WO2019093793A1 - 무선 통신 시스템에서 랜덤 엑세스 절차를 수행하기 위한 메시지를 전송하는 방법 및 이를 위한 장치 - Google Patents
무선 통신 시스템에서 랜덤 엑세스 절차를 수행하기 위한 메시지를 전송하는 방법 및 이를 위한 장치 Download PDFInfo
- Publication number
- WO2019093793A1 WO2019093793A1 PCT/KR2018/013559 KR2018013559W WO2019093793A1 WO 2019093793 A1 WO2019093793 A1 WO 2019093793A1 KR 2018013559 W KR2018013559 W KR 2018013559W WO 2019093793 A1 WO2019093793 A1 WO 2019093793A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- message
- base station
- carrier
- transmitting
- iot
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 133
- 238000004891 communication Methods 0.000 title claims abstract description 39
- 230000004044 response Effects 0.000 claims abstract description 17
- 230000005540 biological transmission Effects 0.000 claims description 86
- 239000000969 carrier Substances 0.000 description 20
- 102100039292 Cbp/p300-interacting transactivator 1 Human genes 0.000 description 17
- 101000888413 Homo sapiens Cbp/p300-interacting transactivator 1 Proteins 0.000 description 17
- 238000010586 diagram Methods 0.000 description 13
- 238000013461 design Methods 0.000 description 10
- 238000013468 resource allocation Methods 0.000 description 10
- 230000015654 memory Effects 0.000 description 7
- 230000008901 benefit Effects 0.000 description 5
- 238000010295 mobile communication Methods 0.000 description 5
- 230000008054 signal transmission Effects 0.000 description 5
- 101100396152 Arabidopsis thaliana IAA19 gene Proteins 0.000 description 4
- 101100274486 Mus musculus Cited2 gene Proteins 0.000 description 4
- 101150096622 Smr2 gene Proteins 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000011664 signaling Effects 0.000 description 4
- 101150039363 SIB2 gene Proteins 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 2
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 101001056707 Homo sapiens Proepiregulin Proteins 0.000 description 1
- 102100025498 Proepiregulin Human genes 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0453—Resources in frequency domain, e.g. a carrier in FDMA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/002—Transmission of channel access control information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0833—Random access procedures, e.g. with 4-step access
Definitions
- the present invention relates to a wireless communication system and a method for transmitting a message for performing a random access procedure and an apparatus therefor.
- the mobile communication system has been developed to provide voice service while ensuring the user 's activity.
- the mobile communication system has expanded the area from voice to data service.
- Due to an explosion of traffic a shortage of resources is caused and users demand a higher speed service. Therefore, a more advanced mobile communication system is required .
- next-generation mobile communication system largely depend on the acceptance of explosive data traffic, the dramatic increase in the rate per user, the acceptance of a significantly increased number of connected devices, very low end-to-end latency, Should be able to.
- a dual connectivity a massive multiple input multiple output (MIMO), an in-band full duplex, a non-orthogonal multiple access (NOMA) wideband support, and device networking.
- MIMO massive multiple input multiple output
- NOMA non-orthogonal multiple access
- the present disclosure provides a method for transmitting a message for performing a random access procedure in a wireless communication system.
- a method for transmitting a message for performing a random access procedure in a wireless communication system comprising: receiving a system information block (SIB) from a base station; Transmitting a first message as a random access preamble to a base station based on the SIB; Receiving a second message from the base station, the second message being a response to the first message; And transmitting the third message to the base station using a carrier wave different from a carrier used for the first message transmission.
- SIB system information block
- NPDCCH physical downlink control channel
- the carrier for the third message transmission is set through the DCI or the second message.
- the carrier wave for the third message transmission is set through the SIB.
- the SIB includes information on resources to which the third message can be transmitted, and based on the information, a carrier on which the third message is transmitted is determined by the DCI or the second message .
- the NPDCCH is for unicast transmission
- the third message is transmitted using a carrier used for uplink unicast.
- a terminal performing a method for performing a random access procedure in a wireless communication system includes a Radio Frequency (RF) module for transmitting and receiving a radio signal; And a processor operatively coupled to the RF module, wherein the processor receives a system information block (SIB) from a base station and transmits a first message, a random access preamble, to the base station based on the SIB And receiving a second message as a response to the first message from the base station and transmitting the third message to the base station using a carrier wave different from a carrier used for the first message transmission.
- SIB system information block
- the processor may further include receiving the downlink control information (DCI) from a base station via a physical downlink control channel (NPDCCH).
- DCI downlink control information
- NPDCCH physical downlink control channel
- the carrier for the third message transmission is set through the DCI or the second message.
- the carrier wave for the third message transmission is set through the SIB.
- a method for transmitting a message for performing a random access procedure in a wireless communication system comprising: transmitting a system information block (SIB) to a terminal; Receiving a first message, which is a random access preamble based on the SIB, from a terminal; Transmitting a second message, which is a response to the first message, to the terminal; And receiving a third message transmitted from the terminal using a carrier wave different from the carrier used for the first message transmission.
- SIB system information block
- SIB system information block
- the present invention has an effect of preventing resource collision for random access by transmitting the first message and the third message for performing the random access procedure using different carriers.
- FIG. 1 shows a structure of a radio frame in a wireless communication system to which the present invention can be applied.
- FIG. 2 is a diagram illustrating a resource grid for one downlink slot in a wireless communication system to which the present invention can be applied.
- FIG 3 illustrates a structure of a downlink subframe in a wireless communication system to which the present invention can be applied.
- FIG. 4 illustrates a structure of a UL subframe in a wireless communication system to which the present invention can be applied.
- FIG. 5 is a diagram illustrating an NB-IoT frame structure in which the present invention can be applied with a subcarrier interval of 15 KHz.
- FIG. 6 is a diagram illustrating an NB-IoT frame structure with a subcarrier interval of 3.75 KHz to which the present invention can be applied.
- FIG. 7 is a diagram illustrating a resource grid for an NB-IoT uplink to which the present invention can be applied.
- FIG. 8 is a diagram of an NB-IoT operation mode to which the present invention can be applied.
- FIG. 9 is a diagram for transmitting / receiving signals between a base station and a terminal of an NB-IoT to which the present invention can be applied.
- FIG. 10 is a diagram showing an example of transmission of the TDD NPRACH preamble.
- 11 is a diagram showing an example of the TDD NPRACH resource configuration.
- FIG. 12 is a flowchart illustrating an operation procedure in a terminal for transmitting a message for performing a random access procedure according to an embodiment of the present invention.
- FIG. 13 is a flowchart illustrating an operation procedure in a base station for transmitting a message for performing a random access procedure according to an embodiment of the present invention.
- FIG. 14 is a block diagram of a wireless communication apparatus according to an embodiment of the present invention.
- a base station has a meaning as a terminal node of a network that directly communicates with a terminal.
- the specific operation described herein as performed by the base station may be performed by an upper node of the base station, as the case may be. That is, it is apparent that various operations performed for communication with a terminal in a network composed of a plurality of network nodes including a base station can be performed by a network node other than the base station or the base station.
- a base station (BS) is a fixed station, a Node B, an evolved NodeB (eNB), a base transceiver system (BTS), an access point (AP), a remote radio head (RRH) point (TP), reception point (RP), relay, and the like.
- a 'terminal' may be fixed or mobile and may be a mobile station (UE), a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS) Advanced Mobile Station (WT), Wireless Terminal (WT), Machine-Type Communication (MTC), Machine-to-Machine (M2M), and Device-to-Device (D2D) devices.
- UE mobile station
- MS mobile station
- UT user terminal
- MSS mobile subscriber station
- SS Subscriber station
- WT Wireless Terminal
- MTC Machine-Type Communication
- M2M Machine-to-Machine
- D2D Device-to-Device
- a downlink means communication from a base station to a terminal
- an uplink means communication from a terminal to a base station.
- the transmitter may be part of the base station, and the receiver may be part of the terminal.
- the transmitter may be part of the terminal and the receiver may be part of the base station.
- CDMA code division multiple access
- FDMA frequency division multiple access
- TDMA time division multiple access
- OFDMA orthogonal frequency division multiple access
- SC- single carrier frequency division multiple access
- CDMA can be implemented with radio technology such as universal terrestrial radio access (UTRA) or CDMA2000.
- TDMA can be implemented with wireless technologies such as global system for mobile communications (GSM) / general packet radio service (GPRS) / enhanced data rates for GSM evolution (EDGE).
- OFDMA can be implemented with wireless technologies such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and evolved UTRA (E-UTRA).
- UTRA is part of the universal mobile telecommunications system (UMTS).
- 3GPP (3rd Generation Partnership Project) LTE (Long Term Evolution) is part of E-UMTS (evolved UMTS) using E-UTRA, adopting OFDMA in downlink and SC-FDMA in uplink.
- LTE-A (advanced) is the evolution of 3GPP LTE.
- Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802, 3GPP and 3GPP2. That is, the steps or portions of the embodiments of the present invention that are not described in order to clearly illustrate the technical idea of the present invention can be supported by the documents. In addition, all terms disclosed in this document may be described by the standard document.
- 3GPP LTE / LTE-A is mainly described, but the technical features of the present invention are not limited thereto.
- a wireless communication system to which the present invention can be applied is A wireless communication system to which the present invention can be applied.
- FIG. 1 shows a structure of a radio frame in a wireless communication system to which the present invention can be applied.
- 3GPP LTE / LTE-A supports a Type 1 radio frame structure applicable to Frequency Division Duplex (FDD) and a Type 2 radio frame structure applicable to TDD (Time Division Duplex).
- FDD Frequency Division Duplex
- TDD Time Division Duplex
- Type 1 (a) illustrates the structure of a Type 1 radio frame.
- Type 1 radio frames can be applied to both full duplex and half duplex FDD.
- a radio frame is composed of 10 subframes.
- One subframe consists of two consecutive slots in the time domain, and the subframe i consists of slots 2i and 2i + 1.
- the time taken to transmit one subframe is called a transmission time interval (TTI).
- TTI transmission time interval
- one subframe may have a length of 1 ms and the length of one slot may be 0.5 ms.
- the uplink transmission and the downlink transmission are classified in the frequency domain. While there is no limit to full-duplex FDD, terminals can not transmit and receive simultaneously in half-duplex FDD operation.
- One slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain, and includes a plurality of resource blocks (RBs) in the frequency domain. Since 3GPP LTE uses OFDMA in the downlink, an OFDM symbol is intended to represent one symbol period. The OFDM symbol may be one SC-FDMA symbol or a symbol interval.
- a resource block is a resource allocation unit and includes a plurality of consecutive subcarriers in one slot.
- FIG. 1 (b) shows a type 2 frame structure (frame structure type 2).
- the uplink-downlink configuration is a rule indicating whether the uplink and the downlink are allocated (or reserved) for all the subframes.
- Table 1 shows an uplink-downlink configuration.
- 'D' denotes a subframe for downlink transmission
- 'U' denotes a subframe for uplink transmission
- 'S' denotes a downlink pilot (DwPTS)
- DwPTS downlink pilot
- a special subframe consisting of three fields: a time slot, a guard interval (GP), and an uplink pilot time slot (UpPTS).
- the DwPTS is used for initial cell search, synchronization, or channel estimation in the UE.
- UpPTS is used to synchronize the channel estimation at the base station and the uplink transmission synchronization of the UE.
- GP is a period for eliminating the interference caused in the uplink due to the multi-path delay of the downlink signal between the uplink and the downlink.
- the uplink-downlink structure can be classified into seven types, and the positions and / or the numbers of the downlink subframe, the special subframe, and the uplink subframe are different for each structure.
- Switch-point periodicity refers to a period in which the uplink subframe and the downlink subframe are switched in the same manner, and both 5ms or 10ms are supported.
- the special sub-frame S exists for each half-frame when a 5-ms downlink-uplink switching point has a period, and exists only in the first half-frame when a 5-ms downlink-uplink switching point has a period.
- the 0th and 5th subframes and the DwPTS are only for downlink transmission.
- UpPTS and subframes immediately following a subframe subframe are always intervals for uplink transmission.
- the uplink-downlink configuration is system information, and both the base station and the terminal can know it.
- the base station can inform the terminal of the change of the uplink-downlink allocation state of the radio frame by transmitting only the index of the configuration information every time the uplink-downlink configuration information is changed.
- the configuration information may be transmitted as a kind of downlink control information through a physical downlink control channel (PDCCH) like other scheduling information, and may be transmitted to all terminals in a cell through a broadcast channel as broadcast information .
- PDCCH physical downlink control channel
- Table 2 shows the configuration (DwPTS / GP / UpPTS length) of the special subframe.
- the structure of the radio frame according to the example of FIG. 1 is only one example, and the number of subcarriers included in a radio frame, the number of slots included in a subframe, and the number of OFDM symbols included in a slot are changed variously .
- FIG. 2 is a diagram illustrating a resource grid for one downlink slot in a wireless communication system to which the present invention can be applied.
- one downlink slot includes a plurality of OFDM symbols in a time domain.
- one downlink slot includes 7 OFDM symbols, and one resource block includes 12 subcarriers in the frequency domain.
- the present invention is not limited thereto.
- Each element on the resource grid is a resource element, and one resource block (RB) contains 12 ⁇ 7 resource elements.
- the number of resource blocks N DL included in the downlink slot is dependent on the downlink transmission bandwidth.
- the structure of the uplink slot may be the same as the structure of the downlink slot.
- FIG 3 illustrates a structure of a downlink subframe in a wireless communication system to which the present invention can be applied.
- a maximum of three OFDM symbols preceding a first slot in a subframe is a control region in which control channels are allocated, and the rest of the OFDM symbols are allocated to a data region (PDSCH) to which a Physical Downlink Shared Channel data region).
- Examples of the downlink control channel used in 3GPP LTE include a Physical Control Format Indicator Channel (PCFICH), a Physical Downlink Control Channel (PDCCH), and a Physical Hybrid-ARQ Indicator Channel (PHICH).
- PCFICH Physical Control Format Indicator Channel
- PDCCH Physical Downlink Control Channel
- PHICH Physical Hybrid-ARQ Indicator Channel
- the PCFICH is carried in the first OFDM symbol of the subframe and carries information about the number of OFDM symbols (i.e., the size of the control region) used for transmission of control channels in the subframe.
- the PHICH is a response channel for the uplink and carries an ACK (Acknowledgment) / NACK (Not-Acknowledgment) signal for HARQ (Hybrid Automatic Repeat Request).
- the control information transmitted through the PDCCH is referred to as downlink control information (DCI).
- the downlink control information includes uplink resource allocation information, downlink resource allocation information, or an uplink transmission (Tx) power control command for an arbitrary terminal group.
- PDCCH includes resource allocation and transmission format (also referred to as downlink grant) of DL-SCH (Downlink Shared Channel), resource allocation information of UL-SCH (also referred to as uplink grant), PCH Resource allocation for an upper-layer control message such as paging information in a paging channel, system information in a DL-SCH, and a random access response transmitted on a PDSCH, A set of transmission power control commands for individual terminals in the group, and activation of VoIP (Voice over IP).
- the plurality of PDCCHs can be transmitted in the control domain, and the UE can monitor a plurality of PDCCHs.
- the PDCCH consists of a set of one or a plurality of consecutive control channel elements (CCEs).
- the CCE is a logical allocation unit used to provide a coding rate according to the state of the radio channel to the PDCCH.
- the CCE corresponds to a plurality of resource element groups.
- the format of the PDCCH and the number of bits of the available PDCCH are determined according to the association between the number of CCEs and the coding rate provided by the CCEs.
- the base station determines the PDCCH format according to the DCI to be transmitted to the UE, and attaches a CRC (Cyclic Redundancy Check) to the control information.
- the CRC is masked with a unique identifier (called a Radio Network Temporary Identifier (RNTI)) according to the owner or use of the PDCCH.
- RNTI Radio Network Temporary Identifier
- the unique identifier of the UE e.g., C-RNTI (Cell-RNTI)
- Cell-RNTI C-RNTI
- a PDCCH for a paging message a paging indication identifier, e.g., a Paging-RNTI (P-RNTI), may be masked to the CRC.
- P-RNTI Paging-RNTI
- SI-RNTI System information RNTI
- SIB system information block
- RA-RNTI random access-RNTI
- the enhanced PDCCH (EPDCCH) carries UE-specific signaling.
- the EPDCCH is located in a physical resource block (PRB) that is set to be terminal specific.
- PRB physical resource block
- the PDCCH can be transmitted in up to three OFDM symbols in the first slot in a subframe, but the EPDCCH can be transmitted in a resource region other than the PDCCH.
- the time (i.e., symbol) at which the EPDCCH starts in the subframe can be set in the terminal via higher layer signaling (e.g., RRC signaling, etc.).
- the EPDCCH is a resource allocation (DL) associated with DL-SCH related transport format, resource allocation and HARQ information, UL-SCH related transport format, resource allocation and HARQ information, SL-SCH (Sidelink Shared Channel) and PSCCH Information, and so on. Multiple EPDCCHs may be supported and the terminal may monitor the set of EPCCHs.
- the EPDCCH may be transmitted using one or more successive advanced CCEs (ECCEs), and the number of ECCEs per EPDCCH may be determined for each EPDCCH format.
- ECCEs successive advanced CCEs
- Each ECCE may be composed of a plurality of enhanced resource element groups (EREGs).
- EREG is used to define the mapping of ECCEs to REs.
- the UE can monitor a plurality of EPDCCHs. For example, one or two EPDCCH sets may be set in one PRB pair in which the terminal monitors the EPDCCH transmission.
- Different coding rates can be realized for the EPCCH by merging different numbers of ECCEs.
- the EPCCH may use localized transmission or distributed transmission, and thus the mapping of the ECCE to the RE in the PRB may vary.
- FIG. 4 illustrates a structure of a UL subframe in a wireless communication system to which the present invention can be applied.
- the uplink subframe can be divided into a control region and a data region in the frequency domain.
- a PUCCH Physical Uplink Control Channel
- a data area is assigned a physical uplink shared channel (PUSCH) for carrying user data.
- PUSCH physical uplink shared channel
- a resource block (RB) pair is allocated to a PUCCH for one UE in a subframe. RBs belonging to the RB pair occupy different subcarriers in each of the two slots. It is assumed that the RB pair assigned to the PUCCH is frequency hopped at the slot boundary.
