[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019155578A1 - 無線基地局、無線端末、無線通信システムおよび送信電力制御方法 - Google Patents

無線基地局、無線端末、無線通信システムおよび送信電力制御方法 Download PDF

Info

Publication number
WO2019155578A1
WO2019155578A1 PCT/JP2018/004435 JP2018004435W WO2019155578A1 WO 2019155578 A1 WO2019155578 A1 WO 2019155578A1 JP 2018004435 W JP2018004435 W JP 2018004435W WO 2019155578 A1 WO2019155578 A1 WO 2019155578A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
terminal
radio
transmission
radio base
Prior art date
Application number
PCT/JP2018/004435
Other languages
English (en)
French (fr)
Inventor
福井 範行
啓二郎 武
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP22175777.6A priority Critical patent/EP4084359A1/en
Priority to CN201880088191.8A priority patent/CN111656701A/zh
Priority to JP2019566973A priority patent/JP6656500B2/ja
Priority to CN202310267208.9A priority patent/CN116192221A/zh
Priority to PCT/JP2018/004435 priority patent/WO2019155578A1/ja
Priority to EP18904615.4A priority patent/EP3737001A4/en
Publication of WO2019155578A1 publication Critical patent/WO2019155578A1/ja
Priority to US16/944,719 priority patent/US11297578B2/en
Priority to US17/679,988 priority patent/US11832192B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/08Closed loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences

Definitions

  • the present invention relates to a radio base station, a radio terminal, a radio communication system, and a transmission power control method for controlling transmission power of a radio terminal.
  • a wireless terminal that communicates with a wireless base station controls transmission power of a signal transmitted to the wireless base station. This is to allow the radio base station to receive a signal transmitted from the radio terminal without error, and to prevent unnecessary interference with other radio base stations.
  • Non-Patent Document 1 In the NR (New Radio) standard defined by 3GPP (3rd Generation Partnership Project) to be applied to the fifth generation mobile communication system, two methods of open-loop control and closed-loop control are used as transmission power control methods for wireless terminals. A control method is defined (Non-Patent Document 1).
  • Open loop control is a control method performed when a radio terminal starts communication with a radio base station, or when a radio terminal starts communication by connecting to another radio base station by handover.
  • the radio base station notifies the radio terminal of the target received power value of the preamble that the radio terminal transmits using a physical random access channel (PRACH) at the start of communication as broadcast information.
  • PRACH physical random access channel
  • the wireless terminal downlink (direction from the wireless base station to the wireless terminal) from the received power value of the signal periodically transmitted from the wireless base station and the transmission power value of the wireless base station broadcast separately from the wireless base station. )
  • the transmission path loss is calculated, and the power value for the calculated path loss is added to the target received power value of the preamble notified from the radio base station to determine the transmission power of the uplink signal.
  • the radio base station transmits a transmission power control command (TPC: Transmission Power Control) that explicitly specifies increase / decrease of transmission power to the radio terminal, and This is a control method for controlling transmission power.
  • TPC Transmission Power Control
  • the radio terminal While communicating with the radio base station, the radio terminal once determines the transmission power value by open loop control, adjusts the transmission power according to the closed loop control from the radio base station, and determines the final transmission power value To do.
  • a configuration in which one radio base station transmits signals from a plurality of antennas installed at different locations that is, a configuration in which one radio base station has a plurality of TRPs (Transmission Reception Points) can be considered.
  • the TRP is a place where the radio base station actually transmits and receives signals, that is, an antenna installation place.
  • the reception power of the signal from the radio terminal may be different in each TRP. Further, interference power from other radio terminals in the radio base station may be different in each TRP.
  • the SINR Signal to Interference plus Noise power Ratio
  • the transmission power control command cannot be properly used for each TRP. That is, in the technique described in Non-Patent Document 1, when the SINR of the signal from the wireless terminal is different in each TRP, a certain TRP satisfies the SINR appropriate value, and other TRPs do not satisfy the SINR appropriate value, It can only control whether the transmit power of the directed radio terminal transmit beam is increased or decreased simultaneously. For this reason, there is a problem in that it is impossible to individually control the SINR in each TRP included in the radio base station to the SINR appropriate value.
  • the present invention has been made in view of the above, and controls transmission power of a signal transmitted by a wireless terminal in units of locations where the signal is received when a signal from the wireless terminal can be received at a plurality of locations.
  • the aim is to obtain a possible radio base station.
  • each of the radio base stations of the present invention generates a base station receive beam and receives a signal transmitted from the radio terminal using the terminal transmit beam.
  • a plurality of base station antenna units that receive the beam are provided.
  • the radio base station also includes a measurement unit that measures the reception quality of the signal for each base station reception beam.
  • the radio base station divides the base station reception beam into groups in units of base station antenna units, and performs control for transmitting power control of terminal transmission beams of radio terminals in units of groups based on measurement results of the measurement units in group units And a section.
  • the radio base station according to the present invention has an effect that, when a signal from a radio terminal can be received at a plurality of locations, the transmission power of the signal transmitted by the radio terminal can be controlled in units of locations where the signal is received. .
  • FIG. 1 shows the figure which shows the structural example of the radio
  • FIG. 1 shows the example of the frequency mapping of the sounding signal which the radio
  • FIG. The figure which shows the example of the state which is transmitting signals, such as data, using the terminal transmission beam which the wireless base station concerning Embodiment 1 designated with respect to the wireless terminal.
  • FIG. 1 shows the example of the frequency mapping of the sounding signal which the radio
  • FIG. 6 is a flowchart showing an operation of grouping terminal transmit beams of radio terminals in the radio base station according to the first exemplary embodiment.
  • wireless base station concerning Embodiment 1 selects the radio
  • FIG. 10 is a flowchart showing operations until the radio terminal according to the first exemplary embodiment acquires group information of the terminal transmission beam of the radio terminal from the radio base station.
  • FIG. 1 is a diagram illustrating an example of a hardware configuration for realizing a radio base station and a radio terminal according to a first embodiment; The figure which shows the structural example of the radio
  • FIG. 9 is a diagram illustrating a correspondence relationship between a base station transmission beam and a terminal reception beam selected from a reception quality measurement result for each terminal reception beam in the wireless terminal according to the second embodiment; The figure which shows the structural example of the wireless base station concerning Embodiment 2.
  • FIG. 7 is a flowchart illustrating an operation of transmitting a measurement signal and control information to wireless terminals that perform grouping of terminal reception beams in the wireless base station according to the second embodiment.
  • FIG. 10 is a flowchart illustrating an operation of grouping terminal transmission beams of a radio terminal in the radio terminal according to the second embodiment.
  • 10 is a flowchart illustrating an operation of determining a transmission power control method for a radio terminal in a radio base station according to the fourth embodiment.
  • Embodiment 1 when a radio base station receives a signal transmitted from a radio terminal, a radio communication system in which the radio terminal generates a transmission beam and the radio base station generates a reception beam and performs radio communication.
  • a radio base station has two TRPs
  • the number of TRPs possessed by a radio base station is not limited to two.
  • one or more beams corresponding to one TRP are defined as a TRP group. That is, a reception beam generated by one TRP in the radio base station is one TRP group, and one or more transmission beams generated by the radio terminal toward one TRP are also one TRP group.
  • the radio base station applies a transmission power control command in units of TRP groups, that is, controls the transmission power of transmission beams of radio terminals in units of TRP groups.
  • a transmission power control command in units of TRP groups, that is, controls the transmission power of transmission beams of radio terminals in units of TRP groups.
  • the transmission beam generated by the wireless terminal is referred to as a terminal transmission beam
  • the reception beam generated by the wireless base station is referred to as a base station reception beam.
  • FIG. 1 is a diagram illustrating a configuration example of a wireless communication system 50 according to the first embodiment of the present invention.
  • the radio communication system 50 includes a radio base station 10 and a radio terminal 20.
  • the radio base station 10 includes a signal processing unit 17 and antenna units 14a and 14b.
  • the locations where the antenna units 14a and 14b are installed are referred to as TRP # 1 and TRP # 2, respectively.
  • the radio base station 10 performs radio communication with the radio terminal 20 using the antenna units 14a and 14b.
  • the antenna units 14a and 14b each generate four base station reception beams, and receive signals transmitted from the radio terminal 20 using the base station reception beams.
  • the base station reception beams generated by the antenna unit 14a are base station reception beams 101 to 104
  • the base station reception beams generated by the antenna unit 14b are base station reception beams 105 to 108.
  • the radio terminal 20 generates six terminal transmission beams 201 to 206 and transmits signals to the radio base station 10 using the terminal transmission beams 201 to 206.
  • the number of wireless terminals 20 is one in FIG. 1, but this is an example, and the number of wireless terminals 20 may be two or more.
  • the wireless terminal 20 transmits a sounding signal using all terminal transmit beams 201 to 206 that can be generated.
  • the sounding signal is a measurement signal used for measuring the reception quality of the signal received by the radio base station 10.
  • the sounding signal is used when associating a plurality of terminal transmission beams with the TRP.
  • the radio base station 10 receives the sounding signal using the base station reception beams 101 to 108, and measures the reception quality of the sounding signal for each base station reception beam.
  • the radio terminal 20 may generate each of the terminal transmission beams at different timings when all of the terminal transmission beams 201 to 206 cannot be generated at the same time.
  • the radio terminal 20 may generate the terminal transmission beams 201 to 206 in a plurality of times.
  • the radio base station 10 may generate each base station reception beam at different timings. That is, the radio base station 10 may generate the base station reception beams 101 to 108 in a plurality of times.
  • the radio terminal 20 can generate all of the terminal transmission beams 201 to 206 simultaneously, and the radio base station 10 can generate all of the base station reception beams 101 to 108 simultaneously. .
  • the radio base station 10 selects a terminal transmission beam from the radio terminal 20 that can obtain good reception quality with each base station reception beam based on the measurement result of the reception quality of the sounding signal.
  • Good reception quality is a case where a measurement result of reception quality, for example, SINR is equal to or higher than a prescribed threshold value.
  • the radio base station 10 needs to distinguish a plurality of terminal transmission beams of the radio terminal 20 in order to select a terminal transmission beam from which good reception quality can be obtained.
  • a sequence pattern and a terminal transmission beam ID (Identifier) placed on a sounding signal transmitted by the radio terminal 20 with each terminal transmission beam are used.
  • the terminal transmission beam ID is identification information for identifying each terminal transmission beam.
  • the terminal transmission beam ID is information that can identify the terminal transmission beams 201 to 206.
  • FIG. 2 is a diagram illustrating an example of frequency mapping of the sounding signal transmitted by the wireless terminal 20 according to the first embodiment.
  • the frequency mapping information shown in FIG. 2 indicates the association between the frequency regions f1 to f6 in which the sounding signals transmitted by the radio terminal 20 are arranged and the terminal transmission beam ID.
  • terminal transmission beam IDs are represented by 201 to 206.
  • the radio terminal 20 transmits a sounding signal using only the frequency domain assigned to each terminal transmission beam.
  • the radio terminal 20 transmits a sounding signal using the terminal transmission beam 201 in the frequency domain f1.
  • the radio base station 10 can determine the terminal transmission beam from the radio terminal 20 that can obtain good reception quality with the base station reception beam by specifying the frequency mapping information shown in FIG. 2 in advance to the radio terminal 20. it can.
  • FIG. 3 is a diagram illustrating an example of a result of selecting a terminal transmission beam of the radio terminal 20 with good reception quality for each base station reception beam in the radio base station 10 according to the first embodiment.
  • the reception quality of the sounding signal transmitted from the radio terminal 20 by the terminal transmission beam 202 is good in the base station reception beam 102.
  • the reception quality of the sounding signal transmitted from the radio terminal 20 by the terminal transmission beam 201 is good in the base station reception beam 103.
  • the reception quality of the sounding signal transmitted from the radio terminal 20 by the terminal transmission beam 205 is good in the base station reception beam 106.
  • the reception quality of the sounding signal transmitted from the radio terminal 20 by the terminal transmission beam 206 is good in the base station reception beam 107. Further, FIG. 3 shows that in the radio base station 10, the base station reception beams 101, 104, 105, 108 do not obtain good reception quality with respect to the sounding signal transmitted from the radio terminal 20. Yes.
  • FIG. 3 also shows the relationship between the base station reception beam and the TRP group ID in the radio base station 10.
  • the TRP group ID is information for identifying each TRP group.
  • the TRP group ID of the TRP group corresponding to TRP # 1 is # 1
  • the TRP group ID of the TRP group corresponding to TRP # 2 is # 2.
  • base station reception beams 101 to 104 belong to TRP group ID # 1
  • base station reception beams 105 to 108 belong to TRP group ID # 2.
  • the radio base station 10 notifies the radio terminal 20 of the relationship between the terminal transmission beam and the TRP group ID of the radio terminal 20 with good reception quality shown in FIG.
  • layer 1 signaling using PDCCH (Physical Downlink Control Channel) defined in the NR standard, MAC signaling by MAC (Medium Access Control) layer, or the like is used.
  • the radio base station 10 groups the terminal transmission beams 201 and 202 into TRP group ID # 1, and groups the terminal transmission beams 205 and 206 into TRP group ID # 2.
  • the groups indicated by the TRP group IDs # 1 and # 2 include the TRP # 1 and # 2 of the radio base station 10 in which a plurality of terminal transmission beams of the radio terminal 20 receive signals transmitted by the terminal transmission beams. It is a group divided into units.
  • FIG. 4 illustrates an example of a state in which the radio base station 10 according to the first embodiment transmits a signal such as data using the terminal transmission beams 201, 202, 205, and 206 designated to the radio terminal 20.
  • the radio base station 10 designates a terminal transmission beam for the radio terminal 20 using UL grant specified in the NR standard. Format 0_1 of DCI (Downlink Control Information) defined in the 3GPP standard TS38.212V15.0.0 is used for transmission of a message permitting the wireless terminal 20 to perform PUSCH transmission, that is, the UL grant described above.
  • DCI Downlink Control Information
  • SRS resource indicator specifies a beam of a sounding signal (SRS) or a PUSCH signal that uses the same beam as the sounding signal.
  • TPC command for scheduled PUSCH is defined in the message of Format0_1, and this is a transmission power control command.
  • the elements of this transmission power control command are expanded to the number of TRP groups. That is, assuming that the number of TRP groups is n, the transmission power control commands are “TPC command for scheduled PUSCH # 1,” “TPC command for scheduled PUSCH # 2,” and “TPC command for scheduled PUSCH # n.” Define.
  • the expanded format is Format0_1E.
  • FIG. 5 is a diagram illustrating an example of measurement results of reception quality at each TRP of the radio base station 10 according to the first embodiment.
  • the reception quality is SINR.
  • SINR satisfies the SINR appropriate value in TRP # 1
  • SINR does not satisfy the SINR appropriate value in TRP # 2.
  • the radio base station 10 notifies the radio terminal 20 of a message including the content of the following transmission power control command.
  • TPC command for scheduled PUSCH # 1 ⁇ 1 [dB]
  • TPC command for scheduled PUSCH # 2 + 1 [dB]
  • SRS resource indicator ⁇ 201,202,205”. , 206 ⁇ ”.
  • the wireless terminal 20 that has received the message including the above content controls the transmission power of the terminal transmission beam according to the content of the message.
  • the wireless terminal 20 uses the acquired information, the wireless terminal 20 accumulates transmission power ⁇ 1 [dB] from the value at the previous transmission for the TRP group ID # 1, that is, the group of the terminal transmission beams 201 and 202, and the TRP group ID For # 2, that is, the group of terminal transmission beams 205 and 206, the transmission power is accumulated +1 [dB] from the value at the previous transmission.
  • the radio base station 10 reduces the transmission power of the terminal transmission beams 201 and 202 of the radio terminal 20 and increases the transmission power of the terminal transmission beams 205 and 206 of the radio terminal 20, so that the SINR of each TRP shown in FIG.
  • the SINR of TRP # 1 can be lowered and the SINR of TRP # 2 can be raised.
  • the radio base station 10 controls the transmission power of the signal transmitted by the radio terminal 20 in units of TRP, specifically, the transmission power of the terminal transmission beam, so that the SINR is set to the appropriate SINR value in units of TRP. Can be approached.
  • FIG. 6 is a diagram of a configuration example of the radio base station 10 according to the first embodiment.
  • the radio base station 10 includes a signal processing unit 17 and antenna units 14a and 14b.
  • the signal processing unit 17 includes a control unit 11, a modem unit 12, a transmission / reception unit 13, and a measurement unit 15.
  • the control unit 11 instructs the radio terminal 20 to transmit a sounding signal, and based on the reception quality of the sounding signal, the relationship between the TRP group ID, the base station reception beam, and the terminal transmission beam as shown in FIG. Perform grouping. In addition, the control unit 11 selects the radio terminal 20 to which the PUSCH is allocated, selects the radio terminal 20 transmission beam that provides good reception quality in each base station reception beam, and the transmission power control value indicated by the transmission power control command. Calculation, base station reception beam direction control, data transmission / reception with a core network (not shown), and the like.
  • the modem unit 12 modulates a signal such as data and control information acquired from the control unit 11 and outputs the modulated signal to the transmission / reception unit 13. Further, the modem unit 12 demodulates the signal acquired from the transmission / reception unit 13 and outputs the demodulated signal to the control unit 11.
  • the transmission / reception unit 13 converts the signal acquired from the modulation / demodulation unit 12 from a digital signal to an analog signal, and up-converts the frequency.
  • the transmission / reception unit 13 outputs the analog signal after the up-conversion to the antenna units 14a and 14b.
  • the transmission / reception unit 13 down-converts the frequency of the signal acquired from the antenna units 14a and 14b, and converts the analog signal into a digital signal.
  • the transmission / reception unit 13 outputs the converted digital signal to the modem unit 12.
  • the antenna units 14a and 14b each generate a plurality of base station reception beams, and receive signals transmitted from the radio terminal 20 using the plurality of terminal transmission beams using the plurality of base station reception beams. It is an antenna part. Specifically, the antenna units 14 a and 14 b transmit the signal acquired from the transmission / reception unit 13 in the beam direction according to an instruction from the control unit 11. Further, the antenna units 14 a and 14 b receive signals from the radio terminal 20 in the beam direction according to instructions from the control unit 11. Each of the antenna units 14a and 14b simultaneously generates a plurality of base station reception beams.
  • the measurement unit 15 measures the reception quality, reception power, and the like of the signals acquired from the antenna units 14a and 14b. Specifically, the measurement unit 15 measures signal reception quality, reception power, and the like for each base station reception beam generated by the antenna units 14a and 14b. The measurement unit 15 outputs measurement results such as reception quality and reception power to the control unit 11.
  • the signal for which the measurement unit 15 measures reception quality, reception power, and the like includes the above-described sounding signal.
  • FIG. 7 is a flowchart of an operation of grouping the terminal transmission beams of the radio terminal 20 in the radio base station 10 according to the first embodiment.
  • the control unit 11 transmits a sounding signal from the radio terminal 20 and wants the measurement unit 15 to measure the reception quality of the sounding signal for each of the base station reception beams 101 to 108 of the antenna units 14a and 14b, as shown in FIG. A simple frequency mapping.
  • the control unit 11 includes frequency mapping information, generates control information instructing transmission of the sounding signal, and transmits the control information to the radio terminal 20 via the modem unit 12, the transmission / reception unit 13, and the antenna unit 14a. . In this way, the control unit 11 instructs the wireless terminal 20 to transmit a sounding signal (step S11).
  • the radio terminal 20 transmits a sounding signal according to the content of the control information.
  • the control unit 11 instructs the antenna units 14a and 14b about the direction of the base station reception beam, and receives the sounding signal from the radio terminal 20 (step S12).
  • the measurement unit 15 receives reception signals from the antenna units 14a and 14b, and measures reception quality, specifically SINR as described above (step S13).
  • the measurement unit 15 notifies the control unit 11 of the reception quality measurement result.
  • the control unit 11 groups the terminal transmission beams of the radio terminals 20 based on the measurement result from the measurement unit 15 (step S14). Specifically, the control unit 11 creates a map showing the relationship between the TRP group ID, the base station reception beam, and the terminal transmission beam having good reception quality as shown in FIG.
  • the control unit 11 associates the TRP group ID with a terminal transmission beam having good reception quality from the created map, and groups the terminal transmission beams of the radio terminals 20 in units of TRPs of the radio base station 10. Specifically, the control unit 11 transmits a terminal transmission beam of the radio terminal 20 used for transmitting a sounding signal received by each base station reception beam for each base station reception beam having a prescribed reception quality. Select. The control unit 11 groups the terminal transmission beams selected for the base station reception beams generated by the same base station antenna unit into the same group, and groups the plurality of terminal transmission beams of the radio terminal 20 into groups of base station antenna units. Divide.
  • the control unit 11 generates control information including group information obtained by grouping the terminal transmission beams of the radio terminal 20, and transmits the control information to the radio terminal 20 via the modem unit 12, the transmission / reception unit 13, and the antenna unit 14a. To do. Thereby, the control part 11 notifies the radio
  • FIG. 8 is a flowchart showing an operation when the radio terminal 20 to which the PUSCH is allocated is selected in the radio base station 10 according to the first embodiment.
  • the control unit 11 selects the radio terminal 20 to which the PUSCH is assigned (step S21)
  • the control unit 11 calculates a transmission power control value for each TRP group (step S22). For example, the control unit 11 receives the previous PUSCH from the same wireless terminal 20 and compares the SINR of the base station reception beam for each TRP measured by the measurement unit 15 with the SINR appropriate value.
  • the control unit 11 calculates a transmission power control value for each TRP group based on the comparison result.
  • the control unit 11 notifies the radio terminal 20 of the transmission power control value of the terminal transmission beam of the radio terminal 20 for each TRP group (step S23). Specifically, the control unit 11 generates a DCI format0_1E having TPC command for scheduled PUSCH # 1 to # 2 as a transmission power control value for each TRP group, and the modulation / demodulation unit 12, the transmission / reception unit 13, and the antenna unit 14a are generated. Then, DCI format0_1E is transmitted to the wireless terminal 20.
  • FIG. 9 is a diagram of a configuration example of the wireless terminal 20 according to the first embodiment.
  • the wireless terminal 20 includes a control unit 21, a modem unit 22, a transmission / reception unit 23, an antenna unit 24, and a sounding signal generation unit 25.
  • the control unit 21 analyzes the control information notified from the radio base station 10 and performs a sounding signal transmission instruction, a PUSCH transmission instruction, a transmission power control for each terminal transmission beam group, a terminal transmission beam direction control, and the like. .
  • the modem unit 22 modulates signals such as data and control information acquired from the control unit 21, and outputs them to the transmission / reception unit 23. Further, the modem unit 22 demodulates the signal acquired from the transmission / reception unit 23 and outputs the demodulated signal to the control unit 21.
  • the transmission / reception unit 23 converts the signal acquired from the modulation / demodulation unit 22 from a digital signal to an analog signal, and up-converts the frequency.
  • the transmission / reception unit 23 outputs the analog signal after the up-conversion to the antenna unit 24. Further, the transmission / reception unit 23 down-converts the frequency of the signal acquired from the antenna unit 24 and converts the analog signal into a digital signal.
  • the transmission / reception unit 23 outputs the converted digital signal to the modulation / demodulation unit 22.
  • the antenna unit 24 is a terminal antenna unit that generates a plurality of terminal transmission beams and transmits signals to the radio base station 10 using the plurality of terminal transmission beams.
  • the antenna unit 24 transmits the signal acquired from the transmission / reception unit 23 in the beam direction as instructed by the control unit 21. Further, the antenna unit 24 receives a signal from the radio base station 10 in the beam direction according to an instruction from the control unit 21.
  • the antenna unit 24 generates a plurality of terminal transmission beams at the same time.
  • the sounding signal generation unit 25 is a measurement signal generation unit that generates a sounding signal based on an instruction from the control unit 21.
  • FIG. 10 is a flowchart of operations until the radio terminal 20 according to the first embodiment acquires group information of the terminal transmission beam of the radio terminal 20 from the radio base station 10.
  • the control unit 21 acquires control information instructing transmission of a sounding signal from the radio base station 10 via the antenna unit 24, the transmission / reception unit 23, and the modulation / demodulation unit 22 (step S31)
  • the control unit 21 sends a control signal to the sounding signal generation unit 25.
  • the control unit 21 notifies the sounding signal generation unit 25 of frequency mapping information included in the control information.
