 제한되지 않을 수 있다. The shape of the porous metal layer may be formed by the manufacturing method according to an exemplary embodiment of the present invention, but may not be limited thereto.
이러한 본 발명의 다공성 금속층은, 마이크로 입자가 상호 집합된 3차원 다공형 구조이나, 활물질을 미세 분말화하고, 그 입자의 형태를 제어하여 조성물로 도포하거나, 압축하여 금속 활물질층을 형성하는 것이 아니고, 본 발명의 제조방법에 따라 금속층으로부터 상기 형태를 가지는 마이크로 사이즈의 활물질 입자로 구성된 다공성 금속층을 형성할 수 있다. 따라서, 미세 분말화를 위한 공정이 포함되지 않으므로, 제조 비용이 절감될 수 있고, 바인더 등과 같이 전기화학적으로 반응하지 않는 물질을 포함하지 않는 활물질층, 및 전극을 형성할 수 있으므로, 용량 향상에 기여할 수 있다. The porous metal layer of the present invention does not have a three-dimensional porous structure in which microparticles are mutually aggregated, or an active material is finely powdered and applied as a composition by controlling the shape of the particles or compressed to form a metal active material layer. , According to the manufacturing method of the present invention, a porous metal layer composed of micro-sized active material particles having the above shape may be formed from the metal layer. Therefore, since the process for fine powdering is not included, manufacturing cost can be reduced, and an active material layer and an electrode that do not contain a material that does not react electrochemically such as a binder can be formed, thus contributing to capacity improvement. I can.
후술하는 본 발명의 구체 실시예에서는 Sn 마이크로 입자가 상호 결합되어 3차원 네트워크 구조를 가지는 다공성 금속층을 포함하는 음극을 제조하였다. 본 발명 실시예에 따른 다공성 금속층의 표면 SEM사진을 보면, 실시예의 다공성 금속층은 금속 마이크로 입자가 상호 연결된 다공성 3차원 네트워크 구조에 의하여 Na 이온 흡수시 활물질 부피 변화를 충분히 수용할 수 있는 공간을 제공할 수 있으며, 합금화되더라도 다공성 금속층의 구조가 붕괴되지 않음을 확인하였다. 더불어 합금화시 부피 변화가 큰 Sn을 활물질로 적용하였음에도 불구하고, 충방전 사이클 특성이 유지될 수 있음을 확인하였다. In a specific embodiment of the present invention described later, a negative electrode including a porous metal layer having a three-dimensional network structure was prepared by combining Sn microparticles with each other. Looking at the SEM photograph of the surface of the porous metal layer according to the embodiment of the present invention, the porous metal layer of the embodiment provides a space capable of sufficiently accommodating changes in the volume of the active material when Na ions are absorbed by the porous three-dimensional network structure in which metal microparticles are interconnected. It was confirmed that the structure of the porous metal layer did not collapse even when alloyed. In addition, it was confirmed that the charge/discharge cycle characteristics can be maintained even though Sn having a large volume change during alloying was applied as the active material.
상기 다공성 금속층은 Ga, Ge, In, Sn, Sb, Tl, Pb, 및 Bi를 포함하는 군에서 선택된 금속을 전체 다공성 금속층 100 중량% 기준으로 90 중량% 이상 포함하는 것일 수 있다. 구체적으로, 상기 Ga, Ge, In, Sn, Sb, Tl, Pb, 및 Bi를 포함하는 군에서 선택된 금속을 1종 또는 2종 이상 포함할 수 있다. The porous metal layer may include at least 90% by weight of a metal selected from the group including Ga, Ge, In, Sn, Sb, Tl, Pb, and Bi based on 100% by weight of the total porous metal layer. Specifically, one or two or more metals selected from the group including Ga, Ge, In, Sn, Sb, Tl, Pb, and Bi may be included.
잔부로서, 다른 금속 또는 불가피한 불순물 등이 포함될 수 있다.As the balance, other metals or unavoidable impurities may be included.
상기 Ga, Ge, In, Sn, Sb, Tl, Pb, 및 Bi를 포함하는 군에서 선택된 금속의 함량은 전체 다공성 금속층 100 중량% 기준으로 97 내지 100 중량%, 99 내지 100 중량%, 또는 99.5 내지 100 중량%를 포함할 수 있다. The content of the metal selected from the group containing Ga, Ge, In, Sn, Sb, Tl, Pb, and Bi is 97 to 100% by weight, 99 to 100% by weight, or 99.5 to 100% by weight based on 100% by weight of the total porous metal layer. It may contain 100% by weight.
본 발명의 일 구현예에 따라 제조된 다공성 금속층 및 이를 포함하는 음극의 경우, 종래 미세 분말 활물질 입자를 이용하여 제조된 활물질층과 달리 전극 용량에 기여하지 못하는 도전재 및/또는 바인더를 포함하지 않을 수 있다. 따라서, 전극 용량을 향상시킬 수 있다. In the case of a porous metal layer manufactured according to an embodiment of the present invention and a negative electrode including the same, unlike the active material layer manufactured using fine powder active material particles in the related art, it does not contain a conductive material and/or a binder that does not contribute to electrode capacity. I can. Therefore, it is possible to improve the electrode capacity.
상기 다공성 금속층은 하기 화학식 1 로 표시되는 금속을 전체 다공성 금속층 100 중량% 기준으로 90 중량% 이상 포함하는 것일 수 있다. The porous metal layer may include at least 90% by weight of the metal represented by the following Formula 1 based on 100% by weight of the total porous metal layer.
[화학식 1] [Formula 1]
상기 x는 0 내지 6일 수 있다. 구체적으로 0 초과, 및 6 이하인 것일 수 있다. The x may be 0 to 6. Specifically, it may be greater than 0 and less than or equal to 6.
구체적으로 상기 다공성 금속층은 하기 화학식 2 또는 3으로 표시되는 금속을 전체 다공성 금속층 100 중량% 기준으로 90 중량% 이상 포함하는 것일 수 있다. Specifically, the porous metal layer may include 90% by weight or more of the metal represented by the following Formula 2 or 3 based on 100% by weight of the total porous metal layer.
[화학식 2] [Formula 2]
[화학식 3] [Formula 3]
상기 A는 알칼리 금속 및 알칼리 토금속일 수 있다. The A may be an alkali metal and an alkaline earth metal.
상기 B는 Ga, Ge, In, Sn, Sb, Tl, Pb, 및 Bi를 포함하는 군에서 선택된 것일 수 있다. B may be selected from the group including Ga, Ge, In, Sn, Sb, Tl, Pb, and Bi.
상기 y는 0 내지 1일 수 있다. 구체적으로 0 초과, 및 1 이하인 것일 수 있다. The y may be 0 to 1. Specifically, it may be greater than 0 and less than or equal to 1.
상기 z는 0 내지 3일 수 있다. 구체적으로 0 초과, 및 3 이하인 것일 수 있다. The z may be 0 to 3. Specifically, it may be greater than 0 and 3 or less.
후술하는 본 발명의 일 구체 실시예에서는 다공성 다공성 금속층이 Bi를 100 중량%를 포함하는 음극을 개시하고 있다. 또 다른 본 발명의 일 구체실시예의 음극은 다공성 금속층이 Sn 92 중량%와, 잔부로서 Na를 포함하는 것을 개시하고 있다. One specific embodiment of the present invention to be described later discloses a negative electrode in which the porous porous metal layer contains 100% by weight of Bi. Another embodiment of the negative electrode of the present invention discloses that the porous metal layer contains 92% by weight of Sn and Na as the balance.
본 발명의 일 구현예에 따른 음극은 80회 충방전 후 용량 유지율이 95% 이상일 수 있다. 구체적으로, 95 내지 100%, 95% 이상 및 100% 미만, 99.3% 이상 및 100% 미만, 99% 내지 99.9% 또는 99.3% 내지 99.9%일 수 있다. 본 발명의 일 구현예에 따른 음극은 80회 충방전 후 용량 유지율이 95% 이상일 수 있다. 구체적으로, 95 내지 100%, 95% 이상 및 100% 미만, 99.3% 이상 및 100% 미만, 99% 내지 99.9% 또는 99.3% 내지 99.9%일 수 있다.The negative electrode according to the exemplary embodiment of the present invention may have a capacity retention rate of 95% or more after 80 charging and discharging times. Specifically, it may be 95 to 100%, 95% or more and less than 100%, 99.3% or more and less than 100%, 99% to 99.9%, or 99.3% to 99.9%. The negative electrode according to the exemplary embodiment of the present invention may have a capacity retention rate of 95% or more after 80 charging and discharging times. Specifically, it may be 95 to 100%, 95% or more and less than 100%, 99.3% or more and less than 100%, 99% to 99.9%, or 99.3% to 99.9%.
본 발명의 일 구현예에 따른 음극은 이론 용량의 80%이상의 용량을 가지는 것일 수 있다. 구체적으로, 80% 내지 100%, 80% 이상, 및 100% 미만, 80% 내지 99.9%, 또는 85% 내지 99.9%일 수 있다. The negative electrode according to the exemplary embodiment of the present invention may have a capacity of 80% or more of the theoretical capacity. Specifically, it may be 80% to 100%, 80% or more, and less than 100%, 80% to 99.9%, or 85% to 99.9%.
