WO2019102738A1 - Light-emitting element manufacturing method - Google Patents
Light-emitting element manufacturing method Download PDFInfo
- Publication number
- WO2019102738A1 WO2019102738A1 PCT/JP2018/038071 JP2018038071W WO2019102738A1 WO 2019102738 A1 WO2019102738 A1 WO 2019102738A1 JP 2018038071 W JP2018038071 W JP 2018038071W WO 2019102738 A1 WO2019102738 A1 WO 2019102738A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- substrate
- light emitting
- adhesive
- semiconductor layer
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 25
- 239000010410 layer Substances 0.000 claims abstract description 186
- 239000000758 substrate Substances 0.000 claims abstract description 145
- 239000012790 adhesive layer Substances 0.000 claims abstract description 61
- 239000004065 semiconductor Substances 0.000 claims abstract description 60
- 239000000853 adhesive Substances 0.000 claims abstract description 42
- 238000000034 method Methods 0.000 claims abstract description 33
- 230000001070 adhesive effect Effects 0.000 claims description 41
- 238000010521 absorption reaction Methods 0.000 abstract description 5
- 230000006378 damage Effects 0.000 abstract description 3
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical compound C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 description 20
- 238000005304 joining Methods 0.000 description 18
- 239000012298 atmosphere Substances 0.000 description 13
- 239000010408 film Substances 0.000 description 13
- 239000007789 gas Substances 0.000 description 13
- 239000000463 material Substances 0.000 description 13
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 12
- 229910004298 SiO 2 Inorganic materials 0.000 description 12
- 238000000206 photolithography Methods 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 229920002120 photoresistant polymer Polymers 0.000 description 6
- 229910052594 sapphire Inorganic materials 0.000 description 6
- 239000010980 sapphire Substances 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 230000031700 light absorption Effects 0.000 description 5
- 239000010453 quartz Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 238000004528 spin coating Methods 0.000 description 5
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000003486 chemical etching Methods 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 238000005253 cladding Methods 0.000 description 4
- 238000001312 dry etching Methods 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 238000001039 wet etching Methods 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000407 epitaxy Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/362—Laser etching
- B23K26/364—Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
Definitions
- the present invention relates to a method of manufacturing a light emitting device, and more particularly to a method of scribing and breaking a light emitting device from a semiconductor substrate.
- a product such as a chip on board (COB) is an LED chip mounting method which is excellent in heat dissipation from LED elements and is adopted in applications such as lighting.
- COB chip on board
- flip mounting in which a chip is directly bonded to a board is essential.
- conductive pads having different polarities are provided on one side of the light emitting element.
- the surface opposite to the surface provided with the current-carrying pad needs to be made of a material having a light extraction function.
- an AlGaInP based material is used for the light emitting layer.
- a bulk crystal does not exist in the AlGaInP based material, and the LED part is formed by an epitaxial method, so a material different from AlGaInP is selected as the starting substrate. Since the starting substrate is often selected from GaAs and Ge, and these substrates have the property of absorbing light to visible light, the starting substrate is removed when producing a flip chip.
- the epitaxial layer forming the light emitting layer is an extremely thin film, it can not stand on its own after removal of the starting substrate. Therefore, it is necessary to replace the starting substrate with a material / structure having a function as a window layer which is transparent to the emission wavelength in the light emitting layer and has a thickness sufficient for self-supporting. is there.
- Patent Document 1 discloses a technique of bonding a light emitting layer to a transparent substrate having a function of a window layer / supporting substrate with an adhesive such as BCB (benzocyclobutene) to form an LED.
- a sapphire substrate or a quartz substrate is often selected as the transparent substrate in terms of flatness, hardness, and cost.
- the transparent substrate is cut and diced to make a light emitting element.
- dicing by scribing and breaking is general, not dicing by a blade.
- the scribing method is generally performed by an ablation laser.
- a laser wavelength used is an ultraviolet wavelength range shorter than 360 nm in order to ablate a substrate transparent to visible light.
- BCB adhesives are transparent to visible light and have an absorption band to wavelengths in the ultraviolet region. That is, the absorption wavelength bands of the BCB adhesive and the visible transparent substrate are close to each other.
- Patent document 1 JP-A-2004-158823
- the present invention has been made in view of the above problems, and a visible transparent adhesive is a laser in a scribing / braking step of scribing a substrate obtained by joining a light emitting layer and a transparent substrate with an adhesive having a light absorption band in the ultraviolet region.
- An object of the present invention is to provide a method of manufacturing a light emitting element in which absorption of energy, destruction and suppression of peeling from a junction are suppressed.
- the present invention provides a method of manufacturing a light emitting device, (1) forming a laminated structure including a light emitting layer portion in which a first semiconductor layer, an active layer, and a second semiconductor layer are sequentially laminated by epitaxial growth on a starting substrate, thereby producing a wafer for a light emitting device; (2) preparing a support substrate; (3) bonding the supporting substrate to the wafer for light emitting devices through an adhesive layer to produce a bonded substrate; (4) removing the starting substrate from the bonded substrate to expose the first semiconductor layer; (5) removing at least the first semiconductor layer and the active layer in a partial region of the bonded substrate to form a removal portion; (6) forming a first ohmic electrode on the surface of the first semiconductor layer, and forming a second ohmic electrode on the surface of the removal portion, and (7) the bonding substrate using a scribing / breaking method using a laser beam.
- the adhesive is not broken in the area to be scribed in the scribing / breaking step, thereby suppressing the adhesive from being broken and peeling from the bonding portion. it can.
- the adhesive layer in the scribe area is preferably removed before scribing.
- the support substrate has an adhesive layer, and the adhesive layer is removed and processed so that the adhesive layer does not exist in a scribe region. .
- the adhesive can be relatively easily removed from the scribe area.
- the width of the region where the adhesive is not present be 20 ⁇ m or more in the direction perpendicular to the scribing direction.
- the method of manufacturing a light emitting device according to the present invention is visible in a scribing and breaking step of scribing a substrate obtained by bonding a light emitting layer and a transparent substrate with an adhesive having a light absorption band in the ultraviolet region. It is possible to suppress that the transparent adhesive absorbs laser energy, is destroyed, and exfoliated from the joint.
- the visible transparent adhesive absorbs laser energy in the scribing / breaking process of scribing a substrate obtained by joining a light emitting layer and a transparent substrate (supporting substrate) with an adhesive having a light absorption band in the ultraviolet region. It has been desired to develop a method of manufacturing a light emitting device in which it is suppressed from being broken and separated from the bonding portion.
- the present inventors conducted scribing and breaking in a method of manufacturing a light emitting device in which a scribing and breaking process is performed by laser light to separate the light emitting device from the semiconductor substrate in a die shape.
- the inventors have found that peeling off from the bonding portion can be suppressed by removing the adhesive in the area to be scribed in the process beforehand so that the adhesive layer does not exist, and the present invention has been completed.
- the present invention is a method of manufacturing a light emitting device, (1) forming a laminated structure including a light emitting layer portion in which a first semiconductor layer, an active layer, and a second semiconductor layer are sequentially laminated by epitaxial growth on a starting substrate, thereby producing a wafer for a light emitting device; (2) preparing a support substrate; (3) bonding the supporting substrate to the wafer for light emitting devices through an adhesive layer to produce a bonded substrate; (4) removing the starting substrate from the bonded substrate to expose the first semiconductor layer; (5) removing at least the first semiconductor layer and the active layer in a partial region of the bonded substrate to form a removal portion; (6) forming a first ohmic electrode on the surface of the first semiconductor layer, and forming a second ohmic electrode on the surface of the removal portion, and (7) the bonding substrate using a scribing / breaking method using a laser beam.
- Step (1) forms a laminated structure including a light emitting layer portion in which a first semiconductor layer, an active layer, and a second semiconductor layer are sequentially laminated by epitaxial growth on a starting substrate, to produce a wafer for a light emitting device It is a process.
- the wafer for light emitting element manufactured in the step (1) includes a light emitting layer portion in which a first semiconductor layer, an active layer, and a second semiconductor layer are sequentially stacked, and in addition to the light emitting layer portion, for example, a light emitting layer portion An etch stop layer can be formed between the and the starting substrate.
- an intermediate composition layer, a GaP current diffusion layer, a first dielectric film and the like can be further formed on the light emitting layer portion.
- the light emitting device wafer may have a first adhesive layer for bonding a supporting substrate to be described later and the light emitting device wafer on top of these layers.
- a light emitting device wafer can be produced by sequentially laminating these layers on the starting substrate.
- the starting substrate is not particularly limited, but may be a GaAs or Ge substrate, and the first semiconductor layer, the active layer, and the second semiconductor layer may be AlGaInP based.
- Step (2) is a step of preparing a support substrate.
- the support substrate prepared in the step (2) comprises at least a visible transparent substrate.
- a sapphire substrate, a quartz substrate, etc. can be used as a visible transparent substrate.
- a dielectric film can be formed on the visible transparent substrate, and a second adhesive layer can be formed on the dielectric film for bonding the above-described wafer for light emitting device and the support substrate.
- the second adhesive layer is processed into a desired pattern by photolithography or the like to remove the adhesive layer in the scribe region. be able to.
- the step (3) is a step of bonding the supporting substrate to the wafer for light emitting element through an adhesive layer to produce a bonded substrate.
- the adhesive that can be used here is not particularly limited, and BCB, epoxy resin, polyvinyl chloride resin, urethane resin, acrylic resin, silicone and the like can be mentioned.
- the step (4) is a step of removing the starting substrate in the bonded substrate to expose the first semiconductor layer.
- the starting substrate of the bonded substrate is removed by etching or the like. Furthermore, with the etch stop layer, the etch stop layer can also be removed. By removing these layers, the first semiconductor layer is exposed.
- the step (5) is a step of removing at least the first semiconductor layer and the active layer in a partial region of the bonding substrate to form a removing portion.
- the step (5) at least the first semiconductor layer and the active layer are cut and removed to form a removal portion. Further, not only the first semiconductor layer and the active layer but only the visible transparent substrate may be left, and all the layers may be cut and removed to form a removal portion.
- the step (6) is a step of forming a first ohmic electrode on the surface of the first semiconductor layer and forming a second ohmic electrode on the surface of the removal portion.
- the electrode can be formed by the following method. First, a dielectric layer is formed on the surface of the bonded substrate on which the removal portion is formed in the step (5). Next, an opening (a portion where the first semiconductor layer and the removed portion are exposed) is formed in the dielectric layer by photolithography and wet etching. Then, in the opening portion, the first ohmic electrode is formed on the surface of the first semiconductor layer, and the second ohmic electrode is formed on the surface of the removal portion.
- the step (7) is a step of separating the light emitting element from the bonded substrate in a die shape using a scribing / breaking method with a laser beam.
- step (7) first, in the scribe area, only the visible transparent substrate is left, and all layers are removed. If the adhesive layer in the scribe area is not removed in step (2), the adhesive layer can be removed at the same time.
- Breaking is performed to separate the light emitting elements into dies.
- the adhesive is not destroyed in the scribing / breaking step, thereby suppressing the adhesive from being broken and peeling from the bonding portion.
- the adhesive layer in the scribing region may be removed any time before scribing, but immediately before scribing in the step (7) or when preparing the support substrate in the step (2). Can be done relatively easily.
- the width of the area where the adhesive does not exist to be 20 ⁇ m or more in the direction perpendicular to the scribing direction, the adhesive layer does not have to be irradiated with the laser light reliably, so the dramatic improvement in peeling is achieved. can get.
- the width of the region where the adhesive does not exist is preferably 100 ⁇ m or less in the direction perpendicular to the scribing direction, and 50 ⁇ m or less It is more preferable that the thickness be 30 ⁇ m or less.
- the wafer 1 for light emitting elements is formed on a GaAs substrate (starting substrate) 2 inclined by 15 degrees in, for example, the [001] direction by metal organic chemical vapor deposition (MOVPE) method (Al x Ga 1-x ) y In 1-y P (0 ⁇ x1,1, 0.4 ⁇ y ⁇ 0.6), an etch stop layer 3 with a thickness of 0.1 to 1.0 ⁇ m, a thickness of 0.5 to Thickness 0 of the first conductive type first semiconductor layer 4 of 1.0 ⁇ m and (Al x Ga 1 -x ) y In 1-y P (0 ⁇ x ⁇ 1, 0.4 ⁇ y ⁇ 0.6) .1 ⁇ 1.0 .mu.m active layer 5, (Al x Ga 1-x ) y in 1-y P (0 ⁇ x ⁇ 1,0.4 ⁇ y ⁇ 0.6) having a thickness
- the manufacturing method of the wafer 1 for light emitting elements is not limited to MOVPE, and may be manufactured by a molecular beam epitaxy (MBE) method or a actinic ray epitaxy (CBE) method.
- MBE molecular beam epitaxy
- CBE actinic ray epitaxy
- a buffer layer may be provided between the GaAs substrate and the first semiconductor layer.
- a first dielectric film 9 made of SiO 2 or SiN x is further formed on the GaP current diffusion layer 8 to a thickness of, for example, 0.4 ⁇ m.
- the first bonding layer 11 can be provided by forming the first bonding layer 10 on which the BCB adhesive is applied by spin coating.
- the thickness of the first adhesive layer varies depending on the viscosity of the BCB adhesive and the rotation speed at the time of spin coating.
- the first adhesive layer 10 of about 0.5 ⁇ m can be formed at a rotation speed of 5000 rpm.
- the wafer for a light emitting element used in the present invention has a structure without the first bonding layer 11, a structure without the first dielectric film 9, or a first bonding
- the structure without the layer 10 may be used.
- Step (2) In the supporting substrate 30, as shown in FIG. 4, a dielectric film 14 made of, for example, SiO 2 or SiN x is formed on a visible transparent substrate 13 such as sapphire or quartz, and an adhesive made of, for example, BCB resin is further formed thereon.
