WO2020067085A1 - 腫瘍溶解性ワクシニアウイルスと免疫チェックポイント阻害剤との併用によるがん療法並びにこれに用いるための医薬組成物及び組合せ医薬 - Google Patents
腫瘍溶解性ワクシニアウイルスと免疫チェックポイント阻害剤との併用によるがん療法並びにこれに用いるための医薬組成物及び組合せ医薬 Download PDFInfo
- Publication number
- WO2020067085A1 WO2020067085A1 PCT/JP2019/037448 JP2019037448W WO2020067085A1 WO 2020067085 A1 WO2020067085 A1 WO 2020067085A1 JP 2019037448 W JP2019037448 W JP 2019037448W WO 2020067085 A1 WO2020067085 A1 WO 2020067085A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vaccinia virus
- polynucleotide encoding
- cancer
- pharmaceutical composition
- combination
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/66—Microorganisms or materials therefrom
- A61K35/76—Viruses; Subviral particles; Bacteriophages
- A61K35/768—Oncolytic viruses not provided for in groups A61K35/761 - A61K35/766
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/20—Interleukins [IL]
- A61K38/2046—IL-7
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/20—Interleukins [IL]
- A61K38/208—IL-12
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39533—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
- A61K39/39558—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against tumor tissues, cells, antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/005—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/04—Antineoplastic agents specific for metastasis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
- C07K14/54—Interleukins [IL]
- C07K14/5418—IL-7
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
- C07K14/54—Interleukins [IL]
- C07K14/5434—IL-12
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/2818—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/545—Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2300/00—Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/24011—Poxviridae
- C12N2710/24111—Orthopoxvirus, e.g. vaccinia virus, variola
- C12N2710/24132—Use of virus as therapeutic agent, other than vaccine, e.g. as cytolytic agent
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/24011—Poxviridae
- C12N2710/24111—Orthopoxvirus, e.g. vaccinia virus, variola
- C12N2710/24141—Use of virus, viral particle or viral elements as a vector
- C12N2710/24143—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
Definitions
- the present invention relates to a cancer therapy using a combination of an oncolytic vaccinia virus and an immune checkpoint inhibitor, and a pharmaceutical composition and a combination drug for use in the therapy.
- vaccinia virus is one of the viruses used for cancer treatment.
- Vaccinia virus is an oncolytic virus that grows on and destroys cancer cells, as a vector for delivering therapeutic genes to cancer cells, or expressing cancer antigens and immunomodulatory molecules. It has been studied as a cancer vaccine for the purpose of developing cancer treatments (Expert Opinion on Biological Therapy, 2011, Vol. 11, p. 595-608).
- a recombinant vaccinia virus comprising two polynucleotides, a polynucleotide encoding interleukin-7 (IL-7) and a polynucleotide encoding interleukin-12 (IL-12), and encoding IL-7
- IL-7 interleukin-7
- IL-12 interleukin-12
- a mixture of two recombinant vaccinia viruses, a recombinant vaccinia virus containing a polynucleotide and a recombinant vaccinia virus containing a polynucleotide encoding IL-12 has a cytolytic effect on various human cancer cells. Has been reported to exhibit tumor regression in a humanized mouse model with tumor, to show complete remission in a mouse model of syngeneic tumor, and to induce acquired immunity to sustain antitumor effect. (Patent Document 1).
- Non-Patent Document 1 discloses the US Food and Drug Administration (FDA) for the treatment of cancer.
- Non-Patent Document 1 Cancer immunotherapeutic agents containing these immune checkpoint inhibitors are used not only as single agents, but also in combination with existing anticancer agents or other cancer immunotherapeutic agents. It has been reported that a strong immune response by an immune checkpoint inhibitor may lead to early clearance of oncolytic vaccinia virus expressing immunostimulatory molecules. A strong immune response can be both an enemy and an ally for vaccinia virus-mediated cancer therapy (Non-Patent Document 3).
- An object of the present invention is to provide a cancer therapy using a combination of an oncolytic vaccinia virus and an immune checkpoint inhibitor, and a pharmaceutical composition and a combination drug for use in the cancer therapy.
- the present inventors have surprisingly developed two uses of recombinant vaccinia virus in combination with other cancer therapies, a polynucleotide encoding IL-7 and a polynucleotide encoding IL-12.
- an immune checkpoint inhibitor eg, an anti-PD-1 antibody and an anti-CTLA-4 antibody
- an excellent antitumor effect is exhibited, and no vaccinia virus is administered.
- the present inventors have found that they show an excellent complete remission-inducing effect even for distant tumors (Example 1), and completed the present invention.
- a pharmaceutical composition for treating cancer comprising vaccinia virus as an active ingredient.
- interleukin-7 A pharmaceutical composition which is a vaccinia virus comprising a polynucleotide encoding IL-7) and a polynucleotide encoding interleukin-12 (IL-12), and which is used in combination with an immune checkpoint inhibitor.
- the pharmaceutical composition according to [1], wherein the vaccinia virus is a vaccinia virus comprising a polynucleotide encoding IL-7 and a polynucleotide encoding IL-12.
- the pharmaceutical composition according to [1] or [2], wherein the vaccinia virus lacks vaccinia virus growth factor (VGF) and O1L functions.
- VVF vaccinia virus growth factor
- the immune checkpoint inhibitor is an antibody selected from the group consisting of an anti-PD-1, an anti-PD-L1, and an anti-CTLA-4 antibody, or an antigen-binding fragment thereof.
- a pharmaceutical composition for use in treating cancer comprising: a pharmaceutical composition comprising a vaccinia virus comprising a polynucleotide encoding interleukin-7 (IL-7); and interleukin-12 (IL-12).
- a pharmaceutical combination comprising a pharmaceutical composition comprising a vaccinia virus comprising a polynucleotide encoding the same and used in combination with an immune checkpoint inhibitor.
- a combination drug for use in treating cancer comprising the pharmaceutical composition according to any one of [1] to [8] or the combination drug according to [9], and an immune checkpoint inhibitor
- a pharmaceutical composition comprising: [11] A pharmaceutical composition for use in treating cancer, comprising an immune checkpoint inhibitor, wherein the pharmaceutical composition according to any one of [1] to [8] or the pharmaceutical composition according to [9].
- a pharmaceutical composition which is used in combination with a combination drug comprising a vaccinia virus comprising a polynucleotide encoding the same and used in combination with an immune checkpoint inhibitor.
- a method of treating cancer comprising administering an immune checkpoint inhibitor and a vaccinia virus, wherein the vaccinia virus comprises: (1) vaccinia virus containing a polynucleotide encoding interleukin-7 (IL-7) and vaccinia virus containing a polynucleotide encoding interleukin-12 (IL-12); or (2) interleukin-7 ( A vaccinia virus comprising a polynucleotide encoding IL-7) and a polynucleotide encoding interleukin-12 (IL-12).
- IL-7 interleukin-7
- IL-12 interleukin-12
- a vaccinia virus for use in treating cancer comprising: (1) vaccinia virus containing a polynucleotide encoding interleukin-7 (IL-7) and vaccinia virus containing a polynucleotide encoding interleukin-12 (IL-12); or (2) interleukin-7 ( A vaccinia virus comprising a polynucleotide encoding IL-7) and a polynucleotide encoding interleukin-12 (IL-12), which is used in combination with an immune checkpoint inhibitor.
- IL-7 interleukin-7
- IL-12 interleukin-12
- a vaccinia virus for the manufacture of a pharmaceutical composition for use in treating cancer, said vaccinia virus comprising: (1) vaccinia virus containing a polynucleotide encoding interleukin-7 (IL-7) and vaccinia virus containing a polynucleotide encoding interleukin-12 (IL-12); or (2) interleukin-7 ( A vaccinia virus comprising a polynucleotide encoding IL-7) and a polynucleotide encoding interleukin-12 (IL-12), and wherein the pharmaceutical composition is used in combination with an immune checkpoint inhibitor. Yes, use.
- Oncolytic vaccinia viruses for use in treating cancer in particular oncolytic vaccinia viruses comprising two polynucleotides, a polynucleotide encoding IL-7 and a polynucleotide encoding IL-12, are When used in combination with an immune checkpoint inhibitor (eg, an antibody that inhibits the binding between PD-1 and PD-L1, or an anti-CTLA-4 antibody), its antitumor effect can be further improved.
- an immune checkpoint inhibitor eg, an antibody that inhibits the binding between PD-1 and PD-L1, or an anti-CTLA-4 antibody
- FIG. 1 is a graph showing the effect of using vaccinia virus carrying IL-12 and IL-7 in combination with an anti-PD-1 antibody or an anti-CTLA-4 antibody (tumor volume and number of individuals in complete remission) in tumor-bearing mice.
- the vertical axis indicates the tumor volume
- the horizontal axis indicates the number of days (days) after grouping according to the size of the transplanted cancer cells.
- the symbol "CR" in the figure indicates a complete remission, and the number associated with the symbol indicates the number of complete remissions per 10 animals as a fraction.
- the symbol “IL-7 / IL-12-VV” means a vaccinia virus carrying IL-7 and IL-12.
- the line in each graph shows the time course of tumor volume in individual mice.
- subject means a mammal, particularly a human.
- the subject can be a subject with cancer and can be a human with cancer, for example, a human with metastatic cancer.
- the subject can be, for example, a subject having a solid cancer, for example, a metastatic solid cancer.
- the term “combination” means that a plurality of pharmaceutically active ingredients are simultaneously or separately administered to the same subject for treatment.
- the plural kinds of pharmaceutically active ingredients may be contained in the same composition or may be contained separately in different compositions.
- composition means a composition containing one or more pharmaceutically active ingredients in one composition.
- Combination drug means a combination of each pharmaceutical composition in which a plurality of kinds of pharmaceutically active ingredients are separately contained in different compositions.
- treatment includes prevention and treatment.
- the term “immune checkpoint inhibitor” means an agent that releases suppression of immune cell activation by an immune checkpoint molecule.
- the immune checkpoint molecules include PD-1, CTLA-4, TIM-3 (T-cell immunoglobulin domain and mucin domain 3), LAG-3 (lymphocyte activation gene 3), and TIGIT (Telecommunication Immune gene). domains, BTLA (B and T lymphocyte associated), and VISTA (V-type immunoglobulin domain-suppressor of the T-cell activation) and the like.
- An immune checkpoint inhibitor can inhibit the function of an immune checkpoint, for example, by binding to an immune checkpoint molecule or its ligand and inhibiting an immunosuppressive signal.
- the PD-1 signal can be inhibited by inhibiting the binding of PD-1 to PD-L1 or PD-L2. Further, by inhibiting the binding between CTLA-4 and CD80 or CD86, the CTLA-4 signal can be inhibited (Mattheu Collin, Expert Opinion on Therapeutic Patents, 2016, Vol. 26, p. 555-564). .
- the term “antibody” refers to an immunoglobulin, and refers to a biomolecule including two heavy chains (H chains) and two light chains (L chains) stabilized by disulfide bonds.
- the heavy chain is composed of a heavy chain variable region (VH), a heavy chain constant region (CH1, CH2, CH3), and a hinge region located between CH1 and CH2, and the light chain is composed of a light chain variable region (VL).
- VH heavy chain variable region
- CH1, CH2, CH3 heavy chain constant region
- CL light chain constant region
- the variable region fragment (Fv) consisting of VH and VL is a region that directly participates in antigen binding and imparts diversity to the antibody. Further, a region including the hinge region, CH2, and CH3 is referred to as an Fc region.
- variable regions the region that directly contacts the antigen has a particularly large change, and is called a complementarity-determining region (CDR).
- CDR complementarity-determining region
- the portion having relatively few mutations other than the CDRs is called a framework region (framework region: FR).
- FR framework region
- the light chain and heavy chain variable regions each have three CDRs, and are called heavy chain CDRs 1 to 3 and light chain CDRs 1 to 3, respectively, in order from the N-terminal side.
- the antibody may be a monoclonal antibody or a polyclonal antibody, but in the present invention, a monoclonal antibody can be preferably used.
- the antibody may be of any isotype of IgG, IgM, IgA, IgD, or IgE.
- Antibodies may be those prepared by immunizing non-human animals such as mice, rats, hamsters, guinea pigs, rabbits, chickens, etc., or may be recombinant antibodies, chimeric antibodies, humanized antibodies, human It may be an antibody or the like.
- a chimeric antibody refers to an antibody in which fragments of antibodies derived from different species are linked
- a humanized antibody refers to a human corresponding to each by the CDRs of a non-human animal (eg, a non-human mammal) antibody. Refers to an antibody in which each CDR of the antibody is replaced.
- the CDRs are derived from a non-human animal, and the other antibody portions may be derived from a human.
- a human antibody is also called a fully human antibody, and is an antibody in which each part of the antibody consists entirely of an amino acid sequence encoded by a human antibody gene.
- chimeric antibodies can be used in one embodiment, humanized antibodies in another embodiment, and human antibodies (fully human antibodies) in yet another embodiment.
- an “antigen-binding fragment” refers to a fragment of an antibody that can bind to an antigen.
- the antigen-binding fragment include Fab composed of VL, VH, CL and CH1 regions, F (ab ′) 2 in which two Fabs are connected by a disulfide bond in a hinge region, Fv composed of VL and VH, Bispecific antibodies such as scFv, diabody, single-chain diabody (scDb) type, tandem scFv type, and leucine zipper type, which are single-chain antibodies in which VL and VH are linked by an artificial polypeptide linker, and VHH And heavy chain antibodies such as antibodies (MAbs, 2017, Vol. 9, No. 2, p. 182-212).
- cancer can be expected to be treated by mounting IL-7 and IL-12 on one or more vaccinia viruses so that they can be expressed, and using an immune checkpoint inhibitor in combination.
- vaccinia viruses that can be used in the present invention can include the following (1) and (2): (1) a polynucleotide encoding IL-7; and (2) a polynucleotide encoding IL-12.
- the vaccinia virus is also referred to as “vaccinia virus used in the present invention” in the present specification.
- the polynucleotides described in (1) and (2) above may be contained in one vaccinia virus, or may be contained separately in a plurality of vaccinia viruses.
- the vaccinia virus used in the present invention comprises a polynucleotide encoding IL-7 and a polynucleotide encoding IL-12.
