[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019069758A1 - 積層フィルム - Google Patents

積層フィルム Download PDF

Info

Publication number
WO2019069758A1
WO2019069758A1 PCT/JP2018/035626 JP2018035626W WO2019069758A1 WO 2019069758 A1 WO2019069758 A1 WO 2019069758A1 JP 2018035626 W JP2018035626 W JP 2018035626W WO 2019069758 A1 WO2019069758 A1 WO 2019069758A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
layer
laminated
laminated film
component
Prior art date
Application number
PCT/JP2018/035626
Other languages
English (en)
French (fr)
Inventor
増田嘉丈
青山滋
坂本純
小島博二
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020207005816A priority Critical patent/KR102637931B1/ko
Priority to US16/650,653 priority patent/US11760072B2/en
Priority to EP22167349.4A priority patent/EP4050385A1/en
Priority to EP18864082.5A priority patent/EP3693772B1/en
Priority to CN201880064144.XA priority patent/CN111164470A/zh
Priority to JP2018551884A priority patent/JP7238404B2/ja
Publication of WO2019069758A1 publication Critical patent/WO2019069758A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • G02B5/287Interference filters comprising deposited thin solid films comprising at least one layer of organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/244All polymers belonging to those covered by group B32B27/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/42Alternating layers, e.g. ABAB(C), AABBAABB(C)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/584Scratch resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements
    • B32B2551/08Mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/08Interconnection of layers by mechanical means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters

Definitions

  • the present invention relates to a laminated film.
  • polyester resin such as polyethylene terephthalate or polyethylene naphthalate as one resin for reasons of transparency, heat resistance, weather resistance, chemical resistance, strength and dimensional stability etc.
  • a multilayer film is known in which a thermoplastic resin (for example, a copolyester) having an optical property different from that of a polyester resin is used as the other resin.
  • a thermoplastic resin for example, a copolyester
  • polyethylene naphthalate is used as the main component for one of the resins, the difference in refractive index with the low refractive index copolymerized polyester can be increased, which is useful for obtaining a light interference multilayer film having high reflectance.
  • JP 2005-059332 A Japanese Patent Application Publication No. 2004-249587
  • a layer mainly composed of a polyester resin having a dicarboxylic acid component and a diol component and a layer composed mainly of a thermoplastic resin having an optical property different from that of the polyester resin are alternately laminated. It is an object of the present invention to provide a laminated film which has excellent reflectance and transparency while suppressing tears and cracks during molding and processing.
  • a layered film of the present invention has composition of either [I] or [II] of the following. That is, [I] A layer (A layer) mainly composed of a polyester resin (resin A) having a dicarboxylic acid constituent component and a diol constituent component, and a thermoplastic resin (resin B) having optical properties different from that of the resin A It is a laminated film which has a lamination composition part which laminated 51 layers or more of layers (component B) alternately as a component, and at least one surface of the lamination composition part has a refractive index of 1.68 or more and 1.80 or less The critical load at 100 ° C.
  • At least one is a laminated film having a structure represented by Formula (1).
  • -O- (C n H 2 n -O) m --Formula (1) M and n represent natural numbers such that m ⁇ n is 5 or more).
  • the laminated film having the constitution of [I] of the present invention is a layer (A layer) mainly composed of a polyester resin (resin A) having a dicarboxylic acid component and a diol component, and the resin A It is a laminated film which has a lamination composition part which laminated 51 layers or more of layers (B layer) which have thermoplastic resin (resin B) which has different optical characteristics as a main component alternately, and is a surface of at least one of the lamination composition parts Has a refractive index of 1.68 or more and 1.80 or less, a critical load at 100 ° C.
  • the laminated film which has at least one reflection zone which will be continuously 30% or more in the above wavelength range.
  • the reflectance profile is preferably measured in a wavelength range of 900 to 1,400 nm. Note that this preferred embodiment is synonymous with having at least one reflection band in a wavelength range of 900 to 1,400 nm.
  • the laminated constitution portion has a peak value of loss tangent (tan ⁇ ) determined by dynamic viscoelasticity measurement of 120 ° C. or less.
  • the laminated film which has a structure of [I] of this invention has a structure where at least one is resin represented by Formula (1) among resin which comprises said A layer and B layer.
  • -O- (C n H 2 n -O) m --Formula (1) M and n represent natural numbers such that m ⁇ n is 5 or more
  • the resin B is preferably a polyester resin having a dicarboxylic acid component and a diol component.
  • the resin B is a polyester resin having a dicarboxylic acid component and a diol component, and at least one of the resin A or the resin B is represented by Formula (1) It is preferred to include the represented structure as a diol component.
  • the resin B is a polyester resin having a dicarboxylic acid component and a diol component, and at least one of the resin A or the resin B is represented by Formula (1) It is preferable to contain 0.5 mol% or more and 40 mol% or less of the structure represented as a diol component with respect to all the diol components.
  • the resin A has a structure represented by the formula (1) as a diol constituent component and 0.5 mol% or more and 40 mol% with respect to all diol constituent components of the resin A It is preferable to include the following.
  • the laminated film which has a structure of [I] of this invention has the said A layer distribute
  • the laminated constituting portion is different from a layer ( ⁇ layer) mainly composed of a polyester resin ⁇ having a dicarboxylic acid component and a diol component and the resin ⁇
  • a laminate unit 1 satisfying the following (i) in which layers ( ⁇ layers) mainly composed of thermoplastic resin ⁇ having optical properties are laminated alternately and a polyester resin ⁇ having a dicarboxylic acid component and a diol component are mainly used
  • a laminate unit 2 satisfying (ii) below is formed by alternately laminating a layer ( ⁇ layer) as a component and a layer ( ⁇ layer) mainly composed of a thermoplastic resin ⁇ having optical properties different from that of the resin ⁇ Is preferred.
  • the ratio of the thickness of the adjacent ⁇ layer to the thickness of the ⁇ layer is 0.7 or more and 1.4 or less.
  • the thickness of the thinnest layer of the three layers adjacent to one another is 1, the thickness of one of the remaining two layers is 1.0 or more and 1.4 or less, and the other is 5 or more. 9 or less.
  • the resin B is preferably a polyester resin having a dicarboxylic acid component and a diol component.
  • the laminated film having the constitution of [II] of the present invention is a polyester resin in which the resin B has a dicarboxylic acid component and a diol component, and at least one of the resin A or the resin B is represented by Formula (1) It is preferred to include the represented structure as a diol component.
  • the laminated film having the constitution of [II] of the present invention is a polyester resin in which the resin B has a dicarboxylic acid component and a diol component, and at least one of the resin A or the resin B is represented by Formula (1) It is preferable to contain 0.5 mol% or more and 40 mol% or less of the represented structure with respect to all the diol components.
  • the resin A has a structure represented by the formula (1) as a diol component with 0.5 mol% or more and 40 mol% with respect to all diol components of the resin A It is preferable to include the following.
  • the said A layer is distribute
  • the laminated film having the constitution of [II] of the present invention has at least one reflection band in which the reflectance measured from the film surface side of at least one of the laminated constituent parts is 30 nm or more continuously at 20 nm or more. It is preferable that the refractive index of at least one surface of the said lamination
  • the laminated film having the constitution of [II] of the present invention has at least a reflection band in which a reflectance of 30% or more continues over a wavelength width of 20 nm or more in a reflectance profile measured from at least one surface side of the laminated component.
  • the reflectance profile is measured in a wavelength range of 900 to 1,400 nm.
  • this preferable aspect has at least one reflection band which becomes 30% or more continuously in the wavelength range of 20 nm or more, and the reflectance measured from the surface side of at least one of the laminated constitution parts is at least one reflection band And in the wavelength range of 900 to 1,400 nm, it is synonymous with having at least one.
  • the laminated film having the constitution of [II] of the present invention preferably has a peak value of loss tangent (tan ⁇ ) of the laminated part constituting part determined by dynamic viscoelasticity measurement of 120 ° C. or less.
  • the laminated constituting portion is different from a layer ( ⁇ layer) mainly composed of a polyester resin ⁇ having a dicarboxylic acid component and a diol component and the resin ⁇
  • a laminate unit 1 satisfying the following (i) in which layers ( ⁇ layers) mainly composed of thermoplastic resin ⁇ having optical properties are laminated alternately and a polyester resin ⁇ having a dicarboxylic acid component and a diol component are mainly used
  • a laminate unit 2 satisfying (ii) below is formed by alternately laminating a layer ( ⁇ layer) as a component and a layer ( ⁇ layer) mainly composed of a thermoplastic resin ⁇ having optical properties different from that of the resin ⁇ Is preferred.
  • the ratio of the thickness of the adjacent ⁇ layer to the thickness of the ⁇ layer is 0.7 or more and 1.4 or less.
  • the thickness of the thinnest layer of the three layers adjacent to one another is 1, the thickness of one of the remaining two layers is 1.0 or more and 1.4 or less, and the other is 5 or more. 9 or less.
  • multilayer film can be suppressed, and the laminated
  • the laminated film is applicable to various applications as a light interference multilayer film.
  • FIG. 2 is a conceptual view showing a configuration of a stacking unit 2. It is the figure which showed the measurement result example of a scratch test, and how to obtain
  • the laminated film of the present invention is a laminated film having a layer (A layer) mainly composed of a polyester resin (resin A) having a dicarboxylic acid component and a diol component. Since polyester resins are generally cheaper than thermosetting resins and photocurable resins, and can be sheeted easily and continuously by known melt extrusion, laminated films can be obtained at low cost. It becomes possible.
  • the resin A and the resin B need to be polyester resins having different optical properties.
  • the term "different optical properties" as used herein means that the refractive index differs by 0.01 or more in any of two orthogonal directions arbitrarily selected in the plane and a direction selected from the direction perpendicular to the plane.
  • the resin A and the resin B have different melting points or crystallization temperatures.
  • the different melting point or crystallization temperature means that either the melting point or the crystallization temperature determined by the measurement method described later differs by 3 ° C. or more.
  • one resin has a melting point and the other resin does not have a melting point, or one resin has a crystallization temperature
  • the other resin has a crystallization temperature. Even when not, it means having a different melting point or crystallization temperature. It is more preferred to have different melting points and crystallization temperatures.
  • the laminated film of the present invention it is necessary that 51 layers or more of the A layer and the B layer are alternately laminated.
  • laminated alternately means that the A layer and the B layer are laminated in a regular arrangement in the thickness direction, and the regular arrangement such as A (BA) n (n is a natural number) Are stacked.
  • a (BA) n n is a natural number
  • the resins having different optical properties as described above it becomes possible to reflect light of a specific wavelength specified by the relationship between the difference in refractive index of each layer and the layer thickness.
  • high reflectance can be obtained over a wide band.
  • it is 101 layers or more, More preferably, it is 201 layers or more.
  • the above-mentioned interference reflection can achieve high reflectance for light in a wider wavelength band, and a laminated film with high ray blocking performance can be obtained.
  • the number of layers increases, the manufacturing cost increases due to the increase in the size of the manufacturing apparatus, and the handling becomes worse due to the increase in film thickness. The practical range is within 1,000 layers.
  • laminated component part refers to a component part in which 51 layers or more of the A layer and the B layer are alternately laminated, and the surface layer of the laminated component part is necessarily the A layer or the B layer Become.
  • a reflectance of 30% or more in a reflectance profile measured from at least one surface side, has at least one continuous reflection band over a wavelength width of 20 nm or more. More preferably, in the reflectance profile, a reflectance of 30% or more has at least one reflection band continuous over a wavelength width of 100 nm, more preferably a reflectance reflection band, particularly preferably a reflectance. In the profile, the reflectance of 30% or more is to have at least one reflection band continuous over the wavelength width of 500 nm or more.
  • a reflectance of 60% or more has a continuous reflection band over a wavelength width of 20 nm
  • a reflectance of 70% or more in the reflectance profile is a wavelength width It is to have at least one continuous reflection band over 20 nm or more.
  • light in the visible light range 400 to 800 nm
  • it is transparent by reflecting light with a wavelength of 900 to 1,200 nm (about 18% of the intensity of total sunlight) slightly larger than the visible light range.
  • a laminated film having high heat ray cutting performance can be obtained.
  • a film that reflects light in the visible light range (400 to 800 nm) by about 50% can be obtained.
  • Such a film can be realized by increasing the difference in in-plane refractive index of two or more kinds of resins having different optical properties, and therefore, in the case of using a biaxially stretched film, a polyester resin having crystallinity is used as a main component.
  • a multilayer laminated film in which layers and layers mainly composed of thermoplastic resin (a low refractive index copolymer polyester is preferably used) which is kept amorphous or melted in a heat treatment step is alternately laminated. Is preferred.
  • a reflectance of 30% or more has at least one reflection band continuous over a wavelength width of 20 nm or more.
  • Sunlight mainly has an intensity distribution in the visible light region, and the intensity distribution tends to decrease as the wavelength increases.
  • high heat ray cut performance can be imparted by efficiently reflecting light with a wavelength of 900 to 1,400 nm, which is slightly larger than the visible light region, for use in applications where high transparency is required.
  • a reflectance of 30% or more has at least one continuous reflection band over a wavelength width of 100 nm or more, and more preferably Is that the reflectance profile has at least one continuous reflection band over a wavelength width of 200 nm or more when measured in a wavelength range of 900 to 1,400 nm.
  • the average reflectance is preferably 50% or more, and when measured in the wavelength range of 900 to 1,400 nm, the average reflectance is 70% or more Is more preferred.
  • the reflection in the visible region is suppressed by setting the average reflectance when measured in the wavelength region of 400 to 800 nm to preferably 20% or less, more preferably 15% or less, and the heat ray cutting performance without coloring or glare is obtained.
  • It can be a film.
  • Such a film can be realized by increasing the difference in in-plane refractive index of two or more kinds of resins having different optical properties, and therefore, in the case of using a biaxially stretched film, a polyester resin having crystallinity is used as a main component.
  • It may be a multilayer laminated film in which a layer and a layer mainly composed of a thermoplastic resin which can maintain non-crystallinity even at the time of drawing or which is melted in a heat treatment step are alternately laminated.
  • a layer mainly composed of a polyester resin ⁇ having a dicarboxylic acid component and a diol component ( ⁇ layer) and a layer mainly composed of a thermoplastic resin ⁇ having different optical characteristics from the resin ⁇ ( ⁇ layer) are laminated alternately, the laminate unit 1 satisfying (i) below, a layer mainly composed of polyester resin ⁇ ( ⁇ layer), and thermoplastic resin ⁇ having different optical characteristics from the resin ⁇ are mainly included It is to have the lamination
  • the ratio of the thickness of the adjacent ⁇ layer to the thickness of the ⁇ layer is 0.7 or more and 1.4 or less.
  • the thickness of the thinnest layer of the three layers adjacent to one another is 1, the thickness of one of the remaining two layers is 1.0 or more and 1.4 or less, and the other is 5 or more. 9 or less.
  • the polyester resin ⁇ and the polyester resin ⁇ are preferably the same resin, and the thermoplastic resin ⁇ and the thermoplastic resin ⁇ are preferably the same resin, and only the thermoplastic resins ⁇ and ⁇ are the same, and the thermoplastic resins ⁇ and ⁇ Only may be identical.
  • stacking unit 1 satisfy
  • n ⁇ is the in-plane refractive index of the ⁇ layer
  • d ⁇ is the thickness of the ⁇ layer
  • n ⁇ is the in-plane refractive index of the ⁇ layer
  • d ⁇ is the thickness of the ⁇ layer
  • m is the order , Is a natural number. Even-order reflection can be eliminated by having a layer thickness distribution that simultaneously satisfies the equations (1) and (2). Therefore, it is possible to reduce the average reflectance in the visible light range of 400 to 800 nm while increasing the average reflectance in the wavelength of 900 nm to 1,200 nm. A high film can be obtained.
  • the refractive index of a film after molding and stretching a thermoplastic resin is about 1.4 to 1.9, so the ratio of the thickness of the adjacent A layer to the thickness of the B layer (the thickness of the A layer / By setting the thickness of the layer B to 0.7 or more and 1.4 or less, a film in which even-order reflection is suppressed can be obtained. Therefore, it is preferable to set the ratio of the thickness of adjacent A layer to B layer (thickness of A layer / thickness of B layer) to 0.7 or more and 1.4 or less. More preferably, it is 0.8 or more and 1.2 or less.
  • the thickness of the thinnest layer among the three layers in the three adjacent layers in the stacked unit 2 is 1, the thickness of one of the two layers is 1.0 or more.
  • the thickness of the other is preferably 5 or more and 9 or less.
  • the above configuration is based on the 711 configuration described in U.S. Pat. No. 5,360,659. This configuration can be regarded as one layer in a pseudo manner by forming a layer sandwiched between layers having different optical characteristics and a thickness of about 1/7 with respect to a certain layer, whereby It is a method of suppressing not only the next reflection but also the third reflection.
  • the thick layer is preferably 5 to 9 times, more preferably 6 to 8 times, and the other layer is It is preferably 1.0 to 1.4 times, more preferably 1.0 to 1.2 times. With such a range, it is possible to obtain a film in which the secondary and tertiary reflections are eliminated in the visible light region (wavelength 400 to 800 nm) even when the reflection band is 1,200 nm or more.
  • the layer thickness at this time as shown in FIG. 1, the first to third layers from the top are considered as ⁇ ′ layers, and the fourth to sixth layers are considered as ⁇ ′ layers.
  • the optical thicknesses of the adjacent ⁇ layer and ⁇ layer simultaneously satisfy the following formulas (3) and (4).
  • is the reflection wavelength
  • n ⁇ is the in-plane refractive index of the ⁇ layer
  • d ⁇ is the thickness of the ⁇ layer
  • n ⁇ is the in-plane refractive index of the ⁇ layer
  • d ⁇ is the thickness of the ⁇ layer
  • m is the order , Is a natural number.
  • a thick film layer (intermediate thick film layer) of 0.5 ⁇ m or more and 10 ⁇ m or less may be provided between the laminated unit 1 and the laminated unit 2 preferable.
  • the thickness of the layer around the intermediate thick film layer can be laminated with high accuracy.
  • the thickness of the layer to be the surface layer is preferably 1% or more and 20% or less with respect to the entire layer thickness.
  • the resin B is made of a thermoplastic resin having optical properties different from those of the resin A described above.
  • a thermoplastic resin which has an optical characteristic different from the above-mentioned resin A polyester resin, an acrylic resin, polycarbonate resin etc. are mentioned. Among them, polyester resins having a dicarboxylic acid component and a diol component are preferable.
  • the dicarboxylic acid component of the polyester resin having a dicarboxylic acid component and a diol component used for the resin A and the resin B terephthalic acid, isophthalic acid, phthalic acid, naphthalene dicarboxylic acid (1 2,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid), 4,4'-diphenyldicarboxylic acid, 4,4'-diphenylsulfonedicarboxylic acid And adipic acid, sebacic acid, dimer acid, cyclohexanedicarboxylic acid and their ester-forming derivatives.
  • dicarboxylic acid component terephthalic acid, 2,6-naphthalenedicarboxylic acid, isophthalic acid may be mentioned, and as the diol component, ethylene glycol, 1,4-cyclohexanedimethanol, polyalkylene glycol, polyethylene glycol, Examples include tetraethylene glycol and polytetramethylene ether glycol.
  • stacking structure part is 1.68 or more and 1.80 or less.
  • the refractive index is lower than 1.68, it becomes difficult to have a reflection band where the reflectance is 30% or more.
  • the refractive index is higher than 1.80, the laminating property of the resin A and the resin B is deteriorated, and the white turbidity of the film and the peeling at the interface between the A layer and the B layer become remarkable.
  • the resin A contains naphthalene dicarboxylic acid as a dicarboxylic acid component.
  • the resin B is preferably an amorphous resin.
  • the laminated film of the present invention has a layer containing the resin A as the main component (A layer) and a layer containing the resin B as the main component (B layer). It represents a component that accounts for more than 50% by weight of the constituent components.
  • the dicarboxylic acid component In order to cause the dicarboxylic acid component to contain naphthalenedicarboxylic acid in the resin A of the laminated film of the present invention, it is preferable to include naphthalenedicarboxylic acid in the dicarboxylic acid component of the raw material polyester resin constituting the resin A .
  • the difference between the in-plane average refractive indices of the layer A and the layer B is preferably 0.05 or more. More preferably, it is 0.12 or more, More preferably, it is 0.14 or more and 0.35 or less.
  • the difference in in-plane average refractive index is smaller than 0.05, it may be difficult to have a reflection band where the reflectance is 30% or more.
  • An example of this achievement method is that the polyester resin A is crystalline, and the thermoplastic resin B is an amorphous thermoplastic resin or a mixture of an amorphous thermoplastic resin and a crystalline thermoplastic resin.
  • the refractive index difference can be easily provided in the stretching and heat treatment steps in the production of the film.
  • the difference in in-plane average refractive index is larger than 0.35, the lamination property of the resin is deteriorated, the lamination itself becomes difficult, and the film becomes inferior in heat resistance and handling property.
  • the peak value of the loss tangent (tan ⁇ ) determined by dynamic viscoelasticity measurement of the laminated component is 120 ° C. or less.
  • the temperature is more preferably 70 ° C. or more and 110 ° C. or less, still more preferably 80 ° C. or more and 100 ° C. or less.
  • a resin with a low refractive index also has a low glass transition temperature.
  • the peak value of loss tangent (tan ⁇ ) determined by dynamic viscoelasticity measurement is a parameter that changes under the influence of the glass transition temperature of the resin constituting the laminated film, and the lower the value, the more resin A and resin B Among them, the lower the glass transition temperature of the resin having a high refractive index, the higher the glass transition temperature of the resin having the higher refractive index among the resin A and the resin B.
  • the difference in the glass transition temperature makes it difficult to cause peeling at the layer interface while making the difference between the refractive indices of the resin A and the resin B into an appropriate range. It is preferable because it can be controlled.
  • the critical load at 100 ° C. in a scratch test of at least one surface of the laminated constituent portion is 15 mN or less. More preferably, it is 13 mN or less, still more preferably 11 mN or less.
  • the scratch test refers to a test measured by the method described later, and can determine a critical load which is an index representing the hardness of the surface.
  • the critical load refers to the load value that was applied when a failure occurred on the surface of the test piece in the scratch test method.
  • the critical load at 100 ° C. in the scratch test of at least one surface of the laminated constitution portion exceeds 15 mN, the chipping of the flexibility is not achieved, and it is not possible to suppress the breakage or the crack when forming.
  • the critical load at 100 ° C. in the scratch test is too low, the surface becomes too soft and breakage easily occurs, so 2 mN or more is preferable, and 6 mN or more is more preferable.
  • the method for setting the critical load at 100 ° C. in the scratch test of at least one surface of the laminated component to the above-mentioned range is not particularly limited, but resin A or resin B may be used together with a component having low crystallinity. Polymerization and / or inclusion may be mentioned.
  • the glass transition temperature of polyethylene naphthalate (PEN) which is most widely used as a polyester containing naphthalene dicarboxylic acid as a dicarboxylic acid component, is about 120 ° C.
  • PEN is a component that is less crystalline than PEN
  • the copolymerization and / or incorporation of H can lower the glass transition temperature and control the critical load at 100 ° C. in the scratch test.
  • the component having low crystallinity is not particularly limited as long as it is a component having crystallinity lower than that of the resin as the main component, but a compound containing a structure represented by the following formula (1) is preferable.
  • -O- (C n H 2 n -O) m --Formula (1) (M and n represent natural numbers such that m ⁇ n is 5 or more)
  • m ⁇ n is preferably 6 or more, more preferably 8 or more.
  • the compound having a structure represented by the formula (1) examples include polyethylene glycol, tetraethylene glycol, polytetramethylene ether glycol, triethylene glycol, dipropylene glycol, tripropylene glycol, tetrapropylene glycol, tributylene Examples include glycol and tetrabutylene glycol.
  • the compound having the structure represented by the formula (1) is contained in the layer containing the polyester resin as a main component, it is preferable to contain 0.5 mol% or more and 40 mol% or less with respect to all diol components of the polyester resin. More preferably, it is 2 mol% or more and 30 mol% or less, still more preferably 4 mol% or more and 20 mol% or less.
  • the critical load at 100 ° C. in the scratch test of at least one surface of the laminated component to a suitable range
  • the reflectance of a laminated film can be made into a suitable range.
  • the glass transition temperature can be lowered even when using a polyester resin containing, as a dicarboxylic acid component, a naphthalenedicarboxylic acid which is preferably used for the light interference multilayer film because it has a high refractive index. Therefore, the critical load at 100 ° C. in the scratch test can be controlled within the aforementioned range while maintaining a high refractive index.
  • the structure represented by Formula (1) when the structure represented by Formula (1) is included in the layer which has a polyester resin as a main component, if the structure represented by Formula (1) is included as a diol component, it will be outside a film type by transpiration, sublimation, etc. It is preferable because it can suppress outflow.
  • At least one of the resins constituting the layer A and the layer B has a structure represented by the formula (1).
  • -O- (C n H 2 n -O) m --Formula (1) M and n represent natural numbers such that m ⁇ n is 5 or more).
  • the main component of the resin A is a resin A having a structure represented by the formula (1) containing naphthalenedicarboxylic acid as the dicarboxylic acid component.
  • the layer A is disposed on the surface of the laminated component.
  • the laminated film of the present invention preferably has a heat of fusion determined by differential scanning calorimetry of 5 J / g or more. More preferably, it is 10 J / g or more, More preferably, it is 20 J / g or more.
  • a laminated film made of a resin having high crystallinity can be obtained, and the difference in refractive index between the layer A and the layer B can be further increased.
  • the laminated film of the present invention preferably has an internal haze of 3.0% or less.
  • the internal haze is an index representing the haze (turbidity) of the inside of the film excluding light scattering on the surface of the film, and by lowering the internal haze, a laminated film that is transparent and reflects light of a specific wavelength It can be widely used in applications requiring transparency, such as a half mirror and a heat ray reflective film. More preferably, the internal haze is 1.0% or less, and more preferably 0.5% or less. In order to make internal haze into the above-mentioned range, it is achieved by adjusting the kind and quantity of components other than resin A in A layer, and adjusting the kind and quantity of components other than resin B in B layer.
  • the internal haze can be reduced because of the excellent compatibility and dispersibility with the resin.
  • a combination of polyethylene naphthalate resin obtained by copolymerizing polyethylene glycol as resin A, and polyethylene terephthalate resin obtained by copolymerizing cyclohexane dimethanol as resin B can be mentioned.
  • the glass transition temperature of polyethylene naphthalate is about 120 ° C. Because the critical load at 100 ° C. in the scratch test is high, tears and cracks occur during molding.
  • the resin A constituting the laminated component is a crystalline polyester resin
  • the resin B is an amorphous polyester resin.
  • the crystallinity as referred to herein means that the heat of fusion is 5 J / g or more in differential scanning calorimetry (DSC).
  • amorphous means that the heat of fusion is less than 5 J / g as well.
  • the crystalline polyester resin can be made to have an in-plane refractive index higher than that in the non-crystalline state before stretching by performing orientation crystallization in the stretching / heat treatment step.
  • the reflectance is continuously 20 nm or more as described above. It is possible to have at least one reflection band of 30% or more.
  • Resin A and resin B are prepared in the form of pellets and the like.
  • the pellets are optionally dried in hot air or under vacuum and then fed to separate extruders.
  • the resin heated and melted to the melting point or more is made uniform in the extrusion amount of the resin by a gear pump or the like, and foreign substances, denatured resin and the like are removed through a filter or the like.
  • These resins are molded into a desired shape by a die and then discharged. And the sheet
  • cooling bodies such as a casting drum etc.
  • electrostatic force using a wire-like, tape-like, needle-like or knife-like electrode
  • blow air from a slit-like, spot-like or plane-like device to adhere closely to a cooling body such as a casting drum to cause rapid solidification, or to closely adhere to a cooling body with a nip roll to cause rapid solidification.
  • the laminated film which consists of several polyester resin when producing the laminated film which consists of several polyester resin, several resin is sent out from a different flow path using two or more sets of extruders, and it sends in to a laminating apparatus.
