[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020031255A1 - Headlamp optical axis control device - Google Patents

Headlamp optical axis control device Download PDF

Info

Publication number
WO2020031255A1
WO2020031255A1 PCT/JP2018/029575 JP2018029575W WO2020031255A1 WO 2020031255 A1 WO2020031255 A1 WO 2020031255A1 JP 2018029575 W JP2018029575 W JP 2018029575W WO 2020031255 A1 WO2020031255 A1 WO 2020031255A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
inclination angle
optical axis
acceleration
traveling
Prior art date
Application number
PCT/JP2018/029575
Other languages
French (fr)
Japanese (ja)
Inventor
貴夫 福永
大輝 川原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020535365A priority Critical patent/JP6765586B2/en
Priority to PCT/JP2018/029575 priority patent/WO2020031255A1/en
Publication of WO2020031255A1 publication Critical patent/WO2020031255A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/06Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle
    • B60Q1/08Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically
    • B60Q1/10Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically due to vehicle inclination, e.g. due to load distribution

Definitions

  • the present invention relates to a headlight optical axis control device that controls an optical axis of a headlight of a vehicle.
  • a bright light source has been demanded for vehicle-mounted headlights so as to brighten the field of view and secure better visibility, or to drive more comfortably.
  • the bright light source of the headlight may be bothering and dazzling to the driver of the oncoming vehicle or the pedestrian on the sidewalk.
  • the evolution of in-vehicle headlights has been devised in parallel with the light source that illuminates the front brightly, and the light distribution that does not dazzle from oncoming vehicles.
  • a typical light distribution for a headlight is a light distribution for a passing light, which irradiates a bright light on a road surface below a line of sight of the driver of an oncoming vehicle, but also emits light above the line including the line of sight. I prevented dazzle by not leaking.
  • the upper and lower boundary lines are cutoff lines.
  • the headlight is always directed in the same direction. This is performed by the optical axis control device for the lamp.
  • slow control is sufficient, and is also referred to as static control.
  • the road surface below the eyes of the driver of the oncoming vehicle can be illuminated by the control that keeps the irradiation direction of the headlight constant,
  • the slow control described above cannot follow the backward tilt during vehicle acceleration, and the boundary between the light and dark areas separated by the cutoff line moves toward the own vehicle, and the driver is informed of the own vehicle. It can give discomfort to make the sway of the rocks even greater.
  • the optical axis direction adjusting device controls the optical axis of the headlight using an acceleration sensor that detects the acceleration of the vehicle and an angular velocity sensor that detects the angular velocity of the vehicle in the pitching angle direction.
  • the conventional headlamp optical axis control device uses an acceleration sensor in addition to an angular velocity sensor capable of quickly detecting the forward inclination and the backward inclination of the vehicle in order to increase the control accuracy of the optical axis.
  • the conventional headlamp optical axis control device selectively uses the vehicle inclination angle based on the value of the angular velocity sensor and the vehicle inclination angle based on the value of the acceleration sensor according to the situation of the vehicle. Did not.
  • the present invention has been made to solve the above-described problems, and performs slow control and quick control of an optical axis with high accuracy by properly using an acceleration sensor and an angular velocity sensor having different characteristics. With the goal.
  • the headlamp optical axis control device calculates a tilt angle of the vehicle with respect to a road surface by using the longitudinal acceleration and the vertical acceleration of the vehicle detected by an acceleration sensor mounted on the vehicle.
  • an inclination angle calculation unit, a second inclination angle calculation unit that calculates an inclination angle of the vehicle with respect to a road surface using an angular velocity when the vehicle rotates back and forth, detected by an angular velocity sensor mounted on the vehicle, and an acceleration sensor Using the detected acceleration and the angular velocity detected by the angular velocity sensor, a vehicle state determination unit that determines the state of the vehicle, and when it is determined that the vehicle is stopped or running at a constant speed by the vehicle state determination unit, Adopting the inclination angle of the first inclination angle calculation unit, if the vehicle state determination unit determines that the vehicle is traveling but is not traveling at a constant speed, the inclination of the second inclination angle calculation unit is determined.
  • a tilt angle adoption unit that employs an angle
  • a signal generation unit that
  • the inclination angle based on the value of the acceleration sensor is employed.
  • the value of the angular velocity sensor is used. Since the inclination angle based on the angle is adopted, slow control and quick control of the optical axis can be performed with high accuracy by properly using the acceleration sensor and the angular velocity sensor having different characteristics.
  • FIG. 2 is a block diagram illustrating a configuration example of a headlight optical axis control device according to the first embodiment.
  • FIG. 3 is a diagram illustrating acceleration and a tilt angle of a vehicle according to the first embodiment.
  • FIG. 3 is a diagram illustrating an angular velocity and an inclination angle of a vehicle according to the first embodiment.
  • 5 is a flowchart illustrating an operation example of the headlight optical axis control device according to the first embodiment.
  • FIG. 4 is a diagram illustrating a change in the angle of a stopped vehicle in the first embodiment.
  • FIG. 4 is a diagram illustrating a change in the angle of a vehicle that is traveling at a constant speed in the first embodiment.
  • FIG. 3 is a diagram illustrating a change in the angle of the vehicle during uphill traveling in the first embodiment.
  • FIG. 5 is a diagram illustrating a change in the angle of the vehicle during acceleration in the first embodiment.
  • FIG. 4 is a diagram illustrating a change in the angle of the vehicle during traveling in the concave portion in the first embodiment.
  • FIG. 7 is a block diagram illustrating a configuration example of a headlight optical axis control device according to a second embodiment.
  • 9 is a flowchart illustrating an operation example of the headlight optical axis control device according to the second embodiment.
  • 9 is a flowchart illustrating a modification of the operation of the headlight optical axis control device according to the second embodiment.
  • FIGS. 13A and 13B are diagrams illustrating a hardware configuration example of the headlamp optical axis control device 10 according to each embodiment.
  • FIG. 1 is a block diagram illustrating a configuration example of a headlamp optical axis control device 10 according to the first embodiment.
  • the headlight optical axis control device 10 is mounted on a vehicle and controls the optical axis of the headlight.
  • the headlamp optical axis control device 10 is connected to an acceleration sensor 1, an angular velocity sensor 2, a vehicle speed sensor 3, an accelerator opening sensor 4, and an optical axis control actuator 5 mounted on a vehicle.
  • the acceleration sensor 1 detects the longitudinal acceleration and the vertical acceleration of the vehicle, and outputs the detected acceleration to the headlight optical axis control device 10.
  • the angular velocity sensor 2 detects an angular velocity when the vehicle rotates back and forth, and outputs the detected angular velocity to the headlight optical axis control device 10.
  • the acceleration sensor 1 and the angular velocity sensor 2 may be built in the headlight optical axis control device 10.
  • the vehicle speed sensor 3 detects the vehicle speed and outputs the detected vehicle speed to the headlight optical axis controller 10.
  • the accelerator opening sensor 4 detects the accelerator opening of the vehicle, and outputs the detected accelerator opening to the headlight optical axis controller 10.
  • the optical axis control actuator 5 operates the angle of the optical axis of the headlight according to the optical axis control signal output from the headlight optical axis control device 10.
  • the irradiation direction of the headlight changes so as to cancel the change in the inclination angle of the vehicle.
  • the optical axis of the headlight with respect to the road surface is kept constant.
  • the headlight optical axis control device 10 includes a first inclination angle calculation unit 11, a second inclination angle calculation unit 12, a vehicle state determination unit 13, an inclination angle adoption unit 14, and a signal generation unit 15.
  • the first inclination angle calculation unit 11 calculates the inclination angle ⁇ g of the vehicle with respect to the road surface using the longitudinal acceleration and the vertical acceleration of the vehicle detected by the acceleration sensor 1.
  • the first tilt angle calculation unit 11 outputs the calculated tilt angle ⁇ g to the tilt angle adoption unit 14.
  • the first inclination angle calculation unit 11 calculates the inclination angle ⁇ g by, for example, a method described in International Publication No. WO 2016/189707. Hereinafter, a method of calculating the inclination angle ⁇ g will be briefly described.
  • FIG. 2 is a diagram for explaining the acceleration and the inclination angle of the vehicle in the first embodiment.
  • an acceleration measurement system is used in which the X-axis is the longitudinal direction of the vehicle and the Z-axis is the vertical direction, and the direction and magnitude of the acceleration applied to the vehicle are represented by the position of the weight suspended by the spring.
  • the plane of the virtual bogie is parallel to the road surface. Therefore, the angle ⁇ formed between the virtual truck and the vehicle body supported by the suspension on the truck is the inclination angle of the vehicle with respect to the road surface.
  • FIG. 2 shows the behavior of the weight as viewed from the virtual bogie of the vehicle. Note that in FIG. 2, the front-rear direction of the virtual truck is an Xi axis, and the up-down direction is a Zi axis.
  • the weight moves parallel to the road surface whether on a horizontal road or on a slope.
  • the weight moves in the Xi-axis direction of the virtual bogie. That is, the change in acceleration due to the running of the vehicle is parallel to the road surface, that is, as indicated by an arrow 20 in the Xi-axis direction of the virtual bogie.
  • the X axis during vehicle acceleration is inclined at an angle ⁇ with respect to the angle of the road surface.
  • the behavior of the weight as viewed from the acceleration measurement system mounted on the vehicle body moves by ⁇ X in the X-axis direction and ⁇ Z in the Z-axis direction. Therefore, the inclination angle ⁇ g of the vehicle with respect to the road surface is expressed by Expression (1).
  • the amount of movement of the weight moving in parallel to the road surface at the two points of time (the reference time point km before the vehicle accelerates / decelerates) and the time point kn during the acceleration / deceleration (arrow) 20) That is, by observing the difference between the vertical acceleration ( ⁇ Z) and the difference between the longitudinal acceleration ( ⁇ X), the inclination angle ⁇ g of the vehicle with respect to the road surface can be calculated regardless of the gradient of the road on which the vehicle is traveling. it can.
  • the first inclination angle calculation unit 11 calculates the longitudinal acceleration and the vertical acceleration detected by the acceleration sensor 1 when the vehicle is traveling at a constant acceleration, in the longitudinal acceleration and the vertical acceleration at the reference time km. It is desirable to use an acceleration of By using the acceleration at the time of running at the constant acceleration, the changing acceleration, that is, the difference between the accelerations can be easily detected, so that a highly reliable inclination angle ⁇ g can be obtained.
  • the determination as to whether or not the vehicle is traveling at a constant acceleration is made by a vehicle state determination unit 13 described later. Further, the first inclination angle calculation unit 11 may output an average value, a median value, or the like obtained from the plurality of inclination angles ⁇ g to the inclination angle adoption unit 14. Thereby, a more reliable inclination angle ⁇ g can be obtained.
  • the second tilt angle calculating unit 12 calculates the tilt angle ⁇ of the vehicle with respect to the road surface using the angular speed detected by the angular speed sensor 2 when the vehicle rotates back and forth, that is, the angular speed in the pitching angle direction.
  • the second tilt angle calculation unit 12 outputs the calculated tilt angle ⁇ to the tilt angle adoption unit 14.
  • FIG. 3 is a diagram illustrating the angular velocity and the inclination angle of the vehicle according to the first embodiment.
  • FIG. 3 shows the sampling time of the angular velocity, the actual inclination angle of the vehicle, the angular velocity detected by the angular velocity sensor 2, and the integrated value of the angular velocity when the vehicle accelerates.
  • the sampling time is 0 [ms]
  • the vehicle is stopped, and the inclination angle of the vehicle is 0 [degree].
  • the vehicle accelerates, and the vehicle leans backward due to the acceleration. Therefore, the inclination angle of the vehicle becomes 1 [degree] after 50 [ms].
  • the vehicle travels at a constant acceleration, and the inclination angle of the vehicle maintains 1 [degree].
  • the vehicle travels at a constant speed, and after 150 [ms], the inclination angle of the vehicle becomes 0 [degree].
  • the second inclination angle calculation unit 12 integrates the angular velocities every 10 [ms], and sets the integrated value every 10 [ms] as the inclination angle ⁇ with respect to the road surface of the vehicle.
  • the second inclination angle calculation unit 12 can obtain the inclination angle ⁇ at each sampling time, the second inclination angle calculation unit 12 can quickly detect the forward inclination and the backward inclination of the vehicle as compared with the first inclination angle calculation unit 11. Can be.
  • the vehicle state determination unit 13 determines the state of the vehicle using a value detected by at least one of the acceleration sensor 1, the angular velocity sensor 2, the vehicle speed sensor 3, and the accelerator opening sensor 4.
  • the state of the vehicle includes at least one of stopping, traveling, traveling at a constant speed, or traveling at an equal acceleration.
  • the vehicle state determination unit 13 outputs the determination result to the inclination angle adoption unit 14.
  • the vehicle state determination unit 13 determines whether the vehicle is running or stopped using the vehicle speed detected by the vehicle speed sensor 3, for example. In addition, when the vehicle is traveling, the longitudinal acceleration detected by the acceleration sensor 1 is a value other than zero and the angular velocity detected by the angular velocity sensor 2 is zero during traveling of the vehicle. Is determined to be running at a constant acceleration. In addition, the vehicle state determination unit 13 determines that the vehicle is traveling at a constant velocity when the longitudinal acceleration detected by the acceleration sensor 1 is zero and the angular velocity detected by the angular velocity sensor 2 is zero during traveling of the vehicle. It is determined that the vehicle is running.
  • the tilt angle adoption unit 14 receives the tilt angle ⁇ g from the first tilt angle calculation unit 11, the tilt angle ⁇ from the second tilt angle calculation unit 12, and the determination result from the vehicle state determination unit 13.
  • the inclination angle adoption unit 14 adopts the inclination angle ⁇ g of the first inclination angle calculation unit 11 and employs the adopted inclination angle ⁇ g. Is output to the signal generation unit 15.
  • the inclination angle adoption unit 14 adopts and employs the inclination angle ⁇ of the second inclination angle calculation unit 12.
  • the inclination angle ⁇ is output to the signal generator 15.
  • the inclination angle adoption unit 14 When the vehicle state determination unit 13 determines that there is a change in the accelerator opening of the vehicle during traveling at a constant speed, the inclination angle adoption unit 14 outputs the signal to the signal generation unit 15 without using the inclination angles ⁇ g and ⁇ . do not do.
  • the signal generation unit 15 uses the tilt angle ⁇ g or the tilt angle ⁇ adopted by the tilt angle adoption unit 14 and emits light for rotating the optical axis of the headlight in a direction opposite to the tilt angle ⁇ g or the tilt angle ⁇ . Generate an axis control signal.
  • the signal generation unit 15 outputs the generated optical axis control signal to the optical axis control actuator 5 so that the optical axis control actuator 5 controls the optical axis of the headlight so as to prevent dazzling of an oncoming vehicle driver or the like. Control.
  • FIG. 4 is a flowchart illustrating an operation example of the headlamp optical axis control device 10 according to the first embodiment.
  • the headlight optical axis control device 10 repeats the flow chart of FIG. 4 during its operation.
  • step ST11 the first inclination angle calculation unit 11 calculates the inclination angle ⁇ g of the vehicle using the acceleration detected by the acceleration sensor 1.
  • step ST12 the second inclination angle calculation unit 12 calculates the inclination angle ⁇ of the vehicle using the angular velocity detected by the angular velocity sensor 2.
  • step ST13 the vehicle state determination unit 13 determines the state of the vehicle using the detection values detected by the acceleration sensor 1, the angular velocity sensor 2, the vehicle speed sensor 3, and the accelerator opening sensor 4.
  • the inclination angle adoption unit 14 employs the inclination angle ⁇ g of the first inclination angle calculation unit 11 in step ST15.
  • the signal generation unit 15 generates an optical axis control signal using the inclination angle ⁇ g of the first inclination angle calculation unit 11, and outputs the signal to the optical axis control actuator 5.
  • step ST18 When the vehicle state determination unit 13 determines that the vehicle is traveling (step ST14 “NO”) and determines that the vehicle is not traveling at the constant speed (step ST17 “NO”), in step ST18, The inclination angle adoption unit 14 employs the inclination angle ⁇ of the second inclination angle calculation unit 12. Thereafter, in step ST16, the signal generation unit 15 generates an optical axis control signal using the inclination angle ⁇ of the second inclination angle calculation unit 12, and outputs the signal to the optical axis control actuator 5. A specific example will be described with reference to FIGS. 8 and 9 described later.