- the second bonding layer 12 By applying the agent to form the second adhesive layer 15, the second bonding layer 12 can be provided.
- the thickness of the second adhesive layer 15 varies depending on the viscosity of the BCB adhesive and the spin speed during spin coating, but in the present embodiment, the second adhesive layer 15 of about 0.5 ⁇ m can be formed at a rotational speed of 5000 rpm.
- the second adhesive layer 15 may not be provided, and when the second adhesive layer 15 is formed, the first adhesive layer 10 may not be provided, and both may be formed. You may In addition to the BCB resin as an adhesive, the first adhesive layer 10 and the second adhesive layer 15 may be formed of another transparent and liquid member such as epoxy, such as epoxy.
- Step (3) Next, as shown in FIG. 5, the first adhesive layer 10 and the second adhesive layer 15 are opposed to each other, and pressure and heat are applied under vacuum or reduced pressure atmosphere to form the first adhesive layer 10 and the second adhesive layer 15.
- the bonded substrate 16 is formed.
- the pressure can be adhered by pressure bonding under the conditions of 6 N / cm 2 or more and the temperature of 100 ° C. or more. In particular, bonding is preferably performed under conditions of reaching 30 N / cm 2 and 300 ° C.
- the GaAs substrate 2 is removed from the bonding substrate 16 by chemical etching.
- the chemical etching solution is preferably one having etching selectivity with the AlGaInP based material, and is generally removed by using an ammonia containing etchant.
- the etch stop layer 3 is removed to form a bonded substrate 17 having a first semiconductor layer exposed surface (first surface) 18.
- the etch stop layer 3 is removed by a mixed solution of hydrogen peroxide and an acid for etching the AlGaInP based material.
- Step (5) Next, as shown in FIG. 7, a part of the first semiconductor layer exposed surface 18 is cut away from the bonding substrate 17 to form a removal portion (second surface) 19. In this aspect, the first semiconductor layer 4 and the active layer 5 are removed to expose the second semiconductor layer 6.
- a dielectric layer 21 is formed and an opening 22 is provided so as to cover the notched side surface 20 as shown in FIG.
- the dielectric layer 21 is preferably SiO 2 or SiN x . Any of sol-gel method, sputtering method and CVD method can be selected for film formation of the dielectric layer.
- the openings 22 can be provided by forming the dielectric layer 21, forming a mask by photolithography, and forming an exposed portion by wet etching using BHF.
- the first ohmic electrode 23 is formed on a part of the first semiconductor layer exposed surface 18, and the second ohmic electrode 24 is formed on a part of the removal portion 19.
- a covering 25 and an opening 26 are formed to cover the entire first semiconductor layer exposed surface 18 and a part of the removing portion 19 by photolithography using a photoresist.
- the opening 26 is removed by dry etching to expose a portion 27 of the visible transparent substrate 13.
- the dry etching here removes the adhesive layer in the scribe area.
- the removal of the AlGaInP layer is performed in a mixed atmosphere of Cl-containing gas and Ar in the ICP apparatus, and the removal of the SiO 2 or SiN x dielectric layer and the BCB layer is performed in a mixed atmosphere of F-containing gas and Ar Can.
- the pressure atmosphere can be 0.5 Pa, and the output can be plasma 300 W.
- the removal of the layer using the Cl-containing gas and the removal of the layer using the F-containing gas can be performed in separate chambers, or in the same chamber only by switching the gas without removing the wafer from the vacuum atmosphere. It can also be implemented.
- the covering portion 25 with the photoresist is removed.
- the exposed portion 27 is irradiated with a laser to form a scribe portion 28.
- the breaking process is performed along the scribing unit 28 and diced.
- the adhesive layer since the adhesive layer does not exist in the laser irradiation area, the adhesive absorbs the laser energy and is broken, and it is relatively easy to suppress the peeling from the bonding portion. Can be manufactured.
- the wafer 1 for light emitting element is formed on a GaAs substrate (starting substrate) 2 inclined by 15 degrees in the [001] direction by metal organic chemical vapor deposition (MOVPE) method (Al x Ga 1- x ) y In 1-y P (0 ⁇ x ⁇ 1, 0.4 ⁇ y ⁇ 0.6), an etch stop layer 3 with a thickness of 0.1 to 1.0 ⁇ m, and a thickness of 0.5 to 1.
- MOVPE metal organic chemical vapor deposition
- the second semiconductor layer 6 the second conductivity type made of 0 ⁇ m, Ga y in 1-y P Ga with (0.0 ⁇ y ⁇ 1.0) of the intermediate composition layers 7,0.5 ⁇ 20 ⁇ m having a thickness of It can be formed by sequentially stacking a current diffusion layer 8.
- the manufacturing method of the wafer 1 for light emitting elements is not limited to MOVPE, and may be manufactured by a molecular beam epitaxy (MBE) method or a actinic ray epitaxy (CBE) method.
- MBE molecular beam epitaxy
- CBE actinic ray epitaxy
- a buffer layer may be provided between the GaAs substrate and the first semiconductor layer.
- a wafer 1 for light emitting element is formed by forming a first dielectric film 9 made of, for example, SiO 2 or SiN x with a thickness of about 0.4 ⁇ m on the GaP current diffusion layer 8. It can have one bonding layer 11. Although the first bonding layer 11 is provided in the present embodiment, the first bonding layer 11 may not be provided.
- the supporting substrate 30 is an adhesive layer 15 on which a dielectric film 14 made of SiO 2 or SiN x is formed on a visible transparent substrate 13 such as sapphire or quartz, and a BCB adhesive is further applied thereon.
- the second bonding layer 12 can be provided by forming '.
- the thickness of the adhesive layer 15 ' varies depending on the viscosity of the BCB adhesive and the rotation speed at the time of spin coating. For example, the adhesive layer 15' of 0.5 ⁇ m can be formed at a rotational speed of 5000 rpm.
- the adhesive layer 15 ′ is processed into the shape of the desired pattern 29.
- the adhesive layer in the scribe area is removed.
- a photosensitive material is selected among the BCB materials as the adhesive layer 15 ′
- a desired pattern 29 can be obtained by a photolithography method.
- a non-photosensitive material is selected from the BCB materials as the adhesive layer 15 '
- a resist is coated by a photoresist method so that a desired pattern is obtained, and a desired pattern 29 is formed by an ICP apparatus containing F-containing gas. You can get
- the shape and size of the pattern 29 are limited by the size of the light emitting element to be obtained and the thickness of the adhesive layer 15 '.
- the shape and size of the pattern 29 are equal to or less than the difference between the size of the light emitting element to be obtained and the opening 26.
- Step (3) Next, as shown in FIG. 17, the first bonding layer 11 and the second bonding layer 12 are opposed to each other, and pressure and heat are applied under a vacuum or reduced pressure atmosphere to form the first bonding layer 11 and the second bonding layer 12.
- the bonded substrate 16 is formed. It can adhere
- the GaAs substrate 2 is removed from the bonding substrate 16 by chemical etching.
- the chemical etching solution is preferably one having etching selectivity with the AlGaInP based material, and is generally removed by using an ammonia containing etchant.
- the etch stop layer 3 is removed to form a junction substrate 17 having the first semiconductor layer exposed surface 18.
- the etch stop layer 3 is removed by a mixed solution of hydrogen peroxide and an acid for etching the AlGaInP based material.
- Step (5) Next, as shown in FIG. 19, the first semiconductor layer exposed surface 18 is left from the bonding substrate 17 in a range not exceeding the pattern 29, and a part of the first semiconductor layer exposed surface 18 is notched.
- dielectric layer 21 is formed and opening 22 is provided so as to cover notched side surface 20 as shown in FIG.
- the dielectric layer 21 is preferably SiO 2 or SiN x . Any of sol-gel method, sputtering method and CVD method can be selected for film formation of the dielectric layer.
- the openings 22 can be provided by forming the dielectric layer 21, forming a mask by photolithography, and forming an exposed portion by wet etching using BHF.
- the first ohmic electrode 23 is formed on a part of the first semiconductor layer exposed surface 18, and the second ohmic electrode 24 is formed on a part of the removal portion 19.
- a cover 25 and an opening 26 are formed to cover the entire first semiconductor layer exposed surface 18 and a part of the removal portion 19 by photolithography using a photoresist.
- the opening 26 is removed by dry etching to expose a portion 27 of the visible transparent substrate 13.
- the removal of the AlGaInP layer is performed in a mixed atmosphere of Cl-containing gas and Ar in the ICP apparatus, and the removal of the SiO 2 or SiN x dielectric layer and the BCB layer is performed in a mixed atmosphere of F-containing gas and Ar Can.
- the pressure atmosphere can be 0.5 Pa, and the output can be plasma 300 W.
- the removal of the layer using the Cl 2 -containing gas and the removal of the layer using the F-containing gas can be performed in separate chambers, or in the same chamber only by switching the gas without removing the wafer from the vacuum atmosphere. Can also be implemented.
- the coated portion 25 with the photoresist is removed.
- the exposed portion 27 is irradiated with a laser to form a scribe portion 28.
- the breaking process is performed along the scribing unit 28 and diced.
- the adhesive layer does not exist in the laser irradiation area, the adhesive absorbs the laser energy, is destroyed, and the light emitting element which suppresses peeling from the joint is relatively made. It can be easily manufactured.
- Example 1 A light emitting device was manufactured based on the first embodiment of the method for manufacturing a light emitting device of the present invention as shown in FIGS.
- a substrate (starting substrate) made of GaAs (001) was prepared as a starting substrate, and a double hetero layer (light emitting layer) as a functional layer was formed on this substrate by the MOVPE method.
- the light emitting layer was formed by sequentially laminating a lower cladding layer (first semiconductor layer), an active layer, and an upper cladding layer (second semiconductor layer).
- the composition of (Al x Ga 1 -x ) y In 1-y P (0.6 ⁇ x ⁇ 1.0, 0.4 ⁇ y ⁇ 0.6) is selected
- the n-type AlInP cladding layer is 0.7 ⁇ m (doping concentration 3.0 ⁇ 10 17 / cm 3 )
- the n-type Al 0.85 GaInP layer is 0.3 ⁇ m (doping) It was set as the two-layer structure of density
- the active layer is selected from (Al x Ga 1 -x ) y In 1-y P (0.15 ⁇ x ⁇ 0.8, 0.4 ⁇ y ⁇ 0.6), and the compositions x and y are dependent on the wavelength. changed.
- multiple active layers were used as the active layer.
- the film thicknesses of the active layer and the barrier layer were changed according to the wavelength to be obtained, and were adjusted to the wavelength in the range of 4 to 12 nm, respectively.
- the p-type AlInP cladding layer is 0.9 ⁇ m (doping concentration 3.0 ⁇ 10 17 / cm 3 ), and the p-type Al 0.6 GaInP layer is 0.1 ⁇ m (doping concentration 1.0 ⁇ 10 17) It was set as the 2 layer structure of / cm ⁇ 3 >.
- a buffer layer of GaInP was formed on the light emitting layer.
- a dielectric film of SiO 2 was formed to a thickness of 0.4 ⁇ m on the buffer layer, and a BCB adhesive was applied thereon by spin coating to form a first adhesive layer.
- the support substrate was prepared. First, a dielectric film composed of SiO 2 was formed on sapphire, and a second adhesive layer coated with an adhesive composed of BCB resin was formed thereon.
- the first adhesive layer and the second adhesive layer were adhered. Thereafter, the GaAs substrate was removed by an ammonia-containing etchant. Subsequently, the etch stop layer was removed to expose the first semiconductor layer. Next, a part of the first semiconductor layer and the active layer was cut out to expose a part of the second semiconductor.
- a dielectric layer was formed and an opening was provided so as to cover the notched side surface.
- the dielectric layer was SiO 2 and was deposited by P-CVD using TEOS and O 2 .
- the opening was formed by forming a dielectric layer, forming a mask by photolithography, and forming an exposed portion by wet etching using BHF.
- a first ohmic electrode and a second ohmic electrode were formed. Thereafter, part of the visible transparent substrate was exposed by photolithography and dry etching. At this time, the width of the exposed portion (direction perpendicular to the scribing direction) was 5, 10, 15, 20, 25, 30 ⁇ m.
- the removal of the AlGaInP layer was performed in a mixed atmosphere of Cl-containing gas and Ar in an ICP apparatus, and the removal of the SiO 2 dielectric layer and the BCB layer was performed in a mixed atmosphere of F-containing gas and Ar.
- the pressure atmosphere was 0.5 Pa, and the output was 300 W plasma.
- FIG. 28 shows the relationship between the area of the bonded portion peeled off by the adhesive and the width of the exposed portion (street portion width). It can be seen that the peeling area is reduced regardless of the width of any exposed portion, as compared to the comparative example (width 0 ⁇ m) described later. Especially when the width was 20 ⁇ m or more, the peeling was dramatically improved.
- Example 2 A light emitting device was manufactured based on the second embodiment of the method for manufacturing a light emitting device of the present invention as shown in FIGS. 13 to 24.
- a light emitting device was manufactured in the same manner as Example 1, except that the adhesive was processed into a desired pattern shape and then the transparent substrate was attached.
- FIG. 28 shows the results of the peeling state. Also in Example 2, the same result as in Example 1 was obtained.
- the light emitting device was manufactured using the conventional method as shown in FIGS. 25 to 27.
- a light emitting device was manufactured in the same manner as Example 1, except that scribing was performed in the region where the adhesive was present.
- FIG. 28 shows the results of the peeling state. It can be seen that the peeling area is larger than in Examples 1 and 2.