이차 전지 제조방법Secondary battery manufacturing method
본 발명의 일 구현예에 따른 이차 전지 제조방법은, 다공성 금속층을 포함하는 음극, 및 금속 전극을 포함하는 하프-셀(half-cell)를 구성하는 단계; 상기 하프-셀(half-cell)을 2회 이상 충전 및 방전을 수행하여, 상기 금속층을 다공성 금속층으로 전환하는 단계; 및 상기 다공형으로 전환된 음극, 양극 활물질을 포함하는 양극, 및 전해질을 포함하는 풀-셀(full-cell)을 제조하는 단계;를 포함한다. 상기 다공성 금속층은 알칼리 금속 또는 알칼리 토금속과 합금화 및 탈합금화에 의해 알칼리 금속 또는 알칼리 토금속 이온을 흡수 방출할 수 있는 금속을 포함하고, 상기 금속 전극은 알칼리 금속 또는 알칼리 토금속을 포함한다.A method of manufacturing a secondary battery according to an embodiment of the present invention includes the steps of configuring a negative electrode including a porous metal layer and a half-cell including a metal electrode; Converting the metal layer into a porous metal layer by charging and discharging the half-cell two or more times; And preparing a full-cell including the negative electrode converted into the porous type, a positive electrode including a positive electrode active material, and an electrolyte. The porous metal layer includes a metal capable of absorbing and releasing alkali metal or alkaline earth metal ions by alloying and dealloying with an alkali metal or alkaline earth metal, and the metal electrode includes an alkali metal or alkaline earth metal.
상기 알칼리 금속 또는 알칼리 토금속과 합금화 및 탈합금화에 의해 알칼리 금속 또는 알칼리 토금속 이온을 흡수 방출할 수 있는 금속은 Ga, Ge, In, Sn, Sb, Tl, Pb, Bi을 포함하는 군에서 선택된 것일 수 있다. The metal capable of absorbing and releasing alkali metal or alkaline earth metal ions by alloying and dealloying with the alkali metal or alkaline earth metal may be selected from the group including Ga, Ge, In, Sn, Sb, Tl, Pb, and Bi. have.
상기 알칼리 금속 또는 알칼리 토금속은 Li, Na, 및 Mg를 포함하는 군에서 선택된 것을 포함하는 것일 수 있다. The alkali metal or alkaline earth metal may include those selected from the group containing Li, Na, and Mg.
이 경우, 본 발명의 일 구현예에 따른 음극은 알칼리 금속 또는 알칼리 토금속과 합금화 및 탈합금화에 의하여 높은 용량을 구현할 수 있다. In this case, the negative electrode according to the exemplary embodiment of the present invention may realize a high capacity by alloying and dealloying with an alkali metal or alkaline earth metal.
상기 하프-셀(half-cell)를 구성하는 단계에서 하프-셀은 도 17과 같은 구조로 구성될 수 있다. In the step of configuring the half-cell, the half-cell may have a structure as shown in FIG. 17.
상기 풀-셀(full-cell)을 제조하는 단계 에서 풀-셀은 도 18과 같은 구조로 구성될 수 있다. In the step of manufacturing the full-cell, the full-cell may have a structure as shown in FIG. 18.
상기 금속층을 다공성 금속층으로 전환하는 단계는 금속층에 포함된 금속의 종류, 및 금속 전극의 종류에 따라 충방전 수행 횟수, 및 형성되는 다공성 금속층의 다공성 구조가 달라질 수 있다. In the step of converting the metal layer into a porous metal layer, the number of times of charging and discharging and the porous structure of the formed porous metal layer may vary according to the type of metal included in the metal layer and the type of metal electrode.
상기 금속층을 다공성 금속층으로 전환하는 단계에서, 상기 다공성 금속층은 막대형태의 금속 마이크로 입자가 상호 연결된 다공성 3차원 네트워크 구조로 전환되는 것일 수 있다. 이 경우, 활물질을 미세 분말화하고 이를 이용하여 전극 활물질층을 제조하는 고비용의 복잡한 공정에 의하지 않고도 마이크로 사이즈의 활물질 입자로 구성된 활물질층을 제조할 수 있는 이점이 있다. In the step of converting the metal layer into a porous metal layer, the porous metal layer may be converted into a porous three-dimensional network structure in which rod-shaped metal microparticles are interconnected. In this case, there is an advantage in that an active material layer composed of micro-sized active material particles can be manufactured without using an expensive and complicated process of finely powdering the active material and manufacturing an electrode active material layer by using it.
상기 금속층을 다공성 금속층으로 전환하는 단계는 상기 음극과 금속 전극을 전기적으로 연결하여 완전 충전과 완전 방전으로 사이클을 진행하는 것일 수 있다. The step of converting the metal layer into a porous metal layer may be performing a cycle in which the cathode and the metal electrode are electrically connected to be fully charged and completely discharged.
이 경우 하프-셀 내에서 상기 금속층을 포함하는 음극은 양극에 배치되고, 상기 금속 전극은 음극에 배치하여 하프-셀을 구성하는 것일 수 있다. In this case, in the half-cell, a cathode including the metal layer may be disposed on an anode, and the metal electrode may be disposed on a cathode to constitute a half-cell.
충전과 방전 수행시 흡수, 및 방출되는 알칼리 금속 이온, 또는 알칼리 토금속 이온의 양에 따라 금속층의 부피 팽창량이 달라지게 된다. The volume expansion amount of the metal layer varies depending on the amount of alkali metal ions or alkaline earth metal ions absorbed and released during charging and discharging.
따라서, 충전량이 너무 작은 경우 금속층의 부피 변화가 너무 작아서 금속층에 균열이 발생하지 않거나, 균열 발생량이 적어, 다공성 금속층으로 전환되지 않거나, 전환 효율이 현저히 낮아질 수 있다. Therefore, when the amount of filling is too small, the volume change of the metal layer is too small to cause cracks in the metal layer, or the amount of cracking is small, so that conversion to the porous metal layer may not be performed, or conversion efficiency may be significantly lowered.
완전 충전과 완전 방전으로 수행하는 경우, 짧은 시간, 적은 충방전 횟수로도 마이크로 사이즈의 입자가 상호 연결되어 3차원 네트워크 구조를 가지는 다공성 금속층을 제조할 수 있다. In the case of performing full charge and full discharge, micro-sized particles are interconnected even with a short period of time and a small number of charge and discharge times, thereby manufacturing a porous metal layer having a three-dimensional network structure.
더불어, 본 발명의 일 구현예에 따르는 경우 완전 충전 및 완전 방전으로 충방전을 반복적으로 수행하더라도 금속층의 수평적인 완전한 파단은 일어나지 않을 수 있다. 이는 높은 표면에너지와 확산계수를 가지는 다공성 금속층이 균열 또는 분쇄가 일어나더라도 집전체와 분리막 사이의 한정된 공간에서 상온 소결이 일어날 수 있기 때문이다. 또한, 상기 금속층을 포함하는 음극은 대극인 금속 전극과의 사이에 분리막을 포함하여 이를 하프-셀로 구성하여 충방전을 수행하기 때문에, 금속층의 수축, 팽창에 따른 균열 발생에도 집전체와 미세한 크기의 기공을 갖는 분리막의 한정된 공간이 금속층 및 금속 활물질 입자의 이탈을 방지하고, 금속층의 형태를 지지할 수 있다. In addition, in the case of an exemplary embodiment of the present invention, even if charging/discharging is repeatedly performed with full charge and full discharge, horizontal complete breakage of the metal layer may not occur. This is because even if the porous metal layer having a high surface energy and diffusion coefficient is cracked or crushed, room temperature sintering may occur in a limited space between the current collector and the separator. In addition, since the negative electrode including the metal layer includes a separator between the metal electrode as the counter electrode and constitutes a half-cell to perform charging and discharging, the current collector and the fine size of the current collector and the fine-sized The limited space of the separator having pores prevents the separation of the metal layer and the metal active material particles, and supports the shape of the metal layer.
상기 하프-셀(half-cell)을 구성하는 단계; 이전에 금속층을 포함하는 음극을 제조하는 단계를 더 포함하는 것일 수 있다. Configuring the half-cell; It may be to further include the step of preparing a negative electrode including a metal layer previously.
상기 금속층을 형성하는 방법은 압연, 도금, 스퍼터링, 또는 에어로졸에 의할 수 있다. The method of forming the metal layer may be by rolling, plating, sputtering, or aerosol.
상기 다공성 금속층을 포함하는 음극을 제조하는 단계는 금속 포일을 압연하여 금속층을 포함하는 음극을 제조하는 것일 수 있다. 이 경우, 간단하게 집전체 상에 금속층을 형성할 수 있으며, 용이하게 원하는 두께와 면적의 금속층을 형성하고, 압접으로 쉽게 금속 파편을 재활용이 가능하며, 용이하게 전극 용량을 설계할 수 있는 이점이 있다.The step of preparing the negative electrode including the porous metal layer may include manufacturing a negative electrode including the metal layer by rolling a metal foil. In this case, a metal layer can be simply formed on the current collector, a metal layer having a desired thickness and area can be easily formed, metal fragments can be easily recycled by pressure welding, and electrode capacity can be easily designed. have.
또한, 전지의 용량 및 에너지는 전극에 의하여 결정되며, 전극의 두께는 전지 내의 전극의 비중을 의미하는 것이므로 전극의 두께가 두꺼워질수록 전지의 용량 및 에너지가 증가할 수 있다. In addition, the capacity and energy of the battery are determined by the electrode, and since the thickness of the electrode means the specific gravity of the electrode in the battery, the capacity and energy of the battery may increase as the thickness of the electrode increases.
