WO2020081966A1 - Nano-engineered therapeutic stealth cells - Google Patents
Nano-engineered therapeutic stealth cells Download PDFInfo
- Publication number
- WO2020081966A1 WO2020081966A1 PCT/US2019/056988 US2019056988W WO2020081966A1 WO 2020081966 A1 WO2020081966 A1 WO 2020081966A1 US 2019056988 W US2019056988 W US 2019056988W WO 2020081966 A1 WO2020081966 A1 WO 2020081966A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cells
- mdscs
- subpopulation
- tumor
- cell
- Prior art date
Links
- 230000001225 therapeutic effect Effects 0.000 title claims abstract description 20
- 210000004985 myeloid-derived suppressor cell Anatomy 0.000 claims abstract description 149
- 210000004027 cell Anatomy 0.000 claims abstract description 107
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 71
- 238000000034 method Methods 0.000 claims abstract description 35
- 230000008672 reprogramming Effects 0.000 claims abstract description 5
- 239000002246 antineoplastic agent Substances 0.000 claims abstract description 4
- 238000000684 flow cytometry Methods 0.000 claims description 13
- 210000004881 tumor cell Anatomy 0.000 claims description 13
- 239000002975 chemoattractant Substances 0.000 claims description 10
- 206010006187 Breast cancer Diseases 0.000 claims description 9
- 208000026310 Breast neoplasm Diseases 0.000 claims description 9
- 230000003592 biomimetic effect Effects 0.000 claims description 8
- 238000010232 migration assay Methods 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 7
- 108700019146 Transgenes Proteins 0.000 claims description 6
- 101001046686 Homo sapiens Integrin alpha-M Proteins 0.000 claims description 5
- 102100022338 Integrin alpha-M Human genes 0.000 claims description 5
- 102000005406 Tissue Inhibitor of Metalloproteinase-3 Human genes 0.000 claims description 4
- 108010031429 Tissue Inhibitor of Metalloproteinase-3 Proteins 0.000 claims description 4
- 101000972324 Cynodon dactylon Leaf protein Proteins 0.000 claims description 3
- 108091034117 Oligonucleotide Proteins 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 2
- 238000007809 Boyden Chamber assay Methods 0.000 claims 1
- 238000001565 modulated differential scanning calorimetry Methods 0.000 abstract description 143
- 230000004899 motility Effects 0.000 abstract description 52
- 210000004556 brain Anatomy 0.000 abstract description 7
- 244000309459 oncolytic virus Species 0.000 abstract description 6
- 239000013612 plasmid Substances 0.000 abstract description 4
- 238000012384 transportation and delivery Methods 0.000 abstract description 4
- 210000000947 motile cell Anatomy 0.000 abstract description 3
- 201000011510 cancer Diseases 0.000 description 26
- 210000001519 tissue Anatomy 0.000 description 19
- 230000005012 migration Effects 0.000 description 18
- 238000013508 migration Methods 0.000 description 18
- 230000014509 gene expression Effects 0.000 description 15
- 239000004205 dimethyl polysiloxane Substances 0.000 description 12
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 12
- 108090000623 proteins and genes Proteins 0.000 description 12
- 238000004458 analytical method Methods 0.000 description 11
- 230000003110 anti-inflammatory effect Effects 0.000 description 11
- 208000005017 glioblastoma Diseases 0.000 description 11
- 201000010915 Glioblastoma multiforme Diseases 0.000 description 10
- 230000000770 proinflammatory effect Effects 0.000 description 9
- 102000001714 Agammaglobulinaemia Tyrosine Kinase Human genes 0.000 description 8
- 108010029445 Agammaglobulinaemia Tyrosine Kinase Proteins 0.000 description 8
- 239000002177 L01XE27 - Ibrutinib Substances 0.000 description 8
- 241000699670 Mus sp. Species 0.000 description 8
- 238000003556 assay Methods 0.000 description 8
- 238000004587 chromatography analysis Methods 0.000 description 8
- 238000006073 displacement reaction Methods 0.000 description 8
- 229960001507 ibrutinib Drugs 0.000 description 8
- XYFPWWZEPKGCCK-GOSISDBHSA-N ibrutinib Chemical compound C1=2C(N)=NC=NC=2N([C@H]2CN(CCC2)C(=O)C=C)N=C1C(C=C1)=CC=C1OC1=CC=CC=C1 XYFPWWZEPKGCCK-GOSISDBHSA-N 0.000 description 8
- 239000003814 drug Substances 0.000 description 7
- 230000003306 cell dissemination Effects 0.000 description 6
- 229940079593 drug Drugs 0.000 description 6
- 230000001747 exhibiting effect Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000002560 therapeutic procedure Methods 0.000 description 6
- 238000011529 RT qPCR Methods 0.000 description 5
- 238000000540 analysis of variance Methods 0.000 description 5
- 201000010099 disease Diseases 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 238000010195 expression analysis Methods 0.000 description 5
- 230000001506 immunosuppresive effect Effects 0.000 description 5
- 230000008595 infiltration Effects 0.000 description 5
- 238000001764 infiltration Methods 0.000 description 5
- 230000001394 metastastic effect Effects 0.000 description 5
- 206010061289 metastatic neoplasm Diseases 0.000 description 5
- 102100035248 Alpha-(1,3)-fucosyltransferase 4 Human genes 0.000 description 4
- 229940124291 BTK inhibitor Drugs 0.000 description 4
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 4
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 4
- 101001022185 Homo sapiens Alpha-(1,3)-fucosyltransferase 4 Proteins 0.000 description 4
- 101000946889 Homo sapiens Monocyte differentiation antigen CD14 Proteins 0.000 description 4
- 102100035877 Monocyte differentiation antigen CD14 Human genes 0.000 description 4
- 238000001574 biopsy Methods 0.000 description 4
- 210000002744 extracellular matrix Anatomy 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 201000001441 melanoma Diseases 0.000 description 4
- 229960003301 nivolumab Drugs 0.000 description 4
- 210000005259 peripheral blood Anatomy 0.000 description 4
- 239000011886 peripheral blood Substances 0.000 description 4
- -1 polydimethylsiloxane Polymers 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 230000000638 stimulation Effects 0.000 description 4
- 238000002287 time-lapse microscopy Methods 0.000 description 4
- 241000699666 Mus <mouse, genus> Species 0.000 description 3
- 241000699660 Mus musculus Species 0.000 description 3
- 206010061309 Neoplasm progression Diseases 0.000 description 3
- 101710089543 Nitric oxide synthase, inducible Proteins 0.000 description 3
- 102100029438 Nitric oxide synthase, inducible Human genes 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 210000001744 T-lymphocyte Anatomy 0.000 description 3
- 238000004113 cell culture Methods 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000012377 drug delivery Methods 0.000 description 3
- 238000001476 gene delivery Methods 0.000 description 3
- 230000013632 homeostatic process Effects 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 230000001976 improved effect Effects 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 238000007917 intracranial administration Methods 0.000 description 3
- 108020004707 nucleic acids Proteins 0.000 description 3
- 102000039446 nucleic acids Human genes 0.000 description 3
- 150000007523 nucleic acids Chemical class 0.000 description 3
- 238000011580 nude mouse model Methods 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 229920003213 poly(N-isopropyl acrylamide) Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 238000011277 treatment modality Methods 0.000 description 3
- 230000005751 tumor progression Effects 0.000 description 3
- 230000003612 virological effect Effects 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 108091033409 CRISPR Proteins 0.000 description 2
- 238000007808 Cell invasion assay Methods 0.000 description 2