  • step ST17 When the vehicle state determination unit 13 determines that the vehicle is traveling at a constant speed (“YES” in step ST17) and determines that there is a change in the accelerator opening (step ST19 “YES”), the vehicle is on a slope. , The headlight optical axis control device 10 keeps the headlight optical axis unchanged. That is, the signal generation unit 15 maintains the optical axis control signal generated immediately before (for example, when the operation illustrated in the flowchart of FIG. 4 is performed last time). A specific example will be described with reference to FIG.
  • step ST17 determines that the vehicle is traveling at a constant speed (“YES” in step ST17) and determines that there is no change in the accelerator opening (“NO” in step ST19)
  • the process proceeds to step ST15.
  • the inclination angle adoption unit 14 employs the inclination angle ⁇ g of the first inclination angle calculation unit 11.
  • step ST16 the signal generation unit 15 generates an optical axis control signal using the inclination angle ⁇ g of the first inclination angle calculation unit 11, and outputs the signal to the optical axis control actuator 5.
  • FIGS. 5 to 9 for convenience, the values detected by the respective sensors and the values such as the inclination angle of the vehicle are described. However, these values are reference values and are different from actual values.
  • FIG. 5 is a diagram illustrating a change in the angle of a stopped vehicle in the first embodiment.
  • the angle of the vehicle is changed by loading and unloading luggage at the rear of the stopped vehicle.
  • the vehicle state determination unit 13 determines that the vehicle is stopped, the vehicle is in a static state, and thus the optical axis control may be slow. Therefore, the inclination angle adoption unit 14 employs the inclination angle ⁇ g, which has low responsiveness but high reliability, based on the acceleration sensor 1 and calculated by the first inclination angle calculation unit 11.
  • the signal generation unit 15 generates an optical axis control signal for controlling the optical axis to be lowered when the inclination angle ⁇ g is increased, that is, when the front of the vehicle is directed upward.
  • the signal generation unit 15 when the inclination angle ⁇ g is reduced, that is, when the front of the vehicle is directed downward, the signal generation unit 15 generates an optical axis control signal for controlling the optical axis to be raised.
  • FIG. 6 is a diagram illustrating a change in the angle of the vehicle while traveling at a constant speed in the first embodiment.
  • the vehicle state determination unit 13 subsequently checks a change in the accelerator opening.
  • the vehicle state determination unit 13 determines that the vehicle is traveling at a constant speed and there is no change in the accelerator opening, it is estimated that the angle of the road surface on which the vehicle is traveling at a constant speed has not changed.
  • the inclination angle adoption unit 14 employs the inclination angle ⁇ g calculated by the first inclination angle calculation unit 11 and based on the acceleration sensor 1.
  • FIG. 7 is a diagram illustrating a change in the angle of the vehicle during uphill traveling in the first embodiment.
  • FIG. 6 shows an example in which the angle of the road surface does not change while the vehicle is traveling at a constant speed
  • FIG. 7 shows an example in which the angle of the road surface changes while the vehicle is traveling at a constant speed.
  • the horizontal inclination angle is the inclination angle of the vehicle with respect to the horizontal plane
  • the road surface inclination angle is the inclination angle of the vehicle with respect to the road surface.
  • the headlight optical axis control device 10 may erroneously detect a change in the road surface angle as a change in the inclination angle of the vehicle. For example, if the road changes from a flat road to an upward slope during traveling at a constant speed, the headlamp optical axis control device 10 determines that the front of the vehicle is facing upward, and may erroneously lower the optical axis.
  • the vehicle state determination unit 13 determines whether or not the road has changed from a flat road to a slope based on the change in the accelerator opening.
  • the driver In order for the road surface on which the vehicle is traveling to change from a flat road to an upward slope and to maintain a constant speed traveling, the driver needs to strongly depress the accelerator. In FIG. 7, the case where the accelerator is depressed strongly is represented as “(+ ⁇ )”. Conversely, in order for the road surface on which the vehicle is traveling to change from a flat road to a downhill slope and to maintain the constant speed traveling, the driver needs to weaken the accelerator pedal. Such an accelerator operation is similarly performed when the road surface changes from a slope to a flat road.
  • the inclination angle adoption unit 14 does not employ any of the inclination angles ⁇ g and ⁇ . , The signal generator 15 does not perform optical axis control.
  • the inclination angle adoption unit 14 calculates the inclination angle based on the acceleration sensor 1 calculated by the first inclination angle calculation unit 11. Adopt ⁇ g.
  • FIG. 8 is a diagram illustrating a change in the angle of the vehicle during acceleration in the first embodiment.
  • the method of calculating the inclination angle ⁇ g using the acceleration at two points in time is not suitable because the response of the inclination angle ⁇ g to the swing is low. Therefore, when the vehicle state determination unit 13 determines that the vehicle is traveling and swinging, the inclination angle adoption unit 14 responds based on the angular velocity sensor 2 calculated by the second inclination angle calculation unit 12. Is adopted.
  • FIG. 9 is a diagram illustrating a change in the angle of the vehicle during traveling in the concave portion in the first embodiment.
  • the change in the inclination angle ⁇ calculated using the angular velocity coincides with the appropriate optical axis control direction.
  • the front wheels of the vehicle run in the concave portions, the front of the vehicle moves upward from below, so it is necessary to raise the optical axis and then lower it.
  • the rear wheel of the vehicle travels in the recess, the front of the vehicle moves from top to bottom, so it is necessary to raise the optical axis after lowering the optical axis.
  • the inclination angle adoption section 14 has high responsiveness based on the angular velocity sensor 2 calculated by the second inclination angle calculation section 12.
  • the inclination angle ⁇ is adopted.
  • the headlamp optical axis control device 10 includes the first inclination angle calculation unit 11, the second inclination angle calculation unit 12, the vehicle state determination unit 13, the inclination angle adoption unit 14, And a signal generation unit 15.
  • the first inclination angle calculation unit 11 calculates the inclination angle ⁇ g of the vehicle with respect to the road surface using the acceleration in the front-rear direction and the acceleration in the vertical direction of the vehicle detected by the acceleration sensor 1 mounted on the vehicle.
  • the second tilt angle calculation unit 12 calculates the tilt angle ⁇ of the vehicle with respect to the road surface using the angular speed at which the vehicle rotates back and forth, detected by the angular speed sensor 2 mounted on the vehicle.
  • the vehicle state determination unit 13 determines the state of the vehicle using the acceleration detected by the acceleration sensor 1 and the angular velocity detected by the angular velocity sensor 2.
  • the inclination angle adoption unit 14 employs the inclination angle ⁇ g of the first inclination angle calculation unit 11 and the vehicle state determination unit 13
  • the inclination angle ⁇ of the second inclination angle calculation unit 12 is adopted.
  • the signal generation unit 15 generates an optical axis control signal for controlling the optical axis of the headlight mounted on the vehicle using the inclination angle ⁇ g or the inclination angle ⁇ adopted by the inclination angle adoption unit 14.
  • the headlight optical axis control device 10 employs the highly reliable inclination angle ⁇ g based on the acceleration sensor 1 when the vehicle is stopped or traveling at a constant speed, and the vehicle is traveling. Therefore, when the vehicle is oscillating, the inclination angle ⁇ having high responsiveness based on the angular velocity sensor 2 is adopted. Therefore, by selectively using the angular velocity sensor 2 and the acceleration sensor 1 having different characteristics, slow control and quick control of the optical axis can be performed with high accuracy.
  • the first inclination angle calculation unit 11 of the first embodiment uses the acceleration in the longitudinal direction at two time points km and kn detected by the acceleration sensor 1 and the acceleration in the vertical direction at the two time points km and kn. The angle ⁇ g is calculated. Then, the first inclination angle calculation unit 11 compares the acceleration in the longitudinal direction and the acceleration in the vertical direction at one of the two time points km and kn with the acceleration in the longitudinal direction when the vehicle is traveling at an equal acceleration. The acceleration and the vertical acceleration are used. Accordingly, the first inclination angle calculation unit 11 can accurately calculate the inclination angle ⁇ g of the stationary vehicle that is not swinging.
  • the vehicle state determination unit 13 of the first embodiment determines that the vehicle is traveling at a constant acceleration when the longitudinal acceleration is other than zero and the angular velocity is zero during traveling of the vehicle. Accordingly, the vehicle state determination unit 13 can perform the determination with higher accuracy than when determining whether the vehicle is traveling at a constant acceleration using the vehicle speed.
  • the vehicle state determination unit 13 of the first embodiment determines that the vehicle is traveling at a constant speed when the longitudinal acceleration is zero and the angular velocity is zero during traveling of the vehicle. Thereby, the vehicle state determination unit 13 can determine with higher accuracy than when determining whether the vehicle is traveling at a constant speed using the vehicle speed.
  • the vehicle state determination unit 13 of the first embodiment determines whether or not the accelerator opening of the vehicle has changed.
  • the inclination angle adoption unit 14 employs the inclination angle ⁇ g of the first inclination angle calculation unit 11 when the vehicle state determination unit 13 determines that the vehicle is traveling at a constant speed and there is no change in the accelerator opening. Accordingly, when the vehicle is in a static state, the headlight optical axis control device 10 can perform highly accurate optical axis control based on the highly reliable acceleration sensor 1.
  • the signal generation unit 15 of the first embodiment maintains the optical axis control signal generated before that. .
  • the headlamp optical axis control device 10 can prevent erroneous optical axis control when the angle of the road surface changes.
  • FIG. 10 is a block diagram showing a headlight optical axis control device 10 according to the second embodiment.
  • the headlight optical axis control device 10 according to the second embodiment has a configuration in which a calibration unit 14a is added to the headlight optical axis control device 10 of the first embodiment shown in FIG. . 10, the same or corresponding parts as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
  • the calibration unit 14a calibrates the inclination angle ⁇ of the second inclination angle calculation unit 12.
  • two methods of the calibration method shown in FIG. 11 and the calibration method shown in FIG. 12 will be exemplified.
  • FIG. 11 is a flowchart illustrating an operation example of the headlamp optical axis control device 10 according to the second embodiment. Steps ST11 to ST19 in FIG. 11 are the same as steps ST11 to ST19 in FIG.
  • the angular velocity sensor 2 has high responsiveness, the inclination angle ⁇ may deviate from the actual inclination angle of the vehicle when used for a long time due to the property of accumulating the angular velocity for each sampling time. Therefore, it is desirable to calibrate the inclination angle ⁇ .
  • the calibration unit 14a determines the inclination angle of the second inclination angle calculation unit 12
  • the inclination angle ⁇ is calibrated by overwriting ⁇ with the inclination angle ⁇ g of the first inclination angle calculation unit 11.
  • the second inclination angle calculation unit 12 obtains the inclination angle ⁇ by integrating the angular velocity detected by the angular velocity sensor 2 with the corrected inclination angle ⁇ .
  • FIG. 12 is a flowchart illustrating a modification of the operation of the headlight optical axis control device 10 according to the second embodiment.
  • Steps ST11 to ST19 and ST21 in FIG. 12 are the same as steps ST11 to ST19 and ST21 in FIG. 4 and FIG.
  • the calibration unit 14a calibrates the inclination angle ⁇ in step ST21 of FIG. 11, an error having the same tendency occurs again in the inclination angle ⁇ . .
  • the calibrating unit 14a determines that the difference between the inclination angle ⁇ g of the first inclination angle calculation unit 11 and the inclination angle ⁇ of the second inclination angle calculation unit 12 is larger than a predetermined threshold value ⁇ th (“YES” in step ST22).
  • the sensitivity of the angular velocity sensor 2 is calibrated.
  • the calibration unit 14a determines the angular velocity. Do not calibrate the sensitivity of sensor 2.
  • the tilt angle ⁇ used for comparison with the tilt angle ⁇ g in step ST22 is the tilt angle ⁇ before being overwritten with the tilt angle ⁇ g in step ST21, that is, the tilt angle ⁇ before calibration.
  • the relationship between the inclination angle ⁇ g of the first inclination angle calculation unit 11 and the inclination angle ⁇ of the second inclination angle calculation unit 12 is expressed by Expression (2).
  • the calibration unit 14a may calibrate the coefficient k of Expression (2) or calibrate the offset ⁇ o as the calibration of the sensitivity of the angular velocity sensor 2.
  • FIG. 12 shows an example in which the calibrating unit 14a performs an operation of calibrating the inclination angle ⁇ (step ST21) and an operation of calibrating the sensitivity of the angular velocity sensor 2 (steps ST22 and ST23).
  • the unit 14a may execute only the operation of calibrating the sensitivity of the angular velocity sensor 2 (step ST22 and step ST23).
  • the headlight optical axis control device 10 includes the calibration unit 14a.
  • the calibration unit 14 a uses the adopted inclination angle ⁇ g to calibrate the inclination angle ⁇ of the second inclination angle calculation unit 12. I do.
  • the headlamp optical axis control device 10 can perform highly accurate optical axis control using the angular velocity sensor 2.
  • the calibration unit 14a determines the angular velocity when the difference between the inclination angle ⁇ g of the first inclination angle calculation unit 11 and the inclination angle ⁇ of the second inclination angle calculation unit 12 is larger than a predetermined threshold value ⁇ th. Calibrate the sensitivity of sensor 2. Thereby, the headlamp optical axis control device 10 can perform highly accurate optical axis control using the angular velocity sensor 2.
  • FIGS. 13A and 13B are diagrams illustrating a hardware configuration example of the headlamp optical axis control device 10 according to each embodiment.
  • the functions of the first inclination angle calculation unit 11, the second inclination angle calculation unit 12, the vehicle state determination unit 13, the inclination angle adoption unit 14, the calibration unit 14a, and the signal generation unit 15 in the headlight optical axis control device 10 are as follows. Is realized by a processing circuit. That is, the headlamp optical axis control device 10 includes a processing circuit for realizing the above functions.
  • the processing circuit may be the processing circuit 100 as dedicated hardware, or may be the processor 101 that executes a program stored in the memory 102.
  • the processing circuit 100 when the processing circuit is dedicated hardware, includes, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, and an ASIC (Application / Specific / Integrated / Circuit). ), FPGA (Field Programmable Gate Array), or a combination thereof. Even if the functions of the first inclination angle calculation unit 11, the second inclination angle calculation unit 12, the vehicle state determination unit 13, the inclination angle adoption unit 14, the calibration unit 14a, and the signal generation unit 15 are realized by a plurality of processing circuits 100. Alternatively, the functions of the respective units may be collectively realized by one processing circuit 100.
  • the processing circuit is the processor 101
  • the function of the signal generation unit 15 is realized by software, firmware, or a combination of software and firmware.
  • Software or firmware is described as a program and stored in the memory 102.
  • the processor 101 reads out and executes a program stored in the memory 102 to realize the function of each unit. That is, the headlamp optical axis control device 10 stores a program that, when executed by the processor 101, results in the steps shown in the flowcharts of FIGS. 4, 11, and 12 being executed. And a memory 102 for storing the information.
  • this program causes a computer to execute the procedure or method of the first inclination angle calculation unit 11, the second inclination angle calculation unit 12, the vehicle state determination unit 13, the inclination angle adoption unit 14, the calibration unit 14a, and the signal generation unit 15. It can be said that it is something to be executed.
  • the processor 101 is a CPU (Central Processing Unit), a processing device, an arithmetic device, a microprocessor, or the like.
  • the memory 102 may be a nonvolatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), or a flash memory, or a hard disk or a flexible disk. May be used, or an optical disk such as a CD (Compact Disc) or a DVD (Digital Versatile Disc) may be used.
  • the processing circuit in the headlight optical axis control device 10 can realize the above-described functions by hardware, software, firmware, or a combination thereof.
  • the headlight optical axis control device uses the value of the acceleration sensor and the value of the angular velocity sensor properly according to the state of the vehicle, and thus performs static control and dynamic control of the optical axis of the headlight. It is suitable for use in a headlight optical axis control device and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