- the vaccinia virus used in the present invention is a vaccinia virus comprising a polynucleotide encoding IL-7 and a vaccinia virus comprising a polynucleotide encoding IL-12.
- the polynucleotide encoding IL-7 and the polynucleotide encoding IL-12 are separately contained in a plurality of vaccinia viruses
- the plurality of vaccinia viruses are contained in one pharmaceutical composition.
- the form of a combination drug separately included in different pharmaceutical compositions.
- the vaccinia virus used in the present invention is a vaccinia virus comprising a polynucleotide encoding IL-7, which is used in combination with a vaccinia virus comprising a polynucleotide encoding IL-12. . In one embodiment, the vaccinia virus used in the present invention is also a vaccinia virus comprising a polynucleotide encoding IL-12, which is used in combination with a vaccinia virus comprising a polynucleotide encoding IL-7. is there.
- the vaccinia virus used in the present invention is a virus belonging to the genus orthopoxvirus of the poxviridae family.
- the strain of the vaccinia virus used in the present invention is not limited. For example, Lister strain, New York City Board of Health (NYBH) strain, Wyeth strain, Copenhagen strain, Western Reserve (WR) strain, EM63 strain, Ikeda strain, Dalian strain, Tian @ Tan strain, etc. are listed, and the Lister strain is available from the American Type Culture Collection (ATCC @ VR-1549).
- a vaccinia virus strain established from these strains can also be used.
- LC16 strain, LC16m8 strain, and LC16mO strain established from Lister strain can be used as the vaccinia virus used in the present invention.
- the LC16mO strain is a strain created by passing the Lister strain as a parent strain at a low temperature and passing through the LC16 strain.
- the LC16m8 strain was attenuated because a frameshift mutation was observed in the B5R gene, which is a gene encoding a viral membrane protein, produced by further subculturing the LC16mO strain, and the expression and function of this protein were lost.
- LC16m8 strain and LC16mO strain for example, Accession No. AY678276.1, Accession No. AY678275.1 and Accession No. AY678817.1 is known. Therefore, LC16m8 strain and LC16mO strain can be prepared from the Lister strain by known homologous recombination or site-directed mutagenesis.
- the vaccinia virus used in the present invention is the LC16mO strain vaccinia virus.
- Attenuated and / or tumor-selective vaccinia virus can be used as the vaccinia virus used in the present invention.
- attenuated means less toxic (eg, cytolytic) to normal cells (eg, non-tumor cells).
- tumor selectivity means more toxic (eg, oncolytic) to tumor cells than normal cells (eg, non-tumor cells).
- the vaccinia virus used in the present invention includes a vaccinia virus (Expert ⁇ Opinion ⁇ on ⁇ Biological ⁇ Therapy, 2011) which is genetically modified so as to lose the function of a specific protein or to suppress the expression of a specific gene or protein. 11, Vol. 11, p. 595-608).
- vaccinia virus (Cancer @ Gene @ Therapy, 1999, Vol. 6, p. 409-422) deficient in thymidine kinase (TK) function, vaccinia virus growth factor (VGF) Vaccinia virus (Cancer @ Research, 2001, Vol. 61, p.
- vaccinia containing a modified F3 gene or an interrupted F3 locus Virus WO 2005/047458
- vaccinia virus lacking the functions of VGF and O1L WO 2015/076422
- B5R a target sequence of microRNA whose expression is reduced in cancer cells.
- Vaccinia virus inserted in the 3 'untranslated region of the gene WO 2011/125469
- vaccinia virus lacking VGF and TK functions cancer Research, 2001, Vol. 61, pp.
- vaccinia virus having a mutation in the E3L and K3L regions WO 2005/007824
- a vaccinia virus in which the function of O1L has been deleted can be used (Journal of Virology, 2012, Vol. 86, pp. 2323-2336).
- vaccinia virus lacking the extracellular region of B5R (Virology, 2004, Vol. 325, p. 425-431) is expected to reduce the elimination of the virus due to the neutralizing effect of the anti-vaccinia virus antibody in vivo. )
- the vaccinia virus lacking the A34R region (Molecular Therapy, 2013, Vol. 21, p. 1024-1033) can be used.
- vaccinia virus International Publication No. 2005/030971
- IL-1b interleukin-1b
- Insertion, deletion, and mutation of these foreign genes can be performed by, for example, known homologous recombination or site-specific mutagenesis.
- a vaccinia virus having a combination of these genetic modifications can be used as the vaccinia virus.
- “deletion” means that the gene region specified by this term has no function, and is used in a sense that includes deletion of the gene region specified by this term.
- the “deletion” may be a deletion in a region consisting of the specified gene region, or a deletion in a peripheral gene region including the specified gene region.
- the vaccinia virus used in the present invention lacks VGF function. In one embodiment, the vaccinia virus used in the present invention lacks O1L function. In one embodiment, the vaccinia virus used in the present invention lacks VGF and O1L functions.
- the function of VGF and / or OIL can be deleted from vaccinia virus based on the method described in WO 2015/076422.
- VGF is a protein having high amino acid sequence homology with epidermal growth factor (EGF), binds to epidermal growth factor receptor like EGF, Ras, Raf, mitogen-activated protein kinase (Mitogen-activated protein kinase).
- EGF epidermal growth factor
- Ras mitogen-activated protein kinase
- Mitogen-activated protein kinase mitogen-activated protein kinase
- MAPK extracellular signal-regulated kinase
- ERK extracellular signal-regulated kinase
- MEK mitogen-activated protein kinase
- O1L maintains ERK activation and contributes to cell division with VGF.
- Vaccinia virus deficiency in VGF and / or O1L function means that the gene encoding VGF and / or the gene encoding O1L is not expressed, or even if it is expressed, the expressed protein is normal to VGF and / or O1L. It does not have the function.
- all or part of the gene encoding VGF and / or the gene encoding O1L may be deleted.
- the gene may be mutated by substitution, deletion, insertion or addition of bases so that normal VGF and / or O1L cannot be expressed.
- a foreign gene may be inserted into a gene encoding VGF and / or a gene encoding O1L.
- a normal gene product is not expressed due to mutation such as substitution, deletion, insertion or addition of a gene, the gene is said to be defective.
- Whether the vaccinia virus used in the present invention lacks the function of VGF and / or O1L can be determined using a known method. For example, the function of VGF and / or O1L is evaluated, the presence of VGF or O1L is confirmed by an immunochemical method using an antibody against VGF or an antibody against O1L, and VGF is encoded by polymerase chain reaction (PCR). This can be determined by determining the presence of a gene that encodes or a gene encoding O1L (Cancer @ Research, 2001, Vol. 61, pp. 8751-8775).
- PCR polymerase chain reaction
- the vaccinia virus used in the present invention is the LC16mO strain vaccinia virus lacking VGF and O1L functions.
- B5R (Accession No. AAA483316.1) is a type 1 membrane protein present in the envelope of vaccinia virus, and functions to increase the efficiency of infection when the virus infects and spreads to neighboring cells or other parts of the host. I do.
- SCR short @ consensus @ repeat
- the vaccinia virus used in the present invention lacks the SCR domain of the extracellular region of the B5R.
- the deletion of the SCR domain of the B5R extracellular region of vaccinia virus includes deletion of part or all of the four SCR domains of the B5R extracellular region, Alternatively, it means that the gene region encoding the whole does not express, or that the expressed B5R protein does not retain some or all of the four SCR domains of the extracellular region.
- the B5R in the vaccinia virus used in the present invention, lacks all four SCR domains.
- the four SCR domains deleted in the vaccinia virus used in the present invention are as described in Accession #No. This is a region in the extracellular region of the B5R corresponding to the 22nd amino acid to the 237th amino acid in the amino acid sequence of AAA483316.1.
- Whether the vaccinia virus used in the present invention lacks the SCR domain of the extracellular region of B5R can be determined by a known method. For example, the determination can be made by confirming the presence of the SCR domain by an immunochemical technique using an antibody against the SCR domain, or by determining the presence or size of the gene encoding the SCR domain by PCR.
- the vaccinia virus used in the present invention is a vaccinia virus that lacks VGF and O1L functions and lacks the SCR domain of the extracellular region of B5R.
- the vaccinia virus used in the present invention is an LC16mO strain vaccinia virus lacking VGF and O1L functions and lacking the SCR domain of the B5R extracellular region.
- the vaccinia virus used in the present invention is a vaccinia virus comprising a polynucleotide encoding IL-7 and a polynucleotide encoding IL-12 and lacking VGF and O1L functions. .
- the vaccinia virus used in the present invention comprises a polynucleotide encoding IL-7 and a polynucleotide encoding IL-12, and lacks VGF and O1L functions. It is.
- the vaccinia virus used in the present invention comprises a polynucleotide encoding IL-7 and a polynucleotide encoding IL-12, is deficient in VGF and O1L functions, and is B5R extracellular. Vaccinia virus lacking the SCR domain of the region.
- the vaccinia virus used in the present invention comprises a polynucleotide encoding IL-7 and a polynucleotide encoding IL-12, is deficient in VGF and O1L functions, and is B5R extracellular.
- LC16mO strain vaccinia virus lacking the SCR domain of the region.
- the vaccinia virus used in the present invention comprises a polynucleotide encoding IL-7, is a vaccinia virus deficient in VGF and OIL function, and comprises a polynucleotide encoding IL-12 It is used in combination with vaccinia virus containing
- the vaccinia virus used in the present invention comprises a polynucleotide encoding IL-12, is a vaccinia virus deficient in VGF and O1L function, and comprises a polynucleotide encoding IL-7 It is used in combination with vaccinia virus containing
- the vaccinia virus used in the present invention is a LC16mO strain vaccinia virus lacking VGF and O1L function, comprising a polynucleotide encoding IL-7, and encoding IL-12. It is used in combination with a vaccinia virus containing a polynucleotide. In one embodiment, the vaccinia virus used in the present invention is a LC16mO strain vaccinia virus lacking VGF and O1L function, comprising a polynucleotide encoding IL-12, and encoding IL-7. It is used in combination with a vaccinia virus containing a polynucleotide.
- the vaccinia virus used in the present invention comprises a polynucleotide encoding IL-7, lacks VGF and OIL function, and lacks the SCR domain of the B5R extracellular region.
- Vaccinia virus which is used in combination with a vaccinia virus containing a polynucleotide encoding IL-12.
- the vaccinia virus used in the present invention comprises a polynucleotide encoding IL-12, lacks VGF and OIL function, and lacks the SCR domain of the B5R extracellular region.
- Vaccinia virus which is used in combination with a vaccinia virus containing a polynucleotide encoding IL-7.
- the vaccinia virus used in the present invention comprises a polynucleotide encoding IL-7, lacks VGF and OIL function, and lacks the SCR domain of the B5R extracellular region.
- LC16mO strain vaccinia virus which is used in combination with a vaccinia virus containing a polynucleotide encoding IL-12.
- the vaccinia virus used in the present invention comprises a polynucleotide encoding IL-12, lacks VGF and OIL function, and lacks the SCR domain of the B5R extracellular region.
- LC16mO strain vaccinia virus which is used in combination with a vaccinia virus containing a polynucleotide encoding IL-7.
- IL-7 is a secreted protein that functions as an agonist for the IL-7 receptor. It has been reported that IL-7 contributes to the survival, proliferation and differentiation of T cells and B cells (Current Drug Targets, 2006, Vol. 7, p. 1571-1582).
- IL-7 includes naturally occurring IL-7 and a variant having the function thereof.
- the IL-7 is human IL-7.
- human IL-7 includes naturally occurring human IL-7 and a variant having the function thereof.
- the human IL-7 is selected from the group consisting of the following (1) to (3): (1) Accession No. A polypeptide comprising the amino acid sequence represented by NP — 00871.1 and having the function of human IL-7; (2) Accession No.
- the function of human IL-7 refers to survival, proliferation and differentiation of various human immune cells.
- the human IL-7 used in the present invention has Accession No. NP_000871.1 is a polypeptide consisting of the amino acid sequence shown.
- IL-12 is a heterodimer of IL-12 subunit p40 and IL-12 subunit ⁇ . It has been reported that IL-12 has a function of activating and inducing differentiation of T cells and NK cells (Cancer Immunology Immunotherapy, 2014, Vol. 63, p. 419-435).
- IL-12 includes naturally occurring IL-12 and a variant having the function thereof.
- the IL-12 is human IL-12.
- human IL-12 includes naturally occurring human IL-12 and a variant having the function thereof.
- human IL-12 is selected from the group consisting of the following (1) to (3) as a combination of human IL-12 subunit p40 and human IL-12 subunit ⁇ .
- NP_0008733.2 a polypeptide consisting of an amino acid sequence in which 1 to 10 amino acids have been deleted, substituted, inserted, and / or added, or (ii-3) Accession No. A polypeptide comprising an amino acid sequence having 90% or more identity with the amino acid sequence shown in NP_0008732.2.
- NP_0021788.2 a polypeptide comprising an amino acid sequence in which 1 to 10 amino acids have been deleted, substituted, inserted, and / or added, or (i-3) Accession No. A polypeptide comprising an amino acid sequence having 90% or more identity with the amino acid sequence shown in NP_0021788.2, and (I i-1) Accession No. A polypeptide consisting of the amino acid sequence shown in NP_0008733.2, and A polypeptide having the function of human IL-12.
- the function of human IL-12 refers to the activating action of T cells and NK cells and / or the action of inducing differentiation.
- IL-12 subunit p40 and IL-12 subunit ⁇ can form IL-12 by direct binding. Further, the IL-12 subunit p40 and the IL-12 subunit ⁇ can be bound via a linker.
- the human IL-12 used in the present invention has an Accession No. NP_0021788.2 A polypeptide consisting of the amino acid sequence shown in Accession No. It is a polypeptide containing a polypeptide consisting of the amino acid sequence shown in NP_0008732.2.
- identity refers to the value of Identity obtained by a parameter prepared as a default using EMBOSS Needle (Nucleic Acids Res., 2015, Vol. 43, p. W580-W584). means.
- the vaccinia virus used in the present invention has oncolytic activity.
- As a method for evaluating whether or not the test virus has an oncolytic activity there is a method for evaluating a decrease in the survival rate of cancer cells due to the addition of the virus.
- cancer cells used for evaluation include, for example, malignant melanoma cells RPMI-7951 (for example, ATCC @ HTB-66), lung adenocarcinoma cells HCC4006 (for example, ATCC @ CRL-2871), and lung cancer cells A549 (for example, ATCC CCL-185), small cell lung cancer cells DMS 53 (eg, ATCC CRL-2062), lung squamous cell carcinoma cells NCI-H226 (eg, ATCC CRL-5826), renal cancer cells Caki-1 (eg, ATCC HTB) -46), bladder cancer cells 647-V (eg, DSMZ ACC 414), head and neck cancer cells Detroit 562 (eg, ATCC CCL-138), breast cancer cells JIMT-1 (eg, DSMZ ACC 589), breast cancer cells MDA-MB-231 (for example, A CC HTB-26), esophageal cancer cells OE33 (eg, ECACC 96070808), glioblasts
- Hepatoma cell JHH-4 eg, JCRB @ JCRB0435
- mesothelioma NCI-H28 eg, ATCC @ CRL-5820
- cervical cancer cell SiHa eg, ATCC @ HTB-35
- gastric cancer cell Kato III for example, RIKEN @ BRC @ RCB2088.
- the vaccinia virus used in the present invention produces IL-7 and / or IL-12 polypeptide in infected cells.
- the use of the vaccinia virus used in the present invention significantly improves the antitumor effect by producing IL-7 and IL-12 polypeptides.
- Production of IL-7 and IL-12 can be confirmed using methods known in the art. For example, after vaccinia virus into which a polynucleotide encoding each of the IL-7 and IL-12 polypeptides has been introduced is cultured with cancer cells, the concentration of IL-7 and IL-12 in the culture supernatant can be measured.
- IL-7 and IL-12 can be confirmed by immunostaining of cells or Western blot analysis of cell lysates or measuring the concentrations of IL-7 and IL-12 in cell lysates.
- concentrations of IL-7 and IL-12 can be measured using, for example, Human IL-7 ELISA kit (Ray Biotech) and Human IL-12 p70 DuoSet ELISA (R & D Systems).
- Immunostaining of cells or Western blot analysis of cell lysates can be performed using commercially available anti-IL-7 and anti-IL-12 antibodies, respectively.
- Polynucleotides encoding IL-7 and IL-12 can be synthesized based on publicly available sequence information using a polynucleotide synthesis method known in the art. Further, once each polynucleotide is obtained, a method known to those skilled in the art such as site-directed mutagenesis (Current Protocols in Molecular Biology edition, 1987, John Wiley & Sons Section 8.1-8.5) is used. Then, by introducing a mutation into a predetermined site, it is also possible to produce a variant having the function of each polypeptide.
- site-directed mutagenesis Current Protocols in Molecular Biology edition, 1987, John Wiley & Sons Section 8.1-8.5
- Polynucleotides encoding each of IL-7 and IL-12 can be introduced into vaccinia virus by known homologous recombination or site-directed mutagenesis.
- a plasmid also referred to as a transfer vector plasmid DNA
- the introduced region of the polynucleotide encoding each of the foreign genes IL-7 and IL-12 is a gene region that is not essential for the vaccinia virus life cycle.
- the transduction region of IL-7 and / or IL-12 can be inside the VGF gene in a VGF function-deficient vaccinia virus, and inside the O1L gene in an O1L function-deficient vaccinia virus.
- the vaccinia virus can be inside either or both of the VGF gene and the O1L gene.
- the foreign gene can be introduced such that it is transcribed in the same or opposite direction as the transcription direction of the VGF and O1L genes.
- the method of introducing the transfer vector plasmid DNA into the cells is not particularly limited, and for example, a calcium phosphate method, an electroporation method, or the like can be used.
- an appropriate promoter can be operably linked upstream of the foreign gene.
- the foreign gene can be linked to a promoter that can be expressed in tumor cells.
- promoters include, for example, PSFJ1-10, PSFJ2-16, p7.5K promoter, p11K promoter, T7.10 promoter, CPX promoter, HF promoter, H6 promoter, and T7 hybrid promoter.
- the vaccinia virus used in the present invention does not have a drug selectable marker gene.
- vaccinia virus used in the present invention can be carried out by infecting host cells with vaccinia virus and culturing the infected host cells.
- Vaccinia virus expression and / or propagation can be performed by methods known in the art.
- the host cell used for expressing or growing the vaccinia virus used in the present invention is not particularly limited as long as it can express and grow the vaccinia virus used in the present invention.
- Such host cells include, for example, BS-C-1, A549, RK13, HTK-143, Hep-2, MDCK, Vero, HeLa, CV-1, COS, BHK-21, primary rabbit kidney cells and the like.
- BS-C-1 ATCC @ CCL-26
- A549 ATCC @ CCL-185
- CV-1 ATCC @ CCL-70
- RK13 ATCC @ CCL-37
- Culture conditions for the host cells such as temperature, pH of the medium, and culture time, are appropriately selected.
- the method for producing the vaccinia virus used in the present invention comprises the steps of infecting a host cell with the vaccinia virus used in the present invention, culturing the infected host cell, and expressing the vaccinia virus used in the present invention.
- the method may further include a step of recovering, preferably purifying, the vaccinia virus used in the present invention.
- a purification method DNA digestion using benzonase, sucrose gradient centrifugation, Iodixanol density gradient centrifugation, ultrafiltration, diafiltration, and the like can be used.
- the immune checkpoint inhibitor for example, a checkpoint inhibitor that blocks a signal through PD-1 or a checkpoint inhibitor that blocks a signal through CTLA-4 can be used.
- the immune checkpoint inhibitor include an antibody capable of neutralizing the binding between PD-1 and PD-L1 or PD-L2, and an antibody capable of neutralizing the binding between CTLA-4 and CD80 or CD86.
- Antibodies capable of neutralizing the binding between PD-1 and PD-L1 include anti-PD-1 and anti-PD-L1 antibodies capable of neutralizing the binding between PD-1 and PD-L1. .
- Antibodies capable of neutralizing the binding between PD-1 and PD-L2 include anti-PD-1 antibodies and anti-PD-L2 antibodies capable of neutralizing the binding between PD-1 and PD-L2.
- Antibodies that can neutralize the binding between CTLA-4 and CD80 or CD86 include anti-CTLA-4 antibodies that can neutralize the binding between CTLA-4 and CD80 or CD86.
- immune checkpoint inhibitor examples include, but are not limited to, anti-PD-1 antibodies such as nivolumab, pembrolizumab, and pizilizumab, anti-PD-L1 antibodies such as atezolizumab, durvalumab, and averumab, and ipilimumab Anti-CTLA-4 antibodies, TSR-022 (WO 2016/161270), and anti-TIM-3 antibodies such as MBG453 (WO 2015/117002), LAG525 (US 2015/0259420), and the like.
- Anti-TIGIT antibody such as MAB10 (WO 2017/059095), BTLA-8.2 (The Journal of Clinical Investigation, 2010, Vol. 120, N.
- the immune checkpoint inhibitor that can be used in the present invention also includes a cell that produces an antigen-binding fragment that binds to an immune checkpoint molecule or a ligand thereof and suppresses an immunosuppressive signal, and a vector that expresses the antigen-binding fragment in vivo. And an immune checkpoint inhibitor containing a low molecular weight compound.
- the above-mentioned immune checkpoint inhibitor can be used in combination with the vaccinia virus used in the present invention.
- the above-mentioned immune checkpoint inhibitor can be used in combination with the vaccinia virus combination drug used in the present invention.
- the immune checkpoint inhibitor used in the present invention is an antibody selected from the group consisting of an anti-PD-1, an anti-PD-L1 antibody and an anti-CTLA-4 antibody, or an antigen-binding fragment thereof. It is.
- An antibody capable of neutralizing the binding of two proteins is obtained by obtaining an antibody that binds to one of the two proteins, and then selecting the antibody obtained by its ability to neutralize the binding of the two proteins Can be obtained.
- an antibody capable of neutralizing the binding between PD-1 and PD-L1 is obtained by obtaining an antibody that binds to either PD-1 or PD-L1, and thereafter, combining the obtained antibody with PD-1. Selection can be based on the ability to neutralize the binding to PD-L1.
- an antibody capable of neutralizing the binding between PD-1 and PD-L2 is obtained by obtaining an antibody that binds to either PD-1 or PD-L2, and then converting the obtained antibody to PD-L. 1 and PD-L2.
- an antibody capable of neutralizing the binding between CTLA-4 and CD80 or CD86 is obtained by obtaining an antibody that binds to CTLA-4, and then converting the obtained antibody between CTLA-4 and CD80 or CD86. Selection can be based on the ability to neutralize binding.
- Antibodies that bind to certain proteins can be obtained, for example, using methods well known to those skilled in the art.
- the ability of an antibody to neutralize the binding of two proteins can be determined by immobilizing one of them and adding the other from a liquid phase to determine whether the antibody reduces the amount of binding. For example, if a protein to be added from the liquid phase is labeled, and the amount of the label is reduced by the addition of the antibody, it can be determined that the antibody can neutralize the binding between the two proteins.
- PD-1 is a protein named Programmed cell death-1 and may also be called PDCD1 or CD279.
- PD-1 is a membrane protein of the immunoglobulin superfamily, and plays a role in suppressing T cell activation by binding to PD-L1 or PD-L2, contributing to the prevention of autoimmune diseases. It is considered.
- cancer cells negatively control T cells and escape attacks from T cells.
- Examples of PD-1 include human PD-1 (for example, PD-1 having an amino acid sequence registered in Accession No. NP_005009.1 in Genbank).
- PD-1 for example, Accession No. PD-1 having an amino acid sequence corresponding to the amino acid sequence registered in NP_005009.1.
- the expression "amino acid sequence corresponding to” is used to include orthologs and functional PD-1 in which naturally occurring amino acid sequences are not completely identical.
- PD-L1 is a ligand for PD-1 and is sometimes called B7-H1 or CD274.
- Examples of PD-L1 include human PD-L1 (eg, PD-L1 having an amino acid sequence registered in Accession No. NP_054862.1 in Genbank).
- PD-L2 is a ligand for PD-1 and is sometimes called B7-DC or CD273.
- Examples of PD-L2 include human PD-L2 (for example, PD-L2 having an amino acid sequence registered in Accession No. AAI13681.1 in Genbank).
- As the PD-L2, for example, Accession No. PD-L2 having an amino acid sequence corresponding to the amino acid sequence registered in AAI13681.1 is exemplified.
- CTLA-4 is a membrane protein of the immunoglobulin superfamily and is expressed on activated T cells.
- CTLA-4 is similar to CD28 and binds CD80 and CD86 on antigen presenting cells. It is known that CD28 sends a costimulatory signal to T cells, whereas CTLA-4 sends an inhibitory signal to T cells.
- Examples of CTLA-4 include human CTLA-4 (eg, CTLA-4 having an amino acid sequence registered in Genbank under Accession No. AAH748933.1).
- Examples of CTLA-4 include Accession No. in Genbank. CTLA-4 having an amino acid sequence corresponding to the amino acid sequence registered under AAH748933.1.
- CD80 and CD86 are membrane proteins of the immunoglobulin superfamily, are expressed on various hematopoietic cells, and interact with CD28 and CTLA-4 on the surface of T cells as described above.
- Examples of CD80 include human CD80 (for example, CD80 having an amino acid sequence registered in Genbank under Accession No. NP — 0051822.1). As CD80, for example, Accession No. CD80 having an amino acid sequence corresponding to the amino acid sequence registered under NP_005182.1.
- Examples of CD86 include human CD86 (for example, CD86 having an amino acid sequence registered in Genbank under Accession No. NP_787058.4).
- Examples of CD86 include human CD86 (for example, CD86 having an amino acid sequence corresponding to the amino acid sequence registered in Genbank with Accession No. NP_787058.4).
- any of the following pharmaceutical compositions and combination medicaments (hereinafter sometimes referred to as “the pharmaceutical compositions and combination medicaments of the present invention”) can be provided: (A-1) A method for treating cancer comprising a vaccinia virus containing a polynucleotide encoding IL-7, a vaccinia virus containing a polynucleotide encoding IL-12, and an immune checkpoint inhibitor.
- B-2 a pharmaceutical composition for use in treating cancer, comprising a vaccinia virus comprising a polynucleotide encoding IL-12, a vaccinia virus comprising a polynucleotide encoding IL-7;
- the vaccinia virus comprising a polynucleotide encoding IL-7 and the immune checkpoint inhibitor are contained in the same pharmaceutical composition.
- the vaccinia virus comprising a polynucleotide encoding IL-7 and the immune checkpoint inhibitor are contained in the same pharmaceutical composition.
- B-3 a pharmaceutical composition for use in treating cancer, comprising a vaccinia virus comprising a polynucleotide encoding IL-7 and a polynucleotide encoding IL-12, wherein the immune checkpoint is inhibited
- a pharmaceutical composition which is used in combination with an agent comprising a vaccinia virus containing a polynucleotide encoding IL-7 and a vaccinia virus containing a polynucleotide encoding IL-12.
- a pharmaceutical composition for use in combination with an immune checkpoint inhibitor comprising a vaccinia virus comprising a polynucleotide encoding IL-7 and an immune checkpoint inhibitor, which encodes IL-12.
- a pharmaceutical composition for use in combination with a vaccinia virus comprising a polynucleotide (B-6) a pharmaceutical composition for use in treating cancer, comprising a vaccinia virus comprising a polynucleotide encoding IL-12 and an immune checkpoint inhibitor, which encodes IL-7 A pharmaceutical composition for use in combination with a vaccinia virus comprising a polynucleotide; (B-7) A pharmaceutical composition for use in treating cancer, comprising an immune checkpoint inhibitor, wherein the vaccinia comprises a polynucleotide encoding IL-7 and a polynucleotide encoding IL-12 A pharmaceutical composition for use with a virus; (B-8) A pharmaceutical composition for use in treating cancer, comprising an immune checkpoint inhibitor, comprising: a vaccinia virus comprising a polynucleotide encoding IL-7; and a polyprotein encoding IL-12.
- composition for use in combination with a vaccinia virus containing a nucleotide wherein the vaccinia virus containing a polynucleotide encoding IL-7 and the vaccinia virus containing a polynucleotide encoding IL-12 have the same pharmaceutical composition May be contained in a pharmaceutical composition, or may be contained separately in a separate pharmaceutical composition.
- (C-1) a pharmaceutical composition containing a vaccinia virus containing a polynucleotide encoding IL-7, a pharmaceutical composition containing a vaccinia virus containing a polynucleotide encoding IL-12, and an immune checkpoint inhibitor
- a pharmaceutical combination for use in treating cancer comprising a pharmaceutical composition
- (C-2) a pharmaceutical composition containing a vaccinia virus containing a polynucleotide encoding IL-7 and a vaccinia virus containing a polynucleotide encoding IL-12, and a pharmaceutical composition containing an immune checkpoint inhibitor A combination medicament for use in treating cancer
- (C-3) A cancer comprising a pharmaceutical composition comprising a vaccinia virus comprising a polynucleotide encoding IL-7 and a polynucleotide encoding IL-12, and a pharmaceutical composition comprising an immune checkpoint inhibitor.
- Combination medicaments for use in treating (C-4) a pharmaceutical composition comprising a vaccinia virus comprising a polynucleotide encoding IL-7 and an immune checkpoint inhibitor; and a pharmaceutical composition comprising a vaccinia virus comprising a polynucleotide encoding IL-12.
- a combination medicament for use in treating cancer (C-5) a pharmaceutical composition comprising a vaccinia virus comprising a polynucleotide encoding IL-12 and an immune checkpoint inhibitor; and a pharmaceutical composition comprising a vaccinia virus comprising a polynucleotide encoding IL-7.
- a combination medicament for use in treating cancer comprising (D-1) treating cancer, comprising a pharmaceutical composition containing a vaccinia virus containing a polynucleotide encoding IL-7 and a pharmaceutical composition containing a vaccinia virus containing a polynucleotide encoding IL-12 Combination medicaments for use in combination with an immune checkpoint inhibitor; (D-2) A combination drug for use in treating cancer, comprising a pharmaceutical composition comprising a vaccinia virus comprising a polynucleotide encoding IL-7 and a pharmaceutical composition comprising an immune checkpoint inhibitor A combination drug which is used in combination with a vaccinia virus comprising a polynucleotide encoding IL-12; and (d-3) a pharmaceutical composition comprising a vaccinia virus comprising a polynucleotide encoding IL-12; A pharmaceutical composition for use in treating cancer, comprising a pharmaceutical composition comprising an immune checkpoint inhibitor, in combination with a vaccinia
- the pharmaceutical composition of the present invention is a pharmaceutical composition for use in treating cancer, comprising vaccinia virus as an active ingredient, wherein the vaccinia virus comprises: (1) a vaccinia virus containing a polynucleotide encoding IL-7 and a vaccinia virus containing a polynucleotide encoding IL-12; or (2) a polynucleotide encoding IL-7 and a polynucleotide encoding IL-12 And a pharmaceutical composition which is used in combination with an immune checkpoint inhibitor.
- the combination medicament of the present invention is a combination medicament for use in treating cancer, wherein the pharmaceutical composition comprises a vaccinia virus comprising a polynucleotide encoding IL-7; A pharmaceutical combination comprising a pharmaceutical composition comprising a vaccinia virus comprising a polynucleotide encoding No. 12 and used in combination with an immune checkpoint inhibitor.
- the combination medicament of the present invention is a combination medicament for use in treating cancer, wherein the pharmaceutical composition comprises a vaccinia virus used in the present invention or a combination of the present invention.
- a combination drug comprising a drug and a pharmaceutical composition comprising an immune checkpoint inhibitor.
- the pharmaceutical composition of the present invention is a pharmaceutical composition for use in treating cancer, comprising an immune checkpoint inhibitor, wherein the pharmaceutical composition comprises a vaccinia virus used in the present invention.
- a pharmaceutical composition which is used in combination with the pharmaceutical composition of the present invention or the combination drug of the present invention.
- IL-7 and IL-12 when the subject is a human, can be human IL-7 and human IL-12, respectively.
- the antibody is preferably an antibody against a human protein, and may be a human chimeric antibody, a humanized antibody, or a human antibody.
- the combination medicine of the present invention may be in the form of a kit (also referred to as a “combination kit”) in which each of the constituting pharmaceutical compositions is contained in one package.
- composition or combination drug of the present invention may further contain a pharmaceutically acceptable excipient.
- the pharmaceutical composition of the present invention can be prepared by using a commonly used excipient in the art, that is, a pharmaceutically acceptable excipient, a pharmaceutically acceptable carrier, or the like, by a generally used method.
- the dosage form of these pharmaceutical compositions include parenteral preparations such as injections and infusions, which can be administered by intravenous administration, subcutaneous administration, intratumoral administration, or the like.
- parenteral preparations such as injections and infusions, which can be administered by intravenous administration, subcutaneous administration, intratumoral administration, or the like.
- excipients, carriers, additives, and the like corresponding to these dosage forms can be used within a pharmaceutically acceptable range.
- Each of the pharmaceutical composition and the combination kit of the present invention may be provided as a lyophilized preparation.
- the lyophilized formulation can be provided with water for injection.
- the effective dose of the vaccinia virus used in the present invention varies depending on the degree and age of the symptoms of the patient, the dosage form of the preparation to be used, or the titer of the virus. Or about 10 2 to 10 10 plaque forming units (PFU) can be used as the total effective dose of the two viruses or the total effective dose of the two viruses when co-administered.
- the ratio of the two kinds of virus dosages in the combination kit is, for example, about 1:10 to 10: 1, about 1: 5 to 5: 1, about 1: 3 to 3: 1, 1: 2 to 2: 1.
- a degree, or about one to one, can be used.
- compositions and combination medicaments of the present invention include cancers, for example, solid cancers, such as, but not limited to, malignant melanoma, lung cancer, lung adenocarcinoma, small cell lung cancer, lung squamous cell carcinoma, and renal cancer , Bladder cancer, head and neck cancer, breast cancer, esophageal cancer, glioblastoma, neuroblastoma, myeloma, ovarian cancer, colon cancer, pancreatic cancer, prostate cancer, hepatocellular cancer, It can be used to treat cancer selected from the group consisting of mesothelioma, cervical cancer, gastric cancer and the like.
- solid cancers such as, but not limited to, malignant melanoma, lung cancer, lung adenocarcinoma, small cell lung cancer, lung squamous cell carcinoma, and renal cancer , Bladder cancer, head and neck cancer, breast cancer, esophageal cancer, glioblastoma, neuroblastoma
- the present invention also relates to a method of treating cancer in a subject (eg, a patient) in need thereof, wherein the subject is provided with a pharmaceutical composition containing the vaccinia virus used in the present invention and an immune checkpoint inhibitor.
- cancer is, for example, solid cancer, for example, but not particularly limited to, for example, malignant melanoma, lung cancer, lung adenocarcinoma, small cell lung cancer, lung squamous cell carcinoma, kidney cancer, bladder cancer , Head and neck cancer, breast cancer, esophageal cancer, glioblastoma, neuroblastoma, myeloma, ovarian cancer, colorectal cancer, pancreatic cancer, prostate cancer, hepatocellular carcinoma, mesothelioma, There is provided a method selected from the group consisting of cervical cancer, gastric cancer, and the like.
- the present invention is a method of treating cancer in a subject (eg, a patient) in need thereof, wherein the subject is administered the following (1), (2) and (3):
- the vaccinia virus of (1) and (2) and the immune checkpoint inhibitor of (3) may be administered to a subject together or separately. When the vaccinia virus of (1) and (2) and the immune checkpoint inhibitor of (3) are separately administered, they may be administered simultaneously or sequentially. When the vaccinia virus of (1) and (2) and the immune checkpoint inhibitor of (3) are sequentially administered, they may be administered continuously or at intervals. In one embodiment, the immune checkpoint inhibitor is administered after the vaccinia virus is administered.
- Vaccinia virus can be administered by an administration route such as intratumoral administration, intravenous administration, intraperitoneal administration and the like.
- the immune checkpoint inhibitor can be administered by an administration route such as intratumoral administration, intravenous administration, intraperitoneal administration and the like.
- the present invention is a method of treating cancer in a subject (eg, a patient) in need thereof, comprising administering the following (1) and (2) to the subject.
- Cancer is, for example, solid cancer, but not particularly limited to, for example, malignant melanoma, lung cancer, lung adenocarcinoma, small cell lung cancer, lung squamous cell carcinoma, kidney cancer, bladder cancer, head and neck cancer , Breast, esophageal, glioblastoma, neuroblastoma, myeloma, ovarian, colon, pancreatic, prostate, hepatocellular, mesothelioma, cervical, And providing a method selected from the group consisting of gastric cancer and the like: (1) a vaccinia virus containing a polynucleotide encoding IL-7 and a polynucleotide encoding IL-12; and (2) an immune checkpoint inhibitor.
- the vaccinia virus of (1) and the immune checkpoint inhibitor of (2) may be administered to a subject together or separately. When the vaccinia virus (1) and the immune checkpoint inhibitor (2) are separately administered, they may be administered simultaneously or sequentially. When the vaccinia virus of (1) and the immune checkpoint inhibitor of (2) are sequentially administered, they may be administered continuously or may be administered at an interval. In one embodiment, the immune checkpoint inhibitor is administered after the vaccinia virus is administered.
- cancer for example, solid cancer, but not particularly limited, for example, malignant melanoma, lung cancer, lung adenocarcinoma, small cell lung cancer, lung squamous cell carcinoma, kidney cancer, bladder cancer, Head and neck, breast, esophagus, glioblastoma, neuroblastoma, myeloma, ovarian, colon, pancreatic, prostate, hepatocellular, mesothelioma, child
- the present invention provides a vaccinia virus and / or an immune checkpoint inhibitor used in the present invention, which is used for treating a cancer selected from the group consisting of cervical cancer, gastric cancer, and the like.
- the invention relates to a cancer, for example, a solid cancer, such as, but not limited to, malignant melanoma, lung cancer, lung adenocarcinoma, small cell lung cancer, lung squamous cell carcinoma, renal cancer, Bladder cancer, head and neck cancer, breast cancer, esophageal cancer, glioblastoma, neuroblastoma, myeloma, ovarian cancer, colon cancer, pancreatic cancer, prostate cancer, hepatocellular carcinoma, medium
- the invention relates to a cancer, for example, a solid cancer, such as, but not limited to, malignant melanoma, lung cancer, lung adenocarcinoma, small cell lung cancer, lung squamous cell carcinoma, renal cancer, Bladder cancer, head and neck cancer, breast cancer, esophageal cancer, glioblastoma, neuroblastoma, myeloma, ovarian cancer, colon cancer, pancreatic cancer, prostate cancer, hepatocellular carcinoma, medium
- a cancer selected from the group consisting of sarcoma, cervical cancer, and stomach cancer (1) used in combination with a vaccinia virus containing a polynucleotide encoding IL-7 and a vaccinia virus containing a polynucleotide encoding IL-12; or (2) a polynucleotide encoding IL-7 and IL Vaccinia virus comprising a polynucleotide encoding
- the present invention provides a cancer, for example, a solid cancer, but not particularly limited to, for example, malignant melanoma, lung cancer, lung adenocarcinoma, small cell lung cancer, lung squamous cell carcinoma, kidney cancer, bladder cancer, Head and neck, breast, esophagus, glioblastoma, neuroblastoma, myeloma, ovarian, colon, pancreatic, prostate, hepatocellular, mesothelioma, child
- a cancer for example, a solid cancer, but not particularly limited to, for example, malignant melanoma, lung cancer, lung adenocarcinoma, small cell lung cancer, lung squamous cell carcinoma, kidney cancer, bladder cancer, Head and neck, breast, esophagus, glioblastoma, neuroblastoma, myeloma, ovarian, colon, pancreatic, prostate, hepatocellular, mesothelioma, child
- vaccinia virus (1) a vaccinia virus containing a polynucleotide encoding IL-12 and a vaccinia virus containing a polynucleotide encoding IL-7, which is used in combination with an immune checkpoint inhibitor; (2) a vaccinia virus containing a polynucleotide encoding IL-7 and a vaccinia virus containing a polynucleotide encoding IL-12, which is used in combination with an immune checkpoint inhibitor; (3) a vaccinia virus containing a polynucleotide encoding IL-7 and a polynucleotide encoding IL-12, which is used in combination with an immune checkpoint inhibitor; and (4) a vaccinia virus used in combination with an immune checkpoint inhibitor.
- the present invention provides a cancer, for example, a solid cancer, but not particularly limited to, for example, malignant melanoma, lung cancer, lung adenocarcinoma, small cell lung cancer, lung squamous cell carcinoma, kidney cancer, bladder cancer , Head and neck cancer, breast cancer, esophageal cancer, glioblastoma, neuroblastoma, myeloma, ovarian cancer, colorectal cancer, pancreatic cancer, prostate cancer, hepatocellular carcinoma, mesothelioma, Use of an immune checkpoint inhibitor for the manufacture of a pharmaceutical composition or a combination drug of the present invention for use in treating cancer selected from the group consisting of cervical cancer, gastric cancer, and the like.
- a cancer for example, a solid cancer, but not particularly limited to, for example, malignant melanoma, lung cancer, lung adenocarcinoma, small cell lung cancer, lung squamous cell carcinoma, kidney cancer, bladder cancer , Head and neck cancer
- the pharmaceutical composition or combination drug (1) used in combination with a vaccinia virus containing a polynucleotide encoding IL-7 and a vaccinia virus containing a polynucleotide encoding IL-12; (2) used in combination with a vaccinia virus containing a polynucleotide encoding IL-7 and a polynucleotide encoding IL-12; (3) a vaccinia virus comprising a polynucleotide encoding IL-7, which is used in combination with a vaccinia virus comprising a polynucleotide encoding IL-12; or (4) a polynucleotide encoding IL-12
- a use comprising a vaccinia virus comprising a vaccinia virus comprising a polynucleotide encoding IL-7.
- the present invention provides a cancer, for example, a solid cancer, but not particularly limited to, for example, malignant melanoma, lung cancer, lung adenocarcinoma, small cell lung cancer, lung squamous cell carcinoma, kidney cancer, bladder cancer, Head and neck, breast, esophagus, glioblastoma, neuroblastoma, myeloma, ovarian, colon, pancreatic, prostate, hepatocellular, mesothelioma, child
- Vaccini comprising a polynucleotide encoding IL-7 and a polynucleotide encoding IL-12 for the manufacture of a combination medicament comprising a pharmaceutical composition comprising a vaccinia virus and a pharmaceutical composition compris
- the present invention provides a cancer, for example, a solid cancer, but not particularly limited to, for example, malignant melanoma, lung cancer, lung adenocarcinoma, small cell lung cancer, lung squamous cell carcinoma, kidney cancer, bladder cancer, Head and neck, breast, esophagus, glioblastoma, neuroblastoma, myeloma, ovarian, colon, pancreatic, prostate, hepatocellular, mesothelioma, child
- Vaccinia comprising a polynucleotide encoding IL-7 for the manufacture of a pharmaceutical composition comprising a vaccinia virus comprising a polynucleotide encoding -12 and a pharmaceutical composition comprising a pharmaceutical composition comprising an immune checkpoint inhibitor Virus, vaccinia virus comprising a polynucleotide encoding the IL-12, and the use of at least one or all selected from the group consisting of immune checkpoint inhibitors.
- the pharmaceutical composition or combination drug of the present invention may be a cancer, for example, a solid cancer, for example, but not limited to, malignant melanoma, lung cancer, lung adenocarcinoma, small cell lung cancer, lung squamous cell carcinoma, kidney cancer , Bladder cancer, head and neck cancer, breast cancer, esophageal cancer, glioblastoma, neuroblastoma, myeloma, ovarian cancer, colon cancer, pancreatic cancer, prostate cancer, hepatocellular cancer, It can be used in combination with various additional therapeutic agents that are effective against cancers selected from the group consisting of mesothelioma, cervical cancer, gastric cancer and the like.
- the various further therapeutic agents can be non-immunotherapeutic agents.
- the combination may be administered simultaneously, or separately and sequentially, or at desired time intervals.
- the pharmaceutical composition of the present invention may be a combination drug or may be separately formulated.
- the cancer to be treated in the present invention also includes metastatic cancer to organs other than the primary lesion, for example, lymph nodes and liver.
- subjects include subjects having metastatic cancer.
- the vaccinia virus and the immune checkpoint inhibitor can be administered simultaneously, sequentially or sequentially.
- administration of the vaccinia virus to a subject with cancer is initiated, followed by administration of an immune checkpoint inhibitor.
- administration of an immune checkpoint inhibitor to a subject with cancer is initiated, followed by administration of a vaccinia virus.
- administration of the vaccinia virus to the subject with cancer is completed, and then administration of the immune checkpoint inhibitor is initiated.
- administration of the immune checkpoint inhibitor to the subject with cancer is completed, and then administration of the vaccinia virus begins.
- vaccinia virus and an immune checkpoint inhibitor can be administered to a subject with cancer according to a dosing schedule that includes a dosing cycle. In some embodiments, in at least one or all dosing cycles, administration of the vaccinia virus to the subject with the cancer can begin, followed by administration of the immune checkpoint inhibitor. In certain embodiments, in at least one or all dosing cycles, administration of the vaccinia virus to the subject with cancer can be completed, and then administration of the immune checkpoint inhibitor can begin. In certain embodiments, the administration of an immune checkpoint inhibitor to a subject with cancer can begin in at least one or all administration cycles, followed by vaccinia virus administration. In some embodiments, administration of the immune checkpoint inhibitor to the subject with cancer can be completed in at least one or all administration cycles, and then administration of the vaccinia virus can begin.
- the vaccinia virus when a vaccinia virus having a polynucleotide encoding IL-7 and a vaccinia virus having a polynucleotide encoding IL-12 are different, the vaccinia virus can be administered simultaneously, sequentially or sequentially. It may be administered in a targeted manner. Also in this embodiment, the order of administration of the vaccinia virus and the immune checkpoint inhibitor can be determined according to the order of administration as described above.
- Example 1 Antitumor effect in tumor-bearing mice by combination of recombinant vaccinia virus and other cancer therapy
- Examples of the recombinant vaccinia virus include a vaccinia virus (LC16mO ⁇ SCR VGF-SP) containing a polynucleotide encoding IL-12 (IL12) and IL-7 (IL7) described in Example 2 of WO2017 / 209053 so that the polynucleotide can be expressed.
- -IL12 / O1L-SP-IL7) hereinafter referred to as "IL12 and IL7-loaded vaccinia virus” in the examples described later.
- a cancer immunotherapy particularly a cancer immunotherapy using an immune checkpoint inhibitor was selected and used in combination with the vaccinia virus.
- an immune checkpoint inhibitor an anti-mouse PD-1 antibody and an anti-mouse CTLA-4 antibody were used.
- mice tumor-bearing mice
- syngeneic mouse cancer cell lines were implanted subcutaneously in the left and right flank, respectively.
- mice Male, 5-6 weeks old, Charles River Japan
- CT26. 50 ⁇ L of WT (ATCC CRL-2638) was implanted subcutaneously. Seven days after the subcutaneous implantation of the cancer cells, the diameter of the tumor was measured with a caliper, and the average value of the tumor volume (short diameter mm x short diameter mm x long diameter mm x 0.52) was 24 to 29 mm 3, viral untreated side; so that a 24 ⁇ 26 mm 3 in (left flank distant tumors) were grouped into the following six groups.
- Administration group 1) Vehicle administration group 2) Anti-PD-1 antibody alone administration group 3) Anti-CTLA-4 antibody alone administration group 4) IL12 and IL7-loaded vaccinia virus alone administration group 5) IL12 and IL7-loaded vaccinia virus and anti-PD-1 antibody 6) Combination group of vaccinia virus carrying IL12 and IL7 and anti-CTLA-4 antibody
- a solvent (30 mM Tris-HCl 10% sucrose) was injected into the tumor on the right flank of the mouse 1 day, 3 days, and 6 days after the grouping.
- the vaccinia virus carrying IL12 and IL7 alone, the vaccinia virus carrying IL12 and IL7 in combination with an anti-PD-1 antibody, and the vaccinia virus carrying IL12 and IL7 in combination with an anti-CTLA-4 antibody were divided into one group.
- IL12 and IL7-loaded vaccinia virus diluted to a concentration of 6.7 ⁇ 10 8 PFU / mL with a solvent were injected 30 ⁇ L into the tumor on the right flank of the mouse (2 ⁇ 10 7 PFU).
- Anti-PD-1 antibody alone administration group anti-CTLA-4 antibody alone administration group, combination of vaccinia virus with IL12 and IL7 and anti-PD-1 antibody, combination of vaccinia virus with IL12 and IL7 and anti-CTLA-4 antibody
- the anti-PD-1 antibody RMP1-14 (Bio X Cell, BE0146) diluted to a concentration of 1 mg / mL twice a week with PBS twice a week after 6 days after grouping, or 2 mg / mL PBS.
- the mouse was intraperitoneally injected with 100 ⁇ L of anti-CTLA-4 antibody (9D9) (Bio X Cell, BE0164) diluted to a concentration of 1 ⁇ l.
- the anti-PD-1 antibody (RMP1-14) is an anti-PD-1 antibody that can neutralize the binding between PD-1 and PD-L1 and PD-L2, and can block a signal mediated by PD-1. Further, the anti-CTLA-4 antibody (9D9) can block a signal mediated by CTLA-4.
- 100 ⁇ L of PBS was injected into mice intraperitoneally twice a week from 6 days after the grouping. The diameter of the tumor on the left and right flank was measured twice a week with calipers to calculate the tumor volume. Finally, 37 days after grouping, the absence of tumor by palpation was defined as complete remission (CR) The number of individuals showing complete remission was determined.
- the combination of vaccinia virus with IL12 and IL7 and an anti-PD-1 antibody, and the combination of vaccinia virus with IL12 and IL7 and an anti-CTLA-4 antibody Has an excellent antitumor effect as compared to the administration of the anti-PD-1 antibody alone and the anti-CTLA-4 antibody alone at the administration site, and the tumor at a site away from the vaccinia virus administration site (distant tumor)
- a higher complete remission-inducing effect was revealed.
- the cancer therapy using the vaccinia virus in combination with an immune checkpoint inhibitor used in the present invention, and the pharmaceutical composition and combination drug used therefor can be expected to be useful for the prevention or treatment of various cancers.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Immunology (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Microbiology (AREA)
- Virology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Oncology (AREA)
- Mycology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- General Engineering & Computer Science (AREA)
- Toxicology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
[1]
ワクシニアウイルスを有効成分として含む、がんを処置することに用いるための医薬組成物であって、ワクシニアウイルスは、
(1)インターロイキン-7(IL-7)をコードするポリヌクレオチドを含むワクシニアウイルス及びインターロイキン-12(IL-12)をコードするポリヌクレオチドを含むワクシニアウイルス;又は
(2)インターロイキン-7(IL-7)をコードするポリヌクレオチド及びインターロイキン-12(IL-12)をコードするポリヌクレオチドを含むワクシニアウイルス
であり、かつ、免疫チェックポイント阻害剤と併用されるものである、医薬組成物。
[2]
ワクシニアウイルスが、IL-7をコードするポリヌクレオチドとIL-12をコードするポリヌクレオチドとを含むワクシニアウイルスである、[1]に記載の医薬組成物。
[3]
ワクシニアウイルスが、ワクシニアウイルス増殖因子(VGF)及びO1Lの機能を欠損している、[1]又は[2]に記載の医薬組成物。
[4]
ワクシニアウイルスが、B5R細胞外領域のSCR(short consensus repeat)ドメインを欠失している、[3]に記載の医薬組成物。
[5]
ワクシニアウイルスが、LC16mO株ワクシニアウイルスである、[1]~[4]のいずれか一項に記載の医薬組成物。
[6]
免疫チェックポイント阻害剤が、抗PD-1抗体、抗PD-L1抗体、及び抗CTLA-4抗体からなる群から選択される抗体又はこれらの抗原結合フラグメントである、[1]~[5]のいずれか一項に記載の医薬組成物。
[7]
がんが、固形がんである、[1]~[6]のいずれか一項に記載の医薬組成物。
[8]
がんが、転移性のがんである、[1]~[7]のいずれか一項に記載の医薬組成物。
[9]
がんを処置することに用いるための組合せ医薬であって、インターロイキン-7(IL-7)をコードするポリヌクレオチドを含むワクシニアウイルスを含む医薬組成物と、インターロイキン-12(IL-12)をコードするポリヌクレオチドを含むワクシニアウイルスを含む医薬組成物を含み、かつ、免疫チェックポイント阻害剤と併用されるものである、組合せ医薬。
[10]
がんを処置することに用いるための組合せ医薬であって、[1]~[8]のいずれか一項に記載の医薬組成物又は[9]に記載の組合せ医薬と、免疫チェックポイント阻害剤を含む医薬組成物とを含む、組合せ医薬。
[11]
免疫チェックポイント阻害剤を含む、がんを処置することに用いるための医薬組成物であって、[1]~[8]のいずれか一項に記載の医薬組成物又は[9]に記載の組合せ医薬と併用されるものである、医薬組成物。
[12]
がんを処置する方法であって、該方法は、免疫チェックポイント阻害剤及びワクシニアウイルスを投与することを含み、該ワクシニアウイルスは、
(1)インターロイキン-7(IL-7)をコードするポリヌクレオチドを含むワクシニアウイルス及びインターロイキン-12(IL-12)をコードするポリヌクレオチドを含むワクシニアウイルス;又は
(2)インターロイキン-7(IL-7)をコードするポリヌクレオチド及びインターロイキン-12(IL-12)をコードするポリヌクレオチドを含むワクシニアウイルス
である、方法。
[13]
がんを処置することに用いるためのワクシニアウイルスであって、該ワクシニアウイルスは、
(1)インターロイキン-7(IL-7)をコードするポリヌクレオチドを含むワクシニアウイルス及びインターロイキン-12(IL-12)をコードするポリヌクレオチドを含むワクシニアウイルス;又は
(2)インターロイキン-7(IL-7)をコードするポリヌクレオチド及びインターロイキン-12(IL-12)をコードするポリヌクレオチドを含むワクシニアウイルス
であり、かつ、免疫チェックポイント阻害剤と併用されるものである、ワクシニアウイルス。
[14]
がんを処置することに用いるための医薬組成物の製造のためのワクシニアウイルスの使用であって、該ワクシニアウイルスは、
(1)インターロイキン-7(IL-7)をコードするポリヌクレオチドを含むワクシニアウイルス及びインターロイキン-12(IL-12)をコードするポリヌクレオチドを含むワクシニアウイルス;又は
(2)インターロイキン-7(IL-7)をコードするポリヌクレオチド及びインターロイキン-12(IL-12)をコードするポリヌクレオチドを含むワクシニアウイルス
であり、かつ、該医薬組成物は、免疫チェックポイント阻害剤と併用されるものである、使用。
本発明において使用され得る1種又は複数種のワクシニアウイルスは、以下の(1)及び(2)を含み得る:
(1)IL-7をコードするポリヌクレオチド;及び
(2)IL-12をコードするポリヌクレオチド。
(本明細書中、以下、当該ワクシニアウイルスを「本発明において使用されるワクシニアウイルス」ともいう。)
本発明では、上記(1)及び(2)に記載のポリヌクレオチドは、1つのワクシニアウイルス中に含まれていてもよく、複数のワクシニアウイルス中に別々に含まれていてもよい。
(1)Accession No.NP_000871.1に示されるアミノ酸配列を含み、かつ、ヒトIL-7の機能を有するポリペプチド、
(2)Accession No.NP_000871.1に示されるアミノ酸配列において、1~10個のアミノ酸が欠失、置換、挿入、及び/又は付加されたアミノ酸配列からなり、かつ、ヒトIL-7の機能を有するポリペプチド、並びに
(3)Accession No.NP_000871.1に示されるアミノ酸配列との同一性が90%以上であるアミノ酸配列を含み、かつ、ヒトIL-7の機能を有するポリペプチド。
ここで、ヒトIL-7の機能とは、各種ヒト免疫細胞に対しての生存、増殖及び分化作用をいう。
(1)(i-1)Accession No.NP_002178.2に示されるアミノ酸配列を含むポリペプチド、(i-2)Accession No.NP_002178.2に示されるアミノ酸配列において1~10個のアミノ酸が欠失、置換、挿入、及び/若しくは付加されたアミノ酸配列からなるポリペプチド、又は、(i-3)Accession No.NP_002178.2に示されるアミノ酸配列との同一性が90%以上であるアミノ酸配列を含むポリペプチド、並びに、
(i i-1)Accession No.NP_000873.2に示されるアミノ酸配列を含むポリペプチド、(i i-2)Accession No.NP_000873.2に示されるアミノ酸配列において1~10個のアミノ酸が欠失、置換、挿入、及び/若しくは付加されたアミノ酸配列からなるポリペプチド、又は、(i i-3)Accession No.NP_000873.2に示されるアミノ酸配列との同一性が90%以上であるアミノ酸配列を含むポリペプチドを含み、かつ、
ヒトIL-12の機能を有するポリペプチド、
(2)(i-1)Accession No.NP_002178.2に示されるアミノ酸配列からなるポリペプチド、並びに、
(i i-1)Accession No.NP_000873.2に示されるアミノ酸配列を含むポリペプチド、(i i-2)Accession No.NP_000873.2に示されるアミノ酸配列において1~10個のアミノ酸が欠失、置換、挿入、及び/若しくは付加されたアミノ酸配列からなるポリペプチド、又は(i i-3)Accession No.NP_000873.2に示されるアミノ酸配列との同一性が90%以上であるアミノ酸配列を含むポリペプチドを含み、かつ、
ヒトIL-12の機能を有するポリペプチド、並びに、
(3)(i-1)Accession No.NP_002178.2に示されるアミノ酸配列を含むポリペプチド、(i-2)Accession No.NP_002178.2に示されるアミノ酸配列において1~10個のアミノ酸が欠失、置換、挿入、及び/若しくは付加されたアミノ酸配列からなるポリペプチド、又は、(i-3)Accession No.NP_002178.2に示されるアミノ酸配列との同一性が90%以上であるアミノ酸配列を含むポリペプチド、並びに、
(i i-1)Accession No.NP_000873.2に示されるアミノ酸配列からなるポリペプチドを含み、かつ、
ヒトIL-12の機能を有するポリペプチド。
ここで、ヒトIL-12の機能とは、T細胞やNK細胞の活性化作用、及び/又は分化誘導作用をいう。IL-12サブユニットp40及びIL-12サブユニットαは直接結合することでIL-12を形成することができる。また、IL-12サブユニットp40及びIL-12サブユニットαをリンカーを介して結合させることができる。
Gap Open Penalty = 10
Gap Extend Penalty = 0.5
Matrix = EBLOSUM62
End Gap Penalty = false
本発明では、免疫チェックポイント阻害剤としては、例えば、PD-1を介するシグナルを遮断するチェックポイント阻害剤又はCTLA-4を介するシグナルを遮断するチェックポイント阻害剤を用いることができる。免疫チェックポイント阻害剤としては、PD-1とPD-L1又はPD-L2の結合を中和することができる抗体、及びCTLA-4とCD80又はCD86との結合を中和することができる抗体が挙げられる。PD-1とPD-L1の結合を中和することができる抗体としては、PD-1とPD-L1の結合を中和することができる抗PD-1抗体及び抗PD-L1抗体が挙げられる。PD-1とPD-L2との結合を中和することができる抗体としては、PD-1とPD-L2との結合を中和することができる抗PD-1抗体及び抗PD-L2抗体が挙げられる。CTLA-4とCD80又はCD86との結合を中和することができる抗体としては、CTLA-4とCD80又はCD86との結合を中和することができる抗CTLA-4抗体が挙げられる。
本発明によれば、以下の医薬組成物及び組合せ医薬(以下、「本発明の医薬組成物及び組合せ医薬」ということがある)のいずれかが提供され得る:
(a-1)IL-7をコードするポリヌクレオチドを含むワクシニアウイルスと、IL-12をコードするポリヌクレオチドを含むワクシニアウイルスと、免疫チェックポイント阻害剤とを含む、がんを処置することに用いるための医薬組成物;
(a-2)IL-7をコードするポリヌクレオチド及びIL-12をコードするポリヌクレオチドを含むワクシニアウイルスと、免疫チェックポイント阻害剤とを含む、がんを処置することに用いるための医薬組成物;
(b-1)IL-7をコードするポリヌクレオチドを含むワクシニアウイルスを含む、がんを処置することに用いるための医薬組成物であって、IL-12をコードするポリヌクレオチドを含むワクシニアウイルス及び免疫チェックポイント阻害剤と併用するものである、医薬組成物{ここで、IL-12をコードするポリヌクレオチドを含むワクシニアウイルス及び免疫チェックポイント阻害剤は、同一の医薬組成物中に含まれていてもよいし、別個の医薬組成物中に別々に含まれていてもよい};
(b-2)IL-12をコードするポリヌクレオチドを含むワクシニアウイルスを含む、がんを処置することに用いるための医薬組成物であって、IL-7をコードするポリヌクレオチドを含むワクシニアウイルス及び免疫チェックポイント阻害剤と併用するものである、医薬組成物{ここで、IL-7をコードするポリヌクレオチドを含むワクシニアウイルス及び免疫チェックポイント阻害剤は、同一の医薬組成物中に含まれていてもよいし、別個の医薬組成物中に別々に含まれていてもよい};
(b-3)IL-7をコードするポリヌクレオチド及びIL-12をコードするポリヌクレオチドを含むワクシニアウイルスを含む、がんを処置することに用いるための医薬組成物であって、免疫チェックポイント阻害剤と併用するものである、医薬組成物;
(b-4)IL-7をコードするポリヌクレオチドを含むワクシニアウイルスとIL-12をコードするポリヌクレオチドを含むワクシニアウイルスとを含む、がんを処置することに用いるための医薬組成物であって、免疫チェックポイント阻害剤と併用するものである、医薬組成物;
(b-5)IL-7をコードするポリヌクレオチドを含むワクシニアウイルスと免疫チェックポイント阻害剤とを含む、がんを処置することに用いるための医薬組成物であって、IL-12をコードするポリヌクレオチドを含むワクシニアウイルスと併用するものである、医薬組成物;
(b-6)IL-12をコードするポリヌクレオチドを含むワクシニアウイルスと免疫チェックポイント阻害剤とを含む、がんを処置することに用いるための医薬組成物であって、IL-7をコードするポリヌクレオチドを含むワクシニアウイルスと併用するものである、医薬組成物;
(b-7)免疫チェックポイント阻害剤を含む、がんを処置することに用いるための医薬組成物であって、IL-7をコードするポリヌクレオチド及びIL-12をコードするポリヌクレオチドを含むワクシニアウイルスと併用するものである、医薬組成物;
(b-8)免疫チェックポイント阻害剤を含む、がんを処置することに用いるための医薬組成物であって、IL-7をコードするポリヌクレオチドを含むワクシニアウイルス及びIL-12をコードするポリヌクレオチドを含むワクシニアウイルスと併用するものである、医薬組成物{ここで、IL-7をコードするポリヌクレオチドを含むワクシニアウイルス及びIL-12をコードするポリヌクレオチドを含むワクシニアウイルスは、同一の医薬組成物中に含まれていてもよいし、別個の医薬組成物中に別々に含まれていてもよい};
(c-1)IL-7をコードするポリヌクレオチドを含むワクシニアウイルスを含む医薬組成物と、IL-12をコードするポリヌクレオチドを含むワクシニアウイルスを含む医薬組成物と、免疫チェックポイント阻害剤を含む医薬組成物とを含む、がんを処置することに用いるための組合せ医薬;
(c-2)IL-7をコードするポリヌクレオチドを含むワクシニアウイルス及びIL-12をコードするポリヌクレオチドを含むワクシニアウイルスを含む医薬組成物と、免疫チェックポイント阻害剤を含む医薬組成物とを含む、がんを処置することに用いるための組合せ医薬;
(c-3)IL-7をコードするポリヌクレオチド及びIL-12をコードするポリヌクレオチドを含むワクシニアウイルスを含む医薬組成物と、免疫チェックポイント阻害剤を含む医薬組成物とを含む、がんを処置することに用いるための組合せ医薬;
(c-4)IL-7をコードするポリヌクレオチドを含むワクシニアウイルス及び免疫チェックポイント阻害剤を含む医薬組成物と、IL-12をコードするポリヌクレオチドを含むワクシニアウイルスを含む医薬組成物とを含む、がんを処置することに用いるための組合せ医薬;
(c-5)IL-12をコードするポリヌクレオチドを含むワクシニアウイルス及び免疫チェックポイント阻害剤を含む医薬組成物と、IL-7をコードするポリヌクレオチドを含むワクシニアウイルスを含む医薬組成物とを含む、がんを処置することに用いるための組合せ医薬;
(d-1)IL-7をコードするポリヌクレオチドを含むワクシニアウイルスを含む医薬組成物と、IL-12をコードするポリヌクレオチドを含むワクシニアウイルスを含む医薬組成物とを含む、がんを処置することに用いるための組合せ医薬であって、免疫チェックポイント阻害剤と併用するものである、組合せ医薬;
(d-2)IL-7をコードするポリヌクレオチドを含むワクシニアウイルスを含む医薬組成物と、免疫チェックポイント阻害剤を含む医薬組成物とを含む、がんを処置することに用いるための組合せ医薬であって、IL-12をコードするポリヌクレオチドを含むワクシニアウイルスと併用するものである、組合せ医薬;並びに
(d-3)IL-12をコードするポリヌクレオチドを含むワクシニアウイルスを含む医薬組成物と、免疫チェックポイント阻害剤を含む医薬組成物とを含む、がんを処置することに用いるための組合せ医薬であって、IL-7をコードするポリヌクレオチドを含むワクシニアウイルスと併用するものである、組合せ医薬。
(1)IL-7をコードするポリヌクレオチドを含むワクシニアウイルス及びIL-12をコードするポリヌクレオチドを含むワクシニアウイルス;又は
(2)IL-7をコードするポリヌクレオチド及びIL-12をコードするポリヌクレオチドを含むワクシニアウイルス
であり、かつ、免疫チェックポイント阻害剤と併用されるものである、医薬組成物である。
本発明の医薬組成物及び組合せ医薬は、がん、例えば、固形がん、特に限定されないが例えば、悪性黒色腫、肺がん、肺腺がん、小細胞肺がん、肺扁平上皮がん、腎がん、膀胱がん、頭頸部がん、乳がん、食道がん、グリア芽細胞腫、神経芽細胞腫、骨髄腫、卵巣がん、大腸がん、膵がん、前立腺がん、肝細胞がん、中皮腫、子宮頸がん、及び、胃がん等からなる群から選択されるがんを処置することに用いることができる。
(1)IL-7をコードするポリヌクレオチドを含むワクシニアウイルス;
(2)IL-12をコードするポリヌクレオチドを含むワクシニアウイルス;及び
(3)免疫チェックポイント阻害剤。
当該(1)及び(2)のワクシニアウイルス並びに(3)の免疫チェックポイント阻害剤は、対象に一緒に投与されてもよく、別々に投与されてもよい。当該(1)及び(2)のワクシニアウイルス並びに(3)の免疫チェックポイント阻害剤が別々に投与されるときには、同時に投与されてもよく、逐次的に投与されてもよい。当該(1)及び(2)のワクシニアウイルス並びに(3)の免疫チェックポイント阻害剤が逐次的に投与されるときには、連続的に投与されても、投与間隔を空けて投与されてもよい。1つの実施形態では、ワクシニアウイルスが投与された後に、免疫チェックポイント阻害剤が投与される。ワクシニアウイルスは、例えば、腫瘍内投与、静脈内投与、腹腔内投与等の投与経路によって投与することができる。免疫チェックポイント阻害剤は、例えば、腫瘍内投与、静脈内投与、腹腔内投与等の投与経路によって投与することができる。
(1)IL-7をコードするポリヌクレオチド及びIL-12をコードするポリヌクレオチドを含むワクシニアウイルス;並びに
(2)免疫チェックポイント阻害剤。
当該(1)のワクシニアウイルス及び(2)の免疫チェックポイント阻害剤は、対象に一緒に投与されてもよく、別々に投与されてもよい。当該(1)のワクシニアウイルス及び(2)の免疫チェックポイント阻害剤が別々に投与されるときには、同時に投与されてもよく、逐次的に投与されてもよい。当該(1)のワクシニアウイルス及び(2)の免疫チェックポイント阻害剤が逐次的に投与されるときには、連続的に投与されても、投与間隔を空けて投与されてもよい。1つの実施形態では、ワクシニアウイルスが投与された後に、免疫チェックポイント阻害剤が投与される。
(1)IL-12をコードするポリヌクレオチドを含むワクシニアウイルス及び免疫チェックポイント阻害剤と併用されるものである、IL-7をコードするポリヌクレオチドを含むワクシニアウイルス;
(2)IL-7をコードするポリヌクレオチドを含むワクシニアウイルス及び免疫チェックポイント阻害剤と併用されるものである、IL-12をコードするポリヌクレオチドを含むワクシニアウイルス;
(3)免疫チェックポイント阻害剤と併用されるものである、IL-7をコードするポリヌクレオチド及びIL-12をコードするポリヌクレオチドを含むワクシニアウイルス;並びに
(4)免疫チェックポイント阻害剤と併用されるものである、IL-7をコードするポリヌクレオチドを含むワクシニアウイルスとIL-12をコードするポリヌクレオチドを含むワクシニアウイルスとの組合せ。
(1)IL-7をコードするポリヌクレオチドを含むワクシニアウイルス及びIL-12をコードするポリヌクレオチドを含むワクシニアウイルスと併用されるものである;又は
(2)IL-7をコードするポリヌクレオチド及びIL-12をコードするポリヌクレオチドを含むワクシニアウイルスと併用されるものである、
免疫チェックポイント阻害剤を提供する。
(1)IL-12をコードするポリヌクレオチドを含むワクシニアウイルス及び免疫チェックポイント阻害剤と併用されるものである、IL-7をコードするポリヌクレオチドを含むワクシニアウイルス;
(2)IL-7をコードするポリヌクレオチドを含むワクシニアウイルス及び免疫チェックポイント阻害剤と併用されるものである、IL-12をコードするポリヌクレオチドを含むワクシニアウイルス;
(3)免疫チェックポイント阻害剤と併用されるものである、IL-7をコードするポリヌクレオチド及びIL-12をコードするポリヌクレオチドを含むワクシニアウイルス;並びに
(4)免疫チェックポイント阻害剤と併用されるものである、IL-7をコードするポリヌクレオチドを含むワクシニアウイルスとIL-12をコードするポリヌクレオチドを含むワクシニアウイルスとの組合せ。
当該医薬組成物又は組合せ医薬が、
(1)IL-7をコードするポリヌクレオチドを含むワクシニアウイルス及びIL-12をコードするポリヌクレオチドを含むワクシニアウイルスと併用されるものである;
(2)IL-7をコードするポリヌクレオチド及びIL-12をコードするポリヌクレオチドを含むワクシニアウイルスと併用されるものである;
(3)IL-7をコードするポリヌクレオチドを含むワクシニアウイルスを含み、IL-12をコードするポリヌクレオチドを含むワクシニアウイルスと併用されるものである;又は
(4)IL-12をコードするポリヌクレオチドを含むワクシニアウイルスを含み、IL-7をコードするポリヌクレオチドを含むワクシニアウイルスと併用されるものである
使用が提供される。
本発明では、ワクシニアウイルスと免疫チェックポイント阻害剤は、同時に、連続的に又は逐次的に投与され得る。
1)溶媒投与群
2)抗PD-1抗体単独投与群
3)抗CTLA-4抗体単独投与群
4)IL12及びIL7搭載ワクシニアウイルス単独投与群
5)IL12及びIL7搭載ワクシニアウイルスと抗PD-1抗体との併用群
6)IL12及びIL7搭載ワクシニアウイルスと抗CTLA-4抗体との併用群
Claims (14)
- ワクシニアウイルスを有効成分として含む、がんを処置することに用いるための医薬組成物であって、ワクシニアウイルスは、
(1)インターロイキン-7(IL-7)をコードするポリヌクレオチドを含むワクシニアウイルス及びインターロイキン-12(IL-12)をコードするポリヌクレオチドを含むワクシニアウイルス;又は
(2)インターロイキン-7(IL-7)をコードするポリヌクレオチド及びインターロイキン-12(IL-12)をコードするポリヌクレオチドを含むワクシニアウイルス
であり、かつ、免疫チェックポイント阻害剤と併用されるものである、医薬組成物。 - ワクシニアウイルスが、IL-7をコードするポリヌクレオチドとIL-12をコードするポリヌクレオチドとを含むワクシニアウイルスである、請求項1に記載の医薬組成物。
- ワクシニアウイルスが、ワクシニアウイルス増殖因子(VGF)及びO1Lの機能を欠損している、請求項1又は2に記載の医薬組成物。
- ワクシニアウイルスが、B5R細胞外領域のSCR(short consensus repeat)ドメインを欠失している、請求項3に記載の医薬組成物。
- ワクシニアウイルスが、LC16mO株ワクシニアウイルスである、請求項1~4のいずれか一項に記載の医薬組成物。
- 免疫チェックポイント阻害剤が、抗PD-1抗体、抗PD-L1抗体、及び抗CTLA-4抗体からなる群から選択される抗体又はこれらの抗原結合フラグメントである、請求項1~5のいずれか一項に記載の医薬組成物。
- がんが、固形がんである、請求項1~6のいずれか一項に記載の医薬組成物。
- がんが、転移性のがんである、請求項1~7のいずれか一項に記載の医薬組成物。
- がんを処置することに用いるための組合せ医薬であって、インターロイキン-7(IL-7)をコードするポリヌクレオチドを含むワクシニアウイルスを含む医薬組成物と、インターロイキン-12(IL-12)をコードするポリヌクレオチドを含むワクシニアウイルスを含む医薬組成物を含み、かつ、免疫チェックポイント阻害剤と併用されるものである、組合せ医薬。
- がんを処置することに用いるための組合せ医薬であって、請求項1~8のいずれか一項に記載の医薬組成物又は請求項9に記載の組合せ医薬と、免疫チェックポイント阻害剤を含む医薬組成物とを含む、組合せ医薬。
- 免疫チェックポイント阻害剤を含む、がんを処置することに用いるための医薬組成物であって、請求項1~8のいずれか一項に記載の医薬組成物又は請求項9に記載の組合せ医薬と併用されるものである、医薬組成物。
- がんを処置する方法であって、該方法は、免疫チェックポイント阻害剤及びワクシニアウイルスを投与することを含み、該ワクシニアウイルスは、
(1)インターロイキン-7(IL-7)をコードするポリヌクレオチドを含むワクシニアウイルス及びインターロイキン-12(IL-12)をコードするポリヌクレオチドを含むワクシニアウイルス;又は
(2)インターロイキン-7(IL-7)をコードするポリヌクレオチド及びインターロイキン-12(IL-12)をコードするポリヌクレオチドを含むワクシニアウイルス
である、方法。 - がんを処置することに用いるためのワクシニアウイルスであって、該ワクシニアウイルスは、
(1)インターロイキン-7(IL-7)をコードするポリヌクレオチドを含むワクシニアウイルス及びインターロイキン-12(IL-12)をコードするポリヌクレオチドを含むワクシニアウイルス;又は
(2)インターロイキン-7(IL-7)をコードするポリヌクレオチド及びインターロイキン-12(IL-12)をコードするポリヌクレオチドを含むワクシニアウイルス
であり、かつ、免疫チェックポイント阻害剤と併用されるものである、ワクシニアウイルス。 - がんを処置することに用いるための医薬組成物の製造のためのワクシニアウイルスの使用であって、該ワクシニアウイルスは、
(1)インターロイキン-7(IL-7)をコードするポリヌクレオチドを含むワクシニアウイルス及びインターロイキン-12(IL-12)をコードするポリヌクレオチドを含むワクシニアウイルス;又は
(2)インターロイキン-7(IL-7)をコードするポリヌクレオチド及びインターロイキン-12(IL-12)をコードするポリヌクレオチドを含むワクシニアウイルス
であり、かつ、該医薬組成物は、免疫チェックポイント阻害剤と併用されるものである、使用。
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020549251A JP7484717B2 (ja) | 2018-09-26 | 2019-09-25 | 腫瘍溶解性ワクシニアウイルスと免疫チェックポイント阻害剤との併用によるがん療法並びにこれに用いるための医薬組成物及び組合せ医薬 |
BR112021005803-6A BR112021005803A2 (pt) | 2018-09-26 | 2019-09-25 | terapia de câncer por uso de combinação de vírus vaccinia oncolítico e inibidor do ponto de verificação imunológico, composição farmacêutica e medicamento de combinação para uso na terapia de câncer |
CA3113965A CA3113965A1 (en) | 2018-09-26 | 2019-09-25 | Cancer therapy by combination use of oncolytic vaccinia virus and immune checkpoint inhibitor, and pharmaceutical composition and combination medicine for use in the cancer therapy |
KR1020217011911A KR20210065976A (ko) | 2018-09-26 | 2019-09-25 | 종양 용해성 백시니아 바이러스와 면역 체크포인트 저해제의 병용에 의한 암 요법 그리고 이것에 사용하기 위한 의약 조성물 및 조합 의약 |
AU2019351255A AU2019351255A1 (en) | 2018-09-26 | 2019-09-25 | Cancer therapy by combination use of oncolytic vaccinia virus and immune checkpoint inhibitor, and pharmaceutical composition and combination medicine for use in the cancer therapy |
SG11202103097QA SG11202103097QA (en) | 2018-09-26 | 2019-09-25 | Cancer therapy by combination use of oncolytic vaccinia virus and immune checkpoint inhibitor, and pharmaceutical composition and combination medicine for use in the cancer therapy |
CN201980062391.0A CN112739360A (zh) | 2018-09-26 | 2019-09-25 | 基于溶瘤性牛痘病毒与免疫检查点抑制剂的联用的癌症疗法以及其中使用的药物组合物和组合药物 |
EP19867263.6A EP3858369A4 (en) | 2018-09-26 | 2019-09-25 | CANCER THERAPY IN WHICH AN ONCOLYTIC VACCINE VIRUS AND AN IMMUNE CHECKPOINT INHIBITOR ARE USED IN COMBINATION, AND COMBINED PHARMACEUTICAL COMPOSITION AND MEDICINE USED THEREOF |
MX2021003539A MX2021003539A (es) | 2018-09-26 | 2019-09-25 | Terapia contra el cancer en donde el virus vaccinia oncolitico e inhibidor de punto de control inmunitario se usan en combinacion, y composicion farmaceutica y medicamento de combinacion usado en ella. |
US17/279,937 US11638730B2 (en) | 2018-09-26 | 2019-09-25 | Cancer therapy by combination use of oncolytic vaccinia virus and immune checkpoint inhibitor, and pharmaceutical composition and combination medicine for use in the cancer therapy |
IL281730A IL281730A (en) | 2018-09-26 | 2021-03-22 | Combinations of the virus and axinia oncolytic and checkpoint suppressors of the immune system for the treatment of cancer, and pharmaceutical preparations containing these combinations |
ZA2021/02020A ZA202102020B (en) | 2018-09-26 | 2021-03-25 | Cancer therapy by combination use of oncolytic vaccinia virus and immune checkpoint inhibitor, and pharmaceutical composition and combination medicine for use in the cancer therapy |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-179632 | 2018-09-26 | ||
JP2018179632 | 2018-09-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020067085A1 true WO2020067085A1 (ja) | 2020-04-02 |
Family
ID=69949634
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/037448 WO2020067085A1 (ja) | 2018-09-26 | 2019-09-25 | 腫瘍溶解性ワクシニアウイルスと免疫チェックポイント阻害剤との併用によるがん療法並びにこれに用いるための医薬組成物及び組合せ医薬 |
Country Status (15)
Country | Link |
---|---|
US (1) | US11638730B2 (ja) |
EP (1) | EP3858369A4 (ja) |
JP (1) | JP7484717B2 (ja) |
KR (1) | KR20210065976A (ja) |
CN (1) | CN112739360A (ja) |
AU (1) | AU2019351255A1 (ja) |
BR (1) | BR112021005803A2 (ja) |
CA (1) | CA3113965A1 (ja) |
IL (1) | IL281730A (ja) |
JO (1) | JOP20210051A1 (ja) |
MX (1) | MX2021003539A (ja) |
SG (1) | SG11202103097QA (ja) |
TW (1) | TWI824020B (ja) |
WO (1) | WO2020067085A1 (ja) |
ZA (1) | ZA202102020B (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022107705A1 (ja) * | 2020-11-17 | 2022-05-27 | 国立大学法人鳥取大学 | 新規遺伝子組換えワクシニアウイルス及びその利用 |
WO2023153020A1 (ja) | 2022-02-09 | 2023-08-17 | 国立大学法人九州大学 | がん細胞増殖抑制剤及びがん細胞増殖抑制効果増強剤 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4412640A1 (en) | 2021-10-04 | 2024-08-14 | TILT Biotherapeutics Oy | An oncolytic virus vector coding for interleukin-7 (il-7) polypeptide |
WO2024023740A1 (en) * | 2022-07-27 | 2024-02-01 | Astrazeneca Ab | Combinations of recombinant virus expressing interleukin-12 with pd-1/pd-l1 inhibitors |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005007824A2 (en) | 2003-07-08 | 2005-01-27 | Arizona Board Of Regents | Mutants of vaccinia virus as oncolytic agents |
WO2005030971A1 (en) | 2003-09-29 | 2005-04-07 | Gsf-Forschungszentrum Fuer Umwelt Und Gesundheit Gmbh | Modified vaccinia virus ankara (mva) mutant and use thereof |
WO2005047458A2 (en) | 2003-06-18 | 2005-05-26 | Genelux Corporation | Modified recombinant vaccina viruses and other microorganisms, uses thereof |
WO2011125469A1 (ja) | 2010-04-09 | 2011-10-13 | 国立大学法人東京大学 | マイクロrna制御組換えワクシニアウイルス及びその使用 |
JP2012527465A (ja) * | 2009-05-19 | 2012-11-08 | エデン、セラピューティックス、インコーポレイテッド | 免疫刺激薬、腫瘍溶解性ウイルスおよび付加的抗癌療法の組合せ |
WO2015076422A1 (ja) | 2013-11-21 | 2015-05-28 | 国立大学法人鳥取大学 | 分裂促進因子活性化タンパク質キナーゼ依存性組換えワクシニアウイルス(md-rvv)及びその使用 |
WO2015117002A1 (en) | 2014-01-31 | 2015-08-06 | Novartis Ag | Antibody molecules to tim-3 and uses thereof |
US20150259420A1 (en) | 2014-03-14 | 2015-09-17 | Novartis Ag | Antibody molecules to lag-3 and uses thereof |
WO2016161270A1 (en) | 2015-04-01 | 2016-10-06 | Anaptysbio, Inc. | Antibodies directed against t cell immunoglobulin and mucin protein 3 (tim-3) |
WO2016207717A1 (en) | 2015-06-24 | 2016-12-29 | Janssen Pharmaceutica Nv | Anti-vista antibodies and fragments |
WO2017059095A1 (en) | 2015-10-01 | 2017-04-06 | Potenza Therapeutics, Inc. | Anti-tigit antigen-binding proteins and methods of use thereof |
WO2017079746A2 (en) * | 2015-11-07 | 2017-05-11 | Multivir Inc. | Methods and compositions comprising tumor suppressor gene therapy and immune checkpoint blockade for the treatment of cancer |
WO2017118866A1 (en) * | 2016-01-08 | 2017-07-13 | Replimune Limited | Engineered virus |
WO2017147554A2 (en) * | 2016-02-25 | 2017-08-31 | Memorial Sloan-Kettering Cancer Center | Recombinant mva or mvadele3l expressing human flt3l and use thereof as immuno-therapeutic agents against solid tumors |
WO2017209053A1 (ja) | 2016-05-30 | 2017-12-07 | アステラス製薬株式会社 | 新規な遺伝子組換えワクシニアウイルス |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6379674B1 (en) | 1997-08-12 | 2002-04-30 | Georgetown University | Use of herpes vectors for tumor therapy |
WO2001028583A2 (en) | 1999-10-18 | 2001-04-26 | St. Vincent's Hospital And Medical Center Of New York | Melanoma vaccine and methods of making and using same |
AU779325B2 (en) | 1999-10-18 | 2005-01-20 | St. Vincent's Hospital And Medical Center Of New York | Melanoma vaccine and methods of making and using same |
KR20020010206A (ko) | 2000-07-27 | 2002-02-04 | 이시우 | 인터루킨 12와 보조활성인자 b7.1 유전자를 함유하는dna 벡터 및 이벡터가 도입된 항암 세포백신 |
EP2044948B1 (en) | 2002-08-12 | 2013-10-30 | Jennerex Biotherapeutics ULC | Vaccinia viruses for use in treating cancer |
US20080050808A1 (en) | 2002-10-09 | 2008-02-28 | Reed Thomas D | DNA modular cloning vector plasmids and methods for their use |
KR101062140B1 (ko) | 2003-07-21 | 2011-09-05 | 트랜스진 에스.에이. | 향상된 시토신 디아미네이즈 활성을 갖는 폴리펩티드 |
JP4719855B2 (ja) | 2003-12-05 | 2011-07-06 | 国立大学法人北海道大学 | 高度安全性痘瘡ワクチンウイルスおよびワクシニアウイルスベクター |
US8980246B2 (en) | 2005-09-07 | 2015-03-17 | Sillajen Biotherapeutics, Inc. | Oncolytic vaccinia virus cancer therapy |
US20070077231A1 (en) | 2005-09-30 | 2007-04-05 | Contag Christopher H | Immune effector cells pre-infected with oncolytic virus |
US8052968B2 (en) | 2006-10-16 | 2011-11-08 | Genelux Corporation | Modified vaccinia virus strains for use in diagnostic and therapeutic methods |
EP2150618B1 (en) | 2007-05-04 | 2017-10-11 | University Health Network | Il-12 immunotherapy for cancer |
CA2794196A1 (en) | 2010-03-23 | 2011-09-29 | Intrexon Corporation | Vectors conditionally expressing therapeutic proteins, host cells comprising the vectors, and uses thereof |
JPWO2012053646A1 (ja) | 2010-10-22 | 2014-02-24 | 国立大学法人北海道大学 | ワクシニアウイルスベクターおよびセンダイウイルスベクターからなるプライム/ブーストワクチン用ウイルスベクター |
WO2012151272A2 (en) | 2011-05-02 | 2012-11-08 | Tremrx, Inc. | T-cell vaccination with viral vectors via mechanical epidermal disruption |
KR102674807B1 (ko) | 2011-12-12 | 2024-06-13 | 더 트러스티스 오브 더 유니버시티 오브 펜실바니아 | 개선된 il-12 유전적 컨스트럭트 및 백신을 포함하는 조성물, 면역치료제 및 이를 이용하는 방법 |
WO2015069571A1 (en) * | 2013-11-05 | 2015-05-14 | Bavarian Nordic, Inc. | Combination therapy for treating cancer with a poxvirus expressing a tumor antigen and an antagonist and/or agonist of an immune checkpoint inhibitor |
US20170166620A1 (en) | 2014-02-19 | 2017-06-15 | Merck Patent Gmbh | Cancer-targeted il-12 immunotherapy |
GB201405834D0 (en) | 2014-04-01 | 2014-05-14 | Univ London Queen Mary | Oncolytic virus |
WO2016205429A1 (en) | 2015-06-15 | 2016-12-22 | New York University | Method of treatment using oncolytic viruses |
US10888594B2 (en) | 2016-05-30 | 2021-01-12 | National University Corporation Tottori University | Genetically engineered vaccinia viruses |
US20190336552A1 (en) | 2016-05-30 | 2019-11-07 | Astellas Pharma Inc. | Genetically engineered vaccinia viruses |
TW201825511A (zh) * | 2016-09-09 | 2018-07-16 | 美商艾斯合顧問有限公司 | 表現免疫檢查點調節子的溶瘤病毒 |
CN109922822A (zh) | 2016-09-23 | 2019-06-21 | 昂科赛克医疗公司 | 调节对检查点抑制剂疗法的应答 |
CA3046961A1 (en) * | 2016-12-12 | 2018-06-21 | Multivir Inc. | Methods and compositions comprising viral gene therapy and an immune checkpoint inhibitor for treatment and prevention of cancer and infectious diseases |
US10232053B2 (en) | 2016-12-30 | 2019-03-19 | Trieza Therapeutics, Inc. | Immunomodulatory oncolytic adenoviral vectors, and methods of production and use thereof for treatment of cancer |
EP3612201B1 (en) * | 2017-04-21 | 2023-10-25 | Sillajen, Inc. | Oncolytic vaccinia virus and checkpoint inhibitor combination therapy |
-
2019
- 2019-09-25 TW TW108134685A patent/TWI824020B/zh active
- 2019-09-25 JP JP2020549251A patent/JP7484717B2/ja active Active
- 2019-09-25 CA CA3113965A patent/CA3113965A1/en active Pending
- 2019-09-25 CN CN201980062391.0A patent/CN112739360A/zh active Pending
- 2019-09-25 US US17/279,937 patent/US11638730B2/en active Active
- 2019-09-25 AU AU2019351255A patent/AU2019351255A1/en active Pending
- 2019-09-25 SG SG11202103097QA patent/SG11202103097QA/en unknown
- 2019-09-25 JO JOP/2021/0051A patent/JOP20210051A1/ar unknown
- 2019-09-25 BR BR112021005803-6A patent/BR112021005803A2/pt unknown
- 2019-09-25 EP EP19867263.6A patent/EP3858369A4/en active Pending
- 2019-09-25 KR KR1020217011911A patent/KR20210065976A/ko unknown
- 2019-09-25 MX MX2021003539A patent/MX2021003539A/es unknown
- 2019-09-25 WO PCT/JP2019/037448 patent/WO2020067085A1/ja active Application Filing
-
2021
- 2021-03-22 IL IL281730A patent/IL281730A/en unknown
- 2021-03-25 ZA ZA2021/02020A patent/ZA202102020B/en unknown
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005047458A2 (en) | 2003-06-18 | 2005-05-26 | Genelux Corporation | Modified recombinant vaccina viruses and other microorganisms, uses thereof |
WO2005007824A2 (en) | 2003-07-08 | 2005-01-27 | Arizona Board Of Regents | Mutants of vaccinia virus as oncolytic agents |
WO2005030971A1 (en) | 2003-09-29 | 2005-04-07 | Gsf-Forschungszentrum Fuer Umwelt Und Gesundheit Gmbh | Modified vaccinia virus ankara (mva) mutant and use thereof |
JP2012527465A (ja) * | 2009-05-19 | 2012-11-08 | エデン、セラピューティックス、インコーポレイテッド | 免疫刺激薬、腫瘍溶解性ウイルスおよび付加的抗癌療法の組合せ |
WO2011125469A1 (ja) | 2010-04-09 | 2011-10-13 | 国立大学法人東京大学 | マイクロrna制御組換えワクシニアウイルス及びその使用 |
WO2015076422A1 (ja) | 2013-11-21 | 2015-05-28 | 国立大学法人鳥取大学 | 分裂促進因子活性化タンパク質キナーゼ依存性組換えワクシニアウイルス(md-rvv)及びその使用 |
WO2015117002A1 (en) | 2014-01-31 | 2015-08-06 | Novartis Ag | Antibody molecules to tim-3 and uses thereof |
US20150259420A1 (en) | 2014-03-14 | 2015-09-17 | Novartis Ag | Antibody molecules to lag-3 and uses thereof |
WO2016161270A1 (en) | 2015-04-01 | 2016-10-06 | Anaptysbio, Inc. | Antibodies directed against t cell immunoglobulin and mucin protein 3 (tim-3) |
WO2016207717A1 (en) | 2015-06-24 | 2016-12-29 | Janssen Pharmaceutica Nv | Anti-vista antibodies and fragments |
WO2017059095A1 (en) | 2015-10-01 | 2017-04-06 | Potenza Therapeutics, Inc. | Anti-tigit antigen-binding proteins and methods of use thereof |
WO2017079746A2 (en) * | 2015-11-07 | 2017-05-11 | Multivir Inc. | Methods and compositions comprising tumor suppressor gene therapy and immune checkpoint blockade for the treatment of cancer |
WO2017118866A1 (en) * | 2016-01-08 | 2017-07-13 | Replimune Limited | Engineered virus |
WO2017147554A2 (en) * | 2016-02-25 | 2017-08-31 | Memorial Sloan-Kettering Cancer Center | Recombinant mva or mvadele3l expressing human flt3l and use thereof as immuno-therapeutic agents against solid tumors |
WO2017209053A1 (ja) | 2016-05-30 | 2017-12-07 | アステラス製薬株式会社 | 新規な遺伝子組換えワクシニアウイルス |
Non-Patent Citations (24)
Title |
---|
"Current Protocols in Molecular Biology", 1987, JOHN WILEY & SONS |
CANCER GENE THERAPY, vol. 6, 1999, pages 409 - 422 |
CANCER IMMUNOLOGY IMMUNOTHERAPY, vol. 63, 2014, pages 419 - 435 |
CANCER RESEARCH, vol. 61, 2001, pages 8751 - 8757 |
CANCER RESEARCH, vol. 65, 2005, pages 9991 - 9998 |
CANCER RESEARCH, vol. 67, 2007, pages 10038 - 10046 |
CURRENT DRUG TARGETS, vol. 7, 2006, pages 1571 - 1582 |
DANIEL S. CHENIRA MELLMAN, NATURE, vol. 541, 2017, pages 321 - 330 |
EXPERT OPINION ON BIOLOGICAL THERAPY, vol. 11, 2011, pages 595 - 608 |
GENE THERAPY, vol. 14, 2007, pages 638 - 647 |
JOURNAL OF VIROLOGY, vol. 72, 1998, pages 294 - 302 |
JOURNAL OF VIROLOGY, vol. 86, 2012, pages 2323 - 2336 |
MABS, vol. 9, no. 2, 2017, pages 182 - 212 |
MATTHIEU COLLIN, EXPERT OPINION ON THERAPEUTIC PATENTS, vol. 26, 2016, pages 555 - 564 |
MICHAEL A. POSTOW ET AL., THE NEW ENGLAND JOURNAL OF MEDICINE, vol. 378, 2018, pages 158 - 168 |
MOLECULAR THERAPY, vol. 21, 2013, pages 1024 - 1033 |
NUCLEIC ACIDS RES., vol. 43, 2015, pages W580 - W584 |
PLOS MEDICINE, vol. 4, 2007, pages e353 |
PLOS PATHOGENS, vol. 6, 2010, pages e1000984 |
PROTEIN, NUCLEIC ACID AND ENZYME, vol. 48, 2003, pages 1693 - 1700 |
See also references of EP3858369A4 |
THE JOURNAL OF CLINICAL INVESTIGATION, vol. 120, no. 1, 2010, pages 157 - 167 |
VIROLOGY, vol. 325, 2004, pages 425 - 431 |
YUQIAO SHENJOHN NEMUNAITIS, MOLECULAR THERAPY, vol. 11, no. 2, 2005, pages 180 - 195 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022107705A1 (ja) * | 2020-11-17 | 2022-05-27 | 国立大学法人鳥取大学 | 新規遺伝子組換えワクシニアウイルス及びその利用 |
WO2023153020A1 (ja) | 2022-02-09 | 2023-08-17 | 国立大学法人九州大学 | がん細胞増殖抑制剤及びがん細胞増殖抑制効果増強剤 |
Also Published As
Publication number | Publication date |
---|---|
IL281730A (en) | 2021-05-31 |
AU2019351255A1 (en) | 2021-04-29 |
ZA202102020B (en) | 2024-07-31 |
JPWO2020067085A1 (ja) | 2021-08-30 |
SG11202103097QA (en) | 2021-04-29 |
US11638730B2 (en) | 2023-05-02 |
CA3113965A1 (en) | 2020-04-02 |
EP3858369A1 (en) | 2021-08-04 |
JP7484717B2 (ja) | 2024-05-16 |
KR20210065976A (ko) | 2021-06-04 |
JOP20210051A1 (ar) | 2021-03-17 |
MX2021003539A (es) | 2021-05-27 |
TWI824020B (zh) | 2023-12-01 |
US20210315951A1 (en) | 2021-10-14 |
TW202027769A (zh) | 2020-08-01 |
CN112739360A (zh) | 2021-04-30 |
BR112021005803A2 (pt) | 2021-06-29 |
EP3858369A4 (en) | 2022-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7146852B2 (ja) | 腫瘍溶解性ウイルスと免疫チェックポイントモジュレーターとの組合せ | |
JP7038065B2 (ja) | 腫瘍溶解性ウイルス株 | |
JP6895374B2 (ja) | 免疫チェックポイントモジュレーターの発現用腫瘍溶解性ウイルス | |
WO2020067085A1 (ja) | 腫瘍溶解性ワクシニアウイルスと免疫チェックポイント阻害剤との併用によるがん療法並びにこれに用いるための医薬組成物及び組合せ医薬 | |
JP2024079686A (ja) | 改変された腫瘍溶解性ウイルス、組成物、およびその使用 | |
JP2023554422A (ja) | がんの治療のための多重特異性抗体 | |
CN114585376A (zh) | 基因工程改造的溶瘤痘苗病毒及其使用方法 | |
JP7515461B2 (ja) | 新規抗体およびヌクレオチド配列、ならびにそれらの使用 | |
RU2788874C2 (ru) | Терапия рака путем комбинированного применения онколитического вируса осповакцины и ингибитора иммунной контрольной точки и фармацевтическая композиция и комбинированное лекарственное средство для применения в терапии рака | |
TWI817159B (zh) | 重組牛痘病毒 | |
CA3151641A1 (en) | Treatment of cancer with a combination of an antibody that binds lgr5 and egfr and a topoisomerase i inhibitor | |
US20240374719A1 (en) | Novel combinations of antibodies and uses thereof | |
TW202321458A (zh) | 新穎抗體組合及其用途 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19867263 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020549251 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 3113965 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2101001847 Country of ref document: TH |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112021005803 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 20217011911 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019351255 Country of ref document: AU Date of ref document: 20190925 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019867263 Country of ref document: EP Effective date: 20210426 |
|
ENP | Entry into the national phase |
Ref document number: 112021005803 Country of ref document: BR Kind code of ref document: A2 Effective date: 20210325 |