- the method of manufacturing a light emitting device according to the present invention is visible in a scribing and breaking step of scribing a substrate obtained by bonding a light emitting layer and a transparent substrate with an adhesive having a light absorption band in the ultraviolet region. It has been found that the transparent adhesive can suppress laser energy absorption, destruction and peeling from the joint.
- the present invention is not limited to the above embodiment.
- the above-described embodiment is an exemplification, and the present invention has the substantially same constitution as the technical idea described in the claims of the present invention, and the same effects can be exhibited by any invention. It is included in the technical scope of
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Led Devices (AREA)
- Laser Beam Processing (AREA)
- Dicing (AREA)
Abstract
The present invention provides a light-emitting element manufacturing method comprising: (1) a step of fabricating a light-emitting element wafer by forming on a starting substrate a layered structure including a light-emitting layer portion; (2) a step of preparing a support substrate; (3) a step of causing the support substrate to adhere to the light-emitting element wafer with an adhesive layer therebetween; (4) a step of removing the starting substrate and exposing the first semiconductor layer; (5) a step of forming a removed portion; (6) a step of forming a first ohmic electrode and a second ohmic electrode; and (7) a step of, by a scribe/breaking method using laser light, separating a light-emitting element from the bonded substrate in a dice shape, characterized in that, before scribing, the adhesive layer in a scribe region is removed in advance. Thus, provided is a light-emitting element manufacturing method by which, in the scribe/breaking step, destruction and peeling of a visible transparent adhesive agent from a bonded portion due to absorption of laser energy is suppressed.
Description
本発明は、発光素子の製造方法に関し、特に半導体基板から発光素子をスクライブ・ブレーキングする方法に関する。
The present invention relates to a method of manufacturing a light emitting device, and more particularly to a method of scribing and breaking a light emitting device from a semiconductor substrate.
チップオンボード(COB)等の製品は、LED素子からの放熱性に優れ、照明等の用途において採用されるLEDチップ実装方法である。COB等にLEDを実装する場合、チップを直接ボードに接合するフリップ実装が必須である。フリップ実装を実現するためには、発光素子の一方の面に極性の異なる通電用パッドを設けたフリップチップを作製する必要がある。また、通電用パッドが設けられた面の反対側の面は光取り出し機能を有する材料で構成する必要がある。
A product such as a chip on board (COB) is an LED chip mounting method which is excellent in heat dissipation from LED elements and is adopted in applications such as lighting. In the case of mounting an LED on a COB or the like, flip mounting in which a chip is directly bonded to a board is essential. In order to realize flip mounting, it is necessary to manufacture a flip chip in which conductive pads having different polarities are provided on one side of the light emitting element. Further, the surface opposite to the surface provided with the current-carrying pad needs to be made of a material having a light extraction function.
黄色~赤色LEDでフリップチップを作製する場合、発光層にはAlGaInP系の材料が用いられる。AlGaInP系材料はバルク結晶が存在せず、LED部はエピタキシャル法で形成されるため、出発基板にはAlGaInPとは異なる材料が選択される。出発基板はGaAsやGeが選択される場合が多く、これらの基板は可視光に対して光吸収の特性を有するため、フリップチップを作製する場合、出発基板は除去される。しかし、発光層を形成するエピタキシャル層は極薄膜のため、出発基板除去後に自立することができない。したがって、発光層に発光波長に対して透明で窓層としての機能を有し、自立させるために十分の厚さを有する支持基板としての機能を有する材料・構成で、出発基板と置換する必要がある。
When producing a flip chip with yellow to red LEDs, an AlGaInP based material is used for the light emitting layer. A bulk crystal does not exist in the AlGaInP based material, and the LED part is formed by an epitaxial method, so a material different from AlGaInP is selected as the starting substrate. Since the starting substrate is often selected from GaAs and Ge, and these substrates have the property of absorbing light to visible light, the starting substrate is removed when producing a flip chip. However, since the epitaxial layer forming the light emitting layer is an extremely thin film, it can not stand on its own after removal of the starting substrate. Therefore, it is necessary to replace the starting substrate with a material / structure having a function as a window layer which is transparent to the emission wavelength in the light emitting layer and has a thickness sufficient for self-supporting. is there.
特許文献1には、窓層兼支持基板の機能を有する透明基板にBCB(ベンゾシクロブテン)等の接着剤で発光層を接着し、LEDとする技術が開示されている。透明基板には平坦度や硬度、コストの点でサファイア基板や石英基板が選択されることが多い。発光層を接着後、透明基板を切断してダイス化し、発光素子とするが、切断に際して、カーフロスを極小化するため、ブレードによるダイス化ではなく、スクライブ・ブレーキングによるダイス化が一般的である。サファイア基板や石英基板の場合、スクライブ法はアブレーションレーザーによってなされる場合が一般的である。
Patent Document 1 discloses a technique of bonding a light emitting layer to a transparent substrate having a function of a window layer / supporting substrate with an adhesive such as BCB (benzocyclobutene) to form an LED. A sapphire substrate or a quartz substrate is often selected as the transparent substrate in terms of flatness, hardness, and cost. After bonding the light emitting layer, the transparent substrate is cut and diced to make a light emitting element. However, in order to minimize kerf loss at the time of cutting, dicing by scribing and breaking is general, not dicing by a blade. . In the case of a sapphire substrate or a quartz substrate, the scribing method is generally performed by an ablation laser.
この際、使用されるレーザー波長は、可視光に対して透明な基板をアブレーションさせるため、360nmより波長の短い紫外波長領域である。BCB接着剤は可視光に対しては透明であり、紫外領域の波長に対しては吸収帯を有する。つまり、BCB接着剤と可視透明基板の吸収波長帯は近接している。紫外域において光吸収帯を有する接着剤で発光層と可視透明基板を接合した基板をレーザーでスクライブする場合、透明基板だけでなく、BCB接着剤のような可視透明接着剤がレーザーエネルギーを吸収し、破壊され、接合部から剥離するという問題があった。
At this time, a laser wavelength used is an ultraviolet wavelength range shorter than 360 nm in order to ablate a substrate transparent to visible light. BCB adhesives are transparent to visible light and have an absorption band to wavelengths in the ultraviolet region. That is, the absorption wavelength bands of the BCB adhesive and the visible transparent substrate are close to each other. When scribing a substrate obtained by bonding a light emitting layer and a visible transparent substrate with an adhesive having a light absorption band in the ultraviolet region with a laser, not only the transparent substrate but also a visible transparent adhesive such as a BCB adhesive absorbs laser energy , There was a problem that it was destroyed and exfoliated from the joint.
本発明は上記課題に鑑みなされたもので、紫外域において光吸収帯を有する接着剤で発光層と透明基板を接合した基板をレーザーでスクライブするスクライブ・ブレーキング工程において、可視透明接着剤がレーザーエネルギーを吸収し、破壊され、接合部から剥離することを抑制した発光素子の製造方法を提供することを目的とする。
The present invention has been made in view of the above problems, and a visible transparent adhesive is a laser in a scribing / braking step of scribing a substrate obtained by joining a light emitting layer and a transparent substrate with an adhesive having a light absorption band in the ultraviolet region. An object of the present invention is to provide a method of manufacturing a light emitting element in which absorption of energy, destruction and suppression of peeling from a junction are suppressed.
上記課題を達成するために、本発明では、発光素子の製造方法であって、
(1)出発基板上に、エピタキシャル成長により、第一半導体層、活性層、及び第二半導体層が順次積層された発光層部を含む積層構造を形成し、発光素子用ウェーハを作製する工程、
(2)支持基板を準備する工程、
(3)前記支持基板を、接着層を介して前記発光素子用ウェーハに接着し、接合基板を作製する工程、
(4)前記接合基板において、前記出発基板を除去して、前記第一半導体層を露出させる工程、
(5)前記接合基板の一部の領域において、少なくとも前記第一半導体層及び活性層を除去し、除去部を形成する工程、
(6)前記第一半導体層の表面に第一オーミック電極を、前記除去部の表面に第二オーミック電極を形成する工程、及び
(7)レーザー光によるスクライブ・ブレーキング法を用いて前記接合基板から発光素子をダイス状に分離する工程、
を含み、かつ、スクライブを行う前に、予めスクライブ領域にある前記接着層を除去しておく発光素子の製造方法を提供する。 In order to achieve the above object, the present invention provides a method of manufacturing a light emitting device,
(1) forming a laminated structure including a light emitting layer portion in which a first semiconductor layer, an active layer, and a second semiconductor layer are sequentially laminated by epitaxial growth on a starting substrate, thereby producing a wafer for a light emitting device;
(2) preparing a support substrate;
(3) bonding the supporting substrate to the wafer for light emitting devices through an adhesive layer to produce a bonded substrate;
(4) removing the starting substrate from the bonded substrate to expose the first semiconductor layer;
(5) removing at least the first semiconductor layer and the active layer in a partial region of the bonded substrate to form a removal portion;
(6) forming a first ohmic electrode on the surface of the first semiconductor layer, and forming a second ohmic electrode on the surface of the removal portion, and (7) the bonding substrate using a scribing / breaking method using a laser beam. Separating the light emitting element from the
And a method of manufacturing a light emitting device in which the adhesive layer in the scribe region is removed in advance before scribing.
(1)出発基板上に、エピタキシャル成長により、第一半導体層、活性層、及び第二半導体層が順次積層された発光層部を含む積層構造を形成し、発光素子用ウェーハを作製する工程、
(2)支持基板を準備する工程、
(3)前記支持基板を、接着層を介して前記発光素子用ウェーハに接着し、接合基板を作製する工程、
(4)前記接合基板において、前記出発基板を除去して、前記第一半導体層を露出させる工程、
(5)前記接合基板の一部の領域において、少なくとも前記第一半導体層及び活性層を除去し、除去部を形成する工程、
(6)前記第一半導体層の表面に第一オーミック電極を、前記除去部の表面に第二オーミック電極を形成する工程、及び
(7)レーザー光によるスクライブ・ブレーキング法を用いて前記接合基板から発光素子をダイス状に分離する工程、
を含み、かつ、スクライブを行う前に、予めスクライブ領域にある前記接着層を除去しておく発光素子の製造方法を提供する。 In order to achieve the above object, the present invention provides a method of manufacturing a light emitting device,
(1) forming a laminated structure including a light emitting layer portion in which a first semiconductor layer, an active layer, and a second semiconductor layer are sequentially laminated by epitaxial growth on a starting substrate, thereby producing a wafer for a light emitting device;
(2) preparing a support substrate;
(3) bonding the supporting substrate to the wafer for light emitting devices through an adhesive layer to produce a bonded substrate;
(4) removing the starting substrate from the bonded substrate to expose the first semiconductor layer;
(5) removing at least the first semiconductor layer and the active layer in a partial region of the bonded substrate to form a removal portion;
(6) forming a first ohmic electrode on the surface of the first semiconductor layer, and forming a second ohmic electrode on the surface of the removal portion, and (7) the bonding substrate using a scribing / breaking method using a laser beam. Separating the light emitting element from the
And a method of manufacturing a light emitting device in which the adhesive layer in the scribe region is removed in advance before scribing.
このような発光素子の製造方法とすれば、スクライブ・ブレーキング工程においてスクライブする領域に接着層が存在しないようにすることで、接着剤が破壊され、接合部から剥離するのを抑制することができる。
According to the manufacturing method of such a light emitting element, the adhesive is not broken in the area to be scribed in the scribing / breaking step, thereby suppressing the adhesive from being broken and peeling from the bonding portion. it can.
また、前記工程(7)において、スクライブを行う前に、前記スクライブ領域にある前記接着層を除去することが好ましい。
In the step (7), the adhesive layer in the scribe area is preferably removed before scribing.
このような発光素子の製造方法とすれば、比較的容易にスクライブ領域に接着剤が存在しないようにすることができる。
According to the method of manufacturing such a light emitting element, it is possible to relatively easily make the adhesive not present in the scribe region.
また、前記工程(2)において、前記支持基板を、接着層を有するものとし、かつ、前記接着層を、スクライブ領域には前記接着層が存在しないように除去加工されたものとすることが好ましい。
In the step (2), preferably, the support substrate has an adhesive layer, and the adhesive layer is removed and processed so that the adhesive layer does not exist in a scribe region. .
このようにしても、比較的容易にスクライブ領域に接着剤が存在しないようにすることができる。
Even in this case, the adhesive can be relatively easily removed from the scribe area.
また、前記接着剤が存在しない領域の幅を、スクライブ方向に対して垂直な方向で20μm以上とすることが好ましい。
Further, it is preferable that the width of the region where the adhesive is not present be 20 μm or more in the direction perpendicular to the scribing direction.
このような接着剤が存在しない領域の幅とすれば、劇的な剥離改善効果を得ることができる。
By setting the width of the region where such an adhesive is not present, a dramatic peel improvement effect can be obtained.
以上のように、本発明の発光素子の製造方法であれば、紫外域において光吸収帯を有する接着剤で発光層と透明基板を接合した基板をレーザーでスクライブするスクライブ・ブレーキング工程において、可視透明接着剤がレーザーエネルギーを吸収し、破壊され、接合部から剥離することを抑制することができる。
As described above, the method of manufacturing a light emitting device according to the present invention is visible in a scribing and breaking step of scribing a substrate obtained by bonding a light emitting layer and a transparent substrate with an adhesive having a light absorption band in the ultraviolet region. It is possible to suppress that the transparent adhesive absorbs laser energy, is destroyed, and exfoliated from the joint.