A first tilt angle calculation unit (11) uses the acceleration detected by an acceleration sensor (1) to calculate a tilt angle (θg) of a vehicle relative to a road surface. A second tilt angle calculation unit (12) uses the angular speed detected by an angular speed sensor (2) to calculate a tilt angle (θω) of the vehicle relative to the road surface. A tilt angle selection unit (14) selects the tilt angle (θg) calculated by the first tilt angle calculation unit (11) when a vehicle state determination unit (13) has determined that the vehicle is stopped or traveling with constant speed, and selects the tilt angle (θω) calculated by the second tilt angle calculation unit (12) when the vehicle state determination unit (13) has determined that the vehicle is traveling but not with constant speed. A signal generation unit (15) uses the tilt angle selected by the tilt angle selection unit (14) to generate an optical axis control signal for controlling the optical axis of a headlamp.

Description

前照灯用光軸制御装置Optical axis control device for headlight
 この発明は、車両の前照灯の光軸を制御する前照灯用光軸制御装置に関するものである。 The present invention relates to a headlight optical axis control device that controls an optical axis of a headlight of a vehicle.
 車載用の前照灯には、視野を明るくしてより良好な視界を確保するように、又はより快適に運転できるように、明るい光源が求められてきた。その一方で、前照灯の明るい光源は、対向車の運転者又は歩道の歩行者にとって迷惑になり、眩惑させる可能性もあった。両者を踏まえ、車載用の前照灯の進化には、前方を明るく照らす光源の工夫と並行して、対向車からは眩しくない配光の工夫がされてきた経緯がある。 明 る い A bright light source has been demanded for vehicle-mounted headlights so as to brighten the field of view and secure better visibility, or to drive more comfortably. On the other hand, the bright light source of the headlight may be bothering and dazzling to the driver of the oncoming vehicle or the pedestrian on the sidewalk. Based on both, the evolution of in-vehicle headlights has been devised in parallel with the light source that illuminates the front brightly, and the light distribution that does not dazzle from oncoming vehicles.
 前照灯用の代表的な配光は、すれ違い灯用の配光であって、対向車の運転者の目線より下の路面に明るい光を照射しながらも、目線を含む上方には光が漏れないようにして眩惑を防いでいた。なお、上下の明暗の境界線がカットオフラインである。 A typical light distribution for a headlight is a light distribution for a passing light, which irradiates a bright light on a road surface below a line of sight of the driver of an oncoming vehicle, but also emits light above the line including the line of sight. I prevented dazzle by not leaking. The upper and lower boundary lines are cutoff lines.
 また、搭乗者の乗り降り又は荷物の積み降ろしによって、車両が前傾(ノーズダイブ)又は後傾(スクワット)しても、前照灯の照射方向が常に同じ方向に向くような制御が、前照灯用光軸制御装置により行われている。搭乗者の乗り降り又は荷物の積み降ろしに対応する上記制御は、緩慢な制御で充分であり、スタティック制御とも言われている。なお、車両の前傾及び後傾のように、車両の左右方向の軸を中心に車両が回転する挙動は、ピッチングと表される。 In addition, even if the vehicle leans forward (nose dive) or leans backward (squat) due to the getting on / off of passengers or loading / unloading of luggage, the headlight is always directed in the same direction. This is performed by the optical axis control device for the lamp. In the above-described control corresponding to the getting on / off of the passenger or the loading / unloading of luggage, slow control is sufficient, and is also referred to as static control. A behavior in which the vehicle rotates around an axis in the left-right direction of the vehicle, such as a forward lean and a backward lean of the vehicle, is expressed as pitching.
 ところで、前照灯用光源として、従来のタングステンフィラメントを赤熱させる白熱電灯より、明るい放電灯及びLED(Light Emitting Diode)等の新しい光源が普及している。当明るい光源によって、運転者には明るい視野が与えられ、夜間においてもより良好な視界又はより快適な運転環境が提供されている。ただし、白熱電灯等に比べ、放電灯及びLED等は、上記カットオフラインの上下の明暗の差が大きくなる。そのため、車両が停止しているとき及び滑らかに走行しているときは、前照灯の照射方向を一定に保つ制御によって、対向車の運転者の目より下の路面を照らすことができ、問題はないが、車両加速時の後傾に対して上記緩慢な制御では追従できず、上記カットオフラインによって分断された明部と暗部との境が自車両の手前に移動し、運転者に自車両の揺れをさらに大きく感じさせる不快感を与えかねない。 By the way, new light sources such as discharge lamps and LEDs (Light Emitting Diodes), which are brighter than conventional incandescent lamps that glow a tungsten filament, have become widespread as headlight light sources. The bright light source provides the driver with a bright field of view and provides better visibility or a more comfortable driving environment even at night. However, as compared with incandescent lamps and the like, discharge lamps and LEDs and the like have a larger difference in brightness between the upper and lower sides of the cutoff line. Therefore, when the vehicle is stopped or running smoothly, the road surface below the eyes of the driver of the oncoming vehicle can be illuminated by the control that keeps the irradiation direction of the headlight constant, However, the slow control described above cannot follow the backward tilt during vehicle acceleration, and the boundary between the light and dark areas separated by the cutoff line moves toward the own vehicle, and the driver is informed of the own vehicle. It can give discomfort to make the sway of the rocks even greater.
 そこで、前照灯の照射方向を常に同じ方向に向ける制御を迅速に行うことによって、搭乗者の乗り降り又は荷物の積み降ろしに対する反応より早く、車両減速時の前傾又は車両加速時の後傾に対応する制御が提案されている(例えば、特許文献1参照)。照射方向の迅速な制御は、上記スタティック制御に対して、ダイナミック制御とも言われる。 Therefore, by quickly performing control to always direct the irradiation direction of the headlight in the same direction, the response to the getting on / off of the passenger or the loading / unloading of the luggage is quicker, and the forward leaning at the time of vehicle deceleration or the backward leaning at the time of vehicle acceleration are performed. A corresponding control has been proposed (for example, see Patent Document 1). The quick control of the irradiation direction is also called dynamic control in contrast to the static control.
 特許文献1に係る光軸方向調整装置は、車両の加速度を検出する加速度センサと、車両のピッチング角方向の角速度を検出する角速度センサとを用い、前照灯の光軸を制御する。 The optical axis direction adjusting device according to Patent Document 1 controls the optical axis of the headlight using an acceleration sensor that detects the acceleration of the vehicle and an angular velocity sensor that detects the angular velocity of the vehicle in the pitching angle direction.
特開2009-126268号公報JP 2009-126268 A
 従来の前照灯用光軸制御装置は、光軸の制御精度を高めるために、車両の前傾及び後傾をいち早く検出することができる角速度センサの他に、加速度センサを併用していた。しかしながら、従来の前照灯用光軸制御装置は、角速度センサの値に基づく車両の傾斜角度と、加速度センサの値に基づく車両の傾斜角度とを、車両の状況に応じて使い分けることはしていなかった。 The conventional headlamp optical axis control device uses an acceleration sensor in addition to an angular velocity sensor capable of quickly detecting the forward inclination and the backward inclination of the vehicle in order to increase the control accuracy of the optical axis. However, the conventional headlamp optical axis control device selectively uses the vehicle inclination angle based on the value of the angular velocity sensor and the vehicle inclination angle based on the value of the acceleration sensor according to the situation of the vehicle. Did not.
 この発明は、上記のような課題を解決するためになされたもので、特性が異なる加速度センサと角速度センサとを使い分けることで、光軸の緩慢な制御と迅速な制御とを高精度に行うことを目的とする。 SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and performs slow control and quick control of an optical axis with high accuracy by properly using an acceleration sensor and an angular velocity sensor having different characteristics. With the goal.
 この発明に係る前照灯用光軸制御装置は、車両に搭載された加速度センサによって検出された車両の前後方向の加速度と上下方向の加速度とを用い、車両の路面に対する傾斜角度を算出する第1傾斜角度算出部と、車両に搭載された角速度センサによって検出された車両が前後に回転するときの角速度を用い、車両の路面に対する傾斜角度を算出する第2傾斜角度算出部と、加速度センサによって検出された加速度と角速度センサによって検出された角速度とを用い、車両の状態を判定する車両状態判定部と、車両状態判定部により車両が停車中又は等速走行中であると判定された場合、第1傾斜角度算出部の傾斜角度を採用し、車両状態判定部により車両が走行中ではあるが等速走行ではないと判定された場合、第2傾斜角度算出部の傾斜角度を採用する傾斜角度採用部と、傾斜角度採用部により採用された傾斜角度を用い、車両に搭載された前照灯の光軸を制御するための光軸制御信号を生成する信号生成部とを備えるものである。 The headlamp optical axis control device according to the present invention calculates a tilt angle of the vehicle with respect to a road surface by using the longitudinal acceleration and the vertical acceleration of the vehicle detected by an acceleration sensor mounted on the vehicle. (1) an inclination angle calculation unit, a second inclination angle calculation unit that calculates an inclination angle of the vehicle with respect to a road surface using an angular velocity when the vehicle rotates back and forth, detected by an angular velocity sensor mounted on the vehicle, and an acceleration sensor Using the detected acceleration and the angular velocity detected by the angular velocity sensor, a vehicle state determination unit that determines the state of the vehicle, and when it is determined that the vehicle is stopped or running at a constant speed by the vehicle state determination unit, Adopting the inclination angle of the first inclination angle calculation unit, if the vehicle state determination unit determines that the vehicle is traveling but is not traveling at a constant speed, the inclination of the second inclination angle calculation unit is determined. A tilt angle adoption unit that employs an angle, and a signal generation unit that generates an optical axis control signal for controlling the optical axis of the headlight mounted on the vehicle using the tilt angle adopted by the tilt angle adoption unit. It is provided with.
 この発明によれば、車両が停車中又は等速走行中である場合、加速度センサの値に基づく傾斜角度を採用し、車両が走行中ではあるが等速走行ではない場合、角速度センサの値に基づく傾斜角度を採用するようにしたので、特性が異なる加速度センサと角速度センサとを使い分けることによって光軸の緩慢な制御と迅速な制御とを高精度に行うことができる。 According to the present invention, when the vehicle is stopped or traveling at a constant speed, the inclination angle based on the value of the acceleration sensor is employed. When the vehicle is traveling but is not traveling at the constant speed, the value of the angular velocity sensor is used. Since the inclination angle based on the angle is adopted, slow control and quick control of the optical axis can be performed with high accuracy by properly using the acceleration sensor and the angular velocity sensor having different characteristics.
実施の形態1に係る前照灯用光軸制御装置の構成例を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration example of a headlight optical axis control device according to the first embodiment. 実施の形態1における加速度及び車両の傾斜角度を説明する図である。FIG. 3 is a diagram illustrating acceleration and a tilt angle of a vehicle according to the first embodiment. 実施の形態1における角速度及び車両の傾斜角度を説明する図である。FIG. 3 is a diagram illustrating an angular velocity and an inclination angle of a vehicle according to the first embodiment. 実施の形態1に係る前照灯用光軸制御装置の動作例を示すフローチャートである。5 is a flowchart illustrating an operation example of the headlight optical axis control device according to the first embodiment. 実施の形態1において、停車中の車両の角度変化を説明する図である。FIG. 4 is a diagram illustrating a change in the angle of a stopped vehicle in the first embodiment. 実施の形態1において、等速走行中の車両の角度変化を説明する図である。FIG. 4 is a diagram illustrating a change in the angle of a vehicle that is traveling at a constant speed in the first embodiment. 実施の形態1において、上り坂走行時の車両の角度変化を説明する図である。FIG. 3 is a diagram illustrating a change in the angle of the vehicle during uphill traveling in the first embodiment. 実施の形態1において、加速時の車両の角度変化を説明する図である。FIG. 5 is a diagram illustrating a change in the angle of the vehicle during acceleration in the first embodiment. 実施の形態1において、凹部走行中の車両の角度変化を説明する図である。FIG. 4 is a diagram illustrating a change in the angle of the vehicle during traveling in the concave portion in the first embodiment. 実施の形態2に係る前照灯用光軸制御装置の構成例を示すブロック図である。FIG. 7 is a block diagram illustrating a configuration example of a headlight optical axis control device according to a second embodiment. 実施の形態2に係る前照灯用光軸制御装置の動作例を示すフローチャートである。9 is a flowchart illustrating an operation example of the headlight optical axis control device according to the second embodiment. 実施の形態2に係る前照灯用光軸制御装置の動作の変形例を示すフローチャートである。9 is a flowchart illustrating a modification of the operation of the headlight optical axis control device according to the second embodiment. 図13A及び図13Bは、各実施の形態に係る前照灯用光軸制御装置10のハードウェア構成例を示す図である。FIGS. 13A and 13B are diagrams illustrating a hardware configuration example of the headlamp optical axis control device 10 according to each embodiment.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、実施の形態1に係る前照灯用光軸制御装置10の構成例を示すブロック図である。前照灯用光軸制御装置10は、車両に搭載され、前照灯の光軸を制御する。この前照灯用光軸制御装置10は、車両に搭載された加速度センサ1、角速度センサ2、車速センサ3、アクセル開度センサ4、及び光軸制御アクチュエータ5に接続される。
Hereinafter, in order to explain this invention in greater detail, the preferred embodiments of the present invention will be described with reference to the accompanying drawings.
Embodiment 1 FIG.
FIG. 1 is a block diagram illustrating a configuration example of a headlamp optical axis control device 10 according to the first embodiment. The headlight optical axis control device 10 is mounted on a vehicle and controls the optical axis of the headlight. The headlamp optical axis control device 10 is connected to an acceleration sensor 1, an angular velocity sensor 2, a vehicle speed sensor 3, an accelerator opening sensor 4, and an optical axis control actuator 5 mounted on a vehicle.
 加速度センサ1は、車両の前後方向の加速度と、上下方向の加速度とを検出し、検出した加速度を前照灯用光軸制御装置10へ出力する。角速度センサ2は、車両が前後に回転するときの角速度を検出し、検出した角速度を前照灯用光軸制御装置10へ出力する。なお、加速度センサ1及び角速度センサ2は、前照灯用光軸制御装置10に内蔵されてもよい。 The acceleration sensor 1 detects the longitudinal acceleration and the vertical acceleration of the vehicle, and outputs the detected acceleration to the headlight optical axis control device 10. The angular velocity sensor 2 detects an angular velocity when the vehicle rotates back and forth, and outputs the detected angular velocity to the headlight optical axis control device 10. The acceleration sensor 1 and the angular velocity sensor 2 may be built in the headlight optical axis control device 10.
 車速センサ3は、車速を検出し、検出した車速を前照灯用光軸制御装置10へ出力する。アクセル開度センサ4は、車両のアクセル開度を検出し、検出したアクセル開度を前照灯用光軸制御装置10へ出力する。 The vehicle speed sensor 3 detects the vehicle speed and outputs the detected vehicle speed to the headlight optical axis controller 10. The accelerator opening sensor 4 detects the accelerator opening of the vehicle, and outputs the detected accelerator opening to the headlight optical axis controller 10.
 光軸制御アクチュエータ5は、前照灯用光軸制御装置10が出力する光軸制御信号に応じて、前照灯の光軸の角度を操作する。光軸制御アクチュエータ5による光軸の角度操作により、車両の傾斜角度の変化を相殺するように前照灯の照射方向が変化する。これにより、車両の傾斜角度が変化しても、路面に対する前照灯の光軸が一定に保たれる。 The optical axis control actuator 5 operates the angle of the optical axis of the headlight according to the optical axis control signal output from the headlight optical axis control device 10. By the angle operation of the optical axis by the optical axis control actuator 5, the irradiation direction of the headlight changes so as to cancel the change in the inclination angle of the vehicle. Thereby, even if the inclination angle of the vehicle changes, the optical axis of the headlight with respect to the road surface is kept constant.
 前照灯用光軸制御装置10は、第1傾斜角度算出部11、第2傾斜角度算出部12、車両状態判定部13、傾斜角度採用部14、及び信号生成部15を備える。 The headlight optical axis control device 10 includes a first inclination angle calculation unit 11, a second inclination angle calculation unit 12, a vehicle state determination unit 13, an inclination angle adoption unit 14, and a signal generation unit 15.
 第1傾斜角度算出部11は、加速度センサ1によって検出された車両の前後方向の加速度と上下方向の加速度とを用い、車両の路面に対する傾斜角度θgを算出する。第1傾斜角度算出部11は、算出した傾斜角度θgを傾斜角度採用部14へ出力する。第1傾斜角度算出部11は、例えば、国際公開第2016/189707号に記載された方法により、傾斜角度θgを算出する。以下、傾斜角度θgの算出方法を簡単に説明する。 The first inclination angle calculation unit 11 calculates the inclination angle θg of the vehicle with respect to the road surface using the longitudinal acceleration and the vertical acceleration of the vehicle detected by the acceleration sensor 1. The first tilt angle calculation unit 11 outputs the calculated tilt angle θg to the tilt angle adoption unit 14. The first inclination angle calculation unit 11 calculates the inclination angle θg by, for example, a method described in International Publication No. WO 2016/189707. Hereinafter, a method of calculating the inclination angle θg will be briefly described.
 図2は、実施の形態1における加速度及び車両の傾斜角度を説明する図である。ここでは、車両の前後方向をX軸、上下方向をZ軸とした加速度の計測系を使用し、車両に加わる加速度の方向と大きさとを、ばねに吊り下げられた錘の位置によって表現する。また、路面に接地した前後左右それぞれの車輪の中心点を4個の頂点とした平面状の四角形を仮想的な台車としてみれば、当仮想的な台車の平面は路面に対して平行になる。よって、当仮想的な台車と、この台車にサスペンションで支えられた車体とのなす角度θが、路面に対する車両の傾斜角度である。車両の仮想的な台車からみた錘の挙動を図2に示す。なお、図2において、仮想的な台車の前後方向をXi軸、上下方向をZi軸とする。 FIG. 2 is a diagram for explaining the acceleration and the inclination angle of the vehicle in the first embodiment. Here, an acceleration measurement system is used in which the X-axis is the longitudinal direction of the vehicle and the Z-axis is the vertical direction, and the direction and magnitude of the acceleration applied to the vehicle are represented by the position of the weight suspended by the spring. Also, if a planar quadrilateral having four center points of front, rear, left, and right wheels grounded on the road surface as four vertices is regarded as a virtual bogie, the plane of the virtual bogie is parallel to the road surface. Therefore, the angle θ formed between the virtual truck and the vehicle body supported by the suspension on the truck is the inclination angle of the vehicle with respect to the road surface. FIG. 2 shows the behavior of the weight as viewed from the virtual bogie of the vehicle. Note that in FIG. 2, the front-rear direction of the virtual truck is an Xi axis, and the up-down direction is a Zi axis.
 図2に示されるように車両が加速するとき、水平な道路でも坂道でも、錘は路面に対して平行に移動する。見方を変えれば、錘は、仮想的な台車のXi軸方向に移動する。即ち、車両走行による加速度の変化は路面に平行、即ち、仮想的な台車のXi軸方向の矢印20のようになる。一方、車両加速時のX軸は、路面の角度に対して角度θで傾くことになる。そのときの、車体に搭載された加速度計測系からみた錘の挙動は、X軸方向にΔX、Z軸方向にΔZ移動するため、路面に対する車両の傾斜角度θgは、式(1)で表される。 錘 When the vehicle accelerates as shown in FIG. 2, the weight moves parallel to the road surface whether on a horizontal road or on a slope. In other words, the weight moves in the Xi-axis direction of the virtual bogie. That is, the change in acceleration due to the running of the vehicle is parallel to the road surface, that is, as indicated by an arrow 20 in the Xi-axis direction of the virtual bogie. On the other hand, the X axis during vehicle acceleration is inclined at an angle θ with respect to the angle of the road surface. At this time, the behavior of the weight as viewed from the acceleration measurement system mounted on the vehicle body moves by ΔX in the X-axis direction and ΔZ in the Z-axis direction. Therefore, the inclination angle θg of the vehicle with respect to the road surface is expressed by Expression (1). You.

  θg=tan-1(ΔZ/ΔX)   (1)