  • a laminating apparatus a multi-manifold die, a feed block, a static mixer, etc. can be used, but in particular, in order to efficiently obtain the configuration of the present invention, at least two members separately having a large number of fine slits are separately provided. It is preferred to use a feed block that contains: When such a feed block is used, the apparatus does not increase in size extremely. Therefore, even if there are few foreign substances due to thermal deterioration and the number of layers is extremely large, highly accurate lamination can be performed.
  • the lamination accuracy in the width direction is also significantly improved as compared with the prior art.
  • the molten multilayer laminate thus formed into the desired layer configuration is directed to a die and a casting film is obtained as described above.
  • biaxial stretching means stretching in the longitudinal direction and the width direction.
  • the stretching may be sequentially stretched in two directions or simultaneously in two directions.
  • re-stretching may be performed in the longitudinal direction and / or the width direction.
  • stretching in the longitudinal direction refers to stretching for giving molecular orientation in the longitudinal direction to the film, and is usually performed by a circumferential speed difference of rolls, and this stretching may be performed in one step, or It may be performed in multiple stages using a plurality of roll pairs.
  • the magnification of stretching varies depending on the type of resin, but is preferably 2 to 15 times, and 2 to 7 times if a polyethylene naphthalate copolymer resin is used as one of the resins constituting the laminated film. It is particularly preferably used.
  • the stretching temperature is preferably in the range of glass transition temperature to glass transition temperature + 100 ° C. of the resin constituting the multilayer laminated film.
  • the uniaxially stretched film thus obtained is subjected to surface treatment such as corona treatment, flame treatment, plasma treatment and the like as necessary, and then functions such as slipperiness, adhesion, antistaticity, etc. It may be applied by in-line coating.
  • stretching in the width direction refers to stretching for giving orientation in the width direction to the film, and usually, using a tenter, the film is conveyed while being gripped by clips at both ends and stretched in the width direction.
  • the magnification of stretching varies depending on the type of resin, but is preferably 2 to 15 times, and 2 to 7 times if a polyethylene naphthalate copolymer resin is used as one of the resins constituting the laminated film. It is particularly preferably used.
  • the stretching temperature is preferably in the range of glass transition temperature to glass transition temperature + 120 ° C. of the resin constituting the multilayer laminated film.
  • the biaxially stretched film is preferably subjected to a heat treatment at a stretching temperature or more and a melting point or less in a tenter.
  • the heat treatment improves the dimensional stability of the film. After being heat-treated in this manner, it is uniformly annealed, cooled to room temperature and taken up. Moreover, you may use relaxation process etc. together in the case of heat processing to slow cooling as needed.
  • the laminated film of the present invention it is preferable to set the heat treatment temperature after stretching to the melting point or less of the polyester resin A and the melting point or more of the resin B.
  • the polyester resin A maintains a high orientation state
  • the orientation of the resin B is relaxed, so that the refractive index difference of these resins can be easily provided.
  • simultaneous biaxial stretching the obtained cast film is subjected to surface treatment such as corona treatment, flame treatment, plasma treatment and the like as necessary, and then, it has slipperiness, easy adhesion, antistatic property, etc.
  • the function may be imparted by in-line coating.
  • the simultaneous biaxial stretching machine includes a pantograph system, a screw system, a drive motor system, and a linear motor system.
  • a drive motor system or a drive motor system which can change the draw ratio arbitrarily and can perform relaxation processing at any place
  • the linear motor system is preferred.
  • the area magnification is preferably 6 to 50 times, and when a polyethylene naphthalate copolymer resin is used for any of the resins constituting the multilayer laminated film, the area A magnification of 8 to 30 is particularly preferably used.
  • the stretching temperature is preferably in the range of glass transition temperature to glass transition temperature + 120 ° C. of the resin constituting the multilayer laminated film.
  • the film thus biaxially stretched be subsequently subjected to heat treatment in the tenter at a temperature higher than the stretching temperature and lower than the melting point.
  • heat treatment in order to suppress the distribution of the main orientation axis in the width direction, it is preferable to perform the relaxation treatment in the longitudinal direction instantaneously immediately before and / or immediately after entering the heat treatment zone. After being heat-treated in this manner, it is uniformly annealed, cooled to room temperature and taken up.
  • the layer configuration of the film was determined by transmission electron microscopy (TEM) observation of a sample whose cross section was cut out using a microtome. That is, using a transmission electron microscope H-7100 FA type (manufactured by Hitachi, Ltd.), the cross section of the film is observed at 10,000 to 40,000 times under the conditions of an accelerating voltage of 75 kV, and a cross section photograph is taken. The configuration and thickness of each layer were measured. In some cases, in order to obtain high contrast, known dyeing techniques using RuO 4 or OsO 4 were used.
  • the reflectance was measured with a basic configuration using an integrating sphere attached to a spectrophotometer U-4100 Spectrophotomater (manufactured by Hitachi, Ltd.) for a sample cut out at 5 cm ⁇ 5 cm. In the reflectance measurement, it was calculated as a relative reflectance based on the aluminum oxide subwhite plate attached to the device. In the reflectance measurement, the sample was placed behind the integrating sphere with the longitudinal direction of the sample up and down. For transmittance measurements, the sample was placed in front of the integrating sphere with the longitudinal direction of the sample up and down.
  • Measurement conditions The slit was set to 2 nm (visible) / automatic control (infrared), the gain was set to 2, the scanning speed was measured at 600 nm / min, and the reflectance at an azimuth angle of 0 degrees was obtained.
  • a resin having a heat of fusion of 5 J / g or more is a crystalline resin, and a resin having a heat of less than 5 J / g is an amorphous resin.
  • Presence or absence of the structure shown by Formula (1) The presence or absence of the structure shown by Formula (1) was confirmed by the following method. That is, the weight peak was confirmed by gas chromatography-mass spectrometry (GC-MS). Next, Fourier transform infrared spectroscopy (FT-IR) was used to confirm the presence or absence of a peak derived from the bond between atoms of the estimated structure. Furthermore, in proton nuclear magnetic resonance spectroscopy ( 1 H-NMR, 13 C-NMR), proton absorption derived from the position of chemical shift derived from the position of hydrogen atom or carbon atom on the structural formula and the number of hydrogen atoms The line area was confirmed and judged from these results.
  • FT-IR Fourier transform infrared spectroscopy
  • the critical load Wc (mN) was determined from the relationship between the applied load and the sensor acceleration.
  • the horizontal axis represents time from the start of measurement, and the vertical axis represents sensor acceleration and applied load.
  • the solid line plot shows the acceleration of the sensor in the depth direction, and when this value becomes high, it indicates that the stylus has penetrated in the depth direction from the film surface.
  • a dotted line plot shows a load value
  • a dashed-dotted line shows time when the inclination of sensor acceleration becomes the largest.
  • the average value of the three points excluding the maximum value and the minimum value of the five points of the critical load was taken as the critical load.
  • stacking structure part does not appear on the surface of a laminated
  • Molding processability A small vacuum forming machine forming type 300X equipped with a tray-shaped die cut out of a film sample 320 mm wide and 460 mm long and having an opening 150 mm ⁇ 210 mm, bottom 105 mm ⁇ 196 mm and height 50 mm The product was preheated and molded under the temperature conditions such that the sheet temperature at molding was in the range of 100 ° C. ⁇ 2 ° C., using Co., Ltd.). 100 molded samples were prepared, and it was confirmed whether or not a tear or a crack was generated for each, and the molding processability was judged as follows. "Good” or "excellent” was a good result.
  • Example 1 As a raw material polyester resin for forming the resin A, polyethylene glycol (average molecular weight 400) (in the case where m ⁇ n of the structure of the formula (1) in the table is 10 or more, it is described as “10 or more”)
  • Raw material polyester resin which forms resin B using polyethylene 2, 6-naphthalate copolymer (specific viscosity 0.62, melting point 245 ° C., indicated as PEN (1) in the table) copolymerized at 6 mol% to total diol components
  • polyethylene terephthalate resin inherent viscosity 0.73, amorphous resin (without melting point), glass transition copolymerized with 30 mol% of cyclohexanedimethanol (described as CHDM in the table) with respect to all diol components of resin B
  • Temperature 79 ° C) and polyethylene terephthalate made by Toray Industries, Inc., intrinsic viscosity 0.65, melting point 256 ° C, glass transition temperature 81 ° C
  • the prepared resin A and resin B are melted at 280 ° C. in a vented twin-screw extruder, respectively, and then joined at a feed block of 449 layers through a gear pump and a filter (from resin A Surface layer thick film layer) / (laminated unit 1 in which A layer and B layer are alternately laminated in 149 layers in the thickness direction 1) / (intermediate thick film layer made of resin A) / (A layer and B layer in the thickness direction A laminated film having a layer structure of laminated units 2) / (the surface layer thick film layer made of resin A) alternately laminated in 297 layers was obtained. In addition, both surface layer portions of the laminated film were made to be resin A.
  • the resulting cast film is heated by a roll group set to a temperature of glass transition temperature of resin A + 10 ° C., and then, while being heated rapidly from both sides of the film by a radiation heater, during stretching section length 100 mm 4 Stretched 0 times and then cooled once.
  • both surfaces of this uniaxially stretched film are subjected to corona discharge treatment in air, and the wet tension of the substrate film is 55 mN / m, and on the treated surface (polyester resin with a glass transition temperature of 18 ° C.) / (Glass transition)
  • a coating solution for forming a layer forming film comprising a polyester resin having a temperature of 82 ° C./silica particles having an average particle diameter of 100 nm was applied to form a transparent, easy-to-slip, and easily-adhering layer.
  • This uniaxially stretched film was introduced into a tenter, preheated with hot air at 100 ° C., and stretched 4.0 times at a temperature of glass transition temperature of resin A + 20 ° C. in the transverse direction at a uniform stretching rate.
  • the stretched film was heat treated with hot air at 235 ° C. in a tenter, followed by 2% relaxation treatment in the width direction at the same temperature, and then gradually cooled to room temperature and then taken up.
  • the thickness of the obtained laminated film was 40 ⁇ m (surface thick film layer (1 ⁇ m) / lamination unit 1 (20 ⁇ m) / intermediate thick film layer (1 ⁇ m) / lamination unit 2 (17 ⁇ m) / surface thick film layer (1 ⁇ m) ).
  • the obtained laminated film had a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region while reflecting light having a wavelength of 900 to 1,400 nm. Moreover, it was excellent in transparency and excellent in moldability. The results are shown in Table 1.
  • Example 2 51 layer having a layer constitution of (laminate unit 1) / (laminate thick film layer composed of a resin A) / (laminate surface layer composed of a resin A) / (laminated layer A and B layers alternately laminated in 49 layers in the thickness direction)
  • a laminated film was obtained in the same manner as in Example 1 except that the feed block of the above was used.
  • the thickness of the obtained laminated film was 10 ⁇ m (surface thick film layer (1 ⁇ m) / lamination unit 1 (8 ⁇ m) / surface thick film layer (1 ⁇ m)).
  • the obtained laminated film had a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region, although the reflectance of light with a wavelength of 900 to 1,400 nm was slightly low. . It had excellent transparency and excellent moldability. The results are shown in Table 1.
  • Example 3 Polyethylene naphthalate (specific viscosity 0.62, melting point 254 ° C., in the table) obtained by copolymerizing 6 mol% of polytetramethylene ether glycol (average molecular weight 650) with respect to all diol components as raw material polyester resin forming resin A A laminated film was obtained in the same manner as in Example 1 except that PEN (2) was used.
  • the obtained laminated film had a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region while reflecting light of 900 to 1,400 nm. It had excellent transparency and excellent moldability.
  • Table 1 The results are shown in Table 1.
  • Example 4 51 layer having a layer constitution of (laminate unit 1) / (laminate thick film layer composed of a resin A) / (laminate surface layer composed of a resin A) / (laminated layer A and B layers alternately laminated in 49 layers in the thickness direction) A laminated film was obtained in the same manner as in Example 3 except that the feed block of the above was used.
  • the obtained laminated film has a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region, although the reflectance of light with a wavelength of 900 to 1,400 nm is slightly reduced.
  • the It had excellent transparency and excellent moldability. The results are shown in Table 1.
  • Example 5 As a raw material polyester resin for forming the resin A, polyethylene naphthalate (specific viscosity 0.62, melting point 244 ° C., indicated as PEN (3) in the table) obtained by copolymerizing 15 mol% of triethylene glycol with respect to all diol components A laminated film was obtained in the same manner as in Example 1 except that the above was used.
  • polyethylene naphthalate specific viscosity 0.62, melting point 244 ° C., indicated as PEN (3) in the table
  • the obtained laminated film had a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region while reflecting light having a wavelength of 900 to 1,400 nm. It had excellent transparency and excellent moldability.
  • Table 1 The results are shown in Table 1.
  • Example 6 51 layer having a layer constitution of (laminate unit 1) / (laminate thick film layer composed of a resin A) / (laminate surface layer composed of a resin A) / (laminated layer A and B layers alternately laminated in 49 layers in the thickness direction) A laminated film was obtained in the same manner as in Example 5 except that the feed block of the above was used.
  • the obtained laminated film has a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region, although the reflectance of light with a wavelength of 900 to 1,400 nm is slightly reduced.
  • the transparency was excellent and the adhesion was also excellent.
  • Table 1 The results are shown in Table 1.
  • Example 7 As a raw material polyester resin for forming the resin A, polyethylene naphthalate (specific viscosity 0.62, melting point 238 ° C., indicated as PEN (4) in the table) obtained by copolymerizing 15 mol% of tetraethylene glycol with respect to all diol components A laminated film was obtained in the same manner as in Example 1 except that the above was used.
  • polyethylene naphthalate specific viscosity 0.62, melting point 238 ° C., indicated as PEN (4) in the table
  • the obtained laminated film had a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region while reflecting light having a wavelength of 900 to 1,400 nm. It had excellent transparency and excellent moldability.
  • Table 1 The results are shown in Table 1.
  • Example 8 51 layer having a layer constitution of (laminate unit 1) / (laminate thick film layer composed of a resin A) / (laminate surface layer composed of a resin A) / (laminated layer A and B layers alternately laminated in 49 layers in the thickness direction) A laminated film was obtained in the same manner as in Example 7 except that the feed block of the above was used.
  • the obtained laminated film has a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region, although the reflectance of light with a wavelength of 900 to 1,400 nm is slightly reduced.
  • the It had excellent transparency and excellent moldability. The results are shown in Table 1.
  • Example 9 As a raw material polyester resin for forming the resin A, polyethylene naphthalate (specific viscosity 0.62, melting point 252 ° C., indicated as PEN (5) in the table) obtained by copolymerizing 15 mol% of dipropylene glycol with respect to all diol components A laminated film was obtained in the same manner as in Example 1 except that the above was used.
  • polyethylene naphthalate specific viscosity 0.62, melting point 252 ° C., indicated as PEN (5) in the table
  • the obtained laminated film had a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region while reflecting light having a wavelength of 900 to 1,400 nm. It had excellent transparency and excellent moldability.
  • Table 1 The results are shown in Table 1.
  • Example 10 51 layer having a layer constitution of (laminate unit 1) / (laminate thick film layer composed of a resin A) / (laminate surface layer composed of a resin A) / (laminated layer A and B layers alternately laminated in 49 layers in the thickness direction) A laminated film was obtained in the same manner as in Example 9 except that the feed block of the above was used.
  • the obtained laminated film has a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region, although the reflectance of light with a wavelength of 900 to 1,400 nm is slightly reduced.
  • the It had excellent transparency and excellent moldability. The results are shown in Table 1.
  • Example 11 As a raw material polyester resin for forming the resin A, polyethylene naphthalate (specific viscosity 0.62, melting point 240 ° C., PEN (6) shown in the table) obtained by copolymerizing 15 mol% of tripropylene glycol with respect to all diol components A laminated film was obtained in the same manner as in Example 1 except that the above was used.
  • polyethylene naphthalate specific viscosity 0.62, melting point 240 ° C., PEN (6) shown in the table
  • the obtained laminated film had a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region while reflecting light having a wavelength of 900 to 1,400 nm. It had excellent transparency and excellent moldability.
  • Table 1 The results are shown in Table 1.
  • Example 12 51 layer having a layer constitution of (laminate unit 1) / (laminate thick film layer composed of a resin A) / (laminate surface layer composed of a resin A) / (laminated layer A and B layers alternately laminated in 49 layers in the thickness direction) A laminated film was obtained in the same manner as in Example 11 except that the feed block of the above was used.
  • the obtained laminated film has a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region, although the reflectance of light with a wavelength of 900 to 1,400 nm is slightly reduced.
  • the It had excellent transparency and excellent moldability. The results are shown in Table 1.
  • Example 13 As a raw material polyester resin for forming the resin B, 20 mol% of cyclohexanedicarboxylic acid (described as CHDA in the table) with respect to all dicarboxylic acid components, and spiroglycol (described as SPG in the table) with respect to all diol components Example 1 except using 15 mol% of copolymerized polyethylene terephthalate (specific viscosity 0.72, glass transition temperature 85 ° C., amorphous resin (without melting point), resin (2) in the table) A laminated film was obtained in the same manner as in.
  • CHDA cyclohexanedicarboxylic acid
  • SPG spiroglycol
  • the obtained laminated film had a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region while reflecting light having a wavelength of 900 to 1,400 nm. It had excellent transparency and excellent moldability.
  • Table 1 The results are shown in Table 1.
  • Example 14 51 layer having a layer constitution of (laminate unit 1) / (laminate thick film layer composed of a resin A) / (laminate surface layer composed of a resin A) / (laminated layer A and B layers alternately laminated in 49 layers in the thickness direction) A laminated film was obtained in the same manner as in Example 13 except that the feed block of the above was used.
  • the obtained laminated film has a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region, although the reflectance of light with a wavelength of 900 to 1,400 nm is slightly reduced.
  • the It had excellent transparency and excellent moldability. The results are shown in Table 1.
  • Example 15 As a raw material polyester resin for forming the resin A, polyethylene naphthalate (specific viscosity 0.62, melting point 238 ° C., indicated as PEN (4) in the table) obtained by copolymerizing 15 mol% of tetraethylene glycol with respect to all diol components A laminated film was obtained in the same manner as in Example 13 except that the above was used.
  • polyethylene naphthalate specific viscosity 0.62, melting point 238 ° C., indicated as PEN (4) in the table
  • the obtained laminated film had a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region while reflecting light having a wavelength of 900 to 1,400 nm. It had excellent transparency and excellent moldability.
  • Table 1 The results are shown in Table 1.
  • Example 16 51 layer having a layer constitution of (laminate unit 1) / (laminate thick film layer composed of a resin A) / (laminate surface layer composed of a resin A) / (laminated layer A and B layers alternately laminated in 49 layers in the thickness direction) A laminated film was obtained in the same manner as in Example 15, except that the feed block of the above was used.
  • the obtained laminated film has a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region, although the reflectance of light with a wavelength of 900 to 1,400 nm is slightly reduced.
  • the It had excellent transparency and excellent moldability. The results are shown in Table 1.
  • Example 17 Polyethylene naphthalate (inherent viscosity 0.62, melting point 249 ° C., in the table) in which the copolymerization amount of polyethylene glycol (average molecular weight 400) is 4 mol% with respect to all diol components as a raw material polyester resin forming resin A A laminated film was obtained in the same manner as in Example 2 except that PEN (5) was used.
  • the obtained laminated film had a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region while reflecting light having a wavelength of 900 to 1,400 nm. It had excellent transparency and excellent moldability.
  • Table 1 The results are shown in Table 1.
  • Example 18 As a raw material polyester resin for forming the resin A, polyethylene naphthalate (specific viscosity 0.62, melting point 258 ° C., in which the copolymerized amount of polyethylene glycol (average molecular weight 400) is 1 mol% with respect to all diol components A laminated film was obtained in the same manner as in Example 2 except that PEN (6) was used.
  • the obtained laminated film had a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region while reflecting light having a wavelength of 900 to 1,400 nm. It had excellent transparency and excellent moldability.
  • Table 1 The results are shown in Table 1.
  • Example 19 As resin A, polyethylene naphthalate (specific viscosity 0.62, melting point 228 ° C., PEN (7 in the table) in which the copolymerization amount of polyethylene glycol (average molecular weight 400) is 20 mol% with respect to all diol components of resin A Copolymerized polyethylene terephthalate (specific viscosity 0.72) obtained by copolymerizing 20 mol% of polyethylene glycol (average molecular weight 400) (denoted as PEG 400 in the table) with respect to all diol components of resin B as resin B) A laminated film was obtained in the same manner as in Example 2 except that a glass transition temperature of 53 ° C., amorphous resin (without melting point) and resin (3) in the table were used.
  • a glass transition temperature of 53 ° C., amorphous resin (without melting point) and resin (3) in the table were used.
  • the obtained laminated film had a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region while reflecting light having a wavelength of 900 to 1,400 nm. It had excellent transparency and excellent moldability.
  • Table 1 The results are shown in Table 1.
  • Example 20 Polyethylene naphthalate (specific viscosity 0.62, melting point 215 ° C., in the table) in which the copolymerization amount of polyethylene glycol (average molecular weight 400) is 30 mol% with respect to all diol components as a raw material polyester resin forming resin
  • a laminated film was obtained in the same manner as in Example 2 except that an amorphous resin (with no melting point) at 15 ° C. and resin (4) in the table were used.
  • the obtained laminated film had a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region while reflecting light having a wavelength of 900 to 1,400 nm. It had excellent transparency and excellent moldability.
  • Table 1 The results are shown in Table 1.
  • the obtained laminated film had a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region while reflecting light having a wavelength of 900 to 1,400 nm. It had excellent transparency and excellent moldability.
  • Table 1 The results are shown in Table 1.
  • the obtained laminated film had a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region while reflecting light having a wavelength of 900 to 1,400 nm. It had excellent transparency and excellent moldability.
  • Table 1 The results are shown in Table 1.
  • Example 21 Polyethylene naphthalate (Intrinsic viscosity 0.62, melting point 233 ° C., PEN (11) in the table) wherein the copolymerized amount of tetraethylene glycol is 20 mol% with respect to all diol components as a raw material polyester resin forming resin
  • the obtained laminated film had a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region while reflecting light having a wavelength of 900 to 1,400 nm. It had excellent transparency and excellent moldability.
  • Table 1 The results are shown in Table 1.
  • Example 22 Polyethylene naphthalate (specific viscosity 0.62, melting point 218 ° C., PEN (12) in the table as the raw material polyester resin for forming the resin A, in which the copolymerization amount of tetraethylene glycol is 30 mol% with respect to all diol components
  • Copolymer polyethylene terephthalate (specific viscosity 0.72, glass transition temperature 15 ° C., non-copolymerized) obtained by copolymerizing 50 mol% of polyethylene glycol (average molecular weight 400) with respect to all diol components of resin B as resin B
  • a laminated film was obtained in the same manner as in Example 2 except that a crystalline resin (without a melting point) and resin (4) in the table were used.
  • the obtained laminated film had a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region while reflecting light having a wavelength of 900 to 1,400 nm. It had excellent transparency and excellent moldability.
  • Table 1 The results are shown in Table 1.
  • a laminated film was obtained in the same manner as in Example 1 except that the feed block of the above was used.
  • the thickness of the obtained laminated film was 5 ⁇ m (surface thick film layer (1 ⁇ m) / lamination unit 1 (3 ⁇ m) / surface thick film layer (1 ⁇ m)).
  • the obtained laminated film had a large decrease in reflectance of light with a wavelength of 900 to 1,400 nm, and had a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region. It had excellent transparency and excellent moldability.
  • Table 1 The results are shown in Table 1.
  • a laminated film was obtained in the same manner as in Example 7 except that the feed block of the above was used.
  • the obtained laminated film had a large decrease in reflectance of light with a wavelength of 900 to 1,400 nm, and had a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region. It had excellent transparency and excellent moldability.
  • Table 1 The results are shown in Table 1.
  • the obtained laminated film had a large decrease in reflectance of light with a wavelength of 900 to 1,400 nm, and had a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region. It had excellent transparency and excellent moldability.
  • Table 1 The results are shown in Table 1.
  • the obtained laminated film had a large decrease in reflectance of light with a wavelength of 900 to 1,400 nm, and had a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region. It had excellent transparency and excellent moldability.
  • Table 1 The results are shown in Table 1.
  • the obtained laminated film had a large decrease in reflectance of light with a wavelength of 900 to 1,400 nm, and had a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region. It had excellent transparency and excellent moldability.
  • Table 1 The results are shown in Table 1.
  • Example 8 Same as Example 2 except that polyethylene naphthalate (specific viscosity 0.62, melting point 269.degree. C., indicated as PEN in the table) was used as the raw material polyester resin forming resin A with respect to all diol components. Thus, a laminated film was obtained.
  • polyethylene naphthalate specific viscosity 0.62, melting point 269.degree. C., indicated as PEN in the table
  • the obtained laminated film had a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region while reflecting light having a wavelength of 900 to 1,400 nm. It was excellent in transparency but poor in moldability. The results are shown in Table 1.
  • the obtained laminated film had a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region while reflecting light having a wavelength of 900 to 1,400 nm. It was excellent in transparency but poor in moldability. The results are shown in Table 1.
  • the obtained laminated film had a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region while reflecting light having a wavelength of 900 to 1,400 nm. It was excellent in transparency but poor in moldability. The results are shown in Table 1.
  • the obtained laminated film had a large decrease in reflectance of light with a wavelength of 900 to 1,400 nm, and had a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region. It had excellent transparency and excellent moldability.
  • Table 1 The results are shown in Table 1.
  • the obtained laminated film had a large decrease in reflectance of light with a wavelength of 900 to 1,400 nm, and had a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region. It had excellent transparency and excellent moldability.
  • Table 1 The results are shown in Table 1.
  • the obtained laminated film had a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region while reflecting light having a wavelength of 900 to 1,400 nm. It was excellent in transparency but poor in moldability. The results are shown in Table 1.
  • the obtained laminated film had a flat reflectance distribution with almost no reflection at a wavelength of 400 to 800 nm in the visible light region while reflecting light having a wavelength of 900 to 1,400 nm. It was excellent in transparency but poor in moldability. The results are shown in Table 1.
  • the present invention is used in various applications such as construction materials, automobiles, liquid crystal displays, and in particular, it can be used as an optical film that reflects light of a specific wavelength.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Organic Insulating Materials (AREA)

