WO2019043905A1 - Scroll compressor and refrigeration cycle device - Google Patents
Scroll compressor and refrigeration cycle device Download PDFInfo
- Publication number
- WO2019043905A1 WO2019043905A1 PCT/JP2017/031565 JP2017031565W WO2019043905A1 WO 2019043905 A1 WO2019043905 A1 WO 2019043905A1 JP 2017031565 W JP2017031565 W JP 2017031565W WO 2019043905 A1 WO2019043905 A1 WO 2019043905A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- valve
- valve seat
- scroll
- scroll compressor
- discharge
- Prior art date
Links
- 238000005057 refrigeration Methods 0.000 title claims description 20
- 235000014676 Phragmites communis Nutrition 0.000 claims description 109
- 230000002093 peripheral effect Effects 0.000 claims description 42
- 238000007906 compression Methods 0.000 claims description 37
- 230000006835 compression Effects 0.000 claims description 29
- 239000003921 oil Substances 0.000 description 55
- 239000003507 refrigerant Substances 0.000 description 35
- 238000012986 modification Methods 0.000 description 12
- 230000004048 modification Effects 0.000 description 12
- 230000000694 effects Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 210000000078 claw Anatomy 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/02—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/12—Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K15/00—Check valves
- F16K15/14—Check valves with flexible valve members
- F16K15/16—Check valves with flexible valve members with tongue-shaped laminae
Definitions
- the present invention relates to a scroll compressor and a refrigeration cycle apparatus including a discharge valve mechanism disposed on the discharge chamber side of a fixed scroll.
- a discharge valve mechanism for opening and closing the discharge port and a valve presser are provided.
- the discharge valve mechanism divides the high pressure space on the discharge chamber side from the low pressure space before compression of the refrigerant on the compression mechanism side using the fixed scroll.
- the discharge valve mechanism comprises one reed valve.
- the discharge valve mechanism includes one valve seat on which the reed valve is seated around the discharge opening that opens in the central portion.
- an oil film is generated between the reed valve and the valve seat when the reed valve is seated. For this reason, when the valve is opened, the valve opening timing of the reed valve is delayed due to the oil film breakage resistance, over-compression occurs, and the performance of the scroll compressor is lowered.
- valve seat is not provided with the groove, it is necessary to prevent the delay in the valve opening timing due to the oil film breakage resistance.
- the present invention is intended to solve the above problems, and the valve opening timing of the reed valve can be optimized to suppress over-compression, and the refrigerant leakage loss from the high pressure space to the low pressure space in the discharge valve mechanism is Provided are scroll compressors and refrigeration cycle devices that can be suppressed.
- the scroll compressor according to the present invention includes a discharge valve mechanism disposed on the discharge chamber side of the fixed scroll, and the discharge valve mechanism is provided on one reed valve and a surface of the fixed scroll on the discharge chamber side.
- a refrigeration cycle apparatus includes a scroll compressor.
- At least one notch is formed at the edge of the valve seat. Therefore, the valve opening timing of the reed valve can be optimized to suppress over-compression, and the refrigerant leakage loss from the high pressure space to the low pressure space in the discharge valve mechanism can be suppressed.
- FIG. 1 is a schematic cross-sectional view showing a scroll compressor according to Embodiment 1 of the present invention. It is a schematic sectional drawing which shows the fixed scroll of the scroll compressor which concerns on Embodiment 1 of this invention. It is a schematic sectional drawing which shows the discharge valve mechanism of the scroll compressor which concerns on Embodiment 1 of this invention. It is a top view which shows the front-end
- FIG. 1 is a schematic cross-sectional view showing a scroll compressor 100 according to Embodiment 1 of the present invention.
- Scroll compressor 100 shown in FIG. 1 is applied to, for example, a refrigeration cycle apparatus 200 described later used for refrigeration or air conditioning applications such as a refrigerator or a freezer, an automatic vending machine, an air conditioner, a refrigeration apparatus, a water heater and the like.
- the scroll compressor 100 sucks in the refrigerant circulating in the refrigeration cycle, compresses the refrigerant, and discharges the refrigerant in a high temperature and high pressure state.
- the scroll compressor 100 includes a shell 2, an oil pump 3, a motor 4, a compression mechanism 5, a frame 6, and a shaft 7. Furthermore, the scroll compressor 100 includes a suction pipe 11, a discharge pipe 12, a discharge chamber 13, an Oldham ring 15, a slider 16, a sleeve 17, a first balancer 18, a second balancer 19, and a subframe 20 and an oil discharge pipe 21.
- the shell 2 constitutes an outer shell of the scroll compressor 100, and has an oil sump 3a at the bottom.
- the shell 2 is cylindrical with a bottom, and the upper part is closed by the dome-shaped upper shell 2a.
- the lower part of the shell 2 is closed by the lower shell 2b.
- the oil pump 3 is accommodated in the shell 2 and sucks the oil from the oil reservoir 3a.
- the oil pump 3 is provided at the lower part of the shell 2. Then, the oil pump 3 supplies the oil sucked from the oil reservoir 3a so as to lubricate a portion to be lubricated such as a bearing portion inside the scroll compressor 100.
- the oil after being sucked up by the oil pump 3 to lubricate the rocking bearing 8c is stored in the internal space 6d of the frame 6, and then passes through the radial oiling groove 6c provided in the thrust bearing 6b, and the Oldham ring space Flow to 15 b and lubricate Oldham ring 15.
- the oil drain pipe 21 is provided in the Oldham ring space 15b, and the oil is returned to the oil reservoir 3a through the oil drain pipe 21.
- the motor 4 is installed between the frame 6 and the sub-frame 20 inside the shell 2 to rotate the shaft 7.
- the motor 4 has a rotor 4a and a stator 4b.
- the rotor 4 a is provided on the inner peripheral side of the stator 4 b and attached to the shaft 7.
- the rotor 4 a rotates the shaft 7 by rotating.
- the stator 4 b rotates the rotor 4 a by electric power supplied from an inverter (not shown).
- the compression mechanism unit 5 includes a fixed scroll 30 and a swing scroll 40.
- the fixed scroll 30 is fixed to a frame 6 fixedly supported in the shell 2 by a bolt or the like (not shown).
- the fixed scroll 30 has an end plate 30 a and a spiral portion 31 extending downward on the lower surface of the end plate 30 a.
- a discharge port 32 for discharging the compressed fluid is formed in a central portion of the fixed scroll 30 so as to pass therethrough.
- a concave portion in which the discharge valve mechanism 50 is installed is formed at the outlet portion of the discharge port 32 of the fixed scroll 30, a concave portion in which the discharge valve mechanism 50 is installed is formed.
- the discharge valve mechanism 50 is installed so as to cover the discharge port 32 and prevents backflow of fluid.
- the rocking scroll 40 performs a revolving rotation movement, in other words, a rocking movement, with respect to the fixed scroll 30, and the rotation movement is restricted by the Oldham ring 15.
- the rocking scroll 40 has a mirror plate 40 a and a spiral portion 41 extending upward on the upper surface of the mirror plate 40 a.
- the fixed scroll 30 and the swinging scroll 40 make the spirals 31 and 41 face each other on the surfaces facing each other, and mesh the spirals 31 and 41 with each other.
- a compression chamber 5a is formed in a space where the spiral portion 31 of the fixed scroll 30 and the spiral portion 41 of the oscillating scroll 40 are engaged.
- the frame 6 is fixed to the shell 2 and accommodates the compression mechanism 5.
- the frame 6 rotatably supports the shaft 7 via the main bearing 8a.
- an intake port 6a is formed in the frame 6, an intake port 6a is formed.
- the refrigerant in the gas state flows into the compression mechanism 5 through the suction port 6a.
- the shaft 7 is supported by the frame 6.
- an oil passage 7a is formed inside, through which the oil sucked up by the oil pump 3 flows upward.
- the shaft portion 7 is connected to the motor 4 and the oscillating scroll 40, and transmits the rotational force of the motor 4 to the oscillating scroll 40.
- the suction pipe 11 is provided on the side wall of the shell 2.
- the suction pipe 11 is a pipe for sucking the refrigerant in a gas state into the inside of the shell 2.
- the discharge pipe 12 is provided on the top of the shell 2.
- the discharge pipe 12 is a pipe that discharges the compressed refrigerant to the outside of the shell 2.
- the discharge chamber 13 is provided above the compression mechanism unit 5.
- the discharge chamber 13 accommodates the refrigerant compressed and discharged by the compression mechanism unit 5.
- the slider 16 is a cylindrical member attached to the outer peripheral surface of the upper portion of the shaft 7.
- the slider 16 is located on the lower inner surface of the oscillating scroll 40. That is, the slider 16 attaches the swing scroll 40 to the shaft 7 via the slider 16. Thereby, the rocking scroll 40 rotates with the rotation of the shaft portion 7.
- a swing bearing 8 c is provided between the swing scroll 40 and the slider 16.
- the sleeve 17 is a cylindrical member provided between the frame 6 and the main bearing 8a.
- the sleeve 17 absorbs the inclination of the frame 6 and the shaft 7.
- the first balancer 18 is attached to the shaft 7.
- the first balancer 18 is located between the frame 6 and the rotor 4a.
- the first balancer 18 cancels the unbalance caused by the oscillating scroll 40 and the slider 16.
- the first balancer 18 is accommodated in the balancer cover 18a.
- the second balancer 19 is attached to the shaft 7.
- the second balancer 19 is located between the rotor 4 a and the sub-frame 20 and attached to the lower surface of the rotor 4 a.
- the second balancer 19 cancels the unbalance caused by the oscillating scroll 40 and the slider 16.
- the sub-frame 20 is provided below the motor 4 inside the shell 2 and rotatably supports the shaft portion 7 via the sub bearing 8 b.
- the oil drain pipe 21 is a pipe that connects the space between the frame 6 and the oscillating scroll 40 and the space between the frame 6 and the sub frame 20.
- the oil discharge pipe 21 causes excess oil out of the oil flowing in the space between the frame 6 and the oscillating scroll 40 to flow out into the space between the frame 6 and the sub-frame 20.
- the oil that has flowed into the space between the frame 6 and the sub-frame 20 passes through the sub-frame 20 and returns to the oil sump 3a.
- the Oldham ring 15 is disposed on a thrust surface which is a surface opposite to the upper surface of the rocking scroll 40 on which the spiral portion 41 is formed, and blocks the rotational movement of the rocking scroll 40. That is, the Oldham ring 15 functions to block the rotational movement of the rocking scroll 40 and to enable the rocking movement of the rocking scroll 40.
- the upper and lower surfaces of the Oldham ring 15 are formed with claws (not shown) protruding so as to be orthogonal to each other. The claws of the Oldham ring 15 are respectively inserted into Oldham grooves (not shown) formed in the rocking scroll 40 and the frame 6.
- the refrigerant in a gas state that is sucked into the shell 2 from the suction pipe 11 with the rocking motion of the rocking scroll 40 is a compression chamber formed between the spiral portions 31 and 41 of the fixed scroll 30 and the rocking scroll 40. It is taken into 5a and compressed toward the center.
- the compressed refrigerant is discharged from the discharge port 32 provided on the fixed scroll 30 with the discharge valve mechanism 50 opened and discharged from the discharge pipe 12 to the outside of the scroll compressor 100, that is, to the refrigerant circuit.
- the unbalance due to the movement of the swing scroll 40 and the Oldham ring 15 is balanced by the first balancer 18 attached to the shaft 7 and the second balancer 19 attached to the rotor 4a. Further, the lubricating oil stored in the lower portion of the shell 2 is supplied from the oil passage 7a provided in the shaft portion 7 to each sliding portion such as the main bearing 8a, the sub bearing 8b and the thrust surface.
- FIG. 2 is a schematic cross-sectional view showing fixed scroll 30 of scroll compressor 100 according to Embodiment 1 of the present invention.
- FIG. 3 is a schematic cross-sectional view showing the discharge valve mechanism 50 of the scroll compressor 100 according to Embodiment 1 of the present invention.