- 102000019034 Chemokines Human genes 0.000 description 2
- 108010012236 Chemokines Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- 101000984753 Homo sapiens Serine/threonine-protein kinase B-raf Proteins 0.000 description 2
- 206010062016 Immunosuppression Diseases 0.000 description 2
- 102000004889 Interleukin-6 Human genes 0.000 description 2
- 108090001005 Interleukin-6 Proteins 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 108091093082 MiR-146 Proteins 0.000 description 2
- 241001529936 Murinae Species 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 102100027103 Serine/threonine-protein kinase B-raf Human genes 0.000 description 2
- 230000006052 T cell proliferation Effects 0.000 description 2
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000006907 apoptotic process Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 210000000481 breast Anatomy 0.000 description 2
- 230000012292 cell migration Effects 0.000 description 2
- 230000009087 cell motility Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000035605 chemotaxis Effects 0.000 description 2
- 238000011443 conventional therapy Methods 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 230000003436 cytoskeletal effect Effects 0.000 description 2
- 238000013401 experimental design Methods 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- 210000000609 ganglia Anatomy 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 210000003563 lymphoid tissue Anatomy 0.000 description 2
- 230000036210 malignancy Effects 0.000 description 2
- 238000000386 microscopy Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229960002621 pembrolizumab Drugs 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000002085 persistent effect Effects 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 238000003753 real-time PCR Methods 0.000 description 2
- 238000000820 replica moulding Methods 0.000 description 2
- 238000004626 scanning electron microscopy Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- DAEPDZWVDSPTHF-UHFFFAOYSA-M sodium pyruvate Chemical compound [Na+].CC(=O)C([O-])=O DAEPDZWVDSPTHF-UHFFFAOYSA-M 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 210000000130 stem cell Anatomy 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 238000001890 transfection Methods 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 230000004614 tumor growth Effects 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 210000004885 white matter Anatomy 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- WNEODWDFDXWOLU-QHCPKHFHSA-N 3-[3-(hydroxymethyl)-4-[1-methyl-5-[[5-[(2s)-2-methyl-4-(oxetan-3-yl)piperazin-1-yl]pyridin-2-yl]amino]-6-oxopyridin-3-yl]pyridin-2-yl]-7,7-dimethyl-1,2,6,8-tetrahydrocyclopenta[3,4]pyrrolo[3,5-b]pyrazin-4-one Chemical compound C([C@@H](N(CC1)C=2C=NC(NC=3C(N(C)C=C(C=3)C=3C(=C(N4C(C5=CC=6CC(C)(C)CC=6N5CC4)=O)N=CC=3)CO)=O)=CC=2)C)N1C1COC1 WNEODWDFDXWOLU-QHCPKHFHSA-N 0.000 description 1
- 101150029019 ATP6 gene Proteins 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- 102000004452 Arginase Human genes 0.000 description 1
- 108700024123 Arginases Proteins 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- 238000010354 CRISPR gene editing Methods 0.000 description 1
- 102100026550 Caspase-9 Human genes 0.000 description 1
- 108090000566 Caspase-9 Proteins 0.000 description 1
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108700039887 Essential Genes Proteins 0.000 description 1
- 108091011114 FK506 binding proteins Proteins 0.000 description 1
- 208000032612 Glial tumor Diseases 0.000 description 1
- 206010018338 Glioma Diseases 0.000 description 1
- 102100031181 Glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 1
- 208000009329 Graft vs Host Disease Diseases 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 108010066979 Interleukin-27 Proteins 0.000 description 1
- 208000032382 Ischaemic stroke Diseases 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 102100031789 Myeloid-derived growth factor Human genes 0.000 description 1
- 108010075205 OVA-8 Proteins 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 102000018679 Tacrolimus Binding Proteins Human genes 0.000 description 1
- 102000006601 Thymidine Kinase Human genes 0.000 description 1
- 108020004440 Thymidine kinase Proteins 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102100040247 Tumor necrosis factor Human genes 0.000 description 1
- 102000013127 Vimentin Human genes 0.000 description 1
- 108010065472 Vimentin Proteins 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 241000021375 Xenogenes Species 0.000 description 1
- WDENQIQQYWYTPO-IBGZPJMESA-N acalabrutinib Chemical compound CC#CC(=O)N1CCC[C@H]1C1=NC(C=2C=CC(=CC=2)C(=O)NC=2N=CC=CC=2)=C2N1C=CN=C2N WDENQIQQYWYTPO-IBGZPJMESA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000001994 activation Methods 0.000 description 1
- 210000000577 adipose tissue Anatomy 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 230000002001 anti-metastasis Effects 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 239000002543 antimycotic Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 210000002469 basement membrane Anatomy 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 208000029028 brain injury Diseases 0.000 description 1
- 238000010805 cDNA synthesis kit Methods 0.000 description 1
- 230000005773 cancer-related death Effects 0.000 description 1
- 238000010868 cell confinement Methods 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 238000003501 co-culture Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 239000003636 conditioned culture medium Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- 230000007646 directional migration Effects 0.000 description 1
- 229960003722 doxycycline Drugs 0.000 description 1
- XQTWDDCIUJNLTR-CVHRZJFOSA-N doxycycline monohydrate Chemical compound O.O=C1C2=C(O)C=CC=C2[C@H](C)[C@@H]2C1=C(O)[C@]1(O)C(=O)C(C(N)=O)=C(O)[C@@H](N(C)C)[C@@H]1[C@H]2O XQTWDDCIUJNLTR-CVHRZJFOSA-N 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 239000012997 ficoll-paque Substances 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- 208000024908 graft versus host disease Diseases 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 201000005787 hematologic cancer Diseases 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 238000010185 immunofluorescence analysis Methods 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 238000011503 in vivo imaging Methods 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 231100000225 lethality Toxicity 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 210000004324 lymphatic system Anatomy 0.000 description 1
- 238000002826 magnetic-activated cell sorting Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 210000005075 mammary gland Anatomy 0.000 description 1
- 108010082117 matrigel Proteins 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 230000001617 migratory effect Effects 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 238000009343 monoculture Methods 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 239000002090 nanochannel Substances 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 230000009826 neoplastic cell growth Effects 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- VIKNJXKGJWUCNN-XGXHKTLJSA-N norethisterone Chemical compound O=C1CC[C@@H]2[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 VIKNJXKGJWUCNN-XGXHKTLJSA-N 0.000 description 1
- 230000006548 oncogenic transformation Effects 0.000 description 1
- 230000003534 oscillatory effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000030786 positive chemotaxis Effects 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000001023 pro-angiogenic effect Effects 0.000 description 1
