[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020004623A1 - Anti-slip processing agent, anti-slip processed textile product, and method for producing anti-slip processed textile product - Google Patents

Anti-slip processing agent, anti-slip processed textile product, and method for producing anti-slip processed textile product Download PDF

Info

Publication number
WO2020004623A1
WO2020004623A1 PCT/JP2019/025820 JP2019025820W WO2020004623A1 WO 2020004623 A1 WO2020004623 A1 WO 2020004623A1 JP 2019025820 W JP2019025820 W JP 2019025820W WO 2020004623 A1 WO2020004623 A1 WO 2020004623A1
Authority
WO
WIPO (PCT)
Prior art keywords
slip
fiber product
processed fiber
chenille
processed
Prior art date
Application number
PCT/JP2019/025820
Other languages
French (fr)
Japanese (ja)
Inventor
学志 前
田中 基巳
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to CN201980035264.1A priority Critical patent/CN112166166B/en
Priority to JP2020527682A priority patent/JP7088289B2/en
Publication of WO2020004623A1 publication Critical patent/WO2020004623A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/08Processes in which the treating agent is applied in powder or granular form

Definitions

  • the present invention relates to a non-slip agent, a non-slip processed fiber product, and a method for producing a non-slip processed fiber product.
  • This application claims priority based on Japanese Patent Application No. 2018-124171 for which it applied to Japan on June 29, 2018, and uses the content here.
  • the textile products such as rugs (entrance mats, kitchen mats, rugs, carpets, tablecloths, luncheon mats, etc.)
  • the textile products may slip and fall
  • the back surface of the processed fiber product may be subjected to a non-slip processing by a non-slip processing agent.
  • aqueous anti-slip agents in which a polymer component is dispersed in an aqueous medium can be easily used in various processing dimensions and various forms, and contain almost no organic solvent, making them suitable for a wide range of applications. Is expected to expand.
  • An aqueous resin composition for backing a rug comprising a urethane resin having a crosslinked structure (Patent Document 1).
  • the fiber processed product which is non-slip processed by the aqueous resin composition for backing backing of (1) has a non-adhesive back surface and is unlikely to stain floors and the like.
  • the anti-slip property is not sufficient, and the application is limited.
  • the fiber processed product which is non-slip processed by the aqueous dispersion of (2) has excellent anti-slip properties. However, it is inferior in non-adhesiveness to floors and the like, and its use is limited.
  • the present invention relates to a non-slip processed fiber product having excellent anti-slip properties and non-adhesiveness (for example, non-adhesiveness to floors and the like) and a method for producing the same, as well as anti-slip and non-adhesive properties (for example, floors and the like).
  • a non-slip processing agent which is capable of obtaining a non-slip processed object including a non-slip processed fiber product, which is excellent in non-adhesiveness to a non-slip surface.
  • the present invention has the following aspects.
  • An anti-slip processing agent for imparting anti-slip properties to an object to be processed Aqueous medium, comprising polymer particles dispersed in the aqueous medium, An anti-slip agent, wherein the polymer particles are made of a composite containing a urethane polymer and an acrylic polymer.
  • the non-slip agent according to [1] wherein the object to be processed is a processed fiber product.
  • the anti-slip agent according to [2] wherein the static friction coefficient determined by “Method I for determining static friction coefficient I” is 0.6 or more.
  • An anti-slip agent for imparting anti-slip properties to a processed fiber product Including an acrylic polymer having a structural unit based on diacetone acrylamide, A non-slip agent having a shear adhesive strength of less than 5 N, as determined by "Method for determining shear adhesive strength I" below.
  • the antiskid agent according to [10] wherein the acrylic polymer has a structural unit based on a monomer having two or more radically polymerizable groups.
  • the sum of the adhesion amount of the urethane polymer and the adhesion amount of the acrylic polymer per unit area of the non-slip processed fiber product is 3 to 300 g / m 2 , [13] to [13].
  • the acrylic polymer has a glass transition temperature of ⁇ 60 to 10 ° C.
  • the acrylic polymer has a structural unit based on diacetone acrylamide,
  • an acrylic polymer having a structural unit based on diacetone acrylamide adheres, At least a part of the structural unit based on diacetone acrylamide forms a crosslinked structure,
  • a non-slip processed fiber processed product having a shear adhesive strength of less than 5 N as determined by "Method for determining shear adhesive strength II" below.
  • the non-slip processed fiber product according to [22] wherein the non-slip processed fiber product has an adhesion amount of the acrylic polymer per unit area of 10 to 100 g / m 2 .
  • the anti-slip agent according to any of [2] to [12] is applied to the processed fiber product to obtain a processed fiber product coated with the anti-slip agent, A method for producing a non-slip processed fiber product, comprising drying the processed fiber product to which the anti-slip agent has been applied.
  • a method for producing a non-slip processed fiber product comprising drying the processed fiber product to which the anti-slip agent has been applied.
  • the method for producing a non-slip processed fiber product according to [25] or [26], wherein the application of the anti-slip agent to the processed fiber product is performed by spray coating.
  • non-slip chenille base cloth obtained was coated with an ABS resin base material (90 mm X 50 mm x thickness 3 mm), and the adhesive temperature was set to 50 mm x 50 mm, and a 6.86 N (700 g) load was applied from above to the non-slip chenille base cloth.
  • a non-slip chenille base cloth and an ABS resin base material which were left standing at 50 ° C. for 24 hours and further left at an ambient temperature of 23 ° C. for 3 hours were subjected to a tensile measurement device.
  • a non-slip processed fiber product (70 mm x 50 mm) is placed on a horizontal stainless steel plate (JIS standard SUS304 No. 2B) with its non-slip surface down. With a load of 26.46 N (2.7 kg) applied from the upper side, the non-slip processed fiber product at an ambient temperature of 23 ° C. is parallel to the stainless steel plate using a spring-type hand scale. Then, the static friction force is measured, and the static friction force is divided by the normal force to obtain a static friction coefficient.
  • a non-slip processed fiber processed product (70 mm x 50 mm) is laid on an ABS resin substrate (90 mm x 50 mm x 3 mm thick) with the non-slip surface down so that the adhesive surface is 50 mm x 50 mm.
  • a non-slip processed fiber processed product was allowed to stand at an ambient temperature of 50 ° C. for 24 hours under a load of 6.86 N (700 g) from above, and further allowed to stand at an ambient temperature of 23 ° C. for 3 hours.
  • the lower end of the non-slip processed fiber product and the ABS were bonded to the bonded non-slip processed fiber product and the ABS resin substrate at a temperature of 23 ° C. and a test speed of 100 mm / min using a tensile measuring device.
  • the upper end of the resin substrate is pulled in parallel with the bonding surface, and the maximum load at this time is defined as the shear bonding strength.
  • the non-slip processed object containing the non-slip processed textiles excellent in non-slip property and non-adhesion (for example, non-adhesion with respect to a floor etc.) Can be obtained.
  • the non-slip processed fiber product of the present invention is excellent in anti-slip properties and non-adhesiveness (for example, non-adhesiveness to floors and the like) and can be used for a wide range of applications.
  • non-slip processed fiber product of this invention it is excellent in non-slip property and non-adhesion (for example, non-adhesion with respect to a floor etc.), and the non-slip processed fiber processing which can be utilized for a wide range of uses. Products can be manufactured.
  • the “viscosity” in this specification is a value measured using a B-type viscometer at a rotation speed of 60 rpm for a sample temperature-controlled at 25 ° C.
  • the “solid content” in the present specification is a value obtained from a residue obtained by drying 1 g of a sample with a dryer at 105 ° C. for 2 hours.
  • the “mass average molecular weight” in the present specification is a value obtained by dissolving a polymer in a solvent, measuring the molecular weight using gel permeation chromatography, and calculating the value in terms of polystyrene.
  • the “glass transition temperature” (hereinafter also referred to as “Tg”) in the present specification uses the Tg value of a homopolymer of a monomer described in a polymer handbook [Polymer Handbook (J. Brandrup, Interscience, 1989)]. Is calculated from the FOX equation.
  • the Tg value of the homopolymer of the monomer is the value described in the catalog of the monomer manufacturer, and when not described in the catalog, the differential scanning is performed according to JIS K 7121: 1987.
  • the midpoint glass transition temperature determined by calorimetry (DSC) is employed.
  • the “average particle diameter” in the present specification is measured at room temperature using a particle diameter distribution measuring device (for example, a concentrated particle size analyzer FPAR-1000 manufactured by Otsuka Electronics Co., Ltd.) by a photon correlation method, and is analyzed by cumulant analysis. It is the calculated harmonic mean particle diameter based on the scattered light intensity standard.
  • a particle diameter distribution measuring device for example, a concentrated particle size analyzer FPAR-1000 manufactured by Otsuka Electronics Co., Ltd.
  • (Meth) acryl in this specification is a general term for acryl and methacryl.
  • (Meth) acrylate” in this specification is a general term for acrylate and methacrylate.
  • Polymer component "in this specification is a resin component such as a condensation polymer (urethane polymer or the like) or an addition polymer (acrylic polymer or the like) contained in the anti-slip agent.
  • the anti-slip agent of the present invention is for imparting anti-slip properties to an object to be processed.
  • the object to be processed include miscellaneous goods, corrugated cardboard, film, shelves, lightweight furniture, and the like, and among them, a fiber processed product is preferable.
  • the non-slip agent of the present invention performs non-slip processing on one or both of the back surface and the front surface of the processed object including the fiber processed product, when the processed object including the fiber processed product is touched, the fiber processing is performed. It is possible to prevent the processing object including the product from slipping and falling, and to prevent the position of the processing object including the fiber processed product from being shifted.
  • non-slip processing agent of the present invention examples include an aqueous dispersion in which the polymer component is dispersed in an aqueous medium, a polymer solution in which the polymer component is dissolved in an organic solvent, and the like.
  • An aqueous dispersion is preferred because it does not contaminate.
  • the viscosity of the anti-slip agent is preferably from 10 to 100,000 mPa ⁇ s.
  • the viscosity of the anti-slip agent is equal to or more than the lower limit, the anti-slip agent is less likely to permeate into the object to be processed including the fiber processed product, and the anti-slip property is easily exhibited.
  • the viscosity of the non-slip processing agent is equal to or less than the upper limit, the method of non-slip processing of a processing object including a fiber processed product is not easily limited.
  • the solid content of the anti-slip agent is preferably from 10 to 60% by mass. If the solid content of the non-slip agent is not less than the lower limit, even in the method of non-slip processing of a processing target object including a fiber processed product that needs to increase the viscosity of the non-slip agent, a thickener is used. It is not necessary to add a large amount, and it is difficult to reduce the anti-slip property. When the solid content of the anti-slip agent is equal to or less than the upper limit, the method of anti-slip processing of an object to be processed including a fiber processed product is less likely to be limited.
  • a first embodiment of the antiskid agent of the present invention is an aqueous dispersion containing an aqueous medium and polymer particles dispersed in the aqueous medium.
  • components other than the aqueous medium and the polymer particles may be used, if necessary, as long as the effects of the present invention are not impaired. Further, it may be included.
  • the aqueous medium serves as a dispersion medium for the polymer particles and contains water.
  • the aqueous medium may be composed of only water, or may be composed of water and a water-soluble organic solvent.
  • the water-soluble organic solvent include alcohols (eg, methanol, ethanol, isopropanol), ketones (eg, acetone, methyl ethyl ketone), and glycol solvents (eg, butyl cellosolve, dipropylene glycol monobutyl ether).
  • the aqueous medium only water is preferable, but it may contain a water-soluble organic solvent.
  • the content of the water-soluble organic solvent in the aqueous medium is preferably more than 0% by mass and 20% by mass or less, more preferably more than 0% by mass and 10% by mass or less.
  • the water-soluble organic solvent is preferably an alcohol solvent or a glycol solvent.
  • the polymer particles are composed of a composite containing a urethane polymer and an acrylic polymer.
  • the polymer particles consist of a composite containing a urethane polymer and an acrylic polymer, which can be dispersed in an aqueous medium.
  • the composite may be, for example, one obtained by polymerizing a radical polymerizable monomer containing a (meth) acrylic monomer in the presence of a urethane polymer.
  • Polymer particles composed of a composite containing a urethane polymer and an acrylic polymer have an excellent balance between non-slip properties and non-stick properties.
  • the composite constituting the polymer particles may further contain a component other than the urethane polymer and the acrylic polymer, if necessary, as long as the effects of the present invention are not impaired.
  • the proportion of the acrylic polymer in the total of the urethane polymer and the acrylic polymer is preferably from 10% by mass to less than 90% by mass.
  • the proportion of the acrylic polymer is equal to or more than the lower limit, the anti-slip property of the polymer particles is further excellent.
  • the proportion of the acrylic polymer is less than the upper limit, the non-adhesiveness of the polymer particles is further excellent.
  • a non-slip processed object including a non-slip processed fiber product is excellent in washing resistance.
  • a urethane polymer is a resin obtained by reacting a polyhydric alcohol with a polyvalent isocyanate.
  • Polyhydric alcohols are organic compounds having two or more hydroxy groups in one molecule. Examples of the polyhydric alcohol include the following.
  • Low molecular weight diols ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, Neopentyl glycol, diethylene glycol, trimethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, hexanediol, cyclohexanedimethanol and the like.
  • -Low molecular weight polyol having three or more hydroxy groups glycerin, trimethylolpropane, pentaerythritol and the like.
  • -Polyether diol Polyether diol obtained by addition polymerization of at least one of polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol and low molecular weight diol with ethylene oxide, propylene oxide, tetrahydrofuran and the like.
  • a polyester diol obtained by polycondensing at least one low molecular weight diol with a dicarboxylic acid eg, adipic acid, sebacic acid, itaconic acid, maleic anhydride, terephthalic acid, isophthalic acid.
  • a dicarboxylic acid eg, adipic acid, sebacic acid, itaconic acid, maleic anhydride, terephthalic acid, isophthalic acid.
  • -Other polyhydric alcohols polycaprolactone diol, polycarbonate diol, polybutadiene diol, hydrogenated polybutadiene diol, polyacrylate diol and the like.
  • polyhydric alcohol may be used alone, or two or more types may be used in combination.
  • the polyhydric alcohol preferably contains polyether diol from the viewpoint of increasing the flexibility of the coating film formed from the anti-slip agent.
  • the polyhydric alcohol preferably contains a polycarbonate diol from the viewpoint of increasing the non-adhesiveness.
  • a polyvalent isocyanate is an organic compound having two or more isocyanate groups in one molecule.
  • Examples of the polyvalent isocyanate include the following.
  • -Aliphatic polyvalent isocyanate 1,6-hexamethylene diisocyanate and the like.
  • Alicyclic polyvalent isocyanate dicyclohexylmethane diisocyanate, isophorone diisocyanate, 1,3-cyclohexane diisocyanate, 1,4-cyclohexane diisocyanate, etc.
  • -Aromatic polyvalent isocyanate 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 2,2'-diphenylmethane diisocyanate and the like.
  • polyvalent isocyanate one type may be used alone, or two or more types may be used in combination.
  • polyvalent isocyanate an aliphatic polyvalent isocyanate or an alicyclic polyvalent isocyanate is preferable because the urethane polymer is unlikely to yellow.
  • the mass average molecular weight of the urethane polymer is preferably 500 or more, more preferably 1000 or more, from the viewpoint of improving the reactivity of the radical polymerizable monomer in the production of polymer particles described below.
  • the mass average molecular weight of the urethane polymer is preferably 500,000 or less, more preferably 100,000 or less, from the viewpoint of the durability of the non-slip processed object including the non-slip processed fiber product.
  • the mass average molecular weight of the urethane polymer is preferably 500 to 500,000, more preferably 1,000 to 100,000.
  • urethane polymer a polyether-based urethane polymer produced using polyether diol as a polyhydric alcohol is preferable.
  • Examples of the method for producing the urethane polymer include a method in which a polyhydric alcohol and a polyvalent isocyanate are reacted in an ether such as dioxane using a catalyst such as dibutyltin dilaurate.
  • the acrylic polymer is a polymer obtained by polymerizing a radical polymerizable monomer containing a (meth) acrylic monomer.
  • the acrylic polymer may be a homopolymer composed of one type of (meth) acrylic monomer, or a copolymer composed of two or more types of (meth) acrylic monomer, A copolymer of a (meth) acrylic monomer and another radical polymerizable monomer may be used.
  • Examples of the (meth) acrylic monomer include the following.
  • Alkyl (meth) acrylate having an alkyl group having 1 to 18 carbon atoms: methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, sec-butyl ( (Meth) acrylate, t-butyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, stearyl (meth) acrylate and the like.
  • Polyoxyalkylene group-containing (meth) acrylate hydroxypolyethylene oxide mono (meth) acrylate, hydroxypolypropylene oxide mono (meth) acrylate, hydroxy (polyethylene oxide-polypropylene oxide) mono (meth) acrylate, hydroxy (polyethylene oxide-propylene oxide) ) Mono (meth) acrylate, hydroxy (polyethylene oxide-polytetramethylene oxide) mono (meth) acrylate, hydroxy (polyethylene oxide-tetramethylene oxide) mono (meth) acrylate, hydroxy (polypropylene oxide-polytetramethylene oxide) mono ( (Meth) acrylate, hydroxy (polypropylene oxide-tetramethylene oxide) mono (meth) acrylate Rate, methoxy polyethylene oxide mono (meth) acrylate, lauroxy polyethylene oxide mono (meth) acrylate, stearoxy polyethylene oxide mono (meth) acrylate, allyloxy poly
  • -Oxirane group-containing (meth) acrylate glycidyl (meth) acrylate and the like.
  • -Hydroxycycloalkyl (meth) acrylate p-hydroxycyclohexyl (meth) acrylate, o-hydroxycyclohexyl (meth) acrylate and the like.
  • -Lactone-modified hydroxyl group-containing (meth) acrylate Praxel (registered trademark; the same applies hereinafter) FM1 (trade name, manufactured by Daicel), Plaxel FM2 (trade name, manufactured by Daicel) and the like.
  • -Aminoalkyl (meth) acrylate 2-aminoethyl (meth) acrylate, 2-dimethylaminoethyl (meth) acrylate, 2-aminopropyl (meth) acrylate, 2-butylaminoethyl (meth) acrylate, and the like.
  • Amide group-containing (meth) acrylic monomers (meth) acrylamide, N-methylolacrylamide, N-butoxymethyl (meth) acrylamide, diacetoneacrylamide and the like.
  • Carboxy group-containing (meth) acrylic monomers (meth) acrylic acid, monohydroxyethyl oxalate (meth) acrylate, monohydroxyethyl tetrahydrophthalate (meth) acrylate, monohydroxypropyl tetrahydrophthalate (meth) acrylate Monohydroxyethyl (meth) acrylate, 5-methyl-1,2-cyclohexanedicarboxylate, monohydroxyethyl (meth) acrylate phthalate, monohydroxypropyl (meth) acrylate phthalate, monohydroxyethyl (meth) acrylate maleate, Hydroxypropyl (meth) acrylate maleate, monohydroxybutyl (meth) acrylate tetrahydrophthalate, and the like.
  • -Multifunctional (meth) acrylate ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and the like.
  • Metal-containing (meth) acrylic monomers zinc diacrylate, zinc dimethacrylate, and the like.
  • -UV-resistant group-containing (meth) acrylate 2- (2'-hydroxy-5 '-(meth) acryloxyethylphenyl) -2H-benzotriazole, 1- (meth) acryloyl-4-hydroxy-2,2, 6,6-tetramethylpiperidine, 1- (meth) acryloyl-4-methoxy-2,2,6,6-tetramethylpiperidine, 1- (meth) acryloyl-4-amino-4-cyano-2,2,2 6,6-tetramethylpiperidine and the like.
  • -Other (meth) acrylic monomers dimethylaminoethyl (meth) acrylate methyl chloride salt, allyl (meth) acrylate, glycidyl (meth) acrylate, (meth) acrylonitrile, phenyl (meth) acrylate, benzyl (meth)
  • examples include acrylate, isobornyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, methoxyethyl (meth) acrylate, and ethoxyethyl (meth) acrylate.
  • Examples of other radically polymerizable monomers include the following.
  • -Aromatic vinyl monomers styrene, methylstyrene, etc.
  • -Conjugated diene monomers 1,3-butadiene, isoprene and the like.
  • -Other radically polymerizable monomers vinyl acetate, vinyl chloride, ethylene, itaconic acid, citraconic acid, maleic acid, monomethyl maleate, monobutyl maleate, monomethyl itaconate, monobutyl itaconate, vinylbenzoic acid, and the like.
  • the acrylic polymer preferably has a structural unit based on a monomer having two or more radically polymerizable groups because of its excellent non-adhesiveness.
  • Monomers having two or more radically polymerizable groups include ethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, and polypropylene glycol.
  • the content of the structural unit based on the monomer having two or more radically polymerizable groups is preferably 0.01 to 5.0% by mass based on 100% by mass of the polymer particles.
  • the proportion of the structural unit based on the monomer having two or more radically polymerizable groups is equal to or more than the lower limit, the non-adhesiveness is excellent.
  • the proportion of the structural unit based on the monomer having two or more radically polymerizable groups is equal to or less than the above upper limit, the durability of the film is excellent.
  • an acrylic polymer when a non-slip processing agent is cured, a crosslinked structure is formed, and the non-stick property of a non-slip processed object including a non-slip processed fiber product is improved, and the It is preferable to use a diacetone acrylamide-based structural unit, since the floor and the like are not easily soiled even when used at high temperatures.
  • the content of the structural unit based on diacetone acrylamide is preferably 0.1 to 10.0% by mass based on 100% by mass of the polymer particles.
  • the proportion of the structural unit based on diacetone acrylamide is equal to or more than the lower limit, the non-adhesiveness of the non-slip processed object including the non-slip processed fiber product is further improved.
  • the proportion of the structural unit based on diacetone acrylamide is equal to or less than the upper limit, a decrease in the non-slip properties of the non-slip processed object including the non-slip processed fiber product is suppressed.
  • the mass average molecular weight of the acrylic polymer is preferably 50,000 to 5,000,000. 100,000 or more is more preferable from the viewpoint of the durability of the non-slip processed object including the non-slip processed fiber product, and 4,000,000 or less is more preferable from the viewpoint of the film forming property of the non-slip processing agent. .
  • the weight average molecular weight of the acrylic polymer is more preferably from 100,000 to 4,000,000.
  • the Tg of the acrylic polymer is preferably from -60 to 10 ° C.
  • the Tg of the acrylic polymer is equal to or greater than the lower limit, the non-adhesiveness of a non-slip processed object including a non-slip processed fiber product is further improved.
  • the Tg of the acrylic polymer is equal to or less than the upper limit, the non-slip properties of the non-slip processed object including the non-slip processed fiber product are further improved.
  • additives include additives, other emulsion resins, water-soluble resins, and the like.
  • Additives include surfactants, various pigments, antifoaming agents, pigment dispersants, leveling agents, anti-sagging agents, matting agents, ultraviolet absorbers, light stabilizers, antioxidants, heat resistance improvers, preservatives Agents, plasticizers, film-forming auxiliaries, viscosity control agents, curing agents and the like.
  • emulsion resins include polyester resins, acrylic silicone resins, silicone resins, fluorine resins, epoxy resins, and the like.
  • the curing agent include melamines and isocyanates.
  • the above-mentioned “calculation of static friction coefficient” is described from the viewpoint that the anti-slip property of a non-slip processed object including a non-slip processed fiber product is more excellent. It is preferable that the static friction coefficient obtained in Method I is 0.6 or more, and sufficient anti-slip properties can be obtained even for a non-slip processed object having a small area including a non-slip processed fiber processed product. From the viewpoint of exhibiting the following, it is more preferable that the static friction coefficient obtained by the “method I of obtaining static friction coefficient I” be 0.7 or more. The coefficient of static friction is more preferably 0.85 or more.
  • shear bond strength As a first embodiment of the anti-slipping agent of the present invention, non-adhesiveness of a non-slip processed object including a non-slip processed fiber product to a floor or the like is more excellent, It is preferable that the shear adhesive strength obtained by the above-mentioned "Method of obtaining shear adhesive strength I" is less than 5 N in that the floor and the like are not easily soiled even in the use of the above. The shear bond strength is more preferably less than 1N.
  • the first embodiment of the anti-slip agent of the present invention can be produced, for example, by the following method.
  • -Urethane polymer particles in an aqueous urethane polymer dispersion liquid are impregnated with a radical polymerizable monomer containing a (meth) acrylic monomer to undergo radical polymerization, from a composite containing a urethane polymer and an acrylic polymer. To form polymer particles.
  • a urethane polymer is formed by reacting a polyhydric alcohol and a polyisocyanate in a mixture of a radical polymerizable monomer containing a (meth) acrylic monomer, a polyhydric alcohol and a polyvalent isocyanate, and mixing A method in which a liquid is dispersed in water and radical polymerizable monomers are radically polymerized to form polymer particles comprising a composite containing a urethane polymer and an acrylic polymer.
  • the urethane polymer aqueous dispersion is obtained by dispersing a urethane polymer in water.
  • a carboxy group and a sulfonic acid group are preferable to introduce into the urethane polymer.
  • the urethane polymer may be emulsified with a surfactant.
  • the average particle size of the urethane polymer particles in the urethane polymer aqueous dispersion is such that the particle size of the finally obtained polymer particles becomes appropriate, and that the physical properties of the obtained coating film are improved. It is preferably at least 10 nm, more preferably at least 30 nm, even more preferably at least 40 nm.
  • the average particle diameter of the urethane polymer particles in the aqueous urethane polymer dispersion is preferably 1,000 nm or less, more preferably 500 nm or less, and even more preferably 300 nm or less, from the viewpoint of the stability of the urethane polymer aqueous dispersion.
  • the average particle size of the urethane polymer particles in the urethane polymer aqueous dispersion is preferably from 10 to 1,000 nm, more preferably from 30 to 500 nm, and even more preferably from 40 to 300 nm.
  • the content of the urethane polymer in the urethane polymer aqueous dispersion is preferably 10% by mass or more, and more preferably 25% by mass, since the solid content of the anti-slip agent can be easily adjusted to the range of 10 to 60% by mass. The above is more preferable.
  • the content of the urethane polymer in the urethane polymer aqueous dispersion is preferably 70% by mass or less, and more preferably 60% by mass or less, from the viewpoint that the anti-slip agent exhibits good coating properties.
  • the content of the urethane polymer in the urethane polymer aqueous dispersion is preferably from 10 to 70% by mass, and more preferably from 25 to 60% by mass.
  • urethane polymer aqueous dispersion a commercially available urethane polymer aqueous dispersion (polyurethane dispersion: PUD) may be used as it is.
  • PUD polyurethane dispersion
  • examples of commercially available aqueous urethane polymer dispersions include the following.
  • Superflex registered trademark; the same applies hereinafter
  • 110 Superflex 150
  • Superflex 210 Superflex 300
  • Superflex 420 Superflex 460
  • Superflex 470 Superflex 500M
  • Superflex 620 Superflex 650
  • Superflex 740 Superflex 820
  • Superflex 840 F-8082D.
  • Bihydrol registered trademark; the same applies hereinafter