θg = tan −1 (ΔZ / ΔX) (1)
 従って、車体に搭載された加速度計測系においては、車両が加減速する前の基準時点kmと、加減速中の時点knとの2時点において路面に対して平行に移動する錘の移動量(矢印20)、即ち上下方向の加速度の差分(ΔZ)と前後方向の加速度の差分(ΔX)を観測すれば、走行している道路の勾配に関係なく車両の路面に対する傾斜角度θgを算出することができる。 Therefore, in the acceleration measurement system mounted on the vehicle body, the amount of movement of the weight moving in parallel to the road surface at the two points of time (the reference time point km before the vehicle accelerates / decelerates) and the time point kn during the acceleration / deceleration (arrow) 20) That is, by observing the difference between the vertical acceleration (ΔZ) and the difference between the longitudinal acceleration (ΔX), the inclination angle θg of the vehicle with respect to the road surface can be calculated regardless of the gradient of the road on which the vehicle is traveling. it can.
 なお、第1傾斜角度算出部11は、基準時点kmにおける前後方向の加速度及び上下方向の加速度に、車両が等加速度走行しているときに加速度センサ1によって検出された前後方向の加速度及び上下方向の加速度を用いることが望ましい。等加速度走行時の加速度を用いることにより、変化する加速度、即ち加速度の差分を容易に検出できるため、信頼性の高い傾斜角度θgを得ることができる。車両が等加速度走行しているか否かの判定は、後述する車両状態判定部13が行う。
 また、第1傾斜角度算出部11は、複数の傾斜角度θgから求めた平均値又は中央値等を、傾斜角度採用部14へ出力してもよい。これにより、より信頼性の高い傾斜角度θgを得ることができる。
The first inclination angle calculation unit 11 calculates the longitudinal acceleration and the vertical acceleration detected by the acceleration sensor 1 when the vehicle is traveling at a constant acceleration, in the longitudinal acceleration and the vertical acceleration at the reference time km. It is desirable to use an acceleration of By using the acceleration at the time of running at the constant acceleration, the changing acceleration, that is, the difference between the accelerations can be easily detected, so that a highly reliable inclination angle θg can be obtained. The determination as to whether or not the vehicle is traveling at a constant acceleration is made by a vehicle state determination unit 13 described later.
Further, the first inclination angle calculation unit 11 may output an average value, a median value, or the like obtained from the plurality of inclination angles θg to the inclination angle adoption unit 14. Thereby, a more reliable inclination angle θg can be obtained.
 第2傾斜角度算出部12は、角速度センサ2によって検出された、車両が前後に回転するときの角速度、即ちピッチング角方向の角速度を用い、車両の路面に対する傾斜角度θωを算出する。第2傾斜角度算出部12は、算出した傾斜角度θωを傾斜角度採用部14へ出力する。 The second tilt angle calculating unit 12 calculates the tilt angle θω of the vehicle with respect to the road surface using the angular speed detected by the angular speed sensor 2 when the vehicle rotates back and forth, that is, the angular speed in the pitching angle direction. The second tilt angle calculation unit 12 outputs the calculated tilt angle θω to the tilt angle adoption unit 14.
 図3は、実施の形態1における角速度及び車両の傾斜角度を説明する図である。図3には、車両が加速するときの、角速度のサンプリング時間と、車両の実際の傾斜角度と、角速度センサ2が検出する角速度と、角速度の積算値とが示される。サンプリング時間が0[ms]のとき、車両が停止しており、車両の傾斜角度は0[度]である。サンプリング時間が0[ms]から50[ms]の間、車両が加速し、加速により車両が後傾するため、50[ms]後に車両の傾斜角度は1[度]になっている。サンプリング時間が50[ms]から100[ms]の間、車両が等加速度で走行し、車両の傾斜角度は1[度]を維持している。サンプリング時間が100[ms]から150[ms]の間、車両が等速走行し、150[ms]後に車両の傾斜角度は0[度]になっている。 FIG. 3 is a diagram illustrating the angular velocity and the inclination angle of the vehicle according to the first embodiment. FIG. 3 shows the sampling time of the angular velocity, the actual inclination angle of the vehicle, the angular velocity detected by the angular velocity sensor 2, and the integrated value of the angular velocity when the vehicle accelerates. When the sampling time is 0 [ms], the vehicle is stopped, and the inclination angle of the vehicle is 0 [degree]. During the sampling time of 0 [ms] to 50 [ms], the vehicle accelerates, and the vehicle leans backward due to the acceleration. Therefore, the inclination angle of the vehicle becomes 1 [degree] after 50 [ms]. During the sampling time of 50 [ms] to 100 [ms], the vehicle travels at a constant acceleration, and the inclination angle of the vehicle maintains 1 [degree]. During a sampling time of 100 [ms] to 150 [ms], the vehicle travels at a constant speed, and after 150 [ms], the inclination angle of the vehicle becomes 0 [degree].
 図3に示されるように、角速度センサ2は、一定時間ごとの角度変化を検出するものである。そのため、第2傾斜角度算出部12は、10[ms]ごとの角速度を積算していき、10[ms]ごとの積算値を、車両の路面に対する傾斜角度θωとする。このように、第2傾斜角度算出部12は、サンプリング時間ごとに傾斜角度θωを得ることができるため、第1傾斜角度算出部11に比べて車両の前傾及び後傾を迅速に検出することができる。 (3) As shown in FIG. 3, the angular velocity sensor 2 detects an angle change at regular time intervals. Therefore, the second inclination angle calculation unit 12 integrates the angular velocities every 10 [ms], and sets the integrated value every 10 [ms] as the inclination angle θω with respect to the road surface of the vehicle. As described above, since the second inclination angle calculation unit 12 can obtain the inclination angle θω at each sampling time, the second inclination angle calculation unit 12 can quickly detect the forward inclination and the backward inclination of the vehicle as compared with the first inclination angle calculation unit 11. Can be.
 車両状態判定部13は、加速度センサ1、角速度センサ2、車速センサ3、又はアクセル開度センサ4のうちの少なくとも1つのセンサによって検出された値を用い、車両の状態を判定する。車両の状態は、停車、走行、等速走行、又は等加速度走行のうちの少なくとも1つを含む。車両状態判定部13は、判定結果を傾斜角度採用部14へ出力する。 The vehicle state determination unit 13 determines the state of the vehicle using a value detected by at least one of the acceleration sensor 1, the angular velocity sensor 2, the vehicle speed sensor 3, and the accelerator opening sensor 4. The state of the vehicle includes at least one of stopping, traveling, traveling at a constant speed, or traveling at an equal acceleration. The vehicle state determination unit 13 outputs the determination result to the inclination angle adoption unit 14.
 車両状態判定部13は、例えば車速センサ3によって検出される車速を用い、車両が走行中か停車中かを判定する。また、車両状態判定部13は、車両の走行中、加速度センサ1によって検出される前後方向の加速度が零以外の値であり、かつ、角速度センサ2によって検出される角速度が零である場合、車両が等加速度走行していると判定する。また、車両状態判定部13は、車両の走行中、加速度センサ1によって検出される前後方向の加速度が零であり、かつ、角速度センサ2によって検出される角速度も零である場合、車両が等速走行していると判定する。 The vehicle state determination unit 13 determines whether the vehicle is running or stopped using the vehicle speed detected by the vehicle speed sensor 3, for example. In addition, when the vehicle is traveling, the longitudinal acceleration detected by the acceleration sensor 1 is a value other than zero and the angular velocity detected by the angular velocity sensor 2 is zero during traveling of the vehicle. Is determined to be running at a constant acceleration. In addition, the vehicle state determination unit 13 determines that the vehicle is traveling at a constant velocity when the longitudinal acceleration detected by the acceleration sensor 1 is zero and the angular velocity detected by the angular velocity sensor 2 is zero during traveling of the vehicle. It is determined that the vehicle is running.
 傾斜角度採用部14は、第1傾斜角度算出部11から傾斜角度θgを、第2傾斜角度算出部12から傾斜角度θωを、車両状態判定部13から判定結果を、受け取る。傾斜角度採用部14は、車両状態判定部13により車両が停車中又は等速走行中であると判定された場合、第1傾斜角度算出部11の傾斜角度θgを採用し、採用した傾斜角度θgを信号生成部15へ出力する。一方、傾斜角度採用部14は、車両状態判定部13により車両が走行中ではあるが等速走行ではないと判定された場合、第2傾斜角度算出部12の傾斜角度θωを採用し、採用した傾斜角度θωを信号生成部15へ出力する。なお、傾斜角度採用部14は、等速走行中に車両状態判定部13により車両のアクセル開度の変化有りと判定された場合、傾斜角度θg,θωを採用せず、信号生成部15へ出力しない。 The tilt angle adoption unit 14 receives the tilt angle θg from the first tilt angle calculation unit 11, the tilt angle θω from the second tilt angle calculation unit 12, and the determination result from the vehicle state determination unit 13. When the vehicle state determination unit 13 determines that the vehicle is stopped or running at a constant speed, the inclination angle adoption unit 14 adopts the inclination angle θg of the first inclination angle calculation unit 11 and employs the adopted inclination angle θg. Is output to the signal generation unit 15. On the other hand, when the vehicle state determination unit 13 determines that the vehicle is traveling but is not traveling at a constant speed, the inclination angle adoption unit 14 adopts and employs the inclination angle θω of the second inclination angle calculation unit 12. The inclination angle θω is output to the signal generator 15. When the vehicle state determination unit 13 determines that there is a change in the accelerator opening of the vehicle during traveling at a constant speed, the inclination angle adoption unit 14 outputs the signal to the signal generation unit 15 without using the inclination angles θg and θω. do not do.
 信号生成部15は、傾斜角度採用部14により採用された傾斜角度θg又は傾斜角度θωを用い、傾斜角度θg又は傾斜角度θωとは反対の方向に前照灯の光軸を回転させるための光軸制御信号を生成する。信号生成部15は、生成した光軸制御信号を光軸制御アクチュエータ5へ出力することによって、光軸制御アクチュエータ5に、対向車の運転者等の眩惑を防ぐように前照灯の光軸を制御させる。 The signal generation unit 15 uses the tilt angle θg or the tilt angle θω adopted by the tilt angle adoption unit 14 and emits light for rotating the optical axis of the headlight in a direction opposite to the tilt angle θg or the tilt angle θω. Generate an axis control signal. The signal generation unit 15 outputs the generated optical axis control signal to the optical axis control actuator 5 so that the optical axis control actuator 5 controls the optical axis of the headlight so as to prevent dazzling of an oncoming vehicle driver or the like. Control.
 次に、実施の形態1に係る前照灯用光軸制御装置10の動作を説明する。
 図4は、実施の形態1に係る前照灯用光軸制御装置10の動作例を示すフローチャートである。前照灯用光軸制御装置10は、その動作中、図4のフローチャートを繰り返す。
Next, the operation of the headlamp optical axis control device 10 according to the first embodiment will be described.
FIG. 4 is a flowchart illustrating an operation example of the headlamp optical axis control device 10 according to the first embodiment. The headlight optical axis control device 10 repeats the flow chart of FIG. 4 during its operation.
 ステップST11において、第1傾斜角度算出部11は、加速度センサ1によって検出された加速度を用い、車両の傾斜角度θgを算出する。ステップST12において、第2傾斜角度算出部12は、角速度センサ2によって検出された角速度を用い、車両の傾斜角度θωを算出する。 In step ST11, the first inclination angle calculation unit 11 calculates the inclination angle θg of the vehicle using the acceleration detected by the acceleration sensor 1. In step ST12, the second inclination angle calculation unit 12 calculates the inclination angle θω of the vehicle using the angular velocity detected by the angular velocity sensor 2.
 ステップST13において、車両状態判定部13は、加速度センサ1、角速度センサ2、車速センサ3、及びアクセル開度センサ4によって検出される検出値を用い、車両の状態を判定する。 In step ST13, the vehicle state determination unit 13 determines the state of the vehicle using the detection values detected by the acceleration sensor 1, the angular velocity sensor 2, the vehicle speed sensor 3, and the accelerator opening sensor 4.
 車両状態判定部13が、車両が停車中であると判定した場合(ステップST14“YES”)、ステップST15において、傾斜角度採用部14は、第1傾斜角度算出部11の傾斜角度θgを採用する。ステップST16において、信号生成部15は、第1傾斜角度算出部11の傾斜角度θgを用いて光軸制御信号を生成し、光軸制御アクチュエータ5へ出力する。後述する図5において具体例を説明する。 When the vehicle state determination unit 13 determines that the vehicle is stopped (“YES” in step ST14), the inclination angle adoption unit 14 employs the inclination angle θg of the first inclination angle calculation unit 11 in step ST15. . In step ST16, the signal generation unit 15 generates an optical axis control signal using the inclination angle θg of the first inclination angle calculation unit 11, and outputs the signal to the optical axis control actuator 5. A specific example will be described with reference to FIG.
 車両状態判定部13が、車両が走行中であると判定した場合(ステップST14“NO”)、かつ、車両が等速走行中でないと判定した場合(ステップST17“NO”)、ステップST18において、傾斜角度採用部14は、第2傾斜角度算出部12の傾斜角度θωを採用する。その後、ステップST16において、信号生成部15は、第2傾斜角度算出部12の傾斜角度θωを用いて光軸制御信号を生成し、光軸制御アクチュエータ5へ出力する。後述する図8と図9において具体例を説明する。 When the vehicle state determination unit 13 determines that the vehicle is traveling (step ST14 “NO”) and determines that the vehicle is not traveling at the constant speed (step ST17 “NO”), in step ST18, The inclination angle adoption unit 14 employs the inclination angle θω of the second inclination angle calculation unit 12. Thereafter, in step ST16, the signal generation unit 15 generates an optical axis control signal using the inclination angle θω of the second inclination angle calculation unit 12, and outputs the signal to the optical axis control actuator 5. A specific example will be described with reference to FIGS. 8 and 9 described later.