- 230000000861 pro-apoptotic effect Effects 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 229940054269 sodium pyruvate Drugs 0.000 description 1
- 238000002174 soft lithography Methods 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000011301 standard therapy Methods 0.000 description 1
- 238000000528 statistical test Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012385 systemic delivery Methods 0.000 description 1
- 238000012353 t test Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 238000007725 thermal activation Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 230000005748 tumor development Effects 0.000 description 1
- 210000005102 tumor initiating cell Anatomy 0.000 description 1
- 210000005048 vimentin Anatomy 0.000 description 1
- 210000002845 virion Anatomy 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/502—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
- G01N33/5029—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects on cell motility
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K39/46
- A61K2239/31—Indexing codes associated with cellular immunotherapy of group A61K39/46 characterized by the route of administration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K39/46
- A61K2239/38—Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the dose, timing or administration schedule
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K39/46
- A61K2239/46—Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the cancer treated
- A61K2239/49—Breast
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/13—Tumour cells, irrespective of tissue of origin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/14—Blood; Artificial blood
- A61K35/15—Cells of the myeloid line, e.g. granulocytes, basophils, eosinophils, neutrophils, leucocytes, monocytes, macrophages or mast cells; Myeloid precursor cells; Antigen-presenting cells, e.g. dendritic cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/30—Nerves; Brain; Eyes; Corneal cells; Cerebrospinal fluid; Neuronal stem cells; Neuronal precursor cells; Glial cells; Oligodendrocytes; Schwann cells; Astroglia; Astrocytes; Choroid plexus; Spinal cord tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/461—Cellular immunotherapy characterised by the cell type used
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/462—Cellular immunotherapy characterized by the effect or the function of the cells
- A61K39/4621—Cellular immunotherapy characterized by the effect or the function of the cells immunosuppressive or immunotolerising
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/464—Cellular immunotherapy characterised by the antigen targeted or presented
- A61K39/4643—Vertebrate antigens
- A61K39/4644—Cancer antigens
- A61K39/464499—Undefined tumor antigens, e.g. tumor lysate or antigens targeted by cells isolated from tumor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/81—Protease inhibitors
- C07K14/8107—Endopeptidase (E.C. 3.4.21-99) inhibitors
- C07K14/8146—Metalloprotease (E.C. 3.4.24) inhibitors, e.g. tissue inhibitor of metallo proteinase, TIMP
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/30—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0693—Tumour cells; Cancer cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0693—Tumour cells; Cancer cells
- C12N5/0694—Cells of blood, e.g. leukemia cells, myeloma cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/5011—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing antineoplastic activity
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2509/00—Methods for the dissociation of cells, e.g. specific use of enzymes
- C12N2509/10—Mechanical dissociation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2510/00—Genetically modified cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y304/00—Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
- C12Y304/24—Metalloendopeptidases (3.4.24)
- C12Y304/24017—Stromelysin 1 (3.4.24.17)
Definitions
- GBM Glioblastoma multiforme
- GSCs glioma stem cells
- an anti-cancer agent such as an oncolytic virus plasmid cocktail.
- the disclosed method can involve sorting cells from a subject to create the therapeutic stealth cells.
- the cells are autologous, such as a blood cells or a tumor biopsy from the subject to be treated. However, in some cases, the cells are allogenic.
- the disclosed method can involve sorting cells from a subject for a highly motile subpopulation and then reprogramming the subpopulation to deliver anti-cancer agents.
- the subpopulation can be sorted in a migration assay using a chemoattractant gradient.
- the chemoattractant gradient can involve a chemokine produce by the tumor to be treated.
- the chemoattractant comprises Matrigel®.
- the chemoattractant comprises tumor cell conditioned media.
- the subpopulation is sorted in a migration assay using a nanotextured and/or biomimetic surface.
- MDSCs are responsive to, and can be guided along, pre-aligned structural cues in the absence of biochemical stimulation.
- the surface comprise ridges/grooves at the micro nor nanoscale.
- the depth and width of the ridges/grooves can have dimensions from 100 nm to 10 pm, including, 100 nm to 1 pm, 1 pm to 10pm, 500 nm to 5 pm.
- the ridges/grooves can have a variety of shapes and patterns, including straight grooves.
- the subpopulation is sorted in a transwell migration assay or cell invasion assay.
- a transwell migration assay measures the number of cells passing a porous membrane, whereas a cell invasion assay focuses on invasive cell migration via an extracellular matrix.
- the cells can then be reprogrammed to heterologously express a transgene encoding an anti-tumor protein, oligonucleotide, or combination thereof.
- HSV-TK HSV l-derived thymidine kinase
- Non- immunogenic safety switch system have also been developed that involve fusion proteins composed of human proapoptotic molecules (e.g. caspase-9) linked to modified human FK506-binding proteins (i.e. iCasp9).
- CID chemical inducer of dimerization
- FK506 FK506.
- CID chemical inducer of dimerization
- Other inducible and self-destructive kill switches are in development and can be used in the disclosed therapeutic stealth cells.
- composition comprising a plurality of therapeutic stealth cell produced by the disclosed methods.
- the composition further comprises a pharmaceutically acceptable excipient.
- a method for treating a tumor in a subject comprising administering to the subject an effective amount of the disclosed pharmaceutical composition.
- the disclosed method can be used to treat any solid tumor.
- the tumor is matched to the source of cells used to develop the therapeutic stealth cells.
- highly motile MDSCs obtained from a breast tumor biopsy can be reprogrammed to treat breast cancer.
- highly motile GSCs/MDSCs obtained from a glioblastoma multiforme (GBM) biopsy can be reprogrammed to treat GBM.
- GBM glioblastoma multiforme
- FIGs. 1A to 1 E show results of a migration-based sorting/”chromatography”.
- FIG. 1A shows nanotextured surfaces induce guided motility. Clones of with high motility are lured into a collection chamber by chemoattraction.
- FIG. 1 B shows studies with GSCs show that highly motile clones were resistant to anti-miR363 therapy.
- FIG. 1C shows migration- based sorting of MDSCs uncovered a clonal subset with superior motility compared to bulk MDSCs.
- FIG. 1 D shows sorting exhibited a diverse phenotype with granulocytic (P4) and monocytic (P5) subtypes. Unclassified subtypes exhibiting either low (P6) or high (P3) Ly6- C/G were also present.