  • the sounding signal generator 25 generates a sounding signal for each terminal transmission beam based on the frequency mapping information (step S32).
  • control unit 21 determines the direction of the terminal transmission beam based on the frequency mapping information, and instructs the antenna unit 24 about the direction of the terminal transmission beam.
  • the antenna unit 24 generates a terminal transmission beam based on an instruction from the control unit 21, and uses the sounding signal acquired from the sounding signal generation unit 25 via the transmission / reception unit 23 as the direction of the terminal transmission beam instructed from the control unit 21.
  • the radio base station 10 groups the terminal transmission beams of the radio terminals 20 based on the reception quality of each base station reception beam that has received the sounding signal, and sends a control signal including group information to the radio terminals 20. To notify.
  • the control unit 21 acquires control information including group information from the radio base station 10 via the antenna unit 24, the transmission / reception unit 23, and the modulation / demodulation unit 22. Thereby, the radio
  • FIG. 11 is a flowchart illustrating an operation when a PUSCH is assigned from the radio base station 10 in the radio terminal 20 according to the first embodiment.
  • the control unit 21 acquires the DCI format0_1E from the radio base station 10 via the antenna unit 24, the transmission / reception unit 23, and the modulation / demodulation unit 22, the control unit 21 detects that the PUSCH is assigned to the radio terminal 20 (step S41).
  • the control unit 21 generates a signal to be transmitted to the radio base station 10 and outputs the signal to the modem unit 22.
  • FIG. 12 is a diagram of an example of a hardware configuration that implements the radio base station 10 and the radio terminal 20 according to the first embodiment.
  • the radio base station 10 is realized by, for example, the processor 31, the memory 32, the transmitter 33, the receiver 34, and the antenna device 35.
  • the processor 31 is a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor, DSP (Digital Signal Processor)), system LSI (Large Scale Integration), or the like.
  • the memory 32 is nonvolatile such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory), or the like. Volatile semiconductor memory, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disc), etc.
  • the control unit 11 and the modem unit 12 of the base station are realized by a program stored in the processor 31 and the memory 32. Specifically, it is realized by the processor 31 reading out a program for performing the operation of each unit from the memory 32 and executing it.
  • the transmission / reception unit 13 is realized by a transmitter 33 and a receiver 34. That is, transmission processing in the transmission / reception unit 13 is performed in the transmitter 33, and reception processing in the transmission / reception unit 13 is performed in the receiver 34.
  • the measuring unit 15 is also realized by the receiver 34.
  • the antenna units 14 a and 14 b are realized by the antenna device 35.
  • the control unit 21, the modem unit 22, and the sounding signal generation unit 25 are realized by programs stored in the processor 31 and the memory 32. Specifically, it is realized by the processor 31 reading out a program for performing the operation of each unit from the memory 32 and executing it.
  • the transmission / reception unit 23 is realized by a transmitter 33 and a receiver 34. That is, transmission processing in the transmission / reception unit 23 is performed in the transmitter 33, and reception processing in the transmission / reception unit 23 is performed in the receiver 34.
  • the antenna unit 24 is realized by the antenna device 35.
  • the Form0_1E extended based on the Format0_1 defined in the NR standard is defined.
  • the format is not limited. Other formats may be used as long as transmission power control commands corresponding to TPC command for scheduled PUSCH # 1 to #n can be defined for each TRP group.
  • the radio base station 10 when the radio base station 10 has a plurality of TRPs and is installed in different places, the radio base station 10 is based on the reception quality of signals for each TRP, for example, SINR. Transmission power control of the wireless terminal 20 is performed. Specifically, the radio base station 10 measures the reception quality of the sounding signal transmitted from the radio terminal 20 for each base station reception beam of each TRP, and one radio terminal 20 generates based on the measurement result. Among a plurality of terminal transmission beams, a plurality of terminal transmission beams directed to the same TRP are set as the same TRP group, and transmission power control is performed in units of TRP groups.
  • the radio base station 10 when the radio base station 10 can receive a signal from the radio terminal 20 by a plurality of TRPs, the radio base station 10 controls the transmission power of the signal transmitted by the radio terminal 20 in units of TRPs that receive the signal. It is possible to control each of the plurality of TRPs to approach the appropriate SINR value. Also, since the radio base station 10 does not perform transmission power control in units of terminal transmission beams, it suppresses an increase in control overhead during communication and performs transmission power control without unnecessarily increasing the number of transmission power control commands. be able to.
  • the radio base station 10 performs grouping of terminal transmission beams of the radio terminals 20.
  • a radio terminal performs grouping of terminal transmission beams will be described.
  • the base station transmission beam is a transmission beam generated when a signal is transmitted to a radio terminal in each TRP of the radio base station of the second embodiment.
  • a so-called Beam Correspondence is established in which the terminal transmission beam and the terminal reception beam can form the same gain pattern.
  • the terminal reception beam is a reception beam generated when the radio terminal according to Embodiment 2 receives a signal from the radio base station.
  • FIG. 13 is a diagram of a configuration example of the wireless communication system 50a according to the second embodiment.
  • the radio communication system 50a includes a radio base station 10a and a radio terminal 20a.
  • the radio base station 10a includes a signal processing unit 17a and antenna units 14a and 14b.
  • the radio base station 10a performs radio communication with the radio terminal 20a using the antenna units 14a and 14b.
  • antenna units 14a and 14b generate base station reception beams 101 to 104 and 105 to 108, respectively, and use base station reception beams 101 to 104 and 105 to 108, respectively.
  • a signal transmitted from the wireless terminal 20a is received.
  • FIG. 1 As shown in FIG. 1, as shown in FIG.
  • antenna units 14a and 14b generate base station transmission beams 111 to 114 and 115 to 118, respectively, and base station transmission beams 111 to 114 and 115 to 118, respectively. Is used to transmit a signal to the radio terminal 20a.
  • the wireless terminal 20a As with the wireless terminal 20 shown in FIG. 1, the wireless terminal 20a generates six terminal transmission beams 201 to 206, and transmits signals to the wireless base station 10a using the terminal transmission beams 201 to 206.
  • the radio terminal 20a generates terminal reception beams 211 to 216, and uses the terminal reception beams 211 to 216 to transmit signals transmitted from the radio base station 10a. Receive.
  • the number of wireless terminals 20a is one in FIG. 13, but this is an example, and the number of wireless terminals 20a may be two or more.
  • base station reception beams 101 to 108 correspond to base station transmission beams 111 to 118, respectively, and base station reception beams 101 to 108 and base station transmission beams 111 to It is assumed that the same gain pattern can be formed at 118 and that Beam Correspondence is established.
  • the terminal transmission beams 201 to 206 correspond to the terminal reception beams 211 to 216, respectively, and the same gain pattern can be formed by the terminal transmission beams 201 to 206 and the terminal reception beams 211 to 216, and Beam Correspondence is established. Suppose you are.
  • the radio base station 10a When Beam Correspondence is established, the radio base station 10a notifies the radio terminal 20a of information as shown in FIG.
  • FIG. 14 is a diagram illustrating an example of information on a relationship between a TRP group ID and a base station transmission beam notified from the radio base station 10a to the radio terminal 20a in the second embodiment. In this way, the radio base station 10a notifies the radio terminal 20a of information on the base station transmission beam used for transmission by each TRP.
  • the radio base station 10a may notify the information shown in FIG. 14 in common to all the radio terminals 20a as broadcast information, or may individually notify each radio terminal 20a.
  • the radio terminal 20a that has acquired the information on the association between the TRP group ID and the base station transmission beam associates the base station transmission beam with the terminal reception beam. As shown in FIG. 13, the radio terminal 20a selects which terminal receive beams 211 to 216 are used to receive signals transmitted from the radio base station 10a using the base station transmit beams 111 to 118. Therefore, the reception quality of each of the terminal reception beams 211 to 216 is measured.
  • FIG. 15 shows the correspondence between the base station transmission beams 111 to 118 and the terminal reception beams 211 to 216 selected from the reception quality measurement results for the terminal reception beams 211 to 216 in the radio terminal 20a according to the second embodiment.
  • FIG. 15 shows the correspondence between the base station transmission beams 111 to 118 and the terminal reception beams 211 to 216 selected from the reception quality measurement results for the terminal reception beams 211 to 216 in the radio terminal 20a according to the second embodiment.
  • the radio terminal 20a receives the signal transmitted from the radio base station 10a using the base station transmission beam 111 using the terminal reception beam 213, thereby obtaining the best reception quality. be able to. Also, the radio terminal 20a can obtain the best reception quality by receiving the signal transmitted from the radio base station 10a using the base station transmission beam 112 using the terminal reception beam 212. Also, the radio terminal 20a can obtain the best reception quality by receiving the signal transmitted from the radio base station 10a using the base station transmission beam 113 using the terminal reception beam 211. Also, the radio terminal 20a can obtain the best reception quality by receiving the signal transmitted from the radio base station 10a using the base station transmission beam 115 using the terminal reception beam 214.
  • the radio terminal 20a can obtain the best reception quality by receiving the signal transmitted from the radio base station 10a using the base station transmission beam 116 using the terminal reception beam 215. Also, the radio terminal 20a can obtain the best reception quality by receiving the signal transmitted from the radio base station 10a using the base station transmission beam 117 using the terminal reception beam 216. Also, FIG. 15 shows that there is no terminal reception beam with good reception quality for signals transmitted from the radio base station 10a using the base station transmission beams 114 and 118 in the radio terminal 20a. Yes.
  • SS Synchronization Signal
  • CSI-RS Channel State Information-Reference Signal
  • the radio terminal 20a that has been able to associate the base station transmit beam and the terminal receive beam has the Beam Correspondence established in both the radio base station 10a and the radio terminal 20a using the information shown in FIG. 14 and FIG. Thus, the correlation between the TRP group ID and the terminal transmission beam can be performed. Thereby, the radio
  • the terminal transmission beams 204, 205, and 206 corresponding to are grouped into TRP group # 2 in another same group. Note that operations other than grouping in the radio base station 10a and the radio terminal 20a are the same as those in the radio base station 10 and the radio terminal 20 of the first embodiment, respectively.
  • FIG. 16 is a diagram of a configuration example of the radio base station 10a according to the second embodiment.
  • the radio base station 10a includes a signal processing unit 17a and antenna units 14a and 14b.
  • the signal processor 17a is obtained by adding a measurement signal generator 16 to the signal processor 17 of the first embodiment shown in FIG.
  • the measurement signal generator 16 generates a measurement signal, specifically, SS or CSI-RS as described above according to an instruction from the controller 11.
  • the control unit 11 further includes a base station antenna unit in which a signal is received by the radio base station 10a with a plurality of terminal transmission beams in the radio terminal 20a.
  • the measurement signal generator 16 generates SS or CSI-RS.
  • the control unit 11 instructs the antenna units 14a and 14b on the direction of the base station transmission beam.
  • the control part 11 produces
  • FIG. 17 is a flowchart of an operation of transmitting a measurement signal and control information to the radio terminal 20a that groups terminal reception beams in the radio base station 10a according to the second embodiment.
  • the control unit 11 causes the measurement signal generation unit 16 to generate a measurement signal, specifically, SS or CSI-RS as described above.
  • the measurement signal generator 16 generates a measurement signal (step S51).
  • the measurement signal generation unit 16 outputs measurement signals to the antenna units 14 a and 14 b via the transmission / reception unit 13.
  • the control unit 11 determines the direction of the base station transmission beam, and instructs the antenna units 14a and 14b of the direction of the base station transmission beam.
  • the antenna units 14a and 14b generate a plurality of base station transmission beams based on instructions from the control unit 11, and use the plurality of base station transmission beams to obtain from the measurement signal generation unit 16 via the transmission / reception unit 13.
  • the measurement signal is transmitted in the direction of the base station transmission beam instructed by the control unit 11 (step S52).
  • the control part 11 produces
  • the control unit 11 notifies the control information to the radio terminal 20a via the modem unit 12, the transmission / reception unit 13, and the antenna unit 14a (step S54). Note that the operation of the radio base station 10a when the radio terminal 20a to which the PUSCH is assigned is selected is the same as the operation of the radio base station 10 of the first embodiment shown in FIG.
  • FIG. 18 is a diagram of a configuration example of the wireless terminal 20a according to the second embodiment.
  • the radio terminal 20a is obtained by adding a measurement unit 26 to the radio terminal 20 of the first embodiment shown in FIG.
  • the measurement unit 26 receives the measurement signal received using each terminal reception beam obtained from the antenna unit 24 in order to create a relationship between the base station transmission beam and the terminal reception beam as shown in FIG. Measure quality, received power, etc.
  • the measurement unit 26 determines the reception quality, reception power, and the like when receiving a measurement signal transmitted from the radio base station 10a using a plurality of terminal reception beams generated by the antenna unit 24. Measure for each received beam.
  • the measurement unit 26 notifies the control unit 21 of the measurement result.
  • control unit 21 When acquiring the measurement result, the control unit 21 generates the map shown in FIG. The control unit 21 separately acquires control information for associating the TRP group ID and the base station transmission beam as shown in FIG. 14 from the radio base station 10a, and finally the relationship between the TRP group ID and the terminal transmission beam. Decide the date.
  • FIG. 19 is a flowchart illustrating an operation of grouping the terminal transmission beams of the radio terminal 20a in the radio terminal 20a according to the second embodiment.
  • the control unit 21 instructs the antenna unit 24 on the direction of the terminal reception beam and receives the measurement signal from the radio base station 10a.
  • the measuring unit 26 receives the received signal from the antenna unit 24, and measures the reception quality, specifically, SINR as described above (step S62).
  • the measurement unit 26 reports the reception quality, that is, the SINR measurement result to the control unit 21.
  • the antenna unit 24 receives control information including information relating the TRP group ID and the base station transmission beam from the radio base station 10a (step S63).
  • the antenna unit 24 outputs the received control information to the control unit 21 via the transmission / reception unit 23 and the modem unit 22.
  • the control unit 21 performs grouping of the terminal transmission beams of the radio terminal 20a based on the acquired measurement result and control information (step S64). As described above, the control unit 21 selects, for each terminal reception beam, the base station transmission beam of the radio base station 10a used for transmitting the measurement signal received by each terminal reception beam based on the reception quality. .
  • the control unit 21 transmits the terminal transmission beam corresponding to the terminal reception beam to the base station of the radio base station based on the terminal reception beam selected from the base station transmission beam generated by the same base station antenna unit of the radio base station 10a. Divide into antenna units. Note that the operation of the radio terminal 20a when the PUSCH is assigned from the radio base station 10a is the same as the operation of the radio terminal 20 of the first embodiment shown in FIG.
  • the measurement signal generator 16 added to the radio base station 10 of the first embodiment is realized by a program stored in the processor 31 and the memory 32 shown in FIG. Is done. Further, with respect to the hardware configuration of the radio terminal 20a, the measurement unit 26 added to the radio terminal 20 of the first embodiment is realized by the receiver 34 illustrated in FIG.
  • the radio terminal 20a when Beam Correspondence is established in both the radio base station 10a and the radio terminal 20a, the radio terminal 20a performs grouping of terminal transmission beams. Even in this case, the same effect as in the first embodiment can be obtained.
  • the radio base station 10 transmits the transmission power control command corresponding to each TRP group to the radio terminal 20 at the same time, but it is not always necessary to transmit the command simultaneously.
  • Embodiment 3 a case will be described in which the radio base station 10 transmits one transmission power control command corresponding to each TRP group at different timings.
  • the radio base station 10 of the first embodiment will be described as an example for the same operation.
  • the radio base station 10 may have one definition for the transmission power control command TPC command for scheduled PUSCH, and instead notifies the radio terminal 20 of the TRP group ID to which the TPC command for scheduled PUSCH is applied.
  • the TRP group ID information is added to one of the areas defined in the above Format0_1 message.
  • the information to which the TRP group ID information is added is, for example, Format0_1EE.
  • the radio terminal 20 When the radio terminal 20 acquires the “TRP group ID” and the “transmission power control command” by the message of Format0_1EE, the radio terminal 20 accumulates the transmission power control command value for each group of terminal transmission beams.
  • the wireless terminal 20 is different from the first embodiment in that the message is acquired for each TRP group ID, but the operation of accumulating the transmission power control command value after acquiring the Format0_1EE message is the same as in the first embodiment. It is the same.
  • the radio base station 10 does not control all TRP group transmission power, but can perform transmission power control only for the TRP group in which the SINR as the reception quality does not reach the SINR appropriate value. For example, when the radio base station 10 has TRP # 1 and TRP # 2, the SINR of TRP # 1 has not reached the SINR appropriate value, and the SINR of TRP # 2 has reached the SINR appropriate value, TRP # 1 Only for the transmission power control command is notified. Specifically, in the radio base station 10, the control unit 11 performs an operation of notifying the radio terminal 20 of a transmission power control value of a TRP group that requires a change in transmission power.
  • the radio base station 10 needs to increase the transmission power for all the TRP groups, but if the transmission power is increased in all TRP groups, the transmission power of the radio terminal 20 exceeds the maximum transmission power. If it can be determined, it is possible to increase the transmission power by selecting a more important TRP group. In this case, the radio base station 10 notifies the transmission power control command only for the selected TRP group.
  • a method of selecting a more important TRP group in the radio base station 10 may be, for example, a TRP corresponding to a base station reception beam having the lowest SINR. Note that a mechanism in which the radio terminal 20 periodically notifies the radio base station 10 of the difference between the maximum transmission power and the current transmission power is already defined in the NR standard.
  • the radio base station 10 can easily determine whether or not the transmission power of the radio terminal 20 exceeds the maximum transmission power.
  • the radio base station 10 may change the number of TRP groups to be selected based on the difference between the maximum transmission power of the radio terminal 20 and the current transmission power. Specifically, in the radio base station 10, when the transmission power of the radio terminal 20 exceeds the maximum transmission power when the transmission power is increased in a plurality of TRP groups, the control unit 11 selects a TRP group selected from the plurality of TRP groups. An operation of notifying the wireless terminal 20 of the transmission power control value is performed.
  • the radio base station 10 notifies the radio terminal 20 of a plurality of transmission power control commands corresponding to a plurality of TRP groups one by one at different timings. As a result, when the number of TRP groups is large, the radio base station 10 can suppress an increase in the number of control bits necessary for sending one transmission power control command.
  • the radio base station 10 notifies the transmission power control command only for the TRP group that does not reach the SINR appropriate value. Thereby, the radio base station 10 can reduce the control overhead for the TRP group that does not require control.
  • the radio base station 10 selects an important TRP group, and only the transmission power of the selected TRP group is selected. Control to raise. As a result, the radio base station 10 can prevent the transmission power of the radio terminal 20 from exceeding the maximum transmission power, and can bring the SIRP of the TRP that needs to be controlled closer to an appropriate value.
  • the radio base station always controls the transmission power of the radio terminal in units of TRP groups.
  • the radio base station 10 uses different TRP group transmission power control and transmission power control common to each TRP group depending on the situation.
  • the radio base station 10 of the first embodiment is taken as an example for the same operation. I will explain.
  • FIG. 20 is a diagram illustrating an example of a mapping pattern in which the radio terminal 20 according to the fourth embodiment maps to all terminal transmission beams that use one Codeword for transmission.
  • FIG. 21 is a diagram illustrating an example of a mapping pattern in which the wireless terminal 20 according to the fourth embodiment maps one Codeword in units of terminal transmission beams.
  • the mapping pattern A is shown in FIG. 20 and the mapping pattern B is shown in FIG.
  • the radio terminal 20 maps one Codeword to a plurality of Layers according to the mapping pattern defined in the NR standard. Further, the radio terminal 20 uses a technique called precoding when mapping from each layer to a beam. In the NR standard, a beam is called an antenna port. The beams shown in FIGS. 20 and 21 correspond to the terminal transmission beams in the first to third embodiments. The radio terminal 20 performs matrix calculation on each Layer signal and maps the calculation result to the beam. An example of a matrix used for precoding matrix calculation is described in section 6.3.1.5 of 3GPP standard TS38.211V15.0.0.
  • mapping pattern A is selected in radio terminal 20
  • beams a and b are transmitted toward TRP # 1
  • beams e and f are transmitted toward TRP # 2.
  • TRP # 2 the mapping pattern
  • the radio base station 10 it is sufficient for the radio base station 10 to control the radio terminal 20 with one transmission power control command as in the prior art. For example, there may be a case where there are no other radio base stations using the same frequency around the radio base station 10.
  • the radio base station 10 has radio terminals in units of TRP groups when the situation shown in FIG. 5 occurs in TRP # 1 and # 2. It is preferable to perform 20 transmission power control.
  • the radio base station 10 selects the mapping pattern B as the pattern used by the radio terminal 20, the radio terminal 20 transmits a signal for TRP # 1 using the beam group 1, and sets the beam group 2 to If the signal is transmitted to TRP # 2 by using it, transmission power control is performed for each TRP group.
  • the radio base station 10 uses the mapping pattern A or the mapping pattern B based on the presence or absence of interference with other radio base stations, that is, performs transmission power control in units of groups, or is common to all groups. It is determined whether to perform transmission power control.
  • the NR standard stipulates that the wireless base station 10 notifies the wireless terminal 20 of the result of the determination of which mapping pattern A or B is selected using “Precoding information” of Format0_1.
  • the format 0_1E described in the first embodiment or the second embodiment is used.
  • the described Format0_1EE is used.
  • the radio base station 10 uses the existing Format0_1 when performing transmission power control of the radio terminal 20 in common with the TRP group. Thereby, the radio base station 10 can selectively use the two modes. Also, a method may be considered in which the radio base station 10 notifies the mode only once when communication with the radio terminal 20 of the communication partner is started by deciding to always use any one mode.
  • FIG. 22 is a flowchart illustrating an operation of determining a transmission power control method for the radio terminal 20 in the radio base station 10 according to the fourth embodiment.
  • the control unit 11 performs the transmission power control in units of TRP groups when it is necessary to consider interference with other radio base stations (step S71: Yes). Is determined to be effective, and it is determined to control the transmission power of the terminal transmission beam of the radio terminal 20 in units of TRP groups (step S72).
  • step S71: No the control unit 11 assumes that transmission power control for each TRP group is not necessary, and the terminal transmission beam of the radio terminal 20 is common to TRP groups. Is determined to be controlled (step S73).
  • the radio base station 10 performs transmission power control common to TRP groups when there is no need to consider interference with other radio base stations, and When it is necessary to consider interference with a station, transmission power control for each TRP group is performed.
  • the radio base station 10 can appropriately control the reception quality such as SINR for each TRP group by performing transmission power control in units of TRP groups when necessary, and can perform transmission power control common to TRP groups. If good, the overall system control overhead can be reduced.
  • terminal transmission beams are grouped in units of TRP, but the grouping method is not limited to TRP units.
  • the radio base station may group the terminal transmission beams of the radio terminals from the viewpoint of reception quality being similar or reception quality being different.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