上述のように、紫外域において光吸収帯を有する接着剤で発光層と透明基板(支持基板)を接合した基板をレーザーでスクライブするスクライブ・ブレーキング工程において、可視透明接着剤がレーザーエネルギーを吸収し、破壊され、接合部から剥離することを抑制した発光素子の製造方法の開発が求められていた。
As described above, the visible transparent adhesive absorbs laser energy in the scribing / breaking process of scribing a substrate obtained by joining a light emitting layer and a transparent substrate (supporting substrate) with an adhesive having a light absorption band in the ultraviolet region. It has been desired to develop a method of manufacturing a light emitting device in which it is suppressed from being broken and separated from the bonding portion.
本発明者らは、上記課題について鋭意検討を重ねた結果、半導体基板から発光素子をダイス状に分離するためにレーザー光によりスクライブ・ブレーキング工程を行う発光素子の製造方法において、スクライブ・ブレーキング工程においてスクライブする領域の接着剤を予め除去して接着層が存在しないようにすることで、接合部からの剥離を抑制できることを見出し、本発明を完成させた。
As a result of intensive investigations on the above problems, the present inventors conducted scribing and breaking in a method of manufacturing a light emitting device in which a scribing and breaking process is performed by laser light to separate the light emitting device from the semiconductor substrate in a die shape. The inventors have found that peeling off from the bonding portion can be suppressed by removing the adhesive in the area to be scribed in the process beforehand so that the adhesive layer does not exist, and the present invention has been completed.
即ち、本発明は、発光素子の製造方法であって、
(1)出発基板上に、エピタキシャル成長により、第一半導体層、活性層、及び第二半導体層が順次積層された発光層部を含む積層構造を形成し、発光素子用ウェーハを作製する工程、
(2)支持基板を準備する工程、
(3)前記支持基板を、接着層を介して前記発光素子用ウェーハに接着し、接合基板を作製する工程、
(4)前記接合基板において、前記出発基板を除去して、前記第一半導体層を露出させる工程、
(5)前記接合基板の一部の領域において、少なくとも前記第一半導体層及び活性層を除去し、除去部を形成する工程、
(6)前記第一半導体層の表面に第一オーミック電極を、前記除去部の表面に第二オーミック電極を形成する工程、及び
(7)レーザー光によるスクライブ・ブレーキング法を用いて前記接合基板から発光素子をダイス状に分離する工程、
を含み、かつ、スクライブを行う前に、予めスクライブ領域にある前記接着層を除去しておく発光素子の製造方法である。 That is, the present invention is a method of manufacturing a light emitting device,
(1) forming a laminated structure including a light emitting layer portion in which a first semiconductor layer, an active layer, and a second semiconductor layer are sequentially laminated by epitaxial growth on a starting substrate, thereby producing a wafer for a light emitting device;
(2) preparing a support substrate;
(3) bonding the supporting substrate to the wafer for light emitting devices through an adhesive layer to produce a bonded substrate;
(4) removing the starting substrate from the bonded substrate to expose the first semiconductor layer;
(5) removing at least the first semiconductor layer and the active layer in a partial region of the bonded substrate to form a removal portion;
(6) forming a first ohmic electrode on the surface of the first semiconductor layer, and forming a second ohmic electrode on the surface of the removal portion, and (7) the bonding substrate using a scribing / breaking method using a laser beam. Separating the light emitting element from the
And before the scribing, the adhesive layer in the scribing region is removed in advance.
(1)出発基板上に、エピタキシャル成長により、第一半導体層、活性層、及び第二半導体層が順次積層された発光層部を含む積層構造を形成し、発光素子用ウェーハを作製する工程、
(2)支持基板を準備する工程、
(3)前記支持基板を、接着層を介して前記発光素子用ウェーハに接着し、接合基板を作製する工程、
(4)前記接合基板において、前記出発基板を除去して、前記第一半導体層を露出させる工程、
(5)前記接合基板の一部の領域において、少なくとも前記第一半導体層及び活性層を除去し、除去部を形成する工程、
(6)前記第一半導体層の表面に第一オーミック電極を、前記除去部の表面に第二オーミック電極を形成する工程、及び
(7)レーザー光によるスクライブ・ブレーキング法を用いて前記接合基板から発光素子をダイス状に分離する工程、
を含み、かつ、スクライブを行う前に、予めスクライブ領域にある前記接着層を除去しておく発光素子の製造方法である。 That is, the present invention is a method of manufacturing a light emitting device,
(1) forming a laminated structure including a light emitting layer portion in which a first semiconductor layer, an active layer, and a second semiconductor layer are sequentially laminated by epitaxial growth on a starting substrate, thereby producing a wafer for a light emitting device;
(2) preparing a support substrate;
(3) bonding the supporting substrate to the wafer for light emitting devices through an adhesive layer to produce a bonded substrate;
(4) removing the starting substrate from the bonded substrate to expose the first semiconductor layer;
(5) removing at least the first semiconductor layer and the active layer in a partial region of the bonded substrate to form a removal portion;
(6) forming a first ohmic electrode on the surface of the first semiconductor layer, and forming a second ohmic electrode on the surface of the removal portion, and (7) the bonding substrate using a scribing / breaking method using a laser beam. Separating the light emitting element from the
And before the scribing, the adhesive layer in the scribing region is removed in advance.
以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。
Hereinafter, the present invention will be described in detail, but the present invention is not limited thereto.
[工程(1)]
工程(1)は、出発基板上に、エピタキシャル成長により、第一半導体層、活性層、及び第二半導体層が順次積層された発光層部を含む積層構造を形成し、発光素子用ウェーハを作製する工程である。 [Step (1)]
Step (1) forms a laminated structure including a light emitting layer portion in which a first semiconductor layer, an active layer, and a second semiconductor layer are sequentially laminated by epitaxial growth on a starting substrate, to produce a wafer for a light emitting device It is a process.
工程(1)は、出発基板上に、エピタキシャル成長により、第一半導体層、活性層、及び第二半導体層が順次積層された発光層部を含む積層構造を形成し、発光素子用ウェーハを作製する工程である。 [Step (1)]
Step (1) forms a laminated structure including a light emitting layer portion in which a first semiconductor layer, an active layer, and a second semiconductor layer are sequentially laminated by epitaxial growth on a starting substrate, to produce a wafer for a light emitting device It is a process.
工程(1)で作製する発光素子用ウェーハは、第一半導体層、活性層、及び第二半導体層が順次積層された発光層部を含み、発光層部の他にも、例えば、発光層部と出発基板との間にエッチストップ層を形成することができる。また、発光層部の上に、さらに中間組成層、GaP電流拡散層、第一誘電体膜等を形成することができる。そして発光素子用ウェーハは、これらの層の一番上に、後述の支持基板と発光素子用ウェーハを接合するための第一接着層を有するものとすることができる。本発明では、これらの層を、出発基板の上に順次積層することで、発光素子ウェーハを作製することができる。出発基板としては特に限定されないが、GaAsやGe基板とすることができ、第一半導体層、活性層、第二半導体層としてはAlGaInP系のものとすることができる。
The wafer for light emitting element manufactured in the step (1) includes a light emitting layer portion in which a first semiconductor layer, an active layer, and a second semiconductor layer are sequentially stacked, and in addition to the light emitting layer portion, for example, a light emitting layer portion An etch stop layer can be formed between the and the starting substrate. In addition, an intermediate composition layer, a GaP current diffusion layer, a first dielectric film and the like can be further formed on the light emitting layer portion. The light emitting device wafer may have a first adhesive layer for bonding a supporting substrate to be described later and the light emitting device wafer on top of these layers. In the present invention, a light emitting device wafer can be produced by sequentially laminating these layers on the starting substrate. The starting substrate is not particularly limited, but may be a GaAs or Ge substrate, and the first semiconductor layer, the active layer, and the second semiconductor layer may be AlGaInP based.
[工程(2)]
工程(2)は、支持基板を準備する工程である。 [Step (2)]
Step (2) is a step of preparing a support substrate.
工程(2)は、支持基板を準備する工程である。 [Step (2)]
Step (2) is a step of preparing a support substrate.
工程(2)で準備する支持基板は少なくとも可視透明基板からなる。可視透明基板としては、サファイア基板、石英基板等を用いることができる。可視透明基板の上には誘電体膜を、その上には上述の発光素子用ウェーハと支持基板を接合するための第二接着層を形成することができる。
The support substrate prepared in the step (2) comprises at least a visible transparent substrate. A sapphire substrate, a quartz substrate, etc. can be used as a visible transparent substrate. A dielectric film can be formed on the visible transparent substrate, and a second adhesive layer can be formed on the dielectric film for bonding the above-described wafer for light emitting device and the support substrate.
また、工程(2)において、支持基板を第二接着層を有するものとする場合、フォトリソグラフィー法等により第二接着層を所望のパターンに加工することによって、スクライブ領域にある接着層を除去することができる。
In the step (2), when the support substrate has the second adhesive layer, the second adhesive layer is processed into a desired pattern by photolithography or the like to remove the adhesive layer in the scribe region. be able to.
[工程(3)]
工程(3)は、支持基板を、接着層を介して発光素子用ウェーハに接着し、接合基板を作製する工程である。 [Step (3)]
The step (3) is a step of bonding the supporting substrate to the wafer for light emitting element through an adhesive layer to produce a bonded substrate.
工程(3)は、支持基板を、接着層を介して発光素子用ウェーハに接着し、接合基板を作製する工程である。 [Step (3)]
The step (3) is a step of bonding the supporting substrate to the wafer for light emitting element through an adhesive layer to produce a bonded substrate.
このとき、支持基板、もしくは発光素子ウェーハの少なくともいずれか一方を、接着層を有するものとすることが好ましい。ここで用いることができる接着剤としては、特に限定されずBCB、エポキシ系樹脂、塩ビ系樹脂、ウレタン系樹脂、アクリル系樹脂、シリコーン等が挙げられる。
At this time, it is preferable that at least one of the supporting substrate and the light emitting element wafer have an adhesive layer. The adhesive that can be used here is not particularly limited, and BCB, epoxy resin, polyvinyl chloride resin, urethane resin, acrylic resin, silicone and the like can be mentioned.
[工程(4)]
工程(4)は、接合基板において、出発基板を除去して、第一半導体層を露出させる工程である。 [Step (4)]
The step (4) is a step of removing the starting substrate in the bonded substrate to expose the first semiconductor layer.
工程(4)は、接合基板において、出発基板を除去して、第一半導体層を露出させる工程である。 [Step (4)]
The step (4) is a step of removing the starting substrate in the bonded substrate to expose the first semiconductor layer.
工程(4)では、接合基板が有する出発基板をエッチング等により除去する。さらに、エッチストップ層があれば、エッチストップ層も除去することができる。これらの層を除去することにより、第一半導体層を露出させる。
In the step (4), the starting substrate of the bonded substrate is removed by etching or the like. Furthermore, with the etch stop layer, the etch stop layer can also be removed. By removing these layers, the first semiconductor layer is exposed.
[工程(5)]
工程(5)は、接合基板の一部の領域において、少なくとも第一半導体層及び活性層を除去し、除去部を形成する工程である。 [Step (5)]
The step (5) is a step of removing at least the first semiconductor layer and the active layer in a partial region of the bonding substrate to form a removing portion.
工程(5)は、接合基板の一部の領域において、少なくとも第一半導体層及び活性層を除去し、除去部を形成する工程である。 [Step (5)]
The step (5) is a step of removing at least the first semiconductor layer and the active layer in a partial region of the bonding substrate to form a removing portion.
工程(5)では、少なくとも第一半導体層や活性層を切り欠いて除去し、除去部を形成する。また、第一半導体層と活性層だけではなく、可視透明基板のみを残し、全ての層を切り欠いて除去して、除去部を形成してもよい。
In the step (5), at least the first semiconductor layer and the active layer are cut and removed to form a removal portion. Further, not only the first semiconductor layer and the active layer but only the visible transparent substrate may be left, and all the layers may be cut and removed to form a removal portion.
[工程(6)]
工程(6)は、第一半導体層の表面に第一オーミック電極を、除去部の表面に第二オーミック電極を形成する工程である。 [Step (6)]
The step (6) is a step of forming a first ohmic electrode on the surface of the first semiconductor layer and forming a second ohmic electrode on the surface of the removal portion.
工程(6)は、第一半導体層の表面に第一オーミック電極を、除去部の表面に第二オーミック電極を形成する工程である。 [Step (6)]
The step (6) is a step of forming a first ohmic electrode on the surface of the first semiconductor layer and forming a second ohmic electrode on the surface of the removal portion.
工程(6)では、例えば、以下の方法で電極を形成することができる。まず、工程(5)で除去部を形成した接合基板の表面に誘電体層を形成する。次に、フォトリソグラフィー法及びウェットエッチング法により、誘電体層に開口部(第一半導体層及び除去部が露出した部分)を形成する。そして開口部において、第一半導体層表面に第一オーミック電極を、除去部の表面に第二オーミック電極を形成する。
In the step (6), for example, the electrode can be formed by the following method. First, a dielectric layer is formed on the surface of the bonded substrate on which the removal portion is formed in the step (5). Next, an opening (a portion where the first semiconductor layer and the removed portion are exposed) is formed in the dielectric layer by photolithography and wet etching. Then, in the opening portion, the first ohmic electrode is formed on the surface of the first semiconductor layer, and the second ohmic electrode is formed on the surface of the removal portion.
[工程(7)]
工程(7)は、レーザー光によるスクライブ・ブレーキング法を用いて前記接合基板から発光素子をダイス状に分離する工程である。 [Step (7)]
The step (7) is a step of separating the light emitting element from the bonded substrate in a die shape using a scribing / breaking method with a laser beam.
工程(7)は、レーザー光によるスクライブ・ブレーキング法を用いて前記接合基板から発光素子をダイス状に分離する工程である。 [Step (7)]
The step (7) is a step of separating the light emitting element from the bonded substrate in a die shape using a scribing / breaking method with a laser beam.