  • Hydran registered trademark; the same applies hereinafter
  • NeoSticker registered trademark; the same applies hereinafter
  • 100C Evaphanol (registered trademark; the same applies hereinafter)
  • HA-107C Evaphanol HA-50C
  • Evaphanol HA-170 Evaphanol HA-560.
  • ADEKA Adekabon titer (registered trademark; the same applies hereinafter)
  • UHX-210 Adekabon titer UHX-280, etc.
  • the urethane polymer aqueous dispersion may be used alone or in combination of two or more.
  • radical polymerization initiator used for the polymerization of the radical polymerizable monomer examples include the following.
  • -Persulfate potassium persulfate, sodium persulfate, ammonium persulfate and the like.
  • Oil-soluble azo compounds azobisisobutyronitrile, 2,2'-azobis (2-methylbutyronitrile), 2,2'-azobis (2,4-dimethylvaleronitrile), 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2-phenylazo-4-methoxy-2,4-dimethylvaleronitrile and the like.
  • Water-soluble azo compound 2,2′-azobis ⁇ 2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide ⁇ , 2,2′-azobis ⁇ 2-methyl- N- [2- (1-hydroxyethyl)] propionamide ⁇ , 2,2′-azobis ⁇ 2-methyl-N- [2- (1-hydroxybutyl)] propionamide ⁇ , 2,2′-azobis [ 2- (5-methyl-2-imidazolin-2-yl) propane] and salts thereof, 2,2′-azobis [2- (2-imidazolin-2-yl) propane] and salts thereof, 2,2′- Azobis [2- (3,4,5,6-tetrahydropyrimidin-2-yl) propane] and salts thereof, 2,2′-azobis (1-imino-1-pyrrolidino-2-methylpropane) and salts thereof, 2,2'-azobi ⁇ 2- [1- (2-hydroxyethyl) -2-imidazolin-2-y
  • -Organic peroxide benzoyl peroxide, cumene hydroperoxide, t-butyl hydroperoxide, t-butylperoxy-2-ethylhexanoate, t-butylperoxyisobutyrate and the like.
  • the amount of the radical polymerization initiator to be added is usually 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of the radical polymerizable monomer.
  • the amount is preferably from 2 to 5 parts by mass.
  • a molecular weight modifier may be used to adjust the molecular weight of the acrylic polymer.
  • the molecular weight modifier include the following.
  • Mercaptans n-dodecyl mercaptan, t-dodecyl mercaptan, n-octyl mercaptan, n-tetradecyl mercaptan, n-hexyl mercaptan and the like.
  • Halogen compounds carbon tetrachloride, ethylene bromide, etc.
  • Known chain transfer agents ⁇ -methylstyrene dimer and the like.
  • the amount of the molecular weight modifier added is usually 1 part by mass or less based on 100 parts by mass of the total amount of the radical polymerizable monomer.
  • an aqueous medium and polymer particles dispersed in the aqueous medium are included, and the polymer particles include a urethane polymer and an acrylic polymer. Because of the composite, the urethane polymer and the acrylic polymer are uniformly present in the coating film formed when the object to be processed including the fiber processed product is subjected to the non-slip processing by the non-slip processing agent. As a result, both the anti-slip property of the acrylic polymer and the non-adhesive property of the urethane polymer are sufficiently exhibited.
  • non-slip processed workpiece including a non-slip processed fiber product excellent in anti-slip properties and non-adhesion (for example, non-adhesion to a floor or the like).
  • these non-slip processed objects are excellent in anti-slip properties and non-adhesiveness (for example, non-adhesiveness to floors and the like), and can be used for a wide range of applications.
  • a second aspect of the antiskid agent of the present invention is one in which the static friction coefficient obtained by the above-mentioned “method for obtaining static friction coefficient I” is 0.6 or more, and the above-mentioned “method of obtaining shear adhesive strength” The shear bond strength determined in "I" is less than 5N.
  • the non-slip processing agent having a static friction coefficient of 0.6 or more determined by "method for obtaining static friction coefficient I” the non-slip property of the non-slip processed workpiece including the non-slip processed fiber product Excellent.
  • the non-slip processing agent having a static friction coefficient of 0.7 or more obtained by the “method for obtaining a static friction coefficient I” the area of the non-slip processed area including the non-slip processed area of the small-fiber processed product is reduced. Demonstrates sufficient anti-slip properties even for small workpieces.
  • the coefficient of static friction is more preferably 0.85 or more.
  • the anti-slip processing object including the non-slip processed textile is used for floors and the like. It has excellent non-adhesiveness and does not stain floors or the like even when used for a long time or at high temperatures.
  • the shear bond strength is preferably less than 1N.
  • Non-slip having a static friction coefficient obtained by “Method I of obtaining static friction coefficient I” of 0.6 or more and having a shear adhesive strength obtained by “Method of obtaining shear adhesive strength I” of less than 5N.
  • the processing agent include an aqueous dispersion including an aqueous medium and polymer particles dispersed in the aqueous medium, wherein the polymer particles include a composite including a urethane polymer and an acrylic polymer.
  • the aqueous dispersion include the same ones as in the first embodiment of the antiskid agent of the present invention, and the preferred embodiments are also the same.
  • the static friction coefficient obtained by the “method for obtaining a static friction coefficient I” is 0.6 or more, and “ Since the shear adhesive strength determined by “Method I” is less than 5N, a non-slip processed fiber product having excellent anti-slip properties and non-adhesion (eg, non-adhesion to floors and the like) is obtained. be able to.
  • these non-slip processed objects are excellent in anti-slip properties and non-adhesiveness (for example, non-adhesiveness to floors and the like), and can be used for a wide range of applications.
  • a third embodiment of the anti-slip agent of the present invention includes an acrylic polymer having a structural unit based on diacetone acrylamide, and the shear adhesive strength determined by the above-described “Method for determining shear adhesive strength I” is less than 5N. It becomes.
  • the non-slip processed object including the non-slip processed fiber product is excellent in non-slip properties.
  • the acrylic polymer has a structural unit based on diacetone acrylamide, a cross-linked structure is formed when the anti-slip processing agent is cured, and the non-slip processing including the non-slip processed fiber product is performed.
  • the non-adhesiveness of the object is improved, and floors and the like are hardly soiled even when used for a long time or at a high temperature.
  • acrylic polymer having a structural unit based on diacetone acrylamide examples include those similar to the acrylic polymer having a structural unit based on diacetone acrylamide described in the first embodiment of the antiskid agent of the present invention. The same applies to preferred embodiments.
  • the anti-slip processing object including the non-slip processed textile is used for floors and the like. It has excellent non-adhesiveness and does not stain floors or the like even when used for a long time or at high temperatures.
  • the shear bond strength is preferably less than 1N.
  • Non-slip processing agents containing an acrylic polymer having a structural unit based on diacetone acrylamide and having a shear adhesive strength of less than 5 N determined by "Method I for determining shear adhesive strength" include, for example, aqueous media and Containing polymer particles dispersed in an aqueous medium, the polymer particles are composed of a composite containing a urethane polymer and an acrylic polymer, and the acrylic polymer has a structural unit based on diacetone acrylamide.
  • the aqueous dispersion include, in the first embodiment of the antiskid agent of the present invention, those in which the acrylic polymer has a structural unit based on diacetone acrylamide, and the preferred embodiment is also the same.
  • the third embodiment of the antiskid agent of the present invention described above includes an acrylic polymer having a structural unit based on diacetone acrylamide, and has a shear bond strength determined by “Method I for determining shear bond strength I”. Is less than 5N, so that a non-slip processed fiber product excellent in anti-slip properties and non-adhesiveness (for example, non-adhesiveness to floors and the like) can be obtained.
  • these non-slip processed objects are excellent in anti-slip properties and non-adhesiveness (for example, non-adhesiveness to floors and the like), and can be used for a wide range of applications.
  • the non-slip processed fiber product of the present invention is a non-slip processed fiber product on one or both of the back surface and the front surface.
  • a processed fiber product is an article having a fabric obtained by processing fibers.
  • the processed fiber product may further have a material (resin film, resin molded product, paper, wood, metal, glass, or the like) other than the fabric.
  • Examples of the fibers include natural fibers and synthetic fibers.
  • Examples of the synthetic fiber material include polyester, acrylic resin, and polyolefin.
  • Examples of the fabric include a woven fabric, a knitted fabric, a nonwoven fabric, a braid, and a combination thereof.
  • the woven fabric is obtained by interweaving warps and wefts.
  • a knitted fabric is a knitted fabric in which a surface is formed by forming a loop with a thread and hooking the next thread on the loop to form a continuous loop.
  • the nonwoven fabric is a sheet made by entanglement without woven fibers.
  • the braid has two yarns woven diagonally.
  • Examples of the processed fiber products include rugs (home-use, business-use, vehicle-mounted mats, etc.) and clothing (gloves, socks, etc.).
  • the first aspect of the non-slip processed fiber product of the present invention is one in which a urethane polymer and an acrylic polymer are attached.
  • the first aspect of the non-slip-processed fiber processed product of the present invention is one in which other components other than the urethane polymer and the acrylic polymer are further attached as needed, as long as the effects of the present invention are not impaired. There may be.
  • Examples of the urethane polymer include those similar to the urethane polymer described in the first embodiment of the non-slip processing agent of the present invention, and the preferred embodiment is also the same.
  • Examples of the acrylic polymer include those similar to the acrylic polymer described in the first embodiment of the anti-slip processing agent of the present invention, and the preferred embodiments are also the same.
  • the other components the same ones as the other components described in the first embodiment of the antiskid agent of the present invention can be mentioned.
  • the non-adhesiveness of the non-slip processed fiber product is improved, and floors and the like are stained even when used for a long time or at a high temperature.
  • the acrylic polymer has a structural unit based on diacetone acrylamide, and at least a part of the structural unit based on diacetone acrylamide forms a crosslinked structure.
  • the acrylic polymer has a structural unit based on a monomer having two or more radically polymerizable groups from the viewpoint of excellent non-adhesiveness. Is preferred.
  • the total of the adhesion amount of the urethane polymer and the adhesion amount of the acrylic polymer per unit area of the non-slip processed fiber product is 3 preferably ⁇ 300g / m 2, more preferably 30 ⁇ 250g / m 2, more preferably 50 ⁇ 200g / m 2.
  • the total of the adhesion amount of the urethane polymer and the adhesion amount of the acrylic polymer is equal to or larger than the lower limit, the anti-slip property of the non-slip processed fiber product is further improved.
  • the non-slip processed fiber product is excellent in washing resistance.
  • the texture of the non-slip processed fiber product is excellent.
  • the anti-slip property of the non-slip processed fiber product is determined by the above-mentioned “method for obtaining static friction coefficient II” from the viewpoint that the anti-slip property is more excellent. It is preferable that the coefficient of static friction is 0.6 or more. From the viewpoint of exhibiting sufficient anti-slip properties even in a non-slip-processed fiber processed product having a small area, the coefficient of static friction obtained by "Method for obtaining static friction coefficient II" Is more preferably 0.7 or more. The coefficient of static friction is more preferably 0.85 or more.
  • the non-slip non-adhesiveness of the non-slip processed fiber product to a floor or the like is further improved, and the floor can be used for a long time or at a high temperature.
  • the shear adhesive strength determined by the above-mentioned “Method of determining shear adhesive strength II” is less than 5 N, from the viewpoint of making it difficult to contaminate.
  • the shear bond strength is more preferably less than 1N.
  • the first embodiment of the non-slip processed fiber product of the present invention can be manufactured, for example, by subjecting the processed fiber product to the non-slip processing agent according to the first embodiment of the present invention.
  • the method of non-slip processing will be described later.
  • the non-slip property and the non-adhesiveness are excellent. Further, since it has excellent anti-slip properties and non-adhesiveness (for example, non-adhesiveness to floors and the like), it can be used for a wide range of applications.
  • the second aspect of the non-slip processed fiber processed product of the present invention is that the static friction coefficient obtained by the above-mentioned “method for obtaining static friction coefficient II” is 0.6 or more, and the above-mentioned “calculation of shear adhesive strength” is performed.
  • the shear adhesive strength determined in Method II is less than 5N.
  • a non-slip processed fiber processed product having a static friction coefficient of 0.6 or more determined by “How to determine static friction coefficient II” has excellent anti-slip properties.
  • a non-slip fiber processed product having a static friction coefficient of 0.7 or more obtained in “Method of calculating static friction coefficient II” has sufficient anti-slip properties even in a non-slip processed fiber processed product having a small area. Demonstrate.
  • the coefficient of static friction is more preferably 0.85 or more.
  • a non-slip processed fiber product having a shear bond strength of less than 5N determined by "Method for determining shear bond strength II" has excellent non-adhesiveness to floors and the like, and can be used for a long time or at a high temperature. It is hard to stain floors.
  • the shear bond strength is more preferably less than 1N.
  • the second aspect of the non-slip processed fiber product of the present invention can be manufactured, for example, by subjecting the processed fiber product to non-slip processing by the second aspect of the non-slip processing agent of the present invention.
  • the method of non-slip processing will be described later.
  • the static friction coefficient obtained by the “method for obtaining the static friction coefficient II” is 0.6 or more, and the “shear adhesive strength” Since the shear adhesive strength determined by “Method II for determining the adhesive strength” is less than 5N, the adhesive composition is excellent in anti-slip properties and non-adhesiveness (for example, non-adhesiveness to floors and the like). Further, since it has excellent anti-slip properties and non-adhesiveness (for example, non-adhesiveness to floors and the like), it can be used for a wide range of applications.
  • ⁇ Third embodiment of non-slip processed fiber product In a third aspect of the non-slip processed fiber product of the present invention, an acrylic polymer having a structural unit based on diacetone acrylamide adheres, and at least a part of the structural unit based on diacetone acrylamide forms a crosslinked structure.
  • the shear adhesive strength determined by the above-mentioned “Method of determining shear adhesive strength II” is less than 5N.
  • the anti-slip property is excellent.
  • the acrylic polymer has a structural unit based on diacetone acrylamide, and at least a part of the structural unit based on diacetone acrylamide forms a crosslinked structure. The property is improved, and floors and the like are hardly stained even when used for a long time or at a high temperature.
  • acrylic polymer having a structural unit based on diacetone acrylamide examples include those similar to the acrylic polymer having a structural unit based on diacetone acrylamide described in the first embodiment of the antiskid agent of the present invention. The same applies to preferred embodiments.
  • the adhesion amount of the acrylic polymer per unit area of the non-slip processed fiber product is preferably 1 to 1000 g / m 2 , and preferably 5 to 1000 g / m 2. 500 g / m 2 is more preferable, and 10 to 100 g / m 2 is further preferable.
  • the adhesion amount of the acrylic polymer is equal to or more than the lower limit, the non-slip property of the non-slip processed fiber product is further improved.
  • the adhesion amount of the acrylic polymer is equal to or less than the upper limit, the non-adhesiveness of the non-slip processed fiber product is further improved.
  • the non-slip processed fiber product is excellent in washing resistance.
  • non-slip fiber processed product having a shear adhesive strength of less than 5N determined by "Method of determining shear adhesive strength II"
  • it has excellent non-adhesiveness to floors and the like, and can be used for a long time or at a high temperature. Also, it is difficult to stain floors.
  • the third embodiment of the non-slip processed fiber product of the present invention can be manufactured, for example, by subjecting the processed fiber product to non-slip processing by the third embodiment of the non-slip processing agent of the present invention.
  • the method of non-slip processing will be described later.
  • an acrylic polymer having a structural unit based on diacetone acrylamide adheres, and at least one of the structural units based on diacetone acrylamide is attached.
  • the part has a crosslinked structure and the shear adhesive strength determined by “Method for determining shear adhesive strength II” is less than 5 N, so that it is non-slip and non-adhesive (for example, non-adhesive Excellent). Further, since it has excellent anti-slip properties and non-adhesiveness (for example, non-adhesiveness to floors and the like), it can be used for a wide range of applications.
  • a fourth aspect of the non-slip processed fiber processed article of the present invention is the non-slip processing of any one of the first, second, and third aspects of the anti-slip agent of the present invention. It is a fiber processed product that is non-slip processed by an agent. The method of non-slip processing will be described later.
  • the anti-slip processed fiber product of the present invention Since it is non-slip processed by any anti-slip agent, it is excellent in anti-slip properties and non-adhesion (for example, non-adhesion to floors and the like). Further, since it has excellent anti-slip properties and non-adhesiveness (for example, non-adhesiveness to floors and the like), it can be used for a wide range of applications.
  • the method for producing a non-slip processed fiber product according to the present invention includes the non-slip processing agent according to any one of the first, second, and third aspects of the non-slip processing agent according to the present invention. This method is applied to a fiber processed product and dried. More specifically, the method for producing a non-slip processed fiber product according to the present invention includes the first aspect of the non-slip process agent according to the present invention in order to obtain a fiber processed product to which the non-slip processing agent is applied. A method comprising applying any one of the non-slip finishing agents to the fiber processed product, and drying the fiber processed product to which the anti-slip processing agent has been applied, among the non-slip processing agent of the second, third, and third aspects.
  • Examples of the method of applying the non-slip agent to the processed fiber include a spray coating method, a roll coating method, a bar coating method, an air knife coating method, a brush coating method, and a dipping method.
  • a spray coating method is preferable because it can be applied on a continuous production line without any size restrictions. Spray coating may be performed by spraying a non-slip agent using an air spray.
  • the coating amount of Rubberized agent per unit area of the fiber processed article is preferably 30 ⁇ 3000g / m 2, more preferably 100 ⁇ 2000g / m 2, more preferably 200 ⁇ 1000g / m 2.
  • the application amount of the anti-slip agent is equal to or more than the lower limit, the anti-slip property of the non-slip processed fiber product is further improved.
  • the non-slip processed fiber product is excellent in washing resistance.
  • the applied amount of the anti-slip agent is equal to or less than the upper limit, the texture of the non-slip processed fiber product is excellent.
  • a medium such as water or an organic solvent contained in the non-slip agent is removed by drying the fiber processed product to which the anti-slip agent is applied. Drying of the fiber processed product to which the anti-slip agent has been applied may be performed at room temperature or by heating. When heating, the heating temperature is preferably from 50 to 120 ° C. When heating, the heating time is preferably from 0.1 to 60 minutes.
  • any one of the first to third aspects of the non-slip processing agent of the present invention is used. Since the method is applied to a fiber processed product and dried, a non-slip processed fiber product excellent in anti-slip properties and non-adhesiveness (for example, adhesiveness to a floor or the like) can be manufactured. Further, these non-slip processed fiber products are excellent in anti-slip properties and non-adhesiveness (for example, non-adhesiveness to floors and the like), and thus can be used for a wide range of applications.
  • Non-slip property The non-slip chenille fabric is placed on a horizontal stainless steel plate (SUS304 No. 2B of JIS standard) with its non-slip surface facing down, and 26 A chenille base cloth subjected to anti-slip processing at an ambient temperature of 23 ° C. under a load of .46 N (2.7 kg) was applied to a stainless steel plate using a spring-type hand scale (M506ST series, manufactured by Shiro Sangyo Co., Ltd.). , And the static friction force was measured, and the obtained static friction force was divided by the normal force to obtain a static friction coefficient.
  • SUS304 No. 2B of JIS standard The non-slip chenille fabric is placed on a horizontal stainless steel plate (SUS304 No. 2B of JIS standard) with its non-slip surface facing down, and 26 A chenille base cloth subjected to anti-slip processing at an ambient temperature of 23 ° C. under a load of .46 N (2.7 kg) was applied
  • the anti-slip property was evaluated according to the following criteria.
  • the above-mentioned anti-slip property was evaluated after repeating the following washing process 10 times with respect to the chenille base fabric subjected to the anti-slip processing.
  • the washing process was performed once for 15 minutes for washing, 3 minutes for rinsing, 3 minutes for rinsing, 2 minutes for rinsing, 2 minutes for rinsing, 5 minutes for dehydration, and 24 hours for indoor drying.
  • Water adjusted to 40 ° C. was used for washing, and water at 23 ° C. was used for rinsing.
  • the amount of water was 25 L for washing and rinsing, and the amount of detergent used for washing was 18 g.
  • a two-layer washing machine was used for washing.
  • the non-slip chenille base cloth is bonded to an ABS resin base material (manufactured by TP Giken Co., black, 90 mm ⁇ 50 mm ⁇ thickness 3 mm) with the non-slip surface down, with an adhesive surface of 50 mm ⁇ 50 mm.
  • the chenille base cloth which has been stacked and slip-proofed is left standing at an ambient temperature of 50 ° C. for 24 hours under a load of 6.86 N (700 g) from above, and further at an ambient temperature of 23 ° C. for 3 hours.
  • the chenille base cloth subjected to anti-slip processing was adhered to the ABS resin base material.
  • the lower end of the non-slip chenille base cloth and the upper end of the ABS resin base material were bonded at an ambient temperature of 23 ° C. and a test speed of 100 mm / min.
  • the film was pulled parallel to the bonding surface, and the maximum load at this time was defined as the shear bonding strength.
  • Non-adhesion was evaluated according to the following criteria.
  • Urethane polymer aqueous dispersion A obtained using isophorone diisocyanate and 1,6-hexamethylene diisocyanate as polyvalent isocyanate, and using polytetramethylene ether glycol, polycarbonate diol, and 1,6-hexanediol as polyhydric alcohol.
  • the urethane polymer A dispersed in water (average particle diameter of the urethane polymer particles 0.319 ⁇ m, solid content 60%).
  • Urethane polymer aqueous dispersion B obtained by using 1,6-hexamethylene diisocyanate as a polyvalent isocyanate, and using a polyester diol produced by dehydrating and condensing phthalic acid and 1,6-hexanediol as a polyhydric alcohol.
  • a product obtained by dispersing the obtained urethane polymer B in water (average particle size of urethane polymer particles: 0.220 ⁇ m, solid content: 50%).
  • BA n-butyl acrylate (Tg: -49 ° C).
  • Damam diacetone acrylamide (manufactured by Mitsubishi Chemical Corporation, Tg described in a catalog: 77 ° C.).
  • AMA allyl methacrylate (manufactured by Mitsubishi Chemical Corporation, Tg described in a catalog: 52 ° C.).
  • MMA methyl methacrylate (Tg: 105 ° C.).
  • MAA methacrylic acid (Tg: 228 ° C.).
  • Adecaria Soap SR-1025 surfactant, manufactured by ADEKA, solid content 25%.
  • Newcol registered trademark; the same applies hereinafter
  • 707SF surfactant, manufactured by Nippon Emulsifier, solid content 30%.
  • Perbutyl (registered trademark; the same applies hereinafter) H69 t-butyl hydroperoxide aqueous solution, manufactured by NOF Corporation, solid content 69%.
  • Examples 1 to 3 The following initial raw material mixture was charged into a flask equipped with a stirrer, a reflux condenser, a temperature controller, and a dropping funnel, followed by purging with nitrogen.
  • the following monomer mixture as a raw material of the acrylic polymer A was charged into a flask, and the internal temperature of the flask was raised to 40 ° C. while continuing nitrogen replacement.
  • the inside of the flask was cooled to 40 ° C., and 0.834 part of adipic hydrazide and 6.0 parts of deionized water were added to the flask to obtain an aqueous dispersion of polymer particles.
  • the solids content was 35.1%.
  • the viscosity was adjusted to 610 mPa ⁇ s by using an alkali swelling type thickener (Primal ASE-60, manufactured by Rohm and Haas Co.), and the non-slip chenille base cloth was used with this aqueous dispersion as a non-slip agent.
  • the total amount of the urethane polymer and the acrylic polymer was determined as shown in Table 1. Table 1 shows the evaluation results.
  • the non-slip chenille base fabric was excellent in anti-slip properties, washing resistance, and non-adhesiveness.
  • Example 4 The urethane polymer aqueous dispersion A was changed to a urethane polymer aqueous dispersion B. The amount of addition was changed to 199.8 parts. Further, the deionized water of the initial raw material mixture was changed to 221.7 parts. Except for this, an aqueous dispersion prepared in the same manner as in Example 1 was used as an anti-slip agent to obtain a non-slip chenille base fabric. The total amount of the urethane polymer and the acrylic polymer was determined as shown in Table 1. Table 1 shows the evaluation results.
  • Example 5 An aqueous dispersion prepared in the same manner as in Example 1 except that the monomer mixture serving as a raw material of the acrylic polymer A was changed to the following monomer mixture serving as a raw material of the acrylic polymer B, was used as a non-slip processing agent. To obtain a chenille base fabric which has been subjected to a non-slip processing. The total amount of the urethane polymer and the acrylic polymer was determined as shown in Table 1. Table 1 shows the evaluation results.
  • the remainder of the monomer mixture was dropped into the flask over 3 hours. After the dropwise addition, the temperature of the flask was maintained at 80 ° C. for 1 hour. Thereafter, the inside of the flask was cooled to 40 ° C., and 2.08 parts of adipic hydrazide and 15.0 parts of deionized water were added to the flask to obtain an aqueous dispersion of an acrylic polymer. The solids content was 45.1%.
  • This aqueous dispersion was diluted to a solid content of 35.0%, and the viscosity was adjusted to 600 mPa ⁇ s using an alkali swelling type thickener (Primal ASE-60, manufactured by Rohm and Haas Co.), and used as a non-slip processing agent.
  • an alkali swelling type thickener Principal ASE-60, manufactured by Rohm and Haas Co.
  • the adhesion amount of the acrylic polymer was the adhesion amount shown in Table 2.
  • Table 2 shows the evaluation results.
  • the non-slip chenille base fabric was excellent in the initial non-slip properties, but was inferior in washing resistance and non-adhesion.
  • the anti-slip agent of the present invention has excellent anti-slip properties and non-adhesiveness (for example, non-adhesiveness to floors and the like), and is useful for producing a non-slip processed textile product which can be used for a wide range of applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Textile Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

The present invention provides: an anti-slip processed textile product having excellent anti-slip and non-tacky properties (for example, non-tacky to floors etc.); a method for producing the same; and an anti-slip processing agent which has excellent anti-slip and non-tacky properties (for example, non-tacky to floors etc.) and with which an anti-slip processed object including an anti-slip processed textile product can be obtained. This anti-slip processing agent imparts anti-slip properties to a processed object, and contains an aqueous medium and polymer particles dispersed in the aqueous medium, wherein the polymer particles are composed of a composite containing a urethane polymer and an acrylic polymer.