各々が基地局受信ビームを生成し、無線端末から端末送信ビームを用いて送信される信号を、基地局受信ビームを用いて受信する複数のアンテナ部(14a,14b)と、基地局受信ビーム毎に信号の受信品質を測定する測定部(15)と、アンテナ部(14a,14b)単位で基地局受信ビームをグループに分け、グループ単位の測定部(15)の測定結果に基づいて、グループ単位で無線端末の端末送信ビームの送信電力制御を行う制御部(11)と、を備える。

Description

無線基地局、無線端末、無線通信システムおよび送信電力制御方法
 本発明は、無線端末の送信電力を制御する無線基地局、無線端末、無線通信システムおよび送信電力制御方法に関する。
 一般に、無線基地局と通信を行う無線端末は、無線基地局に送信する信号の送信電力を制御している。これは、無線端末が送信した信号を無線基地局が誤りなく受信できるようにするためであり、また、他の無線基地局への不要な干渉を防ぐためである。
 第5世代移動通信システムに適用するべく、3GPP(3rd Generation Partnership Project)において定められたNR(New Radio)規格では、無線端末の送信電力制御の方法として、オープンループ制御およびクローズドループ制御の2つの制御方法が規定されている(非特許文献1)。
 オープンループ制御は、無線端末が無線基地局との通信を開始する場合、また、無線端末がハンドオーバにより別の無線基地局に接続して通信を開始する場合に行われる制御方法である。オープンループ制御では、通信開始時に無線端末が物理ランダムアクセスチャネル(PRACH:Physical Random Access Channel)を用いて送信するプリアンブルのターゲット受信電力値を無線基地局から無線端末に報知情報として通知しておく。無線端末では、無線基地局から周期的に送信される信号の受信電力値と、別途無線基地局から報知されている無線基地局の送信電力値とから下り(無線基地局から無線端末への方向)送信のパスロスを計算し、計算したパスロス分の電力値を無線基地局から通知されたプリアンブルのターゲット受信電力値に加算して、上り信号の送信電力を決定する。
 一方、クローズドループ制御は、通信開始後に、無線基地局が、無線端末に対して送信電力の増減を明示的に指定する送信電力制御コマンド(TPC:Transmission Power Control)を送信して、無線端末の送信電力を制御する制御方法である。無線端末は、無線基地局と通信している間、オープンループ制御によっていったん送信電力値を決定し、当該無線基地局からのクローズドループ制御に従って送信電力を調整し、最終的な送信電力値を決定する。
3GPP TS 38.213 V15.0.0 (2017-12)
 NR規格では、1つの無線基地局が異なる場所に設置される複数のアンテナから信号を送信する構成、すなわち、1つの無線基地局が複数のTRP(Transmission Reception Point)を持つ構成が考えられる。TRPは、無線基地局が実際に信号の送受信を行う場所、すなわちアンテナの設置場所である。複数のTRPを持つ無線基地局は、無線端末が全ての送信ビームに同一送信電力を設定して信号を送信した場合、各TRPで無線端末からの信号の受信電力が異なる可能性がある。また、無線基地局における他の無線端末からの干渉電力も各TRPで異なる可能性がある。また、各TRPにおいて無線端末からの信号のSINR(Signal to Interference plus Noise power Ratio)が異なり、あるTRPはSINR適正値を充たしているのに対して、他のTRPはSINR適正値を充たしていないことも想定される。
 しかしながら、非特許文献1に記載の技術によれば、TRP毎に送信電力制御コマンドを使い分けることができない。すなわち、非特許文献1に記載の技術では、各TRPで無線端末からの信号のSINRが異なり、あるTRPがSINR適正値を充たし、他のTRPがSINR適正値を充たしていない場合、各TRPに向けられた無線端末の送信ビームの送信電力を同時に上げるか、または同時に下げるかの制御しかできない。そのため、無線基地局が備える各TRPにおけるSINRを個別にSINR適正値に近づける制御ができない、という問題があった。
 本発明は、上記に鑑みてなされたものであって、無線端末からの信号を複数の場所で受信可能な場合において、信号を受信する場所の単位で無線端末が送信する信号の送信電力を制御可能な無線基地局を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の無線基地局は、各々が基地局受信ビームを生成し、無線端末から端末送信ビームを用いて送信される信号を、基地局受信ビームを用いて受信する複数の基地局アンテナ部を備える。また、無線基地局は、基地局受信ビーム毎に信号の受信品質を測定する測定部を備える。また、無線基地局は、基地局アンテナ部単位で基地局受信ビームをグループに分け、グループ単位の測定部の測定結果に基づいて、グループ単位で無線端末の端末送信ビームの送信電力制御を行う制御部と、を備えることを特徴とする。
 本発明にかかる無線基地局は、無線端末からの信号を複数の場所で受信可能な場合において、信号を受信する場所の単位で無線端末が送信する信号の送信電力を制御できる、という効果を奏する。
実施の形態1にかかる無線通信システムの構成例を示す図 実施の形態1にかかる無線端末が送信するサウンディング信号の周波数マッピングの例を示す図 実施の形態1にかかる無線基地局において、基地局受信ビーム毎に受信品質が良好な無線端末の端末送信ビームを選択した結果の例を示す図 実施の形態1にかかる無線基地局が無線端末に対して指定した端末送信ビームを用いてデータなどの信号を送信させている状態の例を示す図 実施の形態1にかかる無線基地局の各TRPでの受信品質の測定結果の例を示す図 実施の形態1にかかる無線基地局の構成例を示す図 実施の形態1にかかる無線基地局において無線端末の端末送信ビームをグループ分けする動作を示すフローチャート 実施の形態1にかかる無線基地局においてPUSCH(Physical Uplink Shared Channel)を割り当てる無線端末を選択したときの動作を示すフローチャート 実施の形態1にかかる無線端末の構成例を示す図 実施の形態1にかかる無線端末が無線基地局から無線端末の端末送信ビームのグループ情報を取得するまでの動作を示すフローチャート 実施の形態1にかかる無線端末において無線基地局からPUSCHが割り当てられたときの動作を示すフローチャート 実施の形態1にかかる無線基地局および無線端末を実現するハードウェア構成の例を示す図 実施の形態2にかかる無線通信システムの構成例を示す図 実施の形態2における無線基地局が無線端末へ通知するTRPグループIDおよび基地局送信ビームの関係の情報の例を示す図 実施の形態2にかかる無線端末において、端末受信ビーム毎の受信品質の測定結果から選択された基地局送信ビームと端末受信ビームとの対応関係を示す図 実施の形態2にかかる無線基地局の構成例を示す図 実施の形態2にかかる無線基地局において、端末受信ビームのグループ分けをする無線端末に対して測定用信号および制御情報を送信する動作を示すフローチャート 実施の形態2にかかる無線端末の構成例を示す図 実施の形態2にかかる無線端末において無線端末の端末送信ビームをグループ分けする動作を示すフローチャート 実施の形態4にかかる無線端末が、1つのCodewordを送信に使用する全ての端末送信ビームにマッピングするマッピングパターンの例を示す図 実施の形態4にかかる無線端末が、1つのCodewordを端末送信ビームの単位でマッピングするマッピングパターンの例を示す図 実施の形態4にかかる無線基地局において無線端末に対する送信電力制御方法を決定する動作を示すフローチャート
 以下に、本発明の実施の形態にかかる無線基地局、無線端末、無線通信システムおよび送信電力制御方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 本実施の形態では、無線基地局が無線端末から送信される信号を受信する場合において、無線端末が送信ビームを生成し、無線基地局が受信ビームを生成して無線通信を行う無線通信システムを想定する。本実施の形態では、無線基地局が2つのTRPを持つ場合を説明するが、無線基地局が有するTRPの数は2つに限定されない。以下、1つのTRPに対応する1つ以上のビームをTRPグループとする。すなわち、無線基地局において1つのTRPが生成する受信ビームは1つのTRPグループであり、1つのTRPに向けて無線端末が生成する1つ以上の送信ビームも1つのTRPグループである。無線基地局は、TRPグループ単位で送信電力制御コマンドを適用、すなわちTRPグループ単位で無線端末の送信ビームの送信電力を制御する。以降の説明において、無線端末が生成する送信ビームを端末送信ビームと称し、無線基地局が生成する受信ビームを基地局受信ビームと称する。
 まず、無線端末で生成される複数の端末送信ビームとTRPとの関係付けを判断する方法について説明する。図1は、本発明の実施の形態1にかかる無線通信システム50の構成例を示す図である。無線通信システム50は、無線基地局10と、無線端末20と、を備える。無線基地局10は、信号処理部17と、アンテナ部14a,14bと、を備える。以下、アンテナ部14a,14bが設置される場所を、それぞれTRP#1,TRP#2とする。無線基地局10は、アンテナ部14a,14bを用いて、無線端末20との間で無線通信を行う。アンテナ部14a,14bは、それぞれ4つの基地局受信ビームを生成し、基地局受信ビームを用いて、無線端末20から送信される信号を受信する。図1の例では、アンテナ部14aが生成する基地局受信ビームを基地局受信ビーム101~104とし、アンテナ部14bが生成する基地局受信ビームを基地局受信ビーム105~108とする。無線端末20は、6つの端末送信ビーム201~206を生成し、端末送信ビーム201~206を用いて、無線基地局10へ信号を送信する。なお、無線通信システム50において、図1では無線端末20の数が1つであるが一例であり、無線端末20は2つ以上であってもよい。
 図1に示す無線通信システム50において、最初に、無線端末20は、生成可能な全ての端末送信ビーム201~206でサウンディング信号を送信する。サウンディング信号は、無線基地局10において受信した信号の受信品質を測定するために用いられる測定用信号である。サウンディング信号は、複数の端末送信ビームとTRPとの関係付けを行う際に使用される。無線基地局10は、基地局受信ビーム101~108を用いてサウンディング信号を受信し、基地局受信ビーム毎にサウンディング信号の受信品質を測定する。なお、無線端末20は、端末送信ビーム201~206の全てを同時に生成できない場合、タイミングを変えて各端末送信ビームを生成してもよい。すなわち、無線端末20は、端末送信ビーム201~206を複数回に分けて生成してもよい。同様に、無線基地局10は、基地局受信ビーム101~108の全てを同時に生成できない場合、タイミングを変えて各基地局受信ビームを生成してもよい。すなわち、無線基地局10は、基地局受信ビーム101~108を複数回に分けて生成してもよい。本実施の形態では、無線端末20は、端末送信ビーム201~206の全てを同時に生成でき、無線基地局10は、基地局受信ビーム101~108の全てを同時に生成できる場合を例にして説明する。
 無線基地局10は、サウンディング信号の受信品質の測定結果に基づいて、各基地局受信ビームで良好な受信品質が得られる無線端末20からの端末送信ビームを選択する。良好な受信品質とは、受信品質の測定結果、例えばSINRが、規定された閾値以上の場合である。ここで、無線基地局10は、良好な受信品質が得られる端末送信ビームを選択するためには、無線端末20の複数の端末送信ビームを区別する必要がある。無線基地局10において無線端末20の複数の端末送信ビームを区別する方法には、例えば、無線端末20が各端末送信ビームで送信するサウンディング信号に載せるシーケンスのパターンと端末送信ビームID(Identifier)とをあらかじめ関係付ける方法がある。また、無線端末20が各端末送信ビームで送信するサウンディング信号を送信する時間と端末送信ビームIDとを関係付ける方法がある。また、無線端末20が各端末送信ビームで送信するサウンディング信号を配置する周波数領域と端末送信ビームIDとを関係付ける方法がある。端末送信ビームIDとは、各端末送信ビームを識別するための識別情報であり、図1の例では、端末送信ビーム201~206を識別可能な情報である。なお、サウンディング信号に載せるシーケンスの生成方法については、3GPP規格書TS38.211V15.0.0の6.4.1.4.2に記載されている。
 図2は、実施の形態1にかかる無線端末20が送信するサウンディング信号の周波数マッピングの例を示す図である。図2に示す周波数マッピングの情報は、無線端末20が送信するサウンディング信号を配置する周波数領域f1~f6と端末送信ビームIDとの関係付けを示している。図2では、端末送信ビームIDを201~206で表している。無線端末20は、各端末送信ビームにおいて、各端末送信ビームに割り当てられた周波数領域のみを用いてサウンディング信号を送信する。例えば、無線端末20は、端末送信ビーム201では、周波数領域f1でサウンディング信号を送信する。無線基地局10は、図2に示す周波数マッピングの情報をあらかじめ無線端末20に指定することにより、基地局受信ビームで良好な受信品質が得られる無線端末20からの端末送信ビームを判別することができる。
 図3は、実施の形態1にかかる無線基地局10において、基地局受信ビーム毎に受信品質が良好な無線端末20の端末送信ビームを選択した結果の例を示す図である。図3に示すように、無線基地局10において、基地局受信ビーム102では、無線端末20から端末送信ビーム202によって送信されたサウンディング信号の受信品質が良好である。また、無線基地局10において、基地局受信ビーム103では、無線端末20から端末送信ビーム201によって送信されたサウンディング信号の受信品質が良好である。また、無線基地局10において、基地局受信ビーム106では、無線端末20から端末送信ビーム205によって送信されたサウンディング信号の受信品質が良好である。また、無線基地局10において、基地局受信ビーム107では、無線端末20から端末送信ビーム206によって送信されたサウンディング信号の受信品質が良好である。また、図3は、無線基地局10において、基地局受信ビーム101,104,105,108では、無線端末20から送信されたサウンディング信号に対して良好な受信品質が得られていないことを示している。
 また、図3は、無線基地局10における基地局受信ビームとTRPグループIDとの関係も表している。TRPグループIDは、各TRPグループを識別する情報である。図3に示した例では、TRP#1に対応するTRPグループのTRPグループIDを#1とし、TRP#2に対応するTRPグループのTRPグループIDを#2としている。図3に示した例では、TRPグループID#1には基地局受信ビーム101~104が属し、TRPグループID#2には基地局受信ビーム105~108が属している。
 無線基地局10は、図3に示す良好な受信品質が得られた無線端末20の端末送信ビームとTRPグループIDとの関係を、無線端末20へ通知する。無線基地局10から無線端末20への通知方法は、NR規格で定義されているPDCCH(Physical Downlink Control Channel)を使ったレイヤ1シグナリング、MAC(Medium Access Control)レイヤによるMACシグナリングなどを用いる。通知内容の具体例は、TRPグループID#1={端末送信ビーム201,端末送信ビーム202}、およびTRPグループID#2={端末送信ビーム205,端末送信ビーム206}である。すなわち、無線基地局10は、端末送信ビーム201,202をTRPグループID#1にグループ分けし、端末送信ビーム205,206をTRPグループID#2にグループ分けしたことになる。TRPグループID#1,#2によって示されるグループは、無線端末20の複数の端末送信ビームが、各端末送信ビームによって送信される信号が受信される無線基地局10のTRP#1,#2の単位に分けられたグループである。
 つぎに、無線基地局10が、送信電力制御コマンドを用いて無線端末20の送信電力を制御する方法について説明する。図4は、実施の形態1にかかる無線基地局10が無線端末20に対して指定した端末送信ビーム201,202,205,206を用いてデータなどの信号を送信させている状態の例を示す図である。無線基地局10は、無線端末20に対する端末送信ビームの指定を、NR規格で規定されているUL grantを用いて行う。3GPP規格書TS38.212V15.0.0に規定されているDCI(Downlink Control Information)のFormat0_1は、無線端末20にPUSCH送信を許可するメッセージ、すなわち前述のUL grantの伝送に使用される。Format0_1のメッセージには、「SRS resource indicator」が定義されており、これはサウンディング信号(SRS:Sounding Reference Signal)のビーム、またはサウンディング信号と同じビームを使用するPUSCH信号のビームを指定するものである。また、Format0_1のメッセージには、「TPC command for scheduled PUSCH」が定義されており、これが送信電力制御コマンドである。ここで、本実施の形態では、この送信電力制御コマンドの要素をTRPグループ数分に拡張する。すなわち、TRPグループの数をn個とすると、送信電力制御コマンドを、「TPC command for scheduled PUSCH#1」、「TPC command for scheduled PUSCH#2」、…、「TPC command for scheduled PUSCH#n」と定義する。本実施の形態では、拡張したフォーマットをFormat0_1Eとする。
 拡張したFormat0_1Eのフォーマットを図4の例に適用する場合について説明する。図5は、実施の形態1にかかる無線基地局10の各TRPでの受信品質の測定結果の例を示す図である。前述のように、受信品質はSINRとする。図5の例では、TRP#1ではSINRがSINR適正値を充たしているのに対して、TRP#2ではSINRがSINR適正値を充たしていない。このような場合、無線基地局10は、以下の送信電力制御コマンドの内容を含むメッセージを無線端末20へ通知する。メッセージに含まれる内容は、「TPC command for scheduled PUSCH#1=-1[dB]」、「TPC command for scheduled PUSCH#2=+1[dB]」、および「SRS resource indicator={201,202,205,206}」である。
 上記内容を含むメッセージを受信した無線端末20は、メッセージの内容に従って、端末送信ビームの送信電力を制御する。無線端末20は、前述のように、TRPグループID#1={端末送信ビーム201,端末送信ビーム202}、およびTRPグループID#2={端末送信ビーム205,端末送信ビーム206}の情報を別途受け取っている。無線端末20は、取得したこれらの情報を用いて、TRPグループID#1すなわち端末送信ビーム201,202のグループについては送信電力を前回送信時の値から-1[dB]累積し、TRPグループID#2すなわち端末送信ビーム205,206のグループについては送信電力を前回送信時の値から+1[dB]累積する。
 無線基地局10は、無線端末20の端末送信ビーム201,202の送信電力を下げ、無線端末20の端末送信ビーム205,206の送信電力を上げることで、図5に示す各TRPのSINRについて、TRP#1のSINRを下げ、TRP#2のSINRを上げることができる。このように、無線基地局10は、TRPの単位で無線端末20が送信する信号の送信電力、具体的には端末送信ビームの送信電力を制御することによって、TRPの単位でSINRをSINR適正値に近づけることができる。