Abstract

ジカルボン酸構成成分とジオール構成成分を有するポリエステル樹脂(樹脂A)を主成分とする層(A層)と、前記樹脂Aとは異なる光学特性を有する熱可塑性樹脂(樹脂B)を主成分とする層(B層)を交互に51層以上積層した積層構成部を有する積層フィルムであって、前記積層構成部の少なくとも一方の表面の屈折率が1.68以上1.80以下であり、前記表面のスクラッチ試験における100℃での臨界荷重が15mN以下であり、前記積層構成部の少なくとも一方の表面側から測定した反射率プロフィールにおいて、30%以上の反射率が波長幅20nm以上にわたって連続する反射帯域を少なくとも一つ有する積層フィルム。 カルボン酸構成成分にナフタレンジカルボン酸を含む層と他の樹脂からなる層との層間の剥離を抑制し、かつ、反射率や透明性を損なわない積層フィルムを提供する。

Description

積層フィルム
 本発明は、積層フィルムに関する。
 従来、光学特性が異なる2種以上の材料を光の波長レベルの層厚みで交互に積層することにより発現する光の干渉現象を利用して、特定の波長の光を選択的に反射させる光干渉多層膜が知られている。このような多層膜は、用いる材料の屈折率、層数、各層厚みを所望の光学的な設計とすることで、種々の性能を具備せしめることが可能であるため様々な光学用途向けに市販されている。例えば、コールドミラー、ハーフミラー、レーザーミラー、ダイクロイックフィルタ、熱線反射フィルム、近赤外カットフィルタ、単色フィルター、偏光反射フィルム等があげられる。
 このような多層膜を溶融押出法にて得る場合、透明性、耐熱性、耐候性、耐薬品性、強度および寸法安定性などの理由から、一方の樹脂にポリエチレンテレフタレートやポリエチレンナフタレートといったポリエステル樹脂を主成分として使用し、もう一方の樹脂に、ポリエステル樹脂とは光学特性の異なる熱可塑性樹脂(例えば共重合ポリエステル)を使用した多層フィルムが知られている(特許文献1、2)。特に一方の樹脂にポリエチレンナフタレートを主成分として用いた場合、低屈折率の共重合ポリエステルとの屈折率差を大きく出来るため、高い反射率を有する光干渉多層膜を得る場合に有用である。
特開2005-059332号公報 特開2004-249587号公報
 しかしながら、溶融押出し法にてポリエチレンナフタレートを主成分とした層と低屈折率の共重合ポリエステルの層からなる多層膜を得た場合、ポリエチレンナフタレートを主成分とした層の剛性が高いために変形し難く、フィルムを変形・加工して用いる用途に適用し難い。例えば、成型加工時に破れたり亀裂が発生したりすることがあるため、最終製品として適用できないという問題があった。
 本発明は、ジカルボン酸構成成分とジオール構成成分を有するポリエステル樹脂を主成分とする層と、前記ポリエステル樹脂とは異なる光学特性を有する熱可塑性樹脂を主成分とする層を交互に51層以上積層した積層フィルムにおいて、成型加工時の破れや亀裂を抑制し、かつ、良好な反射率や透明性を有する積層フィルムを提供することを課題とする。
 上記課題を解決するため本発明の積層フィルムは以下の[I]または[II]のいずれかの構成を有する。すなわち、
[I]ジカルボン酸構成成分とジオール構成成分を有するポリエステル樹脂(樹脂A)を主成分とする層(A層)と、前記樹脂Aとは異なる光学特性を有する熱可塑性樹脂(樹脂B)を主成分とする層(B層)を交互に51層以上積層した積層構成部を有する積層フィルムであって、前記積層構成部の少なくとも一方の表面の屈折率が1.68以上1.80以下であり、前記表面のスクラッチ試験における100℃での臨界荷重が15mN以下であり、前記積層構成部の少なくとも一方の表面側から測定した反射率プロフィールにおいて、30%以上の反射率が波長幅20nm以上にわたって連続する反射帯域を少なくとも一つ有する積層フィルム、または、
[II]ジカルボン酸構成成分とジオール構成成分を有するポリエステル樹脂(樹脂A)を主成分とする層(A層)と、前記樹脂Aとは異なる光学特性を有する熱可塑性樹脂(樹脂B)を主成分とする層(B層)を交互に51層以上積層した積層構成部を有する積層フィルムであって、前記樹脂Aがジカルボン酸構成成分にナフタレンジカルボン酸を含み、前記A層、B層を構成する樹脂のうち、少なくとも一方が、式(1)で表される構造を有する積層フィルム、である。
-O-(C2n-O)- ・・・式(1)
(m、nは、m×nが5以上となる自然数をあらわす。)。
 なお、上記本発明の[I]の構成を有する積層フィルムは、ジカルボン酸構成成分とジオール構成成分を有するポリエステル樹脂(樹脂A)を主成分とする層(A層)と、前記樹脂Aとは異なる光学特性を有する熱可塑性樹脂(樹脂B)を主成分とする層(B層)を交互に51層以上積層した積層構成部を有する積層フィルムであって、前記積層構成部の少なくとも一方の表面の屈折率が1.68以上1.80以下であり、前記表面のスクラッチ試験における100℃での臨界荷重が15mN以下であり、前記積層構成部の少なくとも一方の表面側から測定した反射率が20nm以上の波長範囲で連続して30%以上となる反射帯域を少なくとも一つ有する積層フィルムと同義である。
 本発明の[I]の構成を有する積層フィルムは、前記反射率プロフィールが、900~1,400nmの波長領域において測定したものであることが好ましい。なお、この好ましい態様は、前記反射帯域が、波長900~1,400nmの波長範囲において、少なくとも1つ有することと同義である。
 本発明の[I]の構成を有する積層フィルムは、前記積層構成部が、動的粘弾性測定により求められる損失正接(tanδ)のピーク値が120℃以下である。
 本発明の[I]の構成を有する積層フィルムは、前記A層、B層を構成する樹脂のうち、少なくとも一方が、式(1)で表される構造を有することが好ましい。
-O-(C2n-O)- ・・・式(1)
(m、nは、m×nが5以上となる自然数をあらわす。)
 本発明の[I]の構成を有する積層フィルムは、前記樹脂Bがジカルボン酸構成成分とジオール構成成分を有するポリエステル樹脂であることが好ましい。
 本発明の[I]の構成を有する積層フィルムは、前記樹脂Bがジカルボン酸構成成分とジオール構成成分を有するポリエステル樹脂であって、前記樹脂Aまたは樹脂Bの少なくとも一方が、式(1)で表される構造をジオール構成成分として含むことが好ましい。
-O-(C2n-O)- ・・・式(1)
(m、nは、m×nが5以上となる自然数をあらわす。)
 本発明の[I]の構成を有する積層フィルムは、前記樹脂Bがジカルボン酸構成成分とジオール構成成分を有するポリエステル樹脂であって、前記樹脂Aまたは樹脂Bの少なくとも一方が、式(1)で表される構造をジオール構成成分として全ジオール構成成分に対して0.5mol%以上40mol%以下含むことが好ましい。
-O-(C2n-O)- ・・・式(1)
(m、nは、m×nが5以上となる自然数をあらわす。)
 本発明の[I]の構成を有する積層フィルムは、前記樹脂Aが、式(1)で表される構造をジオール構成成分として樹脂Aの全ジオール構成成分に対して0.5mol%以上40mol%以下含むことが好ましい。
-O-(C2n-O)- ・・・式(1)
(m、nは、m×nが5以上となる自然数をあらわす。)
 本発明の[I]の構成を有する積層フィルムは、前記A層が前記積層構成部の少なくとも一方の表層に配されてなることが好ましい。
 本発明の[I]の構成を有する積層フィルムは、前記積層構成部が、ジカルボン酸構成成分とジオール構成成分を有するポリエステル樹脂αを主成分とする層(α層)と前記樹脂αとは異なる光学特性を有する熱可塑性樹脂βを主成分とする層(β層)を交互に積層した、以下(i)を満たす積層ユニット1と、ジカルボン酸構成成分とジオール構成成分を有するポリエステル樹脂γを主成分とする層(γ層)と前記樹脂γとは異なる光学特性を有する熱可塑性樹脂ωを主成分とする層(ω層)を交互に積層した、以下(ii)を満たす積層ユニット2を有することが好ましい。
(i)隣接するα層とβ層の厚みの比(α層厚み/β層厚み)が0.7以上、1.4以下であること。
(ii)隣接する3層が、3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層について一方の厚みが1.0以上1.4以下、他方が5以上9以下であること。
 本発明の[II]の構成を有する積層フィルムは、前記樹脂Bがジカルボン酸構成成分とジオール構成成分を有するポリエステル樹脂であることが好ましい。
 本発明の[II]の構成を有する積層フィルムは、前記樹脂Bがジカルボン酸構成成分とジオール構成成分を有するポリエステル樹脂であって、前記樹脂Aまたは樹脂Bの少なくとも一方が、式(1)で表される構造をジオール構成成分として含むことが好ましい。
-O-(C2n-O)- ・・・式(1)
(m、nは、m×nが5以上となる自然数をあらわす。)
 本発明の[II]の構成を有する積層フィルムは、前記樹脂Bがジカルボン酸構成成分とジオール構成成分を有するポリエステル樹脂であって、前記樹脂Aまたは樹脂Bの少なくとも一方が、式(1)で表される構造を全ジオール構成成分に対して0.5mol%以上40mol%以下含むことが好ましい。
-O-(C2n-O)- ・・・式(1)
(m、nは、m×nが5以上となる自然数をあらわす。)
 本発明の[II]の構成を有する積層フィルムは、前記樹脂Aが、ジオール構成成分として式(1)で表される構造を樹脂Aの全ジオール構成成分に対して0.5mol%以上40mol%以下含むことが好ましい。
-O-(C2n-O)- ・・・式(1)
(m、nは、m×nが5以上となる自然数をあらわす。)
 本発明の[II]の構成を有する積層フィルムは、前記A層が前記積層構成部の少なくとも一方の表層に配されてなることが好ましい。
 本発明の[II]の構成を有する積層フィルムは、前記積層構成部の少なくとも一方のフィルム表面側から測定した反射率が20nm以上連続して30%以上となる反射帯域を少なくとも一つ有し、前記積層構成部の少なくとも一方の表面の屈折率が1.68以上1.80以下であることが好ましい。
 本発明の[II]の構成を有する積層フィルムは、前記積層構成部の少なくとも一方の表面側から測定した反射率プロフィールにおいて、30%以上の反射率が波長幅20nm以上にわたって連続する反射帯域を少なくとも一つ有し、前記反射率プロフィールが、900~1,400nmの波長領域において測定したものであることが好ましい。なお、この好ましい態様は、前記積層構成部の少なくとも一方の表面側から測定した反射率が20nm以上の波長範囲で連続して30%以上となる反射帯域を少なくとも一つ有し、前記反射帯域が、波長900~1,400nmの波長範囲において、少なくとも1つ有することと同義である。
 本発明の[II]の構成を有する積層フィルムは、動的粘弾性測定により求められる積層部構成部の損失正接(tanδ)のピーク値が120℃以下であることが好ましい。
 本発明の[II]の構成を有する積層フィルムは、前記積層構成部が、ジカルボン酸構成成分とジオール構成成分を有するポリエステル樹脂αを主成分とする層(α層)と前記樹脂αとは異なる光学特性を有する熱可塑性樹脂βを主成分とする層(β層)を交互に積層した、以下(i)を満たす積層ユニット1と、ジカルボン酸構成成分とジオール構成成分を有するポリエステル樹脂γを主成分とする層(γ層)と前記樹脂γとは異なる光学特性を有する熱可塑性樹脂ωを主成分とする層(ω層)を交互に積層した、以下(ii)を満たす積層ユニット2を有することが好ましい。
(i)隣接するα層とβ層の厚みの比(α層厚み/β層厚み)が0.7以上、1.4以下であること。
(ii)隣接する3層が、3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層について一方の厚みが1.0以上1.4以下、他方が5以上9以下であること。
 本発明によって、積層フィルムの成型加工時の破れや亀裂を抑制し、かつ、良好な反射率や透明性を有する積層フィルムを得ることができる。当該積層フィルムは、光干渉多層膜として多岐に渡る用途で適用可能である。
積層ユニット2の構成を示した概念図である。 スクラッチ試験の測定結果例と臨界荷重の求め方を示した図である。
 以下に本発明の実施の形態について述べるが、本発明は以下の実施例を含む実施の形態に限定して解釈されるものではなく、発明の目的を達成できて、かつ、発明の要旨を逸脱しない範囲内においての種々の変更は当然あり得る。また、説明を簡略化する目的で一部の説明では光学特性の異なる2種のポリエステル樹脂が交互に積層された多層積層フィルムを例にとり説明するが、3種以上のポリエステル樹脂を用いた場合やポリエステル樹脂以外の熱可塑性樹脂を用いる場合においても同様に理解されるべきものである。
 本発明の積層フィルムは、ジカルボン酸構成成分とジオール構成成分を有するポリエステル樹脂(樹脂A)を主成分とする層(A層)を有する積層フィルムである。ポリエステル樹脂は一般的に熱硬化性樹脂や光硬化性樹脂と比べて安価であり、かつ公知の溶融押出により簡便かつ連続的にシート化することができることから、低コストで積層フィルムを得ることが可能となる。
 また、本発明の積層フィルムにおいては、前記樹脂Aと前記樹脂Bは異なる光学特性を有するポリエステル樹脂である必要がある。ここでいう光学特性が異なるとは、面内で任意に選択される直行する2方向および該面に垂直な方向から選ばれる方向のいずれかにおいて、屈折率が0.01以上異なることをいう。また、前記樹脂Aと前記樹脂Bは、異なる融点または結晶化温度を有するが好ましい。異なる融点または結晶化温度とは、後述の測定方法によって求められる融点と結晶化温度のいずれかが3℃以上異なることをいう。なお、一方の樹脂が融点を有しており、もう一方の樹脂が融点を有していない場合や、一方の樹脂が結晶化温度を有しており、もう一方の樹脂が結晶化温度を有していない場合も異なる融点または結晶化温度を有することを表す。異なる融点および結晶化温度を有することがより好ましい。
 また、本発明の積層フィルムは、前記A層と前記B層が交互に51層以上積層されてなる必要がある。ここでいう交互に積層されてなるとは、A層とB層が厚み方向に規則的な配列で積層されていることをいい、A(BA)n(nは自然数)といったように規則的な配列で積層されたものである。このように光学特性の異なる樹脂が交互に積層されることにより、各層の屈折率の差と層厚みとの関係よって特定される特定の波長の光を反射させることが可能となる。また、積層する層数が多いほど広い帯域に渡り高い反射率を得ることが出来る。好ましくは101層以上であり、より好ましくは201層以上である。前述の干渉反射は、層数が増えるほどより広い波長帯域の光に対して高い反射率を達成できるようになり、高い光線カット性能を備えた積層フィルムが得られるようになる。また、層数に上限はないものの、層数が増えるに従い製造装置の大型化に伴う製造コストの増加や、フィルム厚みが厚くなることでのハンドリング性の悪化が生じるために、現実的にはそれぞれ1,000層以内が実用範囲となる。なお、本発明における積層構成部とは、前記A層と前記B層が交互に51層以上積層されてなる構成部のことを示し、積層構成部の表層は必ず前記A層または前記B層となる。
 本発明の積層フィルムの一態様として、少なくとも一方の表面側から測定した反射率プロフィールにおいて、30%以上の反射率が波長幅20nm以上にわたって連続する反射帯域を少なくとも1つ有することが挙げられる。より好ましくは、反射率プロフィールにおいて、30%以上の反射率が波長幅100nm以上にわたって連続する反射帯域を少なくとも1つ有することであり、更に好ましくは反射率反射帯域を有すること、特に好ましくは反射率プロフィールにおいて、30%以上の反射率が波長幅500nm以上にわたって連続する反射帯域を少なくとも1つ有することである。また、より好ましくは、反射率プロフィールにおいて、60%以上の反射率が波長幅20nm以上にわたって連続する反射帯域を有することであり、更に好ましくは反射率プロフィールにおいて、70%以上の反射率が波長幅20nm以上にわたって連続する反射帯域を少なくとも1つ有することである。例えば、可視光領域(400~800nm)の光は透過し、可視光領域よりもやや大きな波長900~1,200nm(全太陽光の強度の約18%)の光を反射することにより、透明でしかも高い熱線カット性能を持つ積層フィルムとすることができる。あるいは可視光領域(400~800nm)の光を50%程度反射させるフィルムを得ればハーフミラーとして適用できるなど、様々な用途に応用可能である。このようなフィルムは、光学特性の異なる2種以上の樹脂の面内屈折率の差を大きくすることにより実現できるので、二軸延伸フィルムとする場合は結晶性であるポリエステル樹脂を主成分とする層と、延伸時に非晶性を保持もしくは熱処理工程で融解される熱可塑性樹脂(低屈折率の共重合ポリエステルが好ましく用いられる)を主成分とする層が交互に積層された多層積層フィルムとすることが好ましい。またより好ましくは、前記反射率プロフィールが、900~1,400nmの波長領域において測定したとき、30%以上の反射率が波長幅20nm以上にわたって連続する反射帯域を少なくとも一つ有することが好ましい。太陽光は可視光領域に主に強度分布を備えており、波長が大きくなるにつれてその強度分布は小さくなる傾向にある。しかし、高い透明性が求められる用途で使用するために、可視光領域よりもやや大きな波長900~1,400nmの光を効率的に反射することにより、高い熱線カット性能を付与することができる。より好ましくは、前記反射率プロフィールが、900~1,400nmの波長領域において測定したとき、30%以上の反射率が波長幅100nm以上にわたって連続する反射帯域を少なくとも一つ有することであり、更に好ましくは前記反射率プロフィールが、900~1,400nmの波長領域において測定したとき、30%以上の反射率が波長幅200nm以上にわたって連続する反射帯域を少なくとも一つ有することである。また、900~1,400nmの波長領域において測定したとき、平均反射率が50%以上であることが好ましく、900~1,400nmの波長領域において測定したとき、平均反射率が70%以上であることがさらに好ましい。900~1,400nmの波長領域において測定したとき、平均反射率が大きくなるに従い、高い熱線カット性能を付与することが可能となる。また、400~800nmの波長領域において測定したときの平均反射率を好ましくは20%以下、より好ましくは15%以下とすることで可視領域での反射を抑え、色付きやぎらつきのない熱線カット性能のあるフィルムとすることができる。このようなフィルムは、光学特性の異なる2種以上の樹脂の面内屈折率の差を大きくすることにより実現できるので、二軸延伸フィルムとする場合は結晶性であるポリエステル樹脂を主成分とする層と、延伸時においても非晶性を保持できる、あるいは熱処理工程で融解される熱可塑性樹脂を主成分とする層が交互に積層された多層積層フィルムとすればよい。