- NB-IoT Narrowband-Internet of Things
- NB-IoT provides low complexity, low power consumption through system bandwidth (system BW) corresponding to 1 physical resource block (PRB) of wireless communication system (eg LTE system, NR system etc.) It can mean a system to support.
- system BW system bandwidth
- PRB physical resource block
- NB-IoT may be referred to as other terms such as NB-LTE, NB-IoT enhancement, enhanced NB-IoT, further enhanced NB-IoT, NB-NR, That is, the NB-IoT may be replaced with a term defined or defined in the 3GPP standard, and will be collectively referred to as 'NB-IoT' hereinafter for convenience of explanation.
- NB-IoT may be used as a communication method for implementing IoT (i.e., Internet of Things) by supporting a device (or terminal) such as machine-type communication (MTC) in a cellular system .
- a device or terminal
- MTC machine-type communication
- one PRB of the existing system band is allocated for the NB-IoT, which is advantageous in that the frequency can be efficiently used.
- each terminal recognizes a single PRB as a carrier, so that the PRB and carrier referred to in this specification may be interpreted in the same sense.
- the frame structure, the physical channel, the multi-carrier operation, the operation mode, and general signal transmission / reception with respect to the NB-IoT in the present specification will be described in consideration of the existing LTE system, It is needless to say that the present invention can be extended to a next generation system (e.g., an NR system).
- the content related to NB-IoT in this specification may be extended to MTC (Machine Type Communication) oriented for similar technical purposes (e.g., low-power, low-cost, coverage enhancement, etc.).
- the NB-IoT frame structure may be set differently according to the subcarrier spacing. Specifically, FIG. 5 shows an example of a frame structure when the subcarrier interval is 15 kHz, and FIG. 6 shows an example of a frame structure when the subcarrier interval is 3.75 kHz. However, it should be understood that the NB-IoT frame structure is not limited to this, and that the NB-IoT for different subcarrier intervals (e.g., 30 kHz) may be considered with different time / frequency units.
- the NB-IoT frame structure based on the LTE system frame structure has been described as an example, but the present invention is not limited thereto.
- NB-IoT based on the frame structure of the NB-IoT based on the frame structure of the NB-IoT.
- the NB-IoT frame structure for the 15kHz subcarrier interval can be set to be the same as the frame structure of the legacy system (i.e., LTE system) described above. That is, a 10 ms NB-IoT frame includes 10 1 ms NB-IoT subframes, and a 1 ms NB-IoT subframe may include two 0.5 ms NB-IoT slots. Further, each 0.5 ms NB-IoT may include 7 OFDM symbols.
- a 10ms NB-IoT frame includes five 2ms NB-IoT subframes, a 2ms NB-IoT subframe includes seven OFDM symbols and one guard interval (GP) . ≪ / RTI > Also, the 2ms NB-IoT subframe may be represented by an NB-IoT slot or an NB-IoT RU (resource unit).
- the physical resources of the NB-IoT downlink are allocated to physical (physical) resources of other radio communication systems (e.g., LTE system, NR system, etc.) except that the system bandwidth is a certain number of RBs Can be set with reference to resources.
- the physical resources of the NB-IoT downlink are allocated to the resource grid of the LTE system shown in FIG. , 1 PRB).
- the system bandwidth of the NB-IoT uplink physical resource can be limited to one RB as in the case of downlink.
- the resource grid for the NB-IoT uplink may be represented as in FIG.
- the number of subcarriers in the uplink band And slot duration Can be given as shown in Table 3 below.
- the resource unit (RU) of the NB-IoT uplink is composed of SC-FDMA symbols in the time domain, And may consist of consecutive subcarriers.
- RU resource unit
- Table 4 Is given by Table 4 below for frame structure type 1 (i.e., FDD), and given by Table 5 for frame structure type 2 (i.e., TDD).
- the base station and / or the terminal supporting the NB-IoT may be configured to transmit and receive physical channels and / or physical signals set separately from the existing system.
- specific contents related to physical channels and / or physical signals supported by the NB-IoT will be described.
- An OFDMA (Orthogonal Frequency Division Multiple Access) scheme can be applied to the NB-IoT downlink based on a subcarrier interval of 15 kHz.
- OFDMA Orthogonal Frequency Division Multiple Access
- the physical channel of the NB-IoT system can be represented by adding 'N (Narrowband)' to distinguish it from the existing system.
- the downlink physical channel is defined as a Narrowband Physical Broadcast Channel (NPBCH), a Narrowband Physical Downlink Control Channel (NPDCCH), or a Narrowband Physical Downlink Shared Channel (NPDSCH).
- a downlink physical signal is defined as a Narrowband Primary Synchronization Signal ), Narrowband Secondary Synchronization Signal (NSSS), Narrowband Reference Signal (NRS), Narrowband Positioning Reference Signal (NPRS), and Narrowband Wake Up Signal (NWUS).
- the downlink physical channels and physical signals of the NB-IoT may be configured to be transmitted based on a time-domain multiplexing scheme and / or a frequency-domain multiplexing scheme.
- NPBCH NPDCCH
- NPDSCH NPDSCH
- repetition transmission can be performed for coverage enhancement.
- the NB-IoT uses a newly defined DCI format (DCI format).
- DCI format DCI format
- the DCI format for NB-IoT can be defined as DCI format N0, DCI format N1, DCI format N2, and the like.
- a single carrier frequency division multiple access (SC-FDMA) scheme may be applied based on a subcarrier interval of 15 kHz or 3.75 kHz.
- SC-FDMA single carrier frequency division multiple access
- multi-tone transmission and single-tone transmission can be supported.
- multi-tone transmissions are only supported at subcarrier intervals of 15 kHz, and single-tone transmissions may be supported for subcarrier intervals of 15 kHz and 3.75 kHz.
- the physical channel of the NB-IoT system can be expressed by adding 'N (Narrowband)' to distinguish it from the existing system.
- the uplink physical channel may be defined as a Narrowband Physical Random Access Channel (NPRACH) or a Narrowband Physical Uplink Shared Channel (NPUSCH), and the uplink physical signal may be defined as a Narrowband Demodulation Reference Signal (NDMRS).
- NPRACH Narrowband Physical Random Access Channel
- NPUSCH Narrowband Physical Uplink Shared Channel
- NMRS Narrowband Demodulation Reference Signal
- NPUSCH can be composed of NPUSCH format 1 and NPUSCH format 2, and so on.
- NPUSCH format 1 is used for UL-SCH transmission (or transport)
- NPUSCH format 2 can be used for uplink control information transmission such as HARQ ACK signaling.
- repetition transmission can be performed for coverage enhancement.
- repetitive transmission may be performed by applying frequency hopping.
- the multi-carrier operation may mean that a plurality of carriers different in purpose (i.e., different types) are used in transmitting and receiving signals and / or signals between the base station and / or the terminal in the NB-IoT.
- NB-IoT can operate in the multi-carrier mode as described above.
- the carrier may be an anchor type carrier (i.e., an anchor carrier, an anchor PRB) and a non-anchor type carrier (i.e., non- Anchor carrier (non-anchor carrier), non-anchor PRB).
- An anchor carrier may mean a carrier that transmits NPSS, NSSS, NPBCH, and NPDSCH for system information block (N-SIB) for initial access from a base station perspective. That is, in NB-IoT, the carrier for initial connection may be referred to as an anchor carrier and the others (s) may be referred to as a non-anchor carrier. At this time, there may be only one anchor carrier on the system, or there may be a plurality of anchor carriers.
- FIG. 8 shows an example of operation modes supported in the NB-IoT system.
- the operation mode of the NB-IoT is described based on the LTE band, but it is for convenience of description, and it goes without saying that the NB-IoT can be extended to other system bands (e.g., NR system band).
- FIG. 8A shows an example of an in-band system
- FIG. 8B shows an example of a guard-band system
- FIG. 8C shows an example of a stand- 1 shows an example of a stand-alone system.
- the in-band system may be an in-band mode
- the guard-band system may be a guard-band mode
- a stand-alone system can be represented in a stand-alone mode.
- An in-band system may refer to a system or mode that uses a particular 1 RB (i.e., PRB) in the LTE band for NB-IoT.
- the in-band system can be operated by allocating some resource blocks of an LTE system carrier.
- a guard-band system may refer to a system or mode that uses NB-IoT in a reserved space for a legacy LTE band of guard-bands.
- the Guard-band system can be operated by allocating Guard-bands of LTE carriers that are not used as resource blocks in LTE systems.
- the (legacy) LTE band may be set to have a guard-band of at least 100 kHz at the end of each LTE band. To use 200 kHz, two non-contiguous Guard-bands may be used.
- the in-band system and the guard-band system can be operated in a structure in which NB-IoT coexists within the legacy LTE band.
- a standalone system may mean a system or mode that is configured independently from the legacy LTE band.
- the standalone system can be operated by separately allocating frequency bands (eg, future reassigned GSM carriers) used in the GERAN (GSM EDGE Radio Access Network).
- frequency bands eg, future reassigned GSM carriers
- GSM EDGE Radio Access Network GSM EDGE Radio Access Network
- the three operation modes described above may be operated independently of each other, or two or more operation modes may be operated in combination.
- an NB-IoT terminal receives information from a base station through a downlink (DL), and an NB-IoT terminal transmits information through an uplink (UL) to a base station.
- DL downlink
- UL uplink
- the base station transmits information to the NB-IoT terminal through the downlink
- the base station can receive information from the NB-IoT terminal through the uplink.
- the information transmitted and received between the base station and the NB-IoT terminal includes data and various control information, and various physical channels may exist depending on the type / use of the information transmitted / received.
- the NB-IoT terminal that has entered the cell may perform an initial cell search operation such as synchronizing with the base station (S11). To this end, the NB-IoT terminal receives NPSS and NSSS from the base station, performs synchronization with the base station, and obtains cell identity information. In addition, the NB-IoT terminal can acquire the in-cell broadcast information by receiving the NPBCH from the base station. In addition, the NB-IoT UE may receive a DL RS (Downlink Reference Signal) in the initial cell search step to check the DL channel status.
- DL RS Downlink Reference Signal
- the base station can perform an initial cell search operation such as synchronizing with the terminal.
- the base station transmits NPSS and NSSS to the NB-IoT terminal, performs synchronization with the corresponding terminal, and can transmit information such as the cell identity.
- the base station can transmit the in-cell broadcast information by transmitting (or broadcasting) the NPBCH to the NB-IoT terminal.
- the base station may check the downlink channel state by transmitting the DL RS in the initial cell search step to the NB-IoT terminal.
- the NB-IoT terminal After the initial cell search, the NB-IoT terminal receives the NPDCCH and the corresponding NPDSCH to obtain more specific system information (S12). In other words, the base station can transmit more specific system information by transmitting the NPDCCH and the corresponding NPDSCH to the NB-IoT terminal after the initial cell search.
- the NB-IoT terminal may perform a random access procedure (S13 to S16) to complete the connection to the base station.
- the NB-IoT terminal can transmit a preamble to the base station through the NPRACH (S13).
- the NPRACH can be set to be repeatedly transmitted based on frequency hopping or the like in order to improve coverage and the like.
- the base station can (repeatedly) receive the preamble through the NPRACH from the NB-IoT terminal.
- the NB-IoT UE can receive a Random Access Response (RAR) for the preamble from the Node B through the NPDCCH and the corresponding NPDSCH (S14).
- RAR Random Access Response
- the base station can transmit RAR (Random Access Response) for the preamble to the NB-IoT terminal through the NPDCCH and the corresponding NPDSCH.
- the NB-IoT UE transmits the NPUSCH to the Node B using the scheduling information in the RAR (S15), and performs a contention resolution procedure such as NPDCCH and corresponding NPDSCH (S16).
- the base station can receive the NPUSCH from the UE using the scheduling information in the NB-IoT RAR, and perform the conflict resolution procedure.
- the NB-IoT terminal performing the above-described procedure can perform NPDCCH / NPDSCH reception (S17) and NPUSCH transmission (S18) as a general uplink / downlink signal transmission procedure.
- the base station can perform NPDCCH / NPDSCH transmission and NPUSCH reception as a general signal transmission / reception procedure to the NB-IoT terminal.
- NPBCH, NPDCCH, NPDSCH, etc. can be repeatedly transmitted to improve coverage.
- UL-SCH i.e., general uplink data
- uplink control information can be transmitted through the NPUSCH.
- the UL-SCH and the UL control information may be set to be transmitted through different NPUSCH formats (e.g., NPUSCH format 1, NPUSCH format 2, etc.).
- the control information transmitted from the terminal to the base station may be referred to as Uplink Control Information (UCI).
- the UCI may include HARQ ACK / NACK (Hybrid Automatic Repeat and Request Acknowledgment / Negative-ACK), SR (Scheduling Request), CSI (Channel State Information)
- the CSI includes a Channel Quality Indicator (CQI), a Precoding Matrix Indicator (PMI), a Rank Indication (RI), and the like.
- the UCI in the NB-IoT can generally be transmitted via the NPUSCH.
- the terminal may transmit the UCI over the NPUSCH in a perdiodic, aperiodic, or semi-persistent manner.
- Narrowband (NB) -LTE is a system for supporting low complexity and low power consumption with system bandwidth (BW) corresponding to 1 physical resource block (PRB) of LTE system.
- BW system bandwidth
- PRB physical resource block
- Such an NB-LTE system can be used as a communication method for implementing an internet of things (IoT) by supporting a device such as a machine-type communication (MTC) in a cellular system.
- IoT internet of things
- MTC machine-type communication
- OFDM parameters such as the existing LTE subcarrier spacing are used such as LTE, whereby 1 PRB is allocated to the legacy LTE band for the NB-LTE without additional band allocation, and the frequency can be efficiently used.
- the physical channel of the NB-LTE is defined as NPSS / NSSS, NPBCH, NPDCCH / NEPDCCH, and NPDSCH in the case of downlink, and N is added to distinguish it from LTE.
- the term 'monitor the search space' used herein means that the NPDCCH corresponding to a specific area is decoded according to the DCI format to be received through the corresponding search space, and the corresponding cyclic redundancy check (CRC) And scrambling with a predetermined Radio Network Temporary Identifier (RNTI) value to confirm whether the desired value is correct.
- CRC cyclic redundancy check
- RNTI Radio Network Temporary Identifier
- the PRB referred to in this document has the same meaning as carrier.
- the DCI formats N0, N1, and N2 disclosed in this specification mean the DCI formats N0, N1, and N2 described in the 3GPP TS 36.212 [2] standard.
- Rel. 15 frame structure type 2 (i.e., TDD) in the NB-IoT.
- At least one configuration among a plurality of uplink downlink configurations shown in Table 1 is used.
- the DCI design may be different from that of conventional FDD system.
- the present invention proposes a detailed DCI design in an NB-IoT TDD system supporting U / D configuration that does not support 3.75 kHz subcarrier spacing.
- MSG3 grant and DCI format N0 in the NB-IoT FDD system are defined as shown in Table 6 and Table 7 below.
- the subcarrier indication field needs to be modified.
- the subcarrier indication fields of Table 6 and Table 7 can be operated with only 5 bits, which is reduced from 1 bit to 6 bits.
- the uplink subcarrier spacing field of Table 7 can be operated even if there is no bit by reducing 1 bit from 1 bit.
- the 'unnecessary field' referred to in the following methods can be set to k bits.
- the k value may be 1 bit in the subcarrier indication field in the DCI format N0, and 2 bits in the narrowband MSG3 grant, including 1 bit of the subcarrier indication field and 1 bit of the uplink subcarrier spacing field.
- Method 1 is to set a field that is not needed to be a reserved field.
- This method has the advantage that it can be applied without a large change in the spec.
- Method 2 is a method of transmitting 0 by putting 0 in an unnecessary field.
- Method 2 is similar to Method 1 in that it does not delete unnecessary fields, but you can set it to act as a virtual CRC by always sending 0 to the corresponding field.
- Method 2 does not write the field at all, so there are some benefits.
- Method 3 is to create an additional state for the subcarrier indication to use the unnecessary field.
- a new table can be created by adding T states to 19 states of Table 8.
- the subcarrier indication field value is set to be interpreted using Table 8.
- U / D configuration that does not support 3.75 kHz subcarrier spacing UL transmission, You can set the value to be interpreted using a new table rather than Table 8.
- Table 9 can be an example of a new table.
- Method 3 has the advantage of fully dynamically allocating resources for UL transmission using 15kHz subcarrier spacing, but it can not use all states when multiplexing with NPRACH supporting 3.75kHz subcarrier spacing May have disadvantages.
- T is preferably an integer greater than or equal to 14 so that the total state of the subcarrier indication field using 6 bits is more than 33.
- Method 4 is a method for deleting unnecessary fields.
- the DCI format N0 can be set by reducing the subcarrier indication field from 6 bits to 5 bits.
- the MSG3 grant can reduce the subcarrier indication field from 6 bits to 5 bits, and can be set to be used by deleting 1 bit of the uplink subcarrier spacing field.
- Method 4 is most advantageous in that it does not waste unnecessary resources.
- DCI format N0 and MSG3 grant can be applied to different methods, respectively.
- the base station can pre-determine the UL subcarrier spacing supported in a specific UL / DL configuration.
- the UE can receive the UL subcarrier spacing information currently supported in the NB-IoT cell using the N bits in the SIB (which may be SIB1-NB) to which the tdd-Config-NB parameter is to be transmitted.
- SIB which may be SIB1-NB
- the reason for choosing to support specific UL subcarrier spacing (characteristically 15kHz subcarrier spacing) according to the UL / DL configuration used by a particular cell is that one slot duration of 3.75 kHz subcarrier spacing is 2ms.
- the base station may be difficult for the base station to select two or more consecutive UL subframes in consideration of various situations (e.g., an invalid UL subframe) and select a specific UL / DL configuration.
- the base station can be configured not to use 3.75 kHz subcarrier spacing when only 15 kHz subcarrier spacing is desired for scheduling convenience .
- the BS can set the UL subcarrier spacing to only 15 kHz for the convenience of scheduling delay and resource allocation.