 車両状態判定部13が、車両が等速走行中であると判定した場合(ステップST17“YES”)、かつ、アクセル開度の変化有りと判定した場合(ステップST19“YES”)、車両が坂道に差し掛かったため、前照灯用光軸制御装置10は前照灯の光軸を変化させずに保つ。即ち、信号生成部15は、直前(例えば、前回、図4のフローチャートに示される動作を実行したとき)に生成した光軸制御信号を維持する。後述する図7において具体例を説明する。 When the vehicle state determination unit 13 determines that the vehicle is traveling at a constant speed (“YES” in step ST17) and determines that there is a change in the accelerator opening (step ST19 “YES”), the vehicle is on a slope. , The headlight optical axis control device 10 keeps the headlight optical axis unchanged. That is, the signal generation unit 15 maintains the optical axis control signal generated immediately before (for example, when the operation illustrated in the flowchart of FIG. 4 is performed last time). A specific example will be described with reference to FIG.
 車両状態判定部13が、車両が等速走行中であると判定した場合(ステップST17“YES”)、かつ、アクセル開度の変化無しと判定した場合(ステップST19“NO”)、ステップST15において、傾斜角度採用部14は、第1傾斜角度算出部11の傾斜角度θgを採用する。ステップST16において、信号生成部15は、第1傾斜角度算出部11の傾斜角度θgを用いて光軸制御信号を生成し、光軸制御アクチュエータ5へ出力する。後述する図6において具体例を説明する。 If the vehicle state determination unit 13 determines that the vehicle is traveling at a constant speed (“YES” in step ST17) and determines that there is no change in the accelerator opening (“NO” in step ST19), the process proceeds to step ST15. The inclination angle adoption unit 14 employs the inclination angle θg of the first inclination angle calculation unit 11. In step ST16, the signal generation unit 15 generates an optical axis control signal using the inclination angle θg of the first inclination angle calculation unit 11, and outputs the signal to the optical axis control actuator 5. A specific example will be described with reference to FIG.
 次に、図5~図9を用いて、前照灯用光軸制御装置10の光軸制御の具体例を説明する。なお、図5~図9において、便宜上、各センサの検出値及び車両の傾斜角度等の値を記述しているが、これらの値は参考値であり、実際の値とは異なる。 Next, a specific example of the optical axis control of the headlight optical axis control device 10 will be described with reference to FIGS. In FIGS. 5 to 9, for convenience, the values detected by the respective sensors and the values such as the inclination angle of the vehicle are described. However, these values are reference values and are different from actual values.
 図5は、実施の形態1において、停車中の車両の角度変化を説明する図である。図5の例では、停止中の車両後部に荷物が積み降ろしされることにより、車両の角度が変化する。
 車両状態判定部13によって車両が停車中であると判定された場合、車両は静的な状態にあるため、光軸制御は緩慢でよい。そのため、傾斜角度採用部14は、第1傾斜角度算出部11が算出した、加速度センサ1を基にした、応答性は低いが信頼性は高い傾斜角度θgを採用する。信号生成部15は、傾斜角度θgが上がった場合、即ち車両前方が上向きになった場合、光軸を下げる方向に制御するための光軸制御信号を生成する。一方、信号生成部15は、傾斜角度θgが下がった場合、即ち車両前方が下向きになった場合、光軸を上げる方向に制御するための光軸制御信号を生成する。
FIG. 5 is a diagram illustrating a change in the angle of a stopped vehicle in the first embodiment. In the example of FIG. 5, the angle of the vehicle is changed by loading and unloading luggage at the rear of the stopped vehicle.
When the vehicle state determination unit 13 determines that the vehicle is stopped, the vehicle is in a static state, and thus the optical axis control may be slow. Therefore, the inclination angle adoption unit 14 employs the inclination angle θg, which has low responsiveness but high reliability, based on the acceleration sensor 1 and calculated by the first inclination angle calculation unit 11. The signal generation unit 15 generates an optical axis control signal for controlling the optical axis to be lowered when the inclination angle θg is increased, that is, when the front of the vehicle is directed upward. On the other hand, when the inclination angle θg is reduced, that is, when the front of the vehicle is directed downward, the signal generation unit 15 generates an optical axis control signal for controlling the optical axis to be raised.
 図6は、実施の形態1において、等速走行中の車両の角度変化を説明する図である。車両状態判定部13は、車両が等速走行中であると判定した場合、続いてアクセル開度の変化を確認する。車両状態判定部13において、車両が等速走行中であり、かつ、アクセル開度の変化が無いと判定された場合、車両が等速走行している路面の角度は変化していないと推測される。路面角度変化が無い等速走行状態では、加減速による車両の傾斜角度変化(即ち、搖動)が発生せず、車両が静的な状態にあると推測される。そのため、傾斜角度採用部14は、第1傾斜角度算出部11が算出した、加速度センサ1を基にした傾斜角度θgを採用する。 FIG. 6 is a diagram illustrating a change in the angle of the vehicle while traveling at a constant speed in the first embodiment. When determining that the vehicle is traveling at a constant speed, the vehicle state determination unit 13 subsequently checks a change in the accelerator opening. When the vehicle state determination unit 13 determines that the vehicle is traveling at a constant speed and there is no change in the accelerator opening, it is estimated that the angle of the road surface on which the vehicle is traveling at a constant speed has not changed. You. In a constant speed running state where there is no change in the road surface angle, no change in the inclination angle (i.e., swing) of the vehicle due to acceleration / deceleration occurs, and it is assumed that the vehicle is in a static state. Therefore, the inclination angle adoption unit 14 employs the inclination angle θg calculated by the first inclination angle calculation unit 11 and based on the acceleration sensor 1.
 図7は、実施の形態1において、上り坂走行時の車両の角度変化を説明する図である。図6では、車両の等速走行中、路面の角度が変化しない例を示したが、図7では、車両の等速走行中に路面の角度が変化する例を示す。図7において、対水平傾斜角度は、水平面に対する車両の傾斜角度であり、対路面傾斜角度は、路面に対する車両の傾斜角度である。
 車両の等速走行中に路面角度が変化した場合、前照灯用光軸制御装置10は、路面角度の変化を車両の傾斜角度の変化と誤検出する可能性がある。例えば、等速走行中に平坦な道から上り坂に変化した場合、前照灯用光軸制御装置10は、車両前方が上向きになったと判定し、誤って光軸を下げる恐れがある。
FIG. 7 is a diagram illustrating a change in the angle of the vehicle during uphill traveling in the first embodiment. FIG. 6 shows an example in which the angle of the road surface does not change while the vehicle is traveling at a constant speed, but FIG. 7 shows an example in which the angle of the road surface changes while the vehicle is traveling at a constant speed. In FIG. 7, the horizontal inclination angle is the inclination angle of the vehicle with respect to the horizontal plane, and the road surface inclination angle is the inclination angle of the vehicle with respect to the road surface.
If the road surface angle changes while the vehicle is traveling at a constant speed, the headlight optical axis control device 10 may erroneously detect a change in the road surface angle as a change in the inclination angle of the vehicle. For example, if the road changes from a flat road to an upward slope during traveling at a constant speed, the headlamp optical axis control device 10 determines that the front of the vehicle is facing upward, and may erroneously lower the optical axis.
 そこで、車両状態判定部13は、アクセル開度の変化を基に、平坦な道から坂道に変化したか否かを判定する。車両が走行中の路面が平坦な道から上り坂に変化し、かつ等速走行を維持するためには、運転者がアクセルを強く踏み込む必要がある。図7では、アクセルを強く踏み込んだ場合を「(+α)」と表す。反対に、車両が走行中の路面が平坦な道から下り坂に変化し、かつ等速走行を維持するためには、運転者がアクセルの踏み込みを弱める必要がある。このようなアクセル操作は、路面が坂道から平坦な道に変化した場合も同様に行われる。つまり、車両が等速走行中でありながら、アクセル開度に変化がある場合とは、路面の角度が変化した場合であると推測される。よって、車両状態判定部13において、車両が等速走行中であり、かつ、アクセル開度の変化有りと判定された場合、傾斜角度採用部14は、傾斜角度θg,θωのいずれも採用せず、信号生成部15は、光軸制御を行わない。これに対し、車両が坂道を等速走行しておりアクセル開度の変化が無い間、傾斜角度採用部14は、第1傾斜角度算出部11が算出した、加速度センサ1を基にした傾斜角度θgを採用する。 Therefore, the vehicle state determination unit 13 determines whether or not the road has changed from a flat road to a slope based on the change in the accelerator opening. In order for the road surface on which the vehicle is traveling to change from a flat road to an upward slope and to maintain a constant speed traveling, the driver needs to strongly depress the accelerator. In FIG. 7, the case where the accelerator is depressed strongly is represented as “(+ α)”. Conversely, in order for the road surface on which the vehicle is traveling to change from a flat road to a downhill slope and to maintain the constant speed traveling, the driver needs to weaken the accelerator pedal. Such an accelerator operation is similarly performed when the road surface changes from a slope to a flat road. That is, it is presumed that the case where the accelerator opening changes while the vehicle is traveling at a constant speed is the case where the angle of the road surface changes. Therefore, when the vehicle state determination unit 13 determines that the vehicle is traveling at a constant speed and that the accelerator opening changes, the inclination angle adoption unit 14 does not employ any of the inclination angles θg and θω. , The signal generator 15 does not perform optical axis control. On the other hand, while the vehicle is traveling at a constant speed on the slope and there is no change in the accelerator opening, the inclination angle adoption unit 14 calculates the inclination angle based on the acceleration sensor 1 calculated by the first inclination angle calculation unit 11. Adopt θg.
 図8は、実施の形態1において、加速時の車両の角度変化を説明する図である。平坦な道を走行している車両は、加減速によって搖動し、傾斜角度が変化する。即ち、車両のアクセル開度が変化し、それによって車速が変化した場合、車両が加減速によって搖動していると推測される。車両が走行中かつ搖動している場合、2時点の加速度を用いて傾斜角度θgを算出する方法は、搖動に対する傾斜角度θgの応答性が低いため、適さない。そこで、傾斜角度採用部14は、車両状態判定部13によって車両が走行中かつ搖動中であると判定された場合、第2傾斜角度算出部12が算出した、角速度センサ2を基にした応答性の高い傾斜角度θωを採用する。 FIG. 8 is a diagram illustrating a change in the angle of the vehicle during acceleration in the first embodiment. A vehicle traveling on a flat road swings due to acceleration and deceleration, and the inclination angle changes. That is, when the accelerator opening of the vehicle changes and the vehicle speed changes accordingly, it is estimated that the vehicle is rocking due to acceleration and deceleration. When the vehicle is traveling and swinging, the method of calculating the inclination angle θg using the acceleration at two points in time is not suitable because the response of the inclination angle θg to the swing is low. Therefore, when the vehicle state determination unit 13 determines that the vehicle is traveling and swinging, the inclination angle adoption unit 14 responds based on the angular velocity sensor 2 calculated by the second inclination angle calculation unit 12. Is adopted.
 図9は、実施の形態1において、凹部走行中の車両の角度変化を説明する図である。等速走行中の車両が路面の凹部又は凸部を走行した場合、角速度を用いて算出された傾斜角度θωの変化と、適切な光軸制御方向とは一致する。例えば、図9のように車両前輪が凹部を走行したときは車両前方が下から上に移動するため、光軸を上げた後に下げる必要がある。また、車両後輪が凹部を走行したときは車両前方が上から下に移動するため、光軸を下げた後に上げる必要がある。このように、車両が凹部又は凸部を走行することによって搖動している間、傾斜角度採用部14は、第2傾斜角度算出部12が算出した、角速度センサ2を基にした応答性の高い傾斜角度θωを採用する。 FIG. 9 is a diagram illustrating a change in the angle of the vehicle during traveling in the concave portion in the first embodiment. When the vehicle traveling at a constant speed travels on a concave or convex portion of the road surface, the change in the inclination angle θω calculated using the angular velocity coincides with the appropriate optical axis control direction. For example, as shown in FIG. 9, when the front wheels of the vehicle run in the concave portions, the front of the vehicle moves upward from below, so it is necessary to raise the optical axis and then lower it. Further, when the rear wheel of the vehicle travels in the recess, the front of the vehicle moves from top to bottom, so it is necessary to raise the optical axis after lowering the optical axis. As described above, while the vehicle is oscillating by traveling on the concave portion or the convex portion, the inclination angle adoption section 14 has high responsiveness based on the angular velocity sensor 2 calculated by the second inclination angle calculation section 12. The inclination angle θω is adopted.
