[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019062517A1 - 一种射频头端定位方法及射频头端定位系统 - Google Patents

一种射频头端定位方法及射频头端定位系统 Download PDF

Info

Publication number
WO2019062517A1
WO2019062517A1 PCT/CN2018/104575 CN2018104575W WO2019062517A1 WO 2019062517 A1 WO2019062517 A1 WO 2019062517A1 CN 2018104575 W CN2018104575 W CN 2018104575W WO 2019062517 A1 WO2019062517 A1 WO 2019062517A1
Authority
WO
WIPO (PCT)
Prior art keywords
head end
network management
radio frequency
information
frequency head
Prior art date
Application number
PCT/CN2018/104575
Other languages
English (en)
French (fr)
Inventor
赵剑颖
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112020005314-7A priority Critical patent/BR112020005314A2/pt
Priority to EP18861692.4A priority patent/EP3672156B1/en
Publication of WO2019062517A1 publication Critical patent/WO2019062517A1/zh
Priority to US16/832,799 priority patent/US10904852B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/04Details
    • G01S1/042Transmitters
    • G01S1/0423Mounting or deployment thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0018Transmission from mobile station to base station
    • G01S5/0027Transmission from mobile station to base station of actual mobile position, i.e. position determined on mobile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0242Determining the position of transmitters to be subsequently used in positioning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0249Determining position using measurements made by a non-stationary device other than the device whose position is being determined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/68Marker, boundary, call-sign, or like beacons transmitting signals not carrying directional information
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S2201/00Indexing scheme relating to beacons or beacon systems transmitting signals capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters
    • G01S2201/01Indexing scheme relating to beacons or beacon systems transmitting signals capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters adapted for specific applications or environments
    • G01S2201/02Indoor positioning, e.g. in covered car-parks, mining facilities, warehouses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S2205/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S2205/01Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations specially adapted for specific applications
    • G01S2205/02Indoor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a radio frequency head end positioning method and a radio frequency head end positioning system.
  • PRRUs Pico Remote Radio Units
  • the owner requested the PRRU to be installed in the ceiling ceiling.
  • the maintenance personnel cannot accurately find these PRRUs.
  • the construction personnel install the PRRU according to the design drawings, the actual installation location is not accurately marked due to problems in the skills and engineering delivery interface. Because the number of PRRUs is very large, even if there are design drawings, it is not known which PRRU is actually installed in the specific location, and the maintenance personnel cannot find these PRRUs when the subsequent PRRUs are maintained.
  • the existing method is to scan the PRRU for the Electronic Serial Number (ESN) and bind the location during the on-site construction through the Wireless Deployment Tool (WDT).
  • WDT imports engineering design drawings.
  • the engineering team or supervisor scans and installs the ERU of the PRRU according to the actual installation location of the PRRU, and performs manual binding on the WDT. After all PRRUs are installed, they will be bound.
  • the location information of the PRRU is imported into the U2000 network management system.
  • the present invention provides a radio frequency head end positioning method and a radio frequency head end positioning system, which records the terminal side road test information and the network tube side road test information through road test, and automatically associates with the terminal side road test information and the network tube side road test information. Bind the position information of the radio head and the head of the radio to ensure the positioning of the radio head is convenient, which ensures the high efficiency of system operation and maintenance.
  • the first aspect of the present application provides a radio frequency head end positioning method, which is applied to a radio frequency head end positioning system, where the radio frequency head end positioning system includes at least one radio frequency head end, a road test terminal, and a network management server, including:
  • the road test terminal When the road test terminal performs road test, the road test terminal acquires terminal side road test information of the road test event, and the road test event is at least once;
  • the network management server obtains the network management side road test information of the road test event, and the network management side road test information includes a radio frequency head end corresponding to the road test event;
  • the network management server obtains a radio frequency head end identifier according to the measurement information of the network management side;
  • the network management server obtains radio frequency head end position information bound to the radio frequency head end identifier according to the network management side measurement information and the terminal side drive test information.
  • the road test terminal When the user uses the road test terminal to perform the road test, since the road test process is a fixed point measurement of different positions when the user is walking, the road test event is repeated, and each time the road test event is performed, the road test terminal is It is temporarily connected to a radio head. During the test or after the test is completed, the drive test terminal obtains the terminal-side drive test information of the drive test event.
  • the drive test event includes not only one time but also multiple times. Because each time of the road test event, the road test terminal is temporarily connected to a radio head end, and the network management server is connected to the radio head end, the network management server can also obtain the network management side road test information corresponding to the road test event. And the radio frequency head end corresponding to the road test event is also recorded in the network-side test information.
  • the network management server obtains the measurement information of the network management side, including the radio frequency head end corresponding to the road test event.
  • the network management server can obtain or preset the radio frequency head end corresponding to the radio frequency head end through the network.
  • logo Since the road test terminal accesses a radio frequency head end in each road test event, the road test terminal can automatically record the position of the radio frequency head end to which the road test event belongs to the terminal side road test information, or record the position of the road test terminal itself indoors.
  • the measurement information on the terminal side can be calculated based on the network management side measurement information and the terminal side measurement information of a road test event, and the radio head end position information can be calculated, and the radio frequency head end identifier is bound to the radio frequency head end position information. , the radio head end positioning is realized. Compared with the scheme of scanning the RF head end of the RF head end and binding the position information of the RF head end during the on-site construction, there is no need for the on-site scanning of the construction team, which can be completed in the road test process of the road test terminal in the later stage, in the engineering standardization action.
  • the network-side test information is automatically associated with the radio head end position information and the radio head end identifier to ensure high system operation and maintenance efficiency.
  • the terminal side measurement information includes a measurement event identifier and a radio frequency head end position information
  • the road test terminal obtains the terminal side road test information of the road test event, and includes:
  • the road test terminal obtains radio frequency head end layout information through a radio frequency head end design drawing
  • the road test terminal acquires a measurement event identifier of the road test event and a radio frequency head end;
  • the drive test terminal determines the position information of the radio head end according to the layout information of the radio frequency head end and the radio frequency head end;
  • the drive test terminal obtains terminal side measurement information according to the radio frequency head end position information and the measurement event identifier.
  • each road test event is temporarily connected to a radio frequency head end, and then the measurement event identifier and the radio frequency head end are obtained, and the measurement event identifier includes TMSI and time stamp, and the road
  • the measurement event identifier includes TMSI and time stamp, and the road
  • the timestamp refers to the time each time the drive test terminal performs the test event, TMSI and time.
  • the stamp can uniquely indicate one of the drive test events of the drive test terminal.
  • the road test terminal can know the radio head end of the access when each road test event, and the radio head end position information of the radio head end can be determined for each road test event.
  • the road test terminal combines the obtained radio head end position information and the measurement event identifier including the TMSI and the time stamp into the terminal side measurement information.
  • the network management server obtains the radio frequency head end identifier according to the measurement information of the network management side, and includes:
  • the network management server parses the measurement information of the network management side to obtain a radio frequency head end corresponding to the road test event;
  • the network management server obtains the radio frequency head end identifier of the radio frequency head end according to the preset radio frequency head end configuration and the stock information.
  • the network management server can also obtain the network management side road test information corresponding to the road test event.
  • the radio frequency head corresponding to the road test event is recorded in the network-side test information, and the TMSI and time stamp of the drive test event are also recorded in the network-side test information.
  • the network management server analyzes the measurement information of the network management side, and can obtain the radio frequency head end corresponding to each road test event by the road test event.
  • the network management server can know the radio frequency head end identifier corresponding to each radio head end according to the preset radio frequency head end configuration and the stock information, and obtain the radio frequency head end identifier of the radio frequency head end.
  • the network management side road test information further includes a measurement event identifier.
  • the network management server obtains the location information of the radio frequency head end corresponding to the radio frequency head end identifier according to the network management side measurement information and the terminal side path measurement information, including:
  • the network management server associates the network management side measurement information with the terminal side drive test information according to the measurement event identifier;
  • the network management server parses the terminal side path test information to obtain radio frequency head end position information, and parses the network tube side measurement information to obtain a radio frequency head end identifier;
  • the network management server binds the radio frequency head end identifier to the radio head end position information according to a preset binding algorithm.
  • both the network management side measurement information and the terminal side drive test information record the TMSI and the timestamp
  • the network management side measurement information and the terminal side drive test information can be associated according to the TMSI and the time stamp.
  • the terminal side drive test information includes the radio head end position information
  • the network management server parses the terminal side drive test information to obtain the radio head end position information.
  • the network management server adopts a preset binding algorithm to bind the radio frequency head end identifier to the radio head end position information.
  • the preset binding algorithm needs to adopt different algorithms according to different situations, and specifically includes the following three types: (1) Radio frequency head position adjacent relationship binding algorithm; (2), iterative binding algorithm; (3), drive test adjacent relationship binding algorithm.
  • the terminal side measurement information includes a measurement event identifier and terminal location information
  • the network management side path measurement information further includes a measurement event identifier and the radio frequency header.
  • the network management server obtains the radio head end position information bound to the radio frequency head end identifier according to the network management side measurement information and the terminal side path measurement information, including:
  • the network management server associates the network management side measurement information with the terminal side drive test information according to the measurement event identifier;
  • the network management server parses the terminal side path test information to obtain terminal location information, and parses the network tube side measurement information to obtain a receiving level of the radio frequency head end and a radio frequency head end identifier;
  • the network management server calculates the position information of the radio head end by using a field strength localization algorithm according to the terminal location information and the receiving level of the radio frequency head end;
  • the network management server binds the radio frequency head end identifier to the radio head end position information.
  • each road test event is temporarily connected to a radio frequency head end, and then the measurement event identifier and the radio frequency head end are obtained, and the measurement event identifier includes TMSI and time stamp, and the road
  • the measurement event identifier includes TMSI and time stamp, and the road
  • the timestamp refers to the time each time the drive test terminal performs the test event, TMSI and time.
  • the stamp can uniquely indicate one of the drive test events of the drive test terminal.
  • the network management server can also obtain the network management side road test information corresponding to the road test event.
  • the radio frequency head end corresponding to the road test event is recorded in the network path test information.
  • the TMSI and time stamp of the road test event are recorded in the network test information of the network management side, and the radio frequency head end corresponding to the road test event receives the road test terminal.
  • the reception level of the signal is also recorded in the network-side test information.
  • the network management server associates the measurement information of the network management side with the measurement information of the terminal side according to the measurement event identifier.
  • the network management server calculates the position information of the radio head end by using the field strength localization algorithm according to the terminal location information and the receiving level of the radio head end, and binds the radio frequency head end identifier to the radio head end position information, although the radio frequency head calculated by the positioning algorithm There may be errors in the end position information, but by the number of sampling points and fixed point measurement, the error can be smoothed and the accuracy can be improved.
  • the position information of the RF head end is used for equipment maintenance, which is much better than the location information without the PRRU.
  • the second aspect of the present application provides a radio frequency head positioning system, including:
  • At least one radio head end At least one radio head end, a road test terminal, and a network management server;
  • the road test terminal is configured to acquire the terminal side road test information of the road test event when the road test is performed, where the road test event is at least once;
  • the network management server is configured to obtain the network management side road test information of the road test event, where the network management side road test information includes a radio frequency head end corresponding to the road test event;
  • the network management server is further configured to obtain a radio frequency head end identifier according to the measurement information of the network management side;
  • the network management server is further configured to obtain radio frequency head end position information bound to the radio frequency head end identifier according to the network management side measurement information and the terminal side path measurement information.
  • the road test terminal When the user uses the road test terminal to perform the road test, since the road test process is a fixed point measurement of different positions when the user is walking, the road test event is repeated, and each time the road test event is performed, the road test terminal is It is temporarily connected to a radio head. During the test or after the test is completed, the drive test terminal obtains the terminal-side drive test information of the drive test event.
  • the drive test event includes not only one time but also multiple times. Because each time of the road test event, the road test terminal is temporarily connected to a radio head end, and the network management server is connected to the radio head end, the network management server can also obtain the network management side road test information corresponding to the road test event. And the radio frequency head end corresponding to the road test event is also recorded in the network-side test information.
  • the network management server obtains the measurement information of the network management side, including the radio frequency head end corresponding to the road test event.
  • the network management server can obtain or preset the radio frequency head end corresponding to the radio frequency head end through the network.
  • logo Since the road test terminal accesses a radio frequency head end in each road test event, the road test terminal can automatically record the position of the radio frequency head end to which the road test event belongs to the terminal side road test information, or record the position of the road test terminal itself indoors.