 つづいて、無線基地局10の構成について説明する。図6は、実施の形態1にかかる無線基地局10の構成例を示す図である。無線基地局10は、信号処理部17と、アンテナ部14a,14bと、を備える。信号処理部17は、制御部11と、変復調部12と、送受信部13と、測定部15と、を備える。
 制御部11は、無線端末20へサウンディング信号の送信を指示し、サウンディング信号の受信品質に基づいて、図3に示すようなTRPグループID、基地局受信ビーム、および端末送信ビームの関係付け、すなわちグループ分けを行う。また、制御部11は、PUSCHを割り当てる無線端末20の選択、各基地局受信ビームにおいて良好な受信品質が得られる無線端末20の端末送信ビームの選択、送信電力制御コマンドで指示する送信電力制御値の計算、基地局受信ビームの方向制御、図示しないコアネットワークとのデータの送受信などを行う。
 変復調部12は、制御部11から取得したデータ、制御情報などの信号を変調し、送受信部13へ出力する。また、変復調部12は、送受信部13から取得した信号を復調し、制御部11へ出力する。
 送受信部13は、変復調部12から取得した信号をデジタル信号からアナログ信号に変換し、周波数をアップコンバートする。送受信部13は、アップコンバート後のアナログ信号をアンテナ部14a,14bへ出力する。また、送受信部13は、アンテナ部14a,14bから取得した信号の周波数をダウンコンバートし、アナログ信号からデジタル信号に変換する。送受信部13は、変換後のデジタル信号を変復調部12へ出力する。
 アンテナ部14a,14bは、各々が複数の基地局受信ビームを生成し、無線端末20から複数の端末送信ビームを用いて送信される信号を、複数の基地局受信ビームを用いて受信する基地局アンテナ部である。具体的には、アンテナ部14a,14bは、送受信部13から取得した信号を、制御部11の指示によるビーム方向へ送信する。また、アンテナ部14a,14bは、制御部11の指示によるビーム方向で無線端末20からの信号を受信する。アンテナ部14a,14bは、それぞれ複数の基地局受信ビームを同時に生成する。
 測定部15は、アンテナ部14a,14bから取得した信号の受信品質、受信電力などを測定する。具体的には、測定部15は、アンテナ部14a,14bで生成される基地局受信ビーム毎に信号の受信品質、受信電力などを測定する。測定部15は、受信品質、受信電力などの測定結果を制御部11へ出力する。測定部15が受信品質、受信電力などを測定する信号には、前述のサウンディング信号が含まれる。
 無線基地局10の動作について説明する。図7は、実施の形態1にかかる無線基地局10において無線端末20の端末送信ビームをグループ分けする動作を示すフローチャートである。制御部11は、無線端末20からサウンディング信号を送信させ、アンテナ部14a,14bの基地局受信ビーム101~108毎のサウンディング信号の受信品質を測定部15で測定させたい場合、図2に示すような周波数マッピングを作成する。制御部11は、周波数マッピングの情報を含み、サウンディング信号の送信を指示する制御情報を生成し、変復調部12、送受信部13、およびアンテナ部14aを介して、制御情報を無線端末20へ送信する。このようにして、制御部11は、無線端末20に対してサウンディング信号の送信を指示する(ステップS11)。無線端末20は、無線基地局10から制御情報を受信すると、制御情報の内容に従って、サウンディング信号を送信する。
 制御部11は、サウンディング信号の受信品質を測定させるため、アンテナ部14a,14bに対してそれぞれ基地局受信ビームの方向を指示し、無線端末20からのサウンディング信号を受信させる(ステップS12)。測定部15は、アンテナ部14a,14bから受信信号を受け取り、受信品質、具体的には前述のようにSINRを測定する(ステップS13)。測定部15は、受信品質の測定結果を制御部11へ通知する。制御部11は、測定部15からの測定結果に基づいて、無線端末20の端末送信ビームをグループ分けする(ステップS14)。制御部11は、具体的には、図3に示すようなTRPグループID、基地局受信ビーム、および良好な受信品質の端末送信ビームの関係を示すマップを作成する。制御部11は、作成したマップから、TRPグループIDと良好な受信品質の端末送信ビームとを関係付け、無線基地局10のTRPの単位で、無線端末20の端末送信ビームをグループ分けする。具体的には、制御部11は、規定された受信品質が得られた基地局受信ビーム毎に、各基地局受信ビームで受信されたサウンディング信号の送信に使用された無線端末20の端末送信ビームを選択する。制御部11は、同一基地局アンテナ部で生成された基地局受信ビームに対して選択された端末送信ビームを同一グループとして、無線端末20の複数の端末送信ビームを基地局アンテナ部単位のグループに分ける。制御部11は、無線端末20の端末送信ビームをグループ分けしたグループ情報を含む制御情報を生成し、変復調部12、送受信部13、およびアンテナ部14aを介して、制御情報を無線端末20へ送信する。これにより、制御部11は、無線端末20の端末送信ビームのグループ情報を、無線端末20へ通知する(ステップS15)。なお、無線基地局10は、無線端末20へ制御情報を送信、すなわちグループ情報を通知する場合、例えば、無線端末20がメインとしてモニタしている1つのTRPで生成される基地局送信ビームを通して伝送することができる。
 図8は、実施の形態1にかかる無線基地局10においてPUSCHを割り当てる無線端末20を選択したときの動作を示すフローチャートである。制御部11は、PUSCHを割り当てる無線端末20を選択すると(ステップS21)、TRPグループ毎に送信電力制御値を算出する(ステップS22)。制御部11は、例えば、同一の無線端末20から前回PUSCHを受信して測定部15で測定されたTRP毎の基地局受信ビームのSINRと、SINR適正値とを比較する。制御部11は、比較結果に基づいて、TRPグループ毎に送信電力制御値を算出する。制御部11は、TRPグループ毎の無線端末20の端末送信ビームの送信電力制御値を無線端末20へ通知する(ステップS23)。具体的には、制御部11は、TRPグループ毎の送信電力制御値をTPC command for scheduled PUSCH#1~#2とするDCI format0_1Eを生成し、変復調部12、送受信部13、およびアンテナ部14aを介して、DCI format0_1Eを無線端末20へ送信する。
 つぎに、無線端末20の構成について説明する。図9は、実施の形態1にかかる無線端末20の構成例を示す図である。無線端末20は、制御部21と、変復調部22と、送受信部23と、アンテナ部24と、サウンディング信号生成部25と、を備える。
 制御部21は、無線基地局10から通知された制御情報を解析し、サウンディング信号の送信指示、PUSCHの送信指示、端末送信ビームのグループ毎の送信電力制御、端末送信ビームの方向制御などを行う。
 変復調部22は、制御部21から取得したデータ、制御情報などの信号を変調し、送受信部23へ出力する。また、変復調部22は、送受信部23から取得した信号を復調し、制御部21へ出力する。
 送受信部23は、変復調部22から取得した信号をデジタル信号からアナログ信号に変換し、周波数をアップコンバートする。送受信部23は、アップコンバート後のアナログ信号を、アンテナ部24へ出力する。また、送受信部23は、アンテナ部24から取得した信号の周波数をダウンコンバートし、アナログ信号からデジタル信号に変換する。送受信部23は、変換後のデジタル信号を変復調部22へ出力する。
 アンテナ部24は、複数の端末送信ビームを生成し、複数の端末送信ビームを用いて無線基地局10へ信号を送信する端末アンテナ部である。アンテナ部24は、送受信部23から取得した信号を、制御部21の指示によるビーム方向へ送信する。また、アンテナ部24は、制御部21の指示によるビーム方向で無線基地局10からの信号を受信する。アンテナ部24は、複数の端末送信ビームを同時に生成する。
 サウンディング信号生成部25は、制御部21からの指示に基づいて、サウンディング信号を生成する測定用信号生成部である。
 無線端末20の動作について説明する。図10は、実施の形態1にかかる無線端末20が無線基地局10から無線端末20の端末送信ビームのグループ情報を取得するまでの動作を示すフローチャートである。制御部21は、アンテナ部24、送受信部23、および変復調部22を介して、無線基地局10からサウンディング信号の送信を指示する制御情報を取得すると(ステップS31)、サウンディング信号生成部25に対してサウンディング信号の生成を指示する。このとき、制御部21は、制御情報に含まれる周波数マッピングの情報をサウンディング信号生成部25へ通知する。サウンディング信号生成部25は、周波数マッピングの情報に基づいて、端末送信ビーム毎のサウンディング信号を生成する(ステップS32)。また、制御部21は、周波数マッピングの情報に基づいて、端末送信ビームの方向を決定し、アンテナ部24に対して端末送信ビームの方向を指示する。アンテナ部24は、制御部21の指示に基づいて端末送信ビームを生成し、送受信部23を介してサウンディング信号生成部25から取得したサウンディング信号を、制御部21から指示された端末送信ビームの方向で送信する(ステップS33)。前述のように、無線基地局10は、サウンディング信号を受信した基地局受信ビーム毎の受信品質に基づいて、無線端末20の端末送信ビームをグループ分けし、グループ情報を含む制御信号を無線端末20へ通知する。制御部21は、アンテナ部24、送受信部23、および変復調部22を介して、無線基地局10からグループ情報を含む制御情報を取得する。これにより、無線端末20は、無線基地局10で生成されたグループ情報を取得することができる(ステップS34)。
 図11は、実施の形態1にかかる無線端末20において無線基地局10からPUSCHが割り当てられたときの動作を示すフローチャートである。制御部21は、アンテナ部24、送受信部23、および変復調部22を介して、無線基地局10からDCI format0_1Eを取得すると、無線端末20にPUSCHが割り当てられたことを検出する(ステップS41)。制御部21は、無線基地局10へ送信する信号を生成して変復調部22へ出力する。また、制御部21は、DCI format0_1Eに含まれるTRPグループ毎の「TPC command for scheduled PUSCH#1~#2」および「SRS resource indicator」に基づいて、端末送信ビームのグループ毎に送信電力制御値の累積を行う。具体的には、制御部21は、取得済みのグループ情報であるTRPグループID#1={端末送信ビーム201,端末送信ビーム202}、およびTRPグループID#2={端末送信ビーム205,端末送信ビーム206}の情報に基づいて、端末送信ビームのグループ毎の送信電力制御値を累積して送信電力を決定し(ステップS42)、アンテナ部24へ通知する。アンテナ部24は、制御部21から通知された送信電力に従って、各端末送信ビームを用いて無線基地局10へ信号を送信する(ステップS43)。
 つづいて、無線基地局10および無線端末20を実現するハードウェア構成について説明する。図12は、実施の形態1にかかる無線基地局10および無線端末20を実現するハードウェア構成の例を示す図である。無線基地局10は、例えば、プロセッサ31、メモリ32、送信機33、受信機34、およびアンテナ装置35により実現される。
 プロセッサ31は、CPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSP(Digital Signal Processor)ともいう)、システムLSI(Large Scale Integration)などである。また、メモリ32は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、EPROM(Erasable Programmable Read Only Memory)、EEPROM(登録商標)(Electrically Erasable Programmable Read Only Memory)などの不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)などである。
 基地局の制御部11および変復調部12は、プロセッサ31およびメモリ32に格納されているプログラムにより実現される。具体的には、プロセッサ31が、各部の動作を行うためのプログラムをメモリ32から読み出して実行することにより実現される。送受信部13は、送信機33および受信機34により実現される。すなわち、送受信部13における送信処理は、送信機33において実施され、送受信部13における受信処理は、受信機34において実施される。測定部15も、受信機34により実現される。アンテナ部14a,14bは、アンテナ装置35により実現される。
 無線端末20についても同様である。制御部21、変復調部22、およびサウンディング信号生成部25は、プロセッサ31およびメモリ32に格納されているプログラムにより実現される。具体的には、プロセッサ31が、各部の動作を行うためのプログラムをメモリ32から読み出して実行することにより実現される。送受信部23は、送信機33および受信機34により実現される。すなわち、送受信部23における送信処理は、送信機33において実施され、送受信部23における受信処理は、受信機34において実施される。アンテナ部24は、アンテナ装置35により実現される。
 なお、本実施の形態では、TRP毎の送信電力制御コマンドを無線基地局10から無線端末20へ送信するために、NR規格で規定されているFormat0_1をベースに拡張したFormt0_1Eを定義したが、このフォーマットに限定されるものではない。TRPグループ毎にTPC command for scheduled PUSCH#1~#nに相当する送信電力制御コマンドを定義できれば、他のフォーマットを用いてもよい。
 以上説明したように、本実施の形態によれば、無線基地局10は、複数のTRPを持ち、それぞれ異なる場所に設置されている場合に、TRP毎の信号の受信品質、例えばSINRに基づいて無線端末20の送信電力制御を行う。具体的には、無線基地局10は、無線端末20から送信されるサウンディング信号の受信品質を各TRPの基地局受信ビーム毎に測定し、測定結果に基づいて、1つの無線端末20が生成する複数の端末送信ビームのうち同一TRPに向けられた複数の端末送信ビームを同一TRPグループとし、TRPグループ単位で送信電力制御を行うこととした。これにより、無線基地局10は、無線端末20からの信号を複数のTRPで受信可能な場合において、信号を受信するTRPの単位で無線端末20が送信する信号の送信電力を制御することで、複数のTRPにおいてそれぞれをSINR適正値に近づける制御が可能となる。また、無線基地局10は、端末送信ビーム単位による送信電力制御としないことから、不要に送信電力制御コマンドの数を増やすことなく、通信時の制御オーバヘッドの増加を抑圧し、送信電力制御を行うことができる。
実施の形態2.
 実施の形態1では、無線基地局10が、無線端末20の端末送信ビームのグループ分けを行っていた。実施の形態2では、無線端末が、端末送信ビームのグループ分けを行う場合について説明する。なお、実施の形態2では、無線基地局の各TRPにおいて、基地局送信ビームおよび基地局受信ビームが同一利得パターンを形成できている、いわゆるBeam Correspondenceが成立していることを想定する。基地局送信ビームは、実施の形態2の無線基地局の各TRPにおいて、無線端末へ信号を送信する際に生成される送信ビームである。また、無線端末においても、端末送信ビームおよび端末受信ビームが同一利得パターンを形成できている、いわゆるBeam Correspondenceが成立していることを想定する。端末受信ビームは、実施の形態2の無線端末において、無線基地局からの信号を受信する際に生成される受信ビームである。
 図13は、実施の形態2にかかる無線通信システム50aの構成例を示す図である。無線通信システム50aは、無線基地局10aと、無線端末20aと、を備える。無線基地局10aは、信号処理部17aと、アンテナ部14a,14bと、を備える。無線基地局10aは、アンテナ部14a,14bを用いて、無線端末20aとの間で無線通信を行う。アンテナ部14a,14bは、図1に示す実施の形態1のときと同様、それぞれ、基地局受信ビーム101~104,105~108を生成し、基地局受信ビーム101~104,105~108を用いて、無線端末20aから送信される信号を受信する。また、本実施の形態において、アンテナ部14a,14bは、図13に示すように、それぞれ、基地局送信ビーム111~114,115~118を生成し、基地局送信ビーム111~114,115~118を用いて、無線端末20aへ信号を送信する。無線端末20aは、図1に示す無線端末20と同様、6つの端末送信ビーム201~206を生成し、端末送信ビーム201~206を用いて、無線基地局10aへ信号を送信する。また、本実施の形態において、無線端末20aは、図13に示すように、端末受信ビーム211~216を生成し、端末受信ビーム211~216を用いて、無線基地局10aから送信される信号を受信する。なお、無線通信システム50aにおいて、図13では無線端末20aの数が1つであるが一例であり、無線端末20aは2つ以上であってもよい。
 本実施の形態では、具体的に、無線基地局10aにおいて、基地局受信ビーム101~108がそれぞれ基地局送信ビーム111~118に対応し、基地局受信ビーム101~108および基地局送信ビーム111~118で同一利得パターンを形成でき、Beam Correspondenceが成立していることとする。また、無線端末20aにおいて、端末送信ビーム201~206がそれぞれ端末受信ビーム211~216に対応し、端末送信ビーム201~206および端末受信ビーム211~216で同一利得パターンを形成でき、Beam Correspondenceが成立していることとする。
 Beam Correspondenceが成立している場合、無線基地局10aは、図14に示すような情報を無線端末20aへ通知する。図14は、実施の形態2における無線基地局10aが無線端末20aへ通知するTRPグループIDおよび基地局送信ビームの関係の情報の例を示す図である。このように、無線基地局10aは、各TRPで送信の際に使用する基地局送信ビームの情報を無線端末20aへ通知する。無線基地局10aは、図14に示す情報を、報知情報として全ての無線端末20aへ共通に通知してもよいし、無線端末20aそれぞれへ個別に通知してもよい。
 TRPグループIDと基地局送信ビームとの関係付けの情報を取得した無線端末20aは、基地局送信ビームと端末受信ビームとの関係付けを行う。無線端末20aは、図13に示すように、無線基地局10aから基地局送信ビーム111~118を用いて送信される信号を、どの端末受信ビーム211~216を用いて受信すればよいかを選択するため、端末受信ビーム211~216毎の受信品質を測定する。図15は、実施の形態2にかかる無線端末20aにおいて、端末受信ビーム211~216毎の受信品質の測定結果から選択された基地局送信ビーム111~118と端末受信ビーム211~216との対応関係を示す図である。
 図15に示すように、無線端末20aは、無線基地局10aから基地局送信ビーム111を用いて送信された信号を、端末受信ビーム213を用いて受信することで、最も良好な受信品質を得ることができる。また、無線端末20aは、無線基地局10aから基地局送信ビーム112を用いて送信された信号を、端末受信ビーム212を用いて受信することで、最も良好な受信品質を得ることができる。また、無線端末20aは、無線基地局10aから基地局送信ビーム113を用いて送信された信号を、端末受信ビーム211を用いて受信することで、最も良好な受信品質を得ることができる。また、無線端末20aは、無線基地局10aから基地局送信ビーム115を用いて送信された信号を、端末受信ビーム214を用いて受信することで、最も良好な受信品質を得ることができる。また、無線端末20aは、無線基地局10aから基地局送信ビーム116を用いて送信された信号を、端末受信ビーム215を用いて受信することで、最も良好な受信品質を得ることができる。また、無線端末20aは、無線基地局10aから基地局送信ビーム117を用いて送信された信号を、端末受信ビーム216を用いて受信することで、最も良好な受信品質を得ることができる。また、図15は、無線端末20aにおいて、無線基地局10aから基地局送信ビーム114,118を用いて送信された信号については、良好な受信品質が得られた端末受信ビームがないことを示している。