 以上のように、実施の形態1に係る前照灯用光軸制御装置10は、第1傾斜角度算出部11、第2傾斜角度算出部12、車両状態判定部13、傾斜角度採用部14、及び信号生成部15を備える。第1傾斜角度算出部11は、車両に搭載された加速度センサ1によって検出された車両の前後方向の加速度と上下方向の加速度とを用い、車両の路面に対する傾斜角度θgを算出する。第2傾斜角度算出部12は、車両に搭載された角速度センサ2によって検出された車両が前後に回転するときの角速度を用い、車両の路面に対する傾斜角度θωを算出する。車両状態判定部13は、加速度センサ1によって検出された加速度と角速度センサ2によって検出された角速度とを用い、車両の状態を判定する。傾斜角度採用部14は、車両状態判定部13により車両が停車中又は等速走行中であると判定された場合、第1傾斜角度算出部11の傾斜角度θgを採用し、車両状態判定部13により車両が走行中ではあるが等速走行ではないと判定された場合、第2傾斜角度算出部12の傾斜角度θωを採用する。信号生成部15は、傾斜角度採用部14により採用された傾斜角度θg又は傾斜角度θωを用い、車両に搭載された前照灯の光軸を制御するための光軸制御信号を生成する。このように、前照灯用光軸制御装置10は、車両が停車中又は等速走行中である場合、加速度センサ1を基にした信頼性が高い傾斜角度θgを採用し、車両が走行中であって搖動している場合、角速度センサ2を基にした応答性が高い傾斜角度θωを採用する。従って、特性が異なる角速度センサ2と加速度センサ1とを使い分けることで、光軸の緩慢な制御と迅速な制御とを高精度に行うことができる。 As described above, the headlamp optical axis control device 10 according to the first embodiment includes the first inclination angle calculation unit 11, the second inclination angle calculation unit 12, the vehicle state determination unit 13, the inclination angle adoption unit 14, And a signal generation unit 15. The first inclination angle calculation unit 11 calculates the inclination angle θg of the vehicle with respect to the road surface using the acceleration in the front-rear direction and the acceleration in the vertical direction of the vehicle detected by the acceleration sensor 1 mounted on the vehicle. The second tilt angle calculation unit 12 calculates the tilt angle θω of the vehicle with respect to the road surface using the angular speed at which the vehicle rotates back and forth, detected by the angular speed sensor 2 mounted on the vehicle. The vehicle state determination unit 13 determines the state of the vehicle using the acceleration detected by the acceleration sensor 1 and the angular velocity detected by the angular velocity sensor 2. When the vehicle state determination unit 13 determines that the vehicle is stopped or running at a constant speed, the inclination angle adoption unit 14 employs the inclination angle θg of the first inclination angle calculation unit 11 and the vehicle state determination unit 13 When it is determined that the vehicle is traveling but is not traveling at a constant speed, the inclination angle θω of the second inclination angle calculation unit 12 is adopted. The signal generation unit 15 generates an optical axis control signal for controlling the optical axis of the headlight mounted on the vehicle using the inclination angle θg or the inclination angle θω adopted by the inclination angle adoption unit 14. As described above, the headlight optical axis control device 10 employs the highly reliable inclination angle θg based on the acceleration sensor 1 when the vehicle is stopped or traveling at a constant speed, and the vehicle is traveling. Therefore, when the vehicle is oscillating, the inclination angle θω having high responsiveness based on the angular velocity sensor 2 is adopted. Therefore, by selectively using the angular velocity sensor 2 and the acceleration sensor 1 having different characteristics, slow control and quick control of the optical axis can be performed with high accuracy.
 また、実施の形態1の第1傾斜角度算出部11は、加速度センサ1によって検出された2時点km,knの前後方向の加速度と当2時点km,knの上下方向の加速度とを用いて傾斜角度θgを算出する。そして、第1傾斜角度算出部11は、当2時点km,knのうちの一方の時点の前後方向の加速度と上下方向の加速度とに、前記車両が等加速度走行しているときの前後方向の加速度と上下方向の加速度とを用いる。これにより、第1傾斜角度算出部11は、搖動していない静止状態の車両の傾斜角度θgを、精度よく算出することができる。 Further, the first inclination angle calculation unit 11 of the first embodiment uses the acceleration in the longitudinal direction at two time points km and kn detected by the acceleration sensor 1 and the acceleration in the vertical direction at the two time points km and kn. The angle θg is calculated. Then, the first inclination angle calculation unit 11 compares the acceleration in the longitudinal direction and the acceleration in the vertical direction at one of the two time points km and kn with the acceleration in the longitudinal direction when the vehicle is traveling at an equal acceleration. The acceleration and the vertical acceleration are used. Accordingly, the first inclination angle calculation unit 11 can accurately calculate the inclination angle θg of the stationary vehicle that is not swinging.
 また、実施の形態1の車両状態判定部13は、車両の走行中、前後方向の加速度が零以外であり、かつ、角速度が零である場合、車両が等加速度走行していると判定する。これにより、車両状態判定部13は、車速を用いて車両が等加速度走行しているか否かを判定する場合に比べて、精度よく判定できる。 The vehicle state determination unit 13 of the first embodiment determines that the vehicle is traveling at a constant acceleration when the longitudinal acceleration is other than zero and the angular velocity is zero during traveling of the vehicle. Accordingly, the vehicle state determination unit 13 can perform the determination with higher accuracy than when determining whether the vehicle is traveling at a constant acceleration using the vehicle speed.
 また、実施の形態1の車両状態判定部13は、車両の走行中、前後方向の加速度が零であり、かつ、角速度が零である場合、車両が等速走行していると判定する。これにより、車両状態判定部13は、車速を用いて車両が等速走行しているか否かを判定する場合に比べて、精度よく判定できる。 The vehicle state determination unit 13 of the first embodiment determines that the vehicle is traveling at a constant speed when the longitudinal acceleration is zero and the angular velocity is zero during traveling of the vehicle. Thereby, the vehicle state determination unit 13 can determine with higher accuracy than when determining whether the vehicle is traveling at a constant speed using the vehicle speed.
 また、実施の形態1の車両状態判定部13は、車両のアクセル開度の変化の有無を判定する。傾斜角度採用部14は、車両状態判定部13により車両が等速走行中及びアクセル開度の変化無しと判定された場合、第1傾斜角度算出部11の傾斜角度θgを採用する。これにより、前照灯用光軸制御装置10は、車両が静的な状態にある場合、信頼性が高い加速度センサ1を基にした、高精度な光軸制御を行うことができる。 車 両 Furthermore, the vehicle state determination unit 13 of the first embodiment determines whether or not the accelerator opening of the vehicle has changed. The inclination angle adoption unit 14 employs the inclination angle θg of the first inclination angle calculation unit 11 when the vehicle state determination unit 13 determines that the vehicle is traveling at a constant speed and there is no change in the accelerator opening. Accordingly, when the vehicle is in a static state, the headlight optical axis control device 10 can perform highly accurate optical axis control based on the highly reliable acceleration sensor 1.
 また、実施の形態1の信号生成部15は、車両状態判定部13により車両が等速走行中及びアクセル開度の変化有りと判定された場合、その前に生成した光軸制御信号を維持する。これにより、前照灯用光軸制御装置10は、路面の角度が変化した場合の誤った光軸制御を防止することができる。 Further, when the vehicle state determination unit 13 determines that the vehicle is traveling at a constant speed and the accelerator opening is changed, the signal generation unit 15 of the first embodiment maintains the optical axis control signal generated before that. . Thus, the headlamp optical axis control device 10 can prevent erroneous optical axis control when the angle of the road surface changes.
実施の形態2.
 図10は、実施の形態2に係る前照灯用光軸制御装置10を示すブロック図である。実施の形態2に係る前照灯用光軸制御装置10は、図1に示された実施の形態1の前照灯用光軸制御装置10に対して校正部14aが追加された構成である。図10において、図1と同一又は相当する部分は、同一の符号を付し説明を省略する。
Embodiment 2 FIG.
FIG. 10 is a block diagram showing a headlight optical axis control device 10 according to the second embodiment. The headlight optical axis control device 10 according to the second embodiment has a configuration in which a calibration unit 14a is added to the headlight optical axis control device 10 of the first embodiment shown in FIG. . 10, the same or corresponding parts as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
 校正部14aは、第2傾斜角度算出部12の傾斜角度θωを校正する。ここでは、図11に示される校正方法と、図12に示される校正方法の2つの方法を例示する。 The calibration unit 14a calibrates the inclination angle θω of the second inclination angle calculation unit 12. Here, two methods of the calibration method shown in FIG. 11 and the calibration method shown in FIG. 12 will be exemplified.
 図11は、実施の形態2に係る前照灯用光軸制御装置10の動作例を示すフローチャートである。図11のステップST11~ST19は、図4のステップST11~ST19と同じである。
 角速度センサ2は応答性が高いが、サンプリング時間ごとの角速度を積算する性質上、長時間使用していると傾斜角度θωが実際の車両の傾斜角度と乖離する可能性がある。そのため、傾斜角度θωを校正することが望ましい。そこで、傾斜角度採用部14が加速度センサ1を基にした信頼性の高い傾斜角度θgを採用した場合(ステップST15)、ステップST21において、校正部14aは、第2傾斜角度算出部12の傾斜角度θωに第1傾斜角度算出部11の傾斜角度θgを上書きすることによって、傾斜角度θωを校正する。これ以降、第2傾斜角度算出部12は、校正後の傾斜角度θωに対して、角速度センサ2によって検出される角速度を積算して傾斜角度θωを得る。
FIG. 11 is a flowchart illustrating an operation example of the headlamp optical axis control device 10 according to the second embodiment. Steps ST11 to ST19 in FIG. 11 are the same as steps ST11 to ST19 in FIG.
Although the angular velocity sensor 2 has high responsiveness, the inclination angle θω may deviate from the actual inclination angle of the vehicle when used for a long time due to the property of accumulating the angular velocity for each sampling time. Therefore, it is desirable to calibrate the inclination angle θω. Therefore, when the inclination angle adoption unit 14 employs the highly reliable inclination angle θg based on the acceleration sensor 1 (step ST15), in step ST21, the calibration unit 14a determines the inclination angle of the second inclination angle calculation unit 12 The inclination angle θω is calibrated by overwriting θω with the inclination angle θg of the first inclination angle calculation unit 11. Thereafter, the second inclination angle calculation unit 12 obtains the inclination angle θω by integrating the angular velocity detected by the angular velocity sensor 2 with the corrected inclination angle θω.
 図12は、実施の形態2に係る前照灯用光軸制御装置10の動作の変形例を示すフローチャートである。図12のステップST11~ST19,ST21は、図4及び図11のステップST11~ST19,ST21と同じである。
 加速度センサ1の感度と角速度センサ2の感度とに差がある場合、図11のステップST21において校正部14aが傾斜角度θωを校正したとしても、傾斜角度θωには再度同傾向の誤差が発生する。そこで、校正部14aは、第1傾斜角度算出部11の傾斜角度θgと第2傾斜角度算出部12の傾斜角度θωとの差が予め定められた閾値θthより大きい場合(ステップST22“YES”)、ステップST23において、角速度センサ2の感度を校正する。一方、校正部14aは、第1傾斜角度算出部11の傾斜角度θgと第2傾斜角度算出部12の傾斜角度θωとの差が上記閾値θth以下である場合(ステップST22“NO”)、角速度センサ2の感度を校正しない。なお、ステップST22において傾斜角度θgとの比較に用いられる傾斜角度θωは、ステップST21において傾斜角度θgで上書きされる前の、即ち校正前の傾斜角度θωである。
FIG. 12 is a flowchart illustrating a modification of the operation of the headlight optical axis control device 10 according to the second embodiment. Steps ST11 to ST19 and ST21 in FIG. 12 are the same as steps ST11 to ST19 and ST21 in FIG. 4 and FIG.
When there is a difference between the sensitivity of the acceleration sensor 1 and the sensitivity of the angular velocity sensor 2, even if the calibration unit 14a calibrates the inclination angle θω in step ST21 of FIG. 11, an error having the same tendency occurs again in the inclination angle θω. . Thus, the calibrating unit 14a determines that the difference between the inclination angle θg of the first inclination angle calculation unit 11 and the inclination angle θω of the second inclination angle calculation unit 12 is larger than a predetermined threshold value θth (“YES” in step ST22). In step ST23, the sensitivity of the angular velocity sensor 2 is calibrated. On the other hand, when the difference between the inclination angle θg of the first inclination angle calculation unit 11 and the inclination angle θω of the second inclination angle calculation unit 12 is equal to or less than the threshold value θth (“NO” in step ST22), the calibration unit 14a determines the angular velocity. Do not calibrate the sensitivity of sensor 2. The tilt angle θω used for comparison with the tilt angle θg in step ST22 is the tilt angle θω before being overwritten with the tilt angle θg in step ST21, that is, the tilt angle θω before calibration.
 例えば、第1傾斜角度算出部11の傾斜角度θgと第2傾斜角度算出部12の傾斜角度θωとの関係は、式(2)で表される。この場合、校正部14aは、角速度センサ2の感度の校正として、式(2)の係数kを校正してもよいし、オフセットθoを校正してもよい。 For example, the relationship between the inclination angle θg of the first inclination angle calculation unit 11 and the inclination angle θω of the second inclination angle calculation unit 12 is expressed by Expression (2). In this case, the calibration unit 14a may calibrate the coefficient k of Expression (2) or calibrate the offset θo as the calibration of the sensitivity of the angular velocity sensor 2.