- the discharge valve mechanism 50 is disposed on the discharge chamber 13 side of the fixed scroll 30.
- the surface on the discharge chamber 13 side of the fixed scroll 30 in which the discharge valve mechanism 50 is disposed is a flat surface.
- the discharge valve mechanism 50 has one reed valve 51, one valve seat 52, and a valve presser 53.
- the reed valve 51 is a long plate-like member, and is fixed to the fixed scroll 30 together with the valve presser 53 with the fixed end 51 a by a screw.
- the reed valve 51 has a tip 51b which is a free end extending longitudinally from the fixed end 51a.
- the tip 51 b of the reed valve 51 is seated on the valve seat 52 and serves as a seal between the high pressure space on the discharge chamber 13 side and the low pressure space on the compression chamber 5 a side before refrigerant compression.
- the reed valve 51 extends straight by connecting the fixed end 51 a and the tip 51 b in the longitudinal direction.
- the valve seat 52 is provided on the surface of the fixed scroll 30 on the discharge chamber 13 side.
- the leading end 51b of the reed valve 51 is seated around the discharge port 32 which opens in the central portion.
- the outer side of the outer peripheral edge 52 a of the valve seat 52 is recessed with respect to the plane of the surface of the fixed scroll 30 on the discharge chamber 13 side. That is, the valve seat 52 is formed by processing the groove 33 on the outer surface of the fixed scroll 30.
- the surface of the valve seat 52 on which the front end portion 51 b of the reed valve 51 is seated is flush with the surface of the fixed scroll 30 on the discharge chamber 13 side.
- the valve presser 53 is a long plate-like member thicker than the reed valve 51, and the fixed end 53a is attached to the fixed scroll 30 together with the reed valve 51 by a screw.
- the valve presser 53 supports the reed valve 51 from the back when the reed valve 51 is opened, and protects the reed valve 51 so that the reed valve 51 is not deformed.
- the valve presser 53 connects the fixed end portion 53a and the tip end portion 53b in the longitudinal direction, and causes the tip end portion 53b to be warped toward the discharge chamber 13 side.
- FIG. 4 is a top view showing a tip 51 b of the reed valve 51 of the scroll compressor 100 according to Embodiment 1 of the present invention.
- the reed valve 51 is formed in a circular shape that is wider than the intermediate portion 51 c that directs the tip end 51 b toward the fixed end 51 a.
- the reed valve 51 is formed in line symmetry with respect to a central axis X connecting the fixed end 51 a and the tip 51 b seated on the valve seat 52.
- the plan view projection line 51b1 at the outer peripheral edge of the tip 51b seated on the valve seat 52 of the reed valve 51 is outside the outer peripheral edge 52a of the valve seat 52 when the reed valve 51 is seated on the valve seat 52 It overlaps with the groove 33 which is a recessed area.
- FIG. 5 is a top view showing a valve seat 52 of the scroll compressor 100 according to Embodiment 1 of the present invention.
- the valve seat 52 is annular, and the outer peripheral edge 52 a and the inner peripheral edge 52 b are concentric circles.
- a discharge port 32 is concentrically formed in a circle on the inner side of the inner peripheral edge 52 b of the valve seat 52.
- An annular groove 33 is formed concentrically on the outer side of the outer peripheral edge 52 a of the valve seat 52.
- one notch 54 is formed in the inner peripheral edge 52 b of the valve seat 52.
- the shape of the notch 54 is an arc shape.
- the notch 54 is located on the tip 51 b side of the reed valve 51 with respect to the center of the valve seat 52.
- the notch 54 is formed in line symmetry with respect to a central axis X connecting the fixed end 51 a of the reed valve 51 and the tip 51 b seated on the valve seat 52. That is, the shape of the arc-shaped notch 54 is a line symmetrical with respect to the central axis X.
- the notch 54 is recessed from the surface of the valve seat 52 flush with the surface on the discharge chamber 13 side of the fixed scroll 30 toward the discharge chamber side.
- the central axis X is referred to as the X axis
- the orthogonal axis Y orthogonal to the central axis X through the center of the valve seat 52 is referred to as the Y axis.
- the surface of the circumferential portion of the valve seat 52 where the notch 54 is formed is formed to be flush with the other circumferential portions. That is, the notch 54 does not extend from the inner peripheral edge 52 b to the outer peripheral edge 52 a of the valve seat 52, and does not connect the inner circumferential side and the outer circumferential side of the valve seat 52.
- the reed valve 51 is pressed against the valve seat 52 by the differential pressure between the high pressure space on the discharge chamber 13 side and the compression chamber 5a to close the valve.
- the pressure in the compression chamber 5a increases.
- the reed valve 51 is pulled apart and opens from the valve seat 52.
- the opened reed valve 51 is supported by a valve retainer 53 at the back to prevent damage.
- FIG. 6 is a top view showing a valve seat 52 of the scroll compressor 100 according to a modification of the first embodiment of the present invention.
- the notch 54 may be formed in the outer peripheral edge 52 a of the valve seat 52.
- the shape and arrangement of the notches 54 are the same as the notches 54 of the first embodiment.
- FIG. 7 is an explanatory view showing a relationship between an oil film and pressure in the discharge valve mechanism 50 of the scroll compressor 100 according to Embodiment 1 of the present invention.
- FIG. 8 is an explanatory view showing a relationship between an oil film and pressure in the discharge valve mechanism 50 of the scroll compressor 100 according to a modification of the first embodiment of the present invention.
- FIG. 9 is an explanatory view showing a relationship between oil film and pressure in the discharge valve mechanism of the scroll compressor according to the prior art.
- FIG. 10 is an explanatory view showing the relationship between the differential pressure in the discharge valve mechanism 50 of the scroll compressor 100 and the time until the valve opens according to Embodiment 1 of the present invention, the modification and the prior art.
- the oil film formation region can be reduced and oil film breakage resistance of the reed valve 51 can be reduced, as compared with the conventional technique in which the notch 54 is not formed.
- the diameter of the valve seat 52 is not reduced in order to reduce the oil film formation area, but the notch 54 is formed to partially cut the valve seat.
- An unbalanced location is provided for oil film formation. This is characterized in that oil film breakage easily occurs.
- the pressure receiving area where the reed valve 51 receives the differential pressure between the high pressure space and the compression chamber 5a is larger than the pressure receiving areas of the modified example shown in FIGS. .
- the reed valve 51 opens when the force F1 received from the discharge port 32 side is larger than the force F received from the high pressure space.
- the reed valve 51 can be easily opened, and the valve opening timing can be advanced.
- the valve opening timing can be made appropriate. Even in the modification, as described above, this effect can not be obtained as compared with the first embodiment, but can be obtained as compared with the prior art.
- the scroll compressor 100 includes the discharge valve mechanism 50 disposed on the discharge chamber 13 side of the fixed scroll 30.
- the discharge valve mechanism 50 has one reed valve 51.
- the discharge valve mechanism 50 is provided on the surface of the fixed scroll 30 on the discharge chamber 13 side, and has one valve seat 52 on which the reed valve 51 is seated around the discharge port 32 opened in the central portion.
- One notch 54 is formed in the inner peripheral edge 52 b of the valve seat 52.
- One or more notches 54 may be formed in the edge including the inner peripheral edge 52 b and the outer peripheral edge 52 a of the valve seat 52.
- the notch 54 is formed, the oil film break resistance between the reed valve 51 and the valve seat 52 at the valve opening timing is reduced, and the overcompression loss at the valve opening timing can be reduced. Further, since the notch 54 is not connected to the inner peripheral side and the outer peripheral side around the discharge port 32 of the valve seat 52, refrigerant leakage from the high pressure space to the low pressure space can be suppressed when the reed valve 51 is seated. Furthermore, the notch 54 is locally formed in a part of the valve seat 52, and an increase in the amount of valve deformation when the reed valve 51 is seated and an increase in stress generated in the reed valve 51 can be minimized. Therefore, the valve opening timing of the reed valve 51 can be optimized to suppress over-compression, and the refrigerant leakage loss from the high pressure space to the low pressure space in the discharge valve mechanism 50 can be suppressed. Can be secured.
- the notch 54 is formed in the inner peripheral edge 52 b of the valve seat 52.
- the notch 54 is formed in the outer peripheral edge 52 a of the valve seat 52.
- the notch 54 is formed, the oil film break resistance between the reed valve 51 and the valve seat 52 at the valve opening timing is reduced, and the overcompression loss at the valve opening timing can be reduced. Further, since the notch 54 is not connected to the inner peripheral side and the outer peripheral side around the discharge port 32 of the valve seat 52, refrigerant leakage from the high pressure space to the low pressure space can be suppressed when the reed valve 51 is seated. Furthermore, the notch 54 is locally formed in a part of the valve seat 52, and an increase in the amount of valve deformation when the reed valve 51 is seated and an increase in stress generated in the reed valve 51 can be minimized.
- the notch 54 is formed in line symmetry with respect to the central axis X connecting the fixed end 51 a of the reed valve 51 and the tip 51 b seated on the valve seat 52.
- the valve opening operation of the reed valve 51 is not biased with respect to the central axis X, the reed valve 51 is not biased and deformed, and the durability of the reed valve 51 can be improved. That is, the amount of valve deformation when the reed valve 51 is seated and the stress generated in the reed valve 51 can be reduced, and the reliability of the strength of the reed valve 51 can be secured.
- the surface of the circumferential portion of the valve seat 52 in which the notch 54 is formed is formed as the same surface as other circumferential portions.
- the shape of the notch 54 is an arc shape in plan view on the surface of the valve seat 52.
- the notch 54 can be processed by casting, circular cutting, forging, or the like, and is easy to manufacture.
- the notch 54 is recessed from the surface of the valve seat 52 to the side opposite to the discharge chamber.
- the notch 54 is formed, the oil film break resistance between the reed valve 51 and the valve seat 52 at the valve opening timing is reduced, and the overcompression loss at the valve opening timing can be reduced. Further, since the notch 54 is not connected to the inner peripheral side and the outer peripheral side around the discharge port 32 of the valve seat 52, refrigerant leakage from the high pressure space to the low pressure space can be suppressed when the reed valve 51 is seated. Furthermore, the notch 54 is locally formed in a part of the valve seat 52, and an increase in the amount of valve deformation when the reed valve 51 is seated and an increase in stress generated in the reed valve 51 can be minimized.
- the surface of the fixed scroll 30 on the discharge chamber 13 side is a flat surface.
- the outer side of the outer peripheral edge 52 a of the valve seat 52 is a groove 33 recessed with respect to the plane of the surface of the fixed scroll 30 on the discharge chamber 13 side.
- the surface of the valve seat 52 on which the reed valve 51 is seated is flush with the surface of the fixed scroll 30 on the discharge chamber 13 side.
- the valve seat 52 can be formed flush with the surface of the fixed scroll 30 on the discharge chamber 13 side by processing such that the outside of the outer peripheral edge 52a of the valve seat 52 is recessed in the groove 33. 52 is easy to manufacture. Further, the flat reed valve 51 is fixed in a state in which the fixed end 51 a to the tip 51 b are in contact with the surface of the fixed scroll 30 on the discharge chamber 13 side and the surface of the valve seat 52 flush with the surface. It suffices to fix the end 51a, the efficiency of assembling the discharge valve mechanism 50 is good, and the manufacture of the discharge valve mechanism 50 is easy.
- the outer peripheral edge 52a of the valve seat 52 does not excessively expand the seating area of the valve seat 52, and the oil film breakage resistance between the reed valve 51 and the valve seat 52 at the valve opening timing is reduced. Overcompression loss at the valve opening timing can be reduced. Further, the outer peripheral edge portion 52a of the valve seat 52 does not excessively expand the seating area of the valve seat 52, and the increase in the amount of deformation of the valve when the reed valve 51 is seated and the increase in stress generated in the reed valve 51 can be minimized. .
- FIG. 11 is a top view showing a valve seat 52 of the scroll compressor 100 according to Embodiment 2 of the present invention.
- FIG. 11 features different from the above-described embodiment will be described, and the same description will be omitted.