- 15 kHz subcarrier spacing may not be used even if only 3.75 kHz subcarrier spacing is supported under base station judgment.
- the determination of the base station is transmitted to the UE via the SIB.
- the MS then decides the MSG3 Grant size and the DCI format N0 size to be transmitted from the BS according to the determination, and performs decoding / monitoring.
- the uplink subcarrier spacing field in Table 7 needs to be modified.
- the uplink subcarrier spacing field of Table 7 can be operated even if there is no bit by decrementing 1 bit from 1 bit.
- the 'unnecessary field' referred to in the methods can be set to k bit (s).
- the k value can be 1 bit in the uplink subcarrier spacing field in the narrowband MSG3 grant.
- the fields in Tables 9 and 10 need to be modified as mentioned in the MSG3 Grant and DCI format N0 design details for different U / D configurations .
- the subcarrier indication fields of Table 9 and Table 10 can be operated with only 5 bits, which is reduced from 1 bit to 6 bits.
- the uplink subcarrier spacing field of Table 7 can be operated even if there is no bit by reducing 1 bit to 1 bit.
- the 'unnecessary field' referred to in the methods can be set to k bits.
- the k value may be 1 bit in the DCI format N0 subcarrier indication field, and 2 bits in the narrowband MSG3 grant may be a sum of 1 bit of the subcarrier indication field and 1 bit of the uplink subcarrier spacing field.
- the TDD NB-IoT system supports both 3.75 kHz subcarrier spacing and 15 kHz subcarrier spacing, it can be configured to use the same method as the FDD NB-IoT system.
- the UL subcarrier spacing of the UL grant can be determined to use the same value as the subcarrier spacing received through the MSG3 grant without changing the Tables 6 and 7.
- conventional FDD supports multi-tone transmission consisting of 3 tones, 6 tones and 12 tones in addition to single tone transmission.
- Method 1 defines all transmissions (ie, single tone and / or multi-tone) that can be supported by TDD in the Spec, and explicitly configurable via SIB.
- the NB-IoT cell is transmitted through the N bits in the SIB (characteristically SIB1-NB) to which the tdd- Since UL subcarrier spacing information can be transmitted, it can be set to be transmitted together with this information.
- N can then be 3 bits.
- this method is characterized in that information is transmitted independently of the UL / DL configuration.
- Method 2 defines all transmissions (ie, single tone and / or multi-tone) that can be supported by TDD and implicitly configurable through SIB.
- this method is a way to make a promise to the spec which UL transmissions will be used according to the configured UL / DL configuration value and the configured SCS value.
- Table 10 shows the UL transmission set for UL / DL configurant when supporting 15 KHz subcarrier spacing.
- the UE can set up the UL transmission set available in the current cell based on the UL / DL configuration information transmitted through the SIB and the supported subcarrier spacing (SCS) information.
- SIB subcarrier spacing
- the NB-IoT system when the NB-IoT system does not support the 3.75 kHz SCS described above and only supports a 15 kHz SCS, it changes the specific field of DCI format N0 to 15 kHz SCS with single tone, 4-tones, 12-tones It is possible to change the subcarrier indication field of DCI format N0 as shown in Table 11.
- Table 11 shows that a single tone, 4-tones, and 12-tones can be represented with only 4 bits.
- the size of the DCI format can be changed according to the UL / DL configuration.
- the size of the corresponding field can be determined according to the number of states in the corresponding table.
- the UL / DL configuration is repeated every predetermined period (eg, X ms)
- the DCI format size is changed according to the minimum or maximum value (eg, L ms) of the number of consecutive UL subframes.
- the corresponding field may be represented using 5 bits (as shown in Table 8) In case of 3 ms, 4 bits can be used to indicate the corresponding field as shown in Table 8.
- the UL transmission is composed of ⁇ single tone, 3-tones, 6-tones, 12-tones ⁇ -tones ⁇ to support UL transmission.
- the DCI format size may be set to change according to the special subframe configuration (and / or number of available UpPTS symbols).
- the corresponding field may be represented using 4 bits as shown in Table 11.
- L 'value when L 'value is 1, it supports UL transmission composed of ⁇ single tone, 3-tones, 6-tones and 12-tones ⁇ 12-tones ⁇ .
- NPUSCH can be transmitted for a specific UpPTS symbol number (e.g., 7 symbols) or higher, a specific portion of the basic RU unit can be punctured (or rate matched).
- start transmission at the start point of the special subframe but the first specific number of UL symbols (eg, 14-U symbols) can be punctured have.
- the starting point of a basic RU can be set according to a configured UpPTS starting symbol from a higher layer, and puncturing (or rate matching) can be performed on a rear part that can not be transmitted.
- Subcarrier spacing N symbols and one CP form one symbol group are the same as FDD, but in TDD, consecutive UL SFs are set so that G symbol groups are transmitted back-to-back .
- the single preamble consists of P symbol groups.
- the NPRACH preamble format design in the TDD NB-IoT will be defined differently from the FDD NB-IoT, if the NPRACH resource configuration used in the existing FDD is used as it is, the following problems may occur.
- the base station must set the period of the NPRACH resource to at least 1280 ms or more.
- the resource for NPRACH preamble transmission is always present in one carrier (one of 12, 24, 36, and 48 subcarriers) of the corresponding carrier.
- 11 shows an example in which the NPRACH resource is allocated by 12 subcarriers when the period is configured to 1280 ms, as described above.
- the UE may select and transmit a subcarrier (i.e., an NPRACH preamble) in which the MSG3 multi-tone of the corresponding NPRACH resource is settable.
- a subcarrier i.e., an NPRACH preamble
- the base station configures the terminal to transmit 15-kHz 12-tones MSG3, the terminal invades the NPRACH resource in transmitting the MGG3.
- the base station can be configured to configure the period of the NPRACH resource so that there is no such problem.
- the terminal selects the NPRACH resource through the probability of knowing one of the carriers packed at the same CE level in advance, it can know beforehand the number of subcarriers allocated to each resource- There is no.
- Method 1 is to set different carriers for MSG1 and MSG3.
- Method 1 It can be set that the carrier that transmits MSG3 is dynamically recorded by using a reserved field or a reserved state of a DCI or RAR (grant) scheduling RAR.
- This method is advantageous in terms of resource utilization because the base station can dynamically set the carrier differently.
- MSG1 can be configured to transmit MSG3 to different carriers using the same NPRACH resource, which is advantageous in terms of carrier load balancing.
- This method is advantageous in that it can select and transmit one of a larger number of MSG3 carriers because it does not use DCI or RAR (scheduling) RAR scheduling (ie, the field is wider).
- the usable carriers are delivered independently in advance for each NPRACH resource through SIB2 or SIB22, and 1bit indicator is used so that MSG3 uses a different UL carrier than MSG1 through DCI or RAR (grant) for scheduling RAR .
- This method can be actively set to transmit MSG3 to another UL carrier different from MSG1 according to base station judgment, and it is advantageous to use only 1 bit field of DCI or RAR (grant) scheduling RAR.
- the MSG3 carrier can be configured to use the UL carrier that the UE has previously performed UL unicast.
- it can be configured to add an indicator that the carrier transmitting MSG3 uses UL carrier for existing UL unicast to reserved filed of DCI format (ie, DCI format N1) for NPDCCH order.
- the carrier for MSG3 can be configured to use UL carrier for existing UL unicast. Otherwise, it can be configured to transmit MSG3 to a carrier such as a carrier that transmits MSG1.
- it may mean to determine the MSG3 transmission UL carrier according to a predetermined method (e.g., 1-1, 1-2, 1-3) if the indicator is set to deactivate.
- a predetermined method e.g., 1-1, 1-2, 1-3
- the base station can dynamically set the UL carrier differently, which is advantageous in terms of resource utilization.
- MSG1 can be configured to transmit MSG3 to different UL carriers using the same NPRACH resource, which is advantageous in terms of carrier load balancing.
- the UL carrier set capable of transmitting the MSG3 may be set to be the same as the UL carrier set capable of transmitting the MSG1, but it may be independently set by the BS.
- the terminal which already knows the carriers capable of MSG1 can know the UL carrier set information for MSG3 additionally.
- the UL carrier set is preferably transmitted via SIB (e.g., SIB2 or SIB22).
- SIB e.g., SIB2 or SIB22.
- Method 2 is a method of setting different UL grant interpretation methods that are included in RAR for MSG3 transmission, although the carriers for MSG1 and MSG3 are the same.
- the UL grant included in the RAR may be instructed to transmit the multi-tone MSG3 that conflicts with the NPRACH resource region.
- the UE determines that the corresponding UL grant is invalid and can set the MSG1 retransmission or MSG3 retransmission to start.
- This method is advantageous in terms of specification work because it only needs to describe the terminal operation in the spec.
- the subcarrier indication field which may conflict with the NPRACH resource region, may be reset as follows so that the MS and the MS can transmit / receive MSG3 according to the reset state.
- the SC indication field for the multi-tone MSG3 is set as shown in Table 8, it can be set to reinterpret the contents of the corresponding field according to the number of subcarriers used in the NPRACH resource.
- state 18 (15 kHz 12 tone) and state 16 or 17 (6 tone) are disabled.
- the MS considers that it is instructed to transmit MSG3 with 9 tone and can transmit 9tone MSG3.
- the 18 state can be set to be transmitted using 9 tones of ⁇ 3, 4, 5, 6, 7, 8, 9, 10, 11 ⁇
- State 18 can be set to transmit using 9 tones of ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8 ⁇ .
- the time NPRACH interpreted as a 16 state 6 (I SC -16) + ⁇ 3, 4, 5, 6, 7, 8 ⁇ , and the state 17 as (ie, 6 (I SC -16) + ⁇ 0, 1, 2, 3, 4, 5 ⁇ .
- NPRACH 36 is interpreted as a 17 state 6 (I SC -17) + ⁇ 3, 4, 5, 6, 7, 8 ⁇ , and the state 16 times as (ie, 6 (I SC - 16) + ⁇ 0, 1, 2, 3, 4, 5 ⁇ .
- this method can be applied to the subcarrier indication filed in the UL grant of DCI-format N0.
- the NPUSCH can be set to be re-analyzed by reinterpreting the corresponding filed as described above.
- This method has the advantage that MSG3 multi tone transmission can efficiently multiplex with MSG1 resource which is set in advance even if MSG1 and MSG3 are used on the same carrier.
- MSG2 (RAR) reception and MSG4 reception have similar problems (i.e. search space overlaps or overlapping NPDSCH transmissions).
- the present invention can be applied to a method of setting MSG2 and MSG4 DL carriers.
- the MSG2, MSG3, and MSG4 carriers which must be continuously used until the procedure ends, can be set independently.
- MSG2 receiving carriers and / or corresponding MSG3 transmission carriers and / or corresponding MSG4 receiving carriers may be set independently for each NPRACH resource or for each MSG1 transmission carrier.
- This method is also advantageous in that the base station can determine the carrier load balancing.
- FIGS. 12 and 13 are related figures.
- FIG. 12 is a flowchart illustrating an example of an operation method of a terminal that performs a method of transmitting a message for performing the random access procedure proposed in the present specification.
- the terminal receives system information (SIB) from the base station (S1210).
- SIB system information
- the first message is transmitted to the base station based on the system information (S1220).
- the first message may correspond to a preamble.
- a second message which is a response to the first message, is received from the base station (S1230).
- the MS transmits a third message to the BS (S1240).
- the third message may be transmitted using a carrier wave different from the carrier wave used to transmit the first message.
- the UE can receive downlink control information (DCI) from the base station through a physical downlink control channel (NPDCCH).
- DCI downlink control information
- NPDCCH physical downlink control channel
- the carrier for the third message transmission may be set through the system information.
- the carrier for the third message transmission may be set through the DCI or the second message.
- system information may include information about resources for which the third message can be transmitted, and based on the information, a carrier on which the third message is transmitted may be configured via the DCI or the second message .
- the NPDCCH may be for unicast transmission, and the third message may be transmitted using a carrier used for uplink unicast.
- FIG. 13 is a flowchart illustrating an example of an operation method of a base station that performs a method of transmitting a message for performing the random access procedure proposed in the present specification.
- the system information is transmitted to the terminal (S1310).
- a first message based on the system information is received from the terminal, and a second message, which is a response to the first message, is transmitted to the terminal (S1320 and S1330).
- FIG. 14 illustrates a block diagram of a wireless communication apparatus according to an embodiment of the present invention.
- a wireless communication system includes a base station 1410 and a plurality of terminals 1420 located within a base station 1410 area.
- the base station 1410 includes a processor 1411, a memory 1412, and a radio frequency unit 1413.
- Processor 1411 implements the functions, processes, and / or methods previously suggested in FIGS. 1-13.
- the layers of the air interface protocol may be implemented by the processor 1411.
- the memory 1412 is coupled to the processor 1411 and stores various information for driving the processor 1411.
- the RF unit 1413 is connected to the processor 1411 to transmit and / or receive a radio signal.
- the terminal 1420 includes a processor 1421, a memory 1422, and an RF unit 1423.
- Processor 1421 implements the functions, processes, and / or methods suggested earlier in FIGS. 1-13.
- the layers of the air interface protocol may be implemented by the processor 1421.
- the memory 1422 is coupled to the processor 1421 to store various information for driving the processor 1421.
- RF section 1423 is coupled to processor 1421 to transmit and / or receive wireless signals.
- the memories 1412 and 1422 may be internal or external to the processors 1411 and 1421 and may be coupled to the processors 1411 and 1421 in various well known means.
- the base station 1410 and / or the terminal 1420 may have a single antenna or multiple antennas.
- Embodiments in accordance with the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
- an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs) field programmable gate arrays, processors, controllers, microcontrollers, microprocessors, and the like.
- ASICs application specific integrated circuits
- DSPs digital signal processors
- DSPDs digital signal processing devices
- PLDs programmable logic devices
- an embodiment of the present invention may be implemented in the form of a module, a procedure, a function, or the like which performs the functions or operations described above.
- the software code can be stored in memory and driven by the processor.
- the memory is located inside or outside the processor and can exchange data with the processor by various means already known.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
본 명세서는 무선 통신 시스템에서 랜덤 엑세스 절차를 수행하기 위한 메시지를 전송하는 방법에 있어서, 단말에 의해 수행되는 방법은, 시스템 정보(system information block, SIB)를 기지국으로부터 수신하는 단계; 상기 SIB에 기초하여 기지국으로 랜덤 엑세스 프리앰블인 제1 메시지를 전송하는 단계; 상기 제1 메시지에 대한 응답인 제2 메시지를 기지국으로부터 수신하는 단계; 상기 제1 메시지 전송에 사용된 반송파(carrier)와 다른 반송파를 이용하여 제3 메시지를 기지국으로 전송하는 단계를 포함하는 것을 특징으로 한다.
Description
본 명세서는 무선 통신 시스템에 관한 것으로써, 랜덤 엑세스 절차를 수행하기 위한 메시지를 전송하는 방법 및 이를 위한 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스를 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 명세서는 랜덤 엑세스 절차를 수행하기 위한 메시지를 전송하는 방법을 제공함에 목적이 있다.
또한, 본 명세서는 랜덤 엑세스 절차를 수행하기 위한 제1 메시지와 제3 메시지를 서로 다른 반송파를 통해 전송하는 방법을 제공함에 목적이 있다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서는 무선 통신 시스템에서 랜덤 엑세스 절차를 수행하기 위한 메시지를 전송하는 방법을 제공한다.
구체적으로, 무선 통신 시스템에서 랜덤 엑세스 절차를 수행하기 위한 메시지를 전송하는 방법에 있어서, 단말에 의해 수행되는 방법은, 시스템 정보(system information block, SIB)를 기지국으로부터 수신하는 단계; 상기 SIB에 기초하여 기지국으로 랜덤 엑세스 프리앰블인 제1 메시지를 전송하는 단계; 상기 제1 메시지에 대한 응답인 제2 메시지를 기지국으로부터 수신하는 단계; 상기 제1 메시지 전송에 사용된 반송파(carrier)와 다른 반송파를 이용하여 제3 메시지를 기지국으로 전송하는 단계를 포함하는 것을 특징으로 한다.
또한, 본 명세서에서 제1 메시지를 전송하는 단계 이전에, 하향링크 제어 정보(downlink control information, DCI)를 NPDCCH(physical downlink control channel)를 통해 기지국으로부터 수신하는 단계; 를 더 포함하는 것을 특징으로 한다.
또한, 본 명세서에서 상기 제3 메시지 전송을 위한 반송파는 상기 DCI 또는 제2 메시지를 통해 설정되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 제3 메시지 전송을 위한 반송파는 상기 SIB를 통해 설정되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 SIB는 상기 제3 메시지가 전송 가능한 자원들에 대한 정보를 포함하고, 상기 정보에 기초하여, 상기 제3 메시지가 전송되는 반송파는 상기 DCI 또는 상기 제2 메시지에 의해 결정되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 NPDCCH는 유니캐스트(unicast) 전송을 위한 것이고, 상기 제3 메시지는 상향링크 유니캐스트에 이용된 반송파를 이용하여 전송되는 것을 특징으로 한다.
또한, 본 명세서에서 무선 통신 시스템에서 랜덤 엑세스 절차를 수행하기 위한 메시지를 전송하는 방법을 수행하는 단말은, 무선 신호를 송수신하기 위한 RF(Radio Frequency) 모듈; 및 상기 RF 모듈과 기능적으로 연결되어 있는 프로세서를 포함하고, 상기 프로세서는, 시스템 정보(system information block, SIB)를 기지국으로부터 수신하고, 상기 SIB에 기초하여 기지국으로 랜덤 엑세스 프리앰블인 제1 메시지를 전송하고, 상기 제1 메시지에 대한 응답인 제2 메시지를 기지국으로부터 수신하고, 상기 제1 메시지 전송에 사용된 반송파(carrier)와 다른 반송파를 이용하여 제3 메시지를 기지국으로 전송하는 것을 특징으로 한다.
또한, 본 명세서에서 상기 프로세서는, 상기 하향링크 제어 정보(downlink control information, DCI)를 NPDCCH(physical downlink control channel)를 통해 기지국으로부터 수신하는 것을 더 포함하는 것을 특징으로 한다.