  • the measurement information on the terminal side can be calculated based on the network management side measurement information and the terminal side measurement information of a road test event, and the radio head end position information can be calculated, and the radio frequency head end identifier is bound to the radio frequency head end position information. , the radio head end positioning is realized. Compared with the scheme of scanning the RF head end of the RF head end and binding the position information of the RF head end during the on-site construction, there is no need for the on-site scanning of the construction team, which can be completed in the road test process of the road test terminal in the later stage, in the engineering standardization action.
  • the network-side test information is automatically associated with the radio head end position information and the radio head end identifier to ensure high system operation and maintenance efficiency.
  • the terminal side measurement information includes a measurement event identifier and a radio frequency head end position information
  • the road test terminal is specifically configured to obtain radio frequency head end layout information by using a radio head end design drawing
  • the road test terminal is further configured to obtain a measurement event identifier of the road test event and a radio frequency head end;
  • the drive test terminal is further configured to determine radio frequency head end position information according to the radio frequency head end and the radio frequency head end layout information;
  • the drive test terminal is further configured to obtain terminal side measurement information according to the radio frequency head end position information and the measurement event identifier.
  • each road test event is temporarily connected to a radio frequency head end, and then the measurement event identifier and the radio frequency head end are obtained, and the measurement event identifier includes TMSI and time stamp, and the road
  • the measurement event identifier includes TMSI and time stamp, and the road
  • the timestamp refers to the time each time the drive test terminal performs the test event, TMSI and time.
  • the stamp can uniquely indicate one of the drive test events of the drive test terminal.
  • the road test terminal can know the radio head end of the access when each road test event, and the radio head end position information of the radio head end can be determined for each road test event.
  • the road test terminal combines the obtained radio head end position information and the measurement event identifier including the TMSI and the time stamp into the terminal side measurement information.
  • the network management server is further configured to parse the measurement information of the network management side to obtain a radio frequency head end corresponding to the road test event;
  • the network management server is further configured to obtain a radio frequency head end identifier of the radio frequency head end according to the preset radio frequency head end configuration and the inventory information.
  • the network management server can also obtain the network management side road test information corresponding to the road test event.
  • the radio frequency head corresponding to the road test event is recorded in the network-side test information, and the TMSI and time stamp of the drive test event are also recorded in the network-side test information.
  • the network management server analyzes the measurement information of the network management side, and can obtain the radio frequency head end corresponding to each road test event by the road test event.
  • the network management server can know the radio frequency head end identifier corresponding to each radio head end according to the preset radio frequency head end configuration and the stock information, and obtain the radio frequency head end identifier of the radio frequency head end.
  • the network management side measurement information further includes a measurement event identifier.
  • the network management server is further configured to associate the network management side measurement information with the terminal side drive test information according to the measurement event identifier;
  • the network management server is further configured to parse the terminal side path test information to obtain radio frequency head end position information, and parse the network tube side measurement information to obtain a radio frequency head end identifier;
  • the network management server is further configured to bind the radio frequency head end identifier to the radio head end position information according to a preset binding algorithm.
  • both the network management side measurement information and the terminal side drive test information record the TMSI and the timestamp
  • the network management side measurement information and the terminal side drive test information can be associated according to the TMSI and the time stamp.
  • the terminal side drive test information includes the radio head end position information
  • the network management server parses the terminal side drive test information to obtain the radio head end position information.
  • the network management server adopts a preset binding algorithm to bind the radio frequency head end identifier to the radio head end position information.
  • the preset binding algorithm needs to adopt different algorithms according to different situations, and specifically includes the following three types: (1) Radio frequency head position adjacent relationship binding algorithm; (2), iterative binding algorithm; (3), drive test adjacent relationship binding algorithm.
  • the terminal side measurement information includes a measurement event identifier and terminal location information
  • the network management side path measurement information further includes a measurement event identifier and the radio frequency head.
  • the network management server is further configured to obtain, according to the network management side measurement information and the terminal side drive test information, location information of the radio frequency head end bound to the radio frequency head end identifier, including:
  • the network management server is further configured to associate the network management side measurement information with the terminal side drive test information according to the measurement event identifier;
  • the network management server is further configured to parse the terminal side path test information to obtain terminal location information, and parse the network tube side measurement information to obtain a receiving level of the radio frequency head end and a radio frequency head end identifier;
  • the network management server is further configured to calculate radio frequency head end position information by using a field strength localization algorithm according to the terminal location information and the receiving level of the radio frequency head end;
  • the network management server is further configured to bind the radio frequency head end identifier to the radio head end position information.
  • each road test event is temporarily connected to a radio frequency head end, and then the measurement event identifier and the radio frequency head end are obtained, and the measurement event identifier includes TMSI and time stamp, and the road
  • the measurement event identifier includes TMSI and time stamp, and the road
  • the timestamp refers to the time each time the drive test terminal performs the test event, TMSI and time.
  • the stamp can uniquely indicate one of the drive test events of the drive test terminal.
  • the network management server can also obtain the network management side road test information corresponding to the road test event.
  • the radio frequency head end corresponding to the road test event is recorded in the network path test information.
  • the TMSI and time stamp of the road test event are recorded in the network test information of the network management side, and the radio frequency head end corresponding to the road test event receives the road test terminal.
  • the reception level of the signal is also recorded in the network-side test information.
  • the network management server associates the measurement information of the network management side with the measurement information of the terminal side according to the measurement event identifier.
  • the network management server calculates the position information of the radio head end by using the field strength localization algorithm according to the terminal location information and the receiving level of the radio head end, and binds the radio frequency head end identifier to the radio head end position information, although the radio frequency head calculated by the positioning algorithm There may be errors in the end position information, but by the number of sampling points and fixed point measurement, the error can be smoothed and the accuracy can be improved.
  • the position information of the RF head end is used for equipment maintenance, which is much better than the position information of the RF head end.
  • a third aspect of the present application provides a computer readable storage medium comprising instructions for causing a computer to perform the radio frequency head end positioning method described above when it is run on a computer.
  • a fourth aspect of the present application provides a computer program product comprising instructions, wherein when executed on a computer, causing a computer to perform the radio frequency head end positioning method described above.
  • FIG. 1 is a schematic structural diagram of a system architecture or a scenario provided by the present application.
  • FIG. 2 is a schematic flow chart of an embodiment of a radio frequency head end positioning method provided by the present application
  • FIG. 3 is a schematic flow chart of another embodiment of a radio frequency head end positioning method provided by the present application.
  • FIG. 4 is a schematic diagram of a PRRU location neighbor relationship binding algorithm provided by the present application.
  • FIG. 5 is a schematic diagram of an example of an iterative binding algorithm provided by the present application.
  • FIG. 6 is a schematic diagram of another illustration of an iterative binding algorithm provided by the present application.
  • FIG. 7 is a schematic diagram of a schematic diagram of a drive test adjacency binding algorithm provided by the present application.
  • FIG. 8 is a schematic flowchart diagram of another embodiment of a method for positioning a radio frequency head end according to the present application.
  • FIG. 9 is a schematic structural diagram of an embodiment of a radio frequency head end positioning system provided by the present application.
  • the present invention provides a radio frequency head end positioning method and a radio frequency head end positioning system, which records the terminal side road test information and the network tube side road test information through road test, and automatically associates with the terminal side road test information and the network tube side road test information. Bind the position information of the radio head and the head of the radio to ensure the positioning of the radio head is convenient, which ensures the high efficiency of system operation and maintenance.
  • FIG. 1 a schematic diagram of a system architecture or a scenario of the present application, where the road test terminal is an electronic device having a communication function, specifically, a mobile phone, etc.
  • the road test terminal can pass multiple indoors.
  • One of the PRRUs is connected to the network management server.
  • the road test is performed by the road test terminal, the user can move, and the fixed point measurement is performed at different positions, and each measurement is called a road test event.
  • the embodiment of the present application provides a radio frequency head end positioning method, including: 201.
  • the road test terminal acquires the terminal side road test information of the road test event;
  • the road test terminal when the user uses the road test terminal to perform the road test, since the road test process is a fixed point measurement of different positions when the user walks, the road test event is repeated, and each time the road test event is performed.
  • the drive test terminal is temporarily connected to a radio head end (PRRU). During the test or after the test is completed, the drive test terminal obtains the terminal side drive test information of the drive test event, and the drive test event includes not only the road test event but also the road test event. Once, it can be multiple times.
  • PRRU radio head end
  • the network management server obtains network management side road test information of the road test event.
  • the drive test terminal each time the road test event is performed, the drive test terminal temporarily accesses a PRRU, and the network management server is connected to the PRRU, and the network management server can also obtain the network management side road test corresponding to the road test event. Information, and the PRRU corresponding to the drive test event is also recorded in the network-side test information.
  • the network management server obtains the radio frequency head end identifier according to the measurement information of the network management side;
  • the network management server obtains the network management information of the network management system, including the PRRU corresponding to the road test event.
  • the network management server can obtain or preset the radio frequency head end corresponding to the PRRU through the network.
  • the identifier of the radio frequency head end may be an Equipment Serial Number (ESN), and the ESN is a unique identifier of the PRRU.
  • ESN Equipment Serial Number
  • the network management server obtains the location information of the radio head end bound to the radio frequency head end identifier according to the measurement information of the network management side and the path measurement information of the terminal side.
  • the drive test terminal since the drive test terminal accesses a PRRU in each test event, the drive test terminal can automatically record the location of the PRRU to which the drive test event belongs when the PRRU layout is known.
  • the PRRU position information can be calculated. Binding the ESN to the location information of the PRRU, the PRRU positioning is implemented, and the PRRU that has already been located does not need to be relocated.
  • the construction team on-site scanning is not required, and the road test process of the road test terminal can be completed later, and the information is collected in the engineering standardization action.
  • the automatic binding of the location is completed, so that the PRRU is conveniently located; and the number of indoor PRRUs is large, and some are installed in the ceiling, and the installation location of the faulty PRRU cannot be quickly found, and the connection information of the terminal side is automatically associated with the network-side test information.
  • the PRRU location information and the PRRU identifier ensure the high efficiency of system operation and maintenance.
  • the PRRU location information may be determined according to the PRRU design diagram at the time of construction, or may be the case where the PRRU location information is not known.
  • the specific PRRU location may be implemented by the following two methods. The examples are described in detail separately.
  • an embodiment of the present application provides a radio frequency head positioning method, including:
  • the road test terminal obtains radio frequency head end layout information by using a radio frequency head end design drawing
  • the installation location of the PRRU has been designed, and the PRRU layout information is available on the PRRU design.
  • the road test terminal acquires a measurement event identifier of the road test event and a radio frequency head end;
  • each road test event is temporarily accessed into a PRRU, and then the measurement event identifier and the PRRU are obtained, and the measurement event identifier includes the temporary mobile user identifier ( Temporary Mobile Subscriber Identity (TMSI) and timestamp.
  • TMSI Temporary Mobile Subscriber Identity
  • the timestamp refers to the drive test terminal.
  • the TMSI and the time stamp can uniquely indicate one of the drive test events of the drive test terminal.
  • the road test terminal determines location information of the radio head end according to the layout information of the radio head end and the radio head end;
  • the drive test terminal can know the accessed PRRU every time the test event occurs, and the PRRU layout information can be used to determine the PRRU location information of the PRRU each time the test event occurs.
  • the road test terminal obtains terminal side measurement information according to the radio head end position information and the measurement event identifier;
  • the drive test terminal combines the obtained PRRU location information and the measurement event identifier including the TMSI and the time stamp into the terminal side measurement information.
  • the network management server obtains the network management side road test information of the road test event.
  • the drive test terminal each time the road test event is performed, the drive test terminal temporarily accesses a PRRU, and the network management server is connected to the PRRU, and the network management server can also obtain the network management side road test corresponding to the road test event.
  • the information, the PRRU corresponding to the road test event is recorded in the network-side test information, and the TMSI and time stamp of the drive test event are also recorded in the network-side test information.
  • the network management server parses the measurement information of the network management side, and obtains a radio frequency head end corresponding to the road test event.
  • the network management server analyzes the measurement information of the network management side, and can obtain the PRRU corresponding to each road test event by the road test event.
  • the network management server obtains the radio frequency head end identifier of the radio frequency head end according to the preset radio frequency head end configuration and the stock information.
  • the network management server can know the ESN corresponding to each PRRU according to the preset PRRU configuration and the inventory information, and perform matching to obtain the ESN of the PRRU.
  • the network management server associates the measurement information of the network management side with the roadside measurement information of the terminal according to the measurement event identifier.
  • the network management side measurement information and the terminal side path measurement information can be performed according to the TMSI and the timestamp, because the network management side measurement information and the terminal side path measurement information record the TMSI and the timestamp. Association.