 無線基地局10aから送信され無線端末20aで受信品質を測定するために使用される信号については、NR規格で規定されているSS(Synchronization Signal)、またはCSI-RS(Channel State Information-Reference Signal)とする。いずれの信号も、無線基地局10aから周期的に送信される信号である。また、SSには基地局送信ビーム毎のインデックスが付与されている。CSI-RSは、基地局送信ビーム毎に時間周波数リソースが異なっている。そのため、無線端末20aは、SSまたはCSI-RSのどちらを受信した場合でも、どの基地局送信ビームによって送信されたのかを区別することができる。
 基地局送信ビームと端末受信ビームとの関係付けができた無線端末20aは、図14および図15に示す情報を用いて、無線基地局10aおよび無線端末20aで共にBeam Correspondenceが成立していることから、TRPグループIDと端末送信ビームとの関係付けを行うことができる。これにより、無線端末20aは、無線基地局10aのTRPの単位に対応した端末送信ビームのグループを作成することができる。具体的には、無線端末20aは、端末受信ビーム211,212,213に対応する端末送信ビーム201,202,203は同一グループでTRPグループ#1にグループ分けされ、端末受信ビーム214,215,216に対応する端末送信ビーム204,205,206は別の同一グループでTRPグループ#2にグループ分けされると判断できる。なお、無線基地局10aおよび無線端末20aにおいて、グループ分け以外の動作は、それぞれ、実施の形態1の無線基地局10および無線端末20と同様である。
 つづいて、無線基地局10aの構成について説明する。図16は、実施の形態2にかかる無線基地局10aの構成例を示す図である。無線基地局10aは、信号処理部17aと、アンテナ部14a,14bと、を備える。信号処理部17aは、図6に示す実施の形態1の信号処理部17に、測定用信号生成部16を追加したものである。測定用信号生成部16は、制御部11の指示により測定用信号、具体的には前述のようにSSまたはCSI-RSを生成する。無線基地局10aにおいて、制御部11は、実施の形態1で説明した動作に加えて、さらに、無線端末20aにおいて複数の端末送信ビームを無線基地局10aで信号が受信される基地局アンテナ部単位のグループに分けさせるため、測定用信号生成部16にSSまたはCSI-RSを生成させる。制御部11は、SSまたはCSI-RSを送信するため、アンテナ部14a,14bに対して基地局送信ビームの方向を指示する。また、制御部11は、図14に示すTRPグループIDと基地局送信ビームとの関係付けの情報を含む制御情報を生成し、変復調部12、送受信部13、およびアンテナ部14aを介して、制御情報を無線端末20aへ通知する。
 無線基地局10aの動作について説明する。図17は、実施の形態2にかかる無線基地局10aにおいて、端末受信ビームのグループ分けをする無線端末20aに対して測定用信号および制御情報を送信する動作を示すフローチャートである。制御部11は、測定用信号生成部16に測定用信号、具体的には前述のようにSSまたはCSI-RSを生成させる。測定用信号生成部16は、測定用信号を生成する(ステップS51)。測定用信号生成部16は、送受信部13を介して、アンテナ部14a,14bへ測定用信号を出力する。また、制御部11は、基地局送信ビームの方向を決定し、アンテナ部14a,14bに対して基地局送信ビームの方向を指示する。アンテナ部14a,14bは、制御部11の指示に基づいて複数の基地局送信ビームを生成し、複数の基地局送信ビームを用いて、送受信部13を介して測定用信号生成部16から取得した測定用信号を、制御部11から指示された基地局送信ビームの方向で送信する(ステップS52)。また、制御部11は、TRPグループIDと基地局送信ビームとの関係付けの情報を含む制御情報を生成する(ステップS53)。制御部11は、変復調部12、送受信部13、およびアンテナ部14aを介して、制御情報を無線端末20aへ通知する(ステップS54)。なお、無線基地局10aにおける、PUSCHを割り当てる無線端末20aを選択したときの動作は、図8に示す実施の形態1の無線基地局10の動作と同様である。
 つぎに、無線端末20aの構成について説明する。図18は、実施の形態2にかかる無線端末20aの構成例を示す図である。無線端末20aは、図9に示す実施の形態1の無線端末20に、測定部26を追加したものである。測定部26は、図15に示すような基地局送信ビームと端末受信ビームとの関係付けを作成するために、アンテナ部24から得た各端末受信ビームを用いて受信された測定用信号の受信品質、受信電力などを測定する。具体的には、測定部26は、アンテナ部24で生成される複数の端末受信ビームを用いて無線基地局10aから送信される測定用信号を受信した際の受信品質、受信電力などを、端末受信ビーム毎に測定する。測定部26は、測定結果を制御部21へ通知する。制御部21は、測定結果を取得すると、図15に示すマップを生成する。制御部21は、別途無線基地局10aから、図14に示すようなTRPグループIDと基地局送信ビームとの関係付けの制御情報を獲得し、最終的にTRPグループIDと端末送信ビームとの関係付けを決定する。
 無線端末20aの動作について説明する。図19は、実施の形態2にかかる無線端末20aにおいて無線端末20aの端末送信ビームをグループ分けする動作を示すフローチャートである。制御部21は、無線基地局10aから送信される測定用信号の受信品質を測定させるため、アンテナ部24に対して端末受信ビームの方向を指示し、無線基地局10aからの測定用信号を受信させる(ステップS61)。測定部26は、アンテナ部24から受信信号を受け取り、受信品質、具体的には前述のようにSINRを測定する(ステップS62)。測定部26は、受信品質すなわちSINRの測定結果を制御部21へ報告する。また、アンテナ部24は、無線基地局10aから、TRPグループIDと基地局送信ビームとの関係付けの情報を含む制御情報を受信する(ステップS63)。アンテナ部24は、受信した制御情報を、送受信部23、および変復調部22を介して、制御部21へ出力する。制御部21は、取得した測定結果および制御情報に基づいて、無線端末20aの端末送信ビームのグループ分けを行う(ステップS64)。このように、制御部21は、受信品質に基づいて、端末受信ビーム毎に、各端末受信ビームで受信された測定用信号の送信に使用された無線基地局10aの基地局送信ビームを選択する。制御部21は、無線基地局10aの同一基地局アンテナ部で生成された基地局送信ビームが選択された端末受信ビームに基づいて、端末受信ビームに対応する端末送信ビームを無線基地局の基地局アンテナ部単位のグループに分ける。なお、無線端末20aにおける、無線基地局10aからPUSCHが割り当てられたときの動作は、図11に示す実施の形態1の無線端末20の動作と同様である。
 無線基地局10aのハードウェア構成について、実施の形態1の無線基地局10に対して追加された測定用信号生成部16は、図12に示すプロセッサ31およびメモリ32に格納されているプログラムにより実現される。また、無線端末20aのハードウェア構成について、実施の形態1の無線端末20に対して追加された測定部26は、図12に示す受信機34により実現される。
 以上説明したように、本実施の形態によれば、無線基地局10aおよび無線端末20aにおいて共にBeam Correspondenceが成立している場合、無線端末20aが端末送信ビームのグループ分けを行うこととした。この場合においても、実施の形態1と同様の効果を得ることができる。
実施の形態3.
 実施の形態1において、無線基地局10は、TRPグループ毎に対応した送信電力制御コマンドを同時に無線端末20へ送信していたが、必ずしも同時に送信する必要はない。実施の形態3では、無線基地局10が、タイミングを変えてTRPグループ毎に対応した送信電力制御コマンドを1つずつ送信する場合について説明する。実施の形態2の無線基地局10aについても適用可能であるが、同様の動作のため、実施の形態1の無線基地局10を例にして説明する。
 実施の形態3において、無線基地局10は、送信電力制御コマンドTPC command for scheduled PUSCHについては1つの定義でよく、代わりにTPC command for scheduled PUSCHを適用するTRPグループIDを無線端末20に対して通知する。具体的には、前述のFormat0_1のメッセージに定義されているいずれかの領域に、TRPグループIDの情報を付加する。TRPグループIDの情報が付加されたものを、例えば、Format0_1EEとする。無線基地局10は、Format0_1EEを用いて、例えば、第1のタイミングで、「TRPグループID=#1」、および「TPC command for scheduled PUSCH=-1[dB]」の内容を含むメッセージを生成して無線端末20へ通知する。また、無線基地局10は、Format0_1EEを用いて、例えば、第2のタイミングで、「TRPグループID=#2」、および「TPC command for scheduled PUSCH=+1[dB]」の内容を含むメッセージを生成して無線端末20へ通知する。具体的には、無線基地局10において、制御部11は、TRPグループ単位の送信電力制御値を、TRPグループ毎に送信タイミングを変えて無線端末20へ通知する動作を行う。なお、無線基地局10において、TRPグループIDと端末送信ビームとの関係付けの判断などの動作は、実施の形態1のときと同様である。
 無線端末20は、Format0_1EEのメッセージによって「TRPグループID」および「送信電力制御コマンド」を取得すると、端末送信ビームのグループ毎に、送信電力制御コマンド値を累積する。無線端末20は、TRPグループID毎にメッセージを取得する点が実施の形態1と異なるが、Format0_1EEのメッセージを取得した後の送信電力制御コマンド値を累積する動作は、実施の形態1のときと同様である。
 なお、無線基地局10は、全てのTRPグループ送信電力を制御するのではなく、受信品質であるSINRがSINR適正値に達していないTRPグループについてのみ、送信電力制御を行うことも可能である。無線基地局10は、例えば、TRP#1およびTRP#2があり、TRP#1のSINRがSINR適正値に達していなく、TRP#2のSINRがSINR適正値に達している場合、TRP#1についてのみ送信電力制御コマンドを通知する。具体的には、無線基地局10において、制御部11は、送信電力の変更が必要なTRPグループの送信電力制御値を、無線端末20へ通知する動作を行う。
 また、無線基地局10は、複数のTRPグループについて、いずれも送信電力を上げる制御の必要があるが、全てのTRPグループで送信電力を上げると無線端末20の送信電力が最大送信電力を超えてしまうと判断できる場合、より重要なTRPグループを選択して送信電力を上げさせることも可能である。この場合、無線基地局10は、選択したTRPグループについてのみ、送信電力制御コマンドを通知する。無線基地局10において、より重要なTRPグループを選択する方法は、例えば、SINRが最も低い基地局受信ビームに対応するTRPとすることが考えられる。なお、無線端末20が最大送信電力と現在の送信電力との差分を定期的に無線基地局10へ通知する仕組みがすでにNR規格で規定されている。そのため、無線基地局10は、無線端末20の送信電力が最大送信電力を越えるか否かを容易に判断することができる。無線基地局10は、無線端末20の最大送信電力と現在の送信電力との差分に基づいて、選択するTRPグループの数を変更してもよい。具体的には、無線基地局10において、制御部11は、複数のTRPグループで送信電力を上げると無線端末20の送信電力が最大送信電力を超える場合、複数のTRPグループから選択したTRPグループの送信電力制御値を無線端末20へ通知する動作を行う。
 以上説明したように、本実施の形態によれば、無線基地局10は、複数のTRPグループに対応する複数の送信電力制御コマンドを、タイミングを変えて1つずつ無線端末20へ通知する。これにより、無線基地局10は、TRPグループの数が多い場合において、1回の送信電力制御コマンドを送るときに必要な制御ビット数の増加を抑圧することができる。
 また、無線基地局10は、SINR適正値に達していないTRPグループのみについて送信電力制御コマンドを通知する。これにより、無線基地局10は、制御が不要なTRPグループについての制御オーバヘッドを削減することができる。
 また、無線基地局10は、複数のTRPグループで送信電力を上げると無線端末20の送信電力が最大送信電力を超えてしまう場合、重要なTRPグループを選択し、選択したTRPグループの送信電力のみを上げる制御を行う。これにより、無線基地局10は、無線端末20の送信電力が最大送信電力を超えることを防止し、かつ、制御が必要なTRPのSINRを適正値に近づけることができる。
実施の形態4.
 実施の形態1から実施の形態3では、無線基地局が、常にTRPグループ単位で無線端末の送信電力を制御していた。実施の形態4では、無線基地局10が、状況によって、TRPグループ単位の送信電力制御と、各TRPグループに共通の送信電力制御とを使い分ける場合について説明する。実施の形態2の無線基地局10a、および実施の形態3の無線基地局10および無線基地局10aにも適用可能であるが、同様の動作のため、実施の形態1の無線基地局10を例にして説明する。
 例えば、無線端末20では、信号を送信または再送する際の区切りとなるデータ単位をCodewordとすると、1つのCodewordを、送信に使用する全ての端末送信ビームにマッピングする方法と、端末送信ビームまたはビームグループ単位でマッピングする方法とがある。図20は、実施の形態4にかかる無線端末20が、1つのCodewordを送信に使用する全ての端末送信ビームにマッピングするマッピングパターンの例を示す図である。また、図21は、実施の形態4にかかる無線端末20が、1つのCodewordを端末送信ビームの単位でマッピングするマッピングパターンの例を示す図である。図20に示すものをマッピングパターンAとし、図21に示すものをマッピングパターンBとする。無線端末20は、NR規格で規定されているマッピングパターンに従い、1つのCodewordを複数のLayerにマッピングする。さらに、無線端末20は、各Layerからビームへマッピングする際に、プリコーディングという技術を使用する。NR規格では、ビームはアンテナポートと呼称されている。図20および図21に示すビームは、実施の形態1から実施の形態3における端末送信ビームに相当する。無線端末20は、各Layerの信号に対して行列演算を行い、演算結果をビームへマッピングする。なお、プリコーディングの行列演算に使用される行列の例については、3GPP規格書TS38.211V15.0.0の6.3.1.5節に記載されている。
 ここで、無線端末20で使用される行列によって、マッピングパターンAが選択される場合と、マッピングパターンBが選択される場合とに分かれる。まず、無線端末20において図20に示すマッピングパターンAが選択され、ビームa,bがTRP#1に向けて信号が送信され、ビームe,fがTRP#2に向けて信号が送信されることを想定する。信号を受信する無線基地局10において、例えば、図5に示すような状況がTRP#1,#2で発生していても、他の無線基地局への干渉を考慮する必要がなければ、TRP#1およびTRP#2の各SINRがSINR適正値に達しているだけで問題ない。このような場合、無線基地局10は、従来技術の通り、無線端末20に対して1つの送信電力制御コマンドで制御することで十分である。例えば、無線基地局10の周辺に同一周波数を使用している他の無線基地局が存在しない場合などが考えられる。一方、無線基地局10は、他の無線基地局への干渉を考慮する必要がある場合、図5に示すような状況がTRP#1,#2で発生したときは、TRPグループ単位で無線端末20の送信電力制御を行うことが好ましい。このような場合、無線基地局10は、無線端末20が使用するパターンとしてマッピングパターンBを選択し、無線端末20がビームグループ1を用いてTRP#1向けに信号を送信し、ビームグループ2を用いてTRP#2向けに信号を送信しているのであれば、TRPグループ毎に送信電力制御を行う。
 無線基地局10は、他の無線基地局への干渉の有無に基づいて、マッピングパターンAを用いるか、マッピングパターンBを用いるか、すなわちグループ単位で送信電力制御を行うか、全グループに共通の送信電力制御を行うかを判断する。NR規格には、無線基地局10がマッピングパターンA,Bのどちらを選んだかの判断の結果を、Format0_1の「Precoding information」を使って無線端末20へ通知することが規定されている。このように、無線基地局10は、無線端末20との通信状況を考慮し、TRPグループ毎に無線端末20の送信電力制御を行う場合、実施の形態1に記載のFormat0_1Eまたは実施の形態2に記載のFormat0_1EEを用いる。また、無線基地局10は、TRPグループ共通で無線端末20の送信電力制御を行う場合、既存のFormat0_1を用いる。これにより、無線基地局10は、2つのモードの使い分けが可能である。また、無線基地局10が、いずれか1つのモードを常に使うと決めることで、通信相手の無線端末20との通信開始時に一度だけモードを通知する方法も考えられる。
 図22は、実施の形態4にかかる無線基地局10において無線端末20に対する送信電力制御方法を決定する動作を示すフローチャートである。制御部11は、無線端末20の送信電力制御が必要な場合において、他の無線基地局との干渉を考慮する必要がある場合(ステップS71:Yes)、TRPグループ単位で送信電力制御を行うことが有効として、TRPグループ単位で無線端末20の端末送信ビームの送信電力を制御することを決定する(ステップS72)。制御部11は、他の無線基地局との干渉を考慮する必要がない場合(ステップS71:No)、TRPグループ単位の送信電力制御が必要ないとして、TRPグループ共通で無線端末20の端末送信ビームの送信電力を制御することを決定する(ステップS73)。
 以上説明したように、本実施の形態によれば、無線基地局10は、他の無線基地局への干渉を考慮する必要がない場合はTRPグループ共通の送信電力制御を行い、他の無線基地局への干渉を考慮する必要がある場合はTRPグループ毎の送信電力制御を行うこととした。これにより、無線基地局10は、必要な場合にはTRPグループ単位で送信電力制御を行うことでTRPグループ毎にSINRなどの受信品質を適切に制御でき、かつ、TRPグループ共通の送信電力制御でよい場合にはシステム全体の制御オーバヘッドを削減することができる。
 なお、実施の形態1から実施の形態3では、TRPの単位で端末送信ビームのグループ分けを行っていたが、グループ分けの方法はTRPの単位に限定されない。例えば、無線基地局は、端末送信ビームによる信号を受信する際、受信品質が似ている、または受信品質が異なるなどの視点で無線端末の端末送信ビームをグループ分けしてもよい。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 10,10a 無線基地局、11,21 制御部、12,22 変復調部、13,23 送受信部、14a,14b,24 アンテナ部、15,26 測定部、16 測定用信号生成部、17,17a 信号処理部、20,20a 無線端末、25 サウンディング信号生成部、50,50a 無線通信システム、101~108 基地局受信ビーム、111~118 基地局送信ビーム、201~206 端末送信ビーム、211~216 端末受信ビーム、#1,#2 TRP。