Description

滑り止め加工剤、滑り止め加工された繊維加工品、及び滑り止め加工された繊維加工品の製造方法Non-slip finishing agent, non-slip processed fiber product, and method for producing anti-slip processed fiber product
 本発明は、滑り止め加工剤、滑り止め加工された繊維加工品、及び滑り止め加工された繊維加工品の製造方法に関する。
 本願は、2018年6月29日に日本に出願された特願2018-124171号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a non-slip agent, a non-slip processed fiber product, and a method for producing a non-slip processed fiber product.
This application claims priority based on Japanese Patent Application No. 2018-124171 for which it applied to Japan on June 29, 2018, and uses the content here.
 敷物(玄関マット、キッチンマット、ラグ、カーペット、テーブルクロス、ランチョンマット等)等の繊維加工品においては、繊維加工品に触れた際に、繊維加工品が滑って転びそうになったり、繊維加工品の位置がずれたりすることを防止するために、繊維加工品の裏面が滑り止め加工剤によって滑り止め加工されることがある。 In the case of textile products such as rugs (entrance mats, kitchen mats, rugs, carpets, tablecloths, luncheon mats, etc.), when the textile products are touched, the textile products may slip and fall, In order to prevent the position of the product from being shifted, the back surface of the processed fiber product may be subjected to a non-slip processing by a non-slip processing agent.
 滑り止め加工剤の中でも、水性媒体に重合体成分が分散した水性の滑り止め加工剤は、多様な加工寸法、多様な形態に容易に対応でき、有機溶剤をほとんど含まないことから、幅広い用途への展開が期待される。 Among anti-slip agents, aqueous anti-slip agents in which a polymer component is dispersed in an aqueous medium can be easily used in various processing dimensions and various forms, and contain almost no organic solvent, making them suitable for a wide range of applications. Is expected to expand.
 水性樹脂を含む滑り止め加工剤としては、下記のものが提案されている。
 (1)架橋構造を有するウレタン樹脂を含む、敷物裏打ち用水性樹脂組成物(特許文献1)。
 (2)カルボニル基含有アクリル系共重合体、有機ヒドラジン誘導体、及び熱膨張性カプセル粒子を含む水性分散液(特許文献2)。
The following are proposed as anti-slip agents containing an aqueous resin.
(1) An aqueous resin composition for backing a rug, comprising a urethane resin having a crosslinked structure (Patent Document 1).
(2) An aqueous dispersion containing a carbonyl group-containing acrylic copolymer, an organic hydrazine derivative, and thermally expandable capsule particles (Patent Document 2).
特開2001-106896号公報JP 2001-106896 A 特開2009-66782号公報JP 2009-66782 A
 (1)の敷物裏打ち用水性樹脂組成物によって滑り止め加工された繊維加工品は、裏面が非粘着性で床等を汚しにくい。しかし、滑り止め性が十分でなく、用途が限られる。
 (2)の水性分散液によって滑り止め加工された繊維加工品は、滑り止め性に優れる。しかし、床等に対する非粘着性に劣り、用途が限られる。
The fiber processed product which is non-slip processed by the aqueous resin composition for backing backing of (1) has a non-adhesive back surface and is unlikely to stain floors and the like. However, the anti-slip property is not sufficient, and the application is limited.
The fiber processed product which is non-slip processed by the aqueous dispersion of (2) has excellent anti-slip properties. However, it is inferior in non-adhesiveness to floors and the like, and its use is limited.
 本発明は、滑り止め性及び非粘着性(例えば、床等に対する非粘着性)に優れた滑り止め加工された繊維加工品とその製造方法、ならびに滑り止め性及び非粘着性(例えば、床等に対する非粘着性)に優れた、滑り止め加工された繊維加工品を含む滑り止め加工された加工対象物を得ることができる滑り止め加工剤を提供する。 The present invention relates to a non-slip processed fiber product having excellent anti-slip properties and non-adhesiveness (for example, non-adhesiveness to floors and the like) and a method for producing the same, as well as anti-slip and non-adhesive properties (for example, floors and the like). A non-slip processing agent which is capable of obtaining a non-slip processed object including a non-slip processed fiber product, which is excellent in non-adhesiveness to a non-slip surface.
 本発明は、下記の態様を有する。
[1]加工対象物に滑り止め性を付与するための滑り止め加工剤であり、
 水性媒体と、前記水性媒体に分散した重合体粒子とを含み、
 前記重合体粒子が、ウレタン重合体及びアクリル重合体を含む複合体からなる、滑り止め加工剤。
[2]前記加工対象物が繊維加工品である、[1]に記載の滑り止め加工剤。
[3]後記「静摩擦係数の求め方I」で求めた静摩擦係数が0.6以上である、[2]に記載の滑り止め加工剤。
[4]後記「せん断接着強度の求め方I」で求めたせん断接着強度が5N未満である、[2]又は[3]に記載の滑り止め加工剤。
[5]前記ウレタン重合体がポリエーテル系のウレタン重合体である、[1]~[4]のいずれかに記載の滑り止め加工剤。
[6]前記アクリル重合体のガラス転移温度が-60~10℃である、[1]~[5]のいずれかに記載の滑り止め加工剤。
[7]前記アクリル重合体がジアセトンアクリルアミドに基づく構成単位を有する、[1]~[6]のいずれかに記載の滑り止め加工剤。
[8]前記アクリル重合体がラジカル重合性基を2つ以上有する単量体に基づく構成単位を有する、[1]~[7]のいずれかに記載の滑り止め加工剤。
[9]繊維加工品に滑り止め性を付与するための滑り止め加工剤であり、
 後記「静摩擦係数の求め方I」で求めた静摩擦係数が0.6以上であり、かつ後記「せん断接着強度の求め方I」で求めたせん断接着強度が5N未満である、滑り止め加工剤。
[10]繊維加工品に滑り止め性を付与するための滑り止め加工剤であり、
 ジアセトンアクリルアミドに基づく構成単位を有するアクリル重合体を含み、
 後記「せん断接着強度の求め方I」で求めたせん断接着強度が5N未満である、滑り止め加工剤。
[11]前記アクリル重合体がラジカル重合性基を2つ以上有する単量体に基づく構成単位を有する、[10]に記載の滑り止め加工剤。
[12]前記アクリル重合体のガラス転移温度が-60~10℃である、[10]又は[11]に記載の滑り止め加工剤。
[13]ウレタン重合体及びアクリル重合体が付着している、滑り止め加工された繊維加工品。
[14]後記「静摩擦係数の求め方II」で求めた静摩擦係数が0.6以上である、[13]に記載の滑り止め加工された繊維加工品。
[15]後記「せん断接着強度の求め方II」で求めたせん断接着強度が5N未満である、[13]又は[14]に記載の滑り止め加工された繊維加工品。
[16]前記滑り止め加工された繊維加工品の単位面積当たりの前記ウレタン重合体の付着量と前記アクリル重合体の付着量との合計が、3~300g/mである、[13]~[15]のいずれかに記載の滑り止め加工された繊維加工品。
[17]前記ウレタン重合体がポリエーテル系のウレタン重合体である、[13]~[16]のいずれかに記載の滑り止め加工された繊維加工品。
[18]前記アクリル重合体のガラス転移温度が-60~10℃である、[13]~[17]のいずれかに記載の滑り止め加工された繊維加工品。
[19]前記アクリル重合体がジアセトンアクリルアミドに基づく構成単位を有し、
 前記ジアセトンアクリルアミドに基づく構成単位の少なくとも一部が架橋構造を形成している、[13]~[18]のいずれかに記載の滑り止め加工された繊維加工品。
[20]前記アクリル重合体がラジカル重合性基を2つ以上有する単量体に基づく構成単位を有する、[13]~[19]のいずれかに記載の滑り止め加工された繊維加工品。
[21]後記「静摩擦係数の求め方II」で求めた静摩擦係数が0.6以上であり、かつ後記「せん断接着強度の求め方II」で求めたせん断接着強度が5N未満である、滑り止め加工された繊維加工品。
[22]ジアセトンアクリルアミドに基づく構成単位を有するアクリル重合体が付着し、
 前記ジアセトンアクリルアミドに基づく構成単位の少なくとも一部が架橋構造を形成しており、
 後記「せん断接着強度の求め方II」で求めたせん断接着強度が5N未満である、滑り止め加工された繊維加工品。
[23]前記滑り止め加工された繊維加工品の単位面積当たりの前記アクリル重合体の付着量が10~100g/mである、[22]に記載の滑り止め加工された繊維加工品。
[24][2]~[12]のいずれかに記載の滑り止め加工剤によって滑り止め加工された繊維加工品。
[25]滑り止め加工剤が塗布された繊維加工品を得るために、[2]~[12]のいずれかに記載の滑り止め加工剤を、繊維加工品に塗布し、
 前記滑り止め加工剤が塗布された繊維加工品を乾燥することを含む、滑り止め加工された繊維加工品の製造方法。
[26]前記繊維加工品の単位面積当たりの前記滑り止め加工剤の塗布量が、30~3000g/mである、[25]に記載の滑り止め加工された繊維加工品の製造方法。
[27]前記滑り止め加工剤の前記繊維加工品への塗布が、スプレーコートにより行われる、[25]又は[26]に記載の滑り止め加工された繊維加工品の製造方法。
The present invention has the following aspects.
[1] An anti-slip processing agent for imparting anti-slip properties to an object to be processed,
Aqueous medium, comprising polymer particles dispersed in the aqueous medium,
An anti-slip agent, wherein the polymer particles are made of a composite containing a urethane polymer and an acrylic polymer.
[2] The non-slip agent according to [1], wherein the object to be processed is a processed fiber product.
[3] The anti-slip agent according to [2], wherein the static friction coefficient determined by “Method I for determining static friction coefficient I” is 0.6 or more.
[4] The non-slip agent according to [2] or [3], wherein the shear adhesive strength determined by "Method I for determining shear adhesive strength" described below is less than 5N.
[5] The antiskid agent according to any one of [1] to [4], wherein the urethane polymer is a polyether-based urethane polymer.
[6] The antiskid agent according to any one of [1] to [5], wherein the acrylic polymer has a glass transition temperature of −60 to 10 ° C.
[7] The antiskid agent according to any one of [1] to [6], wherein the acrylic polymer has a structural unit based on diacetone acrylamide.
[8] The antiskid agent according to any of [1] to [7], wherein the acrylic polymer has a structural unit based on a monomer having two or more radically polymerizable groups.
[9] An anti-slip agent for imparting anti-slip properties to a textile product,
An anti-slip agent having a static friction coefficient of at least 0.6 determined by "method I of determining static friction coefficient I" and a shear adhesive strength of less than 5N determined by "method I of determining shear adhesive strength I".
[10] An anti-slip agent for imparting anti-slip properties to a processed fiber product,
Including an acrylic polymer having a structural unit based on diacetone acrylamide,
A non-slip agent having a shear adhesive strength of less than 5 N, as determined by "Method for determining shear adhesive strength I" below.
[11] The antiskid agent according to [10], wherein the acrylic polymer has a structural unit based on a monomer having two or more radically polymerizable groups.
[12] The anti-slip agent according to [10] or [11], wherein the acrylic polymer has a glass transition temperature of −60 to 10 ° C.
[13] A non-slip processed fiber product to which a urethane polymer and an acrylic polymer are attached.
[14] The non-slip processed fiber product according to [13], wherein the static friction coefficient obtained by “Method II for determining static friction coefficient II” is 0.6 or more.
[15] The non-slip processed fiber product according to [13] or [14], wherein the shear adhesive strength determined by “Method for determining shear adhesive strength II” described below is less than 5N.
[16] The sum of the adhesion amount of the urethane polymer and the adhesion amount of the acrylic polymer per unit area of the non-slip processed fiber product is 3 to 300 g / m 2 , [13] to [13]. A non-slip processed fiber product according to any one of [15].
[17] The non-slip processed fiber product according to any one of [13] to [16], wherein the urethane polymer is a polyether-based urethane polymer.
[18] The non-slip processed fiber product according to any one of [13] to [17], wherein the acrylic polymer has a glass transition temperature of −60 to 10 ° C.
[19] The acrylic polymer has a structural unit based on diacetone acrylamide,
The non-slip processed fiber product according to any one of [13] to [18], wherein at least a part of the structural units based on diacetone acrylamide forms a crosslinked structure.
[20] The non-slip processed fiber product according to any one of [13] to [19], wherein the acrylic polymer has a structural unit based on a monomer having two or more radically polymerizable groups.
[21] An anti-slip having a static friction coefficient of 0.6 or more as determined by “Method of determining static friction coefficient II” described below and a shear adhesive strength of less than 5N determined by “Method of determining shear adhesive strength II” described later. A processed fiber product.
[22] an acrylic polymer having a structural unit based on diacetone acrylamide adheres,
At least a part of the structural unit based on diacetone acrylamide forms a crosslinked structure,
A non-slip processed fiber processed product having a shear adhesive strength of less than 5 N as determined by "Method for determining shear adhesive strength II" below.
[23] The non-slip processed fiber product according to [22], wherein the non-slip processed fiber product has an adhesion amount of the acrylic polymer per unit area of 10 to 100 g / m 2 .
[24] A fiber processed product which is non-slip processed by the anti-slip agent according to any one of [2] to [12].
[25] The anti-slip agent according to any of [2] to [12] is applied to the processed fiber product to obtain a processed fiber product coated with the anti-slip agent,
A method for producing a non-slip processed fiber product, comprising drying the processed fiber product to which the anti-slip agent has been applied.
[26] The method for producing a non-slip processed fiber product according to [25], wherein the applied amount of the non-slip processing agent per unit area of the processed fiber product is 30 to 3000 g / m 2 .
[27] The method for producing a non-slip processed fiber product according to [25] or [26], wherein the application of the anti-slip agent to the processed fiber product is performed by spray coating.
 (静摩擦係数の求め方I)
 シェニール基布(IKEA社製、TOFTBO バスマット、70mm×50mm)の裏面に、滑り止め加工剤を、シェニール基布の単位面積当たりの滑り止め加工剤に含まれる重合体成分の付着量が35g/mとなるようにハンドスプレーを用いて塗布し、雰囲気温度120℃で5分間乾燥して得られた滑り止め加工されたシェニール基布を、滑り止め加工面を下にして水平なステンレス鋼板(JIS規格のSUS304 No.2B)の上に配置し、滑り止め加工されたシェニール基布の上側から26.46N(2.7kg)の荷重をかけた状態にて、雰囲気温度23℃にて滑り止め加工されたシェニール基布を、ばね式手秤を用いてステンレス鋼板に対して平行に引いて静摩擦力を測定し、静摩擦力を法線力で除して静摩擦係数を求める。
(How to find the static friction coefficient I)
On the back surface of a chenille base fabric (manufactured by IKEA, TOFTBO bath mat, 70 mm × 50 mm), a non-slip agent is applied, and the amount of polymer component contained in the non-slip agent per unit area of the chenille base fabric is 35 g / m 2 was applied using a hand sprayer and dried for 5 minutes at an ambient temperature of 120 ° C., and the non-slip chenille base cloth obtained was placed on a horizontal stainless steel plate (JIS) with the non-slip surface down. It is placed on the standard SUS304 No. 2B) and subjected to a 26.46N (2.7 kg) load from above the non-slip chenille base cloth at an ambient temperature of 23 ° C. The chenille base cloth was pulled in parallel with the stainless steel plate using a spring-type hand scale to measure the static friction force, and the static friction force was divided by the normal force to obtain the static friction coefficient. .
 (せん断接着強度の求め方I)
 シェニール基布(IKEA社製、TOFTBO バスマット、70mm×50mm)の裏面に、滑り止め加工剤を、シェニール基布の単位面積当たりの滑り止め加工剤に含まれる重合体成分の付着量が35g/mとなるようにハンドスプレーを用いて塗布し、雰囲気温度120℃で5分間乾燥して得られた滑り止め加工されたシェニール基布を、滑り止め加工面を下にしてABS樹脂基材(90mm×50mm×厚さ3mm)の上に接着面が50mm×50mmとなるように重ね、滑り止め加工されたシェニール基布の上側から6.86N(700g)の荷重をかけた状態にて、雰囲気温度50℃で24時間静置し、さらに雰囲気温度23℃で3時間静置して接着された滑り止め加工されたシェニール基布とABS樹脂基材とを、引張測定装置を用い、雰囲気温度23℃、試験速度100mm/分にて、滑り止め加工されたシェニール基布の下端とABS樹脂基材の上端とを接着面に平行に引張り、このときの最大荷重をせん断接着強度とする。
(How to determine the shear bond strength I)
On the back surface of a chenille base fabric (manufactured by IKEA, TOFTBO bath mat, 70 mm × 50 mm), a non-slip agent is applied, and the amount of polymer component contained in the non-slip agent per unit area of the chenille base fabric is 35 g / m 2 was applied using a hand spray and dried at an ambient temperature of 120 ° C. for 5 minutes, and the non-slip chenille base cloth obtained was coated with an ABS resin base material (90 mm X 50 mm x thickness 3 mm), and the adhesive temperature was set to 50 mm x 50 mm, and a 6.86 N (700 g) load was applied from above to the non-slip chenille base cloth. A non-slip chenille base cloth and an ABS resin base material which were left standing at 50 ° C. for 24 hours and further left at an ambient temperature of 23 ° C. for 3 hours were subjected to a tensile measurement device. At an ambient temperature of 23 ° C and a test speed of 100 mm / min, the lower end of the non-slip chenille base fabric and the upper end of the ABS resin base material are pulled parallel to the bonding surface, and the maximum load at this time is shear bonded. Strength.
 (静摩擦係数の求め方II)
 滑り止め加工された繊維加工品(70mm×50mm)を、滑り止め加工面を下にして水平なステンレス鋼板(JIS規格のSUS304 No.2B)の上に配置し、滑り止め加工された繊維加工品の上側から26.46N(2.7kg)の荷重をかけた状態にて、雰囲気温度23℃にて滑り止め加工された繊維加工品を、ばね式手秤を用いてステンレス鋼板に対して平行に引いて静摩擦力を測定し、静摩擦力を法線力で除して静摩擦係数を求める。
(How to determine static friction coefficient II)
A non-slip processed fiber product (70 mm x 50 mm) is placed on a horizontal stainless steel plate (JIS standard SUS304 No. 2B) with its non-slip surface down. With a load of 26.46 N (2.7 kg) applied from the upper side, the non-slip processed fiber product at an ambient temperature of 23 ° C. is parallel to the stainless steel plate using a spring-type hand scale. Then, the static friction force is measured, and the static friction force is divided by the normal force to obtain a static friction coefficient.
 (せん断接着強度の求め方II)
 滑り止め加工された繊維加工品(70mm×50mm)を、滑り止め加工面を下にしてABS樹脂基材(90mm×50mm×厚さ3mm)の上に接着面が50mm×50mmとなるように重ね、滑り止め加工された繊維加工品の上側から6.86N(700g)の荷重をかけた状態にて、雰囲気温度50℃で24時間静置し、さらに雰囲気温度23℃で3時間静置して接着された滑り止め加工された繊維加工品とABS樹脂基材とを、引張測定装置を用い、雰囲気温度23℃、試験速度100mm/分にて、滑り止め加工された繊維加工品の下端とABS樹脂基材の上端とを接着面に平行に引張り、このときの最大荷重をせん断接着強度とする。
(Method of determining shear adhesive strength II)
A non-slip processed fiber processed product (70 mm x 50 mm) is laid on an ABS resin substrate (90 mm x 50 mm x 3 mm thick) with the non-slip surface down so that the adhesive surface is 50 mm x 50 mm. A non-slip processed fiber processed product was allowed to stand at an ambient temperature of 50 ° C. for 24 hours under a load of 6.86 N (700 g) from above, and further allowed to stand at an ambient temperature of 23 ° C. for 3 hours. The lower end of the non-slip processed fiber product and the ABS were bonded to the bonded non-slip processed fiber product and the ABS resin substrate at a temperature of 23 ° C. and a test speed of 100 mm / min using a tensile measuring device. The upper end of the resin substrate is pulled in parallel with the bonding surface, and the maximum load at this time is defined as the shear bonding strength.
 本発明の滑り止め加工剤によれば、滑り止め性及び非粘着性(例えば、床等に対する非粘着性)に優れた、滑り止め加工された繊維加工品を含む滑り止め加工された加工対象物を得ることができる。
 本発明の滑り止め加工された繊維加工品は、滑り止め性及び非粘着性(例えば、床等に対する非粘着性)に優れ、幅広い用途に利用できる。
 本発明の滑り止め加工された繊維加工品の製造方法によれば、滑り止め性及び非粘着性(例えば、床等に対する非粘着性)に優れ、幅広い用途に利用できる滑り止め加工された繊維加工品を製造できる。
ADVANTAGE OF THE INVENTION According to the non-slip processing agent of this invention, the non-slip processed object containing the non-slip processed textiles excellent in non-slip property and non-adhesion (for example, non-adhesion with respect to a floor etc.) Can be obtained.
The non-slip processed fiber product of the present invention is excellent in anti-slip properties and non-adhesiveness (for example, non-adhesiveness to floors and the like) and can be used for a wide range of applications.
ADVANTAGE OF THE INVENTION According to the manufacturing method of the non-slip processed fiber product of this invention, it is excellent in non-slip property and non-adhesion (for example, non-adhesion with respect to a floor etc.), and the non-slip processed fiber processing which can be utilized for a wide range of uses. Products can be manufactured.
 本明細書における「粘度」は、B型粘度計を用い、25℃に調温したサンプルを回転数60rpmの条件で測定した値である。
 本明細書における「固形分」は、サンプル1gを105℃の乾燥機にて2時間乾燥した残分から求めた値である。
 本明細書における「質量平均分子量」は、重合体を溶媒に溶解し、ゲルパーミエイションクロマトグラフィーを用いて分子量を測定し、ポリスチレン換算によって求めた値である。
The “viscosity” in this specification is a value measured using a B-type viscometer at a rotation speed of 60 rpm for a sample temperature-controlled at 25 ° C.
The “solid content” in the present specification is a value obtained from a residue obtained by drying 1 g of a sample with a dryer at 105 ° C. for 2 hours.
The “mass average molecular weight” in the present specification is a value obtained by dissolving a polymer in a solvent, measuring the molecular weight using gel permeation chromatography, and calculating the value in terms of polystyrene.
 本明細書における「ガラス転移温度」(以下、「Tg」とも記す。)は、ポリマーハンドブック[Polymer HandBook(J.Brandrup、Interscience、1989)]に記載されているモノマーのホモポリマーのTg値を用いてFOXの式から算出した値である。ポリマーハンドブックに記載がない場合、モノマーのホモポリマーのTg値は、モノマー製造企業のカタログに記載の値を採用し、カタログにも記載がない場合は、JIS K 7121:1987に準拠し、示差走査熱量測定(DSC)で求めた中間点ガラス転移温度を採用する。
 本明細書における「平均粒子径」は、光子相関法による粒子径分布測定装置(例えば、大塚電子社製の濃厚系粒径アナライザーFPAR-1000)を用いて室温下にて測定し、キュムラント解析によって算出した散乱光強度基準による調和平均粒子径である。
The “glass transition temperature” (hereinafter also referred to as “Tg”) in the present specification uses the Tg value of a homopolymer of a monomer described in a polymer handbook [Polymer Handbook (J. Brandrup, Interscience, 1989)]. Is calculated from the FOX equation. When not described in the polymer handbook, the Tg value of the homopolymer of the monomer is the value described in the catalog of the monomer manufacturer, and when not described in the catalog, the differential scanning is performed according to JIS K 7121: 1987. The midpoint glass transition temperature determined by calorimetry (DSC) is employed.
The “average particle diameter” in the present specification is measured at room temperature using a particle diameter distribution measuring device (for example, a concentrated particle size analyzer FPAR-1000 manufactured by Otsuka Electronics Co., Ltd.) by a photon correlation method, and is analyzed by cumulant analysis. It is the calculated harmonic mean particle diameter based on the scattered light intensity standard.
 本明細書における「(メタ)アクリル」は、アクリル及びメタクリルの総称である。
 本明細書における「(メタ)アクリレート」は、アクリレート及びメタクリレートの総称である。
“(Meth) acryl” in this specification is a general term for acryl and methacryl.
“(Meth) acrylate” in this specification is a general term for acrylate and methacrylate.
 本明細書における「重合体成分」は、滑り止め加工剤に含まれる、縮合重合体(ウレタン重合体等)、付加重合体(アクリル重合体等)等の樹脂成分である。 「" Polymer component "in this specification is a resin component such as a condensation polymer (urethane polymer or the like) or an addition polymer (acrylic polymer or the like) contained in the anti-slip agent.
 本明細書及び請求の範囲において数値範囲を示す「~」は、その前後に記載された数値を下限値及び上限値として含むことを意味する。 に お い て In this specification and the claims, “to” indicating a numerical range means that the numerical values described before and after the numerical value range are included as the lower limit and the upper limit.
<<滑り止め加工剤>>
 本発明の滑り止め加工剤は、加工対象物に滑り止め性を付与するためのものである。加工対象物としては、雑貨、段ボール、フィルム、棚、軽量家具等を挙げることができ、なかでも繊維加工品が好ましい。
 本発明の滑り止め加工剤によって繊維加工品を含む加工対象物の裏面及び表面のいずれか一方又は両方を滑り止め加工することによって、繊維加工品を含む加工対象物に触れた際に、繊維加工品を含む加工対象物が滑って転びそうになったり、繊維加工品を含む加工対象物の位置がずれたりすることを防止できる。
<< anti-slip agent >>
The anti-slip agent of the present invention is for imparting anti-slip properties to an object to be processed. Examples of the object to be processed include miscellaneous goods, corrugated cardboard, film, shelves, lightweight furniture, and the like, and among them, a fiber processed product is preferable.
When the non-slip agent of the present invention performs non-slip processing on one or both of the back surface and the front surface of the processed object including the fiber processed product, when the processed object including the fiber processed product is touched, the fiber processing is performed. It is possible to prevent the processing object including the product from slipping and falling, and to prevent the position of the processing object including the fiber processed product from being shifted.
 本発明の滑り止め加工剤としては、水性媒体に重合体成分が分散している水性分散液、有機溶媒に重合体成分が溶解している重合体溶液等が挙げられ、加工場において空気環境を汚染しない点から、水性分散液が好ましい。 Examples of the non-slip processing agent of the present invention include an aqueous dispersion in which the polymer component is dispersed in an aqueous medium, a polymer solution in which the polymer component is dissolved in an organic solvent, and the like. An aqueous dispersion is preferred because it does not contaminate.
 滑り止め加工剤の粘度は、10~100000mPa・sが好ましい。
 滑り止め加工剤の粘度が前記下限値以上であれば、滑り止め加工剤が繊維加工品を含む加工対象物に染み込みにくく、滑り止め性が発現されやすい。滑り止め加工剤の粘度が前記上限値以下であれば、繊維加工品を含む加工対象物の滑り止め加工方法が限定されにくい。
The viscosity of the anti-slip agent is preferably from 10 to 100,000 mPa · s.
When the viscosity of the anti-slip agent is equal to or more than the lower limit, the anti-slip agent is less likely to permeate into the object to be processed including the fiber processed product, and the anti-slip property is easily exhibited. If the viscosity of the non-slip processing agent is equal to or less than the upper limit, the method of non-slip processing of a processing object including a fiber processed product is not easily limited.
 滑り止め加工剤の固形分は、10~60質量%が好ましい。
 滑り止め加工剤の固形分が前記下限値以上であれば、滑り止め加工剤の粘度を高くする必要がある繊維加工品を含む加工対象物の滑り止め加工方法であっても、増粘剤を多量に添加する必要がなく、滑り止め性を低下させにくい。滑り止め加工剤の固形分が前記上限値以下であれば、繊維加工品を含む加工対象物の滑り止め加工方法が限定されにくい。
The solid content of the anti-slip agent is preferably from 10 to 60% by mass.
If the solid content of the non-slip agent is not less than the lower limit, even in the method of non-slip processing of a processing target object including a fiber processed product that needs to increase the viscosity of the non-slip agent, a thickener is used. It is not necessary to add a large amount, and it is difficult to reduce the anti-slip property. When the solid content of the anti-slip agent is equal to or less than the upper limit, the method of anti-slip processing of an object to be processed including a fiber processed product is less likely to be limited.
<滑り止め加工剤の第1の態様>
 本発明の滑り止め加工剤の第1の態様は、水性媒体と、水性媒体に分散した重合体粒子とを含む水性分散液である。
<First embodiment of anti-slip agent>
A first embodiment of the antiskid agent of the present invention is an aqueous dispersion containing an aqueous medium and polymer particles dispersed in the aqueous medium.
 本発明の滑り止め加工剤の第1の態様は、本発明の効果を損なわない範囲において、必要に応じて水性媒体及び重合体粒子以外の成分(以下、「他の成分」とも記す。)をさらに含んでいてもよい。 In the first embodiment of the anti-slip agent of the present invention, components other than the aqueous medium and the polymer particles (hereinafter, also referred to as “other components”) may be used, if necessary, as long as the effects of the present invention are not impaired. Further, it may be included.
 (水性媒体)
 水性媒体は、重合体粒子の分散媒となるものであり、水を含む。
 水性媒体は、水のみからなるものであってもよく、水と水溶性有機溶媒とからなるものであってもよい。
 水溶性有機溶媒としては、アルコール(メタノール、エタノール、イソプロパノール等)、ケトン(アセトン、メチルエチルケトン等)、グリコール系溶媒(ブチルセルソルブ、ジプロピレングリコールモノブチルエーテル等)等が挙げられる。
(Aqueous medium)
The aqueous medium serves as a dispersion medium for the polymer particles and contains water.
The aqueous medium may be composed of only water, or may be composed of water and a water-soluble organic solvent.
Examples of the water-soluble organic solvent include alcohols (eg, methanol, ethanol, isopropanol), ketones (eg, acetone, methyl ethyl ketone), and glycol solvents (eg, butyl cellosolve, dipropylene glycol monobutyl ether).
 VOC低減の観点から、水性媒体としては水のみが好ましいが、水溶性有機溶媒を含んでもよい。水性媒体が水溶性有機溶媒を含む場合、水性媒体に占める水溶性有機溶媒の含有割合は、0質量%を超え20質量%以下が好ましく、0質量%を超え10質量%以下がより好ましい。
 水性媒体が水溶性有機溶媒を含む場合、水溶性有機溶媒としては、アルコール系溶媒またはグリコール系溶媒等が好ましい。
From the viewpoint of VOC reduction, as the aqueous medium, only water is preferable, but it may contain a water-soluble organic solvent. When the aqueous medium contains a water-soluble organic solvent, the content of the water-soluble organic solvent in the aqueous medium is preferably more than 0% by mass and 20% by mass or less, more preferably more than 0% by mass and 10% by mass or less.
When the aqueous medium contains a water-soluble organic solvent, the water-soluble organic solvent is preferably an alcohol solvent or a glycol solvent.
 (重合体粒子)
 重合体粒子は、ウレタン重合体及びアクリル重合体を含む複合体からなる。特に、重合体粒子は、水性媒体に分散しうる、ウレタン重合体及びアクリル重合体を含む複合体からなる。
(Polymer particles)
The polymer particles are composed of a composite containing a urethane polymer and an acrylic polymer. In particular, the polymer particles consist of a composite containing a urethane polymer and an acrylic polymer, which can be dispersed in an aqueous medium.
 複合体は、例えば、ウレタン重合体の存在下に(メタ)アクリル系単量体を含むラジカル重合性単量体を重合して得られるものであってよい。ウレタン重合体及びアクリル重合体を含む複合体からなる重合体粒子は、滑り止め性と非粘着性のバランスに優れる。 The composite may be, for example, one obtained by polymerizing a radical polymerizable monomer containing a (meth) acrylic monomer in the presence of a urethane polymer. Polymer particles composed of a composite containing a urethane polymer and an acrylic polymer have an excellent balance between non-slip properties and non-stick properties.