또한, 본 명세서에서 상기 제3 메시지 전송을 위한 반송파는 DCI 또는 제2 메시지를 통해 설정되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 제3 메시지 전송을 위한 반송파는 상기 SIB를 통해 설정되는 것을 특징으로 한다.
또한, 본 명세서에서 무선 통신 시스템에서 랜덤 엑세스 절차를 수행하기 위한 메시지를 전송하는 방법에 있어서, 기지국에 의해 수행되는 방법은, 시스템 정보(system information block, SIB)를 단말로 전송하는 단계; 상기 SIB에 기초한 랜덤 엑세스 프리앰블인 제1 메시지를 단말로부터 수신하는 단계; 상기 제1 메시지에 대한 응답인 제2 메시지를 단말로 전송하는 단계; 상기 제1 메시지 전송에 사용된 반송파(carrier)와 다른 반송파를 이용하여 전송된 제3 메시지를 단말로부터 수신하는 단계를 포함하는 것을 특징으로 한다.
또한, 본 명세서에서 무선 통신 시스템에서 랜덤 엑세스 절차를 수행하기 위한 메시지를 전송하는 방법을 수행하는 기지국은, 무선 신호를 송수신하기 위한 RF(Radio Frequency) 모듈; 및 상기 RF 모듈과 기능적으로 연결되어 있는 프로세서를 포함하고, 상기 프로세서는, 시스템 정보(system information block, SIB)를 단말로 전송하고, 상기 SIB에 기초한 랜덤 엑세스 프리앰블인 제1 메시지를 단말로부터 수신하고, 상기 제1 메시지에 대한 응답인 제2 메시지를 단말로 전송하고, 상기 제1 메시지 전송에 사용된 반송파(carrier)와 다른 반송파를 이용하여 전송된 제3 메시지를 단말로부터 수신하는 것을 특징으로 한다.
본 명세서는 랜덤 엑세스 절차를 수행하기 위한 제1 메시지와 제3 메시지를 서로 다른 반송파를 이용하여 전송함으로써, 랜덤 엑세스를 위한 자원 충돌을 방지할 수 있다는 효과가 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시 예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 발명이 적용될 수 있는 무선 통신 시스템에서 무선 프레임의 구조를 나타낸다.
도 2는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 서브 프레임의 구조를 나타낸다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 상향링크 서브 프레임의 구조를 나타낸다.
도 5는 본 발명이 적용될 수 있는 서브 캐리어 간격이 15KHz인 NB-IoT 프레임 구조를 나타낸 도면이다.
도 6은 본 발명이 적용될 수 있는 서브 캐리어 간격이 3.75KHz인 NB-IoT 프레임 구조를 나타낸 도면이다.
도 7은 본 발명이 적용될 수 있는 NB-IoT 상향링크에 대한 자원 그리드를 나타낸 도면이다.
도 8은 본 발명이 적용될 수 있는 NB-IoT 동작 모드에 대한 도면이다.
도 9는 본 발명이 적용될 수 있는 NB-IoT의 기지국 및 단말 간 신호 송수신에 대한 도면이다.
도 10은 TDD NPRACH 프리엠블을 전송의 일례를 나타낸 도면이다.
도 11은 TDD NPRACH 자원 구성의 일례를 나타낸 도면이다.
도 12는 본 발명의 일 실시예에 따른 랜덤 엑세스 절차를 수행하기 위한 메시지를 전송하는 단말에서의 동작 과정을 나타낸 순서도이다.
도 13은 본 발명의 일 실시예에 따른 랜덤 엑세스 절차를 수행하기 위한 메시지를 전송하는 기지국에서의 동작 과정을 나타낸 순서도이다.
도 14은 본 발명의 일 실시예에 따른 무선 통신 장치의 블록 구성도를 나타낸 도면이다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point), remote radio head(RRH), transmission point (TP), reception point (RP), 중계기(relay) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.
본 발명이 적용될 수 있는 무선 통신 시스템 일반
도 1은 본 발명이 적용될 수 있는 무선 통신 시스템에서 무선 프레임의 구조를 나타낸다.
3GPP LTE/LTE-A에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
도 1에서 무선 프레임의 시간 영역에서의 크기는 T_s=1/(15000*2048)의 시간 단위의 배수로 표현된다. 하향링크 및 상향링크 전송은 T_f=307200*T_s=10ms의 구간을 가지는 무선 프레임으로 구성된다.
도 1의 (a)는 타입 1 무선 프레임의 구조를 예시한다. 타입 1 무선 프레임은 전이중(full duplex) 및 반이중(half duplex) FDD에 모두 적용될 수 있다.
무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성된다. 하나의 무선 프레임은 T_slot=15360*T_s=0.5ms 길이의 20개의 슬롯으로 구성되고, 각 슬롯은 0부터 19까지의 인덱스가 부여된다. 하나의 서브프레임은 시간 영역(time domain)에서 연속적인 2개의 슬롯(slot)으로 구성되고, 서브프레임 i는 슬롯 2i 및 슬롯 2i+1로 구성된다. 하나의 서브프레임을 전송하는데 걸리는 시간을 TTI(transmission time interval)이라 한다. 예를 들어, 하나의 서브 프레임은 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms일 수 있다.
FDD에서 상향링크 전송 및 하향링크 전송은 주파수 도메인에서 구분된다. 전이중 FDD에 제한이 없는 반면, 반이중 FDD 동작에서 단말은 동시에 전송 및 수신을 할 수 없다.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(RB: Resource Block)을 포함한다. 3GPP LTE는 하향링크에서 OFDMA를 사용하므로 OFDM 심볼은 하나의 심볼 구간(symbol period)을 표현하기 위한 것이다. OFDM 심볼은 하나의 SC-FDMA 심볼 또는 심볼 구간이라고 할 수 있다. 자원 블록(resource block)은 자원 할당 단위이고, 하나의 슬롯에서 복수의 연속적인 부 반송파(subcarrier)를 포함한다.
도 1의 (b)는 타입 2 프레임 구조(frame structure type 2)를 나타낸다.
타입 2 무선 프레임은 각 153600*T_s=5ms의 길이의 2개의 하프 프레임(half frame)으로 구성된다. 각 하프 프레임은 30720*T_s=1ms 길이의 5개의 서브프레임으로 구성된다.
TDD 시스템의 타입 2 프레임 구조에서 상향링크-하향링크 구성(uplink-downlink configuration)은 모든 서브프레임에 대하여 상향링크와 하향링크가 할당(또는 예약)되는지 나타내는 규칙이다.
표 1은 상향링크-하향링크 구성을 나타낸다.
표 1을 참조하면, 무선 프레임의 각 서브프레임 별로, 'D'는 하향링크 전송을 위한 서브프레임을 나타내고, 'U'는 상향링크 전송을 위한 서브프레임을 나타내며, 'S'는 DwPTS(Downlink Pilot Time Slot), 보호구간(GP: Guard Period), UpPTS(Uplink Pilot Time Slot) 3가지의 필드로 구성되는 스페셜 서브프레임(special subframe)을 나타낸다.
DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향링크 전송 동기를 맞추는 데 사용된다. GP는 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
각 서브프레임 i는 각 T_slot=15360*T_s=0.5ms 길이의 슬롯 2i 및 슬롯 2i+1로 구성된다.
상향링크-하향링크 구성은 7가지로 구분될 수 있으며, 각 구성 별로 하향링크 서브프레임, 스페셜 서브프레임, 상향링크 서브프레임의 위치 및/또는 개수가 다르다.
하향링크에서 상향링크로 변경되는 시점 또는 상향링크에서 하향링크로 전환되는 시점을 전환 시점(switching point)이라 한다. 전환 시점의 주기성(Switch-point periodicity)은 상향링크 서브프레임과 하향링크 서브프레임이 전환되는 양상이 동일하게 반복되는 주기를 의미하며, 5ms 또는 10ms가 모두 지원된다. 5ms 하향링크-상향링크 전환 시점의 주기를 가지는 경우에는 스페셜 서브프레임(S)은 하프-프레임 마다 존재하고, 5ms 하향링크-상향링크 전환 시점의 주기를 가지는 경우에는 첫번째 하프-프레임에만 존재한다.
모든 구성에 있어서, 0번, 5번 서브프레임 및 DwPTS는 하향링크 전송만을 위한 구간이다. UpPTS 및 서브프레임 서브프레임에 바로 이어지는 서브프레임은 항상 상향링크 전송을 위한 구간이다.
이러한, 상향링크-하향링크 구성은 시스템 정보로써 기지국과 단말이 모두 알고 있을 수 있다. 기지국은 상향링크-하향링크 구성 정보가 바뀔 때마다 구성 정보의 인덱스만을 전송함으로써 무선 프레임의 상향링크-하향링크 할당상태의 변경을 단말에 알려줄 수 있다. 또한, 구성 정보는 일종의 하향링크 제어정보로서 다른 스케줄링 정보와 마찬가지로 PDCCH(Physical Downlink Control Channel)를 통해 전송될 수 있으며, 방송 정보로서 브로드캐스트 채널(broadcast channel)을 통해 셀 내의 모든 단말에 공통으로 전송될 수도 있다.
표 2는 스페셜 서브프레임의 구성(DwPTS/GP/UpPTS의 길이)을 나타낸다.
도 1의 예시에 따른 무선 프레임의 구조는 하나의 예시에 불과하며, 무선 프레임에 포함되는 부 반송파의 수 또는 서브 프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.
도 2는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 2를 참조하면, 하나의 하향링크 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함한다. 여기서, 하나의 하향링크 슬롯은 7개의 OFDM 심볼을 포함하고, 하나의 자원 블록은 주파수 영역에서 12개의 부 반송파를 포함하는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
자원 그리드 상에서 각 요소(element)를 자원 요소(resource element)하고, 하나의 자원 블록(RB: resource block)은 12 × 7 개의 자원 요소를 포함한다. 하향링크 슬롯에 포함되는 자원 블록들의 수 N^DL은 하향링크 전송 대역폭(bandwidth)에 종속한다.
상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 서브 프레임의 구조를 나타낸다.
도 3을 참조하면, 서브 프레임내의 첫번째 슬롯에서 앞의 최대 3개의 OFDM 심볼들이 제어 채널들이 할당되는 제어 영역(control region)이고, 나머지 OFDM 심볼들은 PDSCH(Physical Downlink Shared Channel)이 할당되는 데이터 영역(data region)이다. 3GPP LTE에서 사용되는 하향링크 제어 채널의 일례로 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 등이 있다.
PCFICH는 서브 프레임의 첫번째 OFDM 심볼에서 전송되고, 서브 프레임 내에 제어 채널들의 전송을 위하여 사용되는 OFDM 심볼들의 수(즉, 제어 영역의 크기)에 관한 정보를 나른다. PHICH는 상향 링크에 대한 응답 채널이고, HARQ(Hybrid Automatic Repeat Request)에 대한 ACK(Acknowledgement)/NACK(Not-Acknowledgement) 신호를 나른다. PDCCH를 통해 전송되는 제어 정보를 하향링크 제어정보(DCI: downlink control information)라고 한다. 하향링크 제어정보는 상향링크 자원 할당 정보, 하향링크 자원 할당 정보 또는 임의의 단말 그룹에 대한 상향링크 전송(Tx) 파워 제어 명령을 포함한다.
PDCCH는 DL-SCH(Downlink Shared Channel)의 자원 할당 및 전송 포맷(이를 하향링크 그랜트라고도 한다.), UL-SCH(Uplink Shared Channel)의 자원 할당 정보(이를 상향링크 그랜트라고도 한다.), PCH(Paging Channel)에서의 페이징(paging) 정보, DL-SCH에서의 시스템 정보, PDSCH에서 전송되는 랜덤 액세스 응답(random access response)과 같은 상위 레이어(upper-layer) 제어 메시지에 대한 자원 할당, 임의의 단말 그룹 내 개별 단말들에 대한 전송 파워 제어 명령들의 집합, VoIP(Voice over IP)의 활성화 등을 나를 수 있다. 복수의 PDCCH들은 제어 영역 내에서 전송될 수 있으며, 단말은 복수의 PDCCH들을 모니터링할 수 있다. PDCCH는 하나 또는 복수의 연속적인 CCE(control channel elements)의 집합으로 구성된다. CCE는 무선 채널의 상태에 따른 부호화율(coding rate)을 PDCCH에 제공하기 위하여 사용되는 논리적 할당 단위이다. CCE는 복수의 자원 요소 그룹(resource element group)들에 대응된다. PDCCH의 포맷 및 사용 가능한 PDCCH의 비트 수는 CCE들의 수와 CCE들에 의해 제공되는 부호화율 간의 연관 관계에 따라 결정된다.
기지국은 단말에게 전송하려는 DCI에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRC(Cyclic Redundancy Check)를 붙인다. CRC에는 PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(이를 RNTI(Radio Network Temporary Identifier)라고 한다.)가 마스킹된다. 특정의 단말을 위한 PDCCH라면 단말의 고유한 식별자, 예를 들어 C-RNTI(Cell-RNTI)가 CRC에 마스킹될 수 있다. 또는 페이징 메시지를 위한 PDCCH라면 페이징 지시 식별자, 예를 들어 P-RNTI(Paging-RNTI)가 CRC에 마스킹될 수 있다. 시스템 정보, 더욱 구체적으로 시스템 정보 블록(SIB: system information block)를 위한 PDCCH라면 시스템 정보 식별자, SI-RNTI(system information RNTI)가 CRC에 마스킹될 수 있다. 단말의 랜덤 액세스 프리앰블의 전송에 대한 응답인 랜덤 액세스 응답을 지시하기 위하여, RA-RNTI(random access-RNTI)가 CRC에 마스킹될 수 있다.
EPDCCH(enhanced PDCCH)는 단말 특정(UE-specific) 시그널링을 나른다. EPDCCH는 단말 특정하게 설정된 물리 자원 블록(PRB: physical resource block)에 위치한다. 다시 말해, 상술한 바와 같이 PDCCH는 서브 프레임내의 첫번째 슬롯에서 앞의 최대 3개의 OFDM 심볼들에서 전송될 수 있으나, EPDCCH는 PDCCH 이외의 자원 영역에서 전송될 수 있다. 서브프레임 내 EPDCCH가 시작되는 시점(즉, 심볼)은 상위 계층 시그널링(예를 들어, RRC 시그널링 등)을 통해 단말에 설정될 수 있다.
EPDCCH는 DL-SCH와 관련된 전송 포맷, 자원 할당 및 HARQ 정보, UL-SCH와 관련된 전송 포맷, 자원 할당 및 HARQ 정보, SL-SCH(Sidelink Shared Channel) 및 PSCCH(Physical Sidelink Control Channel)과 관련된 자원 할당 정보 등을 나를 수 있다. 다중의 EPDCCH가 지원될 수 있으며, 단말은 EPCCH의 세트를 모니터링할 수 있다.
EPDCCH는 하나 또는 그 이상의 연속된 진보된 CCE(ECCE: enhanced CCE)를 이용하여 전송될 수 있으며, 각 EPDCCH 포맷 별로 단일의 EPDCCH 당 ECCE의 개수가 정해질 수 있다.
각 ECCE는 복수의 자원 요소 그룹(EREG: enhanced resource element group)으로 구성될 수 있다. EREG는 ECCE의 RE에의 매핑을 정의하기 위하여 사용된다. PRB 쌍 별로 16개의 EREG가 존재한다. 각 PRB 쌍 내에서 DMRS를 나르는 RE를 제외하고, 모든 RE는 주파수가 증가하는 순서대로 그 다음 시간이 증가하는 순서대로 0 내지 15까지의 번호가 부여된다.
단말은 복수의 EPDCCH를 모니터링할 수 있다. 예를 들어, 단말이 EPDCCH 전송을 모니터링하는 하나의 PRB 쌍 내 하나 또는 두 개의 EPDCCH 세트가 설정될 수 있다.
서로 다른 개수의 ECCE가 병합됨으로써 EPCCH를 위한 서로 다른 부호화율(coding rate)이 실현될 수 있다. EPCCH는 지역적 전송(localized transmission) 또는 분산적 전송(distributed transmission)을 사용할 수 있으며, 이에 따라 PRB 내 RE에 ECCE의 매핑이 달라질 수 있다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 상향링크 서브 프레임의 구조를 나타낸다.
도 4를 참조하면, 상향링크 서브 프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나눌 수 있다. 제어 영역에는 상향링크 제어 정보를 나르는 PUCCH(Physical Uplink Control Channel)이 할당된다. 데이터 영역은 사용자 데이터를 나르는 PUSCH(Physical Uplink Shared Channel)이 할당된다. 단일 반송파 특성을 유지하기 위해 하나의 단말은 PUCCH와 PUSCH을 동시에 전송하지 않는다.
하나의 단말에 대한 PUCCH에는 서브 프레임 내에 자원 블록(RB: Resource Block) 쌍이 할당된다. RB 쌍에 속하는 RB들은 2개의 슬롯들의 각각에서 서로 다른 부 반송파를 차지한다. 이를 PUCCH에 할당된 RB 쌍은 슬롯 경계(slot boundary)에서 주파수 도약(frequency hopping)된다고 한다.
NB-IoT (Narrowband-Internet of Things)
NB-IoT는 무선 통신 시스템(예: LTE 시스템, NR 시스템 등)의 1 PRB(Physical Resource Block)에 해당하는 시스템 대역폭(system BW)을 통해 낮은 복잡도(complexity), 낮은 전력 소비(power consumption)을 지원하기 위한 시스템을 의미할 수 있다.
여기에서, NB-IoT는 NB-LTE, NB-IoT enhancement, enhanced NB-IoT, further enhanced NB-IoT, NB-NR 등과 같이 다른 용어로 지칭될 수 있다. 즉, NB-IoT는 3GPP 표준에서 정의되거나 정의될 용어로 대체될 수 있으며, 이하에서는 설명의 편의를 위하여 'NB-IoT'로 통칭하여 표현하기로 한다.