그러나, 도금 방식에 의하여 두꺼운 금속층을 형성하고자 하는 경우, 용액에 용해된 금속 이온을 환원시키는 과정에서 용해된 금속 이온의 농도가 감소하기 때문에 두께와 균질도 및 밀도를 증가시키기 위한 추가적인 제어가 필요하다는 단점이 있다. 반면, 압연에 의하여 금속층을 형성하는 경우 금속층의 두께 조절이 용이할 뿐 아니라, 두꺼운 금속층을 용이하게 형성할 수 있는 이점이 있다.However, in the case of forming a thick metal layer by the plating method, since the concentration of the dissolved metal ions decreases in the process of reducing the dissolved metal ions in the solution, additional control is required to increase the thickness, homogeneity and density. There are drawbacks. On the other hand, when the metal layer is formed by rolling, it is easy to control the thickness of the metal layer, and there is an advantage in that a thick metal layer can be easily formed.
상기 음극을 제조하는 단계는 금속층을 25 μm 내지 2mm 두께로 형성하는 것일 수 있다. 상기 음극을 제조하는 단계 이후에 하프-셀을 조립하여 금속층을 다공성 금속층으로 전환하는 단계를 거쳐 그 형태 및 두께가 변화될 수 있으므로, 상기 음극을 제조하는 단계에서 형성되는 금속층의 두께는 이후 단계를 고려하여 설정될 필요가 있다. The manufacturing of the negative electrode may include forming a metal layer to a thickness of 25 μm to 2 mm. After the step of manufacturing the anode, the shape and thickness of the metal layer may be changed through the step of assembling the half-cell to convert the metal layer into a porous metal layer, so the thickness of the metal layer formed in the step of manufacturing the cathode may be determined by the following steps. It needs to be set in consideration.
상기 금속층의 두께가 너무 얇은 경우 전극이 쉽게 찢어질 수 있고, 기공으로 인해 전극이 완전히 파단될 수 있다. 두께가 너무 두꺼운 경우 금속활물질의 내부가 팽창되기 어려우며, 이온전달이 매우 느릴 수 있기 때문에 전기화학적 반응, 즉 충방전 속도가 현저하게 저하될 수 있다. If the thickness of the metal layer is too thin, the electrode may be easily torn, and the electrode may be completely broken due to pores. If the thickness is too thick, it is difficult to expand the inside of the metal active material, and since ion transfer may be very slow, an electrochemical reaction, that is, a charge/discharge rate may be significantly reduced.
이차 전지Secondary battery
본 발명의 일 구현예에 따른 이차 전지는 양극; 전해질; 및 본 발명의 일 구현예에 따른 음극을 포함한다.A secondary battery according to an embodiment of the present invention includes a positive electrode; Electrolytes; And a negative electrode according to an embodiment of the present invention.
구체적으로 상기 음극은 집전체, 및 알칼리 금속 또는 알칼리 토금속과 합금화 및 탈합금화에 의해 알칼리 금속 또는 알칼리 토금속 이온을 흡수 방출할 수 있는 금속을 포함하는 다공성 금속층을 포함한다.Specifically, the negative electrode includes a current collector and a porous metal layer including a metal capable of absorbing and releasing alkali metal or alkaline earth metal ions by alloying and dealloying with an alkali metal or alkaline earth metal.
상기 다공성 금속층은 막대형태의 금속 마이크로 입자가 상호 연결된 다공성 3차원 네트워크 구조를 가진다. The porous metal layer has a porous three-dimensional network structure in which rod-shaped metal microparticles are interconnected.
상기 전해질은 금속염, 및 에테르계 용매를 포함하는 것일 수 있다. 구체적으로 상기 금속염은 NaPF6, NaClO4, NaCF3SO3, NaBF4, LiPF6, LiCF3SO3, LiBF4, 및 LiTFSI를 포함하는 군에서 선택된 것일 수 있다.The electrolyte may include a metal salt and an ether-based solvent. Specifically, the metal salt may be selected from the group including NaPF 6 , NaClO 4 , NaCF 3 SO 3 , NaBF 4 , LiPF 6 , LiCF 3 SO 3 , LiBF 4, and LiTFSI.
상기 에테르계 용매는 DME, TEGDME, DEGDME, PEGDME, 및 PEO를 포함하는 군에서 선택된 것일 수 있다. The ether solvent may be selected from the group including DME, TEGDME, DEGDME, PEGDME, and PEO.
구체적으로, 디메톡시에탄(Dimethoxyethane, DME), 1, 3-다이옥솔란(1,3-dioxolane), 테트라에틸렌 글리콜 디메틸 에테르(tetraethylene glycol dimethyl ether, TEGDME), 디에틸렌 글리콜 디메틸 에테르(Diethylene glycol dimethyl ether, DEGDME), 트리에틸렌 글리콜 디메틸 에테르(Triethylene glycol dimethyl ether, TEGDME), 폴리에틸렌 글리콜 디메틸 에테르(Polyethylene glycol dimethyl ether, PEGDME), 폴리에틸렌옥사이드(Polyethleneoxide, PEO) 및 이들의 혼합물을 포함하는 군에서 선택된 것일 수 있다. 상기 용매를 포함하는 경우 금속 표면에 SEI 형성 억제, 이온전도도 향상, 및 알칼리 금속 및 알칼리 토금속으로 이루어진 전극에 대하여 안정성을 향상시킬 수 있다. Specifically, dimethoxyethane (DME), 1,3-dioxolane (1,3-dioxolane), tetraethylene glycol dimethyl ether (TEGDME), Diethylene glycol dimethyl ether , DEGDME), triethylene glycol dimethyl ether (TEGDME), polyethylene glycol dimethyl ether (PEGDME), polyethylene oxide (PEO), and mixtures thereof. have. When the solvent is included, it is possible to suppress the formation of SEI on the metal surface, improve ionic conductivity, and improve stability with respect to an electrode made of an alkali metal and an alkaline earth metal.
상기 양극은 CuS. Cu2S, NiS, Ni3S2, NiS2, TiS2, 및 MoS3를 포함하는 군에서 선택된 것을 포함하는 것일 수 있다. The anode is CuS. It may include those selected from the group including Cu 2 S, NiS, Ni 3 S 2 , NiS 2 , TiS 2 , and MoS 3.
본 발명의 일 구현예에 따른 이차 전지는, 상기 양극과 음극 사이에 분리막을 더 포함할 수 있다. The secondary battery according to the exemplary embodiment of the present invention may further include a separator between the positive electrode and the negative electrode.
상기 분리막은 나노 기공 분리막일 수 있다. The separation membrane may be a nanoporous separation membrane.
상기 나노 기공 분리막은 기공이 10nm 내지 100nm일 수 있다. The nanopore separation membrane may have a pore size of 10 nm to 100 nm.
상기 범위를 만족하는 경우 전지 충방전에 따라 분쇄된 금속층 입자가 음극으로부터 분리되지 않도록 물리적 장벽 역할을 수행할 수 있다. 따라서, 분쇄된 금속층 입자가 금속층에 부착되어 계속적으로 활물질 역할을 할 수 있고, 충방전 사이클 수명이 향상될 수 있다. 상기 분리막의 기공이 너무 큰 경우 분쇄된 금속층 입자가 음극으로부터 분리, 또는 이탈되어 사이클 특성이 저하될 수 있으며, 분리막의 기공이 너무 작은 경우 전해질의 함침이 어렵고 전해질과 전극간의 접촉 면적이 줄어들기 때문에 이온전달이 원활하지 못하고, 결국 전지 구동에 필요한 이온전도를 충족시키지 못할 수 있다. If the above range is satisfied, it may serve as a physical barrier so that the pulverized metal layer particles are not separated from the negative electrode according to battery charging and discharging. Accordingly, the pulverized metal layer particles may be attached to the metal layer to continuously serve as an active material, and a charge/discharge cycle life may be improved. If the pores of the separator are too large, the pulverized metal layer particles may be separated or separated from the negative electrode and the cycle characteristics may be deteriorated.If the pores of the separator are too small, impregnation of the electrolyte is difficult and the contact area between the electrolyte and the electrode decreases. Ion transfer may not be smooth, and consequently, ion conduction required for driving the battery may not be satisfied.
상기 나노 기공 분리막의 두께는 5μm 내지 1mm일 수 있다. 상기 범위를 만족하는 경우 분쇄된 금속층으로부터 이탈하지 않도록 충분한 물리적 장벽 역할을 수행하여, 사이클 특성 향상에 기여할 수 있다. The thickness of the nanopore separation membrane may be 5 μm to 1 mm. When the above range is satisfied, it serves as a sufficient physical barrier to prevent separation from the pulverized metal layer, thereby contributing to improvement of cycle characteristics.
후술하는 본 발명의 일 실시예에서는 나노 기공 분리막으로 Celgard 2400(두께 25 ㎛, 기공 100 nm 이하)를 사용하였다. In an embodiment of the present invention to be described later, Celgard 2400 (thickness 25 µm, pores 100 nm or less) was used as a nanopore separation membrane.
상기 분리막은 마이크로 기공 분리막일 수 있다. The separation membrane may be a microporous separation membrane.
상기 마이크로 기공 분리막은 기공이 1μm 내지 50μm인 것일 수 있다. The micropore separation membrane may have a pore size of 1 μm to 50 μm.
상기 마이크로 기공 분리막은 두께가 0.2mm 내지 2mm인 것일 수 있다. The microporous separation membrane may have a thickness of 0.2mm to 2mm.
상기 수치범위를 만족하는 경우 마이크로 기공 분리막은 충방전 과정에서 전극 표면에 생성되는 수지상(dendrite) 형성에 따른 전지 내부 단락을 방지할 수 있다. When the above numerical range is satisfied, the microporous separator may prevent a short circuit inside the battery due to the formation of dendrite generated on the electrode surface during the charging and discharging process.