  • the network management server parses the terminal side path test information to obtain radio frequency head end position information.
  • the terminal side drive test information includes PRRU location information
  • the network management server parses the terminal side drive test information to obtain PRRU location information
  • the network management server binds the radio head end identifier to the radio head end position information according to the preset binding algorithm.
  • the network management server adopts a preset binding algorithm, and binds the radio frequency head end identifier to the radio head end position information.
  • the preset binding algorithm needs to adopt different algorithms according to different situations, and specifically includes the following three types. (1), PRRU position adjacent relationship binding algorithm; (2), iterative binding algorithm; (3), drive test adjacent relationship binding algorithm. Explain separately:
  • the unbound ESN can be iterated sequentially, and found in the bound ESN set according to the signal size relationship. Adjacent ESN (0_129_1 is adjacent to 0_132_1 in FIG. 4, and 0_130_1 is adjacent to 0_131_1), and the unbound PRRU location is bound according to the location of the path test event, the already-bound PRRU location;
  • PRRU1 is subject to Interference from 0_134_1, 0_136_1, 0_90_1 (cross-floor ESN); PRRU3 was interfered by 0_136_1. Therefore, the iterative binding algorithm of the floor or the cross-floor can be used to eliminate the influence of the interference road test event point.
  • 5 shows that the Euclidean distance is calculated by using one road test event point and all PRRU positions, and the point-by-point calculation is performed; 6 shows the result of iterative binding, 5 binding thresholds, and 80% of the correct binding rate iterative binding order: PRRU2, PRRU1, PRRU3;
  • the road test neighbor relationship binding algorithm can be used to eliminate the influence of the interference path test event point, according to the sequence of the road test time. Determine the unbound PRRU location, determine the order in which the ESNs appear (0_130_1, 0_131_1, 0_132_1 in Figure 7), and bind PRRU2 and PRRU3 in sequence.
  • the embodiment of the present application provides a radio frequency head positioning method, including:
  • the road test terminal acquires a measurement event identifier of the road test event and a radio frequency head end;
  • each drive test event is temporarily accessed into a PRRU, and then the measurement event identifier and the PRRU are obtained, and the measurement event identifier includes the TMSI and the time stamp, and the drive test terminal each time.
  • Access to the PRRU is only a single call, so each access will generate a unique TMSI.
  • the timestamp refers to the time each time the drive test terminal performs the drive test event. The TMSI and the timestamp can uniquely indicate the A road test event of the road test terminal.
  • the road test terminal obtains terminal side measurement information according to the measurement event identifier.
  • the drive test terminal combines the obtained PRRU location information and the measurement event identifier including the TMSI and the time stamp into the terminal side measurement information.
  • the network management server obtains the network management side road test information of the road test event.
  • the drive test terminal each time the road test event is performed, the drive test terminal temporarily accesses a PRRU, and the network management server is connected to the PRRU, and the network management server can also obtain the network management side road test corresponding to the road test event.
  • the information, the PRRU record corresponding to the road test event is recorded in the network-side test information.
  • the TMSI and the timestamp of the drive test event are recorded in the network-side test information, and the PRRU corresponding to the drive test event receives the signal from the drive test terminal.
  • the receiving level is also recorded in the network-side test information.
  • the network management server associates the measurement information of the network management side with the path measurement information of the terminal side according to the measurement event identifier.
  • the network management side measurement information and the terminal side path measurement information can be performed according to the TMSI and the timestamp, because the network management side measurement information and the terminal side path measurement information record the TMSI and the timestamp. Association.
  • the network management server parses the terminal side path measurement information to obtain the terminal location information, and parses the measurement information of the network management side to obtain the receiving level of the radio frequency head end and the radio frequency head end identifier;
  • the network management server parses the terminal-side drive test information to obtain the terminal location information, and analyzes the network-side measurement information to obtain the reception level and ESN of the PRRU.
  • the network management server calculates the position information of the radio head end by using a field strength localization algorithm according to the terminal location information and the receiving level of the radio head end;
  • the network management server calculates the PRRU location information by using the field strength localization algorithm according to the terminal location information and the receiving level of the radio frequency head end.
  • the network management server binds the radio head end identifier to the radio head end position information.
  • the network management server binds the radio frequency head end identifier to the radio head end position information.
  • the PRRU position information calculated by the positioning algorithm may have an error
  • the number of sampling points and the fixed point measurement may smooth the error and improve the accuracy.
  • PRRU location information is used for device maintenance and is much better than location information without PRRU.
  • an embodiment of the present application provides a radio frequency head positioning system, including:
  • the road test terminal 902 is configured to acquire the terminal side road test information of the road test event when performing the road test, and the road test event is at least one time;
  • the network management server 903 is configured to obtain the network management side road test information of the road test event, and the network management side road test information includes the radio frequency head end 901 corresponding to the road test event;
  • the network management server 903 is further configured to obtain a radio frequency head end identifier according to the measurement information of the network management side;
  • the network management server 903 is further configured to obtain radio frequency head end position information bound to the radio frequency head end identifier according to the network management side measurement information and the terminal side path measurement information.
  • the road test terminal 902 when the user uses the road test terminal 902 to perform road test, since the road test process is a fixed point measurement of different positions when the user is walking, the road test event is repeated once and again, and each road test event During the process, the drive test terminal 902 is temporarily connected to a radio head end 901. During the test or after the test is completed, the drive test terminal 902 obtains the terminal side drive test information of the sub-path test event, and the drive test event is not only It can be included only once or multiple times. Because each time of the road test event, the drive test terminal 902 is temporarily connected to a radio head end 901, and the network management server 903 is connected to the radio head end 901, the network management server 903 can also obtain the corresponding road test event.
  • the network management side road test information, and the radio frequency head end 901 corresponding to the road test event is also recorded in the network management side road test information.
  • the network management server 903 can obtain or preset the radio head end 901 through the network.
  • Corresponding radio head end identification Since the road test terminal 902 accesses a radio head end 901 in each road test event, the road test terminal 902 can automatically record the position of the radio head end 901 to which the drive test event belongs to the terminal side road test information, or record the road test terminal. The location information of the 902 itself is measured on the terminal side.
  • the position information of the radio head end can be calculated, and the radio frequency head end identifier and the radio frequency head are calculated.
  • the end position information is bound, and the radio head end positioning is realized.
  • the construction team on-site scanning is not required, and the road test process of the road test terminal 902 can be completed later, in the standardization operation of the project.
  • the information is collected in the middle to complete the automatic binding of the position, which makes the positioning of the RF head end convenient; and the number of indoor RF head ends is large, and some are installed in the ceiling, and the installation position of the faulty RF head end cannot be quickly found, according to the terminal side road test information. It is automatically associated with the network-side test information and is bound to the radio head position information and the radio head end identifier to ensure high efficiency of system operation and maintenance.
  • the terminal side measurement information includes a measurement event identifier and a radio frequency head position information.
  • the road test terminal 902 is specifically configured to obtain radio frequency head end layout information by using a radio frequency head end design drawing;
  • the road test terminal 902 is further configured to obtain a measurement event identifier of the road test event and a radio head end 901;
  • the road test terminal 902 is further configured to determine radio frequency head end position information according to the radio frequency head end 901 and the radio frequency head end layout information;
  • the road test terminal 902 is further configured to obtain terminal side measurement information according to the radio frequency head end position information and the measurement event identifier.
  • the installation position of the radio frequency head end 901 has been designed, and then the radio head end layout information has radio frequency head end layout information.
  • the drive test terminal 902 performs the drive test process, each of the drive test events is temporarily connected to a radio head end 901, so that the measurement event identifier and the radio head end 901 can be obtained, and the measurement event identifier includes the TMSI and the time.
  • the road test terminal 902 is only a single call each time it accesses the radio head end 901, so each access will generate a unique TMSI, and the timestamp refers to the drive test terminal 902 performing a road test event each time.
  • the time, the TMSI and the timestamp can uniquely indicate one of the drive test events of the drive test terminal 902.
  • the road test terminal 902 can know the accessed radio head end 901 every time the road test event is known, and the radio head end position information of the radio head end 901 can be determined for each road test event. information.
  • the road test terminal 902 combines the obtained radio frequency head end position information and the measurement event identifier including the TMSI and the time stamp into the terminal side measurement information.
  • the network management server 903 is further configured to parse the measurement information of the network management side, and obtain the radio frequency head end 901 corresponding to the road test event;
  • the network management server 903 is further configured to obtain the radio frequency head end identifier of the radio frequency head end 901 according to the preset radio frequency head end configuration and the stock information.
  • the network test server 903 is connected to the radio head end 901, and the network management server 903 is connected to the radio head end 901.
  • the radio frequency head end 901 corresponding to the road test event is recorded in the network-side test information, and the TMSI and time stamp of the drive test event are also recorded in the network-side test information.
  • the network management server 903 analyzes the measurement information of the network management side, and can obtain the road test event to obtain the radio frequency head end 901 corresponding to each road test event.
  • the network management server 903 can know the radio frequency head end identifier corresponding to each radio head end 901 according to the preset radio frequency head end configuration and the inventory information, and perform matching to obtain the radio frequency head end identifier of the radio frequency head end 901.
  • the network management side path test information further includes a measurement event identifier.
  • the network management server 903 is further configured to associate the network management side measurement information with the terminal side drive test information according to the measurement event identifier.
  • the network management server 903 is further configured to parse the terminal side path test information to obtain the radio head end position information, and parse the network tube side measurement information to obtain the radio frequency head end identifier;
  • the network management server 903 is further configured to bind the radio frequency head end identifier to the radio head end position information according to the preset binding algorithm.
  • the network management side measurement information and the terminal side road test information can be recorded according to the TMSI and the time stamp, because the network management side measurement information and the terminal side road test information record the TMSI and the timestamp. Make an association.
  • the terminal side drive test information includes radio frequency head end position information
  • the network management server 903 parses the terminal side drive test information to obtain radio frequency head end position information.
  • the network management server 903 adopts a preset binding algorithm to bind the radio frequency head end identifier to the radio head end position information.
  • the preset binding algorithm needs to adopt different algorithms according to different situations, and specifically includes the following three types: (1) , radio frequency head end position neighbor relationship binding algorithm; (2), iterative binding algorithm; (3), drive test adjacent relationship binding algorithm.
  • the terminal side measurement information includes a measurement event identifier and terminal location information
  • the network management side path measurement information further includes a measurement event identifier and a receiving level of the radio frequency head end 901.
  • the network management server 903 is further configured to obtain the radio head end position information bound to the radio frequency head end identifier according to the network management side measurement information and the terminal side path measurement information, including:
  • the network management server 903 is further configured to associate the network management side measurement information with the terminal side drive test information according to the measurement event identifier.
  • the network management server 903 is further configured to parse the terminal side path test information to obtain the terminal location information, and parse the network tube side measurement information to obtain the receiving level of the radio frequency head end 901 and the radio frequency head end identifier;
  • the network management server 903 is further configured to calculate the position information of the radio head end by using a field strength localization algorithm according to the terminal location information and the receiving level of the radio head end 901;
  • the network management server 903 is further configured to bind the radio frequency head end identifier to the radio head end position information.
  • each of the drive test events is temporarily connected to a radio head end 901, so that the measurement event identifier and the radio head end 901 can be obtained, and the measurement event identifier includes the TMSI and the time.
  • the road test terminal 902 is only a single call each time it accesses the radio head end 901, so each access will generate a unique TMSI, and the timestamp refers to the drive test terminal 902 performing a road test event each time. The time, the TMSI and the timestamp can uniquely indicate one of the drive test events of the drive test terminal 902.
  • the network management server 903 can also obtain the corresponding road test event.
  • the NMS side path measurement information, the radio frequency head end 901 corresponding to the road test event is recorded in the network management side road test information, the TMSI and the time stamp of the road test event are recorded in the network management side road test information, and the radio frequency head end corresponding to the road test event.
  • the reception level of the 901 when receiving the signal of the drive test terminal 902 is also recorded in the network-side test information.
  • the network management server 903 associates the network management side measurement information with the terminal side drive test information according to the measurement event identifier.
  • the network management server 903 calculates the position information of the radio head end by using the field strength localization algorithm according to the terminal location information and the receiving level of the radio head end 901, and binds the radio frequency head end identifier to the radio head end position information, although the positioning algorithm calculates There may be errors in the position information of the RF head end, but by the number of sampling points and fixed point measurement, the error can be smoothed and the accuracy can be improved.
  • the radio head position information is used for device maintenance, which is much better than the position information without the radio head 901.
  • the present application also provides a computer readable storage medium having instructions stored therein that, when run on a computer, cause the computer to perform the radio frequency head end positioning method described in the above embodiments.
  • the present application also provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the radio frequency head end positioning method described in the above embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • wire eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be stored by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephonic Communication Services (AREA)