  θg=kθω+θo   (2)

θg = kθω + θo (2)
 なお、図12では、校正部14aが傾斜角度θωを校正する動作(ステップST21)と、角速度センサ2の感度を校正する動作(ステップST22及びステップST23)とを実行する例を示したが、校正部14aは角速度センサ2の感度を校正する動作(ステップST22及びステップST23)のみを実行してもよい。 FIG. 12 shows an example in which the calibrating unit 14a performs an operation of calibrating the inclination angle θω (step ST21) and an operation of calibrating the sensitivity of the angular velocity sensor 2 (steps ST22 and ST23). The unit 14a may execute only the operation of calibrating the sensitivity of the angular velocity sensor 2 (step ST22 and step ST23).
 以上のように、実施の形態2に係る前照灯用光軸制御装置10は、校正部14aを備える。校正部14aは、傾斜角度採用部14により第1傾斜角度算出部11の傾斜角度θgが採用された場合、採用された傾斜角度θgを用い、第2傾斜角度算出部12の傾斜角度θωを校正する。これにより、前照灯用光軸制御装置10は、角速度センサ2を用いて高精度な光軸制御を行うことができる。 As described above, the headlight optical axis control device 10 according to the second embodiment includes the calibration unit 14a. When the inclination angle adoption unit 14 adopts the inclination angle θg of the first inclination angle calculation unit 11, the calibration unit 14 a uses the adopted inclination angle θg to calibrate the inclination angle θω of the second inclination angle calculation unit 12. I do. Thereby, the headlamp optical axis control device 10 can perform highly accurate optical axis control using the angular velocity sensor 2.
 また、実施の形態2の校正部14aは、第1傾斜角度算出部11の傾斜角度θgと第2傾斜角度算出部12の傾斜角度θωとの差が予め定められた閾値θthより大きい場合、角速度センサ2の感度を校正する。これにより、前照灯用光軸制御装置10は、角速度センサ2を用いて高精度な光軸制御を行うことができる。 In addition, the calibration unit 14a according to the second embodiment determines the angular velocity when the difference between the inclination angle θg of the first inclination angle calculation unit 11 and the inclination angle θω of the second inclination angle calculation unit 12 is larger than a predetermined threshold value θth. Calibrate the sensitivity of sensor 2. Thereby, the headlamp optical axis control device 10 can perform highly accurate optical axis control using the angular velocity sensor 2.
 最後に、各実施の形態に係る前照灯用光軸制御装置10のハードウェア構成を説明する。
 図13A及び図13Bは、各実施の形態に係る前照灯用光軸制御装置10のハードウェア構成例を示す図である。前照灯用光軸制御装置10における第1傾斜角度算出部11、第2傾斜角度算出部12、車両状態判定部13、傾斜角度採用部14、校正部14a、及び信号生成部15の機能は、処理回路により実現される。即ち、前照灯用光軸制御装置10は、上記機能を実現するための処理回路を備える。処理回路は、専用のハードウェアとしての処理回路100であってもよいし、メモリ102に格納されるプログラムを実行するプロセッサ101であってもよい。
Lastly, a hardware configuration of the headlamp optical axis control device 10 according to each embodiment will be described.
13A and 13B are diagrams illustrating a hardware configuration example of the headlamp optical axis control device 10 according to each embodiment. The functions of the first inclination angle calculation unit 11, the second inclination angle calculation unit 12, the vehicle state determination unit 13, the inclination angle adoption unit 14, the calibration unit 14a, and the signal generation unit 15 in the headlight optical axis control device 10 are as follows. Is realized by a processing circuit. That is, the headlamp optical axis control device 10 includes a processing circuit for realizing the above functions. The processing circuit may be the processing circuit 100 as dedicated hardware, or may be the processor 101 that executes a program stored in the memory 102.
 図13Aに示されるように、処理回路が専用のハードウェアである場合、処理回路100は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、又はこれらを組み合わせたものが該当する。第1傾斜角度算出部11、第2傾斜角度算出部12、車両状態判定部13、傾斜角度採用部14、校正部14a、及び信号生成部15の機能を複数の処理回路100で実現してもよいし、各部の機能をまとめて1つの処理回路100で実現してもよい。 As illustrated in FIG. 13A, when the processing circuit is dedicated hardware, the processing circuit 100 includes, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, and an ASIC (Application / Specific / Integrated / Circuit). ), FPGA (Field Programmable Gate Array), or a combination thereof. Even if the functions of the first inclination angle calculation unit 11, the second inclination angle calculation unit 12, the vehicle state determination unit 13, the inclination angle adoption unit 14, the calibration unit 14a, and the signal generation unit 15 are realized by a plurality of processing circuits 100. Alternatively, the functions of the respective units may be collectively realized by one processing circuit 100.
 図13Bに示されるように、処理回路がプロセッサ101である場合、第1傾斜角度算出部11、第2傾斜角度算出部12、車両状態判定部13、傾斜角度採用部14、校正部14a、及び信号生成部15の機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア又はファームウェアはプログラムとして記述され、メモリ102に格納される。プロセッサ101は、メモリ102に格納されたプログラムを読みだして実行することにより、各部の機能を実現する。即ち、前照灯用光軸制御装置10は、プロセッサ101により実行されるときに、図4、図11及び図12のフローチャートで示されるステップが結果的に実行されることになるプログラムを格納するためのメモリ102を備える。また、このプログラムは、第1傾斜角度算出部11、第2傾斜角度算出部12、車両状態判定部13、傾斜角度採用部14、校正部14a、及び信号生成部15の手順又は方法をコンピュータに実行させるものであるとも言える。 As shown in FIG. 13B, when the processing circuit is the processor 101, the first inclination angle calculation unit 11, the second inclination angle calculation unit 12, the vehicle state determination unit 13, the inclination angle adoption unit 14, the calibration unit 14a, and The function of the signal generation unit 15 is realized by software, firmware, or a combination of software and firmware. Software or firmware is described as a program and stored in the memory 102. The processor 101 reads out and executes a program stored in the memory 102 to realize the function of each unit. That is, the headlamp optical axis control device 10 stores a program that, when executed by the processor 101, results in the steps shown in the flowcharts of FIGS. 4, 11, and 12 being executed. And a memory 102 for storing the information. In addition, this program causes a computer to execute the procedure or method of the first inclination angle calculation unit 11, the second inclination angle calculation unit 12, the vehicle state determination unit 13, the inclination angle adoption unit 14, the calibration unit 14a, and the signal generation unit 15. It can be said that it is something to be executed.
 ここで、プロセッサ101とは、CPU(Central Processing Unit)、処理装置、演算装置、又はマイクロプロセッサ等のことである。
 メモリ102は、RAM(Random Access Memory)、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、又はフラッシュメモリ等の不揮発性もしくは揮発性の半導体メモリであってもよいし、ハードディスク又はフレキシブルディスク等の磁気ディスクであってもよいし、CD(Compact Disc)又はDVD(Digital Versatile Disc)等の光ディスクであってもよい。
Here, the processor 101 is a CPU (Central Processing Unit), a processing device, an arithmetic device, a microprocessor, or the like.
The memory 102 may be a nonvolatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), or a flash memory, or a hard disk or a flexible disk. May be used, or an optical disk such as a CD (Compact Disc) or a DVD (Digital Versatile Disc) may be used.
 なお、第1傾斜角度算出部11、第2傾斜角度算出部12、車両状態判定部13、傾斜角度採用部14、校正部14a、及び信号生成部15の機能について、一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。このように、前照灯用光軸制御装置10における処理回路は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせによって、上述の機能を実現することができる。 Note that some of the functions of the first inclination angle calculation unit 11, the second inclination angle calculation unit 12, the vehicle state determination unit 13, the inclination angle adoption unit 14, the calibration unit 14a, and the signal generation unit 15 are partially dedicated hardware. And a part thereof may be realized by software or firmware. As described above, the processing circuit in the headlight optical axis control device 10 can realize the above-described functions by hardware, software, firmware, or a combination thereof.
 本発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、各実施の形態の任意の構成要素の変形、又は各実施の形態の任意の構成要素の省略が可能である。 は Within the scope of the present invention, any combination of the embodiments, modification of any component of each embodiment, or omission of any component of each embodiment is possible within the scope of the present invention.
 この発明に係る前照灯用光軸制御装置は、加速度センサの値と角速度センサの値とを車両の状態に応じて使い分けるようにしたので、前照灯の光軸をスタティック制御及びダイナミック制御する前照灯用光軸制御装置などに用いるのに適している。 The headlight optical axis control device according to the present invention uses the value of the acceleration sensor and the value of the angular velocity sensor properly according to the state of the vehicle, and thus performs static control and dynamic control of the optical axis of the headlight. It is suitable for use in a headlight optical axis control device and the like.
 1 加速度センサ、2 角速度センサ、3 車速センサ、4 アクセル開度センサ、5 光軸制御アクチュエータ、10 前照灯用光軸制御装置、11 第1傾斜角度算出部、12 第2傾斜角度算出部、13 車両状態判定部、14 傾斜角度採用部、14a 校正部、15 信号生成部、100 処理回路、101 プロセッサ、102 メモリ。 1 acceleration sensor, 2 angular velocity sensor, 3 vehicle speed sensor, 4 accelerator opening sensor, 5 optical axis control actuator, 10 headlight optical axis control device, 11 first inclination angle calculation unit, 12 second inclination angle calculation unit, 13 {vehicle state determination section, 14} inclination angle adoption section, 14a {calibration section, 15} signal generation section, 100 # processing circuit, 101 # processor, 102 # memory.