 重合体粒子を構成する複合体は、本発明の効果を損なわない範囲において、必要に応じてウレタン重合体及びアクリル重合体以外の成分をさらに含んでいてもよい。 複合 The composite constituting the polymer particles may further contain a component other than the urethane polymer and the acrylic polymer, if necessary, as long as the effects of the present invention are not impaired.
 ウレタン重合体及びアクリル重合体の合計のうち、アクリル重合体の割合は、10質量%以上90質量%未満が好ましい。
 アクリル重合体の割合が前記下限値以上であれば、重合体粒子による滑り止め性がさらに優れる。アクリル重合体の割合が前記上限値未満であれば、重合体粒子による非粘着性がさらに優れる。また、滑り止め加工された繊維加工品を含む滑り止め加工された加工対象物の耐洗濯性に優れる。
The proportion of the acrylic polymer in the total of the urethane polymer and the acrylic polymer is preferably from 10% by mass to less than 90% by mass.
When the proportion of the acrylic polymer is equal to or more than the lower limit, the anti-slip property of the polymer particles is further excellent. When the proportion of the acrylic polymer is less than the upper limit, the non-adhesiveness of the polymer particles is further excellent. In addition, a non-slip processed object including a non-slip processed fiber product is excellent in washing resistance.
 (ウレタン重合体)
 ウレタン重合体は、多価アルコールと多価イソシアネートとを反応させて得られる樹脂である。
(Urethane polymer)
A urethane polymer is a resin obtained by reacting a polyhydric alcohol with a polyvalent isocyanate.
 多価アルコールは、1分子中に2つ以上のヒドロキシ基を有する有機化合物である。
 多価アルコールとしては、例えば、下記のものが挙げられる。
Polyhydric alcohols are organic compounds having two or more hydroxy groups in one molecule.
Examples of the polyhydric alcohol include the following.
 ・低分子量ジオール:エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、ジエチレングリコール、トリメチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ヘキサンジオール、シクロヘキサンジメタノール等。
 ・3つ以上のヒドロキシ基を有する低分子量ポリオール:グリセリン、トリメチロールプロパン、ペンタエリスリトール等。
 ・ポリエーテルジオール:ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール、低分子量ジオールの少なくとも一種とエチレンオキサイド、プロピレンオキサイド、テトラヒドロフラン等とを付加重合させて得られるポリエーテルジオール等。
 ・低分子量ジオールの少なくとも一種とジカルボン酸(アジピン酸、セバシン酸、イタコン酸、無水マレイン酸、テレフタル酸、イソフタル酸等)とを重縮合して得られるポリエステルジオール。
 ・他の多価アルコール:ポリカプロラクトンジオール、ポリカーボネートジオール、ポリブタジエンジオール、水添ポリブタジエンジオール、ポリアクリル酸エステルジオール等。
Low molecular weight diols: ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, Neopentyl glycol, diethylene glycol, trimethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, hexanediol, cyclohexanedimethanol and the like.
-Low molecular weight polyol having three or more hydroxy groups: glycerin, trimethylolpropane, pentaerythritol and the like.
-Polyether diol: Polyether diol obtained by addition polymerization of at least one of polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol and low molecular weight diol with ethylene oxide, propylene oxide, tetrahydrofuran and the like.
A polyester diol obtained by polycondensing at least one low molecular weight diol with a dicarboxylic acid (eg, adipic acid, sebacic acid, itaconic acid, maleic anhydride, terephthalic acid, isophthalic acid).
-Other polyhydric alcohols: polycaprolactone diol, polycarbonate diol, polybutadiene diol, hydrogenated polybutadiene diol, polyacrylate diol and the like.
 多価アルコールは、1種を単独で用いてもよく、2種以上を併用してもよい。
 多価アルコールは、滑り止め加工剤から形成される塗膜の柔軟性を高くする点からは、ポリエーテルジオールを含むことが好ましい。多価アルコールは、非粘着性を高くする点からは、ポリカーボネートジオールを含むことが好ましい。
One type of polyhydric alcohol may be used alone, or two or more types may be used in combination.
The polyhydric alcohol preferably contains polyether diol from the viewpoint of increasing the flexibility of the coating film formed from the anti-slip agent. The polyhydric alcohol preferably contains a polycarbonate diol from the viewpoint of increasing the non-adhesiveness.
 多価イソシアネートは、1分子中に2つ以上のイソシアネート基を有する有機化合物である。
 多価イソシアネートとしては、例えば、下記のものが挙げられる。
A polyvalent isocyanate is an organic compound having two or more isocyanate groups in one molecule.
Examples of the polyvalent isocyanate include the following.
 ・脂肪族多価イソシアネート:1,6-ヘキサメチレンジイソシアネート等。
 ・脂環式多価イソシアネート:ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート、1,3-シクロヘキサンジイソシアネート、1,4-シクロヘキサンジイソシアネート等。
 ・芳香族多価イソシアネート:2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、2,2’-ジフェニルメタンジイソシアネート等。
-Aliphatic polyvalent isocyanate: 1,6-hexamethylene diisocyanate and the like.
Alicyclic polyvalent isocyanate: dicyclohexylmethane diisocyanate, isophorone diisocyanate, 1,3-cyclohexane diisocyanate, 1,4-cyclohexane diisocyanate, etc.
-Aromatic polyvalent isocyanate: 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 2,2'-diphenylmethane diisocyanate and the like.
 多価イソシアネートは、1種を単独で用いてもよく、2種以上を併用してもよい。
 多価イソシアネートとしては、ウレタン重合体が黄変しにくい点から、脂肪族多価イソシアネート又は脂環式多価イソシアネートが好ましい。
As the polyvalent isocyanate, one type may be used alone, or two or more types may be used in combination.
As the polyvalent isocyanate, an aliphatic polyvalent isocyanate or an alicyclic polyvalent isocyanate is preferable because the urethane polymer is unlikely to yellow.
 ウレタン重合体の質量平均分子量は、後述する重合体粒子の製造の際にラジカル重合性単量体の反応性が向上する点から、500以上が好ましく、1000以上がより好ましい。ウレタン重合体の質量平均分子量は、滑り止め加工された繊維加工品を含む滑り止め加工された加工対象物の耐久性の点から、50万以下が好ましく、10万以下がより好ましい。例えば、ウレタン重合体の質量平均分子量は、500~50万が好ましく、1000~10万がより好ましい。 The mass average molecular weight of the urethane polymer is preferably 500 or more, more preferably 1000 or more, from the viewpoint of improving the reactivity of the radical polymerizable monomer in the production of polymer particles described below. The mass average molecular weight of the urethane polymer is preferably 500,000 or less, more preferably 100,000 or less, from the viewpoint of the durability of the non-slip processed object including the non-slip processed fiber product. For example, the mass average molecular weight of the urethane polymer is preferably 500 to 500,000, more preferably 1,000 to 100,000.
 ウレタン重合体としては、多価アルコールとしてポリエーテルジオールを用いて製造された、ポリエーテル系のウレタン重合体が好ましい。 As the urethane polymer, a polyether-based urethane polymer produced using polyether diol as a polyhydric alcohol is preferable.
 ウレタン重合体の製造方法としては、例えば、ジオキサン等のエーテル中で、多価アルコールと多価イソシアネートとを、ジブチル錫ジラウレート等の触媒を用いて反応させる方法が挙げられる。 Examples of the method for producing the urethane polymer include a method in which a polyhydric alcohol and a polyvalent isocyanate are reacted in an ether such as dioxane using a catalyst such as dibutyltin dilaurate.
 (アクリル重合体)
 アクリル重合体は、(メタ)アクリル系単量体を含むラジカル重合性単量体を重合してなる重合体である。
 アクリル重合体は、(メタ)アクリル系単量体の1種からなる単独重合体であってもよく、(メタ)アクリル系単量体の2種以上からなる共重合体であってもよく、(メタ)アクリル系単量体と他のラジカル重合性単量体との共重合体であってもよい。
(Acrylic polymer)
The acrylic polymer is a polymer obtained by polymerizing a radical polymerizable monomer containing a (meth) acrylic monomer.
The acrylic polymer may be a homopolymer composed of one type of (meth) acrylic monomer, or a copolymer composed of two or more types of (meth) acrylic monomer, A copolymer of a (meth) acrylic monomer and another radical polymerizable monomer may be used.
 (メタ)アクリル系単量体としては、例えば、下記のものが挙げられる。 Examples of the (meth) acrylic monomer include the following.
 ・炭素原子数1~18のアルキル基を有するアルキル(メタ)アクリレート:メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ステアリル(メタ)アクリレート等。
 ・ヒドロキシ基含有(メタ)アクリレート:2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、グリセロールモノ(メタ)アクリレート等。
 ・ポリオキシアルキレン基含有(メタ)アクリレート:ヒドロキシポリエチレンオキシドモノ(メタ)アクリレート、ヒドロキシポリプロピレンオキシドモノ(メタ)アクリレート、ヒドロキシ(ポリエチレンオキシド-ポリプロピレンオキシド)モノ(メタ)アクリレート、ヒドロキシ(ポリエチレンオキシド-プロピレンオキシド)モノ(メタ)アクリレート、ヒドロキシ(ポリエチレンオキシド-ポリテトラメチレンオキシド)モノ(メタ)アクリレート、ヒドロキシ(ポリエチレンオキシド-テトラメチレンオキシド)モノ(メタ)アクリレート、ヒドロキシ(ポリプロピレンオキシド-ポリテトラメチレンオキシド)モノ(メタ)アクリレート、ヒドロキシ(ポリプロピレンオキシド-テトラメチレンオキシド)モノ(メタ)アクリレート、メトキシポリエチレンオキシドモノ(メタ)アクリレート、ラウロキシポリエチレンオキシドモノ(メタ)アクリレート、ステアロキシポリエチレンオキシドモノ(メタ)アクリレート、アリロキシポリエチレンオキシドモノ(メタ)アクリレート、ノニルフェノキシポリエチレンオキシドモノ(メタ)アクリレート、ノニルフェノキシポリプロピレンオキシドモノ(メタ)アクリレート、オクトキシ(ポリエチレンオキシド-ポリプロピレンオキシド)モノ(メタ)アクリレート、ノニルフェノキシ(ポリエチレンオキシド-プロピレンオキシド)モノ(メタ)アクリレート等。
 ・オキシラン基含有(メタ)アクリレート:グリシジル(メタ)アクリレート等。
 ・ヒドロキシシクロアルキル(メタ)アクリレート:p-ヒドロキシシクロヘキシル(メタ)アクリレート、o-ヒドロキシシクロヘキシル(メタ)アクリレート等。
 ・ラクトン変性ヒドロキシル基含有(メタ)アクリレート:プラクセル(登録商標。以下同様。)FM1(商品名、ダイセル社製)、プラクセルFM2(商品名、ダイセル社製)等。
 ・アミノアルキル(メタ)アクリレート:2-アミノエチル(メタ)アクリレート、2-ジメチルアミノエチル(メタ)アクリレート、2-アミノプロピル(メタ)アクリレート、2-ブチルアミノエチル(メタ)アクリレート等。
 ・アミド基含有(メタ)アクリル系単量体:(メタ)アクリルアミド、N-メチロールアクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、ジアセトンアクリルアミド等。
 ・カルボキシ基含有(メタ)アクリル系単量体:(メタ)アクリル酸、シュウ酸モノヒドロキシエチル(メタ)アクリレート、テトラヒドロフタル酸モノヒドロキシエチル(メタ)アクリレート、テトラヒドロフタル酸モノヒドロキシプロピル(メタ)アクリレート、5-メチル-1,2-シクロヘキサンジカルボン酸モノヒドロキシエチル(メタ)アクリレート、フタル酸モノヒドロキシエチル(メタ)アクリレート、フタル酸モノヒドロキシプロピル(メタ)アクリレート、マレイン酸モノヒドロキシエチル(メタ)アクリレート、マレイン酸ヒドロキシプロピル(メタ)アクリレート、テトラヒドロフタル酸モノヒドロキシブチル(メタ)アクリレート等。
 ・多官能(メタ)アクリレート:エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート等。
 ・金属含有(メタ)アクリル系単量体:ジアクリル酸亜鉛、ジメタクリル酸亜鉛等。
 ・耐紫外線基含有(メタ)アクリレート:2-(2’-ヒドロキシ-5’-(メタ)アクリロキシエチルフェニル)-2H-ベンゾトリアゾール、1-(メタ)アクリロイル-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン、1-(メタ)アクリロイル-4-メトキシ-2,2,6,6-テトラメチルピペリジン、1-(メタ)アクリロイル-4-アミノ-4-シアノ-2,2,6,6-テトラメチルピペリジン等。
 ・他の(メタ)アクリル系単量体;ジメチルアミノエチル(メタ)アクリレートメチルクロライド塩、アリル(メタ)アクリレート、グリシジル(メタ)アクリレート、(メタ)アクリロニトリル、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、イソボルニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート等が挙げられる。
Alkyl (meth) acrylate having an alkyl group having 1 to 18 carbon atoms: methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, sec-butyl ( (Meth) acrylate, t-butyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, stearyl (meth) acrylate and the like.
・ Hydroxy group-containing (meth) acrylate: 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, glycerol mono (meth) acrylate Acrylate and the like.
・ Polyoxyalkylene group-containing (meth) acrylate: hydroxypolyethylene oxide mono (meth) acrylate, hydroxypolypropylene oxide mono (meth) acrylate, hydroxy (polyethylene oxide-polypropylene oxide) mono (meth) acrylate, hydroxy (polyethylene oxide-propylene oxide) ) Mono (meth) acrylate, hydroxy (polyethylene oxide-polytetramethylene oxide) mono (meth) acrylate, hydroxy (polyethylene oxide-tetramethylene oxide) mono (meth) acrylate, hydroxy (polypropylene oxide-polytetramethylene oxide) mono ( (Meth) acrylate, hydroxy (polypropylene oxide-tetramethylene oxide) mono (meth) acrylate Rate, methoxy polyethylene oxide mono (meth) acrylate, lauroxy polyethylene oxide mono (meth) acrylate, stearoxy polyethylene oxide mono (meth) acrylate, allyloxy polyethylene oxide mono (meth) acrylate, nonylphenoxy polyethylene oxide mono (meth) acrylate And nonylphenoxy polypropylene oxide mono (meth) acrylate, octoxy (polyethylene oxide-polypropylene oxide) mono (meth) acrylate, nonylphenoxy (polyethylene oxide-propylene oxide) mono (meth) acrylate, and the like.
-Oxirane group-containing (meth) acrylate: glycidyl (meth) acrylate and the like.
-Hydroxycycloalkyl (meth) acrylate: p-hydroxycyclohexyl (meth) acrylate, o-hydroxycyclohexyl (meth) acrylate and the like.
-Lactone-modified hydroxyl group-containing (meth) acrylate: Praxel (registered trademark; the same applies hereinafter) FM1 (trade name, manufactured by Daicel), Plaxel FM2 (trade name, manufactured by Daicel) and the like.
-Aminoalkyl (meth) acrylate: 2-aminoethyl (meth) acrylate, 2-dimethylaminoethyl (meth) acrylate, 2-aminopropyl (meth) acrylate, 2-butylaminoethyl (meth) acrylate, and the like.
Amide group-containing (meth) acrylic monomers: (meth) acrylamide, N-methylolacrylamide, N-butoxymethyl (meth) acrylamide, diacetoneacrylamide and the like.
Carboxy group-containing (meth) acrylic monomers: (meth) acrylic acid, monohydroxyethyl oxalate (meth) acrylate, monohydroxyethyl tetrahydrophthalate (meth) acrylate, monohydroxypropyl tetrahydrophthalate (meth) acrylate Monohydroxyethyl (meth) acrylate, 5-methyl-1,2-cyclohexanedicarboxylate, monohydroxyethyl (meth) acrylate phthalate, monohydroxypropyl (meth) acrylate phthalate, monohydroxyethyl (meth) acrylate maleate, Hydroxypropyl (meth) acrylate maleate, monohydroxybutyl (meth) acrylate tetrahydrophthalate, and the like.
-Multifunctional (meth) acrylate: ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and the like.
Metal-containing (meth) acrylic monomers: zinc diacrylate, zinc dimethacrylate, and the like.
-UV-resistant group-containing (meth) acrylate: 2- (2'-hydroxy-5 '-(meth) acryloxyethylphenyl) -2H-benzotriazole, 1- (meth) acryloyl-4-hydroxy-2,2, 6,6-tetramethylpiperidine, 1- (meth) acryloyl-4-methoxy-2,2,6,6-tetramethylpiperidine, 1- (meth) acryloyl-4-amino-4-cyano-2,2,2 6,6-tetramethylpiperidine and the like.
-Other (meth) acrylic monomers; dimethylaminoethyl (meth) acrylate methyl chloride salt, allyl (meth) acrylate, glycidyl (meth) acrylate, (meth) acrylonitrile, phenyl (meth) acrylate, benzyl (meth) Examples include acrylate, isobornyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, methoxyethyl (meth) acrylate, and ethoxyethyl (meth) acrylate.
 他のラジカル重合性単量体としては、例えば、下記のものが挙げられる。 Examples of other radically polymerizable monomers include the following.
 ・芳香族ビニル系単量体:スチレン、メチルスチレン等。
 ・共役ジエン系単量体:1,3-ブタジエン、イソプレン等。
 ・他のラジカル重合性単量体:酢酸ビニル、塩化ビニル、エチレン、イタコン酸、シトラコン酸、マレイン酸、マレイン酸モノメチル、マレイン酸モノブチル、イタコン酸モノメチル、イタコン酸モノブチル、ビニル安息香酸等。
-Aromatic vinyl monomers: styrene, methylstyrene, etc.
-Conjugated diene monomers: 1,3-butadiene, isoprene and the like.
-Other radically polymerizable monomers: vinyl acetate, vinyl chloride, ethylene, itaconic acid, citraconic acid, maleic acid, monomethyl maleate, monobutyl maleate, monomethyl itaconate, monobutyl itaconate, vinylbenzoic acid, and the like.
 また、アクリル重合体としては、非粘着性に優れるため、ラジカル重合性基を2つ以上有する単量体に基づく構成単位を有することが好ましい。
 ラジカル重合性基を2つ以上有する単量体としては、エチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、2-ヒドロキシ-1,3-ジ(メタ)アクリロキシプロパン、2,2-ビス[4-(アクリロキシエトキシ)フェニル]プロパン、2,2-ビス[4-(メタクリロキシエトキシ)フェニル]プロパン、2,2-ビス[4-(アクリロキシ・ポリエトキシ)フェニル]プロパン、2,2-ビス[4-(メタクリロキシ・ポリエトキシ)フェニル]プロパン、2-ヒドロキシ-1-アクリロキシ-3-メタクリロキシプロパン、エチレンオキサイド変性ビスフェノールAジ(メタ)アクリレート、プロピレンオキサイド変性ビスフェノールAジ(メタ)アクリレート、エチレンオキサイド変性水添ビスフェノールAジ(メタ)アクリレート、プロピレンオキサイド変性水添ビスフェノールAジ(メタ)アクリレート、ビスフェノールAのジグリシジルエーテルにヒドロキシ(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレートを付加させたエポキシ(メタ)アクリレート、ポリオキシアルキレン化ビスフェノールAジ(メタ)アクリレート等のジオールと(メタ)アクリル酸のジエステル化合物;トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。これらの中でも、アリル基と(メタ)アクリロイル基を有する単量体が好ましく、アリル(メタ)アクリレートがさらに好ましい。
In addition, the acrylic polymer preferably has a structural unit based on a monomer having two or more radically polymerizable groups because of its excellent non-adhesiveness.
Monomers having two or more radically polymerizable groups include ethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, and polypropylene glycol. Di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 2-hydroxy-1,3-di (meth) ) Acryloxypropane, 2,2-bis [4- (acryloxyethoxy) phenyl] propane, 2,2-bis [4- (methacryloxyethoxy) phenyl] propane, 2,2-bis [4- (acryloxy. Polyethoxy) phenyl] propa , 2,2-bis [4- (methacryloxypolyethoxy) phenyl] propane, 2-hydroxy-1-acryloxy-3-methacryloxypropane, ethylene oxide-modified bisphenol A di (meth) acrylate, propylene oxide-modified bisphenol A di ( (Meth) acrylate, ethylene oxide-modified hydrogenated bisphenol A di (meth) acrylate, propylene oxide-modified hydrogenated bisphenol A di (meth) acrylate, diglycidyl ether of bisphenol A and hydroxyalkyl (meth) acrylate such as hydroxy (meth) acrylate Diester compounds of diol and (meth) acrylic acid such as epoxy (meth) acrylate and polyoxyalkylenated bisphenol A di (meth) acrylate to which Tyrolpropane tri (meth) acrylate, tetramethylol methane tri (meth) acrylate, tetramethylol methane tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate And dipentaerythritol hexa (meth) acrylate. Among these, a monomer having an allyl group and a (meth) acryloyl group is preferable, and allyl (meth) acrylate is more preferable.
 ラジカル重合性基を2つ以上有する単量体に基づく構成単位の含有量は、重合体粒子100質量%のうち、0.01~5.0質量%が好ましい。
 ラジカル重合性基を2つ以上有する単量体に基づく構成単位の割合が、前記下限値以上であれば、非粘着性に優れる。ラジカル重合性基を2つ以上有する単量体に基づく構成単位の割合が、前記上限値以下であれば、膜の耐久性が優れる。
The content of the structural unit based on the monomer having two or more radically polymerizable groups is preferably 0.01 to 5.0% by mass based on 100% by mass of the polymer particles.
When the proportion of the structural unit based on the monomer having two or more radically polymerizable groups is equal to or more than the lower limit, the non-adhesiveness is excellent. When the proportion of the structural unit based on the monomer having two or more radically polymerizable groups is equal to or less than the above upper limit, the durability of the film is excellent.
 アクリル重合体としては、滑り止め加工剤を硬化させたときに架橋構造が形成され、滑り止め加工された繊維加工品を含む滑り止め加工された加工対象物の非粘着性が向上し、長期間の使用や高温での使用においても床等を汚しにくい点から、ジアセトンアクリルアミドに基づく構成単位を有するものが好ましい。 As an acrylic polymer, when a non-slip processing agent is cured, a crosslinked structure is formed, and the non-stick property of a non-slip processed object including a non-slip processed fiber product is improved, and the It is preferable to use a diacetone acrylamide-based structural unit, since the floor and the like are not easily soiled even when used at high temperatures.
 ジアセトンアクリルアミドに基づく構成単位の含有量は、重合体粒子100質量%のうち、0.1~10.0質量%が好ましい。
 ジアセトンアクリルアミドに基づく構成単位の割合が前記下限値以上であれば、滑り止め加工された繊維加工品を含む滑り止め加工された加工対象物の非粘着性がさらに優れる。ジアセトンアクリルアミドに基づく構成単位の割合が前記上限値以下であれば、滑り止め加工された繊維加工品を含む滑り止め加工された加工対象物の滑り止め性の低下が抑えられる。
The content of the structural unit based on diacetone acrylamide is preferably 0.1 to 10.0% by mass based on 100% by mass of the polymer particles.
When the proportion of the structural unit based on diacetone acrylamide is equal to or more than the lower limit, the non-adhesiveness of the non-slip processed object including the non-slip processed fiber product is further improved. When the proportion of the structural unit based on diacetone acrylamide is equal to or less than the upper limit, a decrease in the non-slip properties of the non-slip processed object including the non-slip processed fiber product is suppressed.
 アクリル重合体の質量平均分子量は、5万~500万が好ましい。滑り止め加工された繊維加工品を含む滑り止め加工された加工対象物の耐久性の点から、10万以上がより好ましく、滑り止め加工剤の成膜性の点から、400万以下がより好ましい。例えば、アクリル重合体の質量平均分子量は、10万~400万がより好ましい。 質量 The mass average molecular weight of the acrylic polymer is preferably 50,000 to 5,000,000. 100,000 or more is more preferable from the viewpoint of the durability of the non-slip processed object including the non-slip processed fiber product, and 4,000,000 or less is more preferable from the viewpoint of the film forming property of the non-slip processing agent. . For example, the weight average molecular weight of the acrylic polymer is more preferably from 100,000 to 4,000,000.
 アクリル重合体のTgは、-60~10℃が好ましい。
 アクリル重合体のTgが前記下限値以上であれば、滑り止め加工された繊維加工品を含む滑り止め加工された加工対象物の非粘着性がさらに優れる。アクリル重合体のTgが前記上限値以下であれば、滑り止め加工された繊維加工品を含む滑り止め加工された加工対象物の滑り止め性がさらに優れる。
The Tg of the acrylic polymer is preferably from -60 to 10 ° C.
When the Tg of the acrylic polymer is equal to or greater than the lower limit, the non-adhesiveness of a non-slip processed object including a non-slip processed fiber product is further improved. When the Tg of the acrylic polymer is equal to or less than the upper limit, the non-slip properties of the non-slip processed object including the non-slip processed fiber product are further improved.
 (他の成分)
 本発明の滑り止め加工剤の第1の態様が含んでもよい他の成分としては、添加剤、他のエマルション樹脂、水溶性樹脂等が挙げられる。
(Other ingredients)
Other components that may be included in the first embodiment of the antiskid agent of the present invention include additives, other emulsion resins, water-soluble resins, and the like.
 添加剤としては、界面活性剤、各種顔料、消泡剤、顔料分散剤、レベリング剤、たれ防止剤、艶消し剤、紫外線吸収剤、光安定化剤、酸化防止剤、耐熱性向上剤、防腐剤、可塑剤、造膜助剤、粘性制御剤、硬化剤等が挙げられる。
 他のエマルション樹脂としては、ポリエステル系樹脂、アクリルシリコーン系樹脂、シリコーン系樹脂、フッ素系樹脂、エポキシ系樹脂等が挙げられる。
 硬化剤としては、メラミン類、イソシアネート類等が挙げられる。
Additives include surfactants, various pigments, antifoaming agents, pigment dispersants, leveling agents, anti-sagging agents, matting agents, ultraviolet absorbers, light stabilizers, antioxidants, heat resistance improvers, preservatives Agents, plasticizers, film-forming auxiliaries, viscosity control agents, curing agents and the like.
Examples of other emulsion resins include polyester resins, acrylic silicone resins, silicone resins, fluorine resins, epoxy resins, and the like.
Examples of the curing agent include melamines and isocyanates.
 (静摩擦係数)
 本発明の滑り止め加工剤の第1の態様としては、滑り止め加工された繊維加工品を含む滑り止め加工された加工対象物の滑り止め性がさらに優れる点から、上述した「静摩擦係数の求め方I」で求めた静摩擦係数が0.6以上となるものが好ましく、滑り止め加工された面積の小さな繊維加工品を含む滑り止め加工された面積の小さな加工対象物においても十分な滑り止め性を発揮する点から、「静摩擦係数の求め方I」で求めた静摩擦係数が0.7以上となるものがより好ましい。静摩擦係数は0.85以上がさらに好ましい。
(Static friction coefficient)
As a first aspect of the anti-slip processing agent of the present invention, the above-mentioned “calculation of static friction coefficient” is described from the viewpoint that the anti-slip property of a non-slip processed object including a non-slip processed fiber product is more excellent. It is preferable that the static friction coefficient obtained in Method I is 0.6 or more, and sufficient anti-slip properties can be obtained even for a non-slip processed object having a small area including a non-slip processed fiber processed product. From the viewpoint of exhibiting the following, it is more preferable that the static friction coefficient obtained by the “method I of obtaining static friction coefficient I” be 0.7 or more. The coefficient of static friction is more preferably 0.85 or more.
 (せん断接着強度)
 本発明の滑り止め加工剤の第1の態様としては、滑り止め加工された繊維加工品を含む滑り止め加工された加工対象物の床等に対する非粘着性がさらに優れ、長期間の使用や高温での使用においても床等を汚しにくい点から、上述した「せん断接着強度の求め方I」で求めたせん断接着強度が5N未満となるものが好ましい。せん断接着強度は、1N未満がより好ましい。
(Shear bond strength)
As a first embodiment of the anti-slipping agent of the present invention, non-adhesiveness of a non-slip processed object including a non-slip processed fiber product to a floor or the like is more excellent, It is preferable that the shear adhesive strength obtained by the above-mentioned "Method of obtaining shear adhesive strength I" is less than 5 N in that the floor and the like are not easily soiled even in the use of the above. The shear bond strength is more preferably less than 1N.
 (滑り止め加工剤の製造)
 本発明の滑り止め加工剤の第1の態様は、例えば、下記の方法によって製造できる。
 ・ウレタン重合体水分散液中のウレタン重合体粒子に(メタ)アクリル系単量体を含むラジカル重合性単量体を含浸させてラジカル重合し、ウレタン重合体及びアクリル重合体を含む複合体からなる重合体粒子を形成する方法。
 ・(メタ)アクリル系単量体を含むラジカル重合性単量体、多価アルコール及び多価イソシアネートの混合液中で多価アルコールと多価イソシアネートとを反応させてウレタン重合体を形成し、混合液を水に分散し、ラジカル重合性単量体をラジカル重合し、ウレタン重合体及びアクリル重合体を含む複合体からなる重合体粒子を形成する方法。
(Manufacture of anti-slip agent)
The first embodiment of the anti-slip agent of the present invention can be produced, for example, by the following method.
-Urethane polymer particles in an aqueous urethane polymer dispersion liquid are impregnated with a radical polymerizable monomer containing a (meth) acrylic monomer to undergo radical polymerization, from a composite containing a urethane polymer and an acrylic polymer. To form polymer particles.
・ A urethane polymer is formed by reacting a polyhydric alcohol and a polyisocyanate in a mixture of a radical polymerizable monomer containing a (meth) acrylic monomer, a polyhydric alcohol and a polyvalent isocyanate, and mixing A method in which a liquid is dispersed in water and radical polymerizable monomers are radically polymerized to form polymer particles comprising a composite containing a urethane polymer and an acrylic polymer.
 ウレタン重合体水分散液は、ウレタン重合体を水に分散させたものである。ウレタン重合体の水への分散性を高めるために、ウレタン重合体にカルボキシ基及びスルホン酸基の少なくとも一方を導入することが好ましい。特に、ウレタン重合体にスルホン酸基を導入すると、ラジカル重合性単量体の重合安定性が向上する。また、ウレタン重合体を界面活性剤によって乳化してもよい。 The urethane polymer aqueous dispersion is obtained by dispersing a urethane polymer in water. In order to enhance the dispersibility of the urethane polymer in water, it is preferable to introduce at least one of a carboxy group and a sulfonic acid group into the urethane polymer. In particular, when a sulfonic acid group is introduced into the urethane polymer, the polymerization stability of the radically polymerizable monomer is improved. Further, the urethane polymer may be emulsified with a surfactant.
 ウレタン重合体水分散液中のウレタン重合体粒子の平均粒子径は、最終的に得られる重合体粒子の粒子径が適切なものになり、また、得られる塗膜の物性が向上する点から、10nm以上が好ましく、30nm以上がより好ましく、40nm以上がさらに好ましい。ウレタン重合体水分散液中のウレタン重合体粒子の平均粒子径は、ウレタン重合体水分散液の安定性の点から、1000nm以下が好ましく、500nm以下がより好ましく、300nm以下がさらに好ましい。
 例えば、ウレタン重合体水分散液中のウレタン重合体粒子の平均粒子径は、10~1000nmが好ましく、30~500nmがより好ましく、40~300nmがさらに好ましい。
The average particle size of the urethane polymer particles in the urethane polymer aqueous dispersion is such that the particle size of the finally obtained polymer particles becomes appropriate, and that the physical properties of the obtained coating film are improved. It is preferably at least 10 nm, more preferably at least 30 nm, even more preferably at least 40 nm. The average particle diameter of the urethane polymer particles in the aqueous urethane polymer dispersion is preferably 1,000 nm or less, more preferably 500 nm or less, and even more preferably 300 nm or less, from the viewpoint of the stability of the urethane polymer aqueous dispersion.
For example, the average particle size of the urethane polymer particles in the urethane polymer aqueous dispersion is preferably from 10 to 1,000 nm, more preferably from 30 to 500 nm, and even more preferably from 40 to 300 nm.
 ウレタン重合体水分散液中のウレタン重合体の含有量は、滑り止め加工剤の固形分濃度を10~60質量%の範囲に容易に調整できる点から、10質量%以上が好ましく、25質量%以上がより好ましい。ウレタン重合体水分散液中のウレタン重合体の含有量は、滑り止め加工剤が良好な塗工性を発現する点から、70質量%以下が好ましく、60質量%以下がより好ましい。
 例えば、ウレタン重合体水分散液中のウレタン重合体の含有量は、10~70質量%が好ましく、25~60質量%がより好ましい。
The content of the urethane polymer in the urethane polymer aqueous dispersion is preferably 10% by mass or more, and more preferably 25% by mass, since the solid content of the anti-slip agent can be easily adjusted to the range of 10 to 60% by mass. The above is more preferable. The content of the urethane polymer in the urethane polymer aqueous dispersion is preferably 70% by mass or less, and more preferably 60% by mass or less, from the viewpoint that the anti-slip agent exhibits good coating properties.
For example, the content of the urethane polymer in the urethane polymer aqueous dispersion is preferably from 10 to 70% by mass, and more preferably from 25 to 60% by mass.
 ウレタン重合体水分散液は、市販のウレタン重合体水分散液(ポリウレタンディスパージョン:PUD)をそのまま用いてもよい。市販のウレタン重合体水分散液としては、例えば、下記のものが挙げられる。 As the urethane polymer aqueous dispersion, a commercially available urethane polymer aqueous dispersion (polyurethane dispersion: PUD) may be used as it is. Examples of commercially available aqueous urethane polymer dispersions include the following.