Abstract

本申请公开了一种射频头端定位方法及射频头端定位系统,通过路测时记录终端侧路测信息和网管侧路测信息,并根据终端侧路测信息和网管侧路测信息自动关联绑定射频头端位置信息和射频头端标识,使得射频头端定位方便,保障了系统运维的高效率。本申请实施例方法包括:当路测终端进行路测时,路测终端获取路测事件的终端侧路测信息,路测事件至少为一次;网管服务器获取路测事件的网管侧路测信息,网管侧路测信息包括路测事件对应的射频头端;网管服务器根据网管侧测量信息得到射频头端标识;网管服务器根据网管侧测量信息和终端侧路测信息,得到与射频头端标识绑定的射频头端位置信息。

Description

一种射频头端定位方法及射频头端定位系统
本申请要求于2017年9月30日提交中国专利局、申请号为201710923623.X、申请名称为“一种射频头端定位方法及射频头端定位系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种射频头端定位方法及射频头端定位系统。
背景技术
随着室内数字化的不断加强,伴随着室内容量的增长需求,运营商不断加强对室内的深度覆盖,越来越多的射频头端(Pico Remote Radio Unit,PRRU)被应用于室内。业主从安装美观考虑,要求PRRU安装在天花板吊顶内,安装完成之后,在日常维护阶段,当PRRU出现故障时,维护人员无法准确找到这些PRRU。施工人员在按照设计图纸安装PRRU的时候,由于技能和工程交付界面的问题,往往不会精确标记实际安装位置。因为PRRU的数量非常多,这样,即便有设计图纸,也不知道实际的具体位置安装了哪个PRRU,导致后续要对这些PRRU维护的时候,维护人员无法找到这些PRRU。
现有的方法是通过无线部署工具(Wireless Deployment Tool,WDT)在现场施工时对PRRU扫描电子序列号(Electronic Serial Number,ESN)并绑定位置。具体为:WDT导入工程设计图纸,在施工时,工程队或者督导按照PRRU的实际安装位置,扫描安装PRRU的ESN,并在WDT上做手工绑定,在所有PRRU安装完毕后,将绑定的PRRU的位置信息导入到U2000网管系统使用。
但是,现场施工时对PRRU扫ESN并绑定位置存在以下的问题:不同的局点一般是由不同的施工队负责,相同的局点也可能同时存在多个施工方;每个局点都需要专门的培训,合同界面推动难,多个工程队同时施工,依赖工程队采集有合同界面问题,需要增加成本;施工队技能低,采集容易引入误差,无法审计;WDT有终端要求,施工队的现有终端参差不齐,需要增加成本,如果都由督导执行,督导本身存在瓶颈,一个督导对应多个工程队,需要扫描时,工程队可能已经安装完毕,导致无法扫描。因此,导致PRRU的位置依然难以准确得到,影响了后期的室内系统运维的高效进行。
发明内容
本申请提供了一种射频头端定位方法及射频头端定位系统,通过路测时记录终端侧路测信息和网管侧路测信息,并根据终端侧路测信息和网管侧路测信息自动关联绑定射频头端位置信息和射频头端标识,使得射频头端定位方便,保障了系统运维的高效率。
本申请第一方面提供一种射频头端定位方法,应用于射频头端定位系统,所述射频头端定位系统包括至少一个射频头端、路测终端及网管服务器,包括:
当所述路测终端进行路测时,所述路测终端获取路测事件的终端侧路测信息,所述路测事件至少为一次;
所述网管服务器获取所述路测事件的网管侧路测信息,所述网管侧路测信息包括所述路测事件对应的射频头端;
所述网管服务器根据所述网管侧测量信息得到射频头端标识;
所述网管服务器根据所述网管侧测量信息和所述终端侧路测信息,得到与所述射频头端标识绑定的射频头端位置信息。
当用户使用路测终端进行路测时,由于路测过程是用户在走动时,进行不同位置的定点测量,那么路测事件是一次次的,而且每一次路测事件进行时,路测终端都是临时接入到一个射频头端中,在测试期间或者测试完成之后,路测终端获取到该次路测事件的终端侧路测信息,路测事件不仅仅包括一次,也可以是多次。由于每一次路测事件进行时,路测终端临时接入到一个射频头端中,而网管服务器与射频头端是连接的,那么网管服务器也可以获取到路测事件对应的网管侧路测信息,而且路测事件对应的射频头端也记录在网管侧路测信息中。网管服务器在得到的网管侧测量信息中,包括路测事件对应的射频头端,在已知射频头端的情况下,网管服务器可以通过网络获取或者预先设置了与射频头端相对应的射频头端标识。由于路测终端在每次路测事件接入到一个射频头端,路测终端可以自动记录路测事件所归属射频头端的位置在终端侧路测信息,或者记录路测终端本身在室内的位置在终端侧路测信息,根据都是一个路测事件的网管侧测量信息和终端侧路测信息,就能够计算得到射频头端位置信息,将射频头端标识与射频头端位置信息进行绑定,就实现了射频头端定位。相比于现场施工时对射频头端扫射频头端标识并绑定射频头端位置信息的方案,无需施工队现场扫描,可以在后期通过路测终端的路测过程完成,在工程标准化动作中顺带采集信息,完成位置的自动绑定,使得射频头端定位方便;并且室内射频头端数量多,有的安装在天花板内,无法快速找到故障射频头端的安装位置,根据终端侧路测信息和网管侧路测信息自动关联绑定射频头端位置信息和射频头端标识,保障了系统运维的高效率。
结合本申请第一方面,本申请第一方面第一实施方式中,所述终端侧测量信息包括测量事件标识及射频头端位置信息,
所述路测终端获取路测事件的终端侧路测信息,包括:
所述路测终端通过射频头端设计图获取射频头端布局信息;
所述路测终端获取路测事件的测量事件标识及射频头端;
所述路测终端根据所述射频头端及所述射频头端布局信息,确定射频头端位置信息;
所述路测终端根据所述射频头端位置信息及所述测量事件标识得到终端侧测量信息。
在施工阶段,射频头端的安装位置已经设计好了,那么射频头端设计图上就有射频头端布局信息。在路测终端进行路测过程时,每一次路测事件都临时接入到一个射频头端中,那么就能得到该次测量事件标识以及射频头端,测量事件标识包括TMSI和时间戳,路测终端每一次接入到射频头端都只是单次呼叫,因此每次的接入都会产生一个独有的TMSI,时间戳指的是路测终端每次进行路测事件的时间,TMSI和时间戳可以唯一的指示该路测终端 的一此路测事件。路测终端在每次路测事件时都能知道接入的射频头端,而已知射频头端布局信息的情况,可以确定每次路测事件时的射频头端的射频头端位置信息。路测终端将得到的射频头端位置信息及包含TMSI和时间戳的测量事件标识合并成为终端侧测量信息。
结合本申请第一方面第一实施方式,本申请第一方面第二实施方式中,所述网管服务器根据所述网管侧测量信息得到射频头端标识,包括:
所述网管服务器解析所述网管侧测量信息,得到所述路测事件对应的射频头端;
所述网管服务器根据预置射频头端配置和存量信息,得到所述射频头端的射频头端标识。
由于每一次路测事件进行时,路测终端临时接入到一个射频头端中,而网管服务器与射频头端是连接的,那么网管服务器也可以获取到路测事件对应的网管侧路测信息,路测事件对应的射频头端记录在网管侧路测信息中,而且路测事件的TMSI和时间戳也记录在网管侧路测信息中。网管服务器解析网管侧测量信息,就能得到路测事件得到每次路测事件对应的射频头端。网管服务器根据预先设置的射频头端配置和存量信息,可以知道每个射频头端所对应的射频头端标识,进行匹配,就可以得到射频头端的射频头端标识。
结合本申请第一方面第二实施方式,本申请第一方面第三实施方式中,所述网管侧路测信息还包括测量事件标识,
所述网管服务器根据所述网管侧测量信息和所述终端侧路测信息,得到所述射频头端标识对应的射频头端的位置信息,包括:
所述网管服务器根据所述测量事件标识,将所述网管侧测量信息和所述终端侧路测信息进行关联;
所述网管服务器解析所述终端侧路测信息得到射频头端位置信息,解析所述网管侧测量信息得到射频头端标识;
所述网管服务器根据预置绑定算法,将所述射频头端标识与所述射频头端位置信息进行绑定。
由于每一次路测事件时,网管侧测量信息和终端侧路测信息都会记录TMSI和时间戳,那么根据TMSI和时间戳就能将网管侧测量信息和终端侧路测信息进行关联。已知了终端侧路测信息中包含了射频头端位置信息,网管服务器解析终端侧路测信息得到射频头端位置信息。网管服务器采取预置绑定算法,将射频头端标识与射频头端位置信息进行绑定,预置绑定算法需要根据不同情况,采用不同的算法,具体可以包括以下三种:(1)、射频头端位置相邻关系绑定算法;(2)、迭代绑定算法;(3)、路测相邻关系绑定算法。
结合本申请第一方面,本申请第一方面第四实施方式中,所述终端侧测量信息包括测量事件标识及终端位置信息,所述网管侧路测信息还包括测量事件标识及所述射频头端的接收电平,
所述网管服务器根据所述网管侧测量信息和所述终端侧路测信息,得到与所述射频头端标识绑定的射频头端位置信息,包括:
所述网管服务器根据所述测量事件标识,将所述网管侧测量信息和所述终端侧路测信息进行关联;
所述网管服务器解析所述终端侧路测信息得到终端位置信息,解析所述网管侧测量信息得到所述射频头端的接收电平及射频头端标识;
所述网管服务器根据所述终端位置信息和所述射频头端的接收电平,通过场强定位算法计算得到射频头端位置信息;
所述网管服务器将所述射频头端标识与所述射频头端位置信息进行绑定。
在施工之后,射频头端设计图已经丢失的情况下。在路测终端进行路测过程时,每一次路测事件都临时接入到一个射频头端中,那么就能得到该次测量事件标识以及射频头端,测量事件标识包括TMSI和时间戳,路测终端每一次接入到射频头端都只是单次呼叫,因此每次的接入都会产生一个独有的TMSI,时间戳指的是路测终端每次进行路测事件的时间,TMSI和时间戳可以唯一的指示该路测终端的一此路测事件。由于每一次路测事件进行时,路测终端临时接入到一个射频头端中,而网管服务器与射频头端是连接的,那么网管服务器也可以获取到路测事件对应的网管侧路测信息,路测事件对应的射频头端记录在网管侧路测信息中,路测事件的TMSI和时间戳记录在网管侧路测信息中,而且路测事件对应的射频头端在接收到路测终端的信号时的接收电平,也记录在网管侧路测信息中。网管服务器根据测量事件标识,将网管侧测量信息和终端侧路测信息进行关联。网管服务器根据终端位置信息和射频头端的接收电平,通过场强定位算法计算得到射频头端位置信息,将射频头端标识与射频头端位置信息进行绑定,虽然定位算法计算出的射频头端位置信息可能存在误差,但是通过采样点的数目和定点测量,可以平滑误差,提升精度。射频头端位置信息用于设备维护,比没有PRRU的位置信息要好很多。
本申请第二方面提供一种射频头端定位系统,包括:
至少一个射频头端、路测终端及网管服务器;
所述路测终端,用于当进行路测时,获取路测事件的终端侧路测信息,所述路测事件至少为一次;
所述网管服务器,用于获取所述路测事件的网管侧路测信息,所述网管侧路测信息包括所述路测事件对应的射频头端;
所述网管服务器,还用于根据所述网管侧测量信息得到射频头端标识;
所述网管服务器,还用于根据所述网管侧测量信息和所述终端侧路测信息,得到与所述射频头端标识绑定的射频头端位置信息。
当用户使用路测终端进行路测时,由于路测过程是用户在走动时,进行不同位置的定点测量,那么路测事件是一次次的,而且每一次路测事件进行时,路测终端都是临时接入到一个射频头端中,在测试期间或者测试完成之后,路测终端获取到该次路测事件的终端侧路测信息,路测事件不仅仅包括一次,也可以是多次。由于每一次路测事件进行时,路测终端临时接入到一个射频头端中,而网管服务器与射频头端是连接的,那么网管服务器也可以获取到路测事件对应的网管侧路测信息,而且路测事件对应的射频头端也记录在网管侧路测信息中。网管服务器在得到的网管侧测量信息中,包括路测事件对应的射频头端,在已知射频头端的情况下,网管服务器可以通过网络获取或者预先设置了与射频头端相对应的射频头端标识。由于路测终端在每次路测事件接入到一个射频头端,路测终端可以自 动记录路测事件所归属射频头端的位置在终端侧路测信息,或者记录路测终端本身在室内的位置在终端侧路测信息,根据都是一个路测事件的网管侧测量信息和终端侧路测信息,就能够计算得到射频头端位置信息,将射频头端标识与射频头端位置信息进行绑定,就实现了射频头端定位。相比于现场施工时对射频头端扫射频头端标识并绑定射频头端位置信息的方案,无需施工队现场扫描,可以在后期通过路测终端的路测过程完成,在工程标准化动作中顺带采集信息,完成位置的自动绑定,使得射频头端定位方便;并且室内射频头端数量多,有的安装在天花板内,无法快速找到故障射频头端的安装位置,根据终端侧路测信息和网管侧路测信息自动关联绑定射频头端位置信息和射频头端标识,保障了系统运维的高效率。