工程(7)では、まず、スクライブ領域内では、可視透明基板のみを残し、全ての層を除去する。工程(2)でスクライブ領域にある接着層を除去していない場合には、ここで接着層の除去も同時に行うことができる。
In the step (7), first, in the scribe area, only the visible transparent substrate is left, and all layers are removed. If the adhesive layer in the scribe area is not removed in step (2), the adhesive layer can be removed at the same time.
次に、図1に示すように、接着層(第一接着層10及び第二接着層15)を除去して可視透明基板13が露出したスクライブ領域においてレーザー光によるスクライブ部28を形成した後、ブレーキングを行い、発光素子をダイス状に分離する。
Next, as shown in FIG. 1, after the adhesive layer (the first adhesive layer 10 and the second adhesive layer 15) is removed to form a scribe portion 28 by laser light in the scribe region where the visible transparent substrate 13 is exposed, Breaking is performed to separate the light emitting elements into dies.
以上のような発光素子の製造方法とすれば、スクライブ・ブレーキング工程においてスクライブする領域に接着層が存在しないようにすることで、接着剤が破壊され、接合部から剥離するのを抑制することができる。
According to the manufacturing method of the light emitting element as described above, the adhesive is not destroyed in the scribing / breaking step, thereby suppressing the adhesive from being broken and peeling from the bonding portion. Can.
また、予めスクライブ領域にある接着層を除去するのは、スクライブを行う前であればいつでもよいが、工程(7)においてスクライブを行う直前、もしくは工程(2)で支持基板を準備するときとすれば、比較的容易に行うことができる。また、接着剤が存在しない領域の幅を、スクライブ方向に対して垂直な方向で20μm以上とすることで、確実に接着層にレーザー光を照射しないで済むことから、劇的な剥離改善効果が得られる。このとき、接着剤が存在しない領域の幅の上限についての制限は特にないが、実用上の観点から、スクライブ方向に対して垂直な方向で100μm以下とすることが好ましく、50μm以下とすることがより好ましく、30μm以下とすることがさらに好ましい。
In addition, the adhesive layer in the scribing region may be removed any time before scribing, but immediately before scribing in the step (7) or when preparing the support substrate in the step (2). Can be done relatively easily. In addition, by setting the width of the area where the adhesive does not exist to be 20 μm or more in the direction perpendicular to the scribing direction, the adhesive layer does not have to be irradiated with the laser light reliably, so the dramatic improvement in peeling is achieved. can get. At this time, there is no particular limitation on the upper limit of the width of the region where the adhesive does not exist, but from a practical point of view, it is preferably 100 μm or less in the direction perpendicular to the scribing direction, and 50 μm or less It is more preferable that the thickness be 30 μm or less.
以下、第一の実施形態と第二の実施形態を用いて、本発明の発光素子の製造方法を、図を参照しながら更に詳細に説明するが、本発明はこれに限定されるものではない。
Hereinafter, although the manufacturing method of the light emitting element of this invention is demonstrated in more detail, referring a figure using 1st embodiment and 2nd embodiment, this invention is not limited to this .
[第一実施形態]
[工程(1)]
最初に本発明の第一実施形態について説明する。図2に示すように、発光素子用ウェーハ1を、例えば[001]方向に15度傾斜したGaAs基板(出発基板)2上に有機金属気相成長法(MOVPE)法にて、(AlxGa1-x)yIn1-yP(0≦x≦1,0.4≦y≦0.6)からなる厚さ0.1~1.0μmのエッチストップ層3、厚さ0.5~1.0μmの第一導電型第一半導体層4、(AlxGa1-x)yIn1-yP(0≦x≦1,0.4≦y≦0.6)からなる厚さ0.1~1.0μmの活性層5、(AlxGa1-x)yIn1-yP(0≦x≦1,0.4≦y≦0.6)からなる厚さ0.5~1.0μmの第二導電型第二半導体層6、GayIn1-yP(0.0≦y≦1.0)から成る中間組成層7、0.5~20μmの厚さを有するGaP電流拡散層8を順次積層して形成することができる。 First Embodiment
[Step (1)]
First, the first embodiment of the present invention will be described. As shown in FIG. 2, thewafer 1 for light emitting elements is formed on a GaAs substrate (starting substrate) 2 inclined by 15 degrees in, for example, the [001] direction by metal organic chemical vapor deposition (MOVPE) method (Al x Ga 1-x ) y In 1-y P (0 ≦ x1,1, 0.4 ≦ y ≦ 0.6), an etch stop layer 3 with a thickness of 0.1 to 1.0 μm, a thickness of 0.5 to Thickness 0 of the first conductive type first semiconductor layer 4 of 1.0 μm and (Al x Ga 1 -x ) y In 1-y P (0 ≦ x ≦ 1, 0.4 ≦ y ≦ 0.6) .1 ~ 1.0 .mu.m active layer 5, (Al x Ga 1-x ) y in 1-y P (0 ≦ x ≦ 1,0.4 ≦ y ≦ 0.6) having a thickness of 0.5 to the second semiconductor layer 6 the second conductivity type of 1.0μm, Ga y in 1-y P Ga with (0.0 ≦ y ≦ 1.0) of the intermediate composition layers 7,0.5 ~ 20μm having a thickness of It can be formed by sequentially stacking a current diffusion layer 8.
[工程(1)]
最初に本発明の第一実施形態について説明する。図2に示すように、発光素子用ウェーハ1を、例えば[001]方向に15度傾斜したGaAs基板(出発基板)2上に有機金属気相成長法(MOVPE)法にて、(AlxGa1-x)yIn1-yP(0≦x≦1,0.4≦y≦0.6)からなる厚さ0.1~1.0μmのエッチストップ層3、厚さ0.5~1.0μmの第一導電型第一半導体層4、(AlxGa1-x)yIn1-yP(0≦x≦1,0.4≦y≦0.6)からなる厚さ0.1~1.0μmの活性層5、(AlxGa1-x)yIn1-yP(0≦x≦1,0.4≦y≦0.6)からなる厚さ0.5~1.0μmの第二導電型第二半導体層6、GayIn1-yP(0.0≦y≦1.0)から成る中間組成層7、0.5~20μmの厚さを有するGaP電流拡散層8を順次積層して形成することができる。 First Embodiment
[Step (1)]
First, the first embodiment of the present invention will be described. As shown in FIG. 2, the
発光素子用ウェーハ1の作製方法はMOVPEに限定されるものではなく、分子線エピタキシー(MBE)法や、化学線エピタキシー(CBE)法で作製してもよい。また、図示しないが、GaAs基板と第一半導体層の間にバッファ層を設けてもよい。
The manufacturing method of the wafer 1 for light emitting elements is not limited to MOVPE, and may be manufactured by a molecular beam epitaxy (MBE) method or a actinic ray epitaxy (CBE) method. Although not shown, a buffer layer may be provided between the GaAs substrate and the first semiconductor layer.
また、図3に示すように、発光素子用ウェーハ1は、GaP電流拡散層8の上にさらにSiO2あるいはSiNxからなる第一誘電体膜9を例えば厚さ0.4μmにて形成し、その上にBCB接着剤をスピンコートにて塗布した第一接着層10を形成することで第一接合層11を有するものとすることができる。第一接着層の厚さはBCB接着剤の粘度とスピンコート時回転数によって変わるが、例えば回転数5000rpmにて0.5μm程度の第一接着層10を形成することができる。本実施形態では第一接合層11を設けたが、本発明に用いる発光素子用ウェーハは、第一接合層11を有しない構造、あるいは第一誘電体膜9を有しない構造、もしくは第一接着層10を有しない構造でもよい。
Further, as shown in FIG. 3, in the light emitting device wafer 1, a first dielectric film 9 made of SiO 2 or SiN x is further formed on the GaP current diffusion layer 8 to a thickness of, for example, 0.4 μm. The first bonding layer 11 can be provided by forming the first bonding layer 10 on which the BCB adhesive is applied by spin coating. The thickness of the first adhesive layer varies depending on the viscosity of the BCB adhesive and the rotation speed at the time of spin coating. For example, the first adhesive layer 10 of about 0.5 μm can be formed at a rotation speed of 5000 rpm. Although the first bonding layer 11 is provided in the present embodiment, the wafer for a light emitting element used in the present invention has a structure without the first bonding layer 11, a structure without the first dielectric film 9, or a first bonding The structure without the layer 10 may be used.
[工程(2)]
支持基板30は、図4に示すように、サファイアあるいは石英等の可視透明基板13上に例えばSiO2あるいはSiNxからなる誘電体膜14を形成し、その上にさらに、例えばBCB樹脂からなる接着剤を塗布して第二接着層15を形成することで、第二接合層12を有するものとすることができる。第二接着層15の厚さはBCB接着剤の粘度とスピンコート時回転数によって変わるが、本実施形態では回転数5000rpmにて0.5μm程度の第二接着層15を形成することができる。なお、第一接着層10を形成した場合、第二接着層15を設けなくともよいし、また、第二接着層15を形成した場合、第一接着層10を設けなくともよく、両方に形成してもよい。また、接着剤としてBCB樹脂の他に、エポキシ等の他の透明かつ常温で液状の部材で第一接着層10及び第二接着層15を形成してもよい。 [Step (2)]
In the supportingsubstrate 30, as shown in FIG. 4, a dielectric film 14 made of, for example, SiO 2 or SiN x is formed on a visible transparent substrate 13 such as sapphire or quartz, and an adhesive made of, for example, BCB resin is further formed thereon. By applying the agent to form the second adhesive layer 15, the second bonding layer 12 can be provided. The thickness of the second adhesive layer 15 varies depending on the viscosity of the BCB adhesive and the spin speed during spin coating, but in the present embodiment, the second adhesive layer 15 of about 0.5 μm can be formed at a rotational speed of 5000 rpm. When the first adhesive layer 10 is formed, the second adhesive layer 15 may not be provided, and when the second adhesive layer 15 is formed, the first adhesive layer 10 may not be provided, and both may be formed. You may In addition to the BCB resin as an adhesive, the first adhesive layer 10 and the second adhesive layer 15 may be formed of another transparent and liquid member such as epoxy, such as epoxy.
支持基板30は、図4に示すように、サファイアあるいは石英等の可視透明基板13上に例えばSiO2あるいはSiNxからなる誘電体膜14を形成し、その上にさらに、例えばBCB樹脂からなる接着剤を塗布して第二接着層15を形成することで、第二接合層12を有するものとすることができる。第二接着層15の厚さはBCB接着剤の粘度とスピンコート時回転数によって変わるが、本実施形態では回転数5000rpmにて0.5μm程度の第二接着層15を形成することができる。なお、第一接着層10を形成した場合、第二接着層15を設けなくともよいし、また、第二接着層15を形成した場合、第一接着層10を設けなくともよく、両方に形成してもよい。また、接着剤としてBCB樹脂の他に、エポキシ等の他の透明かつ常温で液状の部材で第一接着層10及び第二接着層15を形成してもよい。 [Step (2)]
In the supporting
[工程(3)]
次に図5に示すように第一接着層10と第二接着層15を対向させ、かつ、真空もしくは減圧雰囲気下で圧力と熱を加えることで第一接着層10と第二接着層15を接着した接合基板16を形成する。圧力は6N/cm2以上、温度は100℃以上の条件で圧着することで接着することができる。特に30N/cm2、300℃に達する条件で接合することが好適である。 [Step (3)]
Next, as shown in FIG. 5, the firstadhesive layer 10 and the second adhesive layer 15 are opposed to each other, and pressure and heat are applied under vacuum or reduced pressure atmosphere to form the first adhesive layer 10 and the second adhesive layer 15. The bonded substrate 16 is formed. The pressure can be adhered by pressure bonding under the conditions of 6 N / cm 2 or more and the temperature of 100 ° C. or more. In particular, bonding is preferably performed under conditions of reaching 30 N / cm 2 and 300 ° C.
次に図5に示すように第一接着層10と第二接着層15を対向させ、かつ、真空もしくは減圧雰囲気下で圧力と熱を加えることで第一接着層10と第二接着層15を接着した接合基板16を形成する。圧力は6N/cm2以上、温度は100℃以上の条件で圧着することで接着することができる。特に30N/cm2、300℃に達する条件で接合することが好適である。 [Step (3)]
Next, as shown in FIG. 5, the first
[工程(4)]
次に図6に示すように接合基板16よりGaAs基板2を化学的エッチングにより除去する。化学的エッチング液はAlGaInP系材料とエッチング選択性があるものが好ましく、一般にはアンモニア含有エッチャントで除去する。GaAs基板2を除去した後、エッチストップ層3を除去し、第一半導体層露出面(第一の面)18を有する接合基板17とする。なお、エッチストップ層3は、AlGaInP系材料をエッチングする過酸化水素と酸との混合液にて除去する。 [Step (4)]
Next, as shown in FIG. 6, theGaAs substrate 2 is removed from the bonding substrate 16 by chemical etching. The chemical etching solution is preferably one having etching selectivity with the AlGaInP based material, and is generally removed by using an ammonia containing etchant. After the GaAs substrate 2 is removed, the etch stop layer 3 is removed to form a bonded substrate 17 having a first semiconductor layer exposed surface (first surface) 18. The etch stop layer 3 is removed by a mixed solution of hydrogen peroxide and an acid for etching the AlGaInP based material.
次に図6に示すように接合基板16よりGaAs基板2を化学的エッチングにより除去する。化学的エッチング液はAlGaInP系材料とエッチング選択性があるものが好ましく、一般にはアンモニア含有エッチャントで除去する。GaAs基板2を除去した後、エッチストップ層3を除去し、第一半導体層露出面(第一の面)18を有する接合基板17とする。なお、エッチストップ層3は、AlGaInP系材料をエッチングする過酸化水素と酸との混合液にて除去する。 [Step (4)]
Next, as shown in FIG. 6, the
[工程(5)]
次に図7に示すように接合基板17より第一半導体層露出面18の一部を切り欠き、除去部(第二の面)19を形成する。この態様では、第一半導体層4と活性層5を除去し、第二半導体層6を露出させている。 [Step (5)]
Next, as shown in FIG. 7, a part of the first semiconductor layer exposedsurface 18 is cut away from the bonding substrate 17 to form a removal portion (second surface) 19. In this aspect, the first semiconductor layer 4 and the active layer 5 are removed to expose the second semiconductor layer 6.