- two notches 54 are formed in line symmetry with respect to the central axis X.
- the two notches 54 formed in line symmetry with respect to the central axis X have a mirror surface shape.
- the two notches 54 formed in line symmetry with respect to the central axis X are located on the tip 51 b side of the reed valve 51 with respect to the center of the valve seat 52.
- the shape and arrangement of the other notches 54 are the same as the notches 54 of the first embodiment.
- two notches 54 are formed in line symmetry with respect to central axis X.
- the valve opening operation of the reed valve 51 is not biased with respect to the central axis X, the reed valve 51 is not biased and deformed, and the durability of the reed valve 51 can be improved.
- two notches 54 are formed, the oil film break resistance between the reed valve 51 and the valve seat 52 at the valve opening timing is reduced, and the over-compression loss at the valve opening timing can be reduced.
- the two notches 54 are not connected to the inner peripheral side and the outer peripheral side around the discharge port 32 of the valve seat 52, refrigerant leakage from the high pressure space to the low pressure space can be suppressed when the reed valve 51 is seated.
- the two notches 54 are locally formed in a part of the valve seat 52, and an increase in the amount of deformation of the valve when the reed valve 51 is seated and an increase in stress generated in the reed valve 51 can be minimized. .
- the two notches 54 formed in line symmetry with respect to the central axis X are located on the tip 51 b side of the reed valve 51 with respect to the center of the valve seat 52.
- the oil film breakage resistance between the reed valve 51 and the valve seat 52 at the valve opening timing is reduced at the tip portion 51b side of the larger reed valve 51, and the valve opening timing is more properly optimized. It can be done.
- FIG. 12 is a top view showing a valve seat 52 of the scroll compressor 100 according to Embodiment 3 of the present invention.
- FIG. 12 features different from the above-described embodiment will be described, and the same description will be omitted.
- three notches 54 are formed in line symmetry with respect to the central axis X.
- the two notches 54 are formed in line symmetry with respect to the central axis X on the side of the tip 51 b of the reed valve 51 with respect to the center of the valve seat 52.
- These two notches 54 are similar to the two notches 54 of the second embodiment.
- One notch 54 is formed on the central axis X that is axisymmetrical to the central axis X and on the fixed end 51 a side of the reed valve 51 with respect to the center of the valve seat 52.
- the one notch 54 is formed in addition to the two notches 54 of the second embodiment.
- the shape and arrangement of the other notches 54 are the same as the notches 54 of the first embodiment.
- one notch 54 is provided on the central axis X which is axisymmetrical to the central axis X and on the side of the fixed end 51 a of the reed valve 51 with respect to the center of the valve seat 52 It is formed.
- the valve opening operation of the reed valve 51 is not biased with respect to the central axis X, the reed valve 51 is not biased and deformed, and the durability of the reed valve 51 can be improved.
- three notches 54 are formed, the oil film break resistance between the reed valve 51 and the valve seat 52 at the valve opening timing is reduced, and the over-compression loss at the valve opening timing can be reduced.
- the three notches 54 are not connected to the inner peripheral side and the outer peripheral side around the discharge port 32 of the valve seat 52, refrigerant leakage from the high pressure space to the low pressure space can be suppressed when the reed valve 51 is seated.
- the three notches 54 are locally formed in a part of the valve seat 52, and the increase in the amount of deformation of the valve when the reed valve 51 is seated and the increase in the stress generated in the reed valve 51 can be minimized. .
- the present invention is not limited to the above first to third embodiments, and can be appropriately modified and applied without departing from the scope of the present invention.
- shape of the notch 54 mentioned the circular arc shape as an example an elliptical shape, a strip shape, a fan shape, etc. may be sufficient.
- the number of notches 54 may be four or more.
- FIG. 13 is a refrigerant circuit diagram showing a refrigeration cycle apparatus 200 to which the scroll compressor 100 according to Embodiment 4 of the present invention is applied.
- the refrigeration cycle apparatus 200 includes a scroll compressor 100, a condenser 201, an expansion valve 202 and an evaporator 203.
- the scroll compressor 100, the condenser 201, the expansion valve 202, and the evaporator 203 are connected by refrigerant pipes to form a refrigeration cycle circuit. Then, the refrigerant flowing out of the evaporator 203 is drawn into the scroll compressor 100 and becomes high temperature and high pressure. The high temperature and pressure refrigerant is condensed in the condenser 201 to become a liquid.
- the refrigerant that has become a liquid is decompressed and expanded by the expansion valve 202 and becomes a low-temperature low-pressure gas-liquid two phase, and the gas-liquid two-phase refrigerant is heat-exchanged in the evaporator 203.
- the scroll compressor 100 according to the first to third embodiments can be applied to such a refrigeration cycle apparatus 200.
- the refrigeration cycle apparatus 200 can be employed in an air conditioner, a refrigeration apparatus, a water heater, and the like.
- the refrigeration cycle apparatus 200 includes the scroll compressor 100 described in the above first to third embodiments.
- the valve opening timing of the reed valve 51 can be optimized to suppress over-compression and the high pressure space to the low pressure space in the discharge valve mechanism 50. Refrigerant leakage loss can be suppressed, and the reliability of the strength of the reed valve 51 can be secured.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Rotary Pumps (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
This scroll compressor is provided with a discharge valve mechanism disposed on a discharge chamber side of a fixed scroll, wherein the discharge valve mechanism has a lead valve, and has a valve seat which is provided on a surface on the discharge chamber side of the fixed scroll and on which the lead valve is seated around a discharge port that is open in the center portion. One or more cutouts are formed in the edge of the valve seat.
Description
本発明は、固定スクロールの吐出チャンバ側に配置される吐出弁機構を備えるスクロール圧縮機および冷凍サイクル装置に関する。
The present invention relates to a scroll compressor and a refrigeration cycle apparatus including a discharge valve mechanism disposed on the discharge chamber side of a fixed scroll.
スクロール圧縮機の構成部品である固定スクロールの吐出チャンバ側には、吐出口を開閉させる吐出弁機構と、弁押さえと、が備えられる。吐出弁機構は、吐出チャンバ側の高圧空間と、固定スクロールを用いる圧縮機構部側での冷媒圧縮前の低圧空間と、を仕切る。
On the discharge chamber side of the fixed scroll which is a component of the scroll compressor, a discharge valve mechanism for opening and closing the discharge port and a valve presser are provided. The discharge valve mechanism divides the high pressure space on the discharge chamber side from the low pressure space before compression of the refrigerant on the compression mechanism side using the fixed scroll.
吐出弁機構は、1つのリード弁を備える。また、吐出弁機構は、中央部に開く吐出口周りにてリード弁が着座する1つの弁座を備える。吐出弁機構では、リード弁の着座時に、リード弁と弁座との間に油膜が発生する。このため、開弁するときに、油膜破断抵抗によりリード弁の開弁タイミングが遅れ、過圧縮が起こり、スクロール圧縮機の性能が低下していた。
The discharge valve mechanism comprises one reed valve. In addition, the discharge valve mechanism includes one valve seat on which the reed valve is seated around the discharge opening that opens in the central portion. In the discharge valve mechanism, an oil film is generated between the reed valve and the valve seat when the reed valve is seated. For this reason, when the valve is opened, the valve opening timing of the reed valve is delayed due to the oil film breakage resistance, over-compression occurs, and the performance of the scroll compressor is lowered.
上記過圧縮を防止するため、弁座に溝を設けるスクロール圧縮機が提案されている(たとえば、特許文献1参照)。
In order to prevent the over-compression, a scroll compressor in which a groove is provided in a valve seat has been proposed (see, for example, Patent Document 1).
しかしながら、特許文献1の技術では、弁座の溝を介して、高圧空間から低圧空間への冷媒漏れ損失が発生する。
However, in the technique of Patent Document 1, refrigerant leakage loss from the high pressure space to the low pressure space occurs through the groove of the valve seat.
また、弁座に溝を設けない場合には、油膜破断抵抗による開弁タイミングの遅れを防止する必要があった。
Further, in the case where the valve seat is not provided with the groove, it is necessary to prevent the delay in the valve opening timing due to the oil film breakage resistance.
本発明は、上記課題を解決するためのものであり、リード弁の開弁タイミングの適正化が図られて過圧縮が抑制でき、吐出弁機構での高圧空間から低圧空間への冷媒漏れ損失が抑制できるスクロール圧縮機および冷凍サイクル装置を提供する。
The present invention is intended to solve the above problems, and the valve opening timing of the reed valve can be optimized to suppress over-compression, and the refrigerant leakage loss from the high pressure space to the low pressure space in the discharge valve mechanism is Provided are scroll compressors and refrigeration cycle devices that can be suppressed.
本発明に係るスクロール圧縮機は、固定スクロールの吐出チャンバ側に配置される吐出弁機構を備え、前記吐出弁機構は、1つのリード弁と、前記固定スクロールの吐出チャンバ側での表面に設けられ、中央部に開く吐出口周りにて前記リード弁が着座する1つの弁座と、を有するスクロール圧縮機であって、前記弁座の縁部には、1つ以上の切欠きが形成されるものである。
The scroll compressor according to the present invention includes a discharge valve mechanism disposed on the discharge chamber side of the fixed scroll, and the discharge valve mechanism is provided on one reed valve and a surface of the fixed scroll on the discharge chamber side. A scroll seat having one valve seat on which the reed valve is seated around a discharge opening opening in the center, wherein at least one notch is formed at an edge of the valve seat It is a thing.
本発明に係る冷凍サイクル装置は、スクロール圧縮機を備えるものである。
A refrigeration cycle apparatus according to the present invention includes a scroll compressor.
本発明に係るスクロール圧縮機および冷凍サイクル装置によれば、弁座の縁部には、1つ以上の切欠きが形成される。したがって、リード弁の開弁タイミングの適正化が図られて過圧縮が抑制でき、吐出弁機構での高圧空間から低圧空間への冷媒漏れ損失が抑制できる。
According to the scroll compressor and the refrigeration cycle device of the present invention, at least one notch is formed at the edge of the valve seat. Therefore, the valve opening timing of the reed valve can be optimized to suppress over-compression, and the refrigerant leakage loss from the high pressure space to the low pressure space in the discharge valve mechanism can be suppressed.
以下、図面に基づいて本発明の実施の形態について説明する。なお、各図において、同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。さらに、明細書全文に示す構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
Hereinafter, embodiments of the present invention will be described based on the drawings. In the drawings, the same reference numerals denote the same or corresponding parts, which are common to the whole text of the specification. Furthermore, the form of the component shown in the specification full text is an illustration to the last, and is not limited to these descriptions.
実施の形態1.
<スクロール圧縮機100の構成>
図1は、本発明の実施の形態1に係るスクロール圧縮機100を示す概略断面図である。Embodiment 1
<Configuration ofScroll Compressor 100>
FIG. 1 is a schematic cross-sectional view showing ascroll compressor 100 according to Embodiment 1 of the present invention.
<スクロール圧縮機100の構成>
図1は、本発明の実施の形態1に係るスクロール圧縮機100を示す概略断面図である。
<Configuration of
FIG. 1 is a schematic cross-sectional view showing a
図1に示すスクロール圧縮機100は、たとえば冷蔵庫あるいは冷凍庫、自動販売機、空気調和装置、冷凍装置、給湯器などの冷凍または空調用途に用いられる後述の冷凍サイクル装置200に適用される。スクロール圧縮機100は、冷凍サイクルを循環する冷媒を吸入し、圧縮して高温高圧の状態にして吐出させる。
Scroll compressor 100 shown in FIG. 1 is applied to, for example, a refrigeration cycle apparatus 200 described later used for refrigeration or air conditioning applications such as a refrigerator or a freezer, an automatic vending machine, an air conditioner, a refrigeration apparatus, a water heater and the like. The scroll compressor 100 sucks in the refrigerant circulating in the refrigeration cycle, compresses the refrigerant, and discharges the refrigerant in a high temperature and high pressure state.