- FIG. 1 E shows MDSC clones with high motility were either P4 or P3. * p ⁇ 0.05.
- FIG. 2 depicts reprogrammed/tamed GSCs and/or MDSCs being
- FIG. 3 shows MDSCs exhibit significant motility (i.e., guided) on textured/ biomimetic surfaces. MDSCs cultured on TCP, on the other hand, exhibit limited motility. These results suggest that much like tumor cells, MDSCs may be responsive to the same structural cues that enhance tumor cell dissemination in vivo. * p ⁇ 0.05.
- FIGs. 4A and 4B illustrate a migrational chromatography setup, where MDSCs are selectively seeded on one side of the platform, and induced to migrate in a single direction via chemotaxis.
- the surface nanotexture triggers clone separation based on guided motility.
- FIG. 4C shows velocity for fast- vs. slow-moving cells.
- FIG. 4D and 4E contains flow cytometry analysis showing that fast-moving clones have a distinct phenotype compared to slow-moving clones (e.g., bulk MDSCs). * p ⁇ 0.05.
- FIGs. 5A and 5B show single-clone motility assays of circulating MDSCs from melanoma patients. Differences in velocity (FIG. 5A) and effective displacement (FIG. 5B) for each patient. The results indicate that MDSCs from certain patients exhibit enhanced velocities. However, when effective displacement is considered (i.e., geometrical distance from starting to ending location), certain MDSC batches with low velocity showed significant displacement, which may be reflective of more directional/persistent motility (without chemotaxis).
- P1 stage MIC, tx nivolumab+surgery
- P2 stage IV, tx nivolumab
- P3 stage IV V600E/BRAF, tx radiation+pembrolizumab
- P4 stage IV, tx nivolumab + ipilumamab
- P5 stage IV, tx pembrolizumab/ipilumamab/nivolumab
- P6 stage IV V600E/BRAF, treated with INF-a).
- FIGs. 6A and 6B shows nanotextured surfaces can be used to unmask drug sensitivities not observed on standard TCP.
- FIG. 6A show single clone motility assays of patient-derived MDSCs show inhibition of a specific clonal subset (average velocity > 40 pm/h) in response to ibrutinib.
- FIG. 6B shows single-clone motility on TCP did not reveal any effect of ibrutinib on MDSC dissemination.
- FIGs. 7 A and 7B illustrates a device for migrational chromatography with integrated microfluidics to enable automated detachment of clones of interest.
- FIGs. 7C and 7D show that once migration-based separation occurs, the underlying microfluidic system can be used to sequentially flow chilled water at given locations, which facilitates selective detachment of MDSC clones of interest due to thermal actuation of the PINIPAM layer.
- FIG. 8A shows co-culturing MDSCs and noncancerous MCFIOAs led to enhanced motility in a group of MCF10A clones.
- FIG. 8B shows immunofluorescence analysis indicates that coculture conditions triggered a decrease in the expression of epithelial markers such as ECadherin, and an increase in mesenchymal markers in certain clones (e.g., Vimentin).
- FIG. 8C shows coculturing MDSCs with already aggressive MDAMB- 231 cells did not lead to major changes in motility in the MDA-MB-231 population.
- ⁇ shows co-culturing MDSCs and noncancerous MCFIOAs led to enhanced motility in a group of MCF10A clones.
- FIG. 8B shows immunofluorescence analysis indicates that coculture conditions triggered a decrease in the expression of epithelial markers such as ECadherin, and an increase in mesenchymal markers in certain clones (e.g., Vimentin
- FIG. 9 Shows co-culturing MDSCs and breast tissue/cancer cells led to a marked increase in velocity for certain MDSC clones, especially when co-cultured with MDA- MB-231. These results potentially suggest that MDSC motility is positively regulated in the presence of metastatic cells, facilitating co-dissemination outside the tumor, and continued immunoprotection during the tumor cell dissemination process.
- FIGs. 10A to 10E show MDSCs are responsive to aligned structural cues and exhibit guided dissemination patterns.
- FIG. 10A is a schematic diagram of the tumor microenvironment showing invasive cancer cells and infiltrative MDSCs using pre-aligned structural cues (e.g., remodeled ECM, blood vessel walls) to escape and invade the tumor stroma, respectively.
- FIG. 10B is a SEM micrograph (with superimposed MDSC mock-ups) of a PDMS-based biomimetic textured surface used to evaluate structurally guided MDSC migration at the single-clone level.
- FIG. 10C shows Actin - Nuclei staining of MDSCs cultured on textured vs. control/TCP surfaces.
- FIGs. 10D and 10E show single clone dissemination tracks (FIG. 10D) and quantification of MDSCs (FIG. 10E) on textured vs. control/TCP surfaces confirming enhanced dissemination capabilities (i.e., average single-clone velocity and net track distance) for MDSCs when exposed to pre-aligned structural cues.
- FIGs. 11 A to 111 show MDSCs subpopulations exhibit distinct dissemination and gene expression patterns.
- FIGs. 11 A and 11 B are schematic diagrams of an
- MSC-2 cultures were sorted by flow cytometry into three distinct subpopulations, including granulocytic (CD11 b + Ly6C'°Ly6G + ) and monocytic
- FIG. 11C shows Actin-Nucleistaining of different MSC-2 subtypes cultured on textured surfaces. Granulocytic MDSCs had a tendency to exhibit a more aligned and migration-prone morphology compared to their counterparts.
- FIG. 11 E shows single-clone tracks for each population.
- FIG. 11 F shows fluorescently labeled flow-sorted MDSCs vs.“fresh’Vunsorted MDSCs injected (i.e., via the tail vein) into tumor-bearing mice (i.e., orthotopic breast tumor developed from human cells in nude mice). Photographs to the right depict tumor progression/growth from week 1 to week 4.
- FIG. 11G shows tumors and other target organs imaged to detect the degree to MDSC infiltration 24 hours post-injectio.
- FIGs. 12A to 12G show single MDSC subpopulations appear to show phenotypic plasticity that can drive the replenishment the entire phenotypic spectrum.
- Fig. 12A is a schematic diagram of the experimental design.
- FIG. 12B shows single-clone dissemination (i.e., average velocities and net track distances) studies did not show significant differences between all three populations by day 7.
- FIG. 12C to 12E show flow cytometry analyses indicate that while by day 1 post-sorting all subpopulations remained relatively pure, by day 7 the entire spectrum of phenotypes had been replenished regardless of the phenotype of the starting cell population.
- FIGs. 13A and 13B show circulating MDSCs derived from melanoma patients show different dissemination profiles at the single-clone level.
- FIGs. 13A and 13B show average single clone velocities (FIG. 13A) and net track distances (FIG. 13B) had a tendency to be significantly higher for certain patients compared to the rest of the patient population, which could be a reflection of the patient’s background.
- FIGs. 14A to 14F show distinct subpopulations of patient-derived MDSCs show different dissemination capabilities.