 ・第一工業製薬社製:スーパーフレックス(登録商標。以下同様。)110、スーパーフレックス150、スーパーフレックス210、スーパーフレックス300、スーパーフレックス420、スーパーフレックス460、スーパーフレックス470、スーパーフレックス500M、スーパーフレックス620、スーパーフレックス650、スーパーフレックス740、スーパーフレックス820、スーパーフレックス840、F-8082D。
 ・住化コベストロウレタン社製:バイヒドロール(登録商標。以下同様。)UH2606、バイヒドロールUH650、バイヒドロールUHXP2648、バイヒドロールUHXP2650、インプラニールDLE、インプラニールDLC-F、インプラニールDLN、インプラニールDLP-R、インプラニールDLS、インプラニールDLU、インプラニールXP2611、インプラニールLPRSC1380、インプラニールLPRSC1537、インプラニールLPRSC1554、インプラニールDL3040、ディスパコール(登録商標。以下同様。)U53。
 ・DIC社製:ハイドラン(登録商標。以下同様。)HW-301、HW-310、HW-311、HW-312B、HW-333、HW-340、HW-350、HW-375、HW-920、HW-930、HW-940、HW-950、HW-970、AP-10、AP-20、ECOS3000。
 ・三洋化成工業社製:ユーコート(登録商標。以下同様。)UWS-145、パーマリン(登録商標。以下同様。)UA-150、パーマリンUA-200、パーマリンUA-300、パーマリンUA-310、ユーコートUX-320、パーマリンUA-368、パーマリンUA-385、ユーコートUX-2510。
 ・日華化学社製:ネオステッカー(登録商標。以下同様。)100C、エバファノール(登録商標。以下同様。)HA-107C、エバファノールHA-50C、エバファノールHA-170、エバファノールHA-560。
 ・ADEKA社製:アデカボンタイター(登録商標。以下同様。)UHX-210、アデカボンタイターUHX-280等。
-Manufactured by Daiichi Kogyo Seiyaku Co., Ltd .: Superflex (registered trademark; the same applies hereinafter) 110, Superflex 150, Superflex 210, Superflex 300, Superflex 420, Superflex 460, Superflex 470, Superflex 500M, Superflex 620, Superflex 650, Superflex 740, Superflex 820, Superflex 840, F-8082D.
-Manufactured by Sumika Kovestoururethane Co .: Bihydrol (registered trademark; the same applies hereinafter) UH2606, Bihydrol UH650, Bihydrol UHXP2648, Bihydrol UHXP2650, Impranyl DLE, Impranyl DLC-F, Impranyl DLN, Impranyl DLP-R, Impra Neal DLS, Impranyl DLU, Impranyl XP2611, Impranyl LPRSC1380, Impranyl LPRSC1537, Impranyl LPRSC1554, Impranyl DL3040, Dispacoll (registered trademark) U53.
-DIC Corporation: Hydran (registered trademark; the same applies hereinafter) HW-301, HW-310, HW-311, HW-312B, HW-333, HW-340, HW-350, HW-375, HW-920, HW-930, HW-940, HW-950, HW-970, AP-10, AP-20, ECOS3000.
-Sanyo Kasei Kogyo Co., Ltd .: Ucoat (registered trademark; the same applies hereinafter) UWS-145, Permarin (registered trademark; the same applies hereinafter) UA-150, Permarin UA-200, Permarin UA-300, Permarine UA-310, Ucoat UX -320, Permarine UA-368, Permarine UA-385, Ucoat UX-2510.
-Nikka Chemical Co., Ltd .: NeoSticker (registered trademark; the same applies hereinafter) 100C, Evaphanol (registered trademark; the same applies hereinafter) HA-107C, Evaphanol HA-50C, Evaphanol HA-170, Evaphanol HA-560.
-Made by ADEKA: Adekabon titer (registered trademark; the same applies hereinafter) UHX-210, Adekabon titer UHX-280, etc.
 ウレタン重合体水分散液は、1種を単独で用いてもよく、2種以上を併用してもよい。 The urethane polymer aqueous dispersion may be used alone or in combination of two or more.
 ラジカル重合性単量体の重合に用いるラジカル重合開始剤としては、例えば、下記のものが挙げられる。 Examples of the radical polymerization initiator used for the polymerization of the radical polymerizable monomer include the following.
 ・過硫酸塩:過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等。
 ・油溶性アゾ化合物:アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2-フェニルアゾ-4-メトキシ-2,4-ジメチルバレロニトリル等。
 ・水溶性アゾ化合物:2,2’-アゾビス{2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド}、2,2’-アゾビス{2-メチル-N-[2-(1-ヒドロキシエチル)]プロピオンアミド}、2,2’-アゾビス{2-メチル-N-[2-(1-ヒドロキシブチル)]プロピオンアミド}、2,2’-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]及びその塩類、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]及びその塩類、2,2’-アゾビス[2-(3,4,5,6-テトラヒドロピリミジン-2-イル)プロパン]及びその塩類、2,2’-アゾビス(1-イミノ-1-ピロリジノ-2-メチルプロパン)及びその塩類、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}及びその塩類、2,2’-アゾビス(2-メチルプロピオンアミジン)及びその塩類、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]及びその塩類等。
 ・有機過酸化物:過酸化ベンゾイル、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソブチレート等。
-Persulfate: potassium persulfate, sodium persulfate, ammonium persulfate and the like.
Oil-soluble azo compounds: azobisisobutyronitrile, 2,2'-azobis (2-methylbutyronitrile), 2,2'-azobis (2,4-dimethylvaleronitrile), 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2-phenylazo-4-methoxy-2,4-dimethylvaleronitrile and the like.
Water-soluble azo compound: 2,2′-azobis {2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide}, 2,2′-azobis {2-methyl- N- [2- (1-hydroxyethyl)] propionamide {, 2,2′-azobis {2-methyl-N- [2- (1-hydroxybutyl)] propionamide}, 2,2′-azobis [ 2- (5-methyl-2-imidazolin-2-yl) propane] and salts thereof, 2,2′-azobis [2- (2-imidazolin-2-yl) propane] and salts thereof, 2,2′- Azobis [2- (3,4,5,6-tetrahydropyrimidin-2-yl) propane] and salts thereof, 2,2′-azobis (1-imino-1-pyrrolidino-2-methylpropane) and salts thereof, 2,2'-azobi {2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane} and salts thereof, 2,2′-azobis (2-methylpropionamidine) and salts thereof, 2,2′-azobis [N- (2-carboxyethyl) -2-methylpropionamidine] and salts thereof.
-Organic peroxide: benzoyl peroxide, cumene hydroperoxide, t-butyl hydroperoxide, t-butylperoxy-2-ethylhexanoate, t-butylperoxyisobutyrate and the like.
 ラジカル重合開始剤の添加量は、ラジカル重合性単量体の総量100質量部に対して、通常0.01~10質量部であり、重合の進行や反応の制御を考慮に入れると、0.02~5質量部が好ましい。 The amount of the radical polymerization initiator to be added is usually 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of the radical polymerizable monomer. The amount is preferably from 2 to 5 parts by mass.
 アクリル重合体の分子量を調整するために分子量調整剤を用いてもよい。分子量調整剤としては、例えば、下記のものが挙げられる。 分子 A molecular weight modifier may be used to adjust the molecular weight of the acrylic polymer. Examples of the molecular weight modifier include the following.
 メルカプタン類:n-ドデシルメルカプタン、t-ドデシルメルカプタン、n-オクチルメルカプタン、n-テトラデシルメルカプタン、n-ヘキシルメルカプタン等。
 ハロゲン化合物:四塩化炭素、臭化エチレン等。
 公知の連鎖移動剤:α-メチルスチレンダイマー等。
Mercaptans: n-dodecyl mercaptan, t-dodecyl mercaptan, n-octyl mercaptan, n-tetradecyl mercaptan, n-hexyl mercaptan and the like.
Halogen compounds: carbon tetrachloride, ethylene bromide, etc.
Known chain transfer agents: α-methylstyrene dimer and the like.
 分子量調整剤の添加量は、ラジカル重合性単量体の総量100質量部に対して、通常1質量部以下である。 添加 The amount of the molecular weight modifier added is usually 1 part by mass or less based on 100 parts by mass of the total amount of the radical polymerizable monomer.
 (作用機序)
 以上説明した本発明の滑り止め加工剤の第1の態様にあっては、水性媒体と、水性媒体に分散した重合体粒子とを含み、重合体粒子が、ウレタン重合体及びアクリル重合体を含む複合体からなるため、滑り止め加工剤によって繊維加工品を含む加工対象物を滑り止め加工した際に形成される塗膜において、ウレタン重合体及びアクリル重合体が均一に存在する。その結果、アクリル重合体による滑り止め性と、ウレタン重合体による非粘着性の両方が十分に発揮されることになる。したがって、滑り止め性及び非粘着性(例えば、床等に対する非粘着性)に優れた滑り止め加工された繊維加工品を含む滑り止め加工された加工対象物を得ることができる。また、これらの滑り止め加工された加工対象物は、滑り止め性及び非粘着性(例えば、床等に対する非粘着性)に優れるため、幅広い用途に利用することができる。
(Mechanism of action)
In the first embodiment of the anti-slip processing agent of the present invention described above, an aqueous medium and polymer particles dispersed in the aqueous medium are included, and the polymer particles include a urethane polymer and an acrylic polymer. Because of the composite, the urethane polymer and the acrylic polymer are uniformly present in the coating film formed when the object to be processed including the fiber processed product is subjected to the non-slip processing by the non-slip processing agent. As a result, both the anti-slip property of the acrylic polymer and the non-adhesive property of the urethane polymer are sufficiently exhibited. Therefore, it is possible to obtain a non-slip processed workpiece including a non-slip processed fiber product excellent in anti-slip properties and non-adhesion (for example, non-adhesion to a floor or the like). In addition, these non-slip processed objects are excellent in anti-slip properties and non-adhesiveness (for example, non-adhesiveness to floors and the like), and can be used for a wide range of applications.
<滑り止め加工剤の第2の態様>
 本発明の滑り止め加工剤の第2の態様は、上述した「静摩擦係数の求め方I」で求めた静摩擦係数が0.6以上となるものであり、かつ上述した「せん断接着強度の求め方I」で求めたせん断接着強度が5N未満となるものである。
<Second embodiment of anti-slip agent>
A second aspect of the antiskid agent of the present invention is one in which the static friction coefficient obtained by the above-mentioned “method for obtaining static friction coefficient I” is 0.6 or more, and the above-mentioned “method of obtaining shear adhesive strength” The shear bond strength determined in "I" is less than 5N.
 「静摩擦係数の求め方I」で求めた静摩擦係数が0.6以上となる滑り止め加工剤によれば、滑り止め加工された繊維加工品を含む滑り止め加工された加工対象物の滑り止め性に優れる。また、「静摩擦係数の求め方I」で求めた静摩擦係数が0.7以上となる滑り止め加工剤によれば、滑り止め加工された面積の小さな繊維加工品を含む滑り止め加工された面積の小さな加工対象物においても十分な滑り止め性を発揮する。静摩擦係数は0.85以上がより好ましい。 According to the non-slip processing agent having a static friction coefficient of 0.6 or more determined by "method for obtaining static friction coefficient I", the non-slip property of the non-slip processed workpiece including the non-slip processed fiber product Excellent. In addition, according to the non-slip processing agent having a static friction coefficient of 0.7 or more obtained by the “method for obtaining a static friction coefficient I”, the area of the non-slip processed area including the non-slip processed area of the small-fiber processed product is reduced. Demonstrates sufficient anti-slip properties even for small workpieces. The coefficient of static friction is more preferably 0.85 or more.
 「せん断接着強度の求め方I」で求めたせん断接着強度が5N未満となる滑り止め加工剤によれば、滑り止め加工された繊維加工品を含む滑り止め加工された加工対象物の床等に対する非粘着性に優れ、長期間の使用や高温での使用においても床等を汚しにくい。せん断接着強度は、1N未満が好ましい。 According to the anti-slip agent having a shear adhesive strength of less than 5N determined in "Method of determining shear adhesive strength I", the anti-slip processing object including the non-slip processed textile is used for floors and the like. It has excellent non-adhesiveness and does not stain floors or the like even when used for a long time or at high temperatures. The shear bond strength is preferably less than 1N.
 「静摩擦係数の求め方I」で求めた静摩擦係数が0.6以上となるものであり、かつ「せん断接着強度の求め方I」で求めたせん断接着強度が5N未満となるものである滑り止め加工剤としては、例えば、水性媒体と、水性媒体に分散した重合体粒子とを含み、重合体粒子が、ウレタン重合体及びアクリル重合体を含む複合体からなる、水性分散液が挙げられる。水性分散液としては、本発明の滑り止め加工剤の第1の態様と同様のものが挙げられ、好ましい形態も同様である。 Non-slip having a static friction coefficient obtained by “Method I of obtaining static friction coefficient I” of 0.6 or more and having a shear adhesive strength obtained by “Method of obtaining shear adhesive strength I” of less than 5N. Examples of the processing agent include an aqueous dispersion including an aqueous medium and polymer particles dispersed in the aqueous medium, wherein the polymer particles include a composite including a urethane polymer and an acrylic polymer. Examples of the aqueous dispersion include the same ones as in the first embodiment of the antiskid agent of the present invention, and the preferred embodiments are also the same.
 以上説明した本発明の滑り止め加工剤の第2の態様にあっては、「静摩擦係数の求め方I」で求めた静摩擦係数が0.6以上となるものであり、かつ「せん断接着強度の求め方I」で求めたせん断接着強度が5N未満となるものであるため、滑り止め性及び非粘着性(例えば、床等に対する非粘着性)に優れた滑り止め加工された繊維加工品を得ることができる。また、これらの滑り止め加工された加工対象物は、滑り止め性及び非粘着性(例えば、床等に対する非粘着性)に優れるため、幅広い用途に利用することができる。 In the second embodiment of the anti-slip agent according to the present invention described above, the static friction coefficient obtained by the “method for obtaining a static friction coefficient I” is 0.6 or more, and “ Since the shear adhesive strength determined by “Method I” is less than 5N, a non-slip processed fiber product having excellent anti-slip properties and non-adhesion (eg, non-adhesion to floors and the like) is obtained. be able to. In addition, these non-slip processed objects are excellent in anti-slip properties and non-adhesiveness (for example, non-adhesiveness to floors and the like), and can be used for a wide range of applications.
<滑り止め加工剤の第3の態様>
 本発明の滑り止め加工剤の第3の態様は、ジアセトンアクリルアミドに基づく構成単位を有するアクリル重合体を含み、上述した「せん断接着強度の求め方I」で求めたせん断接着強度が5N未満となるものである。
<Third embodiment of anti-slip agent>
A third embodiment of the anti-slip agent of the present invention includes an acrylic polymer having a structural unit based on diacetone acrylamide, and the shear adhesive strength determined by the above-described “Method for determining shear adhesive strength I” is less than 5N. It becomes.
 アクリル重合体を含む滑り止め加工剤によれば、滑り止め加工された繊維加工品を含む滑り止め加工された加工対象物の滑り止め性に優れる。そして、アクリル重合体がジアセトンアクリルアミドに基づく構成単位を有することによって、滑り止め加工剤を硬化させたときに架橋構造が形成され、滑り止め加工された繊維加工品を含む滑り止め加工された加工対象物の非粘着性が向上し、長期間の使用や高温での使用においても床等を汚しにくい。 止 め According to the non-slip processing agent containing the acrylic polymer, the non-slip processed object including the non-slip processed fiber product is excellent in non-slip properties. And, since the acrylic polymer has a structural unit based on diacetone acrylamide, a cross-linked structure is formed when the anti-slip processing agent is cured, and the non-slip processing including the non-slip processed fiber product is performed. The non-adhesiveness of the object is improved, and floors and the like are hardly soiled even when used for a long time or at a high temperature.
 ジアセトンアクリルアミドに基づく構成単位を有するアクリル重合体としては、本発明の滑り止め加工剤の第1の態様において説明した、ジアセトンアクリルアミドに基づく構成単位を有するアクリル重合体と同様のものが挙げられ、好ましい形態も同様である。 Examples of the acrylic polymer having a structural unit based on diacetone acrylamide include those similar to the acrylic polymer having a structural unit based on diacetone acrylamide described in the first embodiment of the antiskid agent of the present invention. The same applies to preferred embodiments.
 「せん断接着強度の求め方I」で求めたせん断接着強度が5N未満となる滑り止め加工剤によれば、滑り止め加工された繊維加工品を含む滑り止め加工された加工対象物の床等に対する非粘着性に優れ、長期間の使用や高温での使用においても床等を汚しにくい。せん断接着強度は、1N未満が好ましい。 According to the anti-slip agent having a shear adhesive strength of less than 5N determined in "Method of determining shear adhesive strength I", the anti-slip processing object including the non-slip processed textile is used for floors and the like. It has excellent non-adhesiveness and does not stain floors or the like even when used for a long time or at high temperatures. The shear bond strength is preferably less than 1N.
 ジアセトンアクリルアミドに基づく構成単位を有するアクリル重合体を含み、「せん断接着強度の求め方I」で求めたせん断接着強度が5N未満となるものである滑り止め加工剤としては、例えば、水性媒体と、水性媒体に分散した重合体粒子とを含み、重合体粒子が、ウレタン重合体及びアクリル重合体を含む複合体からなり、アクリル重合体がジアセトンアクリルアミドに基づく構成単位を有する、水性分散液が挙げられる。水性分散液としては、本発明の滑り止め加工剤の第1の態様のうち、アクリル重合体がジアセトンアクリルアミドに基づく構成単位を有するものと同様のものが挙げられ、好ましい形態も同様である。 Non-slip processing agents containing an acrylic polymer having a structural unit based on diacetone acrylamide and having a shear adhesive strength of less than 5 N determined by "Method I for determining shear adhesive strength" include, for example, aqueous media and Containing polymer particles dispersed in an aqueous medium, the polymer particles are composed of a composite containing a urethane polymer and an acrylic polymer, and the acrylic polymer has a structural unit based on diacetone acrylamide. No. Examples of the aqueous dispersion include, in the first embodiment of the antiskid agent of the present invention, those in which the acrylic polymer has a structural unit based on diacetone acrylamide, and the preferred embodiment is also the same.
 以上説明した本発明の滑り止め加工剤の第3の態様にあっては、ジアセトンアクリルアミドに基づく構成単位を有するアクリル重合体を含み、「せん断接着強度の求め方I」で求めたせん断接着強度が5N未満となるものであるため、滑り止め性及び非粘着性(例えば、床等に対する非粘着性)に優れた滑り止め加工された繊維加工品を得ることができる。また、これらの滑り止め加工された加工対象物は、滑り止め性及び非粘着性(例えば、床等に対する非粘着性)に優れるため、幅広い用途に利用することができる。 The third embodiment of the antiskid agent of the present invention described above includes an acrylic polymer having a structural unit based on diacetone acrylamide, and has a shear bond strength determined by “Method I for determining shear bond strength I”. Is less than 5N, so that a non-slip processed fiber product excellent in anti-slip properties and non-adhesiveness (for example, non-adhesiveness to floors and the like) can be obtained. In addition, these non-slip processed objects are excellent in anti-slip properties and non-adhesiveness (for example, non-adhesiveness to floors and the like), and can be used for a wide range of applications.
<<滑り止め加工された繊維加工品>>
 本発明の滑り止め加工された繊維加工品は、裏面及び表面のいずれか一方又は両方が滑り止め加工された繊維加工品である。
<< Fiber processed goods with anti-slip processing >>
The non-slip processed fiber product of the present invention is a non-slip processed fiber product on one or both of the back surface and the front surface.
 繊維加工品は、繊維を加工した布帛を有する物品である。繊維加工品は、布帛以外の材料(樹脂フィルム、樹脂成形品、紙、木材、金属、ガラス等)をさらに有していてもよい。 A processed fiber product is an article having a fabric obtained by processing fibers. The processed fiber product may further have a material (resin film, resin molded product, paper, wood, metal, glass, or the like) other than the fabric.
 繊維としては、天然繊維、合成繊維等が挙げられる。合成繊維の材料としては、ポリエステル、アクリル樹脂、ポリオレフィン等が挙げられる。
 布帛としては、織物、編物、不織布、組物、これらを組み合わせたもの等が挙げられる。織物は、経糸と緯糸とを交差させて織り込んだものである。編物は、糸でループを作り、そのループに次の糸を引っ掛けて連続してループを作ることによって面を形成した編地である。不織布は、繊維を織らずに絡み合わせてシート状にしたものである。組物は、2本の糸を斜めに織り込んだものである。
Examples of the fibers include natural fibers and synthetic fibers. Examples of the synthetic fiber material include polyester, acrylic resin, and polyolefin.
Examples of the fabric include a woven fabric, a knitted fabric, a nonwoven fabric, a braid, and a combination thereof. The woven fabric is obtained by interweaving warps and wefts. A knitted fabric is a knitted fabric in which a surface is formed by forming a loop with a thread and hooking the next thread on the loop to form a continuous loop. The nonwoven fabric is a sheet made by entanglement without woven fibers. The braid has two yarns woven diagonally.
 繊維加工品としては、例えば、敷物(家庭用、業務用、車載用のマット類等)、衣類(手袋、靴下等)等が挙げられる。 加工 Examples of the processed fiber products include rugs (home-use, business-use, vehicle-mounted mats, etc.) and clothing (gloves, socks, etc.).
<滑り止め加工された繊維加工品の第1の態様>
 本発明の滑り止め加工された繊維加工品の第1の態様は、ウレタン重合体及びアクリル重合体が付着しているものである。
<First embodiment of non-slip processed fiber product>
The first aspect of the non-slip processed fiber product of the present invention is one in which a urethane polymer and an acrylic polymer are attached.
 本発明の滑り止め加工された繊維加工品の第1の態様は、本発明の効果を損なわない範囲において、必要に応じてウレタン重合体及びアクリル重合体以外の他の成分がさらに付着したものであってもよい。 The first aspect of the non-slip-processed fiber processed product of the present invention is one in which other components other than the urethane polymer and the acrylic polymer are further attached as needed, as long as the effects of the present invention are not impaired. There may be.
 ウレタン重合体としては、本発明の滑り止め加工剤の第1の態様において説明したウレタン重合体と同様のものが挙げられ、好ましい形態も同様である。
 アクリル重合体としては、本発明の滑り止め加工剤の第1の態様において説明したアクリル重合体と同様のものが挙げられ、好ましい形態も同様である。
 他の成分としては、本発明の滑り止め加工剤の第1の態様において説明した他の成分と同様のものが挙げられる。
Examples of the urethane polymer include those similar to the urethane polymer described in the first embodiment of the non-slip processing agent of the present invention, and the preferred embodiment is also the same.
Examples of the acrylic polymer include those similar to the acrylic polymer described in the first embodiment of the anti-slip processing agent of the present invention, and the preferred embodiments are also the same.
As the other components, the same ones as the other components described in the first embodiment of the antiskid agent of the present invention can be mentioned.
 本発明の滑り止め加工された繊維加工品の第1の態様においては、滑り止め加工された繊維加工品の非粘着性が向上し、長期間の使用や高温での使用においても床等を汚しにくい点から、アクリル重合体がジアセトンアクリルアミドに基づく構成単位を有し、ジアセトンアクリルアミドに基づく構成単位の少なくとも一部が架橋構造を形成していることが好ましい。 In the first aspect of the non-slip processed fiber product of the present invention, the non-adhesiveness of the non-slip processed fiber product is improved, and floors and the like are stained even when used for a long time or at a high temperature. From the viewpoint of difficulty, it is preferable that the acrylic polymer has a structural unit based on diacetone acrylamide, and at least a part of the structural unit based on diacetone acrylamide forms a crosslinked structure.
 本発明の滑り止め加工された繊維加工品の第1の態様においては、非粘着性に優れる点から、アクリル重合体がラジカル重合性基を2つ以上有する単量体に基づく構成単位を有することが好ましい。 In the first aspect of the non-slip processed fiber product of the present invention, the acrylic polymer has a structural unit based on a monomer having two or more radically polymerizable groups from the viewpoint of excellent non-adhesiveness. Is preferred.
 本発明の滑り止め加工された繊維加工品の第1の態様において、滑り止め加工された繊維加工品の単位面積当たりのウレタン重合体の付着量とアクリル重合体の付着量との合計は、3~300g/mが好ましく、30~250g/mがより好ましく、50~200g/mがさらに好ましい。
 ウレタン重合体の付着量とアクリル重合体の付着量との合計が前記下限値以上であれば、滑り止め加工された繊維加工品の滑り止め性がさらに優れる。また、滑り止め加工された繊維加工品の耐洗濯性に優れる。ウレタン重合体の付着量とアクリル重合体の付着量の合計が前記上限値以下であれば、滑り止め加工された繊維加工品の風合いに優れる。
In the first aspect of the non-slip processed fiber product of the present invention, the total of the adhesion amount of the urethane polymer and the adhesion amount of the acrylic polymer per unit area of the non-slip processed fiber product is 3 preferably ~ 300g / m 2, more preferably 30 ~ 250g / m 2, more preferably 50 ~ 200g / m 2.
When the total of the adhesion amount of the urethane polymer and the adhesion amount of the acrylic polymer is equal to or larger than the lower limit, the anti-slip property of the non-slip processed fiber product is further improved. In addition, the non-slip processed fiber product is excellent in washing resistance. When the sum of the amount of the urethane polymer and the amount of the acrylic polymer adhered is not more than the upper limit, the texture of the non-slip processed fiber product is excellent.
 本発明の滑り止め加工された繊維加工品の第1の態様としては、滑り止め加工された繊維加工品の滑り止め性がさらに優れる点から、上述した「静摩擦係数の求め方II」で求めた静摩擦係数が0.6以上であるものが好ましく、滑り止め加工された面積の小さな繊維加工品においても十分な滑り止め性を発揮する点から、「静摩擦係数の求め方II」で求めた静摩擦係数が0.7以上であるものがより好ましい。静摩擦係数は0.85以上がさらに好ましい。 As the first aspect of the non-slip processed fiber product of the present invention, the anti-slip property of the non-slip processed fiber product is determined by the above-mentioned “method for obtaining static friction coefficient II” from the viewpoint that the anti-slip property is more excellent. It is preferable that the coefficient of static friction is 0.6 or more. From the viewpoint of exhibiting sufficient anti-slip properties even in a non-slip-processed fiber processed product having a small area, the coefficient of static friction obtained by "Method for obtaining static friction coefficient II" Is more preferably 0.7 or more. The coefficient of static friction is more preferably 0.85 or more.
 本発明の滑り止め加工された繊維加工品の第1の態様としては、滑り止め加工された繊維加工品の床等に対する非粘着性がさらに優れ、長期間の使用や高温での使用においても床等を汚しにくい点から、上述した「せん断接着強度の求め方II」で求めたせん断接着強度が5N未満であるものが好ましい。せん断接着強度は、1N未満がより好ましい。 As a first aspect of the non-slip processed fiber product of the present invention, the non-slip non-adhesiveness of the non-slip processed fiber product to a floor or the like is further improved, and the floor can be used for a long time or at a high temperature. It is preferable that the shear adhesive strength determined by the above-mentioned “Method of determining shear adhesive strength II” is less than 5 N, from the viewpoint of making it difficult to contaminate. The shear bond strength is more preferably less than 1N.
 本発明の滑り止め加工された繊維加工品の第1の態様は、例えば、本発明の滑り止め加工剤の第1の態様によって繊維加工品を滑り止め加工することによって製造できる。滑り止め加工の方法については、後述する。 The first embodiment of the non-slip processed fiber product of the present invention can be manufactured, for example, by subjecting the processed fiber product to the non-slip processing agent according to the first embodiment of the present invention. The method of non-slip processing will be described later.
 以上説明した本発明の滑り止め加工された繊維加工品の第1の態様にあっては、ウレタン重合体及びアクリル重合体が付着しているため、アクリル重合体による滑り止め性と、ウレタン重合体による非粘着性の両方が発揮されることになる。したがって、本発明の滑り止め加工された繊維加工品の第1の態様にあっては、滑り止め性及び非粘着性(例えば、床等に対する非粘着性)に優れる。また、滑り止め性及び非粘着性(例えば、床等に対する非粘着性)に優れるため、幅広い用途に利用できる。 In the first embodiment of the non-slip processed fiber product of the present invention described above, since the urethane polymer and the acrylic polymer are adhered, the anti-slip property of the acrylic polymer and the urethane polymer Both non-adhesive properties are exhibited. Therefore, in the first aspect of the non-slip processed fiber product of the present invention, the non-slip property and the non-adhesiveness (for example, the non-adhesiveness to a floor or the like) are excellent. Further, since it has excellent anti-slip properties and non-adhesiveness (for example, non-adhesiveness to floors and the like), it can be used for a wide range of applications.
<滑り止め加工された繊維加工品の第2の態様>
 本発明の滑り止め加工された繊維加工品の第2の態様は、上述した「静摩擦係数の求め方II」で求めた静摩擦係数が0.6以上であり、かつ上述した「せん断接着強度の求め方II」で求めたせん断接着強度が5N未満である。
<Second embodiment of non-slip processed fiber product>
The second aspect of the non-slip processed fiber processed product of the present invention is that the static friction coefficient obtained by the above-mentioned “method for obtaining static friction coefficient II” is 0.6 or more, and the above-mentioned “calculation of shear adhesive strength” is performed. The shear adhesive strength determined in Method II is less than 5N.
 「静摩擦係数の求め方II」で求めた静摩擦係数が0.6以上である滑り止め加工された繊維加工品は、滑り止め性に優れる。また、「静摩擦係数の求め方II」で求めた静摩擦係数が0.7以上である滑り止めされた繊維加工品は、滑り止め加工された面積の小さな繊維加工品においても十分な滑り止め性を発揮する。静摩擦係数は0.85以上がさらに好ましい。 繊 維 A non-slip processed fiber processed product having a static friction coefficient of 0.6 or more determined by “How to determine static friction coefficient II” has excellent anti-slip properties. In addition, a non-slip fiber processed product having a static friction coefficient of 0.7 or more obtained in “Method of calculating static friction coefficient II” has sufficient anti-slip properties even in a non-slip processed fiber processed product having a small area. Demonstrate. The coefficient of static friction is more preferably 0.85 or more.
 「せん断接着強度の求め方II」で求めたせん断接着強度が5N未満である滑り止め加工された繊維加工品は、床等に対する非粘着性に優れ、長期間の使用や高温での使用においても床等を汚しにくい。せん断接着強度は、1N未満がより好ましい。 A non-slip processed fiber product having a shear bond strength of less than 5N determined by "Method for determining shear bond strength II" has excellent non-adhesiveness to floors and the like, and can be used for a long time or at a high temperature. It is hard to stain floors. The shear bond strength is more preferably less than 1N.
 本発明の滑り止め加工された繊維加工品の第2の態様は、例えば、本発明の滑り止め加工剤の第2の態様によって繊維加工品を滑り止め加工することによって製造できる。滑り止め加工の方法については、後述する。 The second aspect of the non-slip processed fiber product of the present invention can be manufactured, for example, by subjecting the processed fiber product to non-slip processing by the second aspect of the non-slip processing agent of the present invention. The method of non-slip processing will be described later.