次に図7に示すように接合基板17より第一半導体層露出面18の一部を切り欠き、除去部(第二の面)19を形成する。この態様では、第一半導体層4と活性層5を除去し、第二半導体層6を露出させている。 [Step (5)]
Next, as shown in FIG. 7, a part of the first semiconductor layer exposed
[工程(6)]
次に図8に示すように切り欠かれた側面20を被覆するように、誘電体層21を形成し、開口部22を設ける。誘電体層21はSiO2又はSiNxが好適である。誘電体層の製膜には、ゾルゲル法、スパッタ法、CVD法いずれの方法も選択できる。開口部22は誘電体層21を成膜後、フォトリソグラフィー法によりマスク部を形成し、BHFによるウェットエッチング法にて露出部を形成することにより設けることができる。 [Step (6)]
Next, adielectric layer 21 is formed and an opening 22 is provided so as to cover the notched side surface 20 as shown in FIG. The dielectric layer 21 is preferably SiO 2 or SiN x . Any of sol-gel method, sputtering method and CVD method can be selected for film formation of the dielectric layer. The openings 22 can be provided by forming the dielectric layer 21, forming a mask by photolithography, and forming an exposed portion by wet etching using BHF.
次に図8に示すように切り欠かれた側面20を被覆するように、誘電体層21を形成し、開口部22を設ける。誘電体層21はSiO2又はSiNxが好適である。誘電体層の製膜には、ゾルゲル法、スパッタ法、CVD法いずれの方法も選択できる。開口部22は誘電体層21を成膜後、フォトリソグラフィー法によりマスク部を形成し、BHFによるウェットエッチング法にて露出部を形成することにより設けることができる。 [Step (6)]
Next, a
次に図9に示すように第一半導体層露出面18の一部に第一オーミック電極23、除去部19の一部に第二オーミック電極24を形成する。
Next, as shown in FIG. 9, the first ohmic electrode 23 is formed on a part of the first semiconductor layer exposed surface 18, and the second ohmic electrode 24 is formed on a part of the removal portion 19.
[工程(7)]
次に図10に示すようにフォトレジストを用いたフォトリソグラフィーにより、第一半導体層露出面18全体と除去部19の一部を被覆する被覆部25と開口部26を形成する。 [Step (7)]
Next, as shown in FIG. 10, a covering 25 and anopening 26 are formed to cover the entire first semiconductor layer exposed surface 18 and a part of the removing portion 19 by photolithography using a photoresist.
次に図10に示すようにフォトレジストを用いたフォトリソグラフィーにより、第一半導体層露出面18全体と除去部19の一部を被覆する被覆部25と開口部26を形成する。 [Step (7)]
Next, as shown in FIG. 10, a covering 25 and an
次に図11に示すようにドライエッチング法にて開口部26を除去し、可視透明基板13の一部27を露出させる。ここでのドライエッチングにより、スクライブ領域にある接着層が除去されることになる。AlGaInP層の除去は、ICP装置内で、Cl含有ガスとArの混合雰囲気にて行い、SiO2もしくはSiNxの誘電体層とBCB層の除去はF含有ガスとArの混合雰囲気にて行うことができる。圧力雰囲気は0.5Pa、出力はプラズマ300Wとすることができる。Cl含有ガスを使用する層の除去とF含有ガスを使用する層の除去は、別々のチャンバーで行うこともできるし、真空雰囲気からウェーハを取り出すことなく、ガスの切替のみで同一チャンバー内にて実施することもできる。
Next, as shown in FIG. 11, the opening 26 is removed by dry etching to expose a portion 27 of the visible transparent substrate 13. The dry etching here removes the adhesive layer in the scribe area. The removal of the AlGaInP layer is performed in a mixed atmosphere of Cl-containing gas and Ar in the ICP apparatus, and the removal of the SiO 2 or SiN x dielectric layer and the BCB layer is performed in a mixed atmosphere of F-containing gas and Ar Can. The pressure atmosphere can be 0.5 Pa, and the output can be plasma 300 W. The removal of the layer using the Cl-containing gas and the removal of the layer using the F-containing gas can be performed in separate chambers, or in the same chamber only by switching the gas without removing the wafer from the vacuum atmosphere. It can also be implemented.
次に図12に示すように、露出部27形成後、フォトレジストによる被覆部25を除去する。被覆部25を除去後、露出部27にレーザーを照射してスクライブ部28を形成する。そしてスクライブ部28に沿ってブレーキング処理を実施し、ダイス化する。
Next, as shown in FIG. 12, after the formation of the exposed portion 27, the covering portion 25 with the photoresist is removed. After removing the covering portion 25, the exposed portion 27 is irradiated with a laser to form a scribe portion 28. Then, the breaking process is performed along the scribing unit 28 and diced.
このような第一実施形態の方法であればレーザー照射領域に接着剤層が存在しないため接着剤がレーザーエネルギーを吸収し、破壊され、接合部から剥離することを抑制した発光素子を比較的容易に製造することができる。
According to the method of the first embodiment, since the adhesive layer does not exist in the laser irradiation area, the adhesive absorbs the laser energy and is broken, and it is relatively easy to suppress the peeling from the bonding portion. Can be manufactured.
[第二実施形態]
[工程(1)]
次に本発明の第二実施形態について説明する。図13に示すように発光素子用ウェーハ1を、[001]方向に15度傾斜したGaAs基板(出発基板)2上に有機金属気相成長法(MOVPE)法にて、(AlxGa1-x)yIn1-yP(0≦x≦1,0.4≦y≦0.6)からなる厚さ0.1~1.0μmのエッチストップ層3、厚さ0.5~1.0μmの第一導電型第一半導体層4、(AlxGa1-x)yIn1-yP(0≦x≦1,0.4≦y≦0.6)からなる厚さ0.1~1.0μmの活性層5、(AlxGa1-x)yIn1-yP(0≦x≦1,0.4≦y≦0.6)からなる厚さ0.5~1.0μmからなる第二導電型第二半導体層6、GayIn1-yP(0.0≦y≦1.0)から成る中間組成層7、0.5~20μmの厚さを有するGaP電流拡散層8を順次積層して形成することができる。 Second Embodiment
[Step (1)]
Next, a second embodiment of the present invention will be described. As shown in FIG. 13, thewafer 1 for light emitting element is formed on a GaAs substrate (starting substrate) 2 inclined by 15 degrees in the [001] direction by metal organic chemical vapor deposition (MOVPE) method (Al x Ga 1- x ) y In 1-y P (0 ≦ x ≦ 1, 0.4 ≦ y ≦ 0.6), an etch stop layer 3 with a thickness of 0.1 to 1.0 μm, and a thickness of 0.5 to 1. first conductivity type first semiconductor layer 4 of 0μm, (Al x Ga 1- x) y in 1-y P (0 ≦ x ≦ 1,0.4 ≦ y ≦ 0.6) having a thickness of 0.1 the active layer 5 of ~ 1.0μm, (Al x Ga 1 -x) y in 1-y P (0 ≦ x ≦ 1,0.4 ≦ y ≦ 0.6) having a thickness of 0.5 to 1. the second semiconductor layer 6 the second conductivity type made of 0μm, Ga y in 1-y P Ga with (0.0 ≦ y ≦ 1.0) of the intermediate composition layers 7,0.5 ~ 20μm having a thickness of It can be formed by sequentially stacking a current diffusion layer 8.
[工程(1)]
次に本発明の第二実施形態について説明する。図13に示すように発光素子用ウェーハ1を、[001]方向に15度傾斜したGaAs基板(出発基板)2上に有機金属気相成長法(MOVPE)法にて、(AlxGa1-x)yIn1-yP(0≦x≦1,0.4≦y≦0.6)からなる厚さ0.1~1.0μmのエッチストップ層3、厚さ0.5~1.0μmの第一導電型第一半導体層4、(AlxGa1-x)yIn1-yP(0≦x≦1,0.4≦y≦0.6)からなる厚さ0.1~1.0μmの活性層5、(AlxGa1-x)yIn1-yP(0≦x≦1,0.4≦y≦0.6)からなる厚さ0.5~1.0μmからなる第二導電型第二半導体層6、GayIn1-yP(0.0≦y≦1.0)から成る中間組成層7、0.5~20μmの厚さを有するGaP電流拡散層8を順次積層して形成することができる。 Second Embodiment
[Step (1)]
Next, a second embodiment of the present invention will be described. As shown in FIG. 13, the
発光素子用ウェーハ1の作製方法はMOVPEに限定されるものではなく、分子線エピタキシー(MBE)法や、化学線エピタキシー(CBE)法で作製してもよい。また、図示しないが、GaAs基板と第一半導体層の間にバッファ層を設けてもよい。
The manufacturing method of the wafer 1 for light emitting elements is not limited to MOVPE, and may be manufactured by a molecular beam epitaxy (MBE) method or a actinic ray epitaxy (CBE) method. Although not shown, a buffer layer may be provided between the GaAs substrate and the first semiconductor layer.
また、図14に示すように発光素子用ウェーハ1を、GaP電流拡散層8の上に例えばSiO2あるいはSiNxからなる第一誘電体膜9を厚さ0.4μm程度にて形成して第一接合層11を有するものとすることができる。本実施形態では第一接合層11を設けたが、第一接合層11を有しない構造でもよい。
Further, as shown in FIG. 14, a wafer 1 for light emitting element is formed by forming a first dielectric film 9 made of, for example, SiO 2 or SiN x with a thickness of about 0.4 μm on the GaP current diffusion layer 8. It can have one bonding layer 11. Although the first bonding layer 11 is provided in the present embodiment, the first bonding layer 11 may not be provided.
[工程(2)]
支持基板30は、図15に示すようにサファイアあるいは石英等の可視透明基板13上にSiO2あるいはSiNxからなる誘電体膜14を形成し、その上にさらにBCB接着剤を塗布した接着層15´を形成することで第二接合層12を有するものとすることができる。接着層15´の厚さはBCB接着剤の粘度とスピンコート時回転数によって変わるが、例えば回転数5000rpmにて0.5μmの接着層15´を形成することができる。 [Step (2)]
As shown in FIG. 15, the supportingsubstrate 30 is an adhesive layer 15 on which a dielectric film 14 made of SiO 2 or SiN x is formed on a visible transparent substrate 13 such as sapphire or quartz, and a BCB adhesive is further applied thereon. The second bonding layer 12 can be provided by forming '. The thickness of the adhesive layer 15 'varies depending on the viscosity of the BCB adhesive and the rotation speed at the time of spin coating. For example, the adhesive layer 15' of 0.5 μm can be formed at a rotational speed of 5000 rpm.
支持基板30は、図15に示すようにサファイアあるいは石英等の可視透明基板13上にSiO2あるいはSiNxからなる誘電体膜14を形成し、その上にさらにBCB接着剤を塗布した接着層15´を形成することで第二接合層12を有するものとすることができる。接着層15´の厚さはBCB接着剤の粘度とスピンコート時回転数によって変わるが、例えば回転数5000rpmにて0.5μmの接着層15´を形成することができる。 [Step (2)]
As shown in FIG. 15, the supporting
次に図16に示すように接着層15´を所望のパターン29の形状に加工する。この段階で、スクライブ領域にある接着層が除去されることになる。接着層15´として、BCB材料のうち、感光性材料を選択した場合、フォトリソグラフィー法により所望のパターン29を得ることができる。また、接着層15´としてBCB材料のうち、非感光性材料を選択した場合、フォトレジスト法により所望のパターンとなるようにレジストを被覆し、F含有ガス雰囲気のICP装置にて所望のパターン29を得ることができる。ここでパターン29の形状及び大きさは求める発光素子の大きさと接着層15´の厚さによって制約を受ける。パターン29の形状及び大きさは、求める発光素子の大きさと開口部26の差以下となる。
Next, as shown in FIG. 16, the adhesive layer 15 ′ is processed into the shape of the desired pattern 29. At this stage, the adhesive layer in the scribe area is removed. When a photosensitive material is selected among the BCB materials as the adhesive layer 15 ′, a desired pattern 29 can be obtained by a photolithography method. When a non-photosensitive material is selected from the BCB materials as the adhesive layer 15 ', a resist is coated by a photoresist method so that a desired pattern is obtained, and a desired pattern 29 is formed by an ICP apparatus containing F-containing gas. You can get Here, the shape and size of the pattern 29 are limited by the size of the light emitting element to be obtained and the thickness of the adhesive layer 15 '. The shape and size of the pattern 29 are equal to or less than the difference between the size of the light emitting element to be obtained and the opening 26.
[工程(3)]
次に図17に示すように第一接合層11と第二接合層12を対向させ、かつ、真空又は減圧雰囲気下で圧力と熱を加えることで第一接合層11と第二接合層12を接着した接合基板16を形成する。圧力を6N/cm2以上、温度を100℃以上の条件で圧着することで接着することができる。特に30N/cm2、300℃に達する条件で接合することが好適である。 [Step (3)]
Next, as shown in FIG. 17, thefirst bonding layer 11 and the second bonding layer 12 are opposed to each other, and pressure and heat are applied under a vacuum or reduced pressure atmosphere to form the first bonding layer 11 and the second bonding layer 12. The bonded substrate 16 is formed. It can adhere | attach by pressure bonding on pressure of 6 N / cm < 2 > or more, and temperature 100 degreeC or more conditions. In particular, bonding is preferably performed under conditions of reaching 30 N / cm 2 and 300 ° C.