结合本申请第二方面,本申请第二方面第一实施方式中,所述终端侧测量信息包括测量事件标识及射频头端位置信息,
所述路测终端,具体用于通过射频头端设计图获取射频头端布局信息;
所述路测终端,还用于获取路测事件的测量事件标识及射频头端;
所述路测终端,还用于根据所述射频头端及所述射频头端布局信息,确定射频头端位置信息;
所述路测终端,还用于根据所述射频头端位置信息及所述测量事件标识得到终端侧测量信息。
在施工阶段,射频头端的安装位置已经设计好了,那么射频头端设计图上就有射频头端布局信息。在路测终端进行路测过程时,每一次路测事件都临时接入到一个射频头端中,那么就能得到该次测量事件标识以及射频头端,测量事件标识包括TMSI和时间戳,路测终端每一次接入到射频头端都只是单次呼叫,因此每次的接入都会产生一个独有的TMSI,时间戳指的是路测终端每次进行路测事件的时间,TMSI和时间戳可以唯一的指示该路测终端的一此路测事件。路测终端在每次路测事件时都能知道接入的射频头端,而已知射频头端布局信息的情况,可以确定每次路测事件时的射频头端的射频头端位置信息。路测终端将得到的射频头端位置信息及包含TMSI和时间戳的测量事件标识合并成为终端侧测量信息。
结合本申请第二方面第一实施方式,本申请第二方面第二实施方式中,
所述网管服务器,还用于解析所述网管侧测量信息,得到所述路测事件对应的射频头端;
所述网管服务器,还用于根据预置射频头端配置和存量信息,得到所述射频头端的射频头端标识。
由于每一次路测事件进行时,路测终端临时接入到一个射频头端中,而网管服务器与射频头端是连接的,那么网管服务器也可以获取到路测事件对应的网管侧路测信息,路测事件对应的射频头端记录在网管侧路测信息中,而且路测事件的TMSI和时间戳也记录在网管侧路测信息中。网管服务器解析网管侧测量信息,就能得到路测事件得到每次路测事件对应的射频头端。网管服务器根据预先设置的射频头端配置和存量信息,可以知道每个射频头端所对应的射频头端标识,进行匹配,就可以得到射频头端的射频头端标识。
结合本申请第二方面第二实施方式,本申请第二方面第三实施方式中,所述网管侧路 测信息还包括测量事件标识,
所述网管服务器,还用于根据所述测量事件标识,将所述网管侧测量信息和所述终端侧路测信息进行关联;
所述网管服务器,还用于解析所述终端侧路测信息得到射频头端位置信息,解析所述网管侧测量信息得到射频头端标识;
所述网管服务器,还用于根据预置绑定算法,将所述射频头端标识与所述射频头端位置信息进行绑定。
由于每一次路测事件时,网管侧测量信息和终端侧路测信息都会记录TMSI和时间戳,那么根据TMSI和时间戳就能将网管侧测量信息和终端侧路测信息进行关联。已知了终端侧路测信息中包含了射频头端位置信息,网管服务器解析终端侧路测信息得到射频头端位置信息。网管服务器采取预置绑定算法,将射频头端标识与射频头端位置信息进行绑定,预置绑定算法需要根据不同情况,采用不同的算法,具体可以包括以下三种:(1)、射频头端位置相邻关系绑定算法;(2)、迭代绑定算法;(3)、路测相邻关系绑定算法。
结合本申请第二方面,本申请第二方面第四实施方式中,所述终端侧测量信息包括测量事件标识及终端位置信息,所述网管侧路测信息还包括测量事件标识及所述射频头端的接收电平,
所述网管服务器,还用于根据所述网管侧测量信息和所述终端侧路测信息,得到与所述射频头端标识绑定的射频头端位置信息,包括:
所述网管服务器,还用于根据所述测量事件标识,将所述网管侧测量信息和所述终端侧路测信息进行关联;
所述网管服务器,还用于解析所述终端侧路测信息得到终端位置信息,解析所述网管侧测量信息得到所述射频头端的接收电平及射频头端标识;
所述网管服务器,还用于根据所述终端位置信息和所述射频头端的接收电平,通过场强定位算法计算得到射频头端位置信息;
所述网管服务器,还用于将所述射频头端标识与所述射频头端位置信息进行绑定。
在施工之后,射频头端设计图已经丢失的情况下。在路测终端进行路测过程时,每一次路测事件都临时接入到一个射频头端中,那么就能得到该次测量事件标识以及射频头端,测量事件标识包括TMSI和时间戳,路测终端每一次接入到射频头端都只是单次呼叫,因此每次的接入都会产生一个独有的TMSI,时间戳指的是路测终端每次进行路测事件的时间,TMSI和时间戳可以唯一的指示该路测终端的一此路测事件。由于每一次路测事件进行时,路测终端临时接入到一个射频头端中,而网管服务器与射频头端是连接的,那么网管服务器也可以获取到路测事件对应的网管侧路测信息,路测事件对应的射频头端记录在网管侧路测信息中,路测事件的TMSI和时间戳记录在网管侧路测信息中,而且路测事件对应的射频头端在接收到路测终端的信号时的接收电平,也记录在网管侧路测信息中。网管服务器根据测量事件标识,将网管侧测量信息和终端侧路测信息进行关联。网管服务器根据终端位置信息和射频头端的接收电平,通过场强定位算法计算得到射频头端位置信息,将射频头端标识与射频头端位置信息进行绑定,虽然定位算法计算出的射频头端位置信息可能存 在误差,但是通过采样点的数目和定点测量,可以平滑误差,提升精度。射频头端位置信息用于设备维护,比没有射频头端位置信息要好很多。
本申请第三方面提供一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行上述所述的射频头端定位方法。
本申请第四方面提供一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行上述所述的射频头端定位方法。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例和现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本申请提供的系统构架或场景的结构示意图;
图2为本申请提供的一个射频头端定位方法的实施例流程示意图;
图3为本申请提供的另一个射频头端定位方法的实施例流程示意图;
图4为本申请提供的PRRU位置相邻关系绑定算法的图例示意图;
图5为本申请提供的迭代绑定算法的一个图例示意图;
图6为本申请提供的迭代绑定算法的另一个图例示意图;
图7为本申请提供的路测相邻关系绑定算法的图例示意图;
图8为本申请提供的再一个射频头端定位方法的实施例流程示意图;
图9为本申请提供的一个射频头端定位系统的实施例结构示意图。
具体实施方式
本申请提供了一种射频头端定位方法及射频头端定位系统,通过路测时记录终端侧路测信息和网管侧路测信息,并根据终端侧路测信息和网管侧路测信息自动关联绑定射频头端位置信息和射频头端标识,使得射频头端定位方便,保障了系统运维的高效率。
下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
首先简单介绍本申请应用的系统构架或场景。
如图1所示,为本申请的系统构架或场景的示意图,其中路测终端是具有通信功能的电子设备,具体可以是手机等,在路测过程中,路测终端可以通过室内的多个PRRU中的一个与网管服务器连接。用户在使用路测终端进行路测时,是可以进行移动的,而且是进行不同位置的定点测量,每一次测量称作为一次路测事件。
根据以上的描述,请参阅图2所示,本申请实施例提供一种射频头端定位方法,包括: 201、路测终端获取路测事件的终端侧路测信息;
本实施例中,当用户使用路测终端进行路测时,由于路测过程是用户在走动时,进行不同位置的定点测量,那么路测事件是一次次的,而且每一次路测事件进行时,路测终端都是临时接入到一个射频头端(PRRU)中,在测试期间或者测试完成之后,路测终端获取到该次路测事件的终端侧路测信息,路测事件不仅仅包括一次,也可以是多次。
202、网管服务器获取路测事件的网管侧路测信息;
本实施例中,由于每一次路测事件进行时,路测终端临时接入到一个PRRU中,而网管服务器与PRRU是连接的,那么网管服务器也可以获取到路测事件对应的网管侧路测信息,而且路测事件对应的PRRU也记录在网管侧路测信息中。
203、网管服务器根据网管侧测量信息得到射频头端标识;
本实施例中,网管服务器在得到的网管侧测量信息中,包括路测事件对应的PRRU,在已知PRRU的情况下,网管服务器可以通过网络获取或者预先设置了与PRRU相对应的射频头端标识,射频头端标识具体可以是设备序列号(Equipment Serial Number,ESN),ESN作为PRRU的唯一标识。
204、网管服务器根据网管侧测量信息和终端侧路测信息,得到与射频头端标识绑定的射频头端位置信息。
本实施例中,由于路测终端在每次路测事件接入到一个PRRU,那么在已知PRRU施工时候的,PRRU布局的情况下,路测终端可以自动记录路测事件所归属PRRU的位置在终端侧路测信息,或者记录路测终端本身在室内的位置在终端侧路测信息,根据都是一个路测事件的网管侧测量信息和终端侧路测信息,就能够计算得到PRRU位置信息,将ESN与PRRU位置信息进行绑定,就实现了PRRU定位,对于已经定位的PRRU自然不需要重新进行定位了。
本申请实施例中,相比于现场施工时对PRRU扫ESN并绑定位置的方案,无需施工队现场扫描,可以在后期通过路测终端的路测过程完成,在工程标准化动作中顺带采集信息,完成位置的自动绑定,使得PRRU定位方便;并且室内PRRU数量多,有的安装在天花板内,无法快速找到故障PRRU的安装位置,根据终端侧路测信息和网管侧路测信息自动关联绑定PRRU位置信息和PRRU标识,保障了系统运维的高效率。
上述实施例中,PRRU位置信息可以是根据在施工时的PRRU设计图已经确定,也可以是不知道PRRU位置信息的情况,此时具体PRRU定位可以通过下面的两种方式来实现,下面通过实施例分别进行详细说明。
(一)、请参阅图3,本申请实施例提供一种射频头端定位方法,包括:
301、路测终端通过射频头端设计图获取射频头端布局信息;
本实施例中,在施工阶段,PRRU的安装位置已经设计好了,那么PRRU设计图上就有PRRU布局信息。
302、路测终端获取路测事件的测量事件标识及射频头端;
本实施例中,在路测终端进行路测过程时,每一次路测事件都临时接入到一个PRRU中,那么就能得到该次测量事件标识以及PRRU,测量事件标识包括临时移动用户标识 (Temporary Mobile Subscriber Identity,TMSI)和时间戳,路测终端每一次接入到PRRU都只是单次呼叫,因此每次的接入都会产生一个独有的TMSI,时间戳指的是路测终端每次进行路测事件的时间,TMSI和时间戳可以唯一的指示该路测终端的一此路测事件。
303、路测终端根据射频头端及射频头端布局信息,确定射频头端位置信息;
本实施例中,路测终端在每次路测事件时都能知道接入的PRRU,而已知PRRU布局信息的情况,可以确定每次路测事件时的PRRU的PRRU位置信息。
304、路测终端根据射频头端位置信息及测量事件标识得到终端侧测量信息;
本实施例中,路测终端将得到的PRRU位置信息及包含TMSI和时间戳的测量事件标识合并成为终端侧测量信息。
305、网管服务器获取路测事件的网管侧路测信息;
本实施例中,由于每一次路测事件进行时,路测终端临时接入到一个PRRU中,而网管服务器与PRRU是连接的,那么网管服务器也可以获取到路测事件对应的网管侧路测信息,路测事件对应的PRRU记录在网管侧路测信息中,而且路测事件的TMSI和时间戳也记录在网管侧路测信息中。
306、网管服务器解析网管侧测量信息,得到路测事件对应的射频头端;
本实施例中,网管服务器解析网管侧测量信息,就能得到路测事件得到每次路测事件对应的PRRU。
307、网管服务器根据预置射频头端配置和存量信息,得到射频头端的射频头端标识;
本实施例中,网管服务器根据预先设置的PRRU配置和存量信息,可以知道每个PRRU所对应的ESN,进行匹配,就可以得到PRRU的ESN。
308、网管服务器根据测量事件标识,将网管侧测量信息和终端侧路测信息进行关联;
本实施例中,由于每一次路测事件时,网管侧测量信息和终端侧路测信息都会记录TMSI和时间戳,那么根据TMSI和时间戳就能将网管侧测量信息和终端侧路测信息进行关联。
309、网管服务器解析终端侧路测信息得到射频头端位置信息;
本实施例中,已知了终端侧路测信息中包含了PRRU位置信息,网管服务器解析终端侧路测信息得到PRRU位置信息。
310、网管服务器根据预置绑定算法,将射频头端标识与射频头端位置信息进行绑定。