- FIGs. 14A to 14C show melanoma patient MDSCs were sorted into granulocytic (CD11 b + CD15 + CD14 ) and monocytic (CD11b + CD15 CD14 + ) subpopulations via flow cytometry.
- FIGs. 14D to 14F show that similar to observations in mouse MDSCs, the granulocytic subpopulation of patient-derived MDSCs also shows increased dissemination (i.e., average single-clone velocities and net track distances) capabilities compared to the monocytic subtype.
- Embodiments of the present disclosure will employ, unless otherwise indicated, techniques of chemistry, biology, and the like, which are within the skill of the art.
- suicide gene refers to a gene that will cause a cell to kill itself through apoptosis. Activation of these genes may be due to many processes, but the main cellular "switch" to induce apoptosis is the p53 protein. Stimulation or introduction (through gene therapy) of suicide genes may be used to treat cancer or other proliferative diseases by making cancer cells more vulnerable, more sensitive to chemotherapy. Parts of genes expressed in cancer cells are attached to other genes for enzymes not found in mammals that can convert a harmless substance into one that is toxic to the tumor. The suicide genes that mediate this sensitivity may encode for viral or bacterial enzymes that convert an inactive drug into toxic antimetabolites that inhibit the synthesis of nucleic acid.
- Highly motile GSC and/or MDSC clones can be sorted from heterogenous populations by migration-based sorting, such as nano chip-supported single-clone motility chromatography.
- migration-based cell sorting involves identifying clonal subsets and/or cell subpopulations that exhibit enhanced dissemination capabilities compared to the rest of the population. Such cells are inherently more prone to
- Identifying highly disseminative clonal subsets could be achieved in many different ways.
- One option is to seed cell mixtures on a micro- or nano-textured surface with lines, which would induce contact-guided directional migration of the cells.
- MDSCs are responsive to, and can be guided along, pre-aligned structural cues in the absence of biochemical stimulation
- Cells could be exposed to a chemoattractant gradient, which would define a specific direction in which the cells would migrate, and“fast-moving” clones could be progressively collected in a reservoir as they migrate towards the chemoattractant. Running this sorting in the absence of a chemoattractant could also be used as a way to identify clonal subsets that may be more prone to showing single-direction motility (i.e. , towards the collection reservoir), even in the absence of a chemoattractant.
- Another way to select cells with enhanced dissemination capabilities could be through a translocation assay on a transwell system (e.g. 8 micron pores).
- a translocation assay on a transwell system (e.g. 8 micron pores).
- the cells can be seeded on one the top chamber of the transwell, and cells with enhanced dissemination capabilities will gradually translocate across the pores into the bottom chamber, where they could be collected for further modification (for gene/drug delivery applications).
- the highly motile cells are obtained by cell sorting of tumor-derived GSCs and/or MDSCs using a combination of antibodies that selectively bind CD1 1 b, Ly6C, and Ly6G.
- the cells are derived from primary tumor cells (e.g., isolated from a routine biopsy). In some embodiments, the cells are derived from myeloid- derived suppressor cells (e.g., isolated from the circulation). However, the disclosed methods could be applied to any other cell type that is prone to infiltrating into cancerous tissue (e.g., other monocytes, T cells, etc.).
- these cells could be first expanded, and then genetically engineered through various routes, including viral or non-viral (e.g., bulk electroporation, tissue nano-transfection) delivery of transgenes, and/or CRISPR/CAS9-driven transgene insertion.
- viral or non-viral e.g., bulk electroporation, tissue nano-transfection
- CRISPR/CAS9-driven transgene insertion e.g., CRISPR/CAS9-driven transgene insertion.
- the goal of this step is to induce the production of anti-tumor proteins, oligos, and/or other entities (e.g., glutl , mir146, oncolytic viruses, etc.) by these cells.
- the transgene encodes tissue inhibitor of metalloproteinase-3 (TIM P-3).
- these cells can be engineered (through transfection) to express pro-inflammatory molecules (ccl4, mir146, glutl for example) to promote T cell infiltration into the tumor, or anti-metastasis components (e.g., timp3) to prevent cancer dissemination.
- pro-inflammatory molecules ccl4, mir146, glutl for example
- anti-metastasis components e.g., timp3
- MDSCs are used to deliver therapeutics in other conditions, such as Alzheimer’s disease or diabetes, delivering anti-inflammatory molecules, or other forms of brain injury (e.g., ischemic stroke), where MDSCs home naturally, so that once can deliver therapeutic cargo such as pro-angiogenic and/or pro-neuronal, or anti inflammatory agents.
- other conditions such as Alzheimer’s disease or diabetes, delivering anti-inflammatory molecules, or other forms of brain injury (e.g., ischemic stroke), where MDSCs home naturally, so that once can deliver therapeutic cargo such as pro-angiogenic and/or pro-neuronal, or anti inflammatory agents.
- These autologous cells could be further engineered (before injecting them back into the patient) with a drug-inducible (e.g., doxycycline)“kill switch” system, to eradicate the therapeutic cells when their action is no longer needed.
- a drug-inducible e.g., doxycycline
- Kill-switch system is known in the art, and therefore, it is within the purview of one skilled in the art to select and employ a suitable kill-switch system.
- I VIS, PET, MRI are used to monitor the fate of therapeutic GSCs/MDSCs.
- cell- based oncolytic virus therapies have previously shown promising results compared to direct treatment with oncolytic virus particles (Power, A.T. & Bell, J.C. Mol Ther 15:660-665 (2007))
- a major limitation is that most of the cells that have been studied so far have reduced dissemination capabilities, especially when compared to the pace of intracranial dissemination of GSCs.
- Tamed/reprogrammed GSCs or MDSCs can have inherently high intracranial motility capabilities in addition to stealth ability toward the immune system, thus allowing them to colonize, surveil and treat the diseased brain more effectively.
- Example 2 Structurally guided dissemination of mouse MDSCs
- Chip- supported migrational chromatography studies revealed a clonal subset with enhanced dissemination capabilities compared to the rest of the population (Fig. 4A-4C), comparable to highly aggressive cancerous cells.
- Flow cytometry analyses of fast-moving clones revealed that such population was predominately Ly6-G hi9h /Ly6-C low (granulocytic) and Ly6- G hi9h /Ly6-C hi9h (unidentified).
- the phenotype of slow-moving clones was more evenly distributed between monocytic (Ly6-G low /Ly6-C hi9 h) and granulocytic, as well as the unidentified variants Ly6-G low /Ly6-C low and Ly6-G hi9h /Ly6-C hi9h . Therefore, MDSCs clearly have specialized clonal subsets with improved dissemination capabilities, which presumably would be more prone to colonizing tumors/ganglia to exert immunosuppression. Such clonal subsets could thus represent novel therapeutic targets in the fight against cancer.