후술하는 본 발명의 일 실시예에서는 마이크로 기공 분리막으로 glass fiber filter(두께 약 1 mm, 기공 10 ㎛ 이상)를 사용하였다. In an embodiment of the present invention to be described later, a glass fiber filter (about 1 mm in thickness, 10 µm or more pores) was used as a microporous separation membrane.
본 발명의 일 구현예에 따르면, 마이크로 기공 분리막 및/또는 마이크로 기공 분리막을 복수개 포함할 수 있다. According to one embodiment of the present invention, a plurality of microporous separation membranes and/or microporous separation membranes may be included.
후술하는 본 발명의 일 실시예에서는 1개의 마이크로 기공 분리막의 양측에 각각 나노 기공 분리막을 위치시킨 3중 분리막(Celgard 2400 / glass fiber filter / Celgard 2400 )을 사용하였다. 구체적으로, 각각의 전극에 나노 기공 분리막이 접하고, 2개의 나노 기공 분리막 사이에 마이크로 기공 분리막이 위치시킨 것일 수 있다. In an embodiment of the present invention to be described later, a triple separation membrane (Celgard 2400 / glass fiber filter / Celgard 2400) in which nanoporous separation membranes are positioned on both sides of one microporous separation membrane, respectively, was used. Specifically, the nanoporous separation membrane may be in contact with each electrode, and a microporous separation membrane may be positioned between the two nanoporous separation membranes.
이 경우, glass fiber filter의 역할은 소듐 금속 또는 양극의 수지상으로 인한 내부 단락의 시간을 지연시킬 수 있다. In this case, the role of the glass fiber filter may delay the time of internal short circuit due to sodium metal or dendritic phase of the anode.
또한, 양극과 접하는 Celgard 2400은 양극의 수지상 생성을 억제시킬 수 있다. In addition, Celgard 2400 in contact with the anode can suppress the formation of dendritic phase of the anode.
음극과 접하는 Celgard 2400은 나노 기공으로 분쇄된 금속층 입자들이 음극과 분리되는 것을 방지하고, 양극의 수지상 생성으로 인한 내부단락을 지연시킬 수 있습니다. Celgard 2400 in contact with the cathode prevents the metal layer particles pulverized with nano pores from separating from the cathode and can delay the internal short circuit due to the formation of dendritic phase of the anode.
결과적으로, 전극의 충방전 사이클 특성을 향상시킬 수 있다. As a result, it is possible to improve the charge/discharge cycle characteristics of the electrode.
이하, 본 발명의 이해를 돕기 위하여, 본 발명의 바람직한 실시예 및 비교예를 기재한다. 그러나 하기 실시예는 본 발명의 바람직한 일 실시예일뿐 본 발명이 하기 실시예에 한정되는 것은 아니다.Hereinafter, in order to aid the understanding of the present invention, preferred examples and comparative examples of the present invention will be described. However, the following examples are only preferred examples of the present invention, and the present invention is not limited to the following examples.
실시예 1 : Sn 다공성 금속층을 포함하는 음극Example 1: Cathode including Sn porous metal layer
본 발명의 일 구체 실시예에서는 Sn 금속을 압연하여 27 μm 두께의 Sn 포일 금속층을 형성하고, 이를 펀칭하여 Sn 포일 금속층을 포함하는 지름 6mm인 음극을 제조하였다. In a specific embodiment of the present invention, a Sn foil metal layer having a thickness of 27 μm was formed by rolling Sn metal, and then a negative electrode having a diameter of 6 mm including the Sn foil metal layer was manufactured by punching the Sn metal layer.
상기 음극을 이용하여 하프-셀을 구성하였다. 구체적으로 상기 Sn 포일 금속층을 포함하는 음극과 Na 금속 전극을 연결하여, 0.1 C-rate의 전류를 인가하여 충방전을 100회 수행함으로써, Sn 포일 금속층에 Na의 흡수와 방출을 반복적으로 수행시켜 Sn 포일 금속층을 다공성 Sn 다공성 금속층으로 전환시켰다. A half-cell was constructed using the negative electrode. Specifically, by connecting the cathode including the Sn foil metal layer and the Na metal electrode, applying a current of 0.1 C-rate to perform charging and discharging 100 times, thereby repeatedly absorbing and discharging Na to the Sn foil metal layer to obtain Sn The foil metal layer was converted to a porous Sn porous metal layer.
Sn 포일 금속층이 다공성 Sn 다공성 금속층으로 전환되는 원리는 다음과 같다. The principle of conversion of the Sn foil metal layer to the porous Sn porous metal layer is as follows.
방전시 Sn 포일 금속층에 Na가 흡수되어, 부피가 팽창한다. 이후 충전시, Sn 포일 금속층에서 Na가 방출되고, 부피가 다시 수축함으로써, Sn 포일 금속층에 균열이 발생하고, 작은 입자로 분쇄하게 된다. 분쇄된 입자들은 표면에너지를 줄이기 위하여, 다시 재결합할 수 있다. 재결합이 가능한 이유는 작은 입자 사이의 접촉점에서 소결이 일어나기 때문인 것으로 파악된다. 이러한 과정 동안 분쇄된 입자들은 서로 연결된 구조를 형성하게 된다. During discharge, Na is absorbed into the Sn foil metal layer, and the volume expands. After filling, Na is released from the Sn foil metal layer, and the volume shrinks again, resulting in cracks in the Sn foil metal layer and pulverized into small particles. The pulverized particles can recombine again to reduce the surface energy. It is believed that the reason why recombination is possible is because sintering occurs at the contact points between small particles. During this process, the pulverized particles form a connected structure.
이러한 충전(charge: desodiation, 부피수축 야기)과 방전(discharge: sodiation, 부피팽창 야기)을 반복적으로 수행함으로써, Sn 포일 금속층은 수축과 팽창이 반복적으로 발생하며, 이 과정에서 분쇄와 재결합이 반복되어 일어난다. 수축이나 팽창에서 기계적으로 불안정한 구조를 지닌 부분은 다시 균열이 가거나 분쇄가 일어나서 작은 입자로 되고, 이 작은 입자들은 재결합이 일어나서 새로운 형상을 만든다. 반면에, 수축이나 팽창시 안정한 구조로 결합된 부분은 반복된 팽창 수축에도 균열이나 분쇄가 발생하지 않고 본래의 형상의 유지한다. 충분히 반복된 충방전 후에는 다공성 구조의 금속층은 부피 팽창-수축에 대하여 안정한 구조를 지니게 된다. 즉, 본 발명의 일 구현예에 따른 음극의 다공성 금속층은 소듐과 반응하여 (방전: discharge) 부피가 팽창하거나, 소듐이 빠져나와서(충전:charge) 부피가 감소하여도 균열이나 분쇄 발생이 현저히 감소하게 되고, 반복되는 충방전에도 방전 용량의 감소가 억제되고, 충방전 사이클 특성이 향상될 수 있다. 이와 같이 부피 팽창-수축에 안정한 구조는 막대형태의 Sn 금속 마이크로 입자가 독특한 방식으로 상호 연결된 형태의 다공성 3차원 네트워크 구조로 나타난다. By repeatedly performing such charge (desodiation, causing volume contraction) and discharge (discharge: sodiation, causing volume expansion), the Sn foil metal layer contracts and expands repeatedly, and in this process, crushing and recombination are repeated. It happens. Parts with mechanically unstable structures in contraction or expansion become small particles by cracking or crushing again, and these small particles recombine to form a new shape. On the other hand, when contracting or expanding, the part that is joined in a stable structure does not cause cracks or crushing even after repeated expansion and contraction, and maintains its original shape. After sufficiently repeated charging and discharging, the porous metal layer has a structure that is stable against volume expansion and contraction. That is, even if the volume of the porous metal layer of the negative electrode according to an embodiment of the present invention reacts with sodium to expand (discharge) or decreases the volume due to the release of sodium (charge), the occurrence of cracking or crushing is significantly reduced. In addition, even in repeated charging and discharging, a decrease in discharge capacity is suppressed, and charging/discharging cycle characteristics may be improved. As such, the structure that is stable against volume expansion and contraction appears as a porous three-dimensional network structure in which rod-shaped Sn metal microparticles are interconnected in a unique way.
본 명세서에서, 네트워크 구조란 입자들이 물리적으로 상호 연결된 형태를 가지는 것을 의미한다. 이와 같이 활물질 입자들이 물리적으로 상호 연결된 형태를 가지는 경우 전기적으로도 활물질 입자들 간의 연결이 형성될 수 있다. In the present specification, a network structure means that particles have a physically interconnected form. In this way, when the active material particles are physically interconnected, a connection between the active material particles may be formed electrically.
상기 충방전 횟수, 및 금속층의 금속 종류에 따라 다공성 금속층의 형태, 입자 사이즈, 또는 기공도 등이 달라질 수 있다. The shape, particle size, or porosity of the porous metal layer may vary according to the number of times of charging and discharging and the type of metal of the metal layer.
도 3은 실시예 1 음극의 다공성 금속층의 실물 사진이다. 가시적인 균열이 없이 전극의 면적방향 및 두께 방향으로 상호 연결된 3차원 네트워크 구조를 가지는 다공성 금속층임을 확인할 수 있다. 3 is a real photograph of the porous metal layer of the negative electrode of Example 1. It can be seen that it is a porous metal layer having a three-dimensional network structure interconnected in the area direction and thickness direction of the electrode without visible cracks.