本实施例中,网管服务器采取预置绑定算法,将射频头端标识与射频头端位置信息进行绑定,预置绑定算法需要根据不同情况,采用不同的算法,具体可以包括以下三种:(1)、PRRU位置相邻关系绑定算法;(2)、迭代绑定算法;(3)、路测相邻关系绑定算法。分别进行说明:
(1)、由于路测事件没有时间的先后顺序出现PRRU的关系,路测事件个数不足的情况下,某些PRRU位置信息的确定由于路测事件个数不足,达不到设定门限而与ESN绑定失败,这是就可以使用PRRU位置相邻关系绑定算法,如图4所示,未绑定的ESN可以依次迭代,根据信号大小的关系,在已经绑定的ESN集合中找到相邻的ESN(图4中0_129_1与0_132_1相邻,0_130_1与0_131_1相邻),根据路测事件的位置,已经绑定的PRRU位置,绑定未绑定的PRRU位置;
(2)、由于PRRU信号波动较大,容易受到跨楼层影响(楼上楼下共小区),导致PRRU位置的周围的路测事件点与实际的ESN不一致,如图6所示,PRRU1就受到了0_134_1、0_136_1、0_90_1(跨楼层ESN)的干扰;PRRU3受到了0_136_1的干扰。因此,可以采用本楼层或者跨楼层的迭代绑定算法,消除干扰路测事件点的影响,图5所示为先用一个路测事件点与所有的PRRU位置计算欧式距离,逐点计算;图6所示的为迭代绑定的结果,5次绑定门限,80%的正确绑定率迭代绑定的顺序:PRRU2、PRRU1、PRRU3;
(3)、如果PRRU间距过小,并且PRRU信号受路测人员遮挡时,PRRU点位周围的相同的ESN的路测事件点将会偏向一侧,并且路测事件点偏少,如图7所示,PRRU2和PRRU3左测分别是0_131_1,0_132_1的路测点位数据,此时,可以采用路测相邻关系绑定算法,消除干扰路测事件点的影响,根据路测时间的先后顺序确定未绑定的PRRU位置,确定ESN出现的先后顺序(图7中依次为0_130_1、0_131_1、0_132_1),按顺序依次绑定PRRU2和PRRU3。
(二)、请参阅图8,本申请实施例提供一种射频头端定位方法,包括:
801、路测终端获取路测事件的测量事件标识及射频头端;
本实施例中,在施工之后,PRRU设计图已经丢失的情况下。在路测终端进行路测过程时,每一次路测事件都临时接入到一个PRRU中,那么就能得到该次测量事件标识以及PRRU,测量事件标识包括TMSI和时间戳,路测终端每一次接入到PRRU都只是单次呼叫,因此每次的接入都会产生一个独有的TMSI,时间戳指的是路测终端每次进行路测事件的时间,TMSI和时间戳可以唯一的指示该路测终端的一此路测事件。
802、路测终端根据测量事件标识得到终端侧测量信息;
本实施例中,路测终端将得到的PRRU位置信息及包含TMSI和时间戳的测量事件标识合并成为终端侧测量信息。
803、网管服务器获取路测事件的网管侧路测信息;
本实施例中,由于每一次路测事件进行时,路测终端临时接入到一个PRRU中,而网管服务器与PRRU是连接的,那么网管服务器也可以获取到路测事件对应的网管侧路测信息,路测事件对应的PRRU记录在网管侧路测信息中,路测事件的TMSI和时间戳记录在网管侧路测信息中,而且路测事件对应的PRRU在接收到路测终端的信号时的接收电平,也记录在网管侧路测信息中。
804、网管服务器根据测量事件标识,将网管侧测量信息和终端侧路测信息进行关联;
本实施例中,由于每一次路测事件时,网管侧测量信息和终端侧路测信息都会记录TMSI和时间戳,那么根据TMSI和时间戳就能将网管侧测量信息和终端侧路测信息进行关联。
805、网管服务器解析终端侧路测信息得到终端位置信息,解析网管侧测量信息得到射频头端的接收电平及射频头端标识;
本实施例中,网管服务器解析终端侧路测信息得到终端位置信息,解析网管侧测量信息得到PRRU的接收电平及ESN。
806、网管服务器根据终端位置信息和射频头端的接收电平,通过场强定位算法计算得到射频头端位置信息;
本实施例中,网管服务器根据终端位置信息和射频头端的接收电平,通过场强定位算法计算得到PRRU位置信息。
807、网管服务器将射频头端标识与射频头端位置信息进行绑定。
本实施例中,网管服务器将射频头端标识与射频头端位置信息进行绑定。
本申请实施例中,虽然定位算法计算出的PRRU位置信息可能存在误差,但是通过采样点的数目和定点测量,可以平滑误差,提升精度。PRRU位置信息用于设备维护,比没有PRRU的位置信息要好很多。
请参阅图9,本申请实施例提供一种射频头端定位系统,包括:
至少一个射频头端901、路测终端902及网管服务器903;
路测终端902,用于当进行路测时,获取路测事件的终端侧路测信息,路测事件至少为一次;
网管服务器903,用于获取路测事件的网管侧路测信息,网管侧路测信息包括路测事件对应的射频头端901;
网管服务器903,还用于根据网管侧测量信息得到射频头端标识;
网管服务器903,还用于根据网管侧测量信息和终端侧路测信息,得到与射频头端标识绑定的射频头端位置信息。
本申请实施例中,当用户使用路测终端902进行路测时,由于路测过程是用户在走动时,进行不同位置的定点测量,那么路测事件是一次次的,而且每一次路测事件进行时,路测终端902都是临时接入到一个射频头端901中,在测试期间或者测试完成之后,路测终端902获取到该次路测事件的终端侧路测信息,路测事件不仅仅包括一次,也可以是多次。由于每一次路测事件进行时,路测终端902临时接入到一个射频头端901中,而网管服务器903与射频头端901是连接的,那么网管服务器903也可以获取到路测事件对应的网管侧路测信息,而且路测事件对应的射频头端901也记录在网管侧路测信息中。网管服务器903在得到的网管侧测量信息中,包括路测事件对应的射频头端901,在已知射频头端901的情况下,网管服务器903可以通过网络获取或者预先设置了与射频头端901相对应的射频头端标识。由于路测终端902在每次路测事件接入到一个射频头端901,路测终端902可以自动记录路测事件所归属射频头端901的位置在终端侧路测信息,或者记录路测终端902本身在室内的位置在终端侧路测信息,根据都是一个路测事件的网管侧测量信息和终端侧路测信息,就能够计算得到射频头端位置信息,将射频头端标识与射频头端位置信息进行绑定,就实现了射频头端定位。相比于现场施工时对射频头端扫射频头端标识并绑定射频头端位置信息的方案,无需施工队现场扫描,可以在后期通过路测终端902的路测过程完成,在工程标准化动作中顺带采集信息,完成位置的自动绑定,使得射频头端定位方便;并且室内射频头端数量多,有的安装在天花板内,无法快速找到故障射频头端的安装位置,根据终端侧路测信息和网管侧路测信息自动关联绑定射频头端位置信息和射频头端标识,保障了系统运维的高效率。
可选的,本申请的一些实施例中,终端侧测量信息包括测量事件标识及射频头端位置 信息,
路测终端902,具体用于通过射频头端设计图获取射频头端布局信息;
路测终端902,还用于获取路测事件的测量事件标识及射频头端901;
路测终端902,还用于根据射频头端901及射频头端布局信息,确定射频头端位置信息;
路测终端902,还用于根据射频头端位置信息及测量事件标识得到终端侧测量信息。
本申请实施例中,在施工阶段,射频头端901的安装位置已经设计好了,那么射频头端设计图上就有射频头端布局信息。在路测终端902进行路测过程时,每一次路测事件都临时接入到一个射频头端901中,那么就能得到该次测量事件标识以及射频头端901,测量事件标识包括TMSI和时间戳,路测终端902每一次接入到射频头端901都只是单次呼叫,因此每次的接入都会产生一个独有的TMSI,时间戳指的是路测终端902每次进行路测事件的时间,TMSI和时间戳可以唯一的指示该路测终端902的一此路测事件。路测终端902在每次路测事件时都能知道接入的射频头端901,而已知射频头端布局信息的情况,可以确定每次路测事件时的射频头端901的射频头端位置信息。路测终端902将得到的射频头端位置信息及包含TMSI和时间戳的测量事件标识合并成为终端侧测量信息。
可选的,本申请的一些实施例中,
网管服务器903,还用于解析网管侧测量信息,得到路测事件对应的射频头端901;
网管服务器903,还用于根据预置射频头端配置和存量信息,得到射频头端901的射频头端标识。
本申请实施例中,由于每一次路测事件进行时,路测终端902临时接入到一个射频头端901中,而网管服务器903与射频头端901是连接的,那么网管服务器903也可以获取到路测事件对应的网管侧路测信息,路测事件对应的射频头端901记录在网管侧路测信息中,而且路测事件的TMSI和时间戳也记录在网管侧路测信息中。网管服务器903解析网管侧测量信息,就能得到路测事件得到每次路测事件对应的射频头端901。网管服务器903根据预先设置的射频头端配置和存量信息,可以知道每个射频头端901所对应的射频头端标识,进行匹配,就可以得到射频头端901的射频头端标识。
可选的,本申请的一些实施例中,网管侧路测信息还包括测量事件标识,
网管服务器903,还用于根据测量事件标识,将网管侧测量信息和终端侧路测信息进行关联;
网管服务器903,还用于解析终端侧路测信息得到射频头端位置信息,解析网管侧测量信息得到射频头端标识;
网管服务器903,还用于根据预置绑定算法,将射频头端标识与射频头端位置信息进行绑定。
本申请实施例中,由于每一次路测事件时,网管侧测量信息和终端侧路测信息都会记录TMSI和时间戳,那么根据TMSI和时间戳就能将网管侧测量信息和终端侧路测信息进行关联。已知了终端侧路测信息中包含了射频头端位置信息,网管服务器903解析终端侧路测信息得到射频头端位置信息。网管服务器903采取预置绑定算法,将射频头端标识与射 频头端位置信息进行绑定,预置绑定算法需要根据不同情况,采用不同的算法,具体可以包括以下三种:(1)、射频头端位置相邻关系绑定算法;(2)、迭代绑定算法;(3)、路测相邻关系绑定算法。
可选的,本申请的一些实施例中,终端侧测量信息包括测量事件标识及终端位置信息,网管侧路测信息还包括测量事件标识及射频头端901的接收电平,
网管服务器903,还用于根据网管侧测量信息和终端侧路测信息,得到与射频头端标识绑定的射频头端位置信息,包括:
网管服务器903,还用于根据测量事件标识,将网管侧测量信息和终端侧路测信息进行关联;
网管服务器903,还用于解析终端侧路测信息得到终端位置信息,解析网管侧测量信息得到射频头端901的接收电平及射频头端标识;
网管服务器903,还用于根据终端位置信息和射频头端901的接收电平,通过场强定位算法计算得到射频头端位置信息;
网管服务器903,还用于将射频头端标识与射频头端位置信息进行绑定。
本申请实施例中,在施工之后,射频头端设计图已经丢失的情况下。在路测终端902进行路测过程时,每一次路测事件都临时接入到一个射频头端901中,那么就能得到该次测量事件标识以及射频头端901,测量事件标识包括TMSI和时间戳,路测终端902每一次接入到射频头端901都只是单次呼叫,因此每次的接入都会产生一个独有的TMSI,时间戳指的是路测终端902每次进行路测事件的时间,TMSI和时间戳可以唯一的指示该路测终端902的一此路测事件。由于每一次路测事件进行时,路测终端902临时接入到一个射频头端901中,而网管服务器903与射频头端901是连接的,那么网管服务器903也可以获取到路测事件对应的网管侧路测信息,路测事件对应的射频头端901记录在网管侧路测信息中,路测事件的TMSI和时间戳记录在网管侧路测信息中,而且路测事件对应的射频头端901在接收到路测终端902的信号时的接收电平,也记录在网管侧路测信息中。网管服务器903根据测量事件标识,将网管侧测量信息和终端侧路测信息进行关联。网管服务器903根据终端位置信息和射频头端901的接收电平,通过场强定位算法计算得到射频头端位置信息,将射频头端标识与射频头端位置信息进行绑定,虽然定位算法计算出的射频头端位置信息可能存在误差,但是通过采样点的数目和定点测量,可以平滑误差,提升精度。射频头端位置信息用于设备维护,比没有射频头端901的位置信息要好很多。
本申请还提供了一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行以上实施例所描述的射频头端定位方法。
本申请还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行以上实施例所描述的射频头端定位方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机 程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (12)