- Example 3 Structurally guided dissemination of patient MDSCs
- MDSCs Next tested was whether patient-derived MDSCs also exhibit structurally guided migration in the absence of biochemical stimuli.
- the MDSCs of each patient exhibited unique dissemination patterns/ signatures, with some patients showing clonal subsets with enhanced mobility compared to the bulk population (Fig. 5), which remained clustered below 25pm/h.
- some patients had MDSCs whose velocity clustered entirely below 25pm/h, possibly indicative of an apparently“quiescent” population, presumably reflective of the type of malignancy, and/or the modality/stage of the therapy.
- Impairing MDSC migration/infiltration into the tumor/ganglia could be a viable strategy to reduce the immunosuppressive burden.
- Inhibitors of Bruton’s tyrosine kinase (BTK) have been commonly used in the treatment of hematologic cancers.
- BTK plays a role in numerous biological processes, including cell migration. While MDSCs express BTK, single-clone motility assays on TCP in the presence of ibrutinib (BTK-inhibitor) did not show a significant effect on the migration (Fig. 6). In contrast, motility assays on biomimetic surfaces appear to show selective targeting of a highly motile subset of MDSCs (Fig. 5).
- Nanotextured surfaces are characterized by scanning electron (SEM) and atomic force (AFM) microscopy. PNIPAM coating will be verified via contact angle measurements at different temperatures, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR).
- SEM scanning electron
- AFM atomic force microscopy
- MDSCs are isolated from freshly procured tissue (i.e., peripheral blood, tumor and lymphoid tissue) of breast cancer tumor patients under protocol OSU-09142 using standard procedures. Tumor cells/tissue will also be collected using standard procedures36. Migrational chromatography will be conducted on the biomimetic surfaces (Figs. 4, 7) using GM-CSF (200ng/ml_) as chemoattractant. Singleclone migration for different source MDSCs (i.e., circulating vs. tumor- vs. lymphoid tissue-resident) are recorded via time lapse microscopy in a confocal microscope fitted with a culture chamber. Images will be collected every 10min for 24-72h, and postprocessed/ analyzed using the manual tracker plugin in Fiji. MDSC clones that exhibit different degrees of motility will be isolated by selectively
- the cells are partitioned as high- vs. medium- vs. low motility depending on the traveled distance from the starting location (Fig. 7).
- the biomechanics i.e., stiffness and contractility
- the biomechanics i.e., stiffness and contractility
- AFM oscillatory Ghadiali to analyze viscoelastic properties of single cells
- TFM Traction Force Microscopy
- flow cytometry is run for monocytic (CD157CD14 + ) and granulocytic
- CD157CD14 CD157CD14 markers, and combinations thereof.
- T cell proliferation are evaluated by flow cytometry.
- RMPI media alone, and SIINFEKL peptide will be used as negative and positive controls, respectively.
- clonal subsets with the strongest suppressive activity are further analyzed by single-cell sequencing, as described elsewhere.
- BTK inhibitors i.e., ibrutinib
- immunoblotting is used to evaluate the level of BTK and phosphorylated BTK (p-BTK) in each clonal subset exposed to 0-1 OmM ibrutinib.
- p-BTK phosphorylated BTK
- Each clonal subset is then plated on the nanotextured surfaces ( ⁇ 10 3 -10 4 cells/cm 2 ), and guided migration is monitored via time lapse microscopy while being exposed to 0-10mM ibrutinib. Images are processed/analyzed via Fiji.
- MDSCs went from single-clone velocities that clustered around/below 40pm/h, to velocities that could reach in some cases ⁇ 100pm/h, likely due to enhanced cytokine/chemokine secretions from aggressive tumor cells.
- Textured PDMS surfaces were fabricated from photolithographically patterned silicon masters via a replica molding process. A parallel array of ridges and grooves (2 pm wide, 2 pm tall, spaced by 2 pm) was first patterned on a silicon master via standard UV photolithography using S1813 photoresist. A 10:1 mixture of PDMS with curing agent was then cast on the master and allowed de-gas and cure for several hours. The PDMS was then demolded from the master, sterilized and placed on multi-well plates for single-cell migration experiments. Scanning electron microscopy (SEM) was used to characterize the surface morphology.
- SEM scanning electron microscopy
- MDSC cultures the mouse MDSC cell line (MSC-2) was a kind donation from Gregoire Mignot.
- MSC-2 cells were cultured in RPMI 1640 media supplemented with 25 mM HEPES, 10% heat-inactivated fetal bovine serum (FBS), 1% antibiotic-antimycotic, and 1 mM sodium pyruvate.
- FBS heat-inactivated fetal bovine serum
- GE healthcare Ficoll- Paque centrifugation
- MDSC were isolated by subsequent negative selection of HLA-DRneg cells using anti-HLA-DR MicroBeads (Miltenyi Biotec) for 15 minutes at 4°C and isolated using a MS-MACS column. Samples were acquired with informed consent under IRB-approved protocols for human subject research.
- Single-cell migration assays Approximately 1.5x10 5 MSC-2 cells were seeded and allowed to adhere on the textured PDMS surfaces or TCP controls in regular culture media for several hours. Cells were imaged via time-lapse microscopy every 10 minutes for over 16 h using a cell culture chamber (Okolab) mounted on an inverted microscope. Images were analyzed using the manual tracker plugin in Fiji. Single-cell displacement data were then analyzed via MATLAB to determine velocities and net track traveled distances.
- Flow cytometry-based analysis and sorting the following antibodies were used for the MSC-2 cells: anti-CD11 b-FITC, anti-Ly6-C-APC and anti-Ly6-G-PE, all purchased from Biolegend.
- anti-CD33-APC, anti- CD11b-AP, and anti-HLA-DR-PECy7 purchased from Beckman Coulter. Data were acquired using an LSRII flow cytometer (BD Biosciences). All colors were evaluated against their respective isotype controls and samples with no staining.
- mice 6-8-week-old, were first injected with 1 million human breast cancer cells (MDA- MB-231) in the mammary fat pad to generate tumors. After 4 weeks of tumor development, sorted MDSC subpopulations were stained using PKH67 green fluorescent cell linker kit for general cell membrane labeling (Millipore Sigma) following the instructions suggested by the manufacturer. Tumor-bearing mice were then injected with approximately 2.5 x 10 5 MDSCs via the tail vein. The mice were then collected 1-day post-injection, and the tumors, lungs and spleens were characterized with an I VIS Imaging System (Xenogen Imaging
- the murine MDSC cell line, MSC- 2 was used as a model (Stiff A, et al. Cancer Res 2016, 76:2125-2136; Trikha P, et al. Oncoimmunology 2016, 5:e1214787). These cells were plated on microtextured
- MDSC motility was monitored at the single-clone level in real time via time- lapse microscopy.