도 4는 실시예 1 음극의 Sn 다공성 금속층의 저배율 SEM 사진이다. 평균기공 직경이 2 μm 이고, 활물질층의 기공도는 81 부피% 이다. 상기 막대형태의 Sn 마이크로 금속 입자는 평균직경 0.8 μm 이고, 평균 길이가 1.2 μm 이고, 막대형태 마이크로 입자의 종횡비(길이/직경)은 1.3 이다. 다공성 금속층의 구조에 대한 이해를 돕기 위하여 접점에서 막대 형태의 금속 입자의 결합 방향을 붉은색 화살표로 표시하였다. 상기 막대형태의 Sn 마이크로 금속 입자는 입자간의 각도가 180도를 이루는 일직선 형태가 아닌 무작위적인 방향으로 상호 연결되어 다공성 3차원 네트워크 구조를 가지는 것을 확인할 수 있다. 특히, 각 접점(연결 부위)에서 1 내지 5개의 각 막대형태 입자가 연결되어 입체적인 다공성 구조를 형성하고 있다. 앞서 설명한 바와 같이 이러한 다공성 구조 및 기공도는 다공성 금속층이 알칼리 금속 또는 알칼리 토금속과 반응하여 부피가 팽창하는 경우, 증가한 부피를 수용할 수 있는 공간을 제공하는 역할뿐 만 아니라, 부피 팽창에 안정한 구조를 가짐으로써, 충방전에 따른 활물질 입자 또는 구조의 균열이나 분쇄를 감소시킬 수 있고, 충방전 사이클시 용량감소를 억제할 수 있다. 4 is a low magnification SEM photograph of the Sn porous metal layer of Example 1 negative electrode. The average pore diameter is 2 μm, and the porosity of the active material layer is 81% by volume. The rod-shaped Sn micro-metal particles have an average diameter of 0.8 μm, an average length of 1.2 μm, and the aspect ratio (length/diameter) of the rod-shaped micro particles is 1.3. In order to help understand the structure of the porous metal layer, the bonding direction of the rod-shaped metal particles at the contact point is indicated by a red arrow. It can be seen that the rod-shaped Sn micro-metal particles have a porous three-dimensional network structure by being interconnected in a random direction rather than a straight line in which the angle between the particles is 180 degrees. In particular, 1 to 5 rod-shaped particles are connected at each contact point (connection site) to form a three-dimensional porous structure. As described above, this porous structure and porosity not only provide a space to accommodate the increased volume when the porous metal layer reacts with an alkali metal or alkaline earth metal to expand the volume, but also provides a structure that is stable against volume expansion. By having it, it is possible to reduce cracking or pulverization of active material particles or structures due to charging and discharging, and suppressing capacity reduction during charging/discharging cycles.
도 5는 실시예 1 음극의 다공성 금속층 EDS spectrum을 나타낸 것이다.Figure 5 shows the EDS spectrum of the porous metal layer of Example 1 negative electrode.
실시예 1 음극의 다공성 금속층 조성은 Na0.08Sn으로 나타난다. 즉, 다공성 금속층 100 중량%에 대하여 92 중량%의 Sn과 잔부 Na를 포함한다. Example 1 The composition of the porous metal layer of the negative electrode is represented by Na 0.08 Sn. That is, 92% by weight of Sn and the balance Na are included with respect to 100% by weight of the porous metal layer.
도 5에 나타나는 Cu피크는 SEM 홀더에 의한 피크이고, C피크와 O피크는 전해질 또는 산화에 의한 결과로서 다공성 금속층과 무관한 피크에 해당한다. The Cu peak shown in FIG. 5 is a peak due to the SEM holder, and the C peak and the O peak correspond to peaks independent of the porous metal layer as a result of electrolyte or oxidation.
다만, 도 5는 실시예 1의 음극을 세척을 수행하지 않은 상태로 다공성 금속층의 EDS spectrum를 측정한 것이다. Na는 전해질로 인한 것이거나, 다공성 다공성 금속층으로 전환하는 단계에서 활물질층에 흡수된 후, 방출되지 않고 활물질층에 남아있는 것으로 파악된다. 즉, 실질적으로 다공성 금속층 내의 Sn 함량은 다공성 금속층 100중량%에 대하여 92 중량%를 훨씬 초과하는 것으로 파악된다. However, Figure 5 is a measurement of the EDS spectrum of the porous metal layer in a state in which the negative electrode of Example 1 was not washed. Na is considered to be due to an electrolyte, or to remain in the active material layer without being released after being absorbed by the active material layer in the step of converting to the porous porous metal layer. That is, it is found that the Sn content in the porous metal layer substantially exceeds 92% by weight with respect to 100% by weight of the porous metal layer.
도 6는 실시예 1 음극의 Sn 다공성 금속층이 Na와 1mV까지 전기화학적으로 완전히 반응한 상태(완전방전:full discharge, Na3.75Sn)의 SEM사진이다. Sn 금속 마이크로 입자가 Na와 반응에 의해 최대로 팽창하여 다공성 금속층의 기공의 크기와 수가 감소하였으나, 여전히 기공을 확보하고 있는 것을 알 수 있다. 특히, 부피가 팽창했음에도 불구하고, 균열이나 분쇄된 작은 입자를 관찰할 수 없다. 즉, 본 발명 음극의 다공성 활물질층은 부피 팽창에도 구조의 깨짐이나 붕괴없이매우 안정한 구조를 유지함을 알 수 있다. 구체적으로, 실시예 1의 Na3.75Sn 활물질층의 기공 평균 직경은 0.5 μm 이고, 기공도는 10 부피% 이다. 이에 따라 실시예 1 음극의 다공성 금속층은 알칼리 금속 또는 알칼리 토금속과의 반응에 의한 부피 팽창을 수용할 수 있는 충분한 공간을 제공함과 동시에 부피 팽창 및 수축시 발생하는 내부응력이 분산될 수 있는 고유의 안정한 구조를 가지고 있음을 알 수 있다. 6 is a SEM photograph of a state in which the Sn porous metal layer of the negative electrode of Example 1 was completely electrochemically reacted with Na to 1 mV (full discharge, Na 3.75 Sn). It can be seen that the size and number of pores in the porous metal layer were reduced by the maximum expansion of the Sn metal microparticles by reaction with Na, but the pores were still secured. In particular, even though the volume has expanded, no cracks or crushed small particles can be observed. That is, it can be seen that the porous active material layer of the negative electrode of the present invention maintains a very stable structure without breaking or collapsing the structure even with volume expansion. Specifically, the average pore diameter of the Na 3.75 Sn active material layer of Example 1 was 0.5 μm, and the porosity was 10% by volume. Accordingly, the porous metal layer of Example 1 provides a sufficient space to accommodate volume expansion due to reaction with an alkali metal or alkaline earth metal, and at the same time, an inherent stable internal stress that occurs during volume expansion and contraction can be dispersed. It can be seen that it has a structure.
도 7은 실시예 1 음극의 다공성 금속층을 1 mV까지 소듐과 방전한 상태(Na3.75Sn)의 EDS spectrum 결과를 나타낸다. 7 shows the EDS spectrum result of the state in which the porous metal layer of the negative electrode of Example 1 was discharged with sodium to 1 mV (Na 3.75 Sn).
본 발명 음극의 다공성 금속층이 소듐과 반응하였을 때, 조성은 NaxSn으로 나타나며, x의 범위는 최대 3.75까지 가능하다.When the porous metal layer of the negative electrode of the present invention reacts with sodium, the composition is Na x Sn, and the range of x can be up to 3.75.
도 7에 나타난 Cu피크는 SEM 홀더에 의한 피크이고 C피크와 O피크, P피크, F피크는 전해질 또는 산화에 의한 결과로서 다공성 금속층과 무관한 피크이다. The Cu peaks shown in FIG. 7 are peaks due to the SEM holder, and the C peaks, O peaks, P peaks, and F peaks are peaks independent of the porous metal layer as a result of electrolyte or oxidation.
도 8은 실시예 1 음극의 충·방전 그래프이다. 8 is a graph of charging and discharging of the negative electrode of Example 1.
전지의 구성은 소듐 금속 대극, 전해질에 함침한 분리막층, 실시예 1의 음극을 순서대로 적층하여 0.1 C-rate의 전류에서 첫번째 사이클의 충방전한 곡선을 나타낸다. 실시예 1 음극은 충전 용량과 방전 용량 모두 692 mAh/g 인 것을 확인할 수 있으며, 매우 가역적인 충방전 용량을 가짐을 알 수 있다.The configuration of the battery is a sodium metal counter electrode, a separator layer impregnated with an electrolyte, and a negative electrode of Example 1 are sequentially stacked to show a charging/discharging curve at a current of 0.1 C-rate in the first cycle. Example 1 It can be seen that the negative electrode has a charge capacity and a discharge capacity of 692 mAh/g, and it can be seen that it has a very reversible charge and discharge capacity.
이는 막대형태의 금속 마이크로 입자가 상호 연결된 다공성 3차원 네트워크 구조를 가짐으로써, 부피 팽창시에 입자 간의 간섭을 줄일 수 있고, 전극 활물질층 내부의 기공이 부피팽창을 수용할 수 있으며, 전해질의 접근이 용이한 구조에서 기인한 것임을 알 수 있다This has a porous three-dimensional network structure in which rod-shaped metal microparticles are interconnected, so that interference between particles can be reduced during volume expansion, and pores inside the electrode active material layer can accommodate volume expansion, and access to the electrolyte is difficult. It can be seen that it is due to its easy structure.
도 9는 비교예 1 음극의 SEM 사진을 나타낸다.9 shows an SEM photograph of the negative electrode of Comparative Example 1.