図1に示すように、スクロール圧縮機100は、シェル2と、油ポンプ3と、モータ4と、圧縮機構部5と、フレーム6と、軸部7と、を備える。さらに、スクロール圧縮機100は、吸入管11と、吐出管12と、吐出チャンバ13と、オルダムリング15と、スライダ16と、スリーブ17と、第1バランサ18と、第2バランサ19と、サブフレーム20と、排油パイプ21と、を備える。
As shown in FIG. 1, the scroll compressor 100 includes a shell 2, an oil pump 3, a motor 4, a compression mechanism 5, a frame 6, and a shaft 7. Furthermore, the scroll compressor 100 includes a suction pipe 11, a discharge pipe 12, a discharge chamber 13, an Oldham ring 15, a slider 16, a sleeve 17, a first balancer 18, a second balancer 19, and a subframe 20 and an oil discharge pipe 21.
シェル2は、スクロール圧縮機100の外殻を構成し、下部に油溜り3aを有する。また、シェル2は、有底円筒状であり、ドーム状のアッパーシェル2aによって上部が塞がれる。また、シェル2は、ロアーシェル2bによって下部が塞がれる。
The shell 2 constitutes an outer shell of the scroll compressor 100, and has an oil sump 3a at the bottom. The shell 2 is cylindrical with a bottom, and the upper part is closed by the dome-shaped upper shell 2a. The lower part of the shell 2 is closed by the lower shell 2b.
油ポンプ3は、シェル2に収容され、油溜り3aから油を吸い上げる。油ポンプ3は、シェル2の下部に設けられる。そして、油ポンプ3は、油溜り3aから吸い上げた油をスクロール圧縮機100の内部の軸受部などの被潤滑部を潤滑させるように供給する。油ポンプ3に吸い上げられて揺動軸受8cを潤滑した後の油は、フレーム6の内部空間6dに蓄えられた後、スラスト軸受6bに設けられた放射状の給油溝6cを通過し、オルダムリング空間15bに流れてオルダムリング15を潤滑する。オルダムリング空間15bには、排油パイプ21が設けられ、排油パイプ21を通って油が油溜り3aに戻される。
The oil pump 3 is accommodated in the shell 2 and sucks the oil from the oil reservoir 3a. The oil pump 3 is provided at the lower part of the shell 2. Then, the oil pump 3 supplies the oil sucked from the oil reservoir 3a so as to lubricate a portion to be lubricated such as a bearing portion inside the scroll compressor 100. The oil after being sucked up by the oil pump 3 to lubricate the rocking bearing 8c is stored in the internal space 6d of the frame 6, and then passes through the radial oiling groove 6c provided in the thrust bearing 6b, and the Oldham ring space Flow to 15 b and lubricate Oldham ring 15. The oil drain pipe 21 is provided in the Oldham ring space 15b, and the oil is returned to the oil reservoir 3a through the oil drain pipe 21.
モータ4は、シェル2の内部にて、フレーム6とサブフレーム20との間に設置され、軸部7を回転させる。モータ4は、ロータ4aとステータ4bとを有する。ロータ4aは、ステータ4bの内周側に設けられ、軸部7に取り付けられる。ロータ4aは、自転することにより、軸部7を回転させる。ステータ4bは、図示しないインバータから供給された電力によって、ロータ4aを回転させる。
The motor 4 is installed between the frame 6 and the sub-frame 20 inside the shell 2 to rotate the shaft 7. The motor 4 has a rotor 4a and a stator 4b. The rotor 4 a is provided on the inner peripheral side of the stator 4 b and attached to the shaft 7. The rotor 4 a rotates the shaft 7 by rotating. The stator 4 b rotates the rotor 4 a by electric power supplied from an inverter (not shown).
圧縮機構部5は、固定スクロール30と、揺動スクロール40と、を備える。
The compression mechanism unit 5 includes a fixed scroll 30 and a swing scroll 40.
固定スクロール30は、シェル2内に固定支持されるフレーム6に図示しないボルトなどによって固定される。固定スクロール30は、鏡板30aと、鏡板30aの下面にて下方向に延びる渦巻部31とを有する。また、固定スクロール30の中央部には、圧縮された流体を吐出するための吐出口32が貫通して形成される。さらに、固定スクロール30の吐出口32の出口部には、吐出弁機構50が設置される凹部が形成される。吐出弁機構50は、吐出口32を覆うように設置され、流体の逆流を防止する。
The fixed scroll 30 is fixed to a frame 6 fixedly supported in the shell 2 by a bolt or the like (not shown). The fixed scroll 30 has an end plate 30 a and a spiral portion 31 extending downward on the lower surface of the end plate 30 a. Further, a discharge port 32 for discharging the compressed fluid is formed in a central portion of the fixed scroll 30 so as to pass therethrough. Further, at the outlet portion of the discharge port 32 of the fixed scroll 30, a concave portion in which the discharge valve mechanism 50 is installed is formed. The discharge valve mechanism 50 is installed so as to cover the discharge port 32 and prevents backflow of fluid.
揺動スクロール40は、固定スクロール30に対して公転旋回運動、言い換えれば揺動運動を行い、オルダムリング15によって自転運動が規制される。揺動スクロール40は、鏡板40aと、鏡板40aの上面に上方向に延びる渦巻部41とを有する。
The rocking scroll 40 performs a revolving rotation movement, in other words, a rocking movement, with respect to the fixed scroll 30, and the rotation movement is restricted by the Oldham ring 15. The rocking scroll 40 has a mirror plate 40 a and a spiral portion 41 extending upward on the upper surface of the mirror plate 40 a.
固定スクロール30と揺動スクロール40とは、互いに向き合った面に渦巻部31、41を対向させ、互いの渦巻部31、41を噛み合わせる。固定スクロール30の渦巻部31と揺動スクロール40の渦巻部41とが噛み合った空間には、圧縮室5aが形成される。揺動スクロール40が軸部7によって揺動運動されると、圧縮室5aにてガス状態の冷媒が圧縮される。
The fixed scroll 30 and the swinging scroll 40 make the spirals 31 and 41 face each other on the surfaces facing each other, and mesh the spirals 31 and 41 with each other. A compression chamber 5a is formed in a space where the spiral portion 31 of the fixed scroll 30 and the spiral portion 41 of the oscillating scroll 40 are engaged. When the rocking scroll 40 is rocked by the shaft 7, the refrigerant in a gas state is compressed in the compression chamber 5a.
フレーム6は、シェル2に固定され、圧縮機構部5を収容する。フレーム6は、主軸受8aを介して軸部7を回転自在に支持する。フレーム6には、吸入ポート6aが形成される。ガス状態の冷媒は、吸入ポート6aを通って圧縮機構部5に流入する。
The frame 6 is fixed to the shell 2 and accommodates the compression mechanism 5. The frame 6 rotatably supports the shaft 7 via the main bearing 8a. In the frame 6, an intake port 6a is formed. The refrigerant in the gas state flows into the compression mechanism 5 through the suction port 6a.
軸部7は、フレーム6に支持される。軸部7には、油ポンプ3に吸い上げられる油を上方に流通させる油通路7aが内部に形成される。軸部7は、モータ4と揺動スクロール40とにそれぞれ接続され、モータ4の回転力を揺動スクロール40に伝達する。
The shaft 7 is supported by the frame 6. In the shaft portion 7, an oil passage 7a is formed inside, through which the oil sucked up by the oil pump 3 flows upward. The shaft portion 7 is connected to the motor 4 and the oscillating scroll 40, and transmits the rotational force of the motor 4 to the oscillating scroll 40.
吸入管11は、シェル2の側壁部に設けられる。吸入管11は、ガス状態の冷媒をシェル2の内部に吸入する管である。
The suction pipe 11 is provided on the side wall of the shell 2. The suction pipe 11 is a pipe for sucking the refrigerant in a gas state into the inside of the shell 2.
吐出管12は、シェル2の上部に設けられる。吐出管12は、圧縮された冷媒をシェル2の外部に吐出する管である。
The discharge pipe 12 is provided on the top of the shell 2. The discharge pipe 12 is a pipe that discharges the compressed refrigerant to the outside of the shell 2.
吐出チャンバ13は、圧縮機構部5の上方に設けられる。吐出チャンバ13は、圧縮機構部5にて圧縮されて吐出される冷媒を収容する。
The discharge chamber 13 is provided above the compression mechanism unit 5. The discharge chamber 13 accommodates the refrigerant compressed and discharged by the compression mechanism unit 5.
スライダ16は、軸部7の上部の外周面に取り付けられる筒状の部材である。スライダ16は、揺動スクロール40の下部の内側面に位置する。すなわち、スライダ16は、揺動スクロール40をこのスライダ16を介して軸部7に取り付ける。これにより、軸部7の回転に伴って揺動スクロール40が回転する。なお、揺動スクロール40とスライダ16との間には、揺動軸受8cが設けられる。
The slider 16 is a cylindrical member attached to the outer peripheral surface of the upper portion of the shaft 7. The slider 16 is located on the lower inner surface of the oscillating scroll 40. That is, the slider 16 attaches the swing scroll 40 to the shaft 7 via the slider 16. Thereby, the rocking scroll 40 rotates with the rotation of the shaft portion 7. A swing bearing 8 c is provided between the swing scroll 40 and the slider 16.
スリーブ17は、フレーム6と主軸受8aとの間に設けられる筒状の部材である。スリーブ17は、フレーム6と軸部7との傾斜を吸収する。
The sleeve 17 is a cylindrical member provided between the frame 6 and the main bearing 8a. The sleeve 17 absorbs the inclination of the frame 6 and the shaft 7.
第1バランサ18は、軸部7に取り付けられる。第1バランサ18は、フレーム6とロータ4aとの間に位置する。第1バランサ18は、揺動スクロール40およびスライダ16によって生じるアンバランスを相殺する。なお、第1バランサ18は、バランサカバー18aに収容される。
The first balancer 18 is attached to the shaft 7. The first balancer 18 is located between the frame 6 and the rotor 4a. The first balancer 18 cancels the unbalance caused by the oscillating scroll 40 and the slider 16. The first balancer 18 is accommodated in the balancer cover 18a.
第2バランサ19は、軸部7に取り付けられる。第2バランサ19は、ロータ4aとサブフレーム20との間に位置し、ロータ4aの下面に取り付けられる。第2バランサ19は、揺動スクロール40およびスライダ16によって生じるアンバランスを相殺する。
The second balancer 19 is attached to the shaft 7. The second balancer 19 is located between the rotor 4 a and the sub-frame 20 and attached to the lower surface of the rotor 4 a. The second balancer 19 cancels the unbalance caused by the oscillating scroll 40 and the slider 16.
サブフレーム20は、シェル2の内部におけるモータ4の下方に設けられ、副軸受8bを介して軸部7を回転自在に支持する。
The sub-frame 20 is provided below the motor 4 inside the shell 2 and rotatably supports the shaft portion 7 via the sub bearing 8 b.
排油パイプ21は、フレーム6と揺動スクロール40との間の空間と、フレーム6とサブフレーム20との間の空間と、を接続する管である。排油パイプ21は、フレーム6と揺動スクロール40との間の空間に流通する油のうち、過剰な油を、フレーム6とサブフレーム20との間の空間に流出させる。フレーム6とサブフレーム20との間の空間に流出した油は、サブフレーム20を通過して油溜り3aに戻る。
The oil drain pipe 21 is a pipe that connects the space between the frame 6 and the oscillating scroll 40 and the space between the frame 6 and the sub frame 20. The oil discharge pipe 21 causes excess oil out of the oil flowing in the space between the frame 6 and the oscillating scroll 40 to flow out into the space between the frame 6 and the sub-frame 20. The oil that has flowed into the space between the frame 6 and the sub-frame 20 passes through the sub-frame 20 and returns to the oil sump 3a.