NB-IoT는 주로 machine-type communication (MTC)와 같은 장치(device)(또는 단말)를 셀룰러 시스템(cellular system)에서 지원하여 IoT(즉, 사물 인터넷)를 구현하기 위한 통신 방식으로 이용될 수도 있다. 이 때, 기존의 시스템 대역의 1 PRB를 NB-IoT 용으로 할당함으로써, 주파수를 효율적으로 사용할 수 있는 장점이 있다. 또한, NB-IoT의 경우, 각 단말은 단일 PRB(single PRB)를 각각의 캐리어(carrier)로 인식하므로, 본 명세서에서 언급되는 PRB 및 캐리어는 동일한 의미로 해석될 수도 있다.
이하, 본 명세서에서의 NB-IoT와 관련된 프레임 구조, 물리 채널, 다중 캐리어 동작(multi carrier operation), 동작 모드(operation mode), 일반적인 신호 송수신 등은 기존의 LTE 시스템의 경우를 고려하여 설명되지만, 차세대 시스템(예: NR 시스템 등)의 경우에도 확장하여 적용될 수 있음은 물론이다. 또한, 본 명세서에서의 NB-IoT와 관련된 내용은 유사한 기술적 목적(예: 저-전력, 저-비용, 커버리지 향상 등)을 지향하는 MTC(Machine Type Communication)에 확장하여 적용될 수도 있다.
1) NB-IoT의 프레임 구조 및 물리 자원
먼저, NB-IoT 프레임 구조는 서브캐리어 간격(subcarrier spacing)에 따라 다르게 설정될 수 있다. 구체적으로, 도 5은 서브캐리어 간격이 15kHz인 경우의 프레임 구조의 일 예를 나타내며, 도 6는 서브캐리어 간격이 3.75kHz인 경우의 프레임 구조의 일 예를 나타낸다. 다만, NB-IoT 프레임 구조는 이에 한정되는 것은 아니며, 다른 서브캐리어 간격(예: 30kHz 등)에 대한 NB-IoT도 시간/주파수 단위를 달리하여 고려될 수 있음은 물론이다.
또한, 본 명세서에서는 LTE 시스템 프레임 구조에 기반한 NB-IoT 프레임 구조를 예시로 설명하였지만, 이는 설명의 편의를 위한 것일 뿐 이에 한정되는 것은 아니며, 본 명세서에서 설명하는 방식이 차세대 시스템(예: NR 시스템)의 프레임 구조에 기반한 NB-IoT에도 확장하여 적용될 수 있음은 물론이다.
도 5를 참조하면, 15kHz 서브캐리어 간격에 대한 NB-IoT 프레임 구조는 상술한 legacy 시스템(즉, LTE 시스템)의 프레임 구조와 동일하게 설정될 수 있다. 즉, 10ms NB-IoT 프레임은 1ms NB-IoT 서브프레임 10개를 포함하며, 1ms NB-IoT 서브프레임은 0.5ms NB-IoT 슬롯 2개를 포함할 수 있다. 또한, 각각의 0.5ms NB-IoT은 7개의 OFDM 심볼들을 포함할 수 있다.
이와 달리, 도 6을 참조하면, 10ms NB-IoT 프레임은 2ms NB-IoT 서브프레임 5개를 포함하며, 2ms NB-IoT 서브프레임은 7개의 OFDM 심볼들과 하나의 보호 구간(Guard Period, GP)을 포함할 수 있다. 또한, 상기 2ms NB-IoT 서브프레임은 NB-IoT 슬롯 또는 NB-IoT RU(resource unit) 등으로 표현될 수도 있다.
다음으로, 하향링크 및 상향링크 각각에 대한 NB-IoT의 물리 자원을 살펴본다.
먼저, NB-IoT 하향링크의 물리 자원은 시스템 대역폭이 특정 수의 RB(예: 1개의 RB 즉, 180kHz)되는 것을 제외하고는, 다른 무선 통신 시스템(예: LTE 시스템, NR 시스템 등)의 물리 자원을 참고하여 설정될 수 있다. 일례로, 상술한 바와 같이 NB-IoT 하향링크가 15kHz 서브캐리어 간격만을 지원하는 경우, NB-IoT 하향링크의 물리 자원은 상술한 도 C1에 나타난 LTE 시스템의 자원 그리드를 주파수 영역 상의 1 RB(즉, 1 PRB)로 제한한 자원 영역으로 설정될 수 있다.
다음으로, NB-IoT 상향링크의 물리 자원의 경우에도 하향링크의 경우와 같이 시스템 대역폭은 1개의 RB로 제한되어 구성될 수 있다. 일례로, 상술한 바와 같이 NB-IoT 상향링크가 15kHz 및 3.75kHz 서브캐리어 간격을 지원하는 경우, NB-IoT 상향링크를 위한 자원 그리드는 도 7과 같이 표현될 수 있다. 이 때, 도 7에서 상향링크 대역의 서브캐리어 수 및 슬롯 기간 은 아래의 표 3과 같이 주어질 수 있다.
또한, NB-IoT 상향링크의 자원 단위(resource unit, RU)는 시간 영역 상에서 의 SC-FDMA 심볼들로 구성되고, 주파수 영역 상에서 연속적인 서브캐리어들로 구성될 수 있다. 일레로, 및 는 프레임 구조 유형 1(즉, FDD)의 경우 아래의 표 4에 의해 주어지며, 프레임 구조 유형 2(즉, TDD)의 경우 표 5에 의해 주어질 수 있다.
2) NB-IoT의 물리 채널
NB-IoT를 지원하는 기지국 및/또는 단말은 기존의 시스템과 별도로 설정된 물리 채널 및/또는 물리 신호를 송수신하도록 설정될 수 있다. 이하, NB-IoT에서 지원되는 물리 채널 및/또는 물리 신호와 관련된 구체적인 내용에 대해 살펴본다.
먼저, NB-IoT 시스템의 하향링크에 대해 살펴본다. NB-IoT 하향링크에는 15kHz의 서브캐리어 간격에 기반하여 OFDMA(Orthogonal Frequency Division Multiple Access) 방식이 적용될 수 있다. 이를 통해, 서브캐리어 간 직교성을 제공하여 기존의 시스템(예: LTE 시스템, NR 시스템)과의 공존(co-existence)이 효율적으로 지원될 수 있다.
NB-IoT 시스템의 물리 채널은 기존의 시스템과의 구분을 위하여 'N(Narrowband)'이 추가된 형태로 표현될 수 있다. 예를 들어, 하향링크 물리 채널은 NPBCH(Narrowband Physical Broadcast Channel), NPDCCH(Narrowband Physical Downlink Control Channel), NPDSCH(Narrowband Physical Downlink Shared Channel) 등으로 정의되며, 하향링크 물리 신호는 NPSS(Narrowband Primary Synchronization Signal), NSSS(Narrowband Secondary Synchronization Signal), NRS(Narrowband Reference Signal), NPRS(Narrowband Positioning Reference Signal), NWUS(Narrowband Wake Up Signal) 등으로 정의될 수 있다.
일반적으로, 상술한 NB-IoT의 하향링크 물리 채널 및 물리 신호는 시간영역 다중화 방식 및/또는 주파수영역 다중화 방식에 기반하여 전송되도록 설정될 수 있다.
또한, 특징적으로, NB-IoT 시스템의 하향링크 채널인 NPBCH, NPDCCH, NPDSCH 등의 경우, 커버리지 향상(coverage enhancement)을 위하여 반복 전송(repetition transmission)이 수행될 수 있다.
또한, NB-IoT는 새롭게 정의된 DCI 포맷(DCI format)을 사용하며, 일 례로 NB-IoT를 위한 DCI 포맷은 DCI format N0, DCI format N1, DCI format N2 등으로 정의될 수 있다.
다음으로, NB-IoT 시스템의 상향링크에 대해 살펴본다. NB-IoT 상향링크에는 15kHz 또는 3.75kHz의 서브캐리어 간격에 기반하여 SC-FDMA(Single Carrier Frequency Divison Multiple Access) 방식이 적용될 수 있다. NB-IoT의 상향링크에서는 다중-톤(multi-tone) 전송 및 단일-톤(single-tone) 전송이 지원될 수 있다. 일례로, 다중-톤 전송은 15kHz의 서브캐리어 간격에서만 지원되며, 단일-톤 전송은 15kHz 및 3.75kHz의 서브캐리어 간격에 대해 지원될 수도 있다.
하향링크 부분에서 언급한 것과 같이, NB-IoT 시스템의 물리 채널은 기존의 시스템과의 구분을 위하여 'N(Narrowband)'이 추가된 형태로 표현될 수 있다. 예를 들어, 상향링크 물리 채널은 NPRACH(Narrowband Physical Random Access Channel) 및 NPUSCH(Narrowband Physical Uplink Shared Channel) 등으로 정의되고, 상향링크 물리 신호는 NDMRS(Narrowband Demodulation Reference Signal) 등으로 정의될 수 있다.
여기에서, NPUSCH는 NPUSCH 포맷 1과 NPUSCH 포맷 2 등으로 구성될 수 있다. 일례로, NPUSCH 포맷 1은 UL-SCH 전송(또는 운반)을 위해 이용되며, NPUSCH 포맷 2는 HARQ ACK 시그널링 등과 같은 상향링크 제어 정보 전송을 위해 이용될 수 있다.
또한, 특징적으로, NB-IoT 시스템의 하향링크 채널인 NPRACH 등의 경우, 커버리지 향상(coverage enhancement)을 위하여 반복 전송(repetition transmission)이 수행될 수 있다. 이 경우, 반복 전송은 주파수 호핑(frequency hopping)이 적용되어 수행될 수도 있다.
3) NB-IoT의 다중 캐리어 동작
다음으로, NB-IoT의 다중 캐리어 동작에 대해 살펴본다. 다중 캐리어 동작은 NB-IoT에서 기지국 및/또는 단말이 상호 간에 채널 및/또는 신호를 송수신함에 있어서 용도가 서로 다르게 설정된(즉, 유형이 다른) 다수의 캐리어들이 이용되는 것을 의미할 수 있다.
일반적으로, NB-IoT는 상술한 바와 같은 다중 캐리어 모드로 동작할 수 있다. 이 때, NB-IoT에서 캐리어는 앵커 유형의 캐리어(anchor type carrier)(즉, 앵커 캐리어(anchor carrier), 앵커 PRB) 및 비-앵커 유형의 캐리어(non-anchor type carrier)(즉, 비-앵커 캐리어(non-anchor carrier), 비-앵커 PRB)로 정의될 수 있다.
앵커 캐리어는 기지국 관점에서 초기 접속(initial access)을 위해 NPSS, NSSS, NPBCH, 및 시스템 정보 블록(N-SIB)를 위한 NPDSCH 등을 전송하는 캐리어를 의미할 수 있다. 즉, NB-IoT에서 초기 접속을 위한 캐리어는 앵커 캐리어로 지칭되고, 그 외의 것(들)은 비-앵커 캐리어로 지칭될 수 있다. 이 때, 앵커 캐리어는 시스템 상에서 하나만 존재하거나, 다수의 앵커 캐리어들이 존재할 수도 있다.
4) NB-IoT의 동작 모드
다음으로, NB-IoT의 동작 모드에 대해 살펴본다. NB-IoT 시스템에서는 3개의 동작 모드들이 지원될 수 있다. 도 8은 NB-IoT 시스템에서 지원되는 동작 모드들의 일 예를 나타낸다. 본 명세서에서는 NB-IoT의 동작 모드가 LTE 대역에 기반하여 설명되지만, 이는 설명의 편의를 위한 것일 뿐, 다른 시스템의 대역(예: NR 시스템 대역)에 대해서도 확장되어 적용될 수 있음은 물론이다.
구체적으로, 도 8(a)는 인-밴드(In-band) 시스템의 일례를 나타내며, 도 8(b)는 가드-밴드(Guard-band) 시스템의 일례를 나타내며, 도 8(c)는 독립형(Stand-alone) 시스템의 일례를 나타낸다. 이 때, 인-밴드 시스템(In-band system)은 인-밴드 모드(In-band mode)로, 가드-밴드 시스템(Guard-band system)은 가드-밴드 모드(Guard-band mode)로, 독립형 시스템(Stand-alone system)은 독립형 모드(Stand-alone mode)로 표현될 수 있다.
In-band 시스템은 (legacy) LTE 대역 내 특정 1 RB(즉, PRB)를 NB-IoT를 위해 사용하는 시스템 또는 모드를 의미할 수 있다. In-band 시스템은 LTE 시스템 캐리어(carrier)의 일부 자원 블록을 할당하여 운용될 수 있다.
Guard-band 시스템은 (legacy) LTE 밴드의 Guard-band를 위해 비워놓은(reserved) 공간에 NB-IoT를 사용하는 시스템 또는 모드를 의미할 수 있다. Guard-band 시스템은 LTE 시스템에서 자원 블록으로 사용되지 않는 LTE 캐리어의 Guard-band를 할당하여 운용될 수 있다. 일례로, (legacy) LTE 대역은 각 LTE 대역의 마지막에 최소 100kHz의 Guard-band를 가지도록 설정될 수 있다. 200kHz를 이용하기 위해서는, 2개의 비-연속적인(non-contiguous) Guard-band들이 이용될 수 있다.
상술한 것과 같이, In-band 시스템 및 Guard-band 시스템은 (legacy) LTE 대역 내에 NB-IoT가 공존하는 구조에서 운용될 수 있다.
이에 반해, standalone 시스템은 (legacy) LTE 대역으로부터 독립적으로 구성된 시스템 또는 모드를 의미할 수 있다. standalone 시스템은 GERAN(GSM EDGE Radio Access Network)에서 사용되는 주파수 대역(예: 향후 재할당된 GSM 캐리어)을 별도로 할당하여 운용될 수 있다.
상술한 3개의 동작 모드들은 각각 독립적으로 운용되거나, 둘 이상의 동작 모드들이 조합되어 운용될 수도 있다.
5) NB-IoT의 일반적인 신호 송수신 절차
도 9는 NB-IoT에 이용될 수 있는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법의 일 예를 나타낸 도이다. 무선 통신 시스템에서 NB-IoT 단말은 기지국으로부터 하향링크(DL)를 통해 정보를 수신하고, NB-IoT 단말은 기지국으로 상향링크(UL)를 통해 정보를 전송할 수 있다. 다시 말해, 무선 통신 시스템에서 기지국은 NB-IoT 단말로 하향링크를 통해 정보를 전송하고, 기지국은 NB-IoT 단말로부터 상향링크를 통해 정보를 수신할 수 있다.
기지국과 NB-IoT 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 송수신하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재할 수 있다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 NB-IoT 단말은 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행할 수 있다(S11). 이를 위해 NB-IoT 단말은 기지국으로부터 NPSS 및 NSSS를 수신하여 기지국과의 동기화(synchronizatoin)를 수행하고, 셀 ID(cell identity) 등의 정보를 획득할 수 있다. 또한, NB-IoT 단말은 기지국으로부터 NPBCH를 수신하여 셀 내 방송 정보를 획득할 수 있다. 또한, NB-IoT 단말은 초기 셀 탐색 단계에서 DL RS(Downlink Reference Signal)를 수신하여 하향링크 채널 상태를 확인할 수도 있다.
다시 말해, 기지국은 새로이 셀에 진입한 NB-IoT 단말이 존재하는 경우, 해당 단말과 동기를 맞추는 등의 초기 셀 탐색 작업을 수행할 수 있다. 기지국은 NB-IoT 단말로 NPSS 및 NSSS를 전송하여 해당 단말과의 동기화를 수행하고, 셀 ID(cell identity) 등의 정보를 전달할 수 있다. 또한, 기지국은 NB-IoT 단말로 NPBCH를 전송(또는 브로드캐스트)하여 셀 내 방송 정보를 전달할 수 있다. 또한, 기지국은 NB-IoT 단말로 초기 셀 탐색 단계에서 DL RS를 전송하여 하향링크 채널 상태를 확인할 수도 있다.
초기 셀 탐색을 마친 NB-IoT 단말은 NPDCCH 및 이에 대응되는 NPDSCH를 수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다(S12). 다시 말해, 기지국은 초기 셀 탐색을 마친 NB-IoT 단말에게 NPDCCH 및 이에 대응되는 NPDSCH를 전송하여 좀더 구체적인 시스템 정보를 전달할 수 있다.
이후, NB-IoT 단말은 기지국에 접속을 완료하기 위해 임의 접속 과정(Random Access Procedure)을 수행할 수 있다(S13 내지 S16).
구체적으로, NB-IoT 단말은 NPRACH를 통해 프리앰블(preamble)을 기지국으로 전송할 수 있으며(S13), 상술한 바와 같이 NPRACH는 커버리지 향상 등을 위하여 주파수 호핑 등에 기반하여 반복 전송되도록 설정될 수 있다. 다시 말해, 기지국은 NB-IoT 단말로부터 NPRACH를 통해 프리앰블을 (반복적으로) 수신할 수 있다.
이후, NB-IoT 단말은 NPDCCH 및 이에 대응하는 NPDSCH를 통해 프리앰블에 대한 RAR(Random Access Response)을 기지국으로부터 수신할 수 있다(S14). 다시 말해, 기지국은 NPDCCH 및 이에 대응하는 NPDSCH를 통해 프리앰블에 대한 RAR(Random Access Response)를 NB-IoT 단말로 전송할 수 있다.
이후, NB-IoT 단말은 RAR 내의 스케줄링 정보를 이용하여 NPUSCH를 기지국으로 전송하고(S15), NPDCCH 및 이에 대응하는 NPDSCH과 같은 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다(S16). 다시 말해, 기지국은 NB-IoT RAR 내의 스케줄링 정보를 이용하여 NPUSCH를 단말로부터 수신하고, 상기 충돌 해결 절차를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 NB-IoT 단말은 이후 일반적인 상향/하향링크 신호 전송 절차로서 NPDCCH/NPDSCH 수신(S17) 및 NPUSCH 전송(S18)을 수행할 수 있다. 다시 말해, 상술한 절차들을 수행한 후, 기지국은 NB-IoT 단말로 일반적인 신호 송수신 절차로서 NPDCCH/NPDSCH 전송 및 NPUSCH 수신을 수행할 수 있다.
NB-IoT의 경우, 앞서 언급한 바와 같이 NPBCH, NPDCCH, NPDSCH 등은 커버리지 향상 등을 위하여 반복 전송될 수 있다. 또한, NB-IoT의 경우 NPUSCH를 통해 UL-SCH(즉, 일반적인 상향링크 데이터) 및 상향링크 제어 정보가 전달될 수 있다. 이 때, UL-SCH 및 상향링크 제어 정보는 각각 다른 NPUSCH 포맷(예: NPUSCH 포맷 1, NPUSCH 포맷 2 등)을 통해 전송되도록 설정될 수도 있다.