실시예 1 음극의 다공성 금속층의 구조에 따른 효과를 비교 확인하기 위하여, 주석 분말을 이용하여 비교예 1의 주석 활물질을 포함하는 다공성 주석 음극을 제조하였다. 구체적으로, 150 nm의 입자를 가지는 주석 분말과 NaCl 분말을 혼합하여 50mm x 1.5mm 틀에서 15 ton으로 압축한 펠릿형태로 제조하였다. 그 후 증류수로 NaCl을 제거함으로써, 비교예 1의 주석 활물질만으로 구성된 다공성 전극을 제조하였다.Example 1 In order to compare and confirm the effect of the structure of the porous metal layer of the negative electrode, a porous tin negative electrode including the tin active material of Comparative Example 1 was prepared using tin powder. Specifically, a mixture of tin powder and NaCl powder having 150 nm particles was prepared in the form of pellets compressed at 15 ton in a 50 mm x 1.5 mm frame. Then, by removing NaCl with distilled water, a porous electrode composed of only the tin active material of Comparative Example 1 was prepared.
도 9를 보면, 평균 직경 150 nm의 주석 입자와 이 입자들이 서로 응집되어 500 내지 1 μm 의 2차 입자, 그리고 200 내지 1 μm 의 기공이 공존하는 구조를 가지는 다공성 주석 음극이 형성되었음을 확인할 수 있다.Referring to FIG. 9, it can be seen that tin particles having an average diameter of 150 nm and the particles are aggregated with each other to form a porous tin negative electrode having a structure in which 500 to 1 μm secondary particles and 200 to 1 μm pores coexist. .
도 10은 비교예 1 의 0.1 C-rate에서 충방전 특성을 나타낸 그래프이다. 10 is a graph showing charge and discharge characteristics at 0.1 C-rate of Comparative Example 1.
비교예 1의 전극을 사용하여 실시예 1의 도 8과 동일한 전지를 구성한 후, 0.1 C-rate에서 충방전 시험을 진행하였다. 방전 용량이 최대 1.3 mAh/g으로 나타났으며, 충전은 이루어지지 않았다. 또한 이 방전용량은 도 8에서 보여지는 692 mAh/g의 충방전 용량에 대비하여 현저하게 낮음을 알 수 있다.After the same battery as in FIG. 8 of Example 1 was constructed using the electrode of Comparative Example 1, a charge/discharge test was performed at 0.1 C-rate. The discharge capacity was shown to be a maximum of 1.3 mAh/g, and charging was not performed. In addition, it can be seen that this discharge capacity is remarkably low compared to the charge/discharge capacity of 692 mAh/g shown in FIG. 8.
도 11은 실시예 1 음극과 비교예 1 음극의 사이클 특성을 나타낸 그래프이다. 실시예 1 음극은 80회 사이클 동안 초기 용량은 692 mAh/g, 사이클 동안 최대용량 757 mAh/g, 최소용량은 601 mAh/g으로 나타났다. 즉, 실시예 1의 경우 80 사이클 동안 600 mAh/g 이상의 용량이 나타났으며, 이는 종래의 리튬 이온 전지용 흑연 음극의 이론용량 372 mAh/g 의 약 1.6배 내지 2배에 해당한다. 실시예 1 음극의 경우 80회 충방전 후 용량 유지율은 99.3%로 우수한 사이클 특성을 가짐을 확인할 수 있다. 11 is a graph showing the cycle characteristics of the negative electrode of Example 1 and the negative electrode of Comparative Example 1. Example 1 The negative electrode had an initial capacity of 692 mAh/g during 80 cycles, a maximum capacity of 757 mAh/g, and a minimum capacity of 601 mAh/g during the cycle. That is, in the case of Example 1, a capacity of 600 mAh/g or more was shown for 80 cycles, which corresponds to about 1.6 to 2 times the theoretical capacity of 372 mAh/g of a conventional graphite negative electrode for a lithium ion battery. Example 1 In the case of the negative electrode, it can be seen that the capacity retention rate after 80 charging and discharging was 99.3%, which has excellent cycle characteristics.
반면에 비교예 1 음극은 6 사이클 동안 약 1 mAh/g으로 방전되며, 충전은 일어나지 않는 것을 확인할 수 있다. 이는 비교예 1의 전극은 비록 다공성 구조의 Sn활물질층을 포함하나, 충전 및 방전에 따른 부피변화에 의하여 활물질층의 구조가 유지되지 못하고 균열 및 분쇄가 발생하기 때문인 것을 알 수 있다, On the other hand, it can be seen that the negative electrode of Comparative Example 1 is discharged at about 1 mAh/g for 6 cycles, and charging does not occur. It can be seen that this is because the electrode of Comparative Example 1 includes the Sn active material layer having a porous structure, but the structure of the active material layer is not maintained due to volume change due to charging and discharging, and cracking and crushing occur.
즉, 본원의 일 구현예에 따른 실시예 1 음극의 활물질층의 경우 앞서 설명한 바와 같이 단단한 결합의 안정적인 다공성 구조를 가짐으로써, 충방전 사이클 특성 이 향상된 고용량 음극임을 알 수 있다. 구체적으로, 실시예 1의 경우 기둥형 입자들 간의 각 접점에서 4개 이하의 기둥형 주석 입자들이 무작위적인 방향으로 결합하고 있어, 부피 팽창시 효과적으로 응력을 분산 가능함을 확인할 수 있다. 그러나, 비교예 1 음극은 금속 입자들이 결합부위가 구분되지 않을 만큼 여러 방향으로 복수개의 입자들이 결합을 하고, 다수의 결합 부위에 4개 초과의 입자들이 결합하고 있기 때문에 응력 분산이 어려운 구조이다. 즉, 단순히 다공성 구조를 가지는 전극이라고 할지라도 팽창시에 효과적으로 응력을 분산함으로써, 안정적인 구조를 유지하기 어려운 것을 알 수 있다. That is, in the case of the active material layer of the negative electrode of Example 1 according to the exemplary embodiment of the present disclosure, as described above, it can be seen that the active material layer has a stable porous structure with a tight bond, and thus, is a high-capacity negative electrode with improved charge/discharge cycle characteristics. Specifically, in the case of Example 1, since 4 or less columnar tin particles are bonded in a random direction at each contact point between the columnar particles, it can be confirmed that stress can be effectively dispersed during volume expansion. However, the negative electrode of Comparative Example 1 has a structure that is difficult to disperse stress because a plurality of particles are bonded in various directions so that the bonding site of the metal particles is not distinguished, and more than four particles are bonded to the bonding site. That is, it can be seen that even if the electrode has a simple porous structure, it is difficult to maintain a stable structure by effectively distributing the stress upon expansion.
실시예 2 : Bi 다공성 금속층을 포함하는 음극Example 2: Anode including Bi porous metal layer
Bi 금속을 2mm 두께로 압연하여 Bi금속 포일층을 형성하고, 이를 펀칭하여 Bi 포일 금속층을 포함하는 5 X 5 mm의 사각형태의 음극을 제조하였다. Bi metal was rolled to a thickness of 2 mm to form a Bi metal foil layer, which was punched to prepare a 5 X 5 mm square cathode including the Bi foil metal layer.
상기 음극을 이용하여 하프-셀을 구성하였다. 구체적으로 상기 Bi 포일 금속층을 포함하는 음극과 Na 금속 전극을 연결하였다. 0.01 C-rate의 전류를 인가하여 충방전을 4회 수행함으로써, Bi 포일 금속층을 Bi 다공성 금속층으로 전환시켰다.A half-cell was constructed using the negative electrode. Specifically, the cathode including the Bi foil metal layer and the Na metal electrode were connected. By applying a current of 0.01 C-rate and performing charging and discharging four times, the Bi foil metal layer was converted into a Bi porous metal layer.
도 12는 실시예 2 음극의 Bi 다공성 금속층의 실제 사진이다. 다공성 금속층에 가시적인 균열이 발견되지 않음을 확인할 수 있다. 12 is an actual photograph of the Bi porous metal layer of the negative electrode of Example 2. It can be seen that no visible cracks were found in the porous metal layer.
도 13는 실시예 2 음극의 Bi 다공성 금속층의 SEM 사진이다. 평균기공 직경이 2 μm 이고, 활물질층의 기공도는 72 부피% 이다. 상기 막대형태의 Bi 마이크로 금속 입자는 평균직경 1.4 μm 이고, 평균 길이가 2.3 μm 이고, 막대형태 마이크로 입자의 종횡비(길이/직경)은 1.6 이다. 또한, 상기 막대형태의 Bi 마이크로 금속 입자는 무작위적인 방향으로 상호 연결되어 다공성 3차원 네트워크 구조를 가지는 것을 확인할 수 있다. 각 접점(연결 부위)에서 1 내지 5개의 막대형태 입자가 연결되어 입체적인 다공성 구조를 형성하고 있다. 앞서 설명한 바와 같이 이러한 다공성 구조 및 기공도는 다공성 금속층이 알칼리 금속 또는 알칼리 토금속과 반응하여 부피가 팽창하는 경우 증가한 부피를 수용할 수 있는 공간을 제공하여 전극 사이클 특성 향상에 기여할 수 있다. 더욱 구체적으로, 막대형태의 Bi 마이크로 금속 입자는 표면에 평균 입자 직경이 0.5 μm 인 미세 입자가 돌출된 형태를 가지는 것을 확인할 수 있다.13 is a SEM photograph of the Bi porous metal layer of Example 2 negative electrode. The average pore diameter is 2 μm, and the porosity of the active material layer is 72% by volume. The rod-shaped Bi micro metal particles have an average diameter of 1.4 μm, an average length of 2.3 μm, and the aspect ratio (length/diameter) of the rod-shaped micro particles is 1.6. In addition, it can be seen that the rod-shaped Bi micro metal particles are interconnected in random directions to have a porous three-dimensional network structure. At each contact point (connection site), 1 to 5 rod-shaped particles are connected to form a three-dimensional porous structure. As described above, such a porous structure and porosity may contribute to improvement of electrode cycle characteristics by providing a space capable of accommodating an increased volume when the porous metal layer reacts with an alkali metal or alkaline earth metal to expand the volume. More specifically, it can be seen that the rod-shaped Bi micro metal particles have a protruding shape of fine particles having an average particle diameter of 0.5 μm on the surface.