 上述の反射帯域を有するための好ましい構成としては、以下の態様が挙げられる。すなわち、ジカルボン酸構成成分とジオール構成成分を有するポリエステル樹脂αを主成分とする層(α層)と前記樹脂αとは異なる光学特性を有する熱可塑性樹脂βを主成分とする層(β層)を交互に積層した、以下(i)を満たす積層ユニット1と、ポリエステル樹脂γを主成分とする層(γ層)と前記樹脂γとは異なる光学特性を有する熱可塑性樹脂ωを主成分とする層(ω層)を交互に積層した、以下(ii)を満たす積層ユニット2を有することである。
(i)隣接するα層とβ層の厚みの比(α層厚み/β層厚み)が0.7以上、1.4以下であること。
(ii)隣接する3層が、3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層について一方の厚みが1.0以上1.4以下、他方が5以上9以下であること。
 ここで、ポリエステル樹脂αとポリエステル樹脂γは同一の樹脂、熱可塑性樹脂βと熱可塑性樹脂ωは同一の樹脂であることが好ましく、熱可塑性樹脂αとγのみが同一、熱可塑性樹脂βとωのみが同一であってもよい。
 ここで、上記積層ユニット1は、隣接するA層とB層の光学厚みが下記(1)(2)式を同時に満たすことが好ましい。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 ここでλは反射波長、nαはα層の面内屈折率、dαはα層の厚み、nβはβ層の面内屈折率、dβはβ層の厚み、mは次数であり、自然数である。(1)式と(2)式とを同時に満たす層厚み分布を持つことで偶数次の反射を解消できる。そのため、波長900nm~1,200nmの範囲における平均反射率を高くしつつ、可視光領域である波長400~800nmの範囲における平均反射率を低くすることができるため、透明でかつ、熱線カット性能の高いフィルムを得ることができる。一般的に熱可塑性樹脂を成形し、延伸した後のフィルムの屈折率としては、約1.4~1.9となるため、隣接するA層とB層の厚みの比(A層の厚み/B層の厚み)を0.7以上1.4以下とすることで、偶数次の反射を抑制したフィルムを得ることができる。従って、隣接するA層とB層の厚みの比(A層の厚み/B層の厚み)を0.7以上1.4以下とすることが好ましい。より好ましくは、0.8以上1.2以下である。
 また上記積層ユニット2は、積層ユニット2における隣接する3層が、3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層について一方の厚みが1.0以上1.4以下、他方の厚みが5以上9以下の厚みであることが好ましい。上記構成は、米国特許5360659号明細書に記載されている711構成を基本としている。この構成は、ある層に対して、光学特性が異なり、且つ厚みが約1/7である層で挟んだ層を形成することにより、擬似的に1層とみなすことができ、それにより、2次の反射だけでなく、3次の反射までも抑制する方法である。隣接する3層が、3層の中で最も厚みの薄い層の厚みを1とした場合に、厚い層は好ましくは5~9倍、より好ましくは6~8倍であり、もう一方の層は好ましくは1.0~1.4倍であり、より好ましくは1.0~1.2倍であることが好ましい。このような範囲とすることで、反射帯域を1,200nm以上としても、可視光領域(波長400~800nm)において、2次、3次の反射が解消されたフィルムを得ることができる。このときの層厚みとしては、図1に示すとおり上から1~3層目までがω’層、4~6層目までがγ’層とみなされる。上記積層ユニット2は、隣接するω層とγ層の光学厚みが下記(3)(4)式を同時に満たすことが好ましい。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 ここでλは反射波長、nγはγ層の面内屈折率、dγはγ層の厚み、nωはω層の面内屈折率、dωはω層の厚み、mは次数であり、自然数である。
 本発明の積層フィルムにおいて、前記の積層ユニット1と積層ユニット2を有する場合、積層ユニット1と積層ユニット2の間に0.5μm以上10μm以下の厚膜層(中間厚膜層)を有することが好ましい。当該厚膜層を積層ユニット1と積層ユニット2の間に設けることで、特に中間厚膜層周辺の層の厚みを精度良く積層することができる。
 また、本発明の積層フィルムにおいて、表層となる層の厚みは層厚み全体に対して1%以上20%以下であることが好ましい。表層となる層の厚みを前述の範囲とすることで、特に表層周辺の層の厚みを精度よく積層することが可能となり、反射率、透過率の制御が容易となる。
 本発明の積層フィルムにおいて、樹脂Bは、前述の樹脂Aと異なる光学特性を有する熱可塑性樹脂からなる。前述の樹脂Aと異なる光学特性を有する熱可塑性樹脂としては、ポリエステル樹脂、アクリル樹脂、ポリカーボネート樹脂などが挙げられる。中でも、ジカルボン酸構成成分とジオール構成成分を有するポリエステル樹脂であることが好ましい。
 本発明の積層フィルムにおいて、樹脂Aや樹脂Bに用いられる、ジカルボン酸構成成分とジオール構成成分を有するポリエステル樹脂のジカルボン酸構成成分としては、テレフタル酸、イソフタル酸、フタル酸、ナフタレンジカルボン酸(1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸)、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルスルホンジカルボン酸、アジピン酸、セバシン酸、ダイマー酸、シクロヘキサンジカルボン酸とそれらのエステル形成性誘導体などが挙げられる。また、ジオール構成成分としては、エチレングリコール、1,2-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタジオール、ジエチレングリコール、ポリアルキレングリコール、2,2-ビス(4’-β-ヒドロキシエトキシフェニル)プロパン、イソソルベート、1,4-シクロヘキサンジメタノール、スピログリコール、ネオペンチルグリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリテトラメチレンエーテルグリコールおよびこれらのエステル形成性誘導体などが挙げられる。好ましくは、ジカルボン酸構成成分として、テレフタル酸、2,6-ナフタレンジカルボン酸、イソフタル酸が挙げられ、ジオール構成成分としては、エチレングリコール、1,4-シクロヘキサンジメタノール、ポリアルキレングリコール、ポリエチレングリコール、テトラエチレングリコール、ポリテトラメチレンエーテルグリコールが挙げられる。
 本発明の[I]の構成を有する積層フィルムにおいては、前記積層構成部の少なくとも一方の表面の屈折率が1.68以上1.80以下である。屈折率が1.68よりも低い場合には、反射率が30%以上となる反射帯域を有することが困難となる。屈折率が1.80よりも高い場合には樹脂Aと樹脂Bの積層性が悪化し、フィルムの白濁やA層とB層界面での剥離が顕著となる。この達成方法の例としては、前記樹脂Aが、ジカルボン酸構成成分にナフタレンジカルボン酸を含むことが挙げられる。このような構成とすることで、A層とB層との屈折率差を設けることができ、より反射性能に優れた光干渉多層膜を得ることが容易となる。また、A層とB層の屈折率差を大きくするために、樹脂Bは非晶性樹脂であることが好ましい。なお、本発明の積層フィルムは、樹脂Aを主成分とする層(A層)、樹脂Bを主成分とする層(B層)を有するものであるが、ここでいう主成分とは各層を構成する成分の内、50重量%より多く占める成分を表す。本発明の積層フィルムの樹脂Aに、ジカルボン酸構成成分にナフタレンジカルボン酸を含有させるには、樹脂Aを構成する原料ポリエステル樹脂のジカルボン酸構成成分にナフタレンジカルボン酸を含むことが好ましい方法として挙げられる。
 本発明の積層フィルムにおいては、A層とB層の面内平均屈折率の差が0.05以上であることが好ましい。より好ましくは0.12以上であり、さらに好ましくは0.14以上0.35以下である。面内平均屈折率の差が0.05より小さい場合には、反射率が30%以上となる反射帯域を有することが困難となることがある。この達成方法の例としては、ポリエステル樹脂Aが結晶性であり、かつ熱可塑性樹脂Bが非晶性熱可塑性樹脂もしくは非晶性熱可塑性樹脂と結晶性熱可塑性樹脂の混合物であることである。この場合、フィルムの製造における延伸、熱処理工程において容易に屈折率差を設けることが可能となる。面内平均屈折率の差が0.35より大きい場合には、樹脂の積層性が悪化し積層そのものが困難になり、また耐熱性やハンドリング性に劣ったフィルムとなる。
 また、本発明の積層フィルムは、前記積層構成部が動的粘弾性測定により求められる損失正接(tanδ)のピーク値が120℃以下であることが好ましい。より好ましくは70℃以上110℃以下であり、更に好ましくは80℃以上100℃以下である。一般的に屈折率が低い樹脂は、ガラス転移温度も低くなる。そのため、前記積層構成部を構成するA層とB層の屈折率の差を大きくしようとすると、樹脂Aと樹脂Bのガラス転移温度が乖離し、フィルムを延伸する際にA層とB層の延伸挙動に差異が生じるため、A層とB層の配向状態の違いによる剥離が起こり易くなる。動的粘弾性測定により求められる損失正接(tanδ)のピーク値は積層フィルムを構成する樹脂のガラス転移温度の影響を受けて変化するパラメーターであり、この値が低いほど、樹脂Aと樹脂Bのうち屈折率が高い樹脂のガラス転移温度が低いことを表し、この値が高いほど、樹脂Aと樹脂Bのうち屈折率が高い樹脂のガラス転移温度が高いことを表す。損失正接(tanδ)のピーク値を前述の範囲とすると、樹脂Aと樹脂Bの屈折率の差を適切な範囲としながら、ガラス転移温度の差が層の界面での剥離が起こり難くなる程度に制御できるため好ましい。
 本発明の[I]の構成を有する積層フィルムにおいては、前記積層構成部の少なくとも一方の表面のスクラッチ試験における100℃での臨界荷重が15mN以下である。より好ましくは13mN以下、更に好ましくは11mN以下である。スクラッチ試験とは後述の方法で測定される試験のことをさし、表面の硬さを表す指標である臨界荷重を求めることが出来る。また臨界荷重とは、スクラッチ試験方法において、試験片の表面に破壊が生じた時に印加されていた荷重値のことをさす。本発明者らが鋭意検討したところ、積層フィルムを成型加工する際に発生する破れや亀裂は、熱をかけた状態でのフィルム表面の硬さに依存していることを見出した。すなわち、積層構成部の少なくとも一方の表面のスクラッチ試験における100℃での臨界荷重が15mNを超える場合には、柔軟性に欠け、成型加工する際において破れや亀裂を抑制できない。一方、スクラッチ試験における100℃での臨界荷重を低くしすぎると、表面が柔軟になりすぎて、破れが発生しやすくなるため、2mN以上であることが好ましく、6mN以上であることがより好ましい。
 前記積層構成部の少なくとも一方の表面のスクラッチ試験における100℃での臨界荷重を前述の範囲とするための方法は特に限られるものでは無いが、樹脂Aまたは樹脂Bに結晶性の低い成分を共重合および/または含有させることが挙げられる。一例として、ナフタレンジカルボン酸をジカルボン酸成分として含むポリエステルとして最も汎用的に用いられているポリエチレンナフタレート(PEN)のガラス転移温度は約120℃であるが、PENにPENよりも結晶性の低い成分を共重合および/または含有せしめることでガラス転移温度を低くすることが可能となり、スクラッチ試験における100℃での臨界荷重を制御することができる。前記結晶性の低い成分としては、主たる成分となる樹脂より結晶性の低い成分であれば特に限られるものでは無いが、下記式(1)で表される構造を含む化合物であることが好ましい。
-O-(C2n-O)- ・・・式(1)
(m、nは、m×nが5以上となる自然数をあらわす。)
ここでm×nは6以上が好ましく、更に好ましくは8以上が好ましい。式(1)で表される構造を有する化合物としては、具体的にはポリエチレングリコール、テトラエチレングリコール、ポリテトラメチレンエーテルグリコール、トリエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、テトラプロピレングリコール、トリブチレングリコール、テトラブチレングリコール等が挙げられる。式(1)で表される構造を有する化合物をポリエステル樹脂が主成分である層に含む場合は、ポリエステル樹脂の全ジオール構成成分に対して0.5mol%以上40mol%以下含むことが好ましい。より好ましくは2mol%以上30mol%以下、更に好ましくは4mol%以上20mol%以下である。前述の範囲で式(1)で表される構造を有する化合物を含有せしめると、積層構成部の少なくとも一方の表面のスクラッチ試験における100℃での臨界荷重を好適な範囲とすることが容易となり、また積層フィルムの反射率を好適な範囲とすることができる。このような構成とすることで、高い屈折率を有するため光干渉多層膜に好ましく用いられるナフタレンジカルボン酸をジカルボン酸構成成分として含むポリエステル樹脂を用いてもガラス転移温度を低くすることが可能となるため、高い屈折率を維持したままスクラッチ試験における100℃での臨界荷重を前述の範囲に制御することが出来る。なお、式(1)で表される構造をポリエステル樹脂を主成分とする層に含める場合、式(1)で表される構造をジオール構成成分として含むと、蒸散や昇華などによってフィルム系外に流出するのを抑制できるため好ましい。
 本発明の[II]の構成を有する積層フィルムにおいては、前記A層、B層を構成する樹脂のうち、少なくとも一方が、式(1)で表される構造を有する。
-O-(C2n-O)- ・・・式(1)
(m、nは、m×nが5以上となる自然数をあらわす。)。
 いずれの樹脂も式(1)で表される構造を有しない場合には、積層構成部の少なくとも一方の表面のスクラッチ試験における100℃での臨界荷重を15Nm以下に制御することが困難となる。
 また、積層構成部の少なくとも一方の表面の臨界荷重の制御を容易にする観点から、ジカルボン酸構成成分にナフタレンジカルボン酸を含み、式(1)で表される構造を有する樹脂Aを主成分とするA層が、積層構成部の表面に配置されることが好ましい。
 本発明の積層フィルムは、示差走査熱量測定により求められる融解熱量が5J/g以上であることが好ましい。より好ましくは10J/g以上であり、更に好ましくは20J/g以上である。このような構成とすることで、結晶性の高い樹脂からなる積層フィルムとすることができ、A層とB層の屈折率差をより高くすることが出来る。このような積層フィルムとするためには、樹脂Aと樹脂Bのうち、屈折率の高い方の樹脂の結晶性を高くすることが好ましく、特にナフタレンジカルボン酸をより多く含む樹脂の融解熱量を5J/g以上とすることが好ましい。
 本発明の積層フィルムは、内部ヘイズが3.0%以下であることが好ましい。内部ヘイズとはフィルムの表面での光散乱を除外したフィルム内部のヘイズ(濁度)を表す指標であり、内部ヘイズを低くすることで、透明でしかも特定の波長の光を反射する積層フィルムとすることが出来、ハーフミラーや熱線反射フィルムなど透明性が求められる用途にも広く適用できる。より好ましくは内部ヘイズが1.0%以下であり、更に好ましくは0.5%以下である。内部ヘイズを前述の範囲とするためには、A層中の樹脂A以外の成分の種類や量を調整することや、B層中の樹脂B以外の成分の種類や量を調整することで達成される。このような構成とすることで、樹脂との相溶性・分散性に優れる為に内部ヘイズを小さくすることが出来る。上記の条件を満たすための樹脂の組合せの一例として、樹脂Aとしてポリエチレングリコールを共重合したポリエチレンナフタレート樹脂、樹脂Bとしてシクロヘキサンジメタノールを共重合したポリエチレンテレフタレート樹脂の組合せが挙げられる。
 A層とB層の屈折率差を設ける目的で、樹脂Aとしてジカルボン酸構成成分にナフタレンジカルボン酸を含むポリエチレンナフタレートを用いると、ポリエチレンナフタレートのガラス転移温度は約120℃であるため、前述のスクラッチ試験における100℃での臨界荷重が高くなるため、成型加工する際に破れや亀裂が発生する。本発明者らが、ガラス転移温度を下げるために、ポリエチレンナフタレートに共重合成分を加える検討を行ったところ、パラキシレングリコールやイソフタル酸のように芳香環を有する成分や、ブタンジオールやジエチレングリコールのような炭素数の少ないエーテルグリコール成分を用いた場合には、ガラス転移温度を低下させる効果は大きく得られないことが判った。そのため、芳香環を有する成分や炭素数の少ないエーテルグリコール成分を共重合成分として加えることでポリエチレンナフタレートのガラス転移温度を下げようとすると、共重合量を多くする必要が生じ、その結果屈折率が低下し積層フィルムの反射率が低下してしまう。前述の式(1)で表される成分と共重合させることで、樹脂Aの高い屈折率を維持しつつガラス転移温度を低下させることが可能となる。
 本発明の積層フィルムにおいては、積層構成部を構成する樹脂Aが結晶性ポリエステル樹脂であり、かつ樹脂Bが非晶性ポリエステル樹脂であることが好ましい。ここでいう結晶性とは、示差走査熱量測定(DSC)において、融解熱量が5J/g以上であることをいう。一方、非晶性とは、同様に融解熱量が5J/g未満であることをいう。結晶性ポリエステル樹脂は、延伸・熱処理工程において配向結晶化させることにより、延伸前の非晶状態のときよりも高い面内屈折率とすることができる。一方、非晶性ポリエステル樹脂の場合においては、熱処理工程においてガラス転移温度をはるかに超える温度で熱処理を行うことにより、延伸工程で生じる若干の配向も完全に緩和でき、非晶状態の低い屈折率を維持できるものである。このように、フィルムの製造における延伸、熱処理工程において結晶性ポリエステル樹脂と非晶性ポリエステル樹脂との間に容易に屈折率差を設けることができるため、前述のとおり反射率が20nm以上連続して30%以上となる反射帯域を少なくとも1つ有することが可能となる。
 次に、本発明の積層フィルムの好ましい製造方法を、樹脂Aとして結晶性ポリエステル樹脂、樹脂Bとして非晶性ポリエステル樹脂を用いた例にとって以下に説明する。もちろん本発明は係る例に限定して解釈されるわけではない。また、積層フィルムの積層構造の形成自体は、特開2007-307893号公報の〔0053〕~〔0063〕段の記載を参考とすれば実現できるものである。