 以上説明した本発明の滑り止め加工された繊維加工品の第2の態様にあっては、「静摩擦係数の求め方II」で求めた静摩擦係数が0.6以上であり、かつ「せん断接着強度の求め方II」で求めたせん断接着強度が5N未満であるため、滑り止め性及び非粘着性(例えば、床等に対する非粘着性)に優れる。また、滑り止め性及び非粘着性(例えば、床等に対する非粘着性)に優れるため、幅広い用途に利用できる。 In the second embodiment of the non-slip processed fiber product of the present invention described above, the static friction coefficient obtained by the “method for obtaining the static friction coefficient II” is 0.6 or more, and the “shear adhesive strength” Since the shear adhesive strength determined by “Method II for determining the adhesive strength” is less than 5N, the adhesive composition is excellent in anti-slip properties and non-adhesiveness (for example, non-adhesiveness to floors and the like). Further, since it has excellent anti-slip properties and non-adhesiveness (for example, non-adhesiveness to floors and the like), it can be used for a wide range of applications.
<滑り止め加工された繊維加工品の第3の態様>
 本発明の滑り止め加工された繊維加工品の第3の態様は、ジアセトンアクリルアミドに基づく構成単位を有するアクリル重合体が付着し、ジアセトンアクリルアミドに基づく構成単位の少なくとも一部が架橋構造を形成しており、上述した「せん断接着強度の求め方II」で求めたせん断接着強度が5N未満であるものである。
<Third embodiment of non-slip processed fiber product>
In a third aspect of the non-slip processed fiber product of the present invention, an acrylic polymer having a structural unit based on diacetone acrylamide adheres, and at least a part of the structural unit based on diacetone acrylamide forms a crosslinked structure. In this case, the shear adhesive strength determined by the above-mentioned “Method of determining shear adhesive strength II” is less than 5N.
 アクリル重合体が付着した滑り止め加工された繊維加工品によれば、滑り止め性に優れる。そして、アクリル重合体がジアセトンアクリルアミドに基づく構成単位を有し、ジアセトンアクリルアミドに基づく構成単位の少なくとも一部が架橋構造を形成していることによって、滑り止め加工された繊維加工品の非粘着性が向上し、長期間の使用や高温での使用においても床等を汚しにくい。 繊 維 According to the non-slip fiber processed product to which the acrylic polymer is attached, the anti-slip property is excellent. The acrylic polymer has a structural unit based on diacetone acrylamide, and at least a part of the structural unit based on diacetone acrylamide forms a crosslinked structure. The property is improved, and floors and the like are hardly stained even when used for a long time or at a high temperature.
 ジアセトンアクリルアミドに基づく構成単位を有するアクリル重合体としては、本発明の滑り止め加工剤の第1の態様において説明した、ジアセトンアクリルアミドに基づく構成単位を有するアクリル重合体と同様のものが挙げられ、好ましい形態も同様である。 Examples of the acrylic polymer having a structural unit based on diacetone acrylamide include those similar to the acrylic polymer having a structural unit based on diacetone acrylamide described in the first embodiment of the antiskid agent of the present invention. The same applies to preferred embodiments.
 本発明の滑り止め加工された繊維加工品の第3の態様において、滑り止め加工された繊維加工品の単位面積当たりのアクリル重合体の付着量は、1~1000g/mが好ましく、5~500g/mがより好ましく、10~100g/mがさらに好ましい。
 アクリル重合体の付着量が前記下限値以上であれば、滑り止め加工された繊維加工品の滑り止め性がさらに優れる。アクリル重合体の付着量が前記上限値以下であれば、滑り止め加工された繊維加工品の非粘着性がさらに優れる。また、滑り止め加工された繊維加工品の耐洗濯性に優れる。
In the third embodiment of the non-slip processed fiber product of the present invention, the adhesion amount of the acrylic polymer per unit area of the non-slip processed fiber product is preferably 1 to 1000 g / m 2 , and preferably 5 to 1000 g / m 2. 500 g / m 2 is more preferable, and 10 to 100 g / m 2 is further preferable.
When the adhesion amount of the acrylic polymer is equal to or more than the lower limit, the non-slip property of the non-slip processed fiber product is further improved. When the adhesion amount of the acrylic polymer is equal to or less than the upper limit, the non-adhesiveness of the non-slip processed fiber product is further improved. In addition, the non-slip processed fiber product is excellent in washing resistance.
 「せん断接着強度の求め方II」で求めたせん断接着強度が5N未満である滑り止め加工された繊維加工品によれば、床等に対する非粘着性に優れ、長期間の使用や高温での使用においても床等を汚しにくい。 According to the non-slip fiber processed product having a shear adhesive strength of less than 5N determined by "Method of determining shear adhesive strength II", it has excellent non-adhesiveness to floors and the like, and can be used for a long time or at a high temperature. Also, it is difficult to stain floors.
 本発明の滑り止め加工された繊維加工品の第3の態様は、例えば、本発明の滑り止め加工剤の第3の態様によって繊維加工品を滑り止め加工することによって製造できる。滑り止め加工の方法については、後述する。 The third embodiment of the non-slip processed fiber product of the present invention can be manufactured, for example, by subjecting the processed fiber product to non-slip processing by the third embodiment of the non-slip processing agent of the present invention. The method of non-slip processing will be described later.
 以上説明した本発明の滑り止め加工された繊維加工品の第3の態様にあっては、ジアセトンアクリルアミドに基づく構成単位を有するアクリル重合体が付着し、ジアセトンアクリルアミドに基づく構成単位の少なくとも一部が架橋構造を形成しており、「せん断接着強度の求め方II」で求めたせん断接着強度が5N未満であるものであるため、滑り止め性及び非粘着性(例えば、床等に対する非粘着性)に優れる。また、滑り止め性および非粘着性(例えば、床等に対する非粘着性)に優れるため、幅広い用途に利用できる。 In the third aspect of the non-slip processed fiber product of the present invention described above, an acrylic polymer having a structural unit based on diacetone acrylamide adheres, and at least one of the structural units based on diacetone acrylamide is attached. The part has a crosslinked structure and the shear adhesive strength determined by “Method for determining shear adhesive strength II” is less than 5 N, so that it is non-slip and non-adhesive (for example, non-adhesive Excellent). Further, since it has excellent anti-slip properties and non-adhesiveness (for example, non-adhesiveness to floors and the like), it can be used for a wide range of applications.
<滑り止め加工された繊維加工品の第4の態様>
 本発明の滑り止め加工された繊維加工品の第4の態様は、本発明の滑り止め加工剤の第1の態様、第2の態様、及び第3の態様のうち、いずれかの滑り止め加工剤によって滑り止め加工された繊維加工品である。滑り止め加工の方法については、後述する。
<Fourth embodiment of non-slip processed fiber product>
A fourth aspect of the non-slip processed fiber processed article of the present invention is the non-slip processing of any one of the first, second, and third aspects of the anti-slip agent of the present invention. It is a fiber processed product that is non-slip processed by an agent. The method of non-slip processing will be described later.
 以上説明した本発明の滑り止め加工された繊維加工品の第4の態様にあっては、本発明の滑り止め加工剤の第1の態様、第2の態様、及び第3の態様のうち、いずれかの滑り止め加工剤によって滑り止め加工されたものであるため、滑り止め性及び非粘着性(例えば、床等に対する非粘着性)に優れる。また、滑り止め性及び非粘着性(例えば、床等に対する非粘着性)に優れるため、幅広い用途に利用できる。 In the fourth aspect of the non-slip processed fiber product of the present invention described above, among the first, second, and third aspects of the anti-slip agent of the present invention, Since it is non-slip processed by any anti-slip agent, it is excellent in anti-slip properties and non-adhesion (for example, non-adhesion to floors and the like). Further, since it has excellent anti-slip properties and non-adhesiveness (for example, non-adhesiveness to floors and the like), it can be used for a wide range of applications.
<滑り止め加工された繊維加工品の製造方法>
 本発明の滑り止め加工された繊維加工品の製造方法は、本発明の滑り止め加工剤の第1の態様、第2の態様、及び第3の態様のうち、いずれかの滑り止め加工剤を、繊維加工品に塗布し、乾燥する方法である。
 より具体的には、本発明の滑り止め加工された繊維加工品の製造方法は、滑り止め加工剤が塗布された繊維加工品を得るために、本発明の滑り止め加工剤の第1の態様、第2の態様、及び第3の態様のうち、いずれかの滑り止め加工剤を繊維加工品に塗布し、滑り止め加工剤が塗布された繊維加工品を乾燥することを含む方法である。
<Method of manufacturing non-slip processed fiber products>
The method for producing a non-slip processed fiber product according to the present invention includes the non-slip processing agent according to any one of the first, second, and third aspects of the non-slip processing agent according to the present invention. This method is applied to a fiber processed product and dried.
More specifically, the method for producing a non-slip processed fiber product according to the present invention includes the first aspect of the non-slip process agent according to the present invention in order to obtain a fiber processed product to which the non-slip processing agent is applied. A method comprising applying any one of the non-slip finishing agents to the fiber processed product, and drying the fiber processed product to which the anti-slip processing agent has been applied, among the non-slip processing agent of the second, third, and third aspects.
 滑り止め加工剤の繊維加工品への塗布方法としては、スプレーコート法、ロールコート法、バーコート法、エアナイフコート法、刷毛塗り法、ディッピング法等が挙げられる。滑り止め加工剤の繊維加工品への塗布方法としては、連続生産ラインで、大きさの制約なしで塗布できる点から、スプレーコート法が好ましい。スプレーコートは、滑り止め加工剤を、エアスプレーを用いて噴霧することによって行われてもよい。 塗布 Examples of the method of applying the non-slip agent to the processed fiber include a spray coating method, a roll coating method, a bar coating method, an air knife coating method, a brush coating method, and a dipping method. As a method for applying the anti-slip agent to the processed fiber product, a spray coating method is preferable because it can be applied on a continuous production line without any size restrictions. Spray coating may be performed by spraying a non-slip agent using an air spray.
 繊維加工品の単位面積当たりの滑り止め加工剤の塗布量は、30~3000g/mが好ましく、100~2000g/mがより好ましく、200~1000g/mがさらに好ましい。
 滑り止め加工剤の塗布量が前記下限値以上であれば、滑り止め加工された繊維加工品の滑り止め性がさらに優れる。また、滑り止め加工された繊維加工品の耐洗濯性に優れる。滑り止め加工剤の塗布量が前記上限値以下であれば、滑り止め加工された繊維加工品の風合いに優れる。
The coating amount of Rubberized agent per unit area of the fiber processed article is preferably 30 ~ 3000g / m 2, more preferably 100 ~ 2000g / m 2, more preferably 200 ~ 1000g / m 2.
When the application amount of the anti-slip agent is equal to or more than the lower limit, the anti-slip property of the non-slip processed fiber product is further improved. In addition, the non-slip processed fiber product is excellent in washing resistance. When the applied amount of the anti-slip agent is equal to or less than the upper limit, the texture of the non-slip processed fiber product is excellent.
 滑り止め加工剤が塗布された繊維加工品を乾燥することによって、滑り止め加工剤に含まれる水、有機溶媒等の媒体を除去する。
 滑り止め加工剤が塗布された繊維加工品の乾燥は、常温で行ってもよく、加熱によって行ってもよい。加熱する場合、加熱温度は、50~120℃が好ましい。また、加熱する場合、加熱時間は、0.1~60分間が好ましい。
A medium such as water or an organic solvent contained in the non-slip agent is removed by drying the fiber processed product to which the anti-slip agent is applied.
Drying of the fiber processed product to which the anti-slip agent has been applied may be performed at room temperature or by heating. When heating, the heating temperature is preferably from 50 to 120 ° C. When heating, the heating time is preferably from 0.1 to 60 minutes.
 以上説明した本発明の滑り止め加工された繊維加工品の製造方法にあっては、本発明の滑り止め加工剤の第1の態様~第3の態様のうち、いずれかの滑り止め加工剤を、繊維加工品に塗布し、乾燥する方法であるため、滑り止め性及び非粘着性(例えば、床等に対する粘着性)に優れた滑り止め加工された繊維加工品を製造できる。また、これらの滑り止め加工された繊維加工品は、滑り止め性及び非粘着性(例えば、床等に対する非粘着性)に優れるため、幅広い用途に利用することができる。 In the method for producing a non-slip processed fiber product according to the present invention described above, any one of the first to third aspects of the non-slip processing agent of the present invention is used. Since the method is applied to a fiber processed product and dried, a non-slip processed fiber product excellent in anti-slip properties and non-adhesiveness (for example, adhesiveness to a floor or the like) can be manufactured. Further, these non-slip processed fiber products are excellent in anti-slip properties and non-adhesiveness (for example, non-adhesiveness to floors and the like), and thus can be used for a wide range of applications.
 以下に本発明の実施例を示す。なお、本実施例における「部」は「質量部」であり、「%」は「質量%」である。 実 施 Examples of the present invention will be described below. In this example, “parts” is “parts by mass”, and “%” is “% by mass”.
 (滑り止め加工された加工対象物の製造)
 シェニール基布(IKEA社製、TOFTBO バスマット、70mm×50mm)の裏面に、滑り止め加工剤を、シェニール基布の単位面積当たりのウレタン重合体の付着量及びアクリル重合体の付着量の合計が表1又は表2に示す付着量となるようにハンドスプレー(アネスト岩田社製、W-101)を用いて塗布し、雰囲気温度120℃で5分間乾燥し、滑り止め加工されたシェニール基布を得た。
(Manufacture of non-slip processed workpieces)
On the back surface of a chenille base fabric (manufactured by IKEA, TOFTBO bath mat, 70 mm x 50 mm), a non-slip agent is applied, and the total amount of the urethane polymer and the acrylic polymer per unit area of the chenille base fabric is shown in Table. 1 or a hand spray (W-101, manufactured by Anest Iwata Co., Ltd.) so as to have the adhesion amount shown in Table 2 and dried at an ambient temperature of 120 ° C. for 5 minutes to obtain a non-slip-processed chenille base fabric. Was.
 (滑り止め性)
 滑り止め加工されたシェニール基布を、その滑り止め加工面を下にして水平なステンレス鋼板(JIS規格のSUS304 No.2B)の上に配置し、滑り止め加工されたシェニール基布の上側から26.46N(2.7kg)の荷重をかけた状態にて、雰囲気温度23℃にて滑り止め加工されたシェニール基布を、ばね式手秤(シロ産業社製、M506STシリーズ)を用いてステンレス鋼板に対して平行に引いて静摩擦力を測定し、得られた静摩擦力を法線力で除して静摩擦係数を求めた。
(Non-slip property)
The non-slip chenille fabric is placed on a horizontal stainless steel plate (SUS304 No. 2B of JIS standard) with its non-slip surface facing down, and 26 A chenille base cloth subjected to anti-slip processing at an ambient temperature of 23 ° C. under a load of .46 N (2.7 kg) was applied to a stainless steel plate using a spring-type hand scale (M506ST series, manufactured by Shiro Sangyo Co., Ltd.). , And the static friction force was measured, and the obtained static friction force was divided by the normal force to obtain a static friction coefficient.
 下記基準にて滑り止め性を評価した。
 A:静摩擦係数が0.85以上である。
 B:静摩擦係数が0.70以上0.85未満である。
 C:静摩擦係数が0.60以上0.70未満である。
 D:静摩擦係数が0.60未満である。
The anti-slip property was evaluated according to the following criteria.
A: The coefficient of static friction is 0.85 or more.
B: The coefficient of static friction is 0.70 or more and less than 0.85.
C: The coefficient of static friction is 0.60 or more and less than 0.70.
D: The coefficient of static friction is less than 0.60.
 (耐洗濯性)
 滑り止め加工されたシェニール基布について、下記洗濯工程を10回繰り返した後に上述の滑り止め性を評価した。
 洗濯工程は、洗い15分、すすぎ3分、すすぎ3分、すすぎ2分、すすぎ2分、脱水5分、屋内乾燥24時間を1回とした。洗いには40℃に調温した水を用い、すすぎには23℃の水を用いた。水量は洗い、すすぎとも25Lであり、洗いに用いた洗剤の量は18gとした。洗濯には2層式洗濯機を用いた。
(Washing resistance)
The above-mentioned anti-slip property was evaluated after repeating the following washing process 10 times with respect to the chenille base fabric subjected to the anti-slip processing.
The washing process was performed once for 15 minutes for washing, 3 minutes for rinsing, 3 minutes for rinsing, 2 minutes for rinsing, 2 minutes for rinsing, 5 minutes for dehydration, and 24 hours for indoor drying. Water adjusted to 40 ° C. was used for washing, and water at 23 ° C. was used for rinsing. The amount of water was 25 L for washing and rinsing, and the amount of detergent used for washing was 18 g. A two-layer washing machine was used for washing.
 (非粘着性)
 滑り止め加工されたシェニール基布を、その滑り止め加工面を下にしてABS樹脂基材(TP技研社製、黒色、90mm×50mm×厚さ3mm)の上に接着面が50mm×50mmとなるように重ね、滑り止め加工されたシェニール基布の上側から6.86N(700g)の荷重をかけた状態にて、雰囲気温度50℃で24時間静置し、さらに雰囲気温度23℃で3時間静置して滑り止め加工されたシェニール基布とABS樹脂基材とを接着した。引張測定装置(島津製作所社製、オートグラフAG-IS5kN)を用い、雰囲気温度23℃、試験速度100mm/分にて、滑り止め加工されたシェニール基布の下端とABS樹脂基材の上端とを接着面に平行に引張り、このときの最大荷重をせん断接着強度とした。
(Non-adhesive)
The non-slip chenille base cloth is bonded to an ABS resin base material (manufactured by TP Giken Co., black, 90 mm × 50 mm × thickness 3 mm) with the non-slip surface down, with an adhesive surface of 50 mm × 50 mm. The chenille base cloth which has been stacked and slip-proofed is left standing at an ambient temperature of 50 ° C. for 24 hours under a load of 6.86 N (700 g) from above, and further at an ambient temperature of 23 ° C. for 3 hours. The chenille base cloth subjected to anti-slip processing was adhered to the ABS resin base material. Using a tensile measurement device (Shimadzu Corporation, Autograph AG-IS5kN), the lower end of the non-slip chenille base cloth and the upper end of the ABS resin base material were bonded at an ambient temperature of 23 ° C. and a test speed of 100 mm / min. The film was pulled parallel to the bonding surface, and the maximum load at this time was defined as the shear bonding strength.
 下記基準にて非粘着性を評価した。
 A:せん断接着強度が1.0N未満である。
 B:せん断接着強度が1.0N以上5.0N未満である。
 C:せん断接着強度が5.0N以上15.0N未満である。
 D:せん断接着強度が15.0N以上である。
Non-adhesion was evaluated according to the following criteria.
A: The shear adhesive strength is less than 1.0N.
B: Shear adhesive strength is 1.0N or more and less than 5.0N.
C: Shear adhesive strength is 5.0 N or more and less than 15.0 N.
D: Shear adhesive strength is 15.0 N or more.
 (略号)
 ウレタン重合体水分散液A:多価イソシアネートとしてイソホロンジイソシアネート、及び1,6-ヘキサメチレンジイソシアネートを用い、多価アルコールとしてポリテトラメチレンエーテルグリコール、ポリカーボネートジオール、及び1,6-ヘキサンジオールを用いて得られたウレタン重合体Aを水に分散させたもの(ウレタン重合体粒子の平均粒子径0.319μm、固形分60%)。
 ウレタン重合体水分散液B:多価イソシアネートとして1,6-ヘキサメチレンジイソシアネートを用い、多価アルコールとしてフタル酸と1,6-ヘキサンジオールとを脱水縮合させて製造されたポリエステルジオールを用いて得られたウレタン重合体Bを水に分散させたもの(ウレタン重合体粒子の平均粒子径0.220μm、固形分50%)。
 BA:n-ブチルアクリレート(Tg:-49℃)。
 Daam:ジアセトンアクリルアミド(三菱ケミカル社製、カタログ記載のTg:77℃)。
 AMA:アリルメタクリレート(三菱ケミカル社製、カタログ記載のTg:52℃)。
 MMA:メタクリル酸メチル(Tg:105℃)。
 MAA:メタクリル酸(Tg:228℃)。
 アデカリアソープSR-1025:界面活性剤、ADEKA社製、固形分25%。
 ニューコール(登録商標。以下同様。)707SF:界面活性剤、日本乳化剤社製、固形分30%。
 パーブチル(登録商標。以下同様。)H69:t-ブチルハイドロパーオキサイド水溶液、日油社製、固形分69%。
(Abbreviation)
Urethane polymer aqueous dispersion A: obtained using isophorone diisocyanate and 1,6-hexamethylene diisocyanate as polyvalent isocyanate, and using polytetramethylene ether glycol, polycarbonate diol, and 1,6-hexanediol as polyhydric alcohol. The urethane polymer A dispersed in water (average particle diameter of the urethane polymer particles 0.319 μm, solid content 60%).
Urethane polymer aqueous dispersion B: obtained by using 1,6-hexamethylene diisocyanate as a polyvalent isocyanate, and using a polyester diol produced by dehydrating and condensing phthalic acid and 1,6-hexanediol as a polyhydric alcohol. A product obtained by dispersing the obtained urethane polymer B in water (average particle size of urethane polymer particles: 0.220 μm, solid content: 50%).
BA: n-butyl acrylate (Tg: -49 ° C).
Damam: diacetone acrylamide (manufactured by Mitsubishi Chemical Corporation, Tg described in a catalog: 77 ° C.).
AMA: allyl methacrylate (manufactured by Mitsubishi Chemical Corporation, Tg described in a catalog: 52 ° C.).
MMA: methyl methacrylate (Tg: 105 ° C.).
MAA: methacrylic acid (Tg: 228 ° C.).
Adecaria Soap SR-1025: surfactant, manufactured by ADEKA, solid content 25%.
Newcol (registered trademark; the same applies hereinafter) 707SF: surfactant, manufactured by Nippon Emulsifier, solid content 30%.
Perbutyl (registered trademark; the same applies hereinafter) H69: t-butyl hydroperoxide aqueous solution, manufactured by NOF Corporation, solid content 69%.
[実施例1~3]
 撹拌機、還流冷却管、温度制御装置及び滴下ロートを備えたフラスコに下記の初期原料混合物を仕込み、窒素置換を行った。
[Examples 1 to 3]
The following initial raw material mixture was charged into a flask equipped with a stirrer, a reflux condenser, a temperature controller, and a dropping funnel, followed by purging with nitrogen.
 (初期原料混合物)
 脱イオン水:510部
 ウレタン重合体水分散液A:333部(固形分200部)
 アデカリアソープSR-1025:8.00部(固形分2部)
(Initial raw material mixture)
Deionized water: 510 parts Urethane polymer aqueous dispersion A: 333 parts (solid content: 200 parts)
Adecaria Soap SR-1025: 8.00 parts (2 parts solids)
 続いて、下記のアクリル重合体Aの原料となる単量体混合物をフラスコに仕込み、窒素置換を継続しながら、フラスコの内温を40℃に昇温した。 Subsequently, the following monomer mixture as a raw material of the acrylic polymer A was charged into a flask, and the internal temperature of the flask was raised to 40 ° C. while continuing nitrogen replacement.
 (アクリル重合体Aの原料となる単量体混合物)
 BA:197.2部
 AMA:1.00部
 Daam:1.80部
 ニューコール707SF:6.67部
 脱イオン水:80.0部
(Monomer mixture as raw material of acrylic polymer A)
BA: 197.2 parts AMA: 1.00 parts Damam: 1.80 parts Newcol 707SF: 6.67 parts Deionized water: 80.0 parts
 続いて、下記の開始剤水溶液及び還元剤水溶液をフラスコ内に添加した。重合発熱によるピークトップ温度を確認した後、フラスコの内温を60℃に保持した。 Subsequently, the following aqueous initiator solution and aqueous reducing agent solution were added to the flask. After confirming the peak top temperature due to the heat generated by the polymerization, the internal temperature of the flask was maintained at 60 ° C.
 (開始剤水溶液)
 パーブチルH69:0.10部
 脱イオン水:2.00部
(Initiator aqueous solution)
Perbutyl H69: 0.10 parts Deionized water: 2.00 parts
 (還元剤水溶液)
 硫酸鉄(II)七水和物:0.0004部
 エチレンジアミン四酢酸:0.00054部
 イソアスコルビン酸ナトリウム一水和物:0.044部
 脱イオン水:2.00部
(Reducing agent aqueous solution)
Iron (II) sulfate heptahydrate: 0.0004 parts Ethylenediaminetetraacetic acid: 0.00054 parts Sodium isoascorbate monohydrate: 0.044 parts Deionized water: 2.00 parts
 その後、フラスコ内を40℃まで冷却し、アジピン酸ヒドラジド0.834部、脱イオン水6.0部をフラスコ内に添加して重合体粒子の水分散液を得た。固形分は35.1%であった。粘度はアルカリ膨潤型増粘剤(ロームアンドハース社製、プライマルASE-60)を用いて610mPa・sに調整し、この水分散液を滑り止め加工剤として用いて滑り止め加工されたシェニール基布を得た。ウレタン重合体の付着量及びアクリル重合体の付着量の合計は、表1に示す付着量とした。
 評価結果を表1に示す。
 滑り止め加工されたシェニール基布は、滑り止め性、耐洗濯性、非粘着性に優れていた。
Thereafter, the inside of the flask was cooled to 40 ° C., and 0.834 part of adipic hydrazide and 6.0 parts of deionized water were added to the flask to obtain an aqueous dispersion of polymer particles. The solids content was 35.1%. The viscosity was adjusted to 610 mPa · s by using an alkali swelling type thickener (Primal ASE-60, manufactured by Rohm and Haas Co.), and the non-slip chenille base cloth was used with this aqueous dispersion as a non-slip agent. Got. The total amount of the urethane polymer and the acrylic polymer was determined as shown in Table 1.
Table 1 shows the evaluation results.
The non-slip chenille base fabric was excellent in anti-slip properties, washing resistance, and non-adhesiveness.
[実施例4]
 ウレタン重合体水分散液Aをウレタン重合体水分散液Bに変更した。また、その添加量を199.8部に変更した。さらに、初期原料混合物の脱イオン水を221.7部に変更した。それ以外は実施例1と同様にして作成した水分散液を滑り止め加工剤として用いて滑り止め加工されたシェニール基布を得た。ウレタン重合体の付着量及びアクリル重合体の付着量の合計は、表1に示す付着量とした。
 評価結果を表1に示す。
[Example 4]
The urethane polymer aqueous dispersion A was changed to a urethane polymer aqueous dispersion B. The amount of addition was changed to 199.8 parts. Further, the deionized water of the initial raw material mixture was changed to 221.7 parts. Except for this, an aqueous dispersion prepared in the same manner as in Example 1 was used as an anti-slip agent to obtain a non-slip chenille base fabric. The total amount of the urethane polymer and the acrylic polymer was determined as shown in Table 1.
Table 1 shows the evaluation results.
[実施例5]
 アクリル重合体Aの原料となる単量体混合物を以下のアクリル重合体Bの原料となる単量体混合物に変更した以外は、実施例1と同様にして作成した水分散液を滑り止め加工剤として用いて、滑り止め加工されたシェニール基布を得た。ウレタン重合体の付着量及びアクリル重合体の付着量の合計は、表1に示す付着量とした。
 評価結果を表1に示す。
[Example 5]
An aqueous dispersion prepared in the same manner as in Example 1 except that the monomer mixture serving as a raw material of the acrylic polymer A was changed to the following monomer mixture serving as a raw material of the acrylic polymer B, was used as a non-slip processing agent. To obtain a chenille base fabric which has been subjected to a non-slip processing. The total amount of the urethane polymer and the acrylic polymer was determined as shown in Table 1.
Table 1 shows the evaluation results.
(アクリル重合体Bの原料となる単量体混合物)
 MMA:64.6部
 BA:132.6部
 AMA:1.00部
 Daam:1.80部
 ニューコール707SF:6.67部
 脱イオン水:80.0部
(Monomer mixture as raw material of acrylic polymer B)
MMA: 64.6 parts BA: 132.6 parts AMA: 1.00 parts Damam: 1.80 parts Newcol 707SF: 6.67 parts Deionized water: 80.0 parts
[比較例1]
 撹拌機、還流冷却管、温度制御装置及び滴下ロートを備えたフラスコに下記の初期原料混合物を仕込み、窒素置換を行い、80℃に昇温した。
[Comparative Example 1]
The following initial raw material mixture was charged into a flask equipped with a stirrer, a reflux condenser, a temperature controller, and a dropping funnel, and the mixture was purged with nitrogen and heated to 80 ° C.
 (初期原料混合物)
 脱イオン水:510部
 アデカリアソープSR-1025:0.60部(固形分0.15部)
(Initial raw material mixture)
Deionized water: 510 parts Adecaria Soap SR-1025: 0.60 parts (solid content 0.15 parts)
 続いて、下記のアクリル重合体Cの原料となる単量体混合物の5%をフラスコに仕込み、下記の開始剤水溶液をフラスコ内に添加した。重合発熱によるピークトップ温度を確認した後、フラスコの内温を80℃で30分間保持した。 Next, 5% of a monomer mixture as a raw material of the following acrylic polymer C was charged into a flask, and the following aqueous initiator solution was added to the flask. After confirming the peak top temperature due to the heat generated by the polymerization, the internal temperature of the flask was maintained at 80 ° C. for 30 minutes.
 (アクリル重合体Cの原料となる単量体混合物)
 BA:488部
 AMA:2.50部
 Daam:4.50部
 MAA:5.00部
 ニューコール707SF:6.67部
 脱イオン水:80.0部
 (開始剤水溶液)
 過硫酸アンモニウム:0.50部
 脱イオン水:25.0部
(Monomer mixture as raw material of acrylic polymer C)
BA: 488 parts AMA: 2.50 parts Damam: 4.50 parts MAA: 5.00 parts Newcol 707SF: 6.67 parts Deionized water: 80.0 parts (aqueous initiator solution)
Ammonium persulfate: 0.50 parts Deionized water: 25.0 parts
 続いて、フラスコの内温を80℃に維持しながら、上記単量体混合物の残りを3時間かけてフラスコ内に滴下した。滴下した後、フラスコの内温を80℃に維持しながら1時間保持した。
 その後、フラスコ内を40℃まで冷却し、アジピン酸ヒドラジド2.08部、脱イオン水15.0部をフラスコ内に添加してアクリル重合体の水分散液を得た。固形分は45.1%あった。この水分散液を固形分35.0%に希釈し、粘度はアルカリ膨潤型増粘剤(ロームアンドハース社製、プライマルASE-60)を用いて600mPa・sに調整し、滑り止め加工剤として用いて滑り止め加工されたシェニール基布を得た。アクリル重合体の付着量は、表2に示す付着量とした。
 評価結果を表2に示す。
 滑り止め加工されたシェニール基布は、初期の滑り止め性に優れるものの、耐洗濯性及び非粘着性に劣っていた。
Subsequently, while maintaining the internal temperature of the flask at 80 ° C., the remainder of the monomer mixture was dropped into the flask over 3 hours. After the dropwise addition, the temperature of the flask was maintained at 80 ° C. for 1 hour.
Thereafter, the inside of the flask was cooled to 40 ° C., and 2.08 parts of adipic hydrazide and 15.0 parts of deionized water were added to the flask to obtain an aqueous dispersion of an acrylic polymer. The solids content was 45.1%. This aqueous dispersion was diluted to a solid content of 35.0%, and the viscosity was adjusted to 600 mPa · s using an alkali swelling type thickener (Primal ASE-60, manufactured by Rohm and Haas Co.), and used as a non-slip processing agent. To obtain a non-slip chenille base fabric. The adhesion amount of the acrylic polymer was the adhesion amount shown in Table 2.
Table 2 shows the evaluation results.
The non-slip chenille base fabric was excellent in the initial non-slip properties, but was inferior in washing resistance and non-adhesion.
[比較例2]
 ウレタン重合体水分散液Aを固形分35.0%に希釈し、粘度はアルカリ膨潤型増粘剤(ロームアンドハース社製、プライマルASE-60)を用いて606mPa・sに調整し、滑り止め加工剤として用いて滑り止め加工されたシェニール基布を得た。ウレタン重合体の付着量は、表2に示す付着量とした。
 評価結果を表2に示す。
 滑り止め加工されたシェニール基布は、非粘着性に優れていたが、滑り止め性に劣っていた。
[Comparative Example 2]
The urethane polymer aqueous dispersion A was diluted to a solid content of 35.0%, and the viscosity was adjusted to 606 mPa · s using an alkali swelling type thickener (Primal ASE-60, manufactured by Rohm and Haas Co.) to prevent slipping. A non-slip chenille base fabric was obtained using a processing agent. The adhesion amount of the urethane polymer was the adhesion amount shown in Table 2.
Table 2 shows the evaluation results.
The non-slip chenille base fabric was excellent in non-adhesiveness, but poor in anti-slip properties.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明の滑り止め加工剤は、滑り止め性及び非粘着性(例えば、床等に対する非粘着性)に優れ、幅広い用途に利用できる滑り止め加工された繊維加工品の製造に有用である。 The anti-slip agent of the present invention has excellent anti-slip properties and non-adhesiveness (for example, non-adhesiveness to floors and the like), and is useful for producing a non-slip processed textile product which can be used for a wide range of applications.