도 14은 실시예 2 음극의 다공성 Bi 다공성 금속층의 XRD 패턴이다. XRD 분석에 사용되는 JCPDS #85-1329의 비스무트 결정피크와 매우 잘 일치하며 다른 추가적인 피크가 관찰되지 않는다. 이로써, Bi 다공성 금속층은 Bi로만 이루어져 있음을 알 수 있다. 14 is an XRD pattern of the porous Bi porous metal layer of the negative electrode of Example 2. It agrees very well with the bismuth crystal peak of JCPDS #85-1329 used for XRD analysis, and no other additional peaks are observed. Accordingly, it can be seen that the Bi porous metal layer is composed of only Bi.
도 15는 실시예 2 음극의 충·방전 그래프이다. 15 is a graph of charging and discharging of the negative electrode of Example 2.
전지의 구성은 소듐금속 대극, 전해질에 함침한 분리막층, 및 실시예 2 음극을 순서대로 적층하여 0.1 C-rate의 전류에서 첫번째 사이클의 충방전한 곡선을 나타낸다. 1번째 사이클의 0.01 C-rate 에서 충방전 그래프를 나타낸 것이다. 실시예 2 음극은 충전 용량이 366 mAh/g이고, 방전 용량이 352 mAh/g인 것을 확인할 수 있으며, 매우 가역적인 충방전 용량을 가짐을 알 수 있다.The configuration of the battery is a sodium metal counter electrode, a separator layer impregnated with an electrolyte, and a negative electrode of Example 2 are sequentially stacked to show a charging/discharging curve at a current of 0.1 C-rate in the first cycle. It shows the charge/discharge graph at 0.01 C-rate of the 1st cycle. Example 2 It can be seen that the negative electrode has a charge capacity of 366 mAh/g and a discharge capacity of 352 mAh/g, and it can be seen that it has a very reversible charge and discharge capacity.
이는 막대형태의 금속 마이크로 입자가 상호 연결된 다공성 3차원 네트워크 구조를 가짐으로써, 부피 팽창시에 입자 간의 간섭을 줄일 수 있고, 전극 활물질층 내부의 기공이 부피팽창을 수용할 수 있으며, 전해질의 접근이 용이한 구조에서 기인한 것임을 알 수 있다This has a porous three-dimensional network structure in which rod-shaped metal microparticles are interconnected, so that interference between particles can be reduced during volume expansion, and pores inside the electrode active material layer can accommodate volume expansion, and access to the electrolyte is difficult. It can be seen that it is due to its easy structure.
도 16는 실시예 2 음극의 1 내지 100회 사이클 특성을 나타낸 그래프이다. 0.1 C-rate의 전류에서 충방전이 진행되었으며 초기용량은 330 mAh/g, 100 회 사이클 후에도 330 mAh/g, 평균 용량은 340 mAh/g으로 이론용량의 85% 수준의 용량이 나타났다. 또한 100 사이클 후에도 방전 용량이 유지되고, 용량 유지율이 99.8% 임을 확인할 수 있다. 16 is a graph showing the cycle characteristics of 1 to 100 cycles of the negative electrode of Example 2. Charging and discharging proceeded at a current of 0.1 C-rate, and the initial capacity was 330 mAh/g, even after 100 cycles, 330 mAh/g, and the average capacity was 340 mAh/g, indicating a capacity of 85% of the theoretical capacity. In addition, it can be seen that the discharge capacity is maintained even after 100 cycles, and the capacity retention rate is 99.8%.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.The present invention is not limited to the above embodiments, but may be manufactured in a variety of different forms, and those of ordinary skill in the art to which the present invention pertains, other specific forms without changing the technical spirit or essential features of the present invention. It will be appreciated that it can be implemented with. Therefore, it should be understood that the embodiments described above are illustrative in all respects and are not limiting.
Claims (17)
- 알칼리 금속 또는 알칼리 토금속과 합금화 및 탈합금화에 의해 알칼리 금속 또는 알칼리 토금속 이온을 가역적으로 흡수 및 방출할 수 있는 금속을 포함하는 다공성 금속층;을 포함하고, Including; a porous metal layer comprising a metal capable of reversibly absorbing and releasing alkali metal or alkaline earth metal ions by alloying and dealloying with an alkali metal or alkaline earth metal,상기 다공성 금속층은 막대형태의 금속 마이크로 입자가 상호 연결된 다공성 3차원 네트워크 구조인, 음극.The porous metal layer is a porous three-dimensional network structure in which rod-shaped metal microparticles are interconnected, the negative electrode.
- 제1항에 있어서, The method of claim 1,상기 다공성 금속층은 기공 평균 직경이 0.1 내지 200 μm 인, 음극.The porous metal layer has an average pore diameter of 0.1 to 200 μm, the negative electrode.
- 제1항에 있어서, The method of claim 1,상기 다공성 금속층은 기공도가 50 내지 90 부피% 인, 음극.The porous metal layer has a porosity of 50 to 90% by volume, the negative electrode.
- 제1항에 있어서, The method of claim 1,상기 금속 마이크로 입자는 평균 직경이 0.1 내지 5 μm 인, 음극.The metal microparticles have an average diameter of 0.1 to 5 μm, the negative electrode.
- 제1항에 있어서, The method of claim 1,상기 금속 마이크로 입자는 평균 길이가 0.5 내지 20 μm 인, 음극.The metal microparticles have an average length of 0.5 to 20 μm, the negative electrode.
- 제1항에 있어서, The method of claim 1,상기 금속 마이크로 입자는 평균 종횡비(길이/직경)가 1 내지 10인, 음극.The metal microparticles have an average aspect ratio (length/diameter) of 1 to 10, the negative electrode.
- 제1항에 있어서, The method of claim 1,상기 다공성 금속층은 Ga, Ge, In, Sn, Sb, Tl, Pb, 및 Bi를 포함하는 군에서 선택된 금속을 전체 다공성 금속층 100 중량% 기준으로 90 중량% 이상 포함하는 것인, 음극.The porous metal layer is a negative electrode comprising at least 90% by weight of a metal selected from the group including Ga, Ge, In, Sn, Sb, Tl, Pb, and Bi based on 100% by weight of the total porous metal layer.
- 제1항에 있어서, The method of claim 1,상기 다공성 금속층은 하기 화학식 1로 표시되는 금속을 전체 다공성 금속층 100 중량% 기준으로 90 중량% 이상 포함하는 것인, 음극:The porous metal layer is a negative electrode comprising at least 90% by weight of the metal represented by the following formula (1) based on 100% by weight of the total porous metal layer:[화학식 1] [Formula 1]상기 A는 Li, Na, Mg, K, 또는 Ca 이고,A is Li, Na, Mg, K, or Ca,상기 B는 Ga, Ge, In, Sn, Sb, Tl, Pb, 및 Bi를 포함하는 군에서 선택된 것이고, B is selected from the group containing Ga, Ge, In, Sn, Sb, Tl, Pb, and Bi,상기 x는 0 내지 6이다.X is 0 to 6.
- 제1항에 있어서, The method of claim 1,상기 다공성 금속층은 하기 화학식 2 또는 화학식 3으로 표시되는 금속을 전체 다공성 금속층 100 중량% 기준으로 90 중량% 이상 포함하는 것인, 음극:The porous metal layer is a negative electrode comprising at least 90% by weight of the metal represented by the following formula (2) or (3) based on 100% by weight of the total porous metal layer:[화학식 2][Formula 2][화학식 3][Formula 3]상기 y는 0 내지 1이고, Y is 0 to 1,상기 z는 0 내지 3 이다.Z is 0 to 3.
- 금속층을 포함하는 음극, 및 금속 전극을 포함하는 하프-셀(half-cell)를 구성하는 단계;Configuring a cathode including a metal layer and a half-cell including a metal electrode;상기 하프-셀(half-cell)을 2회 이상 충전 및 방전을 수행하여, 상기 금속층을 다공성 금속층으로 전환하는 단계; 및Converting the metal layer into a porous metal layer by charging and discharging the half-cell two or more times; And상기 다공성 금속층을 포함하는 음극, 양극 활물질을 포함하는 양극, 및 전해질을 포함하는 풀-셀(full-cell)을 제조하는 단계를 포함하고, Including the step of preparing a full-cell including a negative electrode including the porous metal layer, a positive electrode including a positive electrode active material, and an electrolyte,상기 금속층은 알칼리 금속 또는 알칼리 토금속과 합금화 및 탈합금화에 의해 알칼리 금속 또는 알칼리 토금속 이온을 가역적으로 흡수 및 방출할 수 있는 금속을 포함하고, The metal layer includes a metal capable of reversibly absorbing and releasing alkali metal or alkaline earth metal ions by alloying and dealloying with an alkali metal or alkaline earth metal,상기 금속 전극은 알칼리 금속 또는 알칼리 토금속을 포함하는 것인, The metal electrode comprises an alkali metal or an alkaline earth metal,이차 전지의 제조 방법.Method of manufacturing a secondary battery.