 樹脂Aおよび樹脂Bをペレットなどの形態で用意する。ペレットは、必要に応じて、熱風中あるいは真空下で乾燥された後、別々の押出機に供給される。押出機内において、融点以上に加熱溶融された樹脂は、ギヤポンプ等で樹脂の押出量を均一化され、フィルター等を介して異物や変性した樹脂などを取り除かれる。これらの樹脂はダイにて目的の形状に成形された後、吐出される。そして、ダイから吐出された多層に積層されたシートは、キャスティングドラム等の冷却体上に押し出され、冷却固化され、キャスティングフィルムが得られる。この際、ワイヤー状、テープ状、針状あるいはナイフ状等の電極を用いて、静電気力によりキャスティングドラム等の冷却体に密着させ急冷固化させることが好ましい。また、スリット状、スポット状、面状の装置からエアーを吹き出してキャスティングドラム等の冷却体に密着させ急冷固化させたり、ニップロールにて冷却体に密着させ急冷固化させたりする方法も好ましい。
 また、複数のポリエステル樹脂からなる積層フィルムを作製する場合には、複数の樹脂を2台以上の押出機を用いて異なる流路から送り出し、積層装置に送り込む。積層装置としては、マルチマニホールドダイやフィードブロックやスタティックミキサー等を用いることができるが、特に、本発明の構成を効率よく得るためには、多数の微細スリットを有する部材を少なくとも別個に2個以上含むフィードブロックを用いることが好ましい。このようなフィードブロックを用いると、装置が極端に大型化することがないため、熱劣化による異物が少なく、積層数が極端に多い場合でも、高精度な積層が可能となる。また、幅方向の積層精度も従来技術に比較して格段に向上する。また、任意の層厚み構成を形成することも可能となる。この装置では、各層の厚みをスリットの形状(長さ、幅)で調整できるため、任意の層厚みを達成することが可能となったものである。
 このようにして所望の層構成に形成した溶融多層積層体をダイへと導き、上述と同様にキャスティングフィルムが得られる。
 このようにして得られたキャスティングフィルムは、二軸延伸されることが好ましい。ここで、二軸延伸とは、長手方向および幅方向に延伸することをいう。延伸は、逐次に二方向に延伸しても良いし、同時に二方向に延伸してもよい。また、さらに長手方向および/または幅方向に再延伸を行ってもよい。
 逐次二軸延伸の場合についてまず説明する。ここで、長手方向への延伸とは、フィルムに長手方向の分子配向を与えるための延伸を言い、通常は、ロールの周速差により施され、この延伸は1段階で行ってもよく、また、複数本のロール対を使用して多段階に行っても良い。延伸の倍率としては樹脂の種類により異なるが、通常、2~15倍が好ましく、積層フィルムを構成する樹脂のいずれかにポリエチレンナフタレートの共重合樹脂を用いた場合には、2~7倍が特に好ましく用いられる。また、延伸温度としては多層積層フィルムを構成する樹脂のガラス転移温度~ガラス転移温度+100℃の範囲が好ましい。
 このようにして得られた一軸延伸されたフィルムに、必要に応じてコロナ処理やフレーム処理、プラズマ処理などの表面処理を施した後、易滑性、易接着性、帯電防止性などの機能をインラインコーティングにより付与してもよい。
 また、幅方向の延伸とは、フィルムに幅方向の配向を与えるための延伸をいい、通常は、テンターを用いて、フィルムの両端をクリップで把持しながら搬送して、幅方向に延伸する。延伸の倍率としては樹脂の種類により異なるが、通常、2~15倍が好ましく、積層フィルムを構成する樹脂のいずれかにポリエチレンナフタレートの共重合樹脂を用いた場合には、2~7倍が特に好ましく用いられる。また、延伸温度としては多層積層フィルムを構成する樹脂のガラス転移温度~ガラス転移温度+120℃の範囲が好ましい。
 こうして二軸延伸されたフィルムは、平面性、寸法安定性を付与するために、テンター内で延伸温度以上融点以下の熱処理を行うのが好ましい。熱処理を行うことにより、フィルムの寸法安定性が向上する。このようにして熱処理された後、均一に徐冷後、室温まで冷やして巻き取られる。また、必要に応じて、熱処理から徐冷の際に弛緩処理などを併用してもよい。
 また、本発明の積層フィルムにおいては、延伸後の熱処理温度をポリエステル樹脂Aの融点以下、かつ樹脂Bの融点以上とすることが好ましい。この場合、ポリエステル樹脂Aは高い配向状態を保持する一方、樹脂Bの配向は緩和されるために、容易にこれらの樹脂の屈折率差を設けることができる。
 同時二軸延伸の場合について次に説明する。同時二軸延伸の場合には、得られたキャストフィルムに、必要に応じてコロナ処理やフレーム処理、プラズマ処理などの表面処理を施した後、易滑性、易接着性、帯電防止性などの機能をインラインコーティングにより付与してもよい。
 次に、キャストフィルムを、同時二軸テンターへ導き、フィルムの両端をクリップで把持しながら搬送して、長手方向と幅方向に同時および/または段階的に延伸する。同時二軸延伸機としては、パンタグラフ方式、スクリュー方式、駆動モーター方式、リニアモーター方式があるが、任意に延伸倍率を変更可能であり、任意の場所で弛緩処理を行うことができる駆動モーター方式もしくはリニアモーター方式が好ましい。延伸の倍率としては樹脂の種類により異なるが、通常、面積倍率として6~50倍が好ましく、多層積層フィルムを構成する樹脂のいずれかにポリエチレンナフタレートの共重合樹脂を用いた場合には、面積倍率として8~30倍が特に好ましく用いられる。特に同時二軸延伸の場合には、面内の配向差を抑制するために、長手方向と幅方向の延伸倍率を同一とするとともに、延伸速度もほぼ等しくなるようにすることが好ましい。また、延伸温度としては多層積層フィルムを構成する樹脂のガラス転移温度~ガラス転移温度+120℃の範囲が好ましい。
 こうして二軸延伸されたフィルムは、平面性、寸法安定性を付与するために、引き続きテンター内で延伸温度以上融点以下の熱処理を行うのが好ましい。この熱処理の際に、幅方向での主配向軸の分布を抑制するため、熱処理ゾーンに入る直前および/あるいは直後に瞬時に長手方向に弛緩処理することが好ましい。このようにして熱処理された後、均一に徐冷後、室温まで冷やして巻き取られる。
 以下、本発明の積層フィルムの実施例を用いて説明する。
 [物性の測定方法ならびに効果の評価方法]
 特性値の評価方法ならびに効果の評価方法は次の通りである。
 (1)層厚み、積層数、積層構造
 フィルムの層構成は、ミクロトームを用いて断面を切り出したサンプルについて、透過型電子顕微鏡(TEM)観察により求めた。すなわち、透過型電子顕微鏡H-7100FA型((株)日立製作所製)を用い、加速電圧75kVの条件でフィルムの断面を10,000~40,000倍に拡大観察し、断面写真を撮影、層構成および各層厚みを測定した。尚、場合によっては、コントラストを高く得るために、公知のRuOやOsOなどを使用した染色技術を用いた。
 (2)反射率
 5cm×5cmで切り出したサンプルを分光光度計U-4100 Spectrophotomater((株)日立製作所製)に付属の積分球を用いた基本構成で反射率測定を行った。反射率測定では、装置付属の酸化アルミニウムの副白板を基準として、相対反射率として算出した。反射率測定では、サンプルの長手方向を上下方向にして、積分球の後ろに設置した。透過率測定では、サンプルの長手方向を上下方向にして、積分球の前に設置した。測定条件:スリットは2nm(可視)/自動制御(赤外)とし、ゲインは2と設定し、走査速度を600nm/分で測定し、方位角0度における反射率を得た。
 (3)融解熱量、融点、ガラス転移温度、結晶化温度
 サンプル質量5gを採取し、示差走査熱量分析計(DSC)ロボットDSC-RDC220(セイコー電子工業(株)製)を用い、JIS K 7122(1987年)およびJIS K 7121(1987年)に従って測定、算出した。測定は25℃から290℃まで5℃/分で昇温し、このときの融点±20℃の範囲におけるベースラインからの積分値を融解熱量とした。また、ここでの融点とは、DSCのベースラインからの差異が最大となる点とした。ここで、樹脂Aまたは樹脂B単独のペレット等を測定する場合、融解熱量が5J/g以上の樹脂を結晶性樹脂、5J/g未満である樹脂を非晶性樹脂とした。
 (4)式(1)で示される構造の有無
 式(1)で示される構造の有無は、以下の方法により確認した。すなわち、ガスクロマトグラフ質量分析(GC-MS)により重量ピークを確認した。次に、フーリエ変換型赤外分光(FT-IR)にて、推定される構造が有する各原子間の結合に由来するピークの有無を確認した。さらに、プロトン核磁気共鳴分光法(H-NMR、13C-NMR)にて、構造式上の水素原子または炭素原子の位置に由来する化学シフトの位置と水素原子の個数に由来するプロトン吸収線面積を確認し、これらの結果から判断した。
 (5)内部ヘイズ
 一辺が5cmの正方形状の積層フィルムサンプルを3点(3個)準備し、次にサンプルを常態(23℃、相対湿度50%)において、40時間放置した。それぞれのサンプルを濁度計「NDH5000」(日本電色工業(株)製)を用いてJIS K 7105に準じて測定した。フィルム表面の凹凸による光散乱を除去するために、流動パラフィンで満たされた石英セルにサンプルを浸した状態で測定した。それぞれ3点(3個)の値を平均して、積層フィルムの内部ヘイズの値とした。
 (6)スクラッチ試験における100℃での臨界荷重
 一辺が3cmの正方形状の積層フィルムサンプルを5点(5個)準備した。サンプルをスクラッチ試験機「CSR5000」((株)レスカ製)の測定ステージに設置し、加熱ステージの温度を100℃に設定した。温調器の表示が100℃に到達してから1分間後に測定を開始した。測定条件は以下の通り。
 触針:ダイヤモンド触針R15μm
 スクラッチ速度:10μm/s
 振幅:50μm
 タッチ検出レベル:3.0mN
 荷重条件:増加
 初期荷重:0mN
 最大荷重:200mN
 増加:3.33mN
 時間:60s
 測定終了後に印加荷重とセンサー加速度の関係から臨界荷重Wc(mN)を求めた。ここで、臨界荷重の求め方を図2の測定結果例を元に説明する。横軸は測定開始からの時間であり、縦軸は、センサー加速度および印加荷重を示す。実線プロットが深さ方向のセンサーの加速度を示し、この値が高くなるとフィルム表面から深さ方向に触針が入りこんだことを示す。また点線のプロットは荷重値を示し、一点鎖線はセンサー加速度の傾きが一番大きくなる時間を示す。測定を開始後、印加荷重が増加するに伴い、触針が深さ方向に入り込みセンサー加速度が徐々に増加する(領域A)。その後、表面が破壊されると図中央のようにセンサー加速度が大きく変化し(領域B)、その後破壊された表面を移動するためセンサー加速度が細かく変動する(領域C)。領域Bのセンサー加速度の傾きが一番大きい点(図中の4)で印加されていた荷重値を臨界荷重Wcとする(図中の5)。2点目以降のサンプルを測定する際は、温調器が25℃を示すまで放置したのち、サンプルを交換した上で、同様に測定した。5点の臨界荷重の最大値と最小値を除いた3点の平均値を臨界荷重とした。なお、積層フィルムの表面に積層構成部の表面がでていない場合は、剥離によって積層構成部の表面出しをした後に測定を行う。剥離が困難である場合はダイヤモンドカッターを用いて切削を行い表面出しをした後に測定を行う。
 (7)成型加工性
 フィルムサンプルを横320mm縦460mmに切り出し、開口部150mm×210mm、底面部105mm×196mm、高さ50mmのトレー状金型を備えた小型真空成形機フォーミング300X型(成光産業(株)製)を用いて、成形時のシート温度が100℃±2℃の範囲になるような温度条件で予熱、成形を行った。100個の成型サンプルを作成し、各々について破れや亀裂が発生しているかどうかを確認し、以下のように成型加工性を判断した。「良」または「優れる」を良好な結果とした。
優れる:破れや亀裂の発生しているサンプルが5個未満
良:破れや亀裂の発生しているサンプルが5個以上10個未満
劣る:破れや亀裂の発生しているサンプルが10個以上20個未満
より劣る:破れや亀裂の発生しているサンプルが20個以上
 (8)損失正接(tanδ)のピーク値
 フィルムサンプルを横7mm縦20mmに切り出し、動的粘弾性測定装置「DMS6100」(セイコーインスツル(株)製)を用いて以下の測定条件にて測定した。
 昇温温度:20℃~180℃
 昇温速度:3℃/分
 ホールド時間:5分
 サンプリング:1秒
 測定周波数:0.1Hz
 得られるtanδ(tanD)と温度(Temp)の値から、tanδが最大となる温度を損失正接のピーク値とした。
 (実施例1)
 樹脂Aを形成する原料ポリエステル樹脂として、ポリエチレングリコール(平均分子量400)(表中の式(1)の構造のm×nが10以上である場合は「10以上」と記した)を樹脂Aの全ジオール構成成分に対して6mol%共重合したポリエチレン2,6-ナフタレート(固有粘度0.62、融点245℃、表中でPEN(1)と示す)を用い、樹脂Bを形成する原料ポリエステル樹脂として、樹脂Bの全ジオール構成成分に対してシクロヘキサンジメタノール(表中ではCHDMと記載)を30mol%共重合したポリエチレンテレフタレート樹脂(固有粘度0.73、非晶性樹脂(融点なし)、ガラス転移温度79℃)とポリエチレンテレフタレート(東レ(株)製、固有粘度0.65、融点256℃、ガラス転移温度81℃)を82:18の質量比となるように混合したもの(融点225℃、ガラス転移温度77℃、表中で樹脂(1)と示す)を用いた。
 準備した樹脂Aおよび樹脂Bは、それぞれ、ベント付き二軸押出機にて280℃の溶融状態とした後、ギヤポンプおよびフィルターを介して、449層のフィードブロックにて合流させて、(樹脂Aからなる表層厚膜層)/(A層とB層を厚み方向に交互に149層積層された積層ユニット1)/(樹脂Aからなる中間厚膜層)/(A層とB層を厚み方向に交互に297層積層された積層ユニット2)/(樹脂Aからなる表層厚膜層)の層構成を有する積層フィルムを得た。なお、積層フィルムの両表層部分は樹脂Aとなるようにした。449層フィードブロックにて合流させ後、T-ダイに導いてシート状に成形した後、静電印加にて表面温度25℃に保たれたキャスティングドラム上で急冷固化し、キャストフィルムを得た。なお、樹脂Aと樹脂Bの重量比が約1:1になるように吐出量を調整した。
 得られたキャストフィルムを、樹脂Aのガラス転移温度+10℃の温度に設定したロール群で加熱した後、延伸区間長100mmの間で、フィルム両面からラジエーションヒーターにより急速加熱しながら、縦方向に4.0倍延伸し、その後一旦冷却した。つづいて、この一軸延伸フィルムの両面に空気中でコロナ放電処理を施し、基材フィルムの濡れ張力を55mN/mとし、その処理面に(ガラス転移温度が18℃のポリエステル樹脂)/(ガラス転移温度が82℃のポリエステル樹脂)/平均粒径100nmのシリカ粒子からなる積層形成膜塗液を塗布し、透明・易滑・易接着層を形成した。
 この一軸延伸フィルムをテンターに導き、100℃の熱風で予熱後、樹脂Aのガラス転移温度+20℃の温度で横方向に均一な延伸速度で4.0倍延伸した。延伸したフィルムは、そのまま、テンター内で235℃の熱風にて熱処理を行い、続いて同温度にて幅方向に2%の弛緩処理を施し、その後、室温まで徐冷後、巻き取った。得られた積層フィルムの厚みは40μmであった(表層厚膜層(1μm)/積層ユニット1(20μm)/中間厚膜層(1μm)/積層ユニット2(17μm)/表層厚膜層(1μm))。
 得られた積層フィルムは波長900~1,400nmの光を反射しつつ、可視光領域の波長400~800nmにおいてほぼ反射のない平坦な反射率分布を備えたものであった。また、透明性に優れ、成型加工性にも優れるものであった。結果を表1に示す。
 (実施例2)
 (樹脂Aからなる表層厚膜層)/(A層とB層を厚み方向に交互に49層積層された積層ユニット1)/(樹脂Aからなる表層厚膜層)の層構成となる51層のフィードブロックを用いた以外は、実施例1と同様に積層フィルムを得た。得られた積層フィルムの厚みは10μmであった(表層厚膜層(1μm)/積層ユニット1(8μm)/表層厚膜層(1μm))。
 得られた積層フィルムは波長900~1,400nmの光の反射率がやや低くなっているものの、可視光領域の波長400~800nmにおいてほぼ反射のない平坦な反射率分布を備えたものであった。透明性に優れ、成型加工性にも優れるものであった。結果を表1に示す。
 (実施例3)
 樹脂Aを形成する原料ポリエステル樹脂として、全ジオール構成成分に対してポリテトラメチレンエーテルグリコール(平均分子量650)を6mol%共重合したポリエチレンナフタレート(固有粘度0.62、融点254℃、表中でPEN(2)と示す)を用いた以外は、実施例1と同様に積層フィルムを得た。
 得られた積層フィルムは900~1,400nmの光を反射しつつ、可視光領域の波長400~800nmにおいてほぼ反射のない平坦な反射率分布を備えたものであった。透明性に優れ、成型加工性にも優れるものであった。結果を表1に示す。
 (実施例4)
 (樹脂Aからなる表層厚膜層)/(A層とB層を厚み方向に交互に49層積層された積層ユニット1)/(樹脂Aからなる表層厚膜層)の層構成となる51層のフィードブロックを用いた以外は、実施例3と同様に積層フィルムを得た。
 得られた積層フィルムは波長900~1,400nmの光の反射率がやや低下しているものの、可視光領域の波長400~800nmにおいてはほぼ反射のない平坦な反射率分布を備えたものであった。透明性に優れ、成型加工性にも優れるものであった。結果を表1に示す。
 (実施例5)
 樹脂Aを形成される原料ポリエステル樹脂として、全ジオール構成成分に対してトリエチレングリコールを15mol%共重合したポリエチレンナフタレート(固有粘度0.62、融点244℃、表中でPEN(3)と示す)を用いた以外は、実施例1と同様に積層フィルムを得た。
 得られた積層フィルムは波長900~1,400nmの光を反射しつつ、可視光領域の波長400~800nmにおいてほぼ反射のない平坦な反射率分布を備えたものであった。透明性に優れ、成型加工性にも優れるものであった。結果を表1に示す。
 (実施例6)
 (樹脂Aからなる表層厚膜層)/(A層とB層を厚み方向に交互に49層積層された積層ユニット1)/(樹脂Aからなる表層厚膜層)の層構成となる51層のフィードブロックを用いた以外は、実施例5と同様に積層フィルムを得た。
 得られた積層フィルムは波長900~1,400nmの光の反射率がやや低下しているものの、可視光領域の波長400~800nmにおいてはほぼ反射のない平坦な反射率分布を備えたものであった。透明性に優れ、密着性にも優れるものであった。結果を表1に示す。
 (実施例7)
 樹脂Aを形成される原料ポリエステル樹脂として、全ジオール構成成分に対してテトラエチレングリコールを15mol%共重合したポリエチレンナフタレート(固有粘度0.62、融点238℃、表中でPEN(4)と示す)を用いた以外は、実施例1と同様に積層フィルムを得た。
 得られた積層フィルムは波長900~1,400nmの光を反射しつつ、可視光領域の波長400~800nmにおいてほぼ反射のない平坦な反射率分布を備えたものであった。透明性に優れ、成型加工性にも優れるものであった。結果を表1に示す。
 (実施例8)