Claims (8)

  1.  車両に搭載された加速度センサによって検出された前記車両の前後方向の加速度と上下方向の加速度とを用い、前記車両の路面に対する傾斜角度を算出する第1傾斜角度算出部と、
     前記車両に搭載された角速度センサによって検出された前記車両が前後に回転するときの角速度を用い、前記車両の路面に対する傾斜角度を算出する第2傾斜角度算出部と、
     前記加速度センサによって検出された加速度と前記角速度センサによって検出された角速度とを用い、前記車両の状態を判定する車両状態判定部と、
     前記車両状態判定部により前記車両が停車中又は等速走行中であると判定された場合、前記第1傾斜角度算出部の傾斜角度を採用し、前記車両状態判定部により前記車両が走行中ではあるが等速走行ではないと判定された場合、前記第2傾斜角度算出部の傾斜角度を採用する傾斜角度採用部と、
     前記傾斜角度採用部により採用された傾斜角度を用い、前記車両に搭載された前照灯の光軸を制御するための光軸制御信号を生成する信号生成部とを備える前照灯用光軸制御装置。
    A first inclination angle calculation unit that calculates an inclination angle of the vehicle with respect to a road surface using the longitudinal acceleration and the vertical acceleration of the vehicle detected by an acceleration sensor mounted on the vehicle;
    A second inclination angle calculation unit that calculates an inclination angle of the vehicle with respect to a road surface using an angular velocity when the vehicle rotates back and forth detected by an angular velocity sensor mounted on the vehicle;
    A vehicle state determination unit that determines the state of the vehicle using the acceleration detected by the acceleration sensor and the angular velocity detected by the angular velocity sensor,
    When the vehicle state determination unit determines that the vehicle is stopped or traveling at a constant speed, the vehicle state determination unit adopts the inclination angle of the first inclination angle calculation unit, and the vehicle state determination unit determines that the vehicle is traveling. When it is determined that the vehicle is not traveling at a constant speed, an inclination angle adoption unit that employs the inclination angle of the second inclination angle calculation unit;
    A signal generation unit that generates an optical axis control signal for controlling the optical axis of the headlight mounted on the vehicle using the inclination angle adopted by the inclination angle adoption unit; Control device.
  2.  前記第1傾斜角度算出部は、前記加速度センサによって検出された2時点の前後方向の加速度と前記2時点の上下方向の加速度とを用いて傾斜角度を算出し、前記2時点のうちの一方の時点の前後方向の加速度と上下方向の加速度とに、前記車両が等加速度走行しているときの前後方向の加速度と上下方向の加速度とを用いることを特徴とする請求項1記載の前照灯用光軸制御装置。 The first tilt angle calculation unit calculates a tilt angle using the longitudinal acceleration at two time points detected by the acceleration sensor and the vertical acceleration at the two time points, and calculates one of the two time points. The headlight according to claim 1, wherein the longitudinal acceleration and the vertical acceleration when the vehicle is traveling at an equal acceleration are used as the longitudinal acceleration and the vertical acceleration at the time. Optical axis control device.
  3.  前記車両状態判定部は、前記車両の走行中、前後方向の加速度が零以外であり、かつ、角速度が零である場合、前記車両が等加速度走行していると判定することを特徴とする請求項2記載の前照灯用光軸制御装置。 The vehicle state determination unit determines that the vehicle is traveling at a constant acceleration when the acceleration in the front-rear direction is other than zero and the angular velocity is zero during traveling of the vehicle. Item 3. An optical axis control device for a headlight according to Item 2.
  4.  前記車両状態判定部は、前記車両の走行中、前後方向の加速度が零であり、かつ、角速度が零である場合、前記車両が等速走行していると判定することを特徴とする請求項1記載の前照灯用光軸制御装置。 The vehicle state determination unit determines that the vehicle is traveling at a constant speed when the acceleration in the front-rear direction is zero and the angular velocity is zero during traveling of the vehicle. 2. The optical axis control device for a headlight according to claim 1.
  5.  前記車両状態判定部は、前記車両のアクセル開度の変化の有無を判定し、
     前記傾斜角度採用部は、前記車両状態判定部により前記車両が等速走行中及びアクセル開度の変化無しと判定された場合、前記第1傾斜角度算出部の傾斜角度を採用することを特徴とする請求項1記載の前照灯用光軸制御装置。
    The vehicle state determination unit determines whether the accelerator opening of the vehicle has changed,
    The inclination angle adoption unit employs the inclination angle of the first inclination angle calculation unit when the vehicle state determination unit determines that the vehicle is traveling at a constant speed and there is no change in the accelerator opening. The headlamp optical axis control device according to claim 1.
  6.  前記車両状態判定部は、前記車両のアクセル開度の変化の有無を判定し、
     前記信号生成部は、前記車両状態判定部により前記車両が等速走行中及びアクセル開度の変化有りと判定された場合、その前に生成した光軸制御信号を維持することを特徴とする請求項1記載の前照灯用光軸制御装置。
    The vehicle state determination unit determines whether the accelerator opening of the vehicle has changed,
    The signal generation unit, when the vehicle state determination unit determines that the vehicle is traveling at a constant speed and there is a change in the accelerator opening, maintains the optical axis control signal generated before the vehicle. Item 2. An optical axis control device for a headlight according to Item 1.
  7.  前記傾斜角度採用部により前記第1傾斜角度算出部の傾斜角度が採用された場合、採用された前記傾斜角度を用い、前記第2傾斜角度算出部の傾斜角度を校正する校正部を備えることを特徴とする請求項1記載の前照灯用光軸制御装置。 When the inclination angle of the first inclination angle calculation unit is adopted by the inclination angle adoption unit, a calibration unit that calibrates the inclination angle of the second inclination angle calculation unit using the adopted inclination angle is provided. The headlamp optical axis control device according to claim 1, wherein:
  8.  前記第1傾斜角度算出部の傾斜角度と前記第2傾斜角度算出部の傾斜角度との差が予め定められた閾値より大きい場合、前記角速度センサの感度を校正する校正部を備えることを特徴とする請求項1記載の前照灯用光軸制御装置。 When a difference between the inclination angle of the first inclination angle calculation unit and the inclination angle of the second inclination angle calculation unit is larger than a predetermined threshold value, a calibration unit for calibrating the sensitivity of the angular velocity sensor is provided. The headlamp optical axis control device according to claim 1.
PCT/JP2018/029575 2018-08-07 2018-08-07 Headlamp optical axis control device WO2020031255A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020535365A JP6765586B2 (en) 2018-08-07 2018-08-07 Optical axis controller for headlights
PCT/JP2018/029575 WO2020031255A1 (en) 2018-08-07 2018-08-07 Headlamp optical axis control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/029575 WO2020031255A1 (en) 2018-08-07 2018-08-07 Headlamp optical axis control device

Publications (1)

Publication Number Publication Date
WO2020031255A1 true WO2020031255A1 (en) 2020-02-13

Family

ID=69413313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029575 WO2020031255A1 (en) 2018-08-07 2018-08-07 Headlamp optical axis control device

Country Status (2)

Country Link
JP (1) JP6765586B2 (en)
WO (1) WO2020031255A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021138278A (en) * 2020-03-05 2021-09-16 株式会社小糸製作所 Controller for vehicular lighting fixture and vehicular lighting fixture system
WO2023090329A1 (en) * 2021-11-17 2023-05-25 株式会社小糸製作所 Lighting fixture system, controller, and lamp control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09189548A (en) * 1996-01-09 1997-07-22 East Japan Railway Co Attitude angle sensor for train
JP2009126268A (en) * 2007-11-21 2009-06-11 Panasonic Corp Longitudinal inclination detection device of vehicle body, and vehicular optical axis direction adjusting device using the same
JP2013244763A (en) * 2012-05-23 2013-12-09 Aisin Seiki Co Ltd Vehicle control apparatus, vehicle control method, and program
WO2016189707A1 (en) * 2015-05-27 2016-12-01 三菱電機株式会社 Optical axis control device for headlights

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09189548A (en) * 1996-01-09 1997-07-22 East Japan Railway Co Attitude angle sensor for train
JP2009126268A (en) * 2007-11-21 2009-06-11 Panasonic Corp Longitudinal inclination detection device of vehicle body, and vehicular optical axis direction adjusting device using the same
JP2013244763A (en) * 2012-05-23 2013-12-09 Aisin Seiki Co Ltd Vehicle control apparatus, vehicle control method, and program
WO2016189707A1 (en) * 2015-05-27 2016-12-01 三菱電機株式会社 Optical axis control device for headlights

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021138278A (en) * 2020-03-05 2021-09-16 株式会社小糸製作所 Controller for vehicular lighting fixture and vehicular lighting fixture system
JP7454412B2 (en) 2020-03-05 2024-03-22 株式会社小糸製作所 Vehicle lighting control device and vehicle lighting system
WO2023090329A1 (en) * 2021-11-17 2023-05-25 株式会社小糸製作所 Lighting fixture system, controller, and lamp control method

Also Published As

Publication number Publication date
JPWO2020031255A1 (en) 2020-10-22
JP6765586B2 (en) 2020-10-07

Similar Documents

Publication Publication Date Title
JP6073535B2 (en) Optical axis control device for headlamps
JP6180690B2 (en) Optical axis control device for headlamps
US9637047B2 (en) Method and control unit for adapting an upper headlight beam boundary of a light cone
US9050927B2 (en) Control device for vehicle lamp and vehicle lamp system
US6480806B1 (en) Automatic headlight leveling system for motor vehicles
US9067533B2 (en) Vehicle lamp control device and vehicle lamp system
JP7564288B2 (en) Vehicle lighting device and method for calculating vehicle attitude angle information
WO2020031255A1 (en) Headlamp optical axis control device
WO2016013419A1 (en) Vehicular headlight control device
JP6129461B2 (en) Optical axis control device for headlamps
JP3850943B2 (en) Irradiation direction control device for vehicular lamp
CN114537263A (en) Vehicle lamp leveling control device and control method thereof
JP6223223B2 (en) Optical axis control device for headlamps
US20230098061A1 (en) Optical axis adjustment device
JP3820299B2 (en) Irradiation direction control device for vehicular lamp
WO2019097724A1 (en) Inclination angle measurement device and optical axis control device
JP6916038B2 (en) Vehicle lighting control device and vehicle lighting system
KR20150062323A (en) Adaptive Front-Lightning System of Vehicles
US11890983B2 (en) Optical axis adjustment device
US11987169B2 (en) Optical axis adjustment device
JP6873349B2 (en) Optical axis controller
JP5596845B2 (en) Optical axis adjustment device for vehicle headlamp
JP2014113850A (en) Optical axis adjustment unit of vehicular headlamps, and vehicular headlamp system
JP5897909B2 (en) Optical head adjusting device for vehicle headlamps, vehicle headlamp system
JP2021039001A (en) Vehicle loading weight detection method and vehicle loading weight detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929225

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020535365

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18929225

Country of ref document: EP

Kind code of ref document: A1