또한, 단말이 기지국으로 전송하는 제어 정보를 UCI(Uplink Control Information)라고 지칭할 수 있다. UCI는 HARQ ACK/NACK(Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR(Scheduling Request), CSI(Channel State Information) 등을 포함할 수 있다. CSI는 CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Indication) 등을 포함한다. 상술한 바와 같이, NB-IoT에서 UCI는 일반적으로 NPUSCH를 통해 전송될 수 있다. 또한, 네트워크(예: 기지국)의 요청/지시에 따라 단말은 NPUSCH를 통해 UCI를 주기적(perdiodic), 비주기적(aperdiodic), 또는 반-지속적(semi-persistent)으로 전송할 수 있다.
Narrowband (NB)-LTE는 LTE 시스템의 1 PRB(physical resource block)에 해당하는 시스템 대역폭(bandwidth, BW)을 갖는 낮은 복잡도(complexity), 낮은 전력 소모(power consumption)를 지원하기 위한 시스템이다.
이러한 NB-LTE 시스템은 주로 machine-type communication (MTC)와 같은 장치(device)를 셀룰러 시스템(cellular system)에서 지원하여 internet of things (IoT)를 구현하기 위한 통신 방식으로 이용될 수 있다.
이로 인해, 기존의 LTE의 subcarrier spacing 등의 OFDM 파라미터들을 LTE와 같은 것을 사용함으로써 추가적인 band 할당 없이 legacy LTE band에 1 PRB를 NB-LTE 용으로 할당하여 주파수를 효율적으로 사용할 수 있는 장점이 있다.
이하, NB-LTE의 물리 채널(physical channel)은 하향링크(downlink)의 경우, NPSS/NSSS, NPBCH, NPDCCH/NEPDCCH, NPDSCH 등으로 정의하고, LTE와 구별하기 위해 N을 더해서 기술한다.
또한, 본 명세서에서 사용하는 'search space를 모니터링 한다' 라는 구문의 의미는, 해당 search space를 통해 수신하고자 하는 DCI format에 따라 특정 영역만큼의 NPDCCH를 디코딩 한 후 해당 CRC(cyclic redundancy check)를 미리 약속된 특정 RNTI(Radio Network Temporary Identifier) 값으로 스크램블링(scrambling)하여 원하는 값이 맞는지를 확인하는 과정을 의미한다.
추가적으로, NB-LTE system에서 각 UE는 single PRB를 각각의 carrier로 인식하고 있기 때문에, 본 문서에서 언급하고 있는 PRB는 carrier와 같은 의미를 지니고 있다고 할 수 있다.
한편, 본 명세서에서 개시하는 DCI format N0, N1, N2 는 3GPP TS 36.212[2] 표준에 나와있는 DCI format N0, N1, N2를 의미한다.
또한, Rel. 15 NB-IoT에 frame structure type 2 (i.e., TDD)를 도입하는 것을 고려하고 있다.
즉, single PRB를 통해서 상향링크/하향링크(UL/DL)를 time division duplex로 전송하는 것을 생각하고 있다.
더하여, in-band mode와 guard band mode에서는, 상기 표 1의 여러 Uplink downlink configurations 중 최소 하나 이상의 configuration이 사용된다.
한편, 연속된 상향링크(uplink, UL) subframe이 하나밖에 존재하지 않는 U/D configuration #2 혹은 #5에서는 3.75 kHz subcarrier spacing을 사용한 UL transmission이 불가능 할 수 있다.
왜냐하면 3.75 kHz single tone transmission의 기본 slot duration이 2ms 이기 때문이다.
따라서 이와 같이 3.75 kHz subcarrier spacing을 지원하지 않는 U/D configuration 을 지원하는 NB-IoT TDD system에서는 기존 FDD system에서와 DCI 설계(design)가 달라질 수 있다.
따라서 본 발명에서는 3.75 kHz subcarrier spacing을 지원하지 않는 U/D configuration 을 지원하는 NB-IoT TDD system에서의 자세한 DCI design에 관하여 제안한다.
MSG3
Grant and
DCI
format N0 design detail for different U/D configurations
NB-IoT FDD system에서 MSG3 grant 와 DCI format N0 는 다음 표 6, 표 7과 같이 정의되어 있다.
TDD NB-IoT system에서 3.75 kHz subcarrier spacing UL transmission을 지원하지 않는 U/D configuration에서는 표 6의 subcarrier indication field와 표 7의 Uplink subcarrier spacing is ‘0’=3.75 kHz or ‘1’=15 kHz field 및 Subcarrier indication field가 수정될 필요가 있다.
즉, 표 8를 참고하면, 해당 경우에 표 6과 표 7의 subcarrier indication field는 6bits 에서 1bit가 줄어든 5bits 만으로도 동작 가능하다.
더하여, 표 7의 Uplink subcarrier spacing field는 1bit에서 1bit 줄여서 아예 bit가 없더라도 동작 가능하다.
따라서, 특정 조건을 만족하는 U/D configuration에 따라 DCI field를 다르게 설정할 수 있는 구체적인 방법은 다음과 같이 정리할 수 있다.
이하 방법들에서 지칭하는 '필요 없는 field'는 k bits라고 설정할 수 있다.
예를 들어, k값은 DCI format N0에서는 subcarrier indication field 1bit가 될 수 있고, narrowband MSG3 grant에서는 subcarrier indication field 1bit와 Uplink subcarrier spacing field 1bit를 합한 2bits가 될 수 있다.
(방법 1)
방법 1은 필요 없는 field를 reserved field로 설정하는 방법이다.
이 방법은 spec의 큰 변화 없이 적용할 수 있다는 장점이 있다.
다만, 해당 기지국이 3.75kHz UL transmission을 지원하는 U/D configuration으로 바꾸지 않는 한, 필요 없는 field를 항상 전송해야 하는 단점이 있을 수 있다.
(방법 2)
방법 2는 필요 없는 field에 0을 넣어 전송하는 방법이다.
방법 2의 경우, 필요 없는 field를 삭제 하지 않는다는 점에서 방법 1과 유사하지만, 해당 field에 항상 0를 보냄으로써 virtual CRC 역할을 하도록 설정할 수 있다.
다만, 방법 2의 경우, 해당 기지국이 3.75kHz UL transmission을 지원하는 U/D configuration으로 바꾸지 않는 한, 해당 field를 항상 전송해야 한다는 단점이 있을 수 있다.
그러나, 방법 1과 비교할 때 방법 2는 field를 아예 쓰지 않는 것은 아니므로 약간의 이득은 존재한다.
(방법 3)
방법 3은 필요 없는 field를 사용하기 위해 subcarrier indication을 위한 추가 state를 만드는 방법이다.
즉, 표 8의 19개 state에 T개의 state를 추가하여 새로운 표를 만들어 적용하여 사용할 수 있다.
다시 말해서, 3.75 kHz subcarrier spacing UL transmission을 지원하는 U/D configuration에서는 subcarrier indication field 값을 표 8을 사용하여 해석한다고 설정하고, 3.75 kHz subcarrier spacing UL transmission을 지원하지 않는 U/D configuration에서는 subcarrier indication field 값을 표 8이 아닌 새로운 표를 사용하여 해석한다고 설정할 수 있다.
이 때, 표 8에서 추가된 state 개수인 T가 19인 경우, 표 9가 새로운 표의 일례가 될 수 있다.
방법 3은 15kHz subcarrier spacing을 사용하는 UL transmission에 대한 fully dynamic 하게 자원 할당(resource allocation)이 가능하다는 장점이 있으나, 3.75kHz subcarrier spacing 을 지원하는 NPRACH와 multiplexing을 하려 할 때 모든 state를 다 사용하지 못한다는 단점이 있을 수 있다.
더하여, 6bits를 사용하는 subcarrier indication field의 총 state가 33개 이상이 되기 위해서 T는 14보다 크거나 같은 정수가 되는 것이 바람직하다.
(방법 4)
방법 4는 필요 없는 field를 삭제 하는 방법이다.
즉, DCI format N0는 subcarrier indication field를 6bits에서 5bits로 줄여서 사용하는 것으로 설정할 수 있다.
또한, MSG3 grant는 subcarrier indication field를 6bits에서 5bits로 줄일 수 있고, Uplink subcarrier spacing field 1bit를 삭제하여 사용하는 것으로 설정할 수 있다.
방법 4가 필요 없는 자원 낭비를 하지 않는다는 점에서 가장 장점이 있다.
상기 방법 1 내지 방법 4에서는, 기존 spec과 같이 단말 입장에서 DCI format N0와 DCI format N1을 blind detection 하기 위해 두 포멧(format) 중 페이로드 크기(payload size)가 작은 쪽에 zero padding을 하여 두 format의 payload size를 같게 해줘야 한다.
또한, DCI format N0와 MSG3 grant 각각 상기 방법 중 서로 다른 방법을 적용할 수 있다.
또한, 상기 방법들이 조합되어 적용 되는 것도 고려할 수 있다.
UL
Subcarrier
spacing indication in SIB by N bits (N은 양의 정수)
앞서 상술한 것과 유사하게, Rel. 15 NB-IoT TDD system에서 기지국이 특정 UL/DL configuration 에서 지원되는 UL subcarrier spacing을 미리 결정할 수 있다.
이 때, 단말은 tdd-Config-NB parameter가 전송될 SIB(특징적으로 SIB1-NB가 될 수 있음)에 현재 NB-IoT cell에서 지원되는 UL subcarrier spacing 정보를 N bits를 사용하여 전달 받을 수 있다.
예를 들어, 기지국이 (1) 3.75 kHz subcarrier spacing만 지원하는 경우, (2) 15kHz subcarrier spacing 만 지원하는 경우, 그리고 (3) 3.75 kHz subcarrier spacing 과 15kHz subcarrier spacing 둘 다 지원하는 경우의 총 3가지 경우가 있을 수 있기 때문에 2bits(N=2)를 사용하여 3가지 경우 중 하나를 결정하여 전달한다고 설정할 수 있다.
이 때, 특정 cell이 사용하는 UL/DL configuration에 따라 특정 UL subcarrier spacing (특징적으로 15kHz subcarrier spacing)만 지원하도록 선택할 수 있는 이유는 3.75 kHz subcarrier spacing 의 one slot duration이 2ms에 이르기 때문이다.
즉, 기지국이 특정 UL/DL configuration을 선택하고, 여러 가지 상황(e.g., invalid UL subframe 등)을 고려하여 연속된 2개의 UL subframe 확보가 쉽지 않은 경우가 있을 수 있다.
이 때에는 3.75 kHz subcarrier spacing을 사용하지 않는다고 설정하는 것이 바람직한 방법일 수 있다.
더하여, 3.75 kHz subcarrier spacing과 15 kHz subcarrier spacing을 모두 지원할 수 있는 UL/DL configuration 임에도 기지국은 스케줄링의 편의를 위하여 15 kHz subcarrier spacing만을 지원하고자 하는 경우에는, 3.75 kHz subcarrier spacing을 사용하지 않도록 설정할 수 있다.
예를 들어, 2보다 큰 연속된 홀수 UL subframe이 존재하는 경우에 scheduling delay나 resource allocation 등의 편의를 위해서 기지국은 UL subcarrier spacing를 15 kHz만 사용하도록 설정할 수 있다.
더하여, 3.75 kHz subcarrier spacing과 15 kHz subcarrier spacing을 모두 지원할 수 있는 UL/DL configuration 임에도 기지국 판단 하에 3.75 kHz subcarrier spacing 만을 지원하고자 하는 경우에도, 15 kHz subcarrier spacing을 사용하지 않도록 설정할 수 있다.
이러한 기지국의 결정(i.e., 특정 UL subcarrier spacing만을 사용)은 SIB를 통해 단말에게 전달 된다.
그리고, 단말은 이러한 결정에 따라 MSG3 Grant size와 DCI format N0 size 가 변경되어 기지국으로부터 전송된다고 믿고 디코딩/모니터링 등을 수행한다.
이 때, 특정 UL subcarrier spacing만을 사용하는 경우 MSG3 Grant size와 DCI format N0 size가 어떻게 변경될 수 있는지 정리하면 다음과 같다.
(1) 3.75 kHz
subcarrier
spacing만 지원하는 경우
TDD NB-IoT system이 15 kHz subcarrier spacing UL transmission을 지원하지 않는 경우, 표 7의 Uplink subcarrier spacing field가 수정될 필요가 있다.
즉, 표 7의 Uplink subcarrier spacing field는 1bit에서 1bit 줄여서 아예 없더라도 동작 가능하다.
결과적으로, 상술한 MSG3 Grant and DCI format N0 design detail for different U/D configurations 에서 제시된 방법들을 여기서도 적용할 수 있다.
그리고, 해당 방법들에서 지칭하는 '필요 없는 field'는 k bit(s)라고 설정할 수 있다.
이 때, k값은 narrowband MSG3 grant에서 Uplink subcarrier spacing field 1bit가 될 수 있다.
(2) 15kHz
subcarrier
spacing 만 지원하는 경우
TDD NB-IoT system이 3.75 kHz subcarrier spacing UL transmission을 지원하지 않는 경우, MSG3 Grant and DCI format N0 design detail for different U/D configurations 에서 언급한 것과 같이 표 9와 표 10의 field가 수정될 필요가 있다.
즉, 표 8을 참고하면, 해당 경우에 표 9와 표 10의 subcarrier indication field 는 6bits 에서 1bit가 줄어든 5bits 만으로도 동작 가능하다.
그리고, 표 7의 Uplink subcarrier spacing field는 1bit에서 1bit 줄여서 아예 없더라도 동작 가능하다.
결과적으로, MSG3 Grant and DCI format N0 design detail for different U/D configurations 에서 제시된 방법들을 여기서도 적용할 수 있다.
또한, 해당 방법들에서 지칭하는 '필요 없는 field'는 k bits라고 설정할 수 있다.
또한, k값은 DCI format N0에서는 subcarrier indication field 1bit가 될 수 있고, narrowband MSG3 grant에서는 subcarrier indication field 1bit와 Uplink subcarrier spacing field 1bit를 합한 2bits가 될 수 있다.
(3) 3.75 kHz
subcarrier
spacing 과 15kHz
subcarrier
spacing 둘 다 지원하는 경우
TDD NB-IoT system이 3.75 kHz subcarrier spacing 과 15kHz subcarrier spacing 둘 다 지원하는 경우는 FDD NB-IoT system과 동일한 방법을 사용한다고 설정할 수 있다.
즉, 표 6과 표 7을 변경하지 않고 다 사용하며, UL grant의 UL subcarrier spacing은 MSG3 grant를 통해 전달받은 subcarrier spacing 과 같은 값을 사용한다고 결정할 수 있다.
DCI
format N0 design detail for different U/D configurations
상술한 MSG3 Grant and DCI format N0 design detail for different U/D configurations 에서 설명한 것에 더하여, Rel. 15 TDD NB-IoT에서, 특정 U/D configuration number 에 따라 15kHz 서브캐리어 간격 (subcarrier spacing, SCS)으로 동작하는 UL multi-tone의 개수를 FDD에서 사용하는 것과 다르게 가져가려 할 수 있다.
즉, 기존 FDD에서는 single tone transmission과 더불어, 3 tones, 6 tones, 12 tones으로 이루어진 multi-tone transmission을 지원하고 있었다.
그러나, Rel. 15 TDD NB-IoT에서는 특정 U/D configuration (특징적으로 U/D configuration 3 or 6, 즉 consecutive UL SF 개수가 3개 이상 확보 되는 case들)에서 single tone transmission, 그리고 4 tones과 12 tones으로 이루어진 multi-tone transmission을 지원하려고 한다.
이와 같이 특정 U/D configuration에 따라서 몇 개의 tone으로 구성된 multi-tone을 지원할 것인지 설정하는 방법은 다음과 같이 정리할 수 있다.
(방법 1)
방법 1은 Spec에서 TDD에서 지원 가능한 transmission (i.e., single tone and/or multi-tone)을 모두 정의 하고, SIB를 통해 explicit 하게 configurable 할 수 있게 설정하는 방법을 말한다.
상술한 UL Subcarrier spacing indication in SIB by N bits (N은 양의 정수) 에서 tdd-Config-NB parameter가 전송될 SIB(특징적으로 SIB1-NB가 될 수 있음)에서 N bits를 통해 현재 NB-IoT cell에서 지원되는 UL subcarrier spacing 정보를 전달할 수 있다고 했으므로, 이 정보와 묶어서 전달한다고 설정할 수 있다.
구체적으로, 다음 5가지의 경우로 나타낼 수 있다.
(1) 3.75 kHz SCS만 지원하는 경우, (2) 15 kHz SCS만 지원하면서, {single tone, 3-tones, 6-tones, 12-tones}으로 구성된 UL transmission을 지원하는 경우, (3) 15 kHz SCS만 지원하면서, {single tone, 4-tones, 12-tones}으로 구성된 UL transmission을 지원하는 경우, (4) 3.75 kHz 와 15 kHz SCS을 모두 지원하면서, 15 kHz SCS에 대해서 {single tone, 3-tones, 6-tones, 12-tones}으로 구성된 UL transmission을 지원하는 경우, (5) 3.75 kHz 와 15 kHz SCS을 모두 지원하면서, 15 kHz SCS에 대해서 {single tone, 4-tones, 12-tones}으로 구성된 UL transmission을 지원하는 경우가 있을 수 있다.
따라서, 이 때 N은 3bits가 될 수 있다.
또한, 이 방법은 UL/DL configuration 과 독립적으로 정보를 전달한다는 특징이 있다.
(방법 2)
방법 2는 TDD에서 지원 가능한 transmission (i.e., single tone and/or multi-tone)을 모두 정의하고, SIB를 통해 implicit하게 configurable 할 수 있게 설정하는 방법을 말한다.
다시 말하면, 이 방법은 configure된 UL/DL configuration 값과, configure된 SCS 값에 따라 어떤 UL transmission들을 사용할지 spec에 미리 약속해 놓는 방법이다.