次に図17に示すように第一接合層11と第二接合層12を対向させ、かつ、真空又は減圧雰囲気下で圧力と熱を加えることで第一接合層11と第二接合層12を接着した接合基板16を形成する。圧力を6N/cm2以上、温度を100℃以上の条件で圧着することで接着することができる。特に30N/cm2、300℃に達する条件で接合することが好適である。 [Step (3)]
Next, as shown in FIG. 17, the
[工程(4)]
次に図18に示すように接合基板16よりGaAs基板2を化学的エッチングにより除去する。化学的エッチング液はAlGaInP系材料とエッチング選択性があるものが好ましく、一般にはアンモニア含有エッチャントで除去する。GaAs基板2を除去した後、エッチストップ層3を除去し、第一半導体層露出面18を有する接合基板17を形成する。なお、エッチストップ層3はAlGaInP系材料をエッチングする過酸化水素と酸との混合液にて除去する。 [Step (4)]
Next, as shown in FIG. 18, theGaAs substrate 2 is removed from the bonding substrate 16 by chemical etching. The chemical etching solution is preferably one having etching selectivity with the AlGaInP based material, and is generally removed by using an ammonia containing etchant. After the GaAs substrate 2 is removed, the etch stop layer 3 is removed to form a junction substrate 17 having the first semiconductor layer exposed surface 18. The etch stop layer 3 is removed by a mixed solution of hydrogen peroxide and an acid for etching the AlGaInP based material.
次に図18に示すように接合基板16よりGaAs基板2を化学的エッチングにより除去する。化学的エッチング液はAlGaInP系材料とエッチング選択性があるものが好ましく、一般にはアンモニア含有エッチャントで除去する。GaAs基板2を除去した後、エッチストップ層3を除去し、第一半導体層露出面18を有する接合基板17を形成する。なお、エッチストップ層3はAlGaInP系材料をエッチングする過酸化水素と酸との混合液にて除去する。 [Step (4)]
Next, as shown in FIG. 18, the
[工程(5)]
次に図19に示すように接合基板17より、パターン29を超えない範囲で第一半導体層露出面18を残留させ、かつ、第一半導体層露出面18の一部を切り欠き、除去部19を形成する。 [Step (5)]
Next, as shown in FIG. 19, the first semiconductor layer exposedsurface 18 is left from the bonding substrate 17 in a range not exceeding the pattern 29, and a part of the first semiconductor layer exposed surface 18 is notched. Form
次に図19に示すように接合基板17より、パターン29を超えない範囲で第一半導体層露出面18を残留させ、かつ、第一半導体層露出面18の一部を切り欠き、除去部19を形成する。 [Step (5)]
Next, as shown in FIG. 19, the first semiconductor layer exposed
[工程(6)]
次に図20に示すように切り欠かれた側面20を被覆するように、誘電体層21を形成し、開口部22を設ける。誘電体層21はSiO2又はSiNxが好適である。誘電体層の製膜には、ゾルゲル法、スパッタ法、CVD法いずれの方法も選択できる。開口部22は誘電体層21を成膜後、フォトリソグラフィー法によりマスク部を形成し、BHFによるウェットエッチング法にて露出部を形成することにより設けることができる。 [Step (6)]
Next,dielectric layer 21 is formed and opening 22 is provided so as to cover notched side surface 20 as shown in FIG. The dielectric layer 21 is preferably SiO 2 or SiN x . Any of sol-gel method, sputtering method and CVD method can be selected for film formation of the dielectric layer. The openings 22 can be provided by forming the dielectric layer 21, forming a mask by photolithography, and forming an exposed portion by wet etching using BHF.
次に図20に示すように切り欠かれた側面20を被覆するように、誘電体層21を形成し、開口部22を設ける。誘電体層21はSiO2又はSiNxが好適である。誘電体層の製膜には、ゾルゲル法、スパッタ法、CVD法いずれの方法も選択できる。開口部22は誘電体層21を成膜後、フォトリソグラフィー法によりマスク部を形成し、BHFによるウェットエッチング法にて露出部を形成することにより設けることができる。 [Step (6)]
Next,
次に図21に示すように第一半導体層露出面18の一部に第一オーミック電極23、除去部19の一部に第二オーミック電極24を形成する。
Next, as shown in FIG. 21, the first ohmic electrode 23 is formed on a part of the first semiconductor layer exposed surface 18, and the second ohmic electrode 24 is formed on a part of the removal portion 19.
[工程(7)]
次に図22に示すようにフォトレジストを用いたフォトリソグラフィーにより、第一半導体層露出面18全体と除去部19の一部を被覆する被覆部25と開口部26を形成する。 [Step (7)]
Next, as shown in FIG. 22, acover 25 and an opening 26 are formed to cover the entire first semiconductor layer exposed surface 18 and a part of the removal portion 19 by photolithography using a photoresist.
次に図22に示すようにフォトレジストを用いたフォトリソグラフィーにより、第一半導体層露出面18全体と除去部19の一部を被覆する被覆部25と開口部26を形成する。 [Step (7)]
Next, as shown in FIG. 22, a
次に図23に示すようにドライエッチング法にて開口部26を除去し、可視透明基板13の一部27を露出させる。AlGaInP層の除去は、ICP装置内で、Cl含有ガスとArの混合雰囲気にて行い、SiO2もしくはSiNxの誘電体層とBCB層の除去はF含有ガスとArの混合雰囲気にて行なうことができる。圧力雰囲気は0.5Pa、出力はプラズマ300Wとすることができる。Cl2含有ガスを使用する層の除去とF含有ガスを使用する層の除去は、別々のチャンバーで行うこともできるし、真空雰囲気からウェーハを取り出すことなく、ガスの切替のみで同一チャンバー内にて実施することもできる。
Next, as shown in FIG. 23, the opening 26 is removed by dry etching to expose a portion 27 of the visible transparent substrate 13. The removal of the AlGaInP layer is performed in a mixed atmosphere of Cl-containing gas and Ar in the ICP apparatus, and the removal of the SiO 2 or SiN x dielectric layer and the BCB layer is performed in a mixed atmosphere of F-containing gas and Ar Can. The pressure atmosphere can be 0.5 Pa, and the output can be plasma 300 W. The removal of the layer using the Cl 2 -containing gas and the removal of the layer using the F-containing gas can be performed in separate chambers, or in the same chamber only by switching the gas without removing the wafer from the vacuum atmosphere. Can also be implemented.
次に図24に示すように、露出部27形成後、フォトレジストによる被覆部25を除去する。被覆部25を除去後、露出部27にレーザーを照射してスクライブ部28を形成する。そしてスクライブ部28に沿ってブレーキング処理を実施し、ダイス化する。
Next, as shown in FIG. 24, after the formation of the exposed portion 27, the coated portion 25 with the photoresist is removed. After removing the covering portion 25, the exposed portion 27 is irradiated with a laser to form a scribe portion 28. Then, the breaking process is performed along the scribing unit 28 and diced.
このような第二実施形態の方法であってもレーザー照射領域に接着剤層が存在しないため接着剤がレーザーエネルギーを吸収し、破壊され、接合部から剥離することを抑制した発光素子を比較的容易に製造することができる。
Even in the method of the second embodiment, since the adhesive layer does not exist in the laser irradiation area, the adhesive absorbs the laser energy, is destroyed, and the light emitting element which suppresses peeling from the joint is relatively made. It can be easily manufactured.
以下、実施例及び比較例を用いて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
EXAMPLES The present invention will be specifically described below using Examples and Comparative Examples, but the present invention is not limited to these.
[実施例1]
図2~図12に示すような本発明の発光素子の製造方法の第一実施形態に基づいて、発光素子の製造を行った。 Example 1
A light emitting device was manufactured based on the first embodiment of the method for manufacturing a light emitting device of the present invention as shown in FIGS.
図2~図12に示すような本発明の発光素子の製造方法の第一実施形態に基づいて、発光素子の製造を行った。 Example 1
A light emitting device was manufactured based on the first embodiment of the method for manufacturing a light emitting device of the present invention as shown in FIGS.
まず、発光素子用ウェーハの作製を行った。出発基板としてGaAs(001)からなる基板(出発基板)を準備し、この基板上に、機能層たるダブルヘテロ層(発光層)をMOVPE法にて形成した。発光層は、下部クラッド層(第一半導体層)、活性層、上部クラッド層(第二半導体層)を順次積層したものとした。
First, a wafer for light emitting element was manufactured. A substrate (starting substrate) made of GaAs (001) was prepared as a starting substrate, and a double hetero layer (light emitting layer) as a functional layer was formed on this substrate by the MOVPE method. The light emitting layer was formed by sequentially laminating a lower cladding layer (first semiconductor layer), an active layer, and an upper cladding layer (second semiconductor layer).
第一半導体層及び第二半導体層は、(AlxGa1-x)yIn1-yP(0.6≦x≦1.0、0.4≦y≦0.6)の組成が選択され、本実施例では、第一半導体層として、n型AlInPクラッド層を0.7μm(ドーピング濃度3.0×1017/cm3)、n型Al0.85GaInP層を0.3μm(ドーピング濃度1.0×1017/cm3)の2層構造とした。
In the first semiconductor layer and the second semiconductor layer, the composition of (Al x Ga 1 -x ) y In 1-y P (0.6 ≦ x ≦ 1.0, 0.4 ≦ y ≦ 0.6) is selected In the present embodiment, as the first semiconductor layer, the n-type AlInP cladding layer is 0.7 μm (doping concentration 3.0 × 10 17 / cm 3 ), and the n-type Al 0.85 GaInP layer is 0.3 μm (doping) It was set as the two-layer structure of density | concentration 1.0 * 10 < 17 > / cm < 3 >.
活性層は、(AlxGa1-x)yIn1-yP(0.15≦x≦0.8、0.4≦y≦0.6)から選択され、波長によって組成x及びyは変更した。本実施例において活性層は、多重活性層を用いた。活性層及び障壁層の膜厚は求める波長により変更され、それぞれ4~12nmの範囲で波長に合わせて調整した。
The active layer is selected from (Al x Ga 1 -x ) y In 1-y P (0.15 ≦ x ≦ 0.8, 0.4 ≦ y ≦ 0.6), and the compositions x and y are dependent on the wavelength. changed. In this example, multiple active layers were used as the active layer. The film thicknesses of the active layer and the barrier layer were changed according to the wavelength to be obtained, and were adjusted to the wavelength in the range of 4 to 12 nm, respectively.
第二半導体層として、p型AlInPクラッド層を0.9μm(ドーピング濃度3.0×1017/cm3)、p型Al0.6GaInP層を0.1μm(ドーピング濃度1.0×1017/cm3)の2層構造とした。
As the second semiconductor layer, the p-type AlInP cladding layer is 0.9 μm (doping concentration 3.0 × 10 17 / cm 3 ), and the p-type Al 0.6 GaInP layer is 0.1 μm (doping concentration 1.0 × 10 17) It was set as the 2 layer structure of / cm < 3 >.
発光層上には、GaInPからなる緩衝層を成膜した。次に緩衝層上にSiO2からなる誘電体膜を厚さ0.4μmにて形成し、その上にBCB接着剤をスピンコートにて塗布して第一接着層を形成した。
A buffer layer of GaInP was formed on the light emitting layer. Next, a dielectric film of SiO 2 was formed to a thickness of 0.4 μm on the buffer layer, and a BCB adhesive was applied thereon by spin coating to form a first adhesive layer.
次に、支持基板の準備を行った。まず、サファイア上にSiO2からなる誘電体膜を形成し、その上にBCB樹脂からなる接着剤を塗布した第二接着層を形成した。
Next, the support substrate was prepared. First, a dielectric film composed of SiO 2 was formed on sapphire, and a second adhesive layer coated with an adhesive composed of BCB resin was formed thereon.
次に発光用ウェーハと支持基板を接合するため、第一接着層と第二接着層を接着した。その後、GaAs基板をアンモニア含有エッチャントにより除去した。引き続きエッチストップ層を除去し、第一半導体層を露出させた。次に第一半導体層及び活性層の一部を切り欠き、第二半導体の一部を露出させた。
Next, in order to bond the light emitting wafer and the support substrate, the first adhesive layer and the second adhesive layer were adhered. Thereafter, the GaAs substrate was removed by an ammonia-containing etchant. Subsequently, the etch stop layer was removed to expose the first semiconductor layer. Next, a part of the first semiconductor layer and the active layer was cut out to expose a part of the second semiconductor.
次に切り欠かれた側面を被覆するように、誘電体層を形成し、開口部を設けた。誘電体層はSiO2とし、TEOSとO2を使用するP-CVD法にて製膜した。開口部は誘電体層を成膜後、フォトリソグラフィー法によりマスク部を形成し、BHFによるウェットエッチング法にて露出部を形成することで設けた。
Next, a dielectric layer was formed and an opening was provided so as to cover the notched side surface. The dielectric layer was SiO 2 and was deposited by P-CVD using TEOS and O 2 . The opening was formed by forming a dielectric layer, forming a mask by photolithography, and forming an exposed portion by wet etching using BHF.