- Cells plated on a standard cell culture surface i.e., tissue culture polystyrene or TCP
- TCP tissue culture polystyrene
- Average single-clone velocities reached a maximum of approximately 40 mhi IT 1 on textured surfaces compared to approximately 20 mhi h 1 on TCP.
- Net track distances which are a measure of the effective displacement of a single clone, reached a maximum of
- MDSCs migrating on textured surfaces exhibited significant inter-clonal variability in the dissemination potential, with cells spanning the whole spectrum from low to high motility.
- MDSCs migrating on TCP showed markedly less inter-clonal variability.
- Studies with circulating MDSCs derived from cancer patients ( Figure 13) further confirmed the existence of highly motile MDSC populations exhibiting marked inter-clonal variability, with some clones showing average guided migration velocities of up to approximately 200 mhi h 1 , and total net displacements that approached 1 mm over a period of 16 hours.
- certain populations of patient-derived circulating MDSCs exhibited limited overall motility, which could potentially be a direct reflection of the underlying malignancy (e.g., type, stage, mutations) and/or concurrent treatment modalities (Tables 1- 3).
- MDSC subpopulations exhibit different dissemination capabilities. Based on the clear inter-clonal variability in motility, we proceeded to further stratify and probe the MDSC population via flow cytometry-based sorting into granulocytic (CD11 b + Ly6C'°Ly6G + ) and monocytic (CD11 b + Ly6C hi Ly6G ) subpopulations ( Figure 11A-11 C) based on standard MDSC nomenclature (Bronte V, et al. Nat Commun 2016, 7: 12150). A subpopulation of CD11 b + Ly6C + Ly6G + cells was also identified from the flow cytometry data and included in our analyses.
- mice that were injected with granulocytic MDSCs showed more pronounced fluorescence signal accumulation within the tumor ( Figure 1 1G).
- Parallel single clone motility studies with circulating MDSCs derived from cancer patients ( Figure 14) also suggest that the granulocytic subpopulation (CD11 b + CD15 + CD14 ) exhibits enhanced motility compared to the monocytic one (CD1 1 b + CD15 CD14 + ).
- MSC-2 cell gene expression analysis of pro-inflammatory markers indicate no statistically significant differences in the expression of TNF-a, iNOS , and IL-27 between the“fresh” (/.e., unsorted) MDSC population and the purified granulocytic, monocytic, and CD11 b + Ly6C + Ly6G + subpopulations.
- IL-6 was significantly overexpressed in the fresh population vs. the flow-sorted
- MDSC subpopulations show phenotypic plasticity that drives populational homeostasis under prolonged culture conditions.
- MSC-2 cells Following flow-based purification of the MSC-2 cells into distinct subpopulations of granulocytic and monocytic MDSCs, as well as CD1 1 b + Ly6C + Ly6G + cells, the cells were maintained in culture for 1-7 days. Phenotypic plasticity was evaluated via flow cytometry at days 1 and 7. Single-clone motility assays and gene expression analyses were run at day 7 ( Figure 12A). Surprisingly, and in contrast to what we found immediately after flow-based sorting; no significant differences were detected in the dissemination characteristics across all three populations by day 7 ( Figure 12B).
- Micro- and nanoscale technologies have been used extensively to probe and/or modulate various aspects of cell biology for medical applications (Gallego-Perez D, et al. Nano Lett 2016, 16:5326-5332; Gallego-Perez D, et al. Lab Chip 2012, 12:4424-4432;
- Microscale engineering tools were used to demonstrate that tumor- associated MDSCs exhibit structurally guided migration patterns, similar to invasive cancerous cells.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Cell Biology (AREA)
- Immunology (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Microbiology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Biochemistry (AREA)
- Oncology (AREA)
- Hematology (AREA)
- Virology (AREA)
- Molecular Biology (AREA)
- Mycology (AREA)
- Developmental Biology & Embryology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- General Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Urology & Nephrology (AREA)
- Analytical Chemistry (AREA)
- Pathology (AREA)
- Gastroenterology & Hepatology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
Abstract
Description
Claims
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2021004468A MX2021004468A (en) | 2018-10-19 | 2019-10-18 | Nano-engineered therapeutic stealth cells. |
KR1020217013895A KR20210081355A (en) | 2018-10-19 | 2019-10-18 | Nano-engineered Therapeutic Stealth Cells |
BR112021007286-1A BR112021007286A2 (en) | 2018-10-19 | 2019-10-18 | nanoengineered therapeutic stealth cells |
AU2019361189A AU2019361189A1 (en) | 2018-10-19 | 2019-10-18 | Nano-engineered therapeutic stealth cells |
IL282406A IL282406B2 (en) | 2018-10-19 | 2019-10-18 | Nano-engineered therapeutic stealth cells |
EP19872723.2A EP3867281A4 (en) | 2018-10-19 | 2019-10-18 | Nano-engineered therapeutic stealth cells |
CN201980073560.0A CN113166267A (en) | 2018-10-19 | 2019-10-18 | Nano engineered therapeutic stealth cells |
JP2021521288A JP2022512753A (en) | 2018-10-19 | 2019-10-18 | Nano-manipulated therapeutic stealth cells |
SG11202103652UA SG11202103652UA (en) | 2018-10-19 | 2019-10-18 | Nano-engineered therapeutic stealth cells |
CA3116327A CA3116327A1 (en) | 2018-10-19 | 2019-10-18 | Nano-engineered therapeutic stealth cells |
US17/283,745 US20210380949A1 (en) | 2018-10-19 | 2019-10-18 | Nano-engineered therapeutic stealth cells |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862747980P | 2018-10-19 | 2018-10-19 | |
US62/747,980 | 2018-10-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020081966A1 true WO2020081966A1 (en) | 2020-04-23 |
Family
ID=70284097
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2019/056988 WO2020081966A1 (en) | 2018-10-19 | 2019-10-18 | Nano-engineered therapeutic stealth cells |
Country Status (12)
Country | Link |
---|---|
US (1) | US20210380949A1 (en) |
EP (1) | EP3867281A4 (en) |
JP (1) | JP2022512753A (en) |
KR (1) | KR20210081355A (en) |
CN (1) | CN113166267A (en) |
AU (1) | AU2019361189A1 (en) |
BR (1) | BR112021007286A2 (en) |
CA (1) | CA3116327A1 (en) |
IL (1) | IL282406B2 (en) |
MX (1) | MX2021004468A (en) |
SG (1) | SG11202103652UA (en) |