- 제10항에 있어서,The method of claim 10,상기 금속층을 다공성 금속층으로 전환하는 단계는,Converting the metal layer to a porous metal layer,상기 음극과 금속 전극을 전기적으로 연결하여 완전 충전과 완전 방전으로 사이클을 진행하는 것인, The cathode and the metal electrode are electrically connected to perform a cycle with full charge and complete discharge,이차 전지의 제조 방법.Method of manufacturing a secondary battery.
- 제10항에 있어서,The method of claim 10,상기 금속층을 다공성 금속층으로 전환하는 단계에서,In the step of converting the metal layer into a porous metal layer,상기 금속층은 막대형태의 금속 마이크로 입자가 상호 연결된 다공성 3차원 네트워크 구조로 전환되는 것인, The metal layer is converted into a porous three-dimensional network structure in which rod-shaped metal microparticles are interconnected,이차 전지의 제조 방법.Method of manufacturing a secondary battery.
- 제10항에 있어서,The method of claim 10,상기 하프-셀(half-cell)을 구성하는 단계 이전에Before the step of configuring the half-cell금속 포일을 압연하여 금속층을 포함하는 음극을 제조하는 단계를 더 포함하는 것인, To further comprising the step of manufacturing a negative electrode including a metal layer by rolling the metal foil,이차 전지의 제조 방법.Method of manufacturing a secondary battery.
- 제13항에 있어서,The method of claim 13,상기 음극을 제조하는 단계는The step of preparing the negative electrode금속층을 25 μm 내지 2mm 두께로 형성하는 것인, To form a metal layer to a thickness of 25 μm to 2 mm,이차 전지의 제조 방법.Method of manufacturing a secondary battery.
- 양극; anode;전해질; 및Electrolytes; And제1항 내지 제9항 중에서 어느 한 항의 음극을 포함하는 것인,It comprises the negative electrode of any one of claims 1 to 9,이차 전지.Secondary battery.
- 제15항에 있어서,The method of claim 15,상기 전해질은 금속염, 및 에테르계 용매를 포함하는 것인. The electrolyte will contain a metal salt, and an ether-based solvent.이차 전지.Secondary battery.
- 제16항에 있어서,The method of claim 16,상기 에테르계 용매는 디메톡시에탄(Dimethoxyethane, DME), 1, 3-다이옥솔란(1,3-dioxolane), 테트라에틸렌 글리콜 디메틸 에테르(tetraethylene glycol dimethyl ether, TEGDME), 디에틸렌 글리콜 디메틸 에테르(Diethylene glycol dimethyl ether, DEGDME), 트리에틸렌 글리콜 디메틸 에테르(Triethylene glycol dimethyl ether, TEGDME), 폴리에틸렌 글리콜 디메틸 에테르(Polyethylene glycol dimethyl ether, PEGDME), 폴리에틸렌옥사이드(Polyethyleneoxide, PEO) 및 이들의 혼합물을 포함하는 군에서 선택된 것인, The ether solvent is dimethoxyethane (DME), 1,3-dioxolane (1,3-dioxolane), tetraethylene glycol dimethyl ether (TEGDME), diethylene glycol dimethyl ether (Diethylene glycol). dimethyl ether, DEGDME), triethylene glycol dimethyl ether (TEGDME), polyethylene glycol dimethyl ether (PEGDME), polyethylene oxide (PEO), and a mixture thereof. That,이차 전지.Secondary battery.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190127317A KR102314017B1 (en) | 2019-10-14 | 2019-10-14 | Anode, secondary battery including the same, and manufacturing method thereof |
KR10-2019-0127317 | 2019-10-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021075619A1 true WO2021075619A1 (en) | 2021-04-22 |
Family
ID=75538552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/014204 WO2021075619A1 (en) | 2019-10-14 | 2019-10-25 | Anode, secondary battery comprising same, and manufacturing method therefor |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102314017B1 (en) |
WO (1) | WO2021075619A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220293964A1 (en) * | 2019-07-10 | 2022-09-15 | Sekisui Chemical Co., Ltd. | Metal sheet having carbon material, electrode for electricity storage device, and electricity storage device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030086348A (en) * | 2001-04-06 | 2003-11-07 | 발렌스 테크놀로지, 인코포레이티드 | Sodium Ion Batteries |
KR20160032807A (en) * | 2014-09-17 | 2016-03-25 | (주)오렌지파워 | Negative electrode and rechargeable batteries comprising the same |
US20160285089A1 (en) * | 2015-03-26 | 2016-09-29 | David Mitlin | Anodes for batteries based on tin-germanium-antimony alloys |
US20170110717A1 (en) * | 2015-10-15 | 2017-04-20 | The Regents Of The University Of California | Nanoporous tin powder for energy applications |
KR20180010693A (en) * | 2016-07-22 | 2018-01-31 | 연세대학교 산학협력단 | 3 dimensional composite including metal oxide material and porous grapheme |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101695913B1 (en) * | 2014-11-27 | 2017-01-13 | 서울대학교 산학협력단 | The sodium rechargeable battery |
-
2019
- 2019-10-14 KR KR1020190127317A patent/KR102314017B1/en active IP Right Grant
- 2019-10-25 WO PCT/KR2019/014204 patent/WO2021075619A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030086348A (en) * | 2001-04-06 | 2003-11-07 | 발렌스 테크놀로지, 인코포레이티드 | Sodium Ion Batteries |
KR20160032807A (en) * | 2014-09-17 | 2016-03-25 | (주)오렌지파워 | Negative electrode and rechargeable batteries comprising the same |
US20160285089A1 (en) * | 2015-03-26 | 2016-09-29 | David Mitlin | Anodes for batteries based on tin-germanium-antimony alloys |
US20170110717A1 (en) * | 2015-10-15 | 2017-04-20 | The Regents Of The University Of California | Nanoporous tin powder for energy applications |
KR20180010693A (en) * | 2016-07-22 | 2018-01-31 | 연세대학교 산학협력단 | 3 dimensional composite including metal oxide material and porous grapheme |
Non-Patent Citations (1)
Title |
---|
KIM CHANGHYEON, KIM ICPYO, KIM HUIHUN, SADAN MILAN K., YEO HYEWON, CHO GYUBONG, AHN JAEPYOUNG, AHN JOUHYEON, AHN HYOJUN: "A self-healing Sn anode with an ultra-long cycle life for sodium-ion batteries", JOURNAL OF MATERIALS CHEMISTRY A, vol. 6, no. 45, 27 October 2018 (2018-10-27), pages 22809 - 22818, XP055818425 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220293964A1 (en) * | 2019-07-10 | 2022-09-15 | Sekisui Chemical Co., Ltd. | Metal sheet having carbon material, electrode for electricity storage device, and electricity storage device |
Also Published As
Publication number | Publication date |
---|---|
KR102314017B1 (en) | 2021-10-18 |
KR20210044367A (en) | 2021-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019093800A1 (en) | Three-dimensionally structured electrode and electrochemical device comprising same | |
US4194062A (en) | Rechargeable dichalcogenide cell | |
WO2019190127A1 (en) | Lithium metal battery | |
WO2020080831A1 (en) | Three-dimensional structure electrode and electrochemical element including same | |
WO2016052934A1 (en) | Anode, lithium secondary battery comprising same, battery module comprising the lithium secondary battery, and method for manufacturing anode | |
WO2018131899A1 (en) | Secondary battery anode comprising lithium metal layer having micropattern and protective layer thereof, and method for producing same | |
WO2018034501A1 (en) | Multi-layered separator, coated with catalyst layer, for lithium sulfur batteries and lithium sulfur battery using same | |
WO2021025349A1 (en) | Anode, manufacturing method therefor, and secondary battery comprising same | |
WO2020105980A1 (en) | Lithium-sulfur secondary battery | |
WO2019107752A1 (en) | Sulfur-carbon composite, method for manufacturing same and lithium secondary battery comprising same | |
WO2021071125A1 (en) | Lithium secondary battery and method for manufacturing lithium secondary battery | |
WO2019031766A2 (en) | Method for forming lithium metal and inorganic material composite thin film and method for pre-lithiation of negative electrode for lithium secondary battery by using same | |
WO2021075619A1 (en) | Anode, secondary battery comprising same, and manufacturing method therefor | |
WO2020235969A1 (en) | Separator stacked body for lithium secondary battery, and electrode assembly and lithium secondary battery comprising same | |
JPH06283156A (en) | Lithium battery | |
WO2022010225A1 (en) | Anode, and secondary battery comprising anode | |
WO2021251663A1 (en) | Anode and secondary battery comprising same | |
WO2020179978A1 (en) | Secondary battery, fuel cell, separator for secondary battery or fuel cell, and method for manufacturing separator | |
WO2022211282A1 (en) | Lithium secondary battery | |
WO2022085891A1 (en) | Electrode active material, preparation method therefor, electrode comprising same, and secondary battery | |
WO2023191200A1 (en) | Cathode for rechargeable lithium battery and rechargeable lithium battery including same | |
WO2021075620A1 (en) | Secondary battery and method for manufacturing same | |
WO2018070733A1 (en) | Lithium secondary battery cathode and lithium secondary battery including same | |
WO2021075621A1 (en) | Anode, secondary battery including same and method for manufacturing same | |
WO2020242247A1 (en) | Sulfur-carbon composite, lithium-sulfur battery positive electrode comprising same, and lithium-sulfur battery comprising positive electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19949476 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19949476 Country of ref document: EP Kind code of ref document: A1 |