Claims (13)

  1.  各々が基地局受信ビームを生成し、無線端末から端末送信ビームを用いて送信される信号を、前記基地局受信ビームを用いて受信する複数の基地局アンテナ部と、
     前記基地局受信ビーム毎に前記信号の受信品質を測定する測定部と、
     前記基地局アンテナ部単位で前記基地局受信ビームをグループに分け、前記グループ単位の前記測定部の測定結果に基づいて、前記グループ単位で前記無線端末の前記端末送信ビームの送信電力制御を行う制御部と、
     を備えることを特徴とする無線基地局。
  2.  前記測定部は、前記基地局受信ビーム毎に、前記無線端末から送信される前記信号である測定用信号の受信品質を測定し、
     前記制御部は、受信品質に基づいて基地局受信ビーム毎に、各基地局受信ビームで受信された前記測定用信号の送信に使用された前記無線端末の端末送信ビームを選択して、前記無線端末の端末送信ビームをグループ分けし、前記無線端末の端末送信ビームをグループ分けした情報であるグループ情報を前記無線端末へ通知する、
     ことを特徴とする請求項1に記載の無線基地局。
  3.  前記無線端末において受信品質の測定に使用される測定用信号を生成する測定用信号生成部、
     を備え、
     前記制御部は、前記無線基地局において基地局送信ビームおよび基地局受信ビームが同一利得パターンを形成し、かつ、前記無線端末において端末送信ビームおよび端末受信ビームが同一利得パターンを形成している場合、前記測定用信号生成部に前記測定用信号を生成させ、
     前記基地局アンテナ部は、前記制御部の指示に基づいて基地局送信ビームを生成し、前記基地局送信ビームを用いて前記測定用信号を前記無線端末へ送信する、
     ことを特徴とする請求項1に記載の無線基地局。
  4.  前記制御部は、前記無線端末から送信される前記信号の前記基地局受信ビーム毎の受信品質に基づいて、前記無線端末の前記端末送信ビームのグループ単位の送信電力制御値を決定し、前記無線端末へ通知する、
     ことを特徴とする請求項2または3に記載の無線基地局。
  5.  前記制御部は、前記グループ単位の送信電力制御値を、前記グループ毎に送信タイミングを変えて前記無線端末へ通知する、
     ことを特徴とする請求項4に記載の無線基地局。
  6.  前記制御部は、送信電力の変更が必要なグループの送信電力制御値を、前記無線端末へ通知する、
     ことを特徴とする請求項4に記載の無線基地局。
  7.  前記制御部は、複数のグループで送信電力を上げると前記無線端末の送信電力が最大送信電力を超える場合、前記複数のグループから選択したグループの送信電力制御値を前記無線端末へ通知する、
     ことを特徴とする請求項4に記載の無線基地局。
  8.  前記制御部は、他の無線基地局への干渉の有無に基づいて、前記グループの単位で送信電力制御を行うか、全ての前記グループに共通の送信電力制御を行うかを判断する、
     ことを特徴とする請求項1から7のいずれか1つに記載の無線基地局。
  9.  各々が基地局受信ビームを生成可能な複数の基地局アンテナ部を備える無線基地局と無線通信を行う無線端末であって、
     端末送信ビームを生成し、前記端末送信ビームを用いて前記無線基地局へ信号を送信する端末アンテナ部と、
     前記端末送信ビームが、各端末送信ビームによって送信される前記信号が受信される前記無線基地局の前記基地局アンテナ部単位のグループに分けられた前記グループの単位で、前記無線基地局の指示に基づいて前記端末送信ビームの送信電力を決定する制御部と、
     を備えることを特徴とする無線端末。
  10.  前記無線基地局において受信品質の測定に使用される測定用信号を生成する測定用信号生成部、
     を備え、
     前記制御部は、前記無線基地局からの指示に基づいて、前記測定用信号生成部に前記測定用信号を生成させ、
     前記端末アンテナ部は、前記制御部の指示に基づいて端末送信ビームを生成し、前記測定用信号を前記無線基地局へ送信する、
     ことを特徴とする請求項9に記載の無線端末。
  11.  前記端末アンテナ部で生成される端末受信ビームを用いて前記無線基地局から送信される測定用信号を受信した際の受信品質を、前記端末受信ビーム毎に測定する測定部、
     を備え、
     前記制御部は、前記無線基地局において基地局送信ビームおよび基地局受信ビームが同一利得パターンを形成し、かつ、前記無線端末において端末送信ビームおよび端末受信ビームが同一利得パターンを形成している場合、前記受信品質に基づいて、前記端末受信ビーム毎に、各端末受信ビームで受信された前記測定用信号の送信に使用された前記無線基地局の基地局送信ビームを選択し、前記無線基地局の同一基地局アンテナ部で生成された基地局送信ビームが選択された端末受信ビームに基づいて、端末受信ビームに対応する端末送信ビームを前記無線基地局の基地局アンテナ部単位のグループに分ける、
     ことを特徴とする請求項9に記載の無線端末。
  12.  請求項1に記載の無線基地局と、
     請求項9に記載の無線端末と、
     を備え、
     前記無線基地局は、前記無線端末から送信される信号の基地局受信ビーム毎の受信品質に基づいて、前記無線端末の端末送信ビームのグループ単位の送信電力制御値を決定し、前記無線端末へ通知し、
     前記無線端末は、前記無線基地局から通知されたグループ単位の送信電力制御値に基づいて、指示されたグループの端末送信ビームの送信電力を決定する、
     ことを特徴とする無線通信システム。
  13.  請求項1に記載の無線基地局と、請求項9に記載の無線端末と、を備える無線通信システムにおける送信電力制御方法であって、
     前記無線基地局が、前記無線端末から送信される信号の基地局受信ビーム毎の受信品質に基づいて、前記無線端末の端末送信ビームのグループ単位の送信電力制御値を決定し、前記無線端末へ通知する第1のステップと、
     前記無線端末が、前記無線基地局から通知されたグループ単位の送信電力制御値に基づいて、指示されたグループの端末送信ビームの送信電力を決定する第2のステップと、
     を含むことを特徴とする送信電力制御方法。
PCT/JP2018/004435 2018-02-08 2018-02-08 無線基地局、無線端末、無線通信システムおよび送信電力制御方法 WO2019155578A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP22175777.6A EP4084359A1 (en) 2018-02-08 2018-02-08 Radio base station, wireless terminal, radio communication system, and transmission power controlling method
CN201880088191.8A CN111656701A (zh) 2018-02-08 2018-02-08 无线基站、无线终端、无线通信系统和发送功率控制方法
JP2019566973A JP6656500B2 (ja) 2018-02-08 2018-02-08 無線基地局、無線端末、無線通信システム、送信電力制御方法、制御回路およびプログラム記憶媒体
CN202310267208.9A CN116192221A (zh) 2018-02-08 2018-02-08 无线终端、控制电路以及非暂时性程序存储装置
PCT/JP2018/004435 WO2019155578A1 (ja) 2018-02-08 2018-02-08 無線基地局、無線端末、無線通信システムおよび送信電力制御方法
EP18904615.4A EP3737001A4 (en) 2018-02-08 2018-02-08 WIRELESS BASE STATION, WIRELESS TERMINAL, WIRELESS COMMUNICATION SYSTEM, AND TRANSMISSION POWER CONTROL PROCESS
US16/944,719 US11297578B2 (en) 2018-02-08 2020-07-31 Radio base station, wireless terminal, radio communication system, transmission power controlling method, control circuit and program storage medium
US17/679,988 US11832192B2 (en) 2018-02-08 2022-02-24 Radio base station, wireless terminal, radio communication system, transmission power controlling method, control circuit and program storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/004435 WO2019155578A1 (ja) 2018-02-08 2018-02-08 無線基地局、無線端末、無線通信システムおよび送信電力制御方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/944,719 Continuation US11297578B2 (en) 2018-02-08 2020-07-31 Radio base station, wireless terminal, radio communication system, transmission power controlling method, control circuit and program storage medium