オルダムリング15は、揺動スクロール40の渦巻部41の形成される上面とは反対側の面であるスラスト面に配設され、揺動スクロール40の自転運動を阻止する。すなわち、オルダムリング15は、揺動スクロール40の自転運動を阻止するとともに、揺動スクロール40の揺動運動を可能とする機能を果たす。オルダムリング15の上下面には、互いに直交するように突設された図示しない爪が形成される。オルダムリング15の爪は、揺動スクロール40およびフレーム6に形成される図示しないオルダム溝にそれぞれ嵌入される。
The Oldham ring 15 is disposed on a thrust surface which is a surface opposite to the upper surface of the rocking scroll 40 on which the spiral portion 41 is formed, and blocks the rotational movement of the rocking scroll 40. That is, the Oldham ring 15 functions to block the rotational movement of the rocking scroll 40 and to enable the rocking movement of the rocking scroll 40. The upper and lower surfaces of the Oldham ring 15 are formed with claws (not shown) protruding so as to be orthogonal to each other. The claws of the Oldham ring 15 are respectively inserted into Oldham grooves (not shown) formed in the rocking scroll 40 and the frame 6.
<スクロール圧縮機100の動作>
ステータ4bに電力が供給されると、ロータ4aがトルクを発生し、フレーム6の主軸受8aと副軸受8bとで支持された軸部7が回転する。軸部7の偏心部によりボス部を駆動される揺動スクロール40は、オルダムリング15により自転が規制され、公転運動する。つまり、フレーム6のオルダム溝方向に往復動するオルダムリング15により自転を規制される状態で揺動スクロール40のボス部が軸部7の偏心部により駆動されることにより、揺動スクロール40が揺動運動する。これにより、固定スクロール30の渦巻部31と揺動スクロール40の渦巻部41との組み合せで形成される圧縮室5aの容積を変化させる。 <Operation ofScroll Compressor 100>
When power is supplied to thestator 4b, the rotor 4a generates a torque, and the shaft 7 supported by the main bearing 8a and the auxiliary bearing 8b of the frame 6 rotates. The swing scroll 40 whose boss is driven by the eccentric portion of the shaft 7 is restricted in rotation by the Oldham ring 15 and revolves. That is, the boss portion of the rocking scroll 40 is driven by the eccentric portion of the shaft portion 7 in a state in which the rotation is restricted by the Oldham ring 15 that reciprocates in the Oldham groove direction of the frame 6. Exercise. As a result, the volume of the compression chamber 5a formed by the combination of the spiral portion 31 of the fixed scroll 30 and the spiral portion 41 of the oscillating scroll 40 is changed.
ステータ4bに電力が供給されると、ロータ4aがトルクを発生し、フレーム6の主軸受8aと副軸受8bとで支持された軸部7が回転する。軸部7の偏心部によりボス部を駆動される揺動スクロール40は、オルダムリング15により自転が規制され、公転運動する。つまり、フレーム6のオルダム溝方向に往復動するオルダムリング15により自転を規制される状態で揺動スクロール40のボス部が軸部7の偏心部により駆動されることにより、揺動スクロール40が揺動運動する。これにより、固定スクロール30の渦巻部31と揺動スクロール40の渦巻部41との組み合せで形成される圧縮室5aの容積を変化させる。 <Operation of
When power is supplied to the
揺動スクロール40の揺動運動に伴い吸入管11からシェル2内に吸入されるガス状態の冷媒は、固定スクロール30と揺動スクロール40との両渦巻部31、41間に形成される圧縮室5aに取り込まれ、中心に向かいつつ圧縮されて行く。そして、圧縮された冷媒は、固定スクロール30に設ける吐出口32から吐出弁機構50を開弁させて吐出され、吐出管12からスクロール圧縮機100の外部、すなわち冷媒回路へ排出される。
The refrigerant in a gas state that is sucked into the shell 2 from the suction pipe 11 with the rocking motion of the rocking scroll 40 is a compression chamber formed between the spiral portions 31 and 41 of the fixed scroll 30 and the rocking scroll 40. It is taken into 5a and compressed toward the center. The compressed refrigerant is discharged from the discharge port 32 provided on the fixed scroll 30 with the discharge valve mechanism 50 opened and discharged from the discharge pipe 12 to the outside of the scroll compressor 100, that is, to the refrigerant circuit.
なお、揺動スクロール40とオルダムリング15との運動に伴うアンバランスを軸部7に取り付けられた第1バランサ18とロータ4aに取り付けられる第2バランサ19とによって釣り合わせる。また、シェル2の下部に貯留する潤滑油は、軸部7内に設けられる油通路7aから主軸受8a、副軸受8bおよびスラスト面などの各摺動部に供給される。
The unbalance due to the movement of the swing scroll 40 and the Oldham ring 15 is balanced by the first balancer 18 attached to the shaft 7 and the second balancer 19 attached to the rotor 4a. Further, the lubricating oil stored in the lower portion of the shell 2 is supplied from the oil passage 7a provided in the shaft portion 7 to each sliding portion such as the main bearing 8a, the sub bearing 8b and the thrust surface.
<吐出弁機構50の構成>
図2は、本発明の実施の形態1に係るスクロール圧縮機100の固定スクロール30を示す概略断面図である。図3は、本発明の実施の形態1に係るスクロール圧縮機100の吐出弁機構50を示す概略断面図である。 <Configuration ofDischarge Valve Mechanism 50>
FIG. 2 is a schematic cross-sectional view showing fixedscroll 30 of scroll compressor 100 according to Embodiment 1 of the present invention. FIG. 3 is a schematic cross-sectional view showing the discharge valve mechanism 50 of the scroll compressor 100 according to Embodiment 1 of the present invention.
図2は、本発明の実施の形態1に係るスクロール圧縮機100の固定スクロール30を示す概略断面図である。図3は、本発明の実施の形態1に係るスクロール圧縮機100の吐出弁機構50を示す概略断面図である。 <Configuration of
FIG. 2 is a schematic cross-sectional view showing fixed
図2に示すように、吐出弁機構50は、固定スクロール30の吐出チャンバ13側に配置される。吐出弁機構50が配置される固定スクロール30の吐出チャンバ13側での表面は、平面である。吐出弁機構50は、1つのリード弁51と、1つの弁座52と、弁押え53と、を有する。
As shown in FIG. 2, the discharge valve mechanism 50 is disposed on the discharge chamber 13 side of the fixed scroll 30. The surface on the discharge chamber 13 side of the fixed scroll 30 in which the discharge valve mechanism 50 is disposed is a flat surface. The discharge valve mechanism 50 has one reed valve 51, one valve seat 52, and a valve presser 53.
リード弁51は、長板状の部材であり、螺子によって固定端部51aを弁押え53とともに固定スクロール30に取り付けられる。リード弁51は、固定端部51aから長手方向に延びる自由端部である先端部51bを有する。リード弁51の先端部51bは、弁座52に着座し、吐出チャンバ13側の高圧空間と冷媒圧縮前の圧縮室5a側の低圧空間との間のシール部となる。リード弁51は、固定端部51aと先端部51bとを長手方向に繋いで真っすぐ延びる。
The reed valve 51 is a long plate-like member, and is fixed to the fixed scroll 30 together with the valve presser 53 with the fixed end 51 a by a screw. The reed valve 51 has a tip 51b which is a free end extending longitudinally from the fixed end 51a. The tip 51 b of the reed valve 51 is seated on the valve seat 52 and serves as a seal between the high pressure space on the discharge chamber 13 side and the low pressure space on the compression chamber 5 a side before refrigerant compression. The reed valve 51 extends straight by connecting the fixed end 51 a and the tip 51 b in the longitudinal direction.
弁座52は、固定スクロール30の吐出チャンバ13側での表面に設けられる。弁座52は、中央部に開く吐出口32の周りにてリード弁51の先端部51bが着座する。弁座52の外周縁部52aの外側は、固定スクロール30の吐出チャンバ13側での表面の平面に対して凹む。すなわち、弁座52は、外側に溝部33を固定スクロール30の表面に加工することにより形成される。これにより、リード弁51の先端部51bが着座する弁座52の表面は、固定スクロール30の吐出チャンバ13側での表面の平面に面一に形成される。
The valve seat 52 is provided on the surface of the fixed scroll 30 on the discharge chamber 13 side. In the valve seat 52, the leading end 51b of the reed valve 51 is seated around the discharge port 32 which opens in the central portion. The outer side of the outer peripheral edge 52 a of the valve seat 52 is recessed with respect to the plane of the surface of the fixed scroll 30 on the discharge chamber 13 side. That is, the valve seat 52 is formed by processing the groove 33 on the outer surface of the fixed scroll 30. As a result, the surface of the valve seat 52 on which the front end portion 51 b of the reed valve 51 is seated is flush with the surface of the fixed scroll 30 on the discharge chamber 13 side.
弁押え53は、リード弁51よりも厚みのある長板状の部材であり、螺子によって固定端部53aをリード弁51とともに固定スクロール30に取り付けられる。弁押え53は、リード弁51の開弁時にリード弁51を背面から支持し、リード弁51が変形しないようにリード弁51を保護する。弁押え53は、固定端部53aと先端部53bとを長手方向に繋いで吐出チャンバ13側に先端部53b側を反らせる。
The valve presser 53 is a long plate-like member thicker than the reed valve 51, and the fixed end 53a is attached to the fixed scroll 30 together with the reed valve 51 by a screw. The valve presser 53 supports the reed valve 51 from the back when the reed valve 51 is opened, and protects the reed valve 51 so that the reed valve 51 is not deformed. The valve presser 53 connects the fixed end portion 53a and the tip end portion 53b in the longitudinal direction, and causes the tip end portion 53b to be warped toward the discharge chamber 13 side.
図3に示すように、リード弁51の先端部51bは、弁座52に着座するときに、先端部51bと弁座52との間に油膜が形成される。油膜によりリード弁51のシールする閉弁状態が維持され、吐出チャンバ13側の高圧空間から冷媒圧縮前の圧縮室5a側の低圧空間に冷媒が逆流することが防止される。
As shown in FIG. 3, when the leading end 51 b of the reed valve 51 is seated on the valve seat 52, an oil film is formed between the leading end 51 b and the valve seat 52. The oil film maintains the closed state in which the reed valve 51 seals, and prevents the backflow of the refrigerant from the high pressure space on the discharge chamber 13 side to the low pressure space on the compression chamber 5a side before the refrigerant compression.
<リード弁51の先端部51bの構成>
図4は、本発明の実施の形態1に係るスクロール圧縮機100のリード弁51の先端部51bを示す上面図である。 <Configuration ofTip 51b of Reed Valve 51>
FIG. 4 is a top view showing atip 51 b of the reed valve 51 of the scroll compressor 100 according to Embodiment 1 of the present invention.
図4は、本発明の実施の形態1に係るスクロール圧縮機100のリード弁51の先端部51bを示す上面図である。 <Configuration of
FIG. 4 is a top view showing a
図4に示すように、リード弁51は、先端部51bを固定端部51aに向かう中間部51cよりも広い円形形状に形成される。リード弁51は、固定端部51aと弁座52に着座する先端部51bとを繋ぐ中心軸Xに対して線対称に形成される。リード弁51の弁座52に着座する先端部51bの外周縁部における平面視投影線51b1は、リード弁51が弁座52に着座するときに、弁座52の外周縁部52aの外側にて凹む領域である溝部33に重なる。
As shown in FIG. 4, the reed valve 51 is formed in a circular shape that is wider than the intermediate portion 51 c that directs the tip end 51 b toward the fixed end 51 a. The reed valve 51 is formed in line symmetry with respect to a central axis X connecting the fixed end 51 a and the tip 51 b seated on the valve seat 52. The plan view projection line 51b1 at the outer peripheral edge of the tip 51b seated on the valve seat 52 of the reed valve 51 is outside the outer peripheral edge 52a of the valve seat 52 when the reed valve 51 is seated on the valve seat 52 It overlaps with the groove 33 which is a recessed area.
<弁座52の構成>
図5は、本発明の実施の形態1に係るスクロール圧縮機100の弁座52を示す上面図である。 <Configuration ofvalve seat 52>
FIG. 5 is a top view showing avalve seat 52 of the scroll compressor 100 according to Embodiment 1 of the present invention.