  1. 一种射频头端定位方法,其特征在于,应用于射频头端定位系统,所述射频头端定位系统包括至少一个射频头端、路测终端及网管服务器,包括:
    当所述路测终端进行路测时,所述路测终端获取路测事件的终端侧路测信息,所述路测事件至少为一次;
    所述网管服务器获取所述路测事件的网管侧路测信息,所述网管侧路测信息包括所述路测事件对应的射频头端;
    所述网管服务器根据所述网管侧测量信息得到射频头端标识;
    所述网管服务器根据所述网管侧测量信息和所述终端侧路测信息,得到与所述射频头端标识绑定的射频头端位置信息。
  2. 根据权利要求1所述的方法,其特征在于,所述终端侧测量信息包括测量事件标识及射频头端位置信息,
    所述路测终端获取路测事件的终端侧路测信息,包括:
    所述路测终端通过射频头端设计图获取射频头端布局信息;
    所述路测终端获取路测事件的测量事件标识及射频头端;
    所述路测终端根据所述射频头端及所述射频头端布局信息,确定射频头端位置信息;
    所述路测终端根据所述射频头端位置信息及所述测量事件标识得到终端侧测量信息。
  3. 根据权利要求2所述的方法,其特征在于,所述网管服务器根据所述网管侧测量信息得到射频头端标识,包括:
    所述网管服务器解析所述网管侧测量信息,得到所述路测事件对应的射频头端;
    所述网管服务器根据预置射频头端配置和存量信息,得到所述射频头端的射频头端标识。
  4. 根据权利要求3所述的方法,其特征在于,所述网管侧路测信息还包括测量事件标识,
    所述网管服务器根据所述网管侧测量信息和所述终端侧路测信息,得到所述射频头端标识对应的射频头端的位置信息,包括:
    所述网管服务器根据所述测量事件标识,将所述网管侧测量信息和所述终端侧路测信息进行关联;
    所述网管服务器解析所述终端侧路测信息得到射频头端位置信息;
    所述网管服务器根据预置绑定算法,将所述射频头端标识与所述射频头端位置信息进行绑定。
  5. 根据权利要求1所述的方法,其特征在于,所述终端侧测量信息包括测量事件标识及终端位置信息,所述网管侧路测信息还包括测量事件标识及所述射频头端的接收电平,
    所述网管服务器根据所述网管侧测量信息和所述终端侧路测信息,得到与所述射频头端标识绑定的射频头端位置信息,包括:
    所述网管服务器根据所述测量事件标识,将所述网管侧测量信息和所述终端侧路测信息进行关联;
    所述网管服务器解析所述终端侧路测信息得到终端位置信息,解析所述网管侧测量信息得到所述射频头端的接收电平及射频头端标识;
    所述网管服务器根据所述终端位置信息和所述射频头端的接收电平,通过场强定位算法计算得到射频头端位置信息;
    所述网管服务器将所述射频头端标识与所述射频头端位置信息进行绑定。
  6. 一种射频头端定位系统,其特征在于,包括:
    至少一个射频头端、路测终端及网管服务器;
    所述路测终端,用于当进行路测时,获取路测事件的终端侧路测信息,所述路测事件至少为一次;
    所述网管服务器,用于获取所述路测事件的网管侧路测信息,所述网管侧路测信息包括所述路测事件对应的射频头端;
    所述网管服务器,还用于根据所述网管侧测量信息得到射频头端标识;
    所述网管服务器,还用于根据所述网管侧测量信息和所述终端侧路测信息,得到与所述射频头端标识绑定的射频头端位置信息。
  7. 根据权利要求6所述的系统,其特征在于,所述终端侧测量信息包括测量事件标识及射频头端位置信息,
    所述路测终端,具体用于通过射频头端设计图获取射频头端布局信息;
    所述路测终端,还用于获取路测事件的测量事件标识及射频头端;
    所述路测终端,还用于根据所述射频头端及所述射频头端布局信息,确定射频头端位置信息;
    所述路测终端,还用于根据所述射频头端位置信息及所述测量事件标识得到终端侧测量信息。
  8. 根据权利要求7所述的系统,其特征在于,
    所述网管服务器,还用于解析所述网管侧测量信息,得到所述路测事件对应的射频头端;
    所述网管服务器,还用于根据预置射频头端配置和存量信息,得到所述射频头端的射频头端标识。
  9. 根据权利要求8所述的系统,其特征在于,所述网管侧路测信息还包括测量事件标识,
    所述网管服务器,还用于根据所述测量事件标识,将所述网管侧测量信息和所述终端侧路测信息进行关联;
    所述网管服务器,还用于解析所述终端侧路测信息得到射频头端位置信息;
    所述网管服务器,还用于根据预置绑定算法,将所述射频头端标识与所述射频头端位置信息进行绑定。
  10. 根据权利要求6所述的系统,其特征在于,所述终端侧测量信息包括测量事件标识及终端位置信息,所述网管侧路测信息还包括测量事件标识及所述射频头端的接收电平,
    所述网管服务器,还用于根据所述网管侧测量信息和所述终端侧路测信息,得到与所 述射频头端标识绑定的射频头端位置信息,包括:
    所述网管服务器,还用于根据所述测量事件标识,将所述网管侧测量信息和所述终端侧路测信息进行关联;
    所述网管服务器,还用于解析所述终端侧路测信息得到终端位置信息,解析所述网管侧测量信息得到所述射频头端的接收电平及射频头端标识;
    所述网管服务器,还用于根据所述终端位置信息和所述射频头端的接收电平,通过场强定位算法计算得到射频头端位置信息;
    所述网管服务器,还用于将所述射频头端标识与所述射频头端位置信息进行绑定。
  11. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行权利要求1至5任一项中所述的射频头端定位方法。
  12. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行权利要求1至5任一项中所述的射频头端定位方法。
PCT/CN2018/104575 2017-09-30 2018-09-07 一种射频头端定位方法及射频头端定位系统 WO2019062517A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112020005314-7A BR112020005314A2 (pt) 2017-09-30 2018-09-07 método e sistema para posicionar unidade remota de rádio principal
EP18861692.4A EP3672156B1 (en) 2017-09-30 2018-09-07 Radio head positioning method and radio head positioning system
US16/832,799 US10904852B2 (en) 2017-09-30 2020-03-27 Method for positioning pico remote radio unit and system for positioning pico remote radio unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710923623.XA CN109640336B (zh) 2017-09-30 2017-09-30 一种射频头端定位方法及射频头端定位系统和计算机介质
CN201710923623.X 2017-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/832,799 Continuation US10904852B2 (en) 2017-09-30 2020-03-27 Method for positioning pico remote radio unit and system for positioning pico remote radio unit