 (樹脂Aからなる表層厚膜層)/(A層とB層を厚み方向に交互に49層積層された積層ユニット1)/(樹脂Aからなる表層厚膜層)の層構成となる51層のフィードブロックを用いた以外は、実施例7と同様に積層フィルムを得た。
 得られた積層フィルムは波長900~1,400nmの光の反射率がやや低下しているものの、可視光領域の波長400~800nmにおいてはほぼ反射のない平坦な反射率分布を備えたものであった。透明性に優れ、成型加工性にも優れるものであった。結果を表1に示す。
 (実施例9)
 樹脂Aを形成される原料ポリエステル樹脂として、全ジオール構成成分に対してジプロピレングリコールを15mol%共重合したポリエチレンナフタレート(固有粘度0.62、融点252℃、表中でPEN(5)と示す)を用いた以外は、実施例1と同様に積層フィルムを得た。
 得られた積層フィルムは波長900~1,400nmの光を反射しつつ、可視光領域の波長400~800nmにおいてほぼ反射のない平坦な反射率分布を備えたものであった。透明性に優れ、成型加工性にも優れるものであった。結果を表1に示す。
 (実施例10)
 (樹脂Aからなる表層厚膜層)/(A層とB層を厚み方向に交互に49層積層された積層ユニット1)/(樹脂Aからなる表層厚膜層)の層構成となる51層のフィードブロックを用いた以外は、実施例9と同様に積層フィルムを得た。
 得られた積層フィルムは波長900~1,400nmの光の反射率がやや低下しているものの、可視光領域の波長400~800nmにおいてはほぼ反射のない平坦な反射率分布を備えたものであった。透明性に優れ、成型加工性にも優れるものであった。結果を表1に示す。
 (実施例11)
 樹脂Aを形成される原料ポリエステル樹脂として、全ジオール構成成分に対してトリプロピレングリコールを15mol%共重合したポリエチレンナフタレート(固有粘度0.62、融点240℃、表中でPEN(6)と示す)を用いた以外は、実施例1と同様に積層フィルムを得た。
 得られた積層フィルムは波長900~1,400nmの光を反射しつつ、可視光領域の波長400~800nmにおいてほぼ反射のない平坦な反射率分布を備えたものであった。透明性に優れ、成型加工性にも優れるものであった。結果を表1に示す。
 (実施例12)
 (樹脂Aからなる表層厚膜層)/(A層とB層を厚み方向に交互に49層積層された積層ユニット1)/(樹脂Aからなる表層厚膜層)の層構成となる51層のフィードブロックを用いた以外は、実施例11と同様に積層フィルムを得た。
 得られた積層フィルムは波長900~1,400nmの光の反射率がやや低下しているものの、可視光領域の波長400~800nmにおいてはほぼ反射のない平坦な反射率分布を備えたものであった。透明性に優れ、成型加工性にも優れるものであった。結果を表1に示す。
 (実施例13)
 樹脂Bを形成される原料ポリエステル樹脂として、全ジカルボン酸構成成分に対してシクロヘキサンジカルボン酸(表中ではCHDAと記載)を20mol%、全ジオール構成成分に対してスピログリコール(表中ではSPGと記載)を15mol%共重合した共重合ポリエチレンテレフタレート(固有粘度0.72、ガラス転移温度85℃、非晶性樹脂(融点なし)、表中で樹脂(2))を用いた以外は、実施例1と同様に積層フィルムを得た。
 得られた積層フィルムは波長900~1,400nmの光を反射しつつ、可視光領域の波長400~800nmにおいてほぼ反射のない平坦な反射率分布を備えたものであった。透明性に優れ、成型加工性にも優れるものであった。結果を表1に示す。
 (実施例14)
 (樹脂Aからなる表層厚膜層)/(A層とB層を厚み方向に交互に49層積層された積層ユニット1)/(樹脂Aからなる表層厚膜層)の層構成となる51層のフィードブロックを用いた以外は、実施例13と同様に積層フィルムを得た。
 得られた積層フィルムは波長900~1,400nmの光の反射率がやや低下しているものの、可視光領域の波長400~800nmにおいてはほぼ反射のない平坦な反射率分布を備えたものであった。透明性に優れ、成型加工性にも優れるものであった。結果を表1に示す。
 (実施例15)
 樹脂Aを形成される原料ポリエステル樹脂として、全ジオール構成成分に対してテトラエチレングリコールを15mol%共重合したポリエチレンナフタレート(固有粘度0.62、融点238℃、表中でPEN(4)と示す)を用いた以外は、実施例13と同様に積層フィルムを得た。
 得られた積層フィルムは波長900~1,400nmの光を反射しつつ、可視光領域の波長400~800nmにおいてほぼ反射のない平坦な反射率分布を備えたものであった。透明性に優れ、成型加工性にも優れるものであった。結果を表1に示す。
 (実施例16)
 (樹脂Aからなる表層厚膜層)/(A層とB層を厚み方向に交互に49層積層された積層ユニット1)/(樹脂Aからなる表層厚膜層)の層構成となる51層のフィードブロックを用いた以外は、実施例15と同様に積層フィルムを得た。
 得られた積層フィルムは波長900~1,400nmの光の反射率がやや低下しているものの、可視光領域の波長400~800nmにおいてはほぼ反射のない平坦な反射率分布を備えたものであった。透明性に優れ、成型加工性にも優れるものであった。結果を表1に示す。
 (実施例17)
 樹脂Aを形成される原料ポリエステル樹脂として、全ジオール構成成分に対してポリエチレングリコール(平均分子量400)の共重合量を4mol%にしたポリエチレンナフタレート(固有粘度0.62、融点249℃、表中でPEN(5)と示す)を用いた以外は、実施例2と同様に積層フィルムを得た。
 得られた積層フィルムは波長900~1,400nmの光を反射しつつ、可視光領域の波長400~800nmにおいてほぼ反射のない平坦な反射率分布を備えたものであった。透明性に優れ、成型加工性にも優れるものであった。結果を表1に示す。
 (実施例18)
 樹脂Aを形成される原料ポリエステル樹脂として、全ジオール構成成分に対してポリエチレングリコール(平均分子量400)の共重合量を1mol%にしたポリエチレンナフタレート(固有粘度0.62、融点258℃、表中でPEN(6)と示す)を用いた以外は、実施例2と同様に積層フィルムを得た。
 得られた積層フィルムは波長900~1,400nmの光を反射しつつ、可視光領域の波長400~800nmにおいてほぼ反射のない平坦な反射率分布を備えたものであった。透明性に優れ、成型加工性にも優れるものであった。結果を表1に示す。
 (実施例19)
 樹脂Aとして、樹脂Aの全ジオール構成成分に対してポリエチレングリコール(平均分子量400)の共重合量を20mol%にしたポリエチレンナフタレート(固有粘度0.62、融点228℃、表中でPEN(7)と示す)を用い、樹脂Bとして樹脂Bの全ジオール構成成分に対してポリエチレングリコール(平均分子量400)(表中PEG400と記載)を20mol%共重合した共重合ポリエチレンテレフタレート(固有粘度0.72、ガラス転移温度53℃、非晶性樹脂(融点なし)、表中で樹脂(3))を用いた以外は、実施例2と同様に積層フィルムを得た。
 得られた積層フィルムは波長900~1,400nmの光を反射しつつ、可視光領域の波長400~800nmにおいてほぼ反射のない平坦な反射率分布を備えたものであった。透明性に優れ、成型加工性にも優れるものであった。結果を表1に示す。
 (実施例20)
 樹脂Aを形成する原料ポリエステル樹脂として、全ジオール構成成分に対してポリエチレングリコール(平均分子量400)の共重合量を30mol%にしたポリエチレンナフタレート(固有粘度0.62、融点215℃、表中でPEN(8)と示す)を用い、樹脂Bとして樹脂Bの全ジオール構成成分に対してポリエチレングリコール(平均分子量400)を50mol%共重合した共重合ポリエチレンテレフタレート(固有粘度0.72、ガラス転移温度15℃、非晶性樹脂(融点なし)、表中で樹脂(4))を用いた以外は、実施例2と同様に積層フィルムを得た。
 得られた積層フィルムは波長900~1,400nmの光を反射しつつ、可視光領域の波長400~800nmにおいてほぼ反射のない平坦な反射率分布を備えたものであった。透明性に優れ、成型加工性にも優れるものであった。結果を表1に示す。
 (比較例1)
 樹脂Aを形成される原料ポリエステル樹脂として、全ジオール構成成分に対してテトラエチレングリコールの共重合量を4mol%にしたポリエチレンナフタレート(固有粘度0.62、融点260℃、表中でPEN(9)と示す)を用いた以外は、実施例2と同様に積層フィルムを得た。
 得られた積層フィルムは波長900~1,400nmの光を反射しつつ、可視光領域の波長400~800nmにおいてほぼ反射のない平坦な反射率分布を備えたものであった。透明性に優れ、成型加工性にも優れるものであった。結果を表1に示す。
 (比較例2)
 樹脂Aを形成する原料ポリエステル樹脂として、全ジオール構成成分に対してテトラエチレングリコールの共重合量を1mol%にしたポリエチレンナフタレート(固有粘度0.62、融点264℃、表中でPEN(10)と示す)を用いた以外は、実施例2と同様に積層フィルムを得た。
 得られた積層フィルムは波長900~1,400nmの光を反射しつつ、可視光領域の波長400~800nmにおいてほぼ反射のない平坦な反射率分布を備えたものであった。透明性に優れ、成型加工性にも優れるものであった。結果を表1に示す。
 (実施例21)
 樹脂Aを形成する原料ポリエステル樹脂として、全ジオール構成成分に対してテトラエチレングリコールの共重合量を20mol%にしたポリエチレンナフタレート(固有粘度0.62、融点233℃、表中でPEN(11)と示す)を用い、樹脂Bとしてエチレングリコールに対しポリエチレングリコール(平均分子量400)を20mol%共重合した共重合ポリエチレンテレフタレート(固有粘度0.72、ガラス転移温度53℃、非晶性樹脂(融点なし)、表中で樹脂(3))を用いた以外は、実施例2と同様に積層フィルムを得た。
 得られた積層フィルムは波長900~1,400nmの光を反射しつつ、可視光領域の波長400~800nmにおいてほぼ反射のない平坦な反射率分布を備えたものであった。透明性に優れ、成型加工性にも優れるものであった。結果を表1に示す。
 (実施例22)
 樹脂Aを形成する原料ポリエステル樹脂として、全ジオール構成成分に対してテトラエチレングリコールの共重合量を30mol%にしたポリエチレンナフタレート(固有粘度0.62、融点218℃、表中でPEN(12)と示す)を用い、樹脂Bとして樹脂Bの全ジオール構成成分に対してポリエチレングリコール(平均分子量400)を50mol%共重合した共重合ポリエチレンテレフタレート(固有粘度0.72、ガラス転移温度15℃、非晶性樹脂(融点なし)、表中で樹脂(4))を用いた以外は、実施例2と同様に積層フィルムを得た。
 得られた積層フィルムは波長900~1,400nmの光を反射しつつ、可視光領域の波長400~800nmにおいてほぼ反射のない平坦な反射率分布を備えたものであった。透明性に優れ、成型加工性にも優れるものであった。結果を表1に示す。
 (比較例3)
 (樹脂Aからなる表層厚膜層)/(A層とB層を厚み方向に交互に19層積層された積層ユニット1)/(樹脂Aからなる表層厚膜層)の層構成となる21層のフィードブロックを用いた以外は、実施例1と同様に積層フィルムを得た。得られた積層フィルムの厚みは5μmであった(表層厚膜層(1μm)/積層ユニット1(3μm)/表層厚膜層(1μm))。
 得られた積層フィルムは波長900~1,400nmの光の反射率が大きく低下しており、可視光領域の波長400~800nmにおいてほぼ反射のない平坦な反射率分布を備えたものであった。透明性に優れ、成型加工性にも優れるものであった。結果を表1に示す。
 (比較例4)
 (樹脂Aからなる表層厚膜層)/(A層とB層を厚み方向に交互に19層積層された積層ユニット1)/(樹脂Aからなる表層厚膜層)の層構成となる21層のフィードブロックを用いた以外は、実施例7と同様に積層フィルムを得た。
 得られた積層フィルムは波長900~1,400nmの光の反射率が大きく低下しており、可視光領域の波長400~800nmにおいてほぼ反射のない平坦な反射率分布を備えたものであった。透明性に優れ、成型加工性にも優れるものであった。結果を表1に示す。
 (比較例5)
 樹脂Aを形成する原料ポリエステル樹脂として、全ジオール構成成分に対してポリエチレンテレフタレート(東レ(株)製、固有粘度0.65、融点256℃、表中でPET(1)と示す)を用いた以外は、実施例2と同様に積層フィルムを得た。
 得られた積層フィルムは波長900~1,400nmの光の反射率が大きく低下しており、可視光領域の波長400~800nmにおいてほぼ反射のない平坦な反射率分布を備えたものであった。透明性に優れ、成型加工性にも優れるものであった。結果を表1に示す。
 (比較例6)
 樹脂Aを形成する原料ポリエステル樹脂として、全ジオール構成成分に対してポリエチレングリコール(分子量400)を6mol%共重合したポリエチレンテレフタレート(固有粘度0.62、融点245℃、表中でPET(2)と示す)を用いた以外は実施例2と同様にして積層フィルムを得た。
 得られた積層フィルムは波長900~1,400nmの光の反射率が大きく低下しており、可視光領域の波長400~800nmにおいてほぼ反射のない平坦な反射率分布を備えたものであった。透明性に優れ、成型加工性にも優れるものであった。結果を表1に示す。
 (比較例7)
 樹脂Aを形成する原料ポリエステル樹脂として、全ジオール構成成分に対してテトラエチレングリコールを15mol%共重合したポリエチレンテレフタレート(固有粘度0.62、融点240℃、表中でPET(3)と示す)を用いた以外は実施例2と同様にして積層フィルムを得た。
 得られた積層フィルムは波長900~1,400nmの光の反射率が大きく低下しており、可視光領域の波長400~800nmにおいてほぼ反射のない平坦な反射率分布を備えたものであった。透明性に優れ、成型加工性にも優れるものであった。結果を表1に示す。
 (比較例8)
 樹脂Aを形成される原料ポリエステル樹脂として、全ジオール構成成分に対してポリエチレンナフタレート(固有粘度0.62、融点269℃、表中でPENと示す)を用いた以外は実施例2と同様にして積層フィルムを得た。
 得られた積層フィルムは波長900~1,400nmの光を反射しつつ、可視光領域の波長400~800nmにおいてほぼ反射のない平坦な反射率分布を備えたものであった。透明性に優れるが、成型加工性が悪いものであった。結果を表1に示す。
 (比較例9)
 樹脂Aを形成する原料ポリエステル樹脂として、全ジオール構成成分に対してポリエチレングリコールの共重合量を0.4mol%にしたポリエチレンナフタレート(固有粘度0.62、融点265℃、表中でPEN(13)と示す)を用いた以外は、実施例2と同様に積層フィルムを得た。
 得られた積層フィルムは波長900~1,400nmの光を反射しつつ、可視光領域の波長400~800nmにおいてほぼ反射のない平坦な反射率分布を備えたものであった。透明性に優れるが、成型加工性が悪いものであった。結果を表1に示す。
 (比較例10)
 樹脂Aを形成する原料ポリエステル樹脂として、全ジオール構成成分に対してテトラエチレングリコールの共重合量を0.4mol%にしたポリエチレンナフタレート(固有粘度0.62、融点266℃、表中でPEN(14)と示す)を用いた以外は、実施例2と同様に積層フィルムを得た。
 得られた積層フィルムは波長900~1,400nmの光を反射しつつ、可視光領域の波長400~800nmにおいてほぼ反射のない平坦な反射率分布を備えたものであった。透明性に優れるが、成型加工性が悪いものであった。結果を表1に示す。
 (比較例11)
 樹脂Aを形成する原料ポリエステル樹脂として、全ジオール構成成分に対してポリエチレングリコールの共重合量を40mol%にしたポリエチレンナフタレート(固有粘度0.62、融点203℃、表中でPEN(15)と示す)を用い、樹脂Bとして樹脂Bの全ジオール構成成分に対してポリエチレングリコール(平均分子量400)を50mol%共重合した共重合ポリエチレンテレフタレート(固有粘度0.72、ガラス転移温度15℃、非晶性樹脂、表中で樹脂(4))を用いた以外は、実施例2と同様に積層フィルムを得た。
 得られた積層フィルムは波長900~1,400nmの光の反射率が大きく低下しており、可視光領域の波長400~800nmにおいてほぼ反射のない平坦な反射率分布を備えたものであった。透明性に優れ、成型加工性にも優れるものであった。結果を表1に示す。
 (比較例12)
 樹脂Aを形成する原料ポリエステル樹脂として、全ジオール構成成分に対してポリエチレングリコールの共重合量を40mol%にしたポリエチレンナフタレート(固有粘度0.62、融点206℃、表中でPEN(16)と示す)を用い、樹脂Bとして樹脂Bの全ジオール構成成分に対してポリエチレングリコール(平均分子量400)を50mol%共重合した共重合ポリエチレンテレフタレート(固有粘度0.72、ガラス転移温度15℃、非晶性樹脂、表中で樹脂(4))を用いた以外は、実施例2と同様に積層フィルムを得た。
 得られた積層フィルムは波長900~1,400nmの光の反射率が大きく低下しており、可視光領域の波長400~800nmにおいてほぼ反射のない平坦な反射率分布を備えたものであった。透明性に優れ、成型加工性にも優れるものであった。結果を表1に示す。
 (比較例13)
 樹脂Aを形成する原料ポリエステル樹脂として、全ジオール構成成分に対してジエチレングリコールを15mol%共重合したポリエチレンナフタレート(固有粘度0.62、融点244℃、表中でPEN(17)と示す)を用いた以外は、実施例2と同様に積層フィルムを得た。
 得られた積層フィルムは波長900~1,400nmの光を反射しつつ、可視光領域の波長400~800nmにおいてほぼ反射のない平坦な反射率分布を備えたものであった。透明性に優れるが、成型加工性が悪いものであった。結果を表1に示す。
 (比較例14)
 樹脂Aを形成する原料ポリエステル樹脂として、全ジオール構成成分に対してブチレングリコールを15mol%共重合したポリエチレンナフタレート(固有粘度0.62、融点251℃、表中でPEN(18)と示す)を用いた以外は、実施例2と同様に積層フィルムを得た。
 得られた積層フィルムは波長900~1,400nmの光を反射しつつ、可視光領域の波長400~800nmにおいてほぼ反射のない平坦な反射率分布を備えたものであった。透明性に優れるが、成型加工性が悪いものであった。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 本発明は、建材、自動車、液晶ディスプレイなど種々の用途に用いられ、特に特定の波長の光を反射させる光学フィルムとして利用できる。
1 領域A
2 領域B
3 領域C
4 深さ方向のセンサーの加速度の傾きが最大となる点
5 深さ方向のセンサーの加速度の傾きが最大となる点で印加されていた荷重値:臨界荷重(mN)Wc