図5は、本発明の実施の形態1に係るスクロール圧縮機100の弁座52を示す上面図である。 <Configuration of
FIG. 5 is a top view showing a
弁座52は、円環状であり、外周縁部52aと内周縁部52bとが同心円で構成される。弁座52の内周縁部52bの内側には、吐出口32が同心円で円形に形成される。弁座52の外周縁部52aの外側には、同心円で円環状の溝部33が形成される。
The valve seat 52 is annular, and the outer peripheral edge 52 a and the inner peripheral edge 52 b are concentric circles. A discharge port 32 is concentrically formed in a circle on the inner side of the inner peripheral edge 52 b of the valve seat 52. An annular groove 33 is formed concentrically on the outer side of the outer peripheral edge 52 a of the valve seat 52.
<切欠き54の構成>
図5に示すように、弁座52の内周縁部52bには、切欠き54が1つ形成される。切欠き54の形状は、円弧形状である。切欠き54は、弁座52の中心に対してリード弁51の先端部51b側に位置する。切欠き54は、リード弁51の固定端部51aと弁座52に着座する先端部51bとを繋ぐ中心軸Xに対して線対称に形成される。つまり、円弧形状の切欠き54の形状は、中心軸Xに対して線対称な形状である。切欠き54は、固定スクロール30の吐出チャンバ13側での表面と面一の弁座52の表面から反吐出チャンバ側に凹む。なお、図5では、中心軸XをX軸と称し、弁座52の中心を通って中心軸Xに直交する直交軸YをY軸と称する。 <Structure ofNotch 54>
As shown in FIG. 5, onenotch 54 is formed in the inner peripheral edge 52 b of the valve seat 52. The shape of the notch 54 is an arc shape. The notch 54 is located on the tip 51 b side of the reed valve 51 with respect to the center of the valve seat 52. The notch 54 is formed in line symmetry with respect to a central axis X connecting the fixed end 51 a of the reed valve 51 and the tip 51 b seated on the valve seat 52. That is, the shape of the arc-shaped notch 54 is a line symmetrical with respect to the central axis X. The notch 54 is recessed from the surface of the valve seat 52 flush with the surface on the discharge chamber 13 side of the fixed scroll 30 toward the discharge chamber side. In FIG. 5, the central axis X is referred to as the X axis, and the orthogonal axis Y orthogonal to the central axis X through the center of the valve seat 52 is referred to as the Y axis.
図5に示すように、弁座52の内周縁部52bには、切欠き54が1つ形成される。切欠き54の形状は、円弧形状である。切欠き54は、弁座52の中心に対してリード弁51の先端部51b側に位置する。切欠き54は、リード弁51の固定端部51aと弁座52に着座する先端部51bとを繋ぐ中心軸Xに対して線対称に形成される。つまり、円弧形状の切欠き54の形状は、中心軸Xに対して線対称な形状である。切欠き54は、固定スクロール30の吐出チャンバ13側での表面と面一の弁座52の表面から反吐出チャンバ側に凹む。なお、図5では、中心軸XをX軸と称し、弁座52の中心を通って中心軸Xに直交する直交軸YをY軸と称する。 <Structure of
As shown in FIG. 5, one
切欠き54が形成される弁座52の周方向部分の表面は、他の周方向部分と同一平面として形成される。つまり、切欠き54は、弁座52の内周縁部52bから外周縁部52aまで至らず、弁座52の内周側と外周側とを繋いでいない。
The surface of the circumferential portion of the valve seat 52 where the notch 54 is formed is formed to be flush with the other circumferential portions. That is, the notch 54 does not extend from the inner peripheral edge 52 b to the outer peripheral edge 52 a of the valve seat 52, and does not connect the inner circumferential side and the outer circumferential side of the valve seat 52.
<吐出弁機構50の動作>
吐出弁機構50は、リード弁51が吐出チャンバ13側の高圧空間と圧縮室5aとの差圧によって弁座52に押さえ付けられて閉弁する。そして、圧縮室5a内にて冷媒の圧縮が進むと、圧縮室5a内の圧力が高くなる。圧縮室5a内の圧力が高圧空間の圧力よりも大きくなると、リード弁51がのけ反って弁座52から離れて開弁する。開弁したリード弁51は、損傷防止のために背後を弁押え53によって支持される。圧縮室5a内の高圧の冷媒の吐出が完了すると、リード弁51が元の平板状体に戻り、閉弁状態になる。 <Operation ofDischarge Valve Mechanism 50>
In thedischarge valve mechanism 50, the reed valve 51 is pressed against the valve seat 52 by the differential pressure between the high pressure space on the discharge chamber 13 side and the compression chamber 5a to close the valve. When the compression of the refrigerant proceeds in the compression chamber 5a, the pressure in the compression chamber 5a increases. When the pressure in the compression chamber 5a becomes higher than the pressure in the high pressure space, the reed valve 51 is pulled apart and opens from the valve seat 52. The opened reed valve 51 is supported by a valve retainer 53 at the back to prevent damage. When the discharge of the high-pressure refrigerant in the compression chamber 5a is completed, the reed valve 51 returns to the original flat plate-like state, and the valve is closed.
吐出弁機構50は、リード弁51が吐出チャンバ13側の高圧空間と圧縮室5aとの差圧によって弁座52に押さえ付けられて閉弁する。そして、圧縮室5a内にて冷媒の圧縮が進むと、圧縮室5a内の圧力が高くなる。圧縮室5a内の圧力が高圧空間の圧力よりも大きくなると、リード弁51がのけ反って弁座52から離れて開弁する。開弁したリード弁51は、損傷防止のために背後を弁押え53によって支持される。圧縮室5a内の高圧の冷媒の吐出が完了すると、リード弁51が元の平板状体に戻り、閉弁状態になる。 <Operation of
In the
<弁座52の変形例>
図6は、本発明の実施の形態1の変形例に係るスクロール圧縮機100の弁座52を示す上面図である。 <Modification ofvalve seat 52>
FIG. 6 is a top view showing avalve seat 52 of the scroll compressor 100 according to a modification of the first embodiment of the present invention.
図6は、本発明の実施の形態1の変形例に係るスクロール圧縮機100の弁座52を示す上面図である。 <Modification of
FIG. 6 is a top view showing a
図6に示すように、切欠き54は、弁座52の外周縁部52aに形成されても良い。切欠き54の形状および配置などは、実施の形態1の切欠き54と同様である。
As shown in FIG. 6, the notch 54 may be formed in the outer peripheral edge 52 a of the valve seat 52. The shape and arrangement of the notches 54 are the same as the notches 54 of the first embodiment.
<実施の形態1および変形例の対比>
図7は、本発明の実施の形態1に係るスクロール圧縮機100の吐出弁機構50での油膜および圧力の関係を示す説明図である。図8は、本発明の実施の形態1の変形例に係るスクロール圧縮機100の吐出弁機構50での油膜および圧力の関係を示す説明図である。図9は、従来の技術に係るスクロール圧縮機の吐出弁機構での油膜および圧力の関係を示す説明図である。図10は、本発明の実施の形態1と変形例と従来の技術とに係るスクロール圧縮機100の吐出弁機構50での差圧と開弁までの時間との関係を示す説明図である。 <Comparison ofEmbodiment 1 and Modifications>
FIG. 7 is an explanatory view showing a relationship between an oil film and pressure in thedischarge valve mechanism 50 of the scroll compressor 100 according to Embodiment 1 of the present invention. FIG. 8 is an explanatory view showing a relationship between an oil film and pressure in the discharge valve mechanism 50 of the scroll compressor 100 according to a modification of the first embodiment of the present invention. FIG. 9 is an explanatory view showing a relationship between oil film and pressure in the discharge valve mechanism of the scroll compressor according to the prior art. FIG. 10 is an explanatory view showing the relationship between the differential pressure in the discharge valve mechanism 50 of the scroll compressor 100 and the time until the valve opens according to Embodiment 1 of the present invention, the modification and the prior art.
図7は、本発明の実施の形態1に係るスクロール圧縮機100の吐出弁機構50での油膜および圧力の関係を示す説明図である。図8は、本発明の実施の形態1の変形例に係るスクロール圧縮機100の吐出弁機構50での油膜および圧力の関係を示す説明図である。図9は、従来の技術に係るスクロール圧縮機の吐出弁機構での油膜および圧力の関係を示す説明図である。図10は、本発明の実施の形態1と変形例と従来の技術とに係るスクロール圧縮機100の吐出弁機構50での差圧と開弁までの時間との関係を示す説明図である。 <Comparison of
FIG. 7 is an explanatory view showing a relationship between an oil film and pressure in the
変形例であっても、切欠き54を形成しない従来の技術に対して、油膜形成領域が低減でき、リード弁51の油膜破断抵抗が低減できる。特に、実施の形態1および変形例では、油膜形成領域を減らすために、弁座52の径が小さくされるのではなく、切欠き54を形成して弁座の一部の部分的な箇所に油膜形成にアンバランスな箇所が設けられる。これにより、油膜破断が生じ易くなることが特徴である。そして、図7に示す実施の形態1では、リード弁51が高圧空間と圧縮室5aとの差圧を受ける受圧面積が図8、図9に示す変形例および従来の技術の受圧面積よりも大きい。
すなわち、高圧空間からリード弁51が受ける力をF=(圧力P×面積A)と定義し、吐出口32からリード弁51が受ける力をF1と定義し、吐出口圧力をP1と定義し、リード弁51が吐出口圧力を受ける面積をA1と定義し、油膜破断抵抗をW1と定義すると、
F<F1=P1×A1-W1
の関係が成立する。これにより、リード弁51は、高圧空間から受ける力Fよりも吐出口32側から受ける力F1が大きくなることにより開弁する。
図7の実施の形態1に示すように、切欠き54が弁座52の内側に形成されるときには、図9の従来構成に比して、A1が大きくなり、かつ、W1が小さくなるため、開弁するための圧力P1が小さくて済み、圧縮損失が低減できる。
一方、図8の変形例に示すように、切欠き54が弁座52の外側に形成されるときには、図9の従来構成に比して、A1が同じであり、かつ、W1が小さくなるため、図7の実施の形態1のときほどではないが、リード弁51が開く圧力P1が小さくなる。
したがって、図10に示すように、実施の形態1での吐出弁機構50は、高圧空間と圧縮室5aとの差圧が小さくてもリード弁51が開弁し易く、開弁タイミングが早くでき、開弁タイミングの適正化が図れる。なお、変形例であっても、上述のようにこの効果を実施の形態1よりは得られないが従来の技術に比して得られる。 Even in the modification, the oil film formation region can be reduced and oil film breakage resistance of thereed valve 51 can be reduced, as compared with the conventional technique in which the notch 54 is not formed. In particular, in the first embodiment and the modification, the diameter of the valve seat 52 is not reduced in order to reduce the oil film formation area, but the notch 54 is formed to partially cut the valve seat. An unbalanced location is provided for oil film formation. This is characterized in that oil film breakage easily occurs. In the first embodiment shown in FIG. 7, the pressure receiving area where the reed valve 51 receives the differential pressure between the high pressure space and the compression chamber 5a is larger than the pressure receiving areas of the modified example shown in FIGS. .
That is, the force that thereed valve 51 receives from the high pressure space is defined as F = (pressure P × area A), the force that the reed valve 51 receives from the discharge port 32 is defined as F1, and the discharge pressure is defined as P1. The area where the reed valve 51 receives the outlet pressure is defined as A1, and the oil film break resistance is defined as W1,
F <F1 = P1 × A1-W1
Relationship is established. As a result, thereed valve 51 opens when the force F1 received from the discharge port 32 side is larger than the force F received from the high pressure space.
As shown in the first embodiment of FIG. 7, when thenotch 54 is formed inside the valve seat 52, A1 is larger and W1 is smaller as compared with the conventional configuration of FIG. The pressure P1 for opening the valve can be small, and the compression loss can be reduced.
On the other hand, as shown in the modification of FIG. 8, when thenotch 54 is formed on the outside of the valve seat 52, A1 is the same and W1 is smaller as compared with the conventional configuration of FIG. Although not as in the case of the first embodiment of FIG. 7, the pressure P1 at which the reed valve 51 opens becomes smaller.