구체적인 예시를 들면 아래의 표 10과 같이 정리할 수 있다.
표 10은 15 KHz subcarrier spacing을 지원할 때, UL/DL configuran에 대한 UL transmission set을 나타낸 것이다.
단말은 SIB를 통해 전송된 UL/DL configuration 정보와, 지원되는 서브캐리어 간격(subcarrier spacing, SCS) 정보를 바탕으로 현재 Cell 에서 사용 가능한 UL transmission set을 알 수 있다고 설정할 수 있다.
더하여, NB-IoT 시스템이 상술한 3.75 kHz SCS을 지원하지 않고, 15 kHz SCS만 지원할 때 DCI format N0의 특정 field를 변경한 것과 같이, 15 kHz SCS with single tone, 4-tones, 12-tones를 지원하는 경우에도 DCI format N0의 subcarrier indication field를 표 11과 같이 변경하여 적용한다고 설정할 수 있다.
표 11은 4bits만을 가지고 single tone, 4-tones, 12-tones을 표현할 수 있는 것을 나타낸다.
따라서 상술한 바에 따르면 '필요 없는 field' k 가 2bits가 된다.
이 경우에도 앞서 MSG3 Grant and DCI format N0 design detail for different U/D configurations 에서 언급한 다양한 방법을 적용할 수 있다.
즉, 다시 말해서 UL/DL configuration 에 따라서 DCI format의 size가 달라질 수 있으며, 각각의 경우에 해당하는 표에서 갖는 state 수에 따라 해당 field 의 size가 결정될 수 있다.
더하여, 상술한 방법은 UL/DL configuration에 따라서 DCI format size가 변경될 수 있다는 것에 대해 다루고 있었다면, 좀더 일반화 시켜서, UL/DL configuration이 특정 주기 (e.g., X ms) 마다 반복되고, X ms 내에서 연속된 UL subframe 수의 최소 또는 최대 값(e.g., L ms)에 따라서 DCI format size 가 변경된다고 설정할 수도 있다.
예를 들어, 15 kHz SCS을 사용하는 것을 기본으로 하고, L값이 2ms 인 경우에는 표 12와 같이(표 8에서 reserved state만 줄인 것) 5bits를 사용하여 해당 field를 나타낼 수도 있고, L 값이 3ms 인 경우에는 표 8과 같이 4 bits를 사용하여 해당 field를 나타낼 수도 있다.
다시 말하면, L값이 2ms인 경우에는 {single tone, 3-tones, 6-tones, 12-tones}로 구성된 UL transmission을 지원하고, L값이 3ms인 경우에는 {single tone, 4-tones, 12-tones}로 구성된 UL transmission을 지원한다고 설정할 수 있다.
더하여, UL/DL configuration과 더불어, special subframe configuration (and/or number of available UpPTS symbol) 에 따라서 DCI format size가 변경된다고 설정할 수도 있다.
UpPTS symbol 들에 NPUSCH를 전송할 수 있다는 전제 하에, 사용 가능한 UpPTS symbol 숫자가 U (e.g., U = 7, 1 slot) 이상이고, 기존 consecutive UL subframe의 최소 또는 최대 값(L')이 1인 경우에는 표 9와 같이 5bits를 사용하여 해당 field를 나타낼 수도 있다.
그리고, 기존 consecutive UL subframe 의 최소 또는 최대 값(L')이 2인 경우에는 표 11과 같이 4 bits를 사용하여 해당 field를 나타낼 수도 있다.
즉, L'값이 1인 경우에는 {single tone, 3-tones, 6-tones, 12-tones}로 구성된 UL transmission을 지원하고, L'값이 2인 경우에는 {single tone, 4-tones, 12-tones}로 구성된 UL transmission을 지원한다고 설정할 수 있다.
더하여, 이와 같이 특정 UpPTS symbol 숫자(e.g., 7 symbol) 이상에 대해 NPUSCH를 전송할 수 있는 경우 기본 RU 단위의 특정 부분이 puncturing (or rate matching) 될 수 있다.
예를 들어, 3ms RU (i.e., 4 tones transmission) 에 대해 special subframe 시작점에 맞춰서 전송을 시작하되 최초 특정 개수의 UL symbols (e.g., 14-U symbols)는 puncturing (or rate matching) 될 수 있다고 설정할 수 있다.
유사하게 기본 RU(resource unit) 단위의 시작점은 상위 계층(higher layer)으로부터 configured 된 UpPTS starting symbol에 맞춰서 전송하고 전송 하지 못하는 뒷부분을 puncturing (or rate matching) 될 수 있다고 설정할 수 있다.
The different carriers between MSG1 and MSG3
Rel.15에서 논의되고 있는 TDD NPRACH 에 대해 간단히 설명하면 다음과 같다.
3.75kHz subcarrier spacing을 사용하는 N개의 symbol들과 하나의 CP가 하나의 symbol group을 만드는 것은 FDD와 동일하나, TDD에서는 consecutive UL SF들에 G개의 symbol group들이 back-to-back으로 전송되도록 설정된다.
그리고, single preamble은 P개의 symbol group들로 이루어지게 된다.
상술한 바와 같이, TDD NB-IoT에서 NPRACH preamble format design이 FDD NB-IoT와 다르게 정의될 것이기 때문에, 기존 FDD에서 사용하고 있는 NPRACH resource configuration 을 그대로 사용하게 되면 다음과 같은 문제가 발생할 수 있다.
예를 들어, 도 10과 같이, UL/DL configuration #5(1UL in 10ms)에서 G=2, P=4와 같은 프리앰블(preamble)을 전송하려면 총 20ms (2 Radio frames)가 필요하게 된다.
즉, UL/DL configuration #5에서 Single Radio frame내에 1SF만이 UL SF이므로 도 10과 같이 총 20ms가 필요하게 된다.
만약, 이때 해당 preamble의 repetition number를 64로 configure하게 되면 전체 preamble을 전송하기 위해서 20*64 = 1280ms가 필요하게 된다.
이 때문에 기지국은 NPRACH resource의 주기를 최소 1280ms 이상으로 설정해야 한다.
만약 기지국이 NPRACH resource의 주기를 1280ms로 설정하게 되면 해당 carrier에는 NPRACH preamble 전송을 위한 resource가 1RB의 한쪽(12, 24, 36, 48 subcarrier 중 하나)에 항상 존재하게 된다.
도 11은 상술한 바와 같이, 주기가 1280ms로 configure되었을 때, 12 subcarrier 만큼 NPRACH resource 가 할당된 모습을 나타낸다.
한편, 단말이 해당 NPRACH resource의 MSG3 multi-tone이 전송 가능하다고 설정된 subcarrier(i.e., NPRACH preamble)를 선택하여 전송하게 되는 경우가 있을 수 있다.
이 때, 기지국은 15kHz 12-tones MSG3를 전송하도록 단말에게 configure하면 단말이 MGG3를 전송하는데 있어서 NPRACH resource를 침범하게 된다.
따라서, 기지국이 이러한 문제가 없도록 NPRACH resource의 주기를 configure한다고 설정할 수 있다.
그러나, 기지국이 주기를 setting한다고 해도 단말이 NPRACH resource를 고르는데 있어 동일 CE level에 꾸려진 carrier들 중 하나를 미리 알고 있는 확률을 통해 고르기 때문에 각 resource 별 주기나 resource에 할당된 subcarrier 수 등을 미리 알 수는 없다.
따라서, 위와 같은 문제는 낮은 확률이라도 발생할 수 있기 때문에 다음과 같은 방법들을 통해 문제 해결을 시도할 수 있다.
(방법 1)
방법 1은 MSG1과 MSG3를 전송하는 반송파(carrier)를 다르게 설정하는 것이다.
(방법 1-1) MSG3를 전송하는 carrier를 RAR을 스케줄링 하는 DCI 혹은 RAR (grant)의 reserved field 또는 reserved state 등을 사용하여 dynamic하게 찍어준다고 설정할 수 있다.
이 방법은 기지국이 판단하여 dynamic하게 carrier를 다르게 설정할 수 있기 때문에 자원 이용(resource utilization) 측면에서 장점이 있다.
또한 동일 NPRACH resource 를 사용하여 MSG1을 전송한 단말들을 서로 다른 carrier에 MSG3를 전송하도록 설정할 수 있기 때문에, carrier load balancing 측면에서 장점이 있다.
(1-2) MSG3를 전송할 carrier를 SIB2 혹은 SIB22를 통해 NPRACH resource별로 독립적으로 미리 전달한다고 설정할 수 있다.
이 방법은 RAR을 스케줄링 하는 DCI 혹은 RAR (grant)을 이용하지 않기 때문에(i.e., field가 더 넓기 때문에) 더 많은 수의 MSG3 carrier들 중 하나를 선택하여 전송할 수 있다는 측면에서 장점이 있다.
(1-3) 최초 MSG3가 MSG1과 다른 carrier에 전송하게 될 경우가 있을 수 있다.
이 때, 사용할 수 있는 carrier 를 SIB2 혹은 SIB22를 통해 NPRACH resource 별로 독립적으로 미리 전달한다고 설정하고, RAR을 스케줄링 하는 DCI 혹은 RAR (grant)을 통해 MSG3가 MSG1과 다른 UL carrier를 사용하도록 1bit indicator를 사용하여 전달한다고 설정할 수 있다.
이 방법은 기지국 판단에 따라 MSG3를 MSG1과 다른 UL carrier로 전송하도록 능동적으로 설정할 수 있으며, RAR을 scheduling 하는 DCI 혹은 RAR (grant)의 1bit field만 사용하면 된다는 장점이 있다.
(1-4) NPDCCH order로 NPRACH 전송이 시작되는 경우 MSG3를 전송하는 carrier가 기존에 해당 단말이 UL unicast를 하고 있던 UL carrier를 사용하도록 설정할 수 있다.
더하여, MSG3를 전송하는 carrier가 기존 UL unicast용 UL carrier를 사용하도록 설정하는 indicator를 NPDCCH order 를 위한 DCI format(i.e., DCI format N1)의 reserved filed에 추가한다고 설정할 수도 있다.
만약 상기 indicator가 활성화(active)하도록 설정되면 MSG3를 전송하는 carrier를 기존 UL unicast용 UL carrier를 사용하도록 설정할 수 있고, 그렇지 않다면 MSG1을 전송하는 carrier와 같은 carrier에 MSG3를 전송한다고 설정할 수 있다.
만약 상기 1-1, 1-2, 1-3 등과 같이 MSG1을 전송하는 UL carrier와 MSG3를 전송하는 UL carrier가 다르게 설정될 수 있는 방법이 이미 적용되어 있고 (1-4)방법이 추가로 설정된 경우가 있을 수 있다.
이 때에는, 해당 indicator가 비활성화(deactivate)하도록 설정되면 기 설정된 방법(e.g., 1-1, 1-2, 1-3)을 따라 MSG3 전송 UL carrier를 결정하는 것을 의미할 수 있다.
해당 방법을 사용하면 기지국이 판단하여 dynamic하게 UL carrier를 다르게 설정할 수 있기 때문에 resource utilization 측면에서 장점이 있다.
또한 동일 NPRACH resource 를 사용하여 MSG1을 전송한 단말들을 서로 다른 UL carrier에 MSG3를 전송하도록 설정할 수 있기 때문에, carrier load balancing 측면에서 장점이 있다.
상기 설명한 방법들에서 MSG3를 전송할 수 있는 UL carrier set은 MSG1을 전송할 수 있는 UL carrier set과 동일하다고 설정할 수도 있으나, 이를 기지국이 독립적으로 설정할 수도 있다.
만약 UL carrier set과 동일하다고 설정하는 경우에는 이미 MSG1을 전송할 수 있는 carrier들을 알고 있는 단말이 추가적으로 MSG3를 위한 UL carrier set정보를 몰라도 된다는 장점이 있다.
그리고, 기지국이 이를 독립적으로 설정하는 경우에는 carrier load balancing 측면에서 장점이 있다.
더하여, 해당 UL carrier set은 SIB(e.g., SIB2 or SIB22)를 통해 전송되는 것이 바람직하다.
(방법 2)
방법 2는 MSG1과 MSG3를 전송하는 carrier는 동일하지만 MSG3 전송을 위해 RAR에 포함되어 전송되는 UL grant 해석방법을 다르게 설정하는 방법이다.
(2-1) NPRACH resource 영역과 충돌하게 되는 multi-tone MSG3를 전송하도록 RAR에 포함되어 전송되는 UL grant 에 지시되어 있는 경우가 있을 수 있다.
이 때, 단말은 해당 UL grant는 invalid 하다고 판단하고 MSG1 재전송 혹은 MSG3 재전송을 시작하도록 설정할 수 있다.
이 방법은 spec에 단말 동작만 간단히 서술하면 되기 때문에 specification work 측면에서 장점이 있다.
(2-2) NPRACH resource 영역과 충돌하게 될 수 있는 Subcarrier indication field를 다음과 같이 재 설정하여 기지국과 단말이 재 설정된 state에 따라 MSG3를 송수신 한다고 설정할 수 있다.
즉, 현재 표 8과 같이 multi-tone MSG3를 위한 SC indication field가 설정되어 있으나, NPRACH resource에 사용된 subcarrier 수에 따라서 해당 field의 내용을 재해석 한다고 설정할 수 있다.
예를 들어 NPRACH resource에 사용된 subcarrier수가 12개이고 NPRACH offset이 0 혹은 36인 경우 라면, state 18번(15kHz 12 tone)과 state 16번 혹은 17번(6 tone)를 사용하지 못하게 된다.
이 때, state 18번으로 MSG3를 전송하도록 기지국이 configure 했다면 단말은 9 tone 으로 MSG3를 전송하도록 지시 받았다고 생각하고 9tone MSG3를 전송할 수 있다.
이 때, NPRACH offset이 0인 경우에는 18번 state를 {3, 4, 5, 6, 7, 8, 9, 10, 11}의 9 tone을 사용하여 전송하도록 설정할 수 있고, NPRACH offset이 36인 경우에는 18번 state를 {0, 1, 2, 3, 4, 5, 6, 7, 8}의 9 tone을 사용하여 전송하도록 설정할 수 있다.
이와 유사하게 NPRACH offset이 0인 경우에는 16번 state를 6(ISC-16)+{3, 4, 5, 6, 7, 8}로 해석하고 17번 state는 그대로(i.e., 6(ISC-16)+{0, 1, 2, 3, 4, 5}) 해석 한다고 설정할 수 있다.
더하여, NPRACH offset이 36인 경우에는 17번 state를 6(ISC-17)+{3, 4, 5, 6, 7, 8}로 해석하고 16번 state는 그대로(i.e., 6(ISC-16)+{0, 1, 2, 3, 4, 5}) 해석한다고 설정할 수 있다.
이와 유사한 방법들을 다른 경우에도 적용하여 NPRACH resource에 사용된 SC수와 NPRACH offset 수에 따라 state 해석을 달리한다고 설정할 수 있다.
더하여, 이 방법은 DCI-format N0의 UL grant에 들어있는 Subcarrier indication filed에도 적용할 수 있다.
예를 들어, NPRACH resource 관련 파라미터를 보고 UL grant로 지시되는 subcarrier indication field값이 NPRACH resource 와 충돌 나게 되면 앞서 제시한 방법과 같이 해당 filed를 재해석하여 NPUSCH 를 전송한다고 설정할 수 있다.
이 방법을 사용하면 MSG1과 MSG3가 동일 carrier에 사용되더라도 MSG3 multi tone 전송이 미리 설정되어 있는 MSG1 resource 와 효율적으로 multiplexing 할 수 있다는 장점이 있다.
추가적으로 상술한 문제가 MSG2(RAR) 수신과 MSG4 수신 시에도 유사한 문제(i.e., Search space가 겹치거나 NPDSCH 전송이 겹치는 등)가 발생할 수 있다.
따라서, MSG2와 MSG4 DL carrier를 설정하는 방법에도 적용할 수 있음은 당연하다.
더하여, MSG1을 전송하는 NPRACH resource를 단말이 한번 선택하면 해당 procedure가 끝날 때까지 계속 사용해야 하는 MSG2, MSG3, MSG4 carrier 들을 독립적으로 설정할 수 있다.
예를 들어, 각 NPRACH resource 별로 혹은 각 MSG1 전송 carrier 별로 대응되는 MSG2 수신 carrier 그리고/또는 대응되는 MSG3 전송 carrier 그리고/또는 대응되는 MSG4 수신 carrier 들을 독립적으로 설정할 수 있다.
이 방법 또한 기지국이 판단하여 carrier load balancing을 할 수 있다는 장점이 있다.
다음으로, 본 명세서에서 제안하는 랜덤 엑세스 절차를 수행하기 위한 메시지를 전송하는 방법에 대해 관련 도면인 도 12, 13을 참조하여 구체적으로 살펴본다.
도 12는 본 명세서에서 제안하는 랜덤 엑세스 절차를 수행하기 위한 메시지를 전송하는 방법을 수행하는 단말의 동작 방법 일례를 나타낸 순서도이다.
먼저, 단말은 시스템 정보(system information, SIB)를 기지국으로부터 수신한다(S1210).
이후, 상기 시스템 정보에 기초하여 기지국으로 제1 메시지를 전송한다(S1220).
이 때, 제1 메시지는 프리엠블(preamble)에 해당할 수 있다.
다음으로, 상기 제1 메시지에 대한 응답인 제2 메시지를 기지국으로부터 수신한다(S1230).
이후, 단말은 제3 메시지를 기지국으로 전송한다(S1240).
이 때, 상기 제3 메시지는 상기 제1 메시지를 전송하는데 이용된 반송파와는 다른 반송파를 이용하여 전송될 수 있다.
더하여, 단말은 기지국으로부터 하향링크 제어 정보(downlink control information, DCI)를 NPDCCH(physical downlink control channel)를 통해 기지국으로부터 수신할 수 있다.
더하여, 상기 제3 메시지 전송을 위한 반송파는 상기 시스템 정보를 통해 설정될 수 있다.
더하여, 상기 제3 메시지 전송을 위한 반송파는 상기 DCI 또는 제2 메시지를 통해 설정될 수 있다.