Claims (20)

  1.  ジカルボン酸構成成分とジオール構成成分を有するポリエステル樹脂(樹脂A)を主成分とする層(A層)と、前記樹脂Aとは異なる光学特性を有する熱可塑性樹脂(樹脂B)を主成分とする層(B層)を交互に51層以上積層した積層構成部を有する積層フィルムであって、前記積層構成部の少なくとも一方の表面の屈折率が1.68以上1.80以下であり、前記表面のスクラッチ試験における100℃での臨界荷重が15mN以下であり、前記積層構成部の少なくとも一方の表面側から測定した反射率プロフィールにおいて、30%以上の反射率が波長幅20nm以上にわたって連続する反射帯域を少なくとも一つ有する積層フィルム。
  2.  前記反射率プロフィールが、900~1,400nmの波長領域において測定したものである請求項1に記載の積層フィルム。
  3.  前記積層構成部が、動的粘弾性測定により求められる損失正接(tanδ)のピーク値が120℃以下である請求項1に記載の積層フィルム。
  4.  前記A層、B層を構成する樹脂のうち、少なくとも一方が、式(1)で表される構造を有する請求項1に記載の積層フィルム。
    -O-(C2n-O)- ・・・式(1)
    (m、nは、m×nが5以上となる自然数をあらわす。)
  5.  前記樹脂Bがジカルボン酸構成成分とジオール構成成分を有するポリエステル樹脂である請求項1に記載の積層フィルム。
  6.  前記樹脂Bがジカルボン酸構成成分とジオール構成成分を有するポリエステル樹脂であって、前記樹脂Aまたは樹脂Bの少なくとも一方が、式(1)で表される構造をジオール構成成分として含む請求項1に記載の積層フィルム。
    -O-(C2n-O)- ・・・式(1)
    (m、nは、m×nが5以上となる自然数をあらわす。)
  7.  前記樹脂Bがジカルボン酸構成成分とジオール構成成分を有するポリエステル樹脂であって、前記樹脂Aまたは樹脂Bの少なくとも一方が、式(1)で表される構造をジオール構成成分として全ジオール構成成分に対して0.5mol%以上40mol%以下含む請求項1に記載の積層フィルム。
    -O-(C2n-O)- ・・・式(1)
    (m、nは、m×nが5以上となる自然数をあらわす。)
  8.  前記樹脂Aが、式(1)で表される構造をジオール構成成分として樹脂Aの全ジオール構成成分に対して0.5mol%以上40mol%以下含む請求項1に記載の積層フィルム。
    -O-(C2n-O)- ・・・式(1)
    (m、nは、m×nが5以上となる自然数をあらわす。)
  9.  前記A層が前記積層構成部の少なくとも一方の表層に配されてなる請求項1に記載の積層フィルム。
  10.  前記積層構成部が、ジカルボン酸構成成分とジオール構成成分を有するポリエステル樹脂αを主成分とする層(α層)と前記樹脂αとは異なる光学特性を有する熱可塑性樹脂βを主成分とする層(β層)を交互に積層した、以下(i)を満たす積層ユニット1と、ジカルボン酸構成成分とジオール構成成分を有するポリエステル樹脂γを主成分とする層(γ層)と前記樹脂γとは異なる光学特性を有する熱可塑性樹脂ωを主成分とする層(ω層)を交互に積層した、以下(ii)を満たす積層ユニット2を有する請求項1に記載の積層フィルム。
    (i)隣接するα層とβ層の厚みの比(α層厚み/β層厚み)が0.7以上、1.4以下であること。
    (ii)隣接する3層が、3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層について一方の厚みが1.0以上1.4以下、他方が5以上9以下であること。
  11.  ジカルボン酸構成成分とジオール構成成分を有するポリエステル樹脂(樹脂A)を主成分とする層(A層)と、前記樹脂Aとは異なる光学特性を有する熱可塑性樹脂(樹脂B)を主成分とする層(B層)を交互に51層以上積層した積層構成部を有する積層フィルムであって、前記樹脂Aがジカルボン酸構成成分にナフタレンジカルボン酸を含み、前記A層、B層を構成する樹脂のうち、少なくとも一方が、式(1)で表される構造を有する積層フィルム。
    -O-(C2n-O)- ・・・式(1)
    (m、nは、m×nが5以上となる自然数をあらわす。)
  12.  前記樹脂Bがジカルボン酸構成成分とジオール構成成分を有するポリエステル樹脂である請求項11に記載の積層フィルム。
  13.  前記樹脂Bがジカルボン酸構成成分とジオール構成成分を有するポリエステル樹脂であって、前記樹脂Aまたは樹脂Bの少なくとも一方が、式(1)で表される構造をジオール構成成分として含む請求項11に記載の積層フィルム。
    -O-(C2n-O)- ・・・式(1)
    (m、nは、m×nが5以上となる自然数をあらわす。)
  14.  前記樹脂Bがジカルボン酸構成成分とジオール構成成分を有するポリエステル樹脂であって、前記樹脂Aまたは樹脂Bの少なくとも一方が、式(1)で表される構造をジオール構成成分として全ジオール構成成分に対して0.5mol%以上40mol%以下含む請求項11に記載の積層フィルム。
    -O-(C2n-O)- ・・・式(1)
    (m、nは、m×nが5以上となる自然数をあらわす。)
  15.  前記樹脂Aが、式(1)で表される構造をジオール構成成分として樹脂Aの全ジオール構成成分に対して0.5mol%以上40mol%以下含む請求項11に記載の積層フィルム。
    -O-(C2n-O)- ・・・式(1)
    (m、nは、m×nが5以上となる自然数をあらわす。)
  16.  前記A層が前記積層構成部の少なくとも一方の表層に配されてなる請求項11に記載の積層フィルム。
  17. 前記積層構成部の少なくとも一方のフィルム表面側から測定した反射率が20nm以上連続して30%以上となる反射帯域を少なくとも一つ有し、前記積層構成部の少なくとも一方の表面の屈折率が1.68以上1.80以下である請求項11に記載の積層フィルム。
  18.  前記積層構成部の少なくとも一方の表面側から測定した反射率プロフィールにおいて、30%以上の反射率が波長幅20nm以上にわたって連続する反射帯域を少なくとも一つ有し、前記反射率プロフィールが、900~1,400nmの波長領域において測定したものである請求項11に記載の積層フィルム。
  19.  動的粘弾性測定により求められる積層部構成部の損失正接(tanδ)のピーク値が120℃以下である請求項11に記載の積層フィルム。
  20.  前記積層構成部が、ジカルボン酸構成成分とジオール構成成分を有するポリエステル樹脂αを主成分とする層(α層)と前記樹脂αとは異なる光学特性を有する熱可塑性樹脂βを主成分とする層(β層)を交互に積層した、以下(i)を満たす積層ユニット1と、ジカルボン酸構成成分とジオール構成成分を有するポリエステル樹脂γを主成分とする層(γ層)と前記樹脂γとは異なる光学特性を有する熱可塑性樹脂ωを主成分とする層(ω層)を交互に積層した、以下(ii)を満たす積層ユニット2を有する請求項11に記載のフィルム。
    (i)隣接するα層とβ層の厚みの比(α層厚み/β層厚み)が0.7以上、1.4以下であること。
    (ii)隣接する3層が、3層の中で最も厚みの薄い層の厚みを1とした場合に、残りの2層について一方の厚みが1.0以上1.4以下、他方が5以上9以下であること。
PCT/JP2018/035626 2017-10-03 2018-09-26 積層フィルム WO2019069758A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020207005816A KR102637931B1 (ko) 2017-10-03 2018-09-26 적층 필름
US16/650,653 US11760072B2 (en) 2017-10-03 2018-09-26 Laminate film
EP22167349.4A EP4050385A1 (en) 2017-10-03 2018-09-26 Laminate film
EP18864082.5A EP3693772B1 (en) 2017-10-03 2018-09-26 Laminate film
CN201880064144.XA CN111164470A (zh) 2017-10-03 2018-09-26 叠层膜
JP2018551884A JP7238404B2 (ja) 2017-10-03 2018-09-26 積層フィルム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-193196 2017-10-03
JP2017193196 2017-10-03
JP2018139154 2018-07-25
JP2018-139154 2018-07-25

Publications (1)

Publication Number Publication Date
WO2019069758A1 true WO2019069758A1 (ja) 2019-04-11

Family

ID=65994689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035626 WO2019069758A1 (ja) 2017-10-03 2018-09-26 積層フィルム

Country Status (7)

Country Link
US (1) US11760072B2 (ja)
EP (2) EP4050385A1 (ja)
JP (1) JP7238404B2 (ja)
KR (1) KR102637931B1 (ja)
CN (1) CN111164470A (ja)
TW (1) TWI787362B (ja)
WO (1) WO2019069758A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5360659A (en) 1993-05-24 1994-11-01 The Dow Chemical Company Two component infrared reflecting film
JP2004249587A (ja) 2003-02-20 2004-09-09 Teijin Ltd 二軸延伸多層積層ポリエステルフィルム
JP2005059332A (ja) 2003-08-11 2005-03-10 Teijin Ltd 二軸延伸多層積層フィルム
JP2012030563A (ja) * 2010-08-03 2012-02-16 Toray Ind Inc 積層フィルムおよびそれを用いた自動車用窓ガラス
JP2012081748A (ja) * 2010-09-17 2012-04-26 Toray Ind Inc 積層フィルムおよびそれを用いた自動車用窓ガラス
WO2015093413A1 (ja) * 2013-12-18 2015-06-25 コニカミノルタ株式会社 光反射フィルムおよびこれを用いた光反射体
US20170267579A1 (en) * 2016-03-15 2017-09-21 Guardian Industries Corp. Grey colored heat treatable coated article having low solar factor value

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07116352B2 (ja) * 1986-10-07 1995-12-13 三菱化学株式会社 熱可塑性ポリエステル樹脂組成物
US5486949A (en) * 1989-06-20 1996-01-23 The Dow Chemical Company Birefringent interference polarizer
US5089318A (en) * 1989-10-31 1992-02-18 The Mearl Corporation Iridescent film with thermoplastic elastomeric components
US5103337A (en) * 1990-07-24 1992-04-07 The Dow Chemical Company Infrared reflective optical interference film
WO1994010589A1 (en) * 1992-10-29 1994-05-11 The Dow Chemical Company Formable reflective multilayer body
US5882774A (en) * 1993-12-21 1999-03-16 Minnesota Mining And Manufacturing Company Optical film
JP4314357B2 (ja) * 1995-06-26 2009-08-12 スリーエム カンパニー 透明多層デバイス
US6808658B2 (en) * 1998-01-13 2004-10-26 3M Innovative Properties Company Method for making texture multilayer optical films
KR100601228B1 (ko) * 1998-01-13 2006-07-19 미네소타 마이닝 앤드 매뉴팩춰링 캄파니 다층 광학 필름의 제조 방법
US6531230B1 (en) * 1998-01-13 2003-03-11 3M Innovative Properties Company Color shifting film
DE69940961D1 (de) * 1998-01-13 2009-07-16 Minnesota Mining & Mfg Modifizierte Copolyester
US6157490A (en) * 1998-01-13 2000-12-05 3M Innovative Properties Company Optical film with sharpened bandedge
JP2002521730A (ja) * 1998-07-31 2002-07-16 ミネソタ マイニング アンド マニュファクチャリング カンパニー 二次成形性多層光学フィルムおよび成形方法
JP2004525403A (ja) * 2001-01-15 2004-08-19 スリーエム イノベイティブ プロパティズ カンパニー 可視波長領域における透過が高く、かつ平滑な多層赤外反射フィルム、およびそれから製造される積層物品
US7052762B2 (en) * 2001-05-24 2006-05-30 3M Innovative Properties Company Low Tg multilayer optical films
US7215473B2 (en) * 2002-08-17 2007-05-08 3M Innovative Properties Company Enhanced heat mirror films
US7094461B2 (en) * 2002-12-31 2006-08-22 3M Innovative Properties Company P-polarizer with large z-axis refractive index difference
US7345137B2 (en) * 2004-10-18 2008-03-18 3M Innovative Properties Company Modified copolyesters and optical films including modified copolyesters
US7385763B2 (en) * 2005-04-18 2008-06-10 3M Innovative Properties Company Thick film multilayer reflector with tailored layer thickness profile
US8110282B2 (en) * 2005-08-18 2012-02-07 Toray Industries, Inc. Laminated film and molded body
JP2007307893A (ja) 2006-04-20 2007-11-29 Toray Ind Inc マット調フィルムおよび成形品
US20070298271A1 (en) * 2006-06-23 2007-12-27 3M Innovative Properties Company Multilayer optical film, method of making the same, and transaction card having the same
US8012571B2 (en) * 2008-05-02 2011-09-06 3M Innovative Properties Company Optical film comprising birefringent naphthalate copolyester having branched or cyclic C4-C10 alkyl units
CN102317820B (zh) * 2008-12-22 2013-11-20 3M创新有限公司 使用空间选择性双折射减少的内部图案化多层光学膜
EP2470929B1 (en) * 2009-08-28 2018-06-27 3M Innovative Properties Company Optical device with antistatic coating
KR102053671B1 (ko) * 2012-03-16 2019-12-09 도레이 카부시키가이샤 다층 적층 필름
US20150009563A1 (en) * 2012-03-26 2015-01-08 3M Innovative Properties Company Light control film and p-polarization multi-layer film optical film stack
EP3072000B1 (en) * 2013-11-19 2024-05-22 3M Innovative Properties Company Multilayer polymeric reflector
WO2016021345A1 (ja) * 2014-08-07 2016-02-11 東レ株式会社 多層積層フィルム
EP3519178B1 (en) * 2016-09-30 2022-12-28 3M Innovative Properties Company Visibly transparent broadband infrared mirror films

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5360659A (en) 1993-05-24 1994-11-01 The Dow Chemical Company Two component infrared reflecting film
JP2004249587A (ja) 2003-02-20 2004-09-09 Teijin Ltd 二軸延伸多層積層ポリエステルフィルム
JP2005059332A (ja) 2003-08-11 2005-03-10 Teijin Ltd 二軸延伸多層積層フィルム
JP2012030563A (ja) * 2010-08-03 2012-02-16 Toray Ind Inc 積層フィルムおよびそれを用いた自動車用窓ガラス
JP2012081748A (ja) * 2010-09-17 2012-04-26 Toray Ind Inc 積層フィルムおよびそれを用いた自動車用窓ガラス
WO2015093413A1 (ja) * 2013-12-18 2015-06-25 コニカミノルタ株式会社 光反射フィルムおよびこれを用いた光反射体
US20170267579A1 (en) * 2016-03-15 2017-09-21 Guardian Industries Corp. Grey colored heat treatable coated article having low solar factor value

Also Published As

Publication number Publication date
US20200316927A1 (en) 2020-10-08
EP3693772B1 (en) 2024-06-12
KR20200064058A (ko) 2020-06-05
KR102637931B1 (ko) 2024-02-20
JPWO2019069758A1 (ja) 2020-09-17
EP4050385A1 (en) 2022-08-31
TW201922507A (zh) 2019-06-16
CN111164470A (zh) 2020-05-15
JP7238404B2 (ja) 2023-03-14
US11760072B2 (en) 2023-09-19
EP3693772A1 (en) 2020-08-12
TWI787362B (zh) 2022-12-21
EP3693772A4 (en) 2021-11-03

Similar Documents

Publication Publication Date Title
JP5807466B2 (ja) 積層フィルムおよびそれを用いた自動車用窓ガラス
JP6361400B2 (ja) 二軸延伸ポリエステルフィルム、それを用いた偏光板、液晶ディスプレイ
KR20170088331A (ko) 적층 필름
JP2017206012A (ja) 積層フィルムおよびそれを用いた液晶投影用合わせガラス
JP7400723B2 (ja) 多層積層フィルム
JP7400724B2 (ja) 多層積層フィルム
CN112805601B (zh) 多层层叠膜
US20210003757A1 (en) Multilayer laminated film
JP6225495B2 (ja) 多層積層フィルムおよびこれを用いたガラス窓部材
CN110446949B (zh) 多层层叠膜
KR102532418B1 (ko) 적층 필름 및 그 제조 방법
JP7238404B2 (ja) 積層フィルム
JP2018127607A (ja) フィルム
JP2017177350A (ja) 積層フィルム
JP6476795B2 (ja) 積層フィルム
JP6992259B2 (ja) 積層フィルムおよびその製造方法
EP3650893A1 (en) Multilayer film stack
JP2017061145A (ja) 積層フィルム、フィルムロール及びその製造方法
JP2024072399A (ja) 積層ポリエステルフィルム
JP2024132948A (ja) 近赤外線遮蔽性に優れたフィルム
JP2018104536A (ja) フィルム
JP2017087448A (ja) 積層フィルム
JP2017177810A (ja) 積層フィルム
JP2018032019A (ja) 積層フィルム
JP2018039263A (ja) 積層フィルムおよびフィルムロール

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018551884

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18864082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018864082

Country of ref document: EP

Effective date: 20200504