Therefore, as shown in FIG. 10, in thedischarge valve mechanism 50 according to the first embodiment, even if the differential pressure between the high pressure space and the compression chamber 5a is small, the reed valve 51 can be easily opened, and the valve opening timing can be advanced. The valve opening timing can be made appropriate. Even in the modification, as described above, this effect can not be obtained as compared with the first embodiment, but can be obtained as compared with the prior art.
すなわち、高圧空間からリード弁51が受ける力をF=(圧力P×面積A)と定義し、吐出口32からリード弁51が受ける力をF1と定義し、吐出口圧力をP1と定義し、リード弁51が吐出口圧力を受ける面積をA1と定義し、油膜破断抵抗をW1と定義すると、
F<F1=P1×A1-W1
の関係が成立する。これにより、リード弁51は、高圧空間から受ける力Fよりも吐出口32側から受ける力F1が大きくなることにより開弁する。
図7の実施の形態1に示すように、切欠き54が弁座52の内側に形成されるときには、図9の従来構成に比して、A1が大きくなり、かつ、W1が小さくなるため、開弁するための圧力P1が小さくて済み、圧縮損失が低減できる。
一方、図8の変形例に示すように、切欠き54が弁座52の外側に形成されるときには、図9の従来構成に比して、A1が同じであり、かつ、W1が小さくなるため、図7の実施の形態1のときほどではないが、リード弁51が開く圧力P1が小さくなる。
したがって、図10に示すように、実施の形態1での吐出弁機構50は、高圧空間と圧縮室5aとの差圧が小さくてもリード弁51が開弁し易く、開弁タイミングが早くでき、開弁タイミングの適正化が図れる。なお、変形例であっても、上述のようにこの効果を実施の形態1よりは得られないが従来の技術に比して得られる。 Even in the modification, the oil film formation region can be reduced and oil film breakage resistance of the
That is, the force that the
F <F1 = P1 × A1-W1
Relationship is established. As a result, the
As shown in the first embodiment of FIG. 7, when the
On the other hand, as shown in the modification of FIG. 8, when the
Therefore, as shown in FIG. 10, in the
<実施の形態1の効果>
実施の形態1によれば、スクロール圧縮機100は、固定スクロール30の吐出チャンバ13側に配置される吐出弁機構50を備える。吐出弁機構50は、1つのリード弁51を有する。吐出弁機構50は、固定スクロール30の吐出チャンバ13側での表面に設けられ、中央部に開く吐出口32の周りにてリード弁51が着座する1つの弁座52を有する。弁座52の内周縁部52bには、1つの切欠き54が形成される。なお、弁座52の内周縁部52bおよび外周縁部52aを含む縁部には、1つ以上の切欠き54が形成されても良い。 <Effect ofEmbodiment 1>
According to the first embodiment, thescroll compressor 100 includes the discharge valve mechanism 50 disposed on the discharge chamber 13 side of the fixed scroll 30. The discharge valve mechanism 50 has one reed valve 51. The discharge valve mechanism 50 is provided on the surface of the fixed scroll 30 on the discharge chamber 13 side, and has one valve seat 52 on which the reed valve 51 is seated around the discharge port 32 opened in the central portion. One notch 54 is formed in the inner peripheral edge 52 b of the valve seat 52. One or more notches 54 may be formed in the edge including the inner peripheral edge 52 b and the outer peripheral edge 52 a of the valve seat 52.
実施の形態1によれば、スクロール圧縮機100は、固定スクロール30の吐出チャンバ13側に配置される吐出弁機構50を備える。吐出弁機構50は、1つのリード弁51を有する。吐出弁機構50は、固定スクロール30の吐出チャンバ13側での表面に設けられ、中央部に開く吐出口32の周りにてリード弁51が着座する1つの弁座52を有する。弁座52の内周縁部52bには、1つの切欠き54が形成される。なお、弁座52の内周縁部52bおよび外周縁部52aを含む縁部には、1つ以上の切欠き54が形成されても良い。 <Effect of
According to the first embodiment, the
この構成によれば、切欠き54が形成され、開弁タイミングのときのリード弁51と弁座52との間の油膜破断抵抗が低減され、開弁タイミングでの過圧縮損失が低減できる。また、切欠き54は、弁座52の吐出口32の周りの内周側と外周側とに繋がらないため、リード弁51の着座時に高圧空間から低圧空間への冷媒漏れが抑制できる。さらに、切欠き54は、弁座52の一部に局所的に形成され、リード弁51の着座時の弁変形量の増加およびリード弁51に発生する応力の増加が最小限に抑制できる。したがって、リード弁51の開弁タイミングの適正化が図られて過圧縮が抑制でき、吐出弁機構50での高圧空間から低圧空間への冷媒漏れ損失が抑制でき、リード弁51の強度の信頼性が確保できる。
According to this configuration, the notch 54 is formed, the oil film break resistance between the reed valve 51 and the valve seat 52 at the valve opening timing is reduced, and the overcompression loss at the valve opening timing can be reduced. Further, since the notch 54 is not connected to the inner peripheral side and the outer peripheral side around the discharge port 32 of the valve seat 52, refrigerant leakage from the high pressure space to the low pressure space can be suppressed when the reed valve 51 is seated. Furthermore, the notch 54 is locally formed in a part of the valve seat 52, and an increase in the amount of valve deformation when the reed valve 51 is seated and an increase in stress generated in the reed valve 51 can be minimized. Therefore, the valve opening timing of the reed valve 51 can be optimized to suppress over-compression, and the refrigerant leakage loss from the high pressure space to the low pressure space in the discharge valve mechanism 50 can be suppressed. Can be secured.
実施の形態1によれば、切欠き54は、弁座52の内周縁部52bに形成される。
According to the first embodiment, the notch 54 is formed in the inner peripheral edge 52 b of the valve seat 52.
この構成によれば、着座するリード弁51が低圧空間と高圧空間との差圧を受ける受圧面積を大きくできる。それにより、リード弁51が開弁し易く、開弁タイミングの適正化がより図れる。
According to this configuration, it is possible to enlarge the pressure receiving area in which the reed valve 51 that is seated receives the differential pressure between the low pressure space and the high pressure space. Thus, the reed valve 51 can be easily opened, and the valve opening timing can be further optimized.
実施の形態1によれば、切欠き54は、弁座52の外周縁部52aに形成される。
According to the first embodiment, the notch 54 is formed in the outer peripheral edge 52 a of the valve seat 52.
この構成によれば、切欠き54が形成され、開弁タイミングのときのリード弁51と弁座52との間の油膜破断抵抗が低減され、開弁タイミングでの過圧縮損失が低減できる。また、切欠き54は、弁座52の吐出口32の周りの内周側と外周側とに繋がらないため、リード弁51の着座時に高圧空間から低圧空間への冷媒漏れが抑制できる。さらに、切欠き54は、弁座52の一部に局所的に形成され、リード弁51の着座時の弁変形量の増加およびリード弁51に発生する応力の増加が最小限に抑制できる。
According to this configuration, the notch 54 is formed, the oil film break resistance between the reed valve 51 and the valve seat 52 at the valve opening timing is reduced, and the overcompression loss at the valve opening timing can be reduced. Further, since the notch 54 is not connected to the inner peripheral side and the outer peripheral side around the discharge port 32 of the valve seat 52, refrigerant leakage from the high pressure space to the low pressure space can be suppressed when the reed valve 51 is seated. Furthermore, the notch 54 is locally formed in a part of the valve seat 52, and an increase in the amount of valve deformation when the reed valve 51 is seated and an increase in stress generated in the reed valve 51 can be minimized.
実施の形態1によれば、切欠き54は、リード弁51の固定端部51aと弁座52に着座する先端部51bとを繋ぐ中心軸Xに対して線対称に形成される。
According to the first embodiment, the notch 54 is formed in line symmetry with respect to the central axis X connecting the fixed end 51 a of the reed valve 51 and the tip 51 b seated on the valve seat 52.
この構成によれば、リード弁51の開弁動作が中心軸Xに対して偏らず、リード弁51が偏って変形せず、リード弁51の耐久性が向上できる。すなわち、リード弁51の着座時の弁変形量およびリード弁51に発生する応力が低減でき、リード弁51の強度の信頼性が確保できる。
According to this configuration, the valve opening operation of the reed valve 51 is not biased with respect to the central axis X, the reed valve 51 is not biased and deformed, and the durability of the reed valve 51 can be improved. That is, the amount of valve deformation when the reed valve 51 is seated and the stress generated in the reed valve 51 can be reduced, and the reliability of the strength of the reed valve 51 can be secured.
実施の形態1によれば、切欠き54が形成される弁座52の周方向部分の表面は、他の周方向部分と同一面として形成される。
According to the first embodiment, the surface of the circumferential portion of the valve seat 52 in which the notch 54 is formed is formed as the same surface as other circumferential portions.
この構成によれば、切欠き54は、弁座52の吐出口32の周りの内周側と外周側とに繋がらないため、リード弁51の着座時に高圧空間から低圧空間への冷媒漏れが抑制できる。
According to this configuration, since the notch 54 is not connected to the inner peripheral side and the outer peripheral side around the discharge port 32 of the valve seat 52, refrigerant leakage from the high pressure space to the low pressure space is suppressed when the reed valve 51 is seated. it can.
実施の形態1によれば、切欠き54の形状は、弁座52の表面における平面視にて円弧形状である。
According to the first embodiment, the shape of the notch 54 is an arc shape in plan view on the surface of the valve seat 52.
この構成によれば、切欠き54は、鋳造、円形切削あるいは鍛造などにより加工でき、製造が容易である。
According to this configuration, the notch 54 can be processed by casting, circular cutting, forging, or the like, and is easy to manufacture.
実施の形態1によれば、切欠き54は、弁座52の表面から反吐出チャンバ側に凹む。
According to the first embodiment, the notch 54 is recessed from the surface of the valve seat 52 to the side opposite to the discharge chamber.
この構成によれば、切欠き54が形成され、開弁タイミングのときのリード弁51と弁座52との間の油膜破断抵抗が低減され、開弁タイミングでの過圧縮損失が低減できる。また、切欠き54は、弁座52の吐出口32の周りの内周側と外周側とに繋がらないため、リード弁51の着座時に高圧空間から低圧空間への冷媒漏れが抑制できる。さらに、切欠き54は、弁座52の一部に局所的に形成され、リード弁51の着座時の弁変形量の増加およびリード弁51に発生する応力の増加が最小限に抑制できる。
According to this configuration, the notch 54 is formed, the oil film break resistance between the reed valve 51 and the valve seat 52 at the valve opening timing is reduced, and the overcompression loss at the valve opening timing can be reduced. Further, since the notch 54 is not connected to the inner peripheral side and the outer peripheral side around the discharge port 32 of the valve seat 52, refrigerant leakage from the high pressure space to the low pressure space can be suppressed when the reed valve 51 is seated. Furthermore, the notch 54 is locally formed in a part of the valve seat 52, and an increase in the amount of valve deformation when the reed valve 51 is seated and an increase in stress generated in the reed valve 51 can be minimized.
実施の形態1によれば、固定スクロール30の吐出チャンバ13側での表面は、平面である。弁座52の外周縁部52aの外側は、固定スクロール30の吐出チャンバ13側での表面の平面に対して凹んだ溝部33である。リード弁51が着座する弁座52の表面は、固定スクロール30の吐出チャンバ13側での表面の平面に面一に形成される。
According to the first embodiment, the surface of the fixed scroll 30 on the discharge chamber 13 side is a flat surface. The outer side of the outer peripheral edge 52 a of the valve seat 52 is a groove 33 recessed with respect to the plane of the surface of the fixed scroll 30 on the discharge chamber 13 side. The surface of the valve seat 52 on which the reed valve 51 is seated is flush with the surface of the fixed scroll 30 on the discharge chamber 13 side.