Publications (1)

Publication Number Publication Date
WO2019155578A1 true WO2019155578A1 (ja) 2019-08-15

Family

ID=67548954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004435 WO2019155578A1 (ja) 2018-02-08 2018-02-08 無線基地局、無線端末、無線通信システムおよび送信電力制御方法

Country Status (5)

Country Link
US (2) US11297578B2 (ja)
EP (2) EP3737001A4 (ja)
JP (1) JP6656500B2 (ja)
CN (2) CN116192221A (ja)
WO (1) WO2019155578A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4250585A1 (en) 2022-03-25 2023-09-27 Fujitsu Limited Wireless communications device, wireless communications system, radio beam allocation method, and recording medium
JP7434617B2 (ja) 2022-02-11 2024-02-20 明泰科技股▲分▼有限公司 アップリンク通信の方法、無線アクセスネットワーク、ranシステム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6656500B2 (ja) * 2018-02-08 2020-03-04 三菱電機株式会社 無線基地局、無線端末、無線通信システム、送信電力制御方法、制御回路およびプログラム記憶媒体
WO2019185137A1 (en) * 2018-03-28 2019-10-03 Huawei Technologies Co., Ltd. Devices, methods and computer programs for two-way beam failure recovery in wireless communications
GB2605204A (en) * 2021-03-26 2022-09-28 Airspan Ip Holdco Llc Wireless radio system for adjusting path loss calculations
WO2022250422A1 (en) * 2021-05-24 2022-12-01 Samsung Electronics Co., Ltd. Method and apparatus communication in cooperative wireless communication systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015532805A (ja) * 2012-08-17 2015-11-12 サムスン エレクトロニクス カンパニー リミテッド ビームフォーミングを利用したシステムでシステムアクセス方法及び装置
JP2016506667A (ja) * 2012-12-21 2016-03-03 サムスン エレクトロニクス カンパニー リミテッド 無線通信システムにおけるビームフォーミングを利用した制御チャネルの送受信方法及び装置
JP2016506681A (ja) * 2012-12-27 2016-03-03 サムスン エレクトロニクス カンパニー リミテッド ビームフォーミングに基づいた無線通信システムにおけるアップリンク電力制御方法及び装置

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003069493A (ja) * 2001-08-28 2003-03-07 Mitsubishi Electric Corp 無線通信システム、無線通信システムの端末局及び基地局、並びにその送信電力制御方法
KR101546986B1 (ko) * 2007-10-09 2015-08-24 텔레폰악티에볼라겟엘엠에릭슨(펍) 공통 및 개별 모두의 tpc 명령들은 지원하는 전기통신 네트워크 시스템에서의 업링크 전력 제어 방법
JP5588594B2 (ja) * 2007-12-26 2014-09-10 富士通株式会社 無線通信システムにおける通信方法並びに無線端末及び無線基地局
US9392608B2 (en) * 2010-04-13 2016-07-12 Qualcomm Incorporated Resource partitioning information for enhanced interference coordination
US20130286960A1 (en) * 2012-04-30 2013-10-31 Samsung Electronics Co., Ltd Apparatus and method for control channel beam management in a wireless system with a large number of antennas
US9750003B2 (en) * 2012-12-21 2017-08-29 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving control channel by beamforming in a wireless communication system
JP6336728B2 (ja) * 2013-08-20 2018-06-06 株式会社Nttドコモ 同期信号送信方法及び基地局装置
EP2887561B1 (en) * 2013-12-18 2019-07-03 Alcatel Lucent Beamforming apparatuses, methods and computer programs for a base station transceiver and a mobile transceiver
EP3162090B1 (en) * 2014-06-30 2019-08-28 Telefonaktiebolaget LM Ericsson (publ) Multiple-layer beacon sweeping method, access node and computer program product
CN105790886A (zh) * 2014-12-24 2016-07-20 中兴通讯股份有限公司 数据包发送、接收方法、装置、基站及终端
JP2018074179A (ja) * 2015-03-11 2018-05-10 シャープ株式会社 無線受信装置、無線送信装置、通信方法および通信システム
US20160337922A1 (en) * 2015-05-14 2016-11-17 Nokia Technologies Oy RAN-WLAN Traffic Steering
JP6935426B2 (ja) * 2016-05-11 2021-09-15 コンヴィーダ ワイヤレス, エルエルシー 新しい無線ダウンリンク制御チャネル
EP3455956A1 (en) * 2016-05-11 2019-03-20 IDAC Holdings, Inc. Systems and methods for beamformed uplink transmission
KR20190017994A (ko) * 2016-06-15 2019-02-20 콘비다 와이어리스, 엘엘씨 새로운 라디오를 위한 업로드 제어 시그널링
EP3484062A4 (en) * 2016-07-06 2019-07-03 Sony Corporation BASE STATION, DEVICE DEVICE, COMMUNICATION METHOD AND RECORDING MEDIUM
CN109845129B (zh) * 2016-08-11 2023-10-31 交互数字专利控股公司 针对新无线电在弹性帧结构中进行波束成形扫描和训练
CN106797625B (zh) * 2016-09-26 2020-06-02 北京小米移动软件有限公司 数据传输同步方法及装置
US11160029B2 (en) * 2017-01-04 2021-10-26 Lg Electronics Inc. Controlling uplink power based on downlink path loss and configuration indicated by base station
EP3566492A1 (en) * 2017-01-06 2019-11-13 Telefonaktiebolaget LM Ericsson (PUBL) Technique for determining signal quality
EP4270811A1 (en) * 2017-03-31 2023-11-01 Apple Inc. Beam management procedure triggering and signaling delivery in fall-back mode
US10484066B2 (en) * 2017-04-04 2019-11-19 Qualcomm Incorporated Beam management using synchronization signals through channel feedback framework
WO2018201284A1 (en) * 2017-05-02 2018-11-08 Qualcomm Incorporated Port group indication and port subsets in a csi-rs resource for new radio (nr)
US10827530B2 (en) * 2017-05-04 2020-11-03 Electronics And Telecommunications Research Institute Method for transmitting and receiving message for random access in multi beam system
EP3682587B1 (en) * 2017-09-11 2023-11-01 Lenovo (Singapore) Pte. Ltd. Reference signals for radio link monitoring
US10651995B2 (en) * 2017-09-19 2020-05-12 Qualcomm Incorporated Transmission of group common control information in new radio
US11758585B2 (en) * 2017-09-28 2023-09-12 Telefonaktiebolaget Lm Ericsson (Publ) Multi-beam random access procedure in handover execution
RU2739790C1 (ru) * 2017-09-28 2020-12-28 Телефонактиеболагет Лм Эрикссон (Пабл) Процедура произвольного доступа в операции хендовера при многолучевом распространении
CN111373793B (zh) * 2017-11-17 2022-06-28 瑞典爱立信有限公司 用于配置无线电链路监视评估时间段的系统以及方法
JP6656500B2 (ja) * 2018-02-08 2020-03-04 三菱電機株式会社 無線基地局、無線端末、無線通信システム、送信電力制御方法、制御回路およびプログラム記憶媒体
EP4271058A3 (en) * 2018-02-15 2024-01-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Joint transmissions of data in a wireless communication system using a non-orthogonal multiple access transmission scheme
US11729782B2 (en) * 2018-06-11 2023-08-15 Apple Inc. Enhanced uplink beam management
US10925116B2 (en) * 2018-06-26 2021-02-16 Apple Inc. Beam indication for semi-persistent and grant-free transmissions
US11569967B2 (en) * 2018-09-12 2023-01-31 Samsung Electronics Co., Ltd. Method and apparatus for uplink control information transmission and reception
US11622336B2 (en) * 2019-08-08 2023-04-04 Qualcomm Incorporated Sidelink transmit power control command signaling
US11589319B2 (en) * 2019-08-08 2023-02-21 Qualcomm Incorporated Sidelink transmit power control command generation
CA3090158A1 (en) * 2019-08-15 2021-02-15 Comcast Cable Communications, Llc Sidelink communications
US11101856B2 (en) * 2019-08-16 2021-08-24 Lg Electronics Inc. Method and apparatus for uplink signal transmission based on codebook in a wireless communication system
US11632155B2 (en) * 2019-08-16 2023-04-18 Lg Electronics Inc. Method and apparatus for uplink signal transmission based on codebook in a wireless communication system
US11095348B2 (en) * 2019-08-16 2021-08-17 Lg Electronics Inc. Method and apparatus for uplink signal transmission based on codebook in a wireless communication system
US11895521B2 (en) * 2020-01-27 2024-02-06 Qualcomm Incorporated Positioning measurement data reported via L1 or L2 signaling
US11601925B2 (en) * 2020-04-17 2023-03-07 Qualcomm Incorporated Quasi co-location relationship reporting
US11844120B2 (en) * 2020-04-22 2023-12-12 Qualcomm Incorporated Methods and apparatus for determining physical cell identification
WO2021248431A1 (en) * 2020-06-12 2021-12-16 Qualcomm Incorporated Measurement configuration for doppler shift reporting
US20220132350A1 (en) * 2020-10-23 2022-04-28 Qualcomm Incorporated Downlink reference signal reports for antenna panels
US11647530B2 (en) * 2020-12-21 2023-05-09 Qualcomm Incorporated Transmission configuration indicator (TCI) state groups

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015532805A (ja) * 2012-08-17 2015-11-12 サムスン エレクトロニクス カンパニー リミテッド ビームフォーミングを利用したシステムでシステムアクセス方法及び装置
JP2016506667A (ja) * 2012-12-21 2016-03-03 サムスン エレクトロニクス カンパニー リミテッド 無線通信システムにおけるビームフォーミングを利用した制御チャネルの送受信方法及び装置
JP2016506681A (ja) * 2012-12-27 2016-03-03 サムスン エレクトロニクス カンパニー リミテッド ビームフォーミングに基づいた無線通信システムにおけるアップリンク電力制御方法及び装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7434617B2 (ja) 2022-02-11 2024-02-20 明泰科技股▲分▼有限公司 アップリンク通信の方法、無線アクセスネットワーク、ranシステム
EP4250585A1 (en) 2022-03-25 2023-09-27 Fujitsu Limited Wireless communications device, wireless communications system, radio beam allocation method, and recording medium

Also Published As

Publication number Publication date
JPWO2019155578A1 (ja) 2020-04-16
US20200367175A1 (en) 2020-11-19
CN111656701A (zh) 2020-09-11
US20220248339A1 (en) 2022-08-04
US11297578B2 (en) 2022-04-05
EP3737001A1 (en) 2020-11-11
EP4084359A1 (en) 2022-11-02
JP6656500B2 (ja) 2020-03-04
EP3737001A4 (en) 2020-12-16
US11832192B2 (en) 2023-11-28
CN116192221A (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
JP6656500B2 (ja) 無線基地局、無線端末、無線通信システム、送信電力制御方法、制御回路およびプログラム記憶媒体
US11895601B2 (en) Multi-beam power control methods and systems
EP2260668B1 (en) Interference reduction in a communication network by scheduling and link adaptation
KR102179044B1 (ko) 무선 통신 시스템에서 수신 빔 이득 조정 장치 및 방법
US20190174422A1 (en) Wireless communication terminal device, wireless communication method and integrated circuit for controlling transmission power of sounding reference signal (srs)
US11234196B2 (en) Method and device for controlling transmission power of user equipment in beamforming system
JP6840868B2 (ja) パワーヘッドルームを報告する方法及び装置
US20130188540A1 (en) Controlling a power level of an uplink control channel
KR20140046037A (ko) 공유 셀 id를 갖는 이종 네트워크에서 업링크 전력 제어에 이용되는 방법
JP6567217B2 (ja) 無線端末と無線端末の送信電力制御方法、および無線基地局
EP4005295B1 (en) Link-adaptation power backoff
US20140011535A1 (en) Apparatus and method for controlling uplink power in a wireless communication system
CN113796022B (zh) 用于波束参考信令的方法
CN103037489A (zh) 上行信号功率控制方法及装置
US20220030527A1 (en) Method and device for controlling transmission power of terminal in beamforming system
CN113228530A (zh) 波束选择性发射功率控制方案
KR20120121299A (ko) 기지국의 상향링크 전력 제어 정보 제공 방법 및 단말의 상향링크 전력 제어 방법, 그 기지국, 그 단말
WO2013164024A1 (en) Method for power control of sounding reference signals
US20230006747A1 (en) Methods and devices for handling interference caused by one or more wireless terminals served by a radio network node
WO2021037639A1 (en) Power control
WO2024188440A1 (en) Uplink (ul) power control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904615

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019566973

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018904615

Country of ref document: EP

Effective date: 20200805

NENP Non-entry into the national phase

Ref country code: DE