WO (1) | WO2020081966A1 (en) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8790891B2 (en) * | 2009-03-19 | 2014-07-29 | The General Hospital Corporation | Microfluidic cell motility assay |
CN103260650B (en) * | 2010-10-20 | 2015-05-06 | 西奈山医学院 | Methods and compositions for treating tumors by using myeloid derived suppressor cells |
EP3012271A1 (en) * | 2014-10-24 | 2016-04-27 | Effimune | Method and compositions for inducing differentiation of myeloid derived suppressor cell to treat cancer and infectious diseases |
WO2016145077A1 (en) * | 2015-03-09 | 2016-09-15 | University Of Washington | Micro-and nanopatterned substrates for cell migration and uses thereof |
WO2016196451A1 (en) * | 2015-06-01 | 2016-12-08 | The Wistar Institute Of Anatomy And Biology | Methods for monitoring polymorphonuclear myeloid derived suppressor cells |
US20180059115A1 (en) * | 2016-08-05 | 2018-03-01 | The Wistar Institute Of Anatomy And Biology | Methods for monitoring polymorphonuclear myeloid derived suppressor cells, and compositions and methods of treatment of cancer |
CA3068604A1 (en) * | 2017-06-13 | 2018-12-20 | Fate Therapeutics, Inc. | Compositions and methods for inducing myeloid suppressive cells and use thereof |
-
2019
- 2019-10-18 MX MX2021004468A patent/MX2021004468A/en unknown
- 2019-10-18 CN CN201980073560.0A patent/CN113166267A/en active Pending
- 2019-10-18 US US17/283,745 patent/US20210380949A1/en active Pending
- 2019-10-18 EP EP19872723.2A patent/EP3867281A4/en active Pending
- 2019-10-18 IL IL282406A patent/IL282406B2/en unknown
- 2019-10-18 KR KR1020217013895A patent/KR20210081355A/en unknown
- 2019-10-18 WO PCT/US2019/056988 patent/WO2020081966A1/en unknown
- 2019-10-18 SG SG11202103652UA patent/SG11202103652UA/en unknown
- 2019-10-18 AU AU2019361189A patent/AU2019361189A1/en active Pending
- 2019-10-18 JP JP2021521288A patent/JP2022512753A/en active Pending
- 2019-10-18 CA CA3116327A patent/CA3116327A1/en active Pending
- 2019-10-18 BR BR112021007286-1A patent/BR112021007286A2/en unknown
Non-Patent Citations (4)
Title |
---|
GALLEGO-PEREZ, D ET AL.: "On-Chip Clonal Analysis of Glioma-Stem- Cell Motility and Therapy Resistance", NANOLETTERS, vol. 16, no. 9, 14 September 2016 (2016-09-14), pages 5326 - 5332, XP055703208 * |
GREEN, CE ET AL.: "Chemoattractant Signaling between Tumor Cells and Macrophages Regulates Cancer Cell Migration, Metastasis and Neovascularization", PLOS ONE, vol. 4, no. 8, 21 August 2009 (2009-08-21), pages 1 - 15, XP055649326 * |
IVICS ZOLTÁN: "IVICS, Z) Self-Destruct Genetic Switch to Safeguard iPS Cells", MOLECULAR THERAPY, vol. 23, no. 9, September 2015 (2015-09-01), pages 1417 - 1420, XP055703209 * |
See also references of EP3867281A4 * |
Also Published As
Publication number | Publication date |
---|---|
IL282406B1 (en) | 2024-04-01 |
JP2022512753A (en) | 2022-02-07 |
US20210380949A1 (en) | 2021-12-09 |
SG11202103652UA (en) | 2021-05-28 |
AU2019361189A1 (en) | 2021-05-20 |
EP3867281A4 (en) | 2022-06-15 |
KR20210081355A (en) | 2021-07-01 |
EP3867281A1 (en) | 2021-08-25 |
IL282406A (en) | 2021-06-30 |
CN113166267A (en) | 2021-07-23 |
IL282406B2 (en) | 2024-08-01 |
MX2021004468A (en) | 2021-09-14 |
BR112021007286A2 (en) | 2021-07-27 |
CA3116327A1 (en) | 2020-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7455165B2 (en) | Methods and devices for production and delivery of beneficial factors from stem cells | |
Li et al. | Interstitial flow promotes macrophage polarization toward an M2 phenotype | |
Bates et al. | Tumor necrosis factor-α stimulates the epithelial-to-mesenchymal transition of human colonic organoids | |
JP7561028B2 (en) | Immune cell organoid co-culture | |
Feder-Mengus et al. | New dimensions in tumor immunology: what does 3D culture reveal? | |
Eguchi et al. | Cancer extracellular vesicles, tumoroid models, and tumor microenvironment | |
Cogliati et al. | Friend or foe? The elusive role of hepatic stellate cells in liver cancer | |
Patel et al. | Cancer associated fibroblasts: phenotypic and functional heterogeneity | |
Shi et al. | Adhesion-based tumor cell capture using nanotopography | |
Wang et al. | A synthetic metastatic niche reveals antitumor neutrophils drive breast cancer metastatic dormancy in the lungs | |
Zhu et al. | Advanced lung organoids and lung-on-a-chip for cancer research and drug evaluation: a review | |
Duarte-Sanmiguel et al. | Guided migration analyses at the single-clone level uncover cellular targets of interest in tumor-associated myeloid-derived suppressor cell populations | |
CN111182918A (en) | Method for activating immune cells | |
US20210380949A1 (en) | Nano-engineered therapeutic stealth cells | |
JP2024156704A (en) | Nanoengineered Therapeutic Stealth Cells | |
Enkhbat et al. | Expansion of rare cancer cells into tumoroids for therapeutic regimen and cancer therapy | |
Panchapakesan et al. | Micro-and nanotechnology approaches for capturing circulating tumor cells | |
Kaemmerer et al. | Innovative in vitro models for breast cancer drug discovery | |
Cadavid Cardenas | An Engineered Paper-Based 3D Co-Culture Model of Pancreatic Cancer as a Platform for Systems Tissue Engineering | |
Cardenas | An Engineered Paper-Based 3D Co-Culture Model of Pancreatic Cancer as a Platform for Systems Tissue Engineering | |
US20230032623A1 (en) | Tumor-on-a-chip | |
US20240198337A1 (en) | Bone Marrow on a Chip | |
Landon-Brace | Investigating the Effect of Microenvironmental Gradients on Tumour Cell Heterogeneity Using a 3D In Vitro Model of Pancreatic Cancer | |
Dean et al. | IMMU-50. GLIOBLASTOMA MANIPULATES HEMATOPOIETIC STEM CELL DIFFERENTIATION OUTCOMES AND DRIVES ALTERED IMMUNE RECONSTITUTION | |
Manoharan | Microengineered Tumor-on-a-Chip Model to Assess Tumor-Immune Interaction in Breast Cancer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19872723 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3116327 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2021521288 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112021007286 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 20217013895 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019361189 Country of ref document: AU Date of ref document: 20191018 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019872723 Country of ref document: EP Effective date: 20210519 |
|
ENP | Entry into the national phase |
Ref document number: 112021007286 Country of ref document: BR Kind code of ref document: A2 Effective date: 20210416 |