この構成によれば、弁座52の外周縁部52aの外側を溝部33に凹ませる加工により、弁座52が固定スクロール30の吐出チャンバ13側での表面にそのまま面一に形成でき、弁座52の製造が容易である。また、平板状のリード弁51は、固定端部51aから先端部51bまでを固定スクロール30の吐出チャンバ13側での表面およびその表面と面一の弁座52の表面に接触させた状態で固定端部51aを固定すれば良く、吐出弁機構50の組立の効率が良く、吐出弁機構50の製造が容易である。
According to this configuration, the valve seat 52 can be formed flush with the surface of the fixed scroll 30 on the discharge chamber 13 side by processing such that the outside of the outer peripheral edge 52a of the valve seat 52 is recessed in the groove 33. 52 is easy to manufacture. Further, the flat reed valve 51 is fixed in a state in which the fixed end 51 a to the tip 51 b are in contact with the surface of the fixed scroll 30 on the discharge chamber 13 side and the surface of the valve seat 52 flush with the surface. It suffices to fix the end 51a, the efficiency of assembling the discharge valve mechanism 50 is good, and the manufacture of the discharge valve mechanism 50 is easy.
実施の形態1によれば、リード弁51の弁座52に着座する先端部51bの外周縁部における平面視投影線51b1は、リード弁51が弁座52に着座するときに、弁座52の外周縁部52aの外側にて凹む溝部33の領域に重なる。
According to the first embodiment, the plan view projection line 51b1 at the outer peripheral edge of the distal end 51b of the reed valve 51 which is seated on the valve seat 52 of the valve seat 52 when the reed valve 51 is seated on the valve seat 52. It overlaps with the area of the groove 33 that is recessed outside the outer peripheral edge 52a.
この構成によれば、弁座52の外周縁部52aが弁座52の着座面積を広げ過ぎず、開弁タイミングのときのリード弁51と弁座52との間の油膜破断抵抗が低減され、開弁タイミングでの過圧縮損失が低減できる。また、弁座52の外周縁部52aが弁座52の着座面積を広げ過ぎず、リード弁51の着座時の弁変形量の増加およびリード弁51に発生する応力の増加が最小限に抑制できる。
According to this configuration, the outer peripheral edge 52a of the valve seat 52 does not excessively expand the seating area of the valve seat 52, and the oil film breakage resistance between the reed valve 51 and the valve seat 52 at the valve opening timing is reduced. Overcompression loss at the valve opening timing can be reduced. Further, the outer peripheral edge portion 52a of the valve seat 52 does not excessively expand the seating area of the valve seat 52, and the increase in the amount of deformation of the valve when the reed valve 51 is seated and the increase in stress generated in the reed valve 51 can be minimized. .
実施の形態2.
<弁座52の構成>
図11は、本発明の実施の形態2に係るスクロール圧縮機100の弁座52を示す上面図である。なお、実施の形態2では、上記実施の形態と異なる特徴部を説明し、同一の説明は省略する。 Second Embodiment
<Configuration ofvalve seat 52>
FIG. 11 is a top view showing avalve seat 52 of the scroll compressor 100 according to Embodiment 2 of the present invention. In the second embodiment, features different from the above-described embodiment will be described, and the same description will be omitted.
<弁座52の構成>
図11は、本発明の実施の形態2に係るスクロール圧縮機100の弁座52を示す上面図である。なお、実施の形態2では、上記実施の形態と異なる特徴部を説明し、同一の説明は省略する。 Second Embodiment
<Configuration of
FIG. 11 is a top view showing a
図11に示すように、切欠き54は、中心軸Xに対して線対称に2つ形成される。中心軸Xに対して線対称に2つ形成される切欠き54は、鏡面形状である。中心軸Xに対して線対称に2つ形成される切欠き54は、弁座52の中心に対してリード弁51の先端部51b側に位置する。その他の切欠き54の形状および配置などは、実施の形態1の切欠き54と同様である。
As shown in FIG. 11, two notches 54 are formed in line symmetry with respect to the central axis X. The two notches 54 formed in line symmetry with respect to the central axis X have a mirror surface shape. The two notches 54 formed in line symmetry with respect to the central axis X are located on the tip 51 b side of the reed valve 51 with respect to the center of the valve seat 52. The shape and arrangement of the other notches 54 are the same as the notches 54 of the first embodiment.
<実施の形態2の効果>
実施の形態2によれば、切欠き54は、中心軸Xに対して線対称に2つ形成される。 <Effect of Second Embodiment>
According to the second embodiment, twonotches 54 are formed in line symmetry with respect to central axis X.
実施の形態2によれば、切欠き54は、中心軸Xに対して線対称に2つ形成される。 <Effect of Second Embodiment>
According to the second embodiment, two
この構成によれば、リード弁51の開弁動作が中心軸Xに対して偏らず、リード弁51が偏って変形せず、リード弁51の耐久性が向上できる。また、2つの切欠き54が形成され、開弁タイミングのときのリード弁51と弁座52との間の油膜破断抵抗が低減され、開弁タイミングでの過圧縮損失が低減できる。また、2つの切欠き54は、弁座52の吐出口32の周りの内周側と外周側とに繋がらないため、リード弁51の着座時に高圧空間から低圧空間への冷媒漏れが抑制できる。さらに、2つの切欠き54は、弁座52の一部に局所的に形成され、リード弁51の着座時の弁変形量の増加およびリード弁51に発生する応力の増加が最小限に抑制できる。
According to this configuration, the valve opening operation of the reed valve 51 is not biased with respect to the central axis X, the reed valve 51 is not biased and deformed, and the durability of the reed valve 51 can be improved. Further, two notches 54 are formed, the oil film break resistance between the reed valve 51 and the valve seat 52 at the valve opening timing is reduced, and the over-compression loss at the valve opening timing can be reduced. Further, since the two notches 54 are not connected to the inner peripheral side and the outer peripheral side around the discharge port 32 of the valve seat 52, refrigerant leakage from the high pressure space to the low pressure space can be suppressed when the reed valve 51 is seated. Furthermore, the two notches 54 are locally formed in a part of the valve seat 52, and an increase in the amount of deformation of the valve when the reed valve 51 is seated and an increase in stress generated in the reed valve 51 can be minimized. .
実施の形態2によれば、中心軸Xに対して線対称に2つ形成される切欠き54は、弁座52の中心に対してリード弁51の先端部51b側に位置する。
According to the second embodiment, the two notches 54 formed in line symmetry with respect to the central axis X are located on the tip 51 b side of the reed valve 51 with respect to the center of the valve seat 52.
この構成によれば、開弁タイミングのときのリード弁51と弁座52との間の油膜破断抵抗がより大きいリード弁51の先端部51b側にて低減され、開弁タイミングの適正化がより図れる。
According to this configuration, the oil film breakage resistance between the reed valve 51 and the valve seat 52 at the valve opening timing is reduced at the tip portion 51b side of the larger reed valve 51, and the valve opening timing is more properly optimized. It can be done.
実施の形態3.
<弁座52の構成>
図12は、本発明の実施の形態3に係るスクロール圧縮機100の弁座52を示す上面図である。なお、実施の形態3では、上記実施の形態と異なる特徴部を説明し、同一の説明は省略する。 Third Embodiment
<Configuration ofvalve seat 52>
FIG. 12 is a top view showing avalve seat 52 of the scroll compressor 100 according to Embodiment 3 of the present invention. In the third embodiment, features different from the above-described embodiment will be described, and the same description will be omitted.
<弁座52の構成>
図12は、本発明の実施の形態3に係るスクロール圧縮機100の弁座52を示す上面図である。なお、実施の形態3では、上記実施の形態と異なる特徴部を説明し、同一の説明は省略する。 Third Embodiment
<Configuration of
FIG. 12 is a top view showing a
図12に示すように、切欠き54は、中心軸Xに対して線対称に3つ形成される。2つの切欠き54は、弁座52の中心に対してリード弁51の先端部51b側に、中心軸Xに対して線対称に形成される。これら2つの切欠き54は、実施の形態2の2つの切欠き54と同様である。1つの切欠き54は、中心軸Xに対して線対称な中心軸X上、かつ、弁座52の中心に対してリード弁51の固定端部51a側に形成される。この1つの切欠き54は、実施の形態2の2つの切欠き54に加えて形成される。その他の切欠き54の形状および配置などは、実施の形態1の切欠き54と同様である。
As shown in FIG. 12, three notches 54 are formed in line symmetry with respect to the central axis X. The two notches 54 are formed in line symmetry with respect to the central axis X on the side of the tip 51 b of the reed valve 51 with respect to the center of the valve seat 52. These two notches 54 are similar to the two notches 54 of the second embodiment. One notch 54 is formed on the central axis X that is axisymmetrical to the central axis X and on the fixed end 51 a side of the reed valve 51 with respect to the center of the valve seat 52. The one notch 54 is formed in addition to the two notches 54 of the second embodiment. The shape and arrangement of the other notches 54 are the same as the notches 54 of the first embodiment.
<実施の形態3の効果>
実施の形態3によれば、切欠き54は、中心軸Xに対して線対称な中心軸X上、かつ、弁座52の中心に対してリード弁51の固定端部51a側に更に1つ形成される。 <Effect ofEmbodiment 3>
According to the third embodiment, onenotch 54 is provided on the central axis X which is axisymmetrical to the central axis X and on the side of the fixed end 51 a of the reed valve 51 with respect to the center of the valve seat 52 It is formed.
実施の形態3によれば、切欠き54は、中心軸Xに対して線対称な中心軸X上、かつ、弁座52の中心に対してリード弁51の固定端部51a側に更に1つ形成される。 <Effect of
According to the third embodiment, one
この構成によれば、リード弁51の開弁動作が中心軸Xに対して偏らず、リード弁51が偏って変形せず、リード弁51の耐久性が向上できる。また、3つの切欠き54が形成され、開弁タイミングのときのリード弁51と弁座52との間の油膜破断抵抗が低減され、開弁タイミングでの過圧縮損失が低減できる。また、3つの切欠き54は、弁座52の吐出口32の周りの内周側と外周側とに繋がらないため、リード弁51の着座時に高圧空間から低圧空間への冷媒漏れが抑制できる。さらに、3つの切欠き54は、弁座52の一部に局所的に形成され、リード弁51の着座時の弁変形量の増加およびリード弁51に発生する応力の増加が最小限に抑制できる。
According to this configuration, the valve opening operation of the reed valve 51 is not biased with respect to the central axis X, the reed valve 51 is not biased and deformed, and the durability of the reed valve 51 can be improved. Further, three notches 54 are formed, the oil film break resistance between the reed valve 51 and the valve seat 52 at the valve opening timing is reduced, and the over-compression loss at the valve opening timing can be reduced. Further, since the three notches 54 are not connected to the inner peripheral side and the outer peripheral side around the discharge port 32 of the valve seat 52, refrigerant leakage from the high pressure space to the low pressure space can be suppressed when the reed valve 51 is seated. Furthermore, the three notches 54 are locally formed in a part of the valve seat 52, and the increase in the amount of deformation of the valve when the reed valve 51 is seated and the increase in the stress generated in the reed valve 51 can be minimized. .
なお、本発明は、上記実施の形態1~3に制限されるものではなく、その趣旨を逸脱しない範囲で適宜変更して適用できる。たとえば、切欠き54の形状は、円弧形状を例に挙げたが、楕円形状、短冊形状、扇形状などでも良い。また、切欠き54の個数は、4つ以上でも良い。
The present invention is not limited to the above first to third embodiments, and can be appropriately modified and applied without departing from the scope of the present invention. For example, although the shape of the notch 54 mentioned the circular arc shape as an example, an elliptical shape, a strip shape, a fan shape, etc. may be sufficient. The number of notches 54 may be four or more.
実施の形態4.
<冷凍サイクル装置200>
図13は、本発明の実施の形態4に係るスクロール圧縮機100を適用した冷凍サイクル装置200を示す冷媒回路図である。 Fourth Embodiment
<Refrigeration cycle apparatus 200>
FIG. 13 is a refrigerant circuit diagram showing arefrigeration cycle apparatus 