Claims (27)

  1.  加工対象物に滑り止め性を付与するための滑り止め加工剤であり、
     水性媒体と、前記水性媒体に分散した重合体粒子とを含み、
     前記重合体粒子が、ウレタン重合体及びアクリル重合体を含む複合体からなる、滑り止め加工剤。
    An anti-slip agent for imparting anti-slip properties to the workpiece,
    Aqueous medium, comprising polymer particles dispersed in the aqueous medium,
    An anti-slip agent, wherein the polymer particles are made of a composite containing a urethane polymer and an acrylic polymer.
  2.  前記加工対象物が繊維加工品である、請求項1に記載の滑り止め加工剤。 止 め The non-slip agent according to claim 1, wherein the object to be processed is a processed fiber product.
  3.  下記方法で求めた静摩擦係数が0.6以上である、請求項2に記載の滑り止め加工剤。
     (静摩擦係数の求め方)
     シェニール基布(IKEA社製、TOFTBO バスマット、70mm×50mm)の裏面に、滑り止め加工剤を、前記シェニール基布の単位面積当たりの前記滑り止め加工剤に含まれる重合体成分の付着量が35g/mとなるようにハンドスプレーを用いて塗布し、雰囲気温度120℃で5分間乾燥して得られた滑り止め加工されたシェニール基布を、滑り止め加工面を下にして水平なステンレス鋼板(JIS規格のSUS304 No.2B)の上に配置し、前記滑り止め加工されたシェニール基布の上側から26.46N(2.7kg)の荷重をかけた状態にて、雰囲気温度23℃にて前記滑り止め加工されたシェニール基布を、ばね式手秤を用いて前記ステンレス鋼板に対して平行に引いて静摩擦力を測定し、前記静摩擦力を法線力で除して静摩擦係数を求める。
    The antiskid agent according to claim 2, wherein the static friction coefficient obtained by the following method is 0.6 or more.
    (How to find the static friction coefficient)
    On the back surface of a chenille base fabric (manufactured by IKEA, TOFTBO bath mat, 70 mm × 50 mm), a non-slip agent is applied, and the amount of the polymer component contained in the non-slip agent per unit area of the chenille base fabric is 35 g. / M 2 using a hand spray, and dried for 5 minutes at an ambient temperature of 120 ° C. to obtain a non-slip processed chenille base cloth. (JIS304 SUS304 No. 2B) and a 26.46N (2.7 kg) load was applied from above the non-slip chenille base fabric at an ambient temperature of 23 ° C. The non-slip chenille base cloth was pulled in parallel to the stainless steel plate using a spring-type hand scale to measure the static friction force, and the static friction force was measured as the normal force. Dividing Request static friction coefficient.
  4.  下記方法で求めたせん断接着強度が5N未満である、請求項2又は3に記載の滑り止め加工剤。
     (せん断接着強度の求め方)
     シェニール基布(IKEA社製、TOFTBO バスマット、70mm×50mm)の裏面に、滑り止め加工剤を、前記シェニール基布の単位面積当たりの前記滑り止め加工剤に含まれる重合体成分の付着量が35g/mとなるようにハンドスプレーを用いて塗布し、雰囲気温度120℃で5分間乾燥して得られた滑り止め加工されたシェニール基布を、滑り止め加工面を下にしてABS樹脂基材(90mm×50mm×厚さ3mm)の上に接着面が50mm×50mmとなるように重ね、前記滑り止め加工されたシェニール基布の上側から6.86N(700g)の荷重をかけた状態にて、雰囲気温度50℃で24時間静置し、さらに雰囲気温度23℃で3時間静置して接着された前記滑り止め加工されたシェニール基布と前記ABS樹脂基材とを、引張測定装置を用い、雰囲気温度23℃、試験速度100mm/分にて、前記滑り止め加工されたシェニール基布の下端と前記ABS樹脂基材の上端とを接着面に平行に引張り、このときの最大荷重をせん断接着強度とする。
    The anti-slip agent according to claim 2 or 3, wherein the shear adhesive strength determined by the following method is less than 5N.
    (How to determine shear bond strength)
    On the back surface of a chenille base fabric (manufactured by IKEA, TOFTBO bath mat, 70 mm × 50 mm), a non-slip agent is applied, and the amount of the polymer component contained in the non-slip agent per unit area of the chenille base fabric is 35 g. / M 2 by using a hand sprayer, and drying the non-slip chenille base cloth obtained by drying at an ambient temperature of 120 ° C. for 5 minutes. (90 mm × 50 mm × thickness: 3 mm), with the adhesive surface being 50 mm × 50 mm, and applying a load of 6.86 N (700 g) from above the anti-slip chenille base cloth. The non-slip chenille base cloth and the ABS resin base which were stood still at an ambient temperature of 50 ° C. for 24 hours and further stood at an ambient temperature of 23 ° C. for 3 hours. The lower end of the anti-slip chenille base cloth and the upper end of the ABS resin base material are pulled in parallel with the bonding surface at a temperature of 23 ° C. and a test speed of 100 mm / min using a tensile measuring device. The maximum load at this time is defined as the shear bond strength.
  5.  前記ウレタン重合体がポリエーテル系のウレタン重合体である、請求項1~4のいずれか一項に記載の滑り止め加工剤。 滑 り The anti-slip agent according to any one of claims 1 to 4, wherein the urethane polymer is a polyether-based urethane polymer.
  6.  前記アクリル重合体のガラス転移温度が-60~10℃である、請求項1~5のいずれか一項に記載の滑り止め加工剤。 The anti-slip agent according to any one of claims 1 to 5, wherein the acrylic polymer has a glass transition temperature of -60 to 10 ° C.
  7.  前記アクリル重合体がジアセトンアクリルアミドに基づく構成単位を有する、請求項1~6のいずれか一項に記載の滑り止め加工剤。 The anti-slip agent according to any one of claims 1 to 6, wherein the acrylic polymer has a structural unit based on diacetone acrylamide.
  8.  前記アクリル重合体がラジカル重合性基を2つ以上有する単量体に基づく構成単位を有する、請求項1~7のいずれか一項に記載の滑り止め加工剤。 8. The anti-slip agent according to claim 1, wherein the acrylic polymer has a structural unit based on a monomer having two or more radically polymerizable groups.
  9.  繊維加工品に滑り止め性を付与するための滑り止め加工剤であり、
     下記方法で求めた静摩擦係数が0.6以上であり、かつ下記方法で求めたせん断接着強度が5N未満である、滑り止め加工剤。
     (静摩擦係数の求め方)
     シェニール基布(IKEA社製、TOFTBO バスマット、70mm×50mm)の裏面に、滑り止め加工剤を、前記シェニール基布の単位面積当たりの前記滑り止め加工剤に含まれる重合体成分の付着量が35g/mとなるようにハンドスプレーを用いて塗布し、雰囲気温度120℃で5分間乾燥して得られた滑り止め加工されたシェニール基布を、滑り止め加工面を下にして水平なステンレス鋼板(JIS規格のSUS304 No.2B)の上に配置し、前記滑り止め加工されたシェニール基布の上側から26.46N(2.7kg)の荷重をかけた状態にて、雰囲気温度23℃にて前記滑り止め加工されたシェニール基布を、ばね式手秤を用いて前記ステンレス鋼板に対して平行に引いて静摩擦力を測定し、前記静摩擦力を法線力で除して静摩擦係数を求める。
     (せん断接着強度の求め方)
     シェニール基布(IKEA社製、TOFTBO バスマット、70mm×50mm)の裏面に、滑り止め加工剤を、前記シェニール基布の単位面積当たりの前記滑り止め加工剤に含まれる重合体成分の付着量が35g/mとなるようにハンドスプレーを用いて塗布し、雰囲気温度120℃で5分間乾燥して得られた滑り止め加工されたシェニール基布を、滑り止め加工面を下にしてABS樹脂基材(90mm×50mm×厚さ3mm)の上に接着面が50mm×50mmとなるように重ね、前記滑り止め加工されたシェニール基布の上側から6.86N(700g)の荷重をかけた状態にて、雰囲気温度50℃で24時間静置し、さらに雰囲気温度23℃で3時間静置して接着された前記滑り止め加工されたシェニール基布と前記ABS樹脂基材とを、引張測定装置を用い、雰囲気温度23℃、試験速度100mm/分にて、前記滑り止め加工されたシェニール基布の下端と前記ABS樹脂基材の上端とを接着面に平行に引張り、このときの最大荷重をせん断接着強度とする。
    An anti-slip agent for imparting anti-slip properties to textile products.
    An anti-slip agent having a static friction coefficient of 0.6 or more as determined by the following method and a shear adhesive strength of less than 5 N as determined by the following method.
    (How to find the static friction coefficient)
    On the back surface of a chenille base fabric (manufactured by IKEA, TOFTBO bath mat, 70 mm × 50 mm), a non-slip agent is applied, and the amount of the polymer component contained in the non-slip agent per unit area of the chenille base fabric is 35 g. / M 2 using a hand spray, and dried for 5 minutes at an ambient temperature of 120 ° C. to obtain a non-slip processed chenille base cloth. (JIS304 SUS304 No. 2B) and a 26.46N (2.7 kg) load was applied from above the non-slip chenille base fabric at an ambient temperature of 23 ° C. The non-slip chenille base cloth was pulled in parallel to the stainless steel plate using a spring-type hand scale to measure the static friction force, and the static friction force was measured as the normal force. Dividing Request static friction coefficient.
    (How to determine shear bond strength)
    On the back surface of a chenille base fabric (manufactured by IKEA, TOFTBO bath mat, 70 mm × 50 mm), a non-slip agent is applied, and the amount of the polymer component contained in the non-slip agent per unit area of the chenille base fabric is 35 g. / M 2 by using a hand sprayer, and drying the non-slip chenille base cloth obtained by drying at an ambient temperature of 120 ° C. for 5 minutes. (90 mm × 50 mm × thickness: 3 mm), with the adhesive surface being 50 mm × 50 mm, and applying a load of 6.86 N (700 g) from above the anti-slip chenille base cloth. The non-slip chenille base cloth and the ABS resin base which were stood still at an ambient temperature of 50 ° C. for 24 hours and further stood at an ambient temperature of 23 ° C. for 3 hours. The lower end of the anti-slip chenille base cloth and the upper end of the ABS resin base material are pulled in parallel with the bonding surface at a temperature of 23 ° C. and a test speed of 100 mm / min using a tensile measuring device. The maximum load at this time is defined as the shear bond strength.
  10.  繊維加工品に滑り止め性を付与するための滑り止め加工剤であり、
     ジアセトンアクリルアミドに基づく構成単位を有するアクリル重合体を含み、
     下記方法で求めたせん断接着強度が5N未満である、滑り止め加工剤。
     (せん断接着強度の求め方)
     シェニール基布(IKEA社製、TOFTBO バスマット、70mm×50mm)の裏面に、滑り止め加工剤を、前記シェニール基布の単位面積当たりの前記滑り止め加工剤に含まれる重合体成分の付着量が35g/mとなるようにハンドスプレーを用いて塗布し、雰囲気温度120℃で5分間乾燥して得られた滑り止め加工されたシェニール基布を、滑り止め加工面を下にしてABS樹脂基材(90mm×50mm×厚さ3mm)の上に接着面が50mm×50mmとなるように重ね、前記滑り止め加工されたシェニール基布の上側から6.86N(700g)の荷重をかけた状態にて、雰囲気温度50℃で24時間静置し、さらに雰囲気温度23℃で3時間静置して接着された前記滑り止め加工されたシェニール基布と前記ABS樹脂基材とを、引張測定装置を用い、雰囲気温度23℃、試験速度100mm/分にて、前記滑り止め加工されたシェニール基布の下端と前記ABS樹脂基材の上端とを接着面に平行に引張り、このときの最大荷重をせん断接着強度とする。
    An anti-slip agent for imparting anti-slip properties to textile products.
    Including an acrylic polymer having a structural unit based on diacetone acrylamide,
    A non-slip agent having a shear bond strength of less than 5 N determined by the following method.
    (How to determine shear bond strength)
    On the back surface of a chenille base fabric (manufactured by IKEA, TOFTBO bath mat, 70 mm × 50 mm), a non-slip agent is applied, and the amount of the polymer component contained in the non-slip agent per unit area of the chenille base fabric is 35 g. / M 2 by using a hand sprayer, and drying the non-slip chenille base cloth obtained by drying at an ambient temperature of 120 ° C. for 5 minutes. (90 mm × 50 mm × thickness: 3 mm), with the adhesive surface being 50 mm × 50 mm, and applying a load of 6.86 N (700 g) from above the anti-slip chenille base cloth. The non-slip chenille base cloth and the ABS resin base which were stood still at an ambient temperature of 50 ° C. for 24 hours and further stood at an ambient temperature of 23 ° C. for 3 hours. The lower end of the anti-slip chenille base cloth and the upper end of the ABS resin base material are pulled in parallel with the bonding surface at a temperature of 23 ° C. and a test speed of 100 mm / min using a tensile measuring device. The maximum load at this time is defined as the shear bond strength.
  11.  前記アクリル重合体がラジカル重合性基を2つ以上有する単量体に基づく構成単位を有する、請求項10に記載の滑り止め加工剤。 The antiskid agent according to claim 10, wherein the acrylic polymer has a structural unit based on a monomer having two or more radically polymerizable groups.
  12.  前記アクリル重合体のガラス転移温度が-60~10℃である、請求項10又は11に記載の滑り止め加工剤。 12. The anti-slip agent according to claim 10, wherein the acrylic polymer has a glass transition temperature of −60 to 10 ° C.
  13.  ウレタン重合体及びアクリル重合体が付着している、滑り止め加工された繊維加工品。 繊 維 A non-slip processed fiber product with urethane polymer and acrylic polymer attached.
  14.  下記方法で求めた静摩擦係数が0.6以上である、請求項13に記載の滑り止め加工された繊維加工品。
     (静摩擦係数の求め方)
     滑り止め加工された繊維加工品(70mm×50mm)を、滑り止め加工面を下にして水平なステンレス鋼板(JIS規格のSUS304 No.2B)の上に配置し、前記滑り止め加工された繊維加工品の上側から26.46N(2.7kg)の荷重をかけた状態にて、雰囲気温度23℃にて前記滑り止め加工された繊維加工品を、ばね式手秤を用いて前記ステンレス鋼板に対して平行に引いて静摩擦力を測定し、前記静摩擦力を法線力で除して静摩擦係数を求める。
    14. The non-slip processed fiber product according to claim 13, wherein the coefficient of static friction obtained by the following method is 0.6 or more.
    (How to find the static friction coefficient)
    A non-slip processed fiber product (70 mm x 50 mm) is placed on a horizontal stainless steel plate (JIS standard SUS304 No. 2B) with the non-slip surface down, and the non-slip processed fiber process is performed. Under the condition that a load of 26.46 N (2.7 kg) is applied from the upper side of the product, the non-slip processed fiber product at an ambient temperature of 23 ° C. is applied to the stainless steel plate using a spring-type hand scale. , The static friction force is measured, and the static friction force is divided by the normal force to obtain a static friction coefficient.
  15.  下記方法で求めたせん断接着強度が5N未満である、請求項13又は14に記載の滑り止め加工された繊維加工品。
     (せん断接着強度の求め方)
     滑り止め加工された繊維加工品(70mm×50mm)を、滑り止め加工面を下にしてABS樹脂基材(90mm×50mm×厚さ3mm)の上に接着面が50mm×50mmとなるように重ね、前記滑り止め加工された繊維加工品の上側から6.86N(700g)の荷重をかけた状態にて、雰囲気温度50℃で24時間静置し、さらに雰囲気温度23℃で3時間静置して接着された前記滑り止め加工された繊維加工品と前記ABS樹脂基材とを、引張測定装置を用い、雰囲気温度23℃、試験速度100mm/分にて、前記滑り止め加工された繊維加工品の下端と前記ABS樹脂基材の上端とを接着面に平行に引張り、このときの最大荷重をせん断接着強度とする。
    The non-slip processed fiber product according to claim 13 or 14, wherein the shear bond strength determined by the following method is less than 5N.
    (How to determine shear bond strength)
    A non-slip processed fiber processed product (70 mm x 50 mm) is laid on an ABS resin substrate (90 mm x 50 mm x 3 mm thick) with the non-slip surface down so that the adhesive surface is 50 mm x 50 mm. Then, with a load of 6.86 N (700 g) applied from the upper side of the non-slip processed fiber product, the fiber product was allowed to stand at an ambient temperature of 50 ° C. for 24 hours, and further allowed to stand at an ambient temperature of 23 ° C. for 3 hours. The non-slip processed fiber product and the ABS resin base material are bonded to each other at an ambient temperature of 23 ° C. and a test speed of 100 mm / min using a tensile measuring device. And the upper end of the ABS resin substrate is pulled in parallel to the bonding surface, and the maximum load at this time is defined as the shear bonding strength.
  16.  前記滑り止め加工された繊維加工品の単位面積当たりの前記ウレタン重合体の付着量と前記アクリル重合体の付着量との合計が、3~300g/mである、請求項13~15のいずれか一項に記載の滑り止め加工された繊維加工品。 The method according to any one of claims 13 to 15, wherein the sum of the amount of the urethane polymer and the amount of the acrylic polymer deposited per unit area of the non-slip processed fiber product is 3 to 300 g / m 2. A non-slip processed fiber product according to claim 1.
  17.  前記ウレタン重合体がポリエーテル系のウレタン重合体である、請求項13~16のいずれか一項に記載の滑り止め加工された繊維加工品。 The non-slip processed fiber product according to any one of claims 13 to 16, wherein the urethane polymer is a polyether-based urethane polymer.
  18.  前記アクリル重合体のガラス転移温度が-60~10℃である、請求項13~17のいずれか一項に記載の滑り止め加工された繊維加工品。 18. The non-slip processed fiber product according to any one of claims 13 to 17, wherein the acrylic polymer has a glass transition temperature of -60 to 10 ° C.
  19.  前記アクリル重合体がジアセトンアクリルアミドに基づく構成単位を有し、
     前記ジアセトンアクリルアミドに基づく構成単位の少なくとも一部が架橋構造を形成している、請求項13~18のいずれか一項に記載の滑り止め加工された繊維加工品。
    The acrylic polymer has a structural unit based on diacetone acrylamide,
    The non-slip processed fiber product according to any one of claims 13 to 18, wherein at least a part of the structural units based on diacetone acrylamide forms a crosslinked structure.
  20.  前記アクリル重合体がラジカル重合性基を2つ以上有する単量体に基づく構成単位を有する、請求項13~19のいずれか一項に記載の滑り止め加工された繊維加工品。 20. The non-slip processed fiber product according to any one of claims 13 to 19, wherein the acrylic polymer has a structural unit based on a monomer having two or more radically polymerizable groups.
  21.  下記方法で求めた静摩擦係数が0.6以上であり、かつ下記方法で求めたせん断接着強度が5N未満である、滑り止め加工された繊維加工品。
     (静摩擦係数の求め方)
     滑り止め加工された繊維加工品(70mm×50mm)を、滑り止め加工面を下にして水平なステンレス鋼板(JIS規格のSUS304 No.2B)の上に配置し、前記滑り止め加工された繊維加工品の上側から26.46N(2.7kg)の荷重をかけた状態にて、雰囲気温度23℃にて前記滑り止め加工された繊維加工品を、ばね式手秤を用いて前記ステンレス鋼板に対して平行に引いて静摩擦力を測定し、前記静摩擦力を法線力で除して静摩擦係数を求める。
     (せん断接着強度の求め方)
     滑り止め加工された繊維加工品(70mm×50mm)を、滑り止め加工面を下にしてABS樹脂基材(90mm×50mm×厚さ3mm)の上に接着面が50mm×50mmとなるように重ね、前記滑り止め加工された繊維加工品の上側から6.86N(700g)の荷重をかけた状態にて、雰囲気温度50℃で24時間静置し、さらに雰囲気温度23℃で3時間静置して接着された前記滑り止め加工された繊維加工品と前記ABS樹脂基材とを、引張測定装置を用い、雰囲気温度23℃、試験速度100mm/分にて、前記滑り止め加工された繊維加工品の下端と前記ABS樹脂基材の上端とを接着面に平行に引張り、このときの最大荷重をせん断接着強度とする。
    A non-slip processed fiber product having a static friction coefficient of 0.6 or more determined by the following method and a shear bond strength of less than 5 N determined by the following method.
    (How to find the static friction coefficient)
    A non-slip processed fiber product (70 mm x 50 mm) is placed on a horizontal stainless steel plate (JIS standard SUS304 No. 2B) with the non-slip surface down, and the non-slip processed fiber process is performed. Under the condition that a load of 26.46 N (2.7 kg) is applied from the upper side of the product, the non-slip processed fiber product at an ambient temperature of 23 ° C. is applied to the stainless steel plate using a spring-type hand scale. , The static friction force is measured, and the static friction force is divided by the normal force to obtain a static friction coefficient.
    (How to determine shear bond strength)
    A non-slip processed fiber processed product (70 mm x 50 mm) is laid on an ABS resin substrate (90 mm x 50 mm x 3 mm thick) with the non-slip surface down so that the adhesive surface is 50 mm x 50 mm. Then, with a load of 6.86 N (700 g) applied from the upper side of the non-slip processed fiber product, the fiber product was allowed to stand at an ambient temperature of 50 ° C. for 24 hours, and further allowed to stand at an ambient temperature of 23 ° C. for 3 hours. The non-slip processed fiber product and the ABS resin base material are bonded to each other at an ambient temperature of 23 ° C. and a test speed of 100 mm / min using a tensile measuring device. And the upper end of the ABS resin substrate is pulled in parallel to the bonding surface, and the maximum load at this time is defined as the shear bonding strength.
  22.  ジアセトンアクリルアミドに基づく構成単位を有するアクリル重合体が付着し、
     前記ジアセトンアクリルアミドに基づく構成単位の少なくとも一部が架橋構造を形成しており、
     下記方法で求めたせん断接着強度が5N未満である、滑り止め加工された繊維加工品。
     (せん断接着強度の求め方)
     滑り止め加工された繊維加工品(70mm×50mm)を、滑り止め加工面を下にしてABS樹脂基材(90mm×50mm×厚さ3mm)の上に接着面が50mm×50mmとなるように重ね、前記滑り止め加工された繊維加工品の上側から6.86N(700g)の荷重をかけた状態にて、雰囲気温度50℃で24時間静置し、さらに雰囲気温度23℃で3時間静置して接着された前記滑り止め加工された繊維加工品と前記ABS樹脂基材とを、引張測定装置を用い、雰囲気温度23℃、試験速度100mm/分にて、前記滑り止め加工された繊維加工品の下端と前記ABS樹脂基材の上端とを接着面に平行に引張り、このときの最大荷重をせん断接着強度とする。
    An acrylic polymer having a structural unit based on diacetone acrylamide adheres,
    At least a part of the structural unit based on the diacetone acrylamide forms a crosslinked structure,
    A non-slip processed fiber product having a shear bond strength of less than 5 N determined by the following method.
    (How to determine shear bond strength)
    A non-slip processed fiber product (70 mm x 50 mm) is placed on an ABS resin base material (90 mm x 50 mm x 3 mm thick) with the non-slip surface down so that the adhesive surface is 50 mm x 50 mm. Then, with a load of 6.86 N (700 g) applied from the upper side of the non-slip processed fiber product, the fiber product was allowed to stand at an ambient temperature of 50 ° C. for 24 hours, and further allowed to stand at an ambient temperature of 23 ° C. for 3 hours. The non-slip processed fiber product obtained by bonding the non-slip processed fiber product and the ABS resin base material at an ambient temperature of 23 ° C. and a test speed of 100 mm / min using a tensile measuring device. And the upper end of the ABS resin substrate is pulled in parallel with the bonding surface, and the maximum load at this time is defined as the shear bonding strength.
  23.  前記滑り止め加工された繊維加工品の単位面積当たりの前記アクリル重合体の付着量が10~100g/mである、請求項22に記載の滑り止め加工された繊維加工品。 23. The non-slip processed fiber product according to claim 22, wherein the adhesion amount of the acrylic polymer per unit area of the non-slip processed fiber product is 10 to 100 g / m 2 .
  24.  請求項2~12のいずれか一項に記載の滑り止め加工剤によって滑り止め加工された、滑り止め加工された繊維加工品。 止 め A non-slip processed fiber processed product which is non-slip processed by the anti-slip processing agent according to any one of claims 2 to 12.
  25.  滑り止め加工剤が塗布された繊維加工品を得るために、請求項2~12のいずれか一項に記載の滑り止め加工剤を、繊維加工品に塗布し、
     前記滑り止め加工剤が塗布された繊維加工品を乾燥することを含む、滑り止め加工された繊維加工品の製造方法。
    Applying a non-slip agent according to any one of claims 2 to 12 to the fiber product to obtain a fiber product to which the anti-slip agent has been applied;
    A method for producing a non-slip processed fiber product, comprising drying the processed fiber product to which the anti-slip agent has been applied.
  26.  前記繊維加工品の単位面積当たりの前記滑り止め加工剤の塗布量が、30~3000g/mである、請求項25に記載の滑り止め加工された繊維加工品の製造方法。 26. The method for producing a non-slip processed fiber product according to claim 25, wherein the applied amount of the anti-slip processing agent per unit area of the processed fiber product is 30 to 3000 g / m 2 .
  27.  前記滑り止め加工剤の前記繊維加工品への塗布が、スプレーコートにより行われる、請求項25又は26に記載の滑り止め加工された繊維加工品の製造方法。 27. The method for producing a non-slip processed fiber product according to claim 25 or 26, wherein the application of the anti-slip agent to the processed fiber product is performed by spray coating.
PCT/JP2019/025820 2018-06-29 2019-06-28 Anti-slip processing agent, anti-slip processed textile product, and method for producing anti-slip processed textile product WO2020004623A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980035264.1A CN112166166B (en) 2018-06-29 2019-06-28 Anti-slip agent, anti-slip fiber processed product, and method for producing anti-slip fiber processed product
JP2020527682A JP7088289B2 (en) 2018-06-29 2019-06-28 Manufacturing method of non-slip processing agent, non-slip processed fiber product, and non-slip processed fiber product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018124171 2018-06-29
JP2018-124171 2018-06-29