더하여, 상기 시스템 정보는 제3 메시지가 전송 가능한 자원들에 대한 정보를 포함할 수 있고, 상기 정보에 기초하여, 제3 메시지가 전송되는 반송파를 상기 DCI 또는 상기 제2 메시지를 통해 설정될 수 있다.
더하여, 상기 NPDCCH는 유니캐스트(unicast)전송을 위한 것일 수 있고, 이 때, 상기 제3 메시지는 상향링크 유니캐스트에 이용된 반송파를 이용하여 전송될 수 있다.
도 13은 본 명세서에서 제안하는 랜덤 엑세스 절차를 수행하기 위한 메시지를 전송하는 방법을 수행하는 기지국의 동작 방법 일례를 나타낸 순서도이다.
먼저, 시스템 정보를 단말로 전송한다(S1310).
다음으로 상기 시스템 정보에 기초한 제1 메시지를 단말로부터 수신하고, 상기 제1 메시지에 대한 응답인 제2 메시지를 단말로 전송한다(S1320, S1330).
다음으로 제3 메시지를 단말로부터 수신하게 된다(S1340).
본 발명이 적용될 수 있는 장치 일반
도 14는 본 발명의 일 실시예에 따른 무선 통신 장치의 블록 구성도를 예시한다.
도 14를 참조하면, 무선 통신 시스템은 기지국(1410)과 기지국(1410) 영역 내에 위치한 다수의 단말(1420)을 포함한다.
기지국(1410)은 프로세서(processor, 1411), 메모리(memory, 1412) 및 RF부(radio frequency unit, 1413)을 포함한다. 프로세서(1411)는 앞서 도 1 내지 도 13에서 제안된 기능, 과정 및/또는 방법을 구현한다.
무선 인터페이스 프로토콜의 계층들은 프로세서(1411)에 의해 구현될 수 있다.
메모리(1412)는 프로세서(1411)와 연결되어, 프로세서(1411)를 구동하기 위한 다양한 정보를 저장한다.
RF부(1413)는 프로세서(1411)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
단말(1420)은 프로세서(1421), 메모리(1422) 및 RF부(1423)을 포함한다.
프로세서(1421)는 앞서 도 1 내지 도 13에서 제안된 기능, 과정 및/또는 방법을 구현한다.
무선 인터페이스 프로토콜의 계층들은 프로세서(1421)에 의해 구현될 수 있다.
메모리(1422)는 프로세서(1421)와 연결되어, 프로세서(1421)를 구동하기 위한 다양한 정보를 저장한다.
RF부(1423)는 프로세서(1421)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
메모리(1412, 1422)는 프로세서(1411, 1421) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(1411, 1421)와 연결될 수 있다.
또한, 기지국(1410) 및/또는 단말(1420)은 한 개의 안테나(single antenna) 또는 다중 안테나(multiple antenna)를 가질 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명의 무선 통신 시스템에서 랜덤 엑세스 절차를 수행하기 위한 메시지를 전송하는 방법은 3GPP LTE/LTE-A 시스템, 5G 시스템(New RAT 시스템)에 적용되는 예를 중심으로 설명하였으나, 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.
Claims (12)
- 무선 통신 시스템에서 랜덤 엑세스 절차를 수행하기 위한 메시지를 전송하는 방법에 있어서, 단말에 의해 수행되는 방법은,시스템 정보(system information block, SIB)를 기지국으로부터 수신하는 단계;상기 SIB에 기초하여 기지국으로 랜덤 엑세스 프리앰블인 제1 메시지를 전송하는 단계;상기 제1 메시지에 대한 응답인 제2 메시지를 기지국으로부터 수신하는 단계;상기 제1 메시지 전송에 사용된 반송파(carrier)와 다른 반송파를 이용하여 제3 메시지를 기지국으로 전송하는 단계를 포함하는 것을 특징으로 하는 방법.
- 제 1항에 있어서, 제1 메시지를 전송하는 단계 이전에,하향링크 제어 정보(downlink control information, DCI)를 NPDCCH(physical downlink control channel)를 통해 기지국으로부터 수신하는 단계;를 더 포함하는 것을 특징으로 하는 방법.
- 제 2항에 있어서,상기 제3 메시지 전송을 위한 반송파는 상기 DCI 또는 제2 메시지를 통해 설정되는 것을 특징으로 하는 방법.
- 제 1항에 있어서,상기 제3 메시지 전송을 위한 반송파는 상기 SIB를 통해 설정되는 것을 특징으로 하는 방법.
- 제 2항에 있어서,상기 SIB는 상기 제3 메시지가 전송 가능한 자원들에 대한 정보를 포함하고,상기 정보에 기초하여, 상기 제3 메시지가 전송되는 반송파는 상기 DCI 또는 상기 제2 메시지에 의해 결정되는 것을 특징으로 하는 방법.
- 제 2항에 있어서,상기 NPDCCH는 유니캐스트(unicast) 전송을 위한 것이고,상기 제3 메시지는 상향링크 유니캐스트에 이용된 반송파를 이용하여 전송되는 것을 특징으로 하는 방법.
- 무선 통신 시스템에서 랜덤 엑세스 절차를 수행하기 위한 메시지를 전송하는 방법을 수행하는 단말은,무선 신호를 송수신하기 위한 RF(Radio Frequency) 모듈; 및상기 RF 모듈과 기능적으로 연결되어 있는 프로세서를 포함하고, 상기 프로세서는,시스템 정보(system information block, SIB)를 기지국으로부터 수신하고, 상기 SIB에 기초하여 기지국으로 랜덤 엑세스 프리앰블인 제1 메시지를 전송하고, 상기 제1 메시지에 대한 응답인 제2 메시지를 기지국으로부터 수신하고, 상기 제1 메시지 전송에 사용된 반송파(carrier)와 다른 반송파를 이용하여 제3 메시지를 기지국으로 전송하는 것을 특징으로 하는 단말.
- 제 7항에 있어서, 상기 프로세서는,하향링크 제어 정보(downlink control information, DCI)를 NPDCCH(physical downlink control channel)를 통해 기지국으로부터 수신하는 것을 더 포함하는 것을 특징으로 하는 단말.
- 제 8항에 있어서,상기 제3 메시지 전송을 위한 반송파는 상기 DCI 또는 제2 메시지를 통해 설정되는 것을 특징으로 하는 단말.
- 제 7항에 있어서,상기 제3 메시지 전송을 위한 반송파는 상기 SIB를 통해 설정되는 것을 특징으로 하는 단말.
- 무선 통신 시스템에서 랜덤 엑세스 절차를 수행하기 위한 메시지를 전송하는 방법에 있어서, 기지국에 의해 수행되는 방법은,시스템 정보(system information block, SIB)를 단말로 전송하는 단계;상기 SIB에 기초한 랜덤 엑세스 프리앰블인 제1 메시지를 단말로부터 수신하는 단계;상기 제1 메시지에 대한 응답인 제2 메시지를 단말로 전송하는 단계;상기 제1 메시지 전송에 사용된 반송파(carrier)와 다른 반송파를 이용하여 전송된 제3 메시지를 단말로부터 수신하는 단계를 포함하는 것을 특징으로 하는 방법.
- 무선 통신 시스템에서 랜덤 엑세스 절차를 수행하기 위한 메시지를 전송하는 방법을 수행하는 기지국은,무선 신호를 송수신하기 위한 RF(Radio Frequency) 모듈; 및상기 RF 모듈과 기능적으로 연결되어 있는 프로세서를 포함하고, 상기 프로세서는,시스템 정보(system information block, SIB)를 단말로 전송하고, 상기 SIB에 기초한 랜덤 엑세스 프리앰블인 제1 메시지를 단말로부터 수신하고, 상기 제1 메시지에 대한 응답인 제2 메시지를 단말로 전송하고, 상기 제1 메시지 전송에 사용된 반송파(carrier)와 다른 반송파를 이용하여 전송된 제3 메시지를 단말로부터 수신하는 것을 특징으로 하는 단말.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/762,748 US11844111B2 (en) | 2017-11-08 | 2018-11-08 | Method for transmitting message for execution of random access procedure in wireless communication system and apparatus therefor |
EP18876481.5A EP3703458A4 (en) | 2017-11-08 | 2018-11-08 | PROCESS FOR TRANSMISSION OF A MESSAGE FOR THE PERFORMANCE OF A RANDOM ACCESS PROCEDURE IN A WIRELESS COMMUNICATION SYSTEM, AND ASSOCIATED DEVICE |
KR1020207013896A KR102402352B1 (ko) | 2017-11-08 | 2018-11-08 | 무선 통신 시스템에서 랜덤 엑세스 절차를 수행하기 위한 메시지를 전송하는 방법 및 이를 위한 장치 |
CN201880084847.9A CN111527787B (zh) | 2017-11-08 | 2018-11-08 | 用于在无线通信系统中发送用于执行随机接入过程的消息的方法及其设备 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762582954P | 2017-11-08 | 2017-11-08 | |
US62/582,954 | 2017-11-08 | ||
US201762608537P | 2017-12-20 | 2017-12-20 | |
US62/608,537 | 2017-12-20 | ||
US201862634208P | 2018-02-23 | 2018-02-23 | |
US62/634,208 | 2018-02-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019093793A1 true WO2019093793A1 (ko) | 2019-05-16 |
Family
ID=66438581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/013559 WO2019093793A1 (ko) | 2017-11-08 | 2018-11-08 | 무선 통신 시스템에서 랜덤 엑세스 절차를 수행하기 위한 메시지를 전송하는 방법 및 이를 위한 장치 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11844111B2 (ko) |
EP (1) | EP3703458A4 (ko) |
KR (1) | KR102402352B1 (ko) |
CN (1) | CN111527787B (ko) |
WO (1) | WO2019093793A1 (ko) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019145129A1 (en) * | 2018-01-24 | 2019-08-01 | Telefonaktiebolaget Lm Ericsson (Publ) | Multiple tbs for msg3 in data transmission during random access |
EP3782424B1 (en) | 2018-04-17 | 2022-06-15 | Telefonaktiebolaget LM Ericsson (publ) | Allowance of subsequent data for early data transmission |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110113484A (ko) * | 2010-04-09 | 2011-10-17 | 주식회사 팬택 | 다중 반송파 시스템에서 랜덤 액세스의 수행장치 및 방법 |
KR20120139820A (ko) * | 2010-03-18 | 2012-12-27 | 콸콤 인코포레이티드 | 다중 요소 반송파 통신 네트워크에서의 랜덤 액세스 설계 |
KR20130061628A (ko) * | 2011-12-01 | 2013-06-11 | 에이서 인코포레이티드 | 이동 통신 디바이스, 셀룰러 스테이션, 다중 반송파 시스템, 및 랜덤 액세스 실패를 처리하기 위한 방법 |
JP2017139673A (ja) * | 2016-02-04 | 2017-08-10 | 株式会社Nttドコモ | ユーザ端末、無線基地局及び無線通信方法 |
WO2017135347A1 (ja) * | 2016-02-04 | 2017-08-10 | 株式会社Nttドコモ | ユーザ端末、無線基地局及び無線通信方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100903870B1 (ko) * | 2006-11-03 | 2009-06-24 | 한국전자통신연구원 | 자원 할당 요청 방법 및 자원 할당 방법 |
US20100322096A1 (en) * | 2009-06-23 | 2010-12-23 | Chia-Chun Hsu | Method of improving component carrier identification in a random access procedure in a wireless communication system and related communication device |
WO2012071681A1 (zh) * | 2010-11-30 | 2012-06-07 | 富士通株式会社 | 无线通信终端、无线通信基站和它们的通信方法,以及实现该通信方法的程序和存储该程序的介质 |
WO2017131459A1 (ko) * | 2016-01-29 | 2017-08-03 | 성균관대학교 산학협력단 | 사물인터넷 환경에서 커버리지 레벨과 서브캐리어 스페이싱 설정 및/또는 멀티-톤 설정을 고려한 랜덤 액세스 방법 |
WO2018030952A1 (en) * | 2016-08-12 | 2018-02-15 | Telefonaktiebolaget Lm Ericsson (Publ) | Carrier configuration for random access |
CN107734667A (zh) * | 2016-08-12 | 2018-02-23 | 夏普株式会社 | 执行随机接入的方法、用户设备和基站 |
US10856317B2 (en) * | 2016-11-17 | 2020-12-01 | Huawei Technologies Co., Ltd. | System and method for uplink communications |
CN110178333A (zh) * | 2017-01-06 | 2019-08-27 | Idac控股公司 | 与新无线电相关联的物理广播信道、初始上行链路传输和系统获取 |
US10764888B2 (en) * | 2017-07-27 | 2020-09-01 | Yeongmoon SON | Method and apparatus to receive and transmit data in a mobile communication system with multiple SCS |
-
2018
- 2018-11-08 WO PCT/KR2018/013559 patent/WO2019093793A1/ko unknown
- 2018-11-08 US US16/762,748 patent/US11844111B2/en active Active
- 2018-11-08 CN CN201880084847.9A patent/CN111527787B/zh active Active
- 2018-11-08 KR KR1020207013896A patent/KR102402352B1/ko active IP Right Grant
- 2018-11-08 EP EP18876481.5A patent/EP3703458A4/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120139820A (ko) * | 2010-03-18 | 2012-12-27 | 콸콤 인코포레이티드 | 다중 요소 반송파 통신 네트워크에서의 랜덤 액세스 설계 |
KR20110113484A (ko) * | 2010-04-09 | 2011-10-17 | 주식회사 팬택 | 다중 반송파 시스템에서 랜덤 액세스의 수행장치 및 방법 |
KR20130061628A (ko) * | 2011-12-01 | 2013-06-11 | 에이서 인코포레이티드 | 이동 통신 디바이스, 셀룰러 스테이션, 다중 반송파 시스템, 및 랜덤 액세스 실패를 처리하기 위한 방법 |
JP2017139673A (ja) * | 2016-02-04 | 2017-08-10 | 株式会社Nttドコモ | ユーザ端末、無線基地局及び無線通信方法 |
WO2017135347A1 (ja) * | 2016-02-04 | 2017-08-10 | 株式会社Nttドコモ | ユーザ端末、無線基地局及び無線通信方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3703458A4 * |
Also Published As
Publication number | Publication date |
---|---|
CN111527787A (zh) | 2020-08-11 |
CN111527787B (zh) | 2023-08-04 |
EP3703458A4 (en) | 2021-08-18 |
KR102402352B1 (ko) | 2022-05-25 |
KR20200062332A (ko) | 2020-06-03 |
US11844111B2 (en) | 2023-12-12 |
EP3703458A1 (en) | 2020-09-02 |
US20210176788A1 (en) | 2021-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019139298A1 (ko) | 물리 임의 접속 채널을 송수신하는 방법 및 이를 위한 장치 | |
WO2018030792A1 (ko) | 협대역 사물인터넷을 지원하는 무선 통신 시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치 | |
WO2018169326A1 (ko) | 협대역 사물 인터넷을 지원하는 무선 통신 시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치 | |
WO2018004246A1 (ko) | 무선 통신 시스템에서 기지국과 단말 간 상향링크 신호를 송수신하는 방법 및 이를 지원하는 장치 | |
WO2018084672A1 (ko) | 무선 통신 시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치 | |
WO2017131476A1 (ko) | 비면허 대역을 지원하는 무선 통신 시스템에서 하향링크 lbt 파라미터를 조절하는 방법 및 이를 지원하는 장치 | |
WO2018174546A1 (ko) | 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널 송수신 방법 및 이를 지원하는 장치 | |
WO2017217799A1 (ko) | 무선 통신 시스템에서 물리 상향링크 제어 채널 송수신 방법 및 이를 지원하는 장치 | |
WO2018159999A1 (ko) | 무선 통신 시스템에서 단말과 기지국의 신호 송수신 방법 및 이를 지원하는 장치 | |
WO2018174649A1 (ko) | 무선 통신 시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치 | |
WO2018151565A1 (ko) | 협대역 사물 인터넷을 지원하는 무선 통신 시스템에서 단말과 기지국 간 신호 송수신 방법 및 이를 지원하는 장치 | |
WO2017043878A1 (ko) | 협대역 사물인터넷을 지원하는 무선 접속 시스템에서 하향링크 물리 방송 채널 수신 방법 및 장치 | |
WO2016122268A1 (ko) | 협대역 사물인터넷을 지원하는 무선 접속 시스템에서 공용 제어 메시지를 송수신하는 방법 및 장치 | |
WO2019194531A1 (ko) | 무선 통신 시스템에서 신호의 송수신 방법 및 이를 위한 장치 | |
WO2017155305A1 (ko) | 비면허 대역을 지원하는 무선 통신 시스템에서 상향링크 신호를 송수신하는 방법 및 이를 지원하는 장치 | |
WO2018151564A1 (ko) | 협대역 사물 인터넷을 지원하는 무선 통신 시스템에서 단말과 기지국 간 신호 송수신 방법 및 이를 지원하는 장치 | |
WO2019194545A1 (ko) | 무선 통신 시스템에서 임의 접속 프리앰블을 송수신하기 위한 방법 및 이를 위한 장치 | |
WO2016089185A1 (ko) | 기기 간 사이드링크를 이용하여 단말이 신호를 송수신하는 방법 및 장치 | |
WO2017126907A1 (ko) | 비면허 대역을 지원하는 무선 통신 시스템에서 사운딩 참조 신호를 송수신하는 방법 및 이를 지원하는 장치 | |
WO2016018125A1 (ko) | 비면허대역을 지원하는 무선접속시스템에서 전송 기회 구간을 설정하는 방법 및 장치 | |
WO2018203627A1 (ko) | 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치 | |
WO2018174604A1 (ko) | 무선 통신 시스템에서 랜덤 액세스 프리앰블을 송수신하는 방법 및 이를 위한 장치 | |
WO2017048105A1 (ko) | 무선 통신 시스템에서의 셀 탐색 방법 및 이를 위한 장치 | |
WO2016036097A1 (ko) | 비면허대역을 지원하는 무선접속시스템에서 채널상태측정 및 보고 방법 | |
WO2018048172A1 (ko) | 비면허 대역을 지원하는 무선 통신 시스템에서 상향링크 데이터 전송 방법 및 이를 지원하는 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18876481 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20207013896 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018876481 Country of ref document: EP Effective date: 20200527 |