Publications (1)

Publication Number Publication Date
WO2019062517A1 true WO2019062517A1 (zh) 2019-04-04

Family

ID=65900757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104575 WO2019062517A1 (zh) 2017-09-30 2018-09-07 一种射频头端定位方法及射频头端定位系统

Country Status (5)

Country Link
US (1) US10904852B2 (zh)
EP (1) EP3672156B1 (zh)
CN (1) CN109640336B (zh)
BR (1) BR112020005314A2 (zh)
WO (1) WO2019062517A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112822759B (zh) * 2019-11-15 2023-01-13 上海华为技术有限公司 一种通信方法、终端设备以及网络设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012116007A1 (en) * 2011-02-22 2012-08-30 Qualcomm Incorporated Positioning location for remote radio heads (rrh) with same physical cell identity (pci)
CN106358155A (zh) * 2016-09-13 2017-01-25 京信通信技术(广州)有限公司 一种射频指纹数据库的建立方法及装置
US20170059717A1 (en) * 2015-08-28 2017-03-02 Verizon Patent And Licensing Inc. Robust position determination in communication systems
CN106487568A (zh) * 2015-09-02 2017-03-08 中兴通讯股份有限公司 基于网管系统的拓扑机架图展示方法、装置及网管系统

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7466986B2 (en) * 2006-01-19 2008-12-16 International Business Machines Corporation On-device mapping of WIFI hotspots via direct connection of WIFI-enabled and GPS-enabled mobile devices
EP2118810B1 (en) * 2007-02-05 2012-08-15 Andrew Corporation System and method for optimizing location estimate of mobile unit
EP2724577A1 (en) * 2011-06-21 2014-04-30 Telefonaktiebolaget LM Ericsson (PUBL) Methods and apparatuses for accounting of cell change information
CN103200607A (zh) * 2012-01-09 2013-07-10 电信科学技术研究院 一种在mdt过程中确定ue定位信息的方法及装置
EP2826155A1 (en) * 2012-03-15 2015-01-21 Telefonaktiebolaget LM Ericsson (Publ) Verification in a wireless communication system
CN103369581B (zh) * 2012-04-05 2016-12-14 华为技术有限公司 一种获取终端最小化路测数据的方法和装置
WO2013169198A1 (en) * 2012-05-09 2013-11-14 Telefonaktiebolaget L M Ericsson (Publ) Radio base station
US9549333B2 (en) * 2012-06-01 2017-01-17 Turk Telekomunikasyon A.S. Method and device for monitoring and measurement of Wi-Fi internet services
US9282433B2 (en) * 2012-12-12 2016-03-08 Qualcomm Incorporated System and/or method of locating a portable service access transceiver
WO2014188928A1 (ja) * 2013-05-20 2014-11-27 京セラ株式会社 通信制御方法及びユーザ端末
EP3575159B1 (en) * 2013-05-24 2021-12-29 Panasonic Intellectual Property Corporation of America Image transmitting device
US9100926B2 (en) * 2013-08-01 2015-08-04 The Nielsen Company (Us), Llc Methods and apparatus to determine a base station location
CN103501502B (zh) * 2013-09-04 2016-09-28 工业和信息化部电信研究院 一种路测方法
GB2532067A (en) * 2014-11-07 2016-05-11 Nec Corp Communication system
CN104918265A (zh) * 2015-05-11 2015-09-16 上海网罗电子科技有限公司 室内信标的管理配制系统与方法
DE102017203905B4 (de) * 2016-12-22 2022-11-10 Volkswagen Aktiengesellschaft Verfahren zur Organisation der Kommunikation zwischen Mobilfunknetz-Teilnehmerstationen in einer Mobilfunkzelle, sowie Mobilfunknetz-Teilnehmerstation und Mobilfunknetz-Verwaltungseinheit bei der Verwendung des erfindungsgemäßen Verfahrens

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012116007A1 (en) * 2011-02-22 2012-08-30 Qualcomm Incorporated Positioning location for remote radio heads (rrh) with same physical cell identity (pci)
US20170059717A1 (en) * 2015-08-28 2017-03-02 Verizon Patent And Licensing Inc. Robust position determination in communication systems
CN106487568A (zh) * 2015-09-02 2017-03-08 中兴通讯股份有限公司 基于网管系统的拓扑机架图展示方法、装置及网管系统
CN106358155A (zh) * 2016-09-13 2017-01-25 京信通信技术(广州)有限公司 一种射频指纹数据库的建立方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3672156A4

Also Published As

Publication number Publication date
EP3672156A1 (en) 2020-06-24
EP3672156A4 (en) 2020-10-07
EP3672156B1 (en) 2023-04-05
BR112020005314A2 (pt) 2020-09-24
US20200229127A1 (en) 2020-07-16
CN109640336A (zh) 2019-04-16
US10904852B2 (en) 2021-01-26
CN109640336B (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
US8155662B2 (en) Self-configuring wireless network location system
CN108282382A (zh) 线缆网络环境中的混合光纤同轴故障分类
US7516049B2 (en) Wireless performance analysis system
JP2009504027A5 (zh)
US9723579B2 (en) Traffic data integration method and traffic data integration apparatus
EP3389221B1 (en) Network table error detection using call trace records
CN113258995A (zh) 故障预测方法、装置和计算机可读存储介质
WO2018040355A1 (zh) 射频检测方法及系统
US20230060429A1 (en) Event subscription management method and apparatus
US8976689B2 (en) Methods, systems, and computer program products for monitoring network performance
WO2019062517A1 (zh) 一种射频头端定位方法及射频头端定位系统
CN108667537B (zh) 一种干扰源定位方法和装置
US10225139B2 (en) Self-organizing network (SON) system and operating method of the same
CN106031091A (zh) 用于辅助对接入网关的远程诊断的技术
US9843473B2 (en) Backhaul fault analysis for femto network
CN118041648A (zh) 一种基于自适应探测的工控漏洞扫描方法及其系统
CN113747477B (zh) 实现针对共建5g网络基站进行核查处理的方法
CN107302448B (zh) 端口监听方法及装置
CN102404714B (zh) 通过WiFi无线网络升级设备软件的方法
CN108109364A (zh) 一种台区识别方法及装置
KR100862747B1 (ko) Oma dm 기반의 무선품질 정보 측정 방법 및 장치
CN109982373A (zh) Lte频繁回落点分析方法、装置、计算设备及存储介质
WO2021008393A1 (zh) 一种无线小区的覆盖黑洞识别方法及系统
CN104038361B (zh) 基于snmp的无线接入设备生命周期的监测方法
WO2014082222A1 (zh) 干扰源分析方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861692

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018861692

Country of ref document: EP

Effective date: 20200317

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020005314

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020005314

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200317