Publications (1)

Publication Number Publication Date
WO2020004623A1 true WO2020004623A1 (en) 2020-01-02

Family

ID=68987194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025820 WO2020004623A1 (en) 2018-06-29 2019-06-28 Anti-slip processing agent, anti-slip processed textile product, and method for producing anti-slip processed textile product

Country Status (3)

Country Link
JP (1) JP7088289B2 (en)
CN (1) CN112166166B (en)
WO (1) WO2020004623A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000144107A (en) * 1998-11-09 2000-05-26 Toyo Ink Mfg Co Ltd Non-slip sheet for tape
JP2000506558A (en) * 1996-02-08 2000-05-30 ミネソタ マイニング アンド マニュファクチャリング カンパニー Curable aqueous coating composition and cured product thereof
JP2001040295A (en) * 1999-05-27 2001-02-13 Nippon Polyurethane Ind Co Ltd Aqueous floor polish
KR101325024B1 (en) * 2013-04-16 2013-11-04 한서포리머주식회사 A construction process of non-slip pavement of tennis court and its top coating composition
KR101463184B1 (en) * 2014-04-17 2014-11-21 주식회사 케이엠지 Anti-slip adhesive composition, anti-slip adhesive and method of manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100325024B1 (en) * 1999-12-17 2002-02-25 김동우 Method of treating dye containing waste water
KR100463184B1 (en) * 2003-01-30 2004-12-23 아남반도체 주식회사 Fabrication method of Non-volatile memory device
WO2010051293A1 (en) * 2008-10-31 2010-05-06 Lubrizol Advanced Materials, Inc. Dispersion of hybrid polyurethane with olefin-acrylic copolymerization

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000506558A (en) * 1996-02-08 2000-05-30 ミネソタ マイニング アンド マニュファクチャリング カンパニー Curable aqueous coating composition and cured product thereof
JP2000144107A (en) * 1998-11-09 2000-05-26 Toyo Ink Mfg Co Ltd Non-slip sheet for tape
JP2001040295A (en) * 1999-05-27 2001-02-13 Nippon Polyurethane Ind Co Ltd Aqueous floor polish
KR101325024B1 (en) * 2013-04-16 2013-11-04 한서포리머주식회사 A construction process of non-slip pavement of tennis court and its top coating composition
KR101463184B1 (en) * 2014-04-17 2014-11-21 주식회사 케이엠지 Anti-slip adhesive composition, anti-slip adhesive and method of manufacturing the same

Also Published As

Publication number Publication date
JP7088289B2 (en) 2022-06-21
JPWO2020004623A1 (en) 2021-04-30
CN112166166A (en) 2021-01-01
CN112166166B (en) 2022-09-30

Similar Documents

Publication Publication Date Title
JP5459219B2 (en) Fluoropolymer and water / oil repellent
US4351875A (en) Heteropolymer acrylic latices and textiles treated therewith
US4277384A (en) Heteropolymer acrylic latices and textiles treated therewith
MXPA04007025A (en) Method of treatment of a textile or non-woven substrate to render same water and oil repellent.
WO2015060353A1 (en) Fluorine-containing polymer and treatment agent
JP5949853B2 (en) Moisture permeable waterproof fabric and method for producing the same
WO2018163911A1 (en) Oil-repellent composition
WO2014021277A1 (en) Water-repellant, oil-repellant composition and article
JP5344076B2 (en) Fluorine-containing composition
JP7111160B2 (en) ANTI-SLIP PROCESSING AGENT, ANTI-SLIP FIBERS AND METHOD FOR MANUFACTURING ANTI-SLIP FIBERS
JPH021795A (en) Water and oil repellent
JP7088289B2 (en) Manufacturing method of non-slip processing agent, non-slip processed fiber product, and non-slip processed fiber product
JP2009525371A (en) Self-adhesive adhesive
JP6255896B2 (en) Fluorine-containing release agent composition
US11326038B2 (en) Crushed foam coating
JP4045876B2 (en) Antifouling processing method and base material subjected to the processing method
JP3112587B2 (en) Aqueous dispersion of carbonyl group-containing copolymer
JP7352810B2 (en) Fluorine-containing polymer, coating composition, method for producing coated articles, and coated articles
WO2023119695A1 (en) Water-repellent organic fine particles having slip prevention effect
JP2021105229A (en) Nonslip socks and method of producing the same
JP2009270247A (en) Composition for coating paper/fiber product, coating film, and paper/fiber product
CN109422952B (en) Resin composition and surface protective film
JPS642514B2 (en)
JP4792226B2 (en) Two-component adhesive composition
JP2968364B2 (en) Water and oil repellent and water and oil repellent composition with excellent durability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825690

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020527682

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19825690

Country of ref document: EP

Kind code of ref document: A1