次に第一オーミック電極、第二オーミック電極を形成した。その後、フォトリソグラフィー及びドライエッチング法にて、可視透明基板の一部を露出させた。このとき露出部の幅(スクライブ方向と垂直な方向)を5,10,15,20,25,30μmとした。AlGaInP層の除去は、ICP装置内で、Cl含有ガスとArの混合雰囲気にて行い、SiO2の誘電体層とBCB層の除去はF含有ガスとArの混合雰囲気にて行なった。圧力雰囲気は0.5Pa、出力はプラズマ300Wとした。
Next, a first ohmic electrode and a second ohmic electrode were formed. Thereafter, part of the visible transparent substrate was exposed by photolithography and dry etching. At this time, the width of the exposed portion (direction perpendicular to the scribing direction) was 5, 10, 15, 20, 25, 30 μm. The removal of the AlGaInP layer was performed in a mixed atmosphere of Cl-containing gas and Ar in an ICP apparatus, and the removal of the SiO 2 dielectric layer and the BCB layer was performed in a mixed atmosphere of F-containing gas and Ar. The pressure atmosphere was 0.5 Pa, and the output was 300 W plasma.
露出部形成後、フォトレジストを除去し、レーザーを照射してスクライブ部を形成した。スクライブ部に沿ってブレーキング処理を実施し、ダイス化した。このとき接着剤による接合部が剥離した面積と露出部の幅(ストリート部幅)の関係を図28に示す。後述する比較例(幅0μm)に比べ、いずれの露出部の幅とした場合にも、剥離面積が減少しているのが判る。特に幅が20μm以上の場合には剥離が劇的に改善した。
After forming the exposed portion, the photoresist was removed, and laser was irradiated to form a scribed portion. The breaking process was performed along the scribing part and diced. FIG. 28 shows the relationship between the area of the bonded portion peeled off by the adhesive and the width of the exposed portion (street portion width). It can be seen that the peeling area is reduced regardless of the width of any exposed portion, as compared to the comparative example (width 0 μm) described later. Especially when the width was 20 μm or more, the peeling was dramatically improved.
[実施例2]
図13~図24に示すような本発明の発光素子の製造方法の第二実施形態に基づいて、発光素子の製造を行った。接着剤を所望のパターン形状に加工してから透明基板を貼り合わせることを除き、実施例1と同様な方法で発光素子を製造した。図28に剥離状況の結果を示す。実施例2においても、実施例1と同様な結果が得られた。 Example 2
A light emitting device was manufactured based on the second embodiment of the method for manufacturing a light emitting device of the present invention as shown in FIGS. 13 to 24. A light emitting device was manufactured in the same manner as Example 1, except that the adhesive was processed into a desired pattern shape and then the transparent substrate was attached. FIG. 28 shows the results of the peeling state. Also in Example 2, the same result as in Example 1 was obtained.
図13~図24に示すような本発明の発光素子の製造方法の第二実施形態に基づいて、発光素子の製造を行った。接着剤を所望のパターン形状に加工してから透明基板を貼り合わせることを除き、実施例1と同様な方法で発光素子を製造した。図28に剥離状況の結果を示す。実施例2においても、実施例1と同様な結果が得られた。 Example 2
A light emitting device was manufactured based on the second embodiment of the method for manufacturing a light emitting device of the present invention as shown in FIGS. 13 to 24. A light emitting device was manufactured in the same manner as Example 1, except that the adhesive was processed into a desired pattern shape and then the transparent substrate was attached. FIG. 28 shows the results of the peeling state. Also in Example 2, the same result as in Example 1 was obtained.
[比較例]
図25~図27に示すような従来の方法を用いて、発光素子の製造を行った。接着剤が存在する領域でスクライブを行ったことを除いて実施例1と同様な方法で発光素子を製造した。図28に剥離状況の結果を示す。実施例1、2に比べて剥離面積が大きいことが判る。 [Comparative example]
The light emitting device was manufactured using the conventional method as shown in FIGS. 25 to 27. A light emitting device was manufactured in the same manner as Example 1, except that scribing was performed in the region where the adhesive was present. FIG. 28 shows the results of the peeling state. It can be seen that the peeling area is larger than in Examples 1 and 2.
図25~図27に示すような従来の方法を用いて、発光素子の製造を行った。接着剤が存在する領域でスクライブを行ったことを除いて実施例1と同様な方法で発光素子を製造した。図28に剥離状況の結果を示す。実施例1、2に比べて剥離面積が大きいことが判る。 [Comparative example]
The light emitting device was manufactured using the conventional method as shown in FIGS. 25 to 27. A light emitting device was manufactured in the same manner as Example 1, except that scribing was performed in the region where the adhesive was present. FIG. 28 shows the results of the peeling state. It can be seen that the peeling area is larger than in Examples 1 and 2.
以上のように、本発明の発光素子の製造方法であれば、紫外域において光吸収帯を有する接着剤で発光層と透明基板を接合した基板をレーザーでスクライブするスクライブ・ブレーキング工程において、可視透明接着剤がレーザーエネルギーを吸収し、破壊され、接合部から剥離することを抑制することができることが明らかになった。
As described above, the method of manufacturing a light emitting device according to the present invention is visible in a scribing and breaking step of scribing a substrate obtained by bonding a light emitting layer and a transparent substrate with an adhesive having a light absorption band in the ultraviolet region. It has been found that the transparent adhesive can suppress laser energy absorption, destruction and peeling from the joint.
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has the substantially same constitution as the technical idea described in the claims of the present invention, and the same effects can be exhibited by any invention. It is included in the technical scope of
Claims (4)
- 発光素子の製造方法であって、
(1)出発基板上に、エピタキシャル成長により、第一半導体層、活性層、及び第二半導体層が順次積層された発光層部を含む積層構造を形成し、発光素子用ウェーハを作製する工程、
(2)支持基板を準備する工程、
(3)前記支持基板を、接着層を介して前記発光素子用ウェーハに接着し、接合基板を作製する工程、
(4)前記接合基板において、前記出発基板を除去して、前記第一半導体層を露出させる工程、
(5)前記接合基板の一部の領域において、少なくとも前記第一半導体層及び活性層を除去し、除去部を形成する工程、
(6)前記第一半導体層の表面に第一オーミック電極を、前記除去部の表面に第二オーミック電極を形成する工程、及び
(7)レーザー光によるスクライブ・ブレーキング法を用いて前記接合基板から発光素子をダイス状に分離する工程、
を含み、かつ、スクライブを行う前に、予めスクライブ領域にある前記接着層を除去しておくことを特徴とする発光素子の製造方法。 A method of manufacturing a light emitting device,
(1) forming a laminated structure including a light emitting layer portion in which a first semiconductor layer, an active layer, and a second semiconductor layer are sequentially laminated by epitaxial growth on a starting substrate, thereby producing a wafer for a light emitting device;
(2) preparing a support substrate;
(3) bonding the supporting substrate to the wafer for light emitting devices through an adhesive layer to produce a bonded substrate;
(4) removing the starting substrate from the bonded substrate to expose the first semiconductor layer;
(5) removing at least the first semiconductor layer and the active layer in a partial region of the bonded substrate to form a removal portion;
(6) forming a first ohmic electrode on the surface of the first semiconductor layer, and forming a second ohmic electrode on the surface of the removal portion, and (7) the bonding substrate using a scribing / breaking method using a laser beam. Separating the light emitting element from the
And a method of manufacturing a light emitting device, wherein the adhesive layer in the scribe region is removed in advance before scribing. - 前記工程(7)において、スクライブを行う前に、前記スクライブ領域にある前記接着層を除去することを特徴とする請求項1に記載の発光素子の製造方法。 The method according to claim 1, wherein in the step (7), the adhesive layer in the scribe region is removed before scribing.
- 前記工程(2)において、前記支持基板を、接着層を有するものとし、かつ、前記接着層を、スクライブ領域には前記接着層が存在しないように除去加工されたものとすることを特徴とする請求項1に記載の発光素子の製造方法。 In the step (2), the support substrate has an adhesive layer, and the adhesive layer is removed so that the adhesive layer does not exist in the scribe region. A method of manufacturing a light emitting device according to claim 1.
- 前記接着剤が存在しない領域の幅を、スクライブ方向に対して垂直な方向で20μm以上とすることを特徴とする請求項1から請求項3のいずれか一項に記載の発光素子の製造方法。 The method according to any one of claims 1 to 3, wherein the width of the region where the adhesive is not present is 20 μm or more in a direction perpendicular to the scribing direction.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-227264 | 2017-11-27 | ||
JP2017227264A JP6841214B2 (en) | 2017-11-27 | 2017-11-27 | Manufacturing method of light emitting element |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019102738A1 true WO2019102738A1 (en) | 2019-05-31 |
Family
ID=66630546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/038071 WO2019102738A1 (en) | 2017-11-27 | 2018-10-12 | Light-emitting element manufacturing method |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6841214B2 (en) |
TW (1) | TW201931457A (en) |
WO (1) | WO2019102738A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110783253A (en) * | 2019-10-31 | 2020-02-11 | 京东方科技集团股份有限公司 | Manufacturing method of display substrate, display substrate and display device |
EP4177970A4 (en) * | 2020-07-03 | 2024-07-31 | Shinetsu Handotai Kk | Junction semiconductor light-receiving element and production method for junction semiconductor light-receiving element |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111129257B (en) * | 2019-12-30 | 2021-10-08 | 广东德力光电有限公司 | Ultraviolet high-reflectivity composite electrode and preparation method thereof |
JP7298757B1 (en) * | 2022-06-27 | 2023-06-27 | 信越半導体株式会社 | Bonded light-emitting device wafer and manufacturing method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6071795A (en) * | 1998-01-23 | 2000-06-06 | The Regents Of The University Of California | Separation of thin films from transparent substrates by selective optical processing |
JP2007234902A (en) * | 2006-03-01 | 2007-09-13 | Toyoda Gosei Co Ltd | Light-emitting element, and manufacturing method thereof |
JP2009277884A (en) * | 2008-05-14 | 2009-11-26 | Sharp Corp | Method of manufacturing electronic element module, electronic element module, and electronic information apparatus |
JP2010123742A (en) * | 2008-11-19 | 2010-06-03 | Showa Denko Kk | Light emitting diode and method of manufacturing the same, and lamp |
JP2016225586A (en) * | 2015-05-29 | 2016-12-28 | 久元電子股▲ふん▼有限公司 | Dicing process of wafer |
-
2017
- 2017-11-27 JP JP2017227264A patent/JP6841214B2/en active Active
-
2018
- 2018-10-12 WO PCT/JP2018/038071 patent/WO2019102738A1/en active Application Filing
- 2018-10-22 TW TW107137164A patent/TW201931457A/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6071795A (en) * | 1998-01-23 | 2000-06-06 | The Regents Of The University Of California | Separation of thin films from transparent substrates by selective optical processing |
JP2007234902A (en) * | 2006-03-01 | 2007-09-13 | Toyoda Gosei Co Ltd | Light-emitting element, and manufacturing method thereof |
JP2009277884A (en) * | 2008-05-14 | 2009-11-26 | Sharp Corp | Method of manufacturing electronic element module, electronic element module, and electronic information apparatus |
JP2010123742A (en) * | 2008-11-19 | 2010-06-03 | Showa Denko Kk | Light emitting diode and method of manufacturing the same, and lamp |
JP2016225586A (en) * | 2015-05-29 | 2016-12-28 | 久元電子股▲ふん▼有限公司 | Dicing process of wafer |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110783253A (en) * | 2019-10-31 | 2020-02-11 | 京东方科技集团股份有限公司 | Manufacturing method of display substrate, display substrate and display device |
EP4177970A4 (en) * | 2020-07-03 | 2024-07-31 | Shinetsu Handotai Kk | Junction semiconductor light-receiving element and production method for junction semiconductor light-receiving element |
Also Published As
Publication number | Publication date |
---|---|
TW201931457A (en) | 2019-08-01 |
JP2019096829A (en) | 2019-06-20 |
JP6841214B2 (en) | 2021-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019102738A1 (en) | Light-emitting element manufacturing method | |
TWI726494B (en) | Method of separating light emitting devices formed on a substrate wafer | |
US8258521B2 (en) | Radiation-emitting semiconductor body with carrier substrate and method for the production thereof | |
TWI517459B (en) | Semiconductor light emitting device and method for manufacturing same | |
JP2004031526A (en) | Manufacturing method of group iii nitride compound semiconductor element | |
JPH10275936A (en) | Method for manufacturing semiconductor light-emitting element | |
JP2007103934A (en) | Method of manufacturing perpendicular structure light emitting diode | |
JP2000091636A (en) | Manufacture of semiconductor light emitting element | |
JP2004165227A (en) | Method of manufacturing group iii nitride compound semiconductor element | |
US9419185B2 (en) | Method of singulating LED wafer substrates into dice with LED device with Bragg reflector | |
JP2006073619A (en) | Nitride based compound semiconductor light emitting diode | |
KR100648136B1 (en) | Light Emitting Diode and manufacturing method of the same | |
TW201445768A (en) | Method of fabricating semiconductor devices | |
WO2014118864A1 (en) | Semiconductor optical device, and method for manufacturing semiconductor optical device | |
CN114709319B (en) | Color conversion structure manufacturing method, color conversion structure, crystal grain manufacturing method and crystal grain | |
JPH11354841A (en) | Fabrication of semiconductor light emitting element | |
JP2009283762A (en) | Method for manufacturing nitride compound semiconductor led | |
JP6667540B2 (en) | Method for manufacturing a plurality of semiconductor chips and semiconductor chip | |
JP2019537255A (en) | Method of manufacturing at least one optoelectronic semiconductor component and optoelectronic semiconductor component | |
JP4570683B2 (en) | Nitride compound semiconductor light emitting device manufacturing method | |
US20120276668A1 (en) | Method for manufacturing semiconductor light emitting device | |
US20120313249A1 (en) | Semiconductor device structures and the separating methods thereof | |
JP2006237056A (en) | Method of manufacturing semiconductor device | |
JP2014120511A (en) | Method of manufacturing semiconductor device; and semiconductor device | |
JP5800568B2 (en) | Manufacturing method of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18881057 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18881057 Country of ref document: EP Kind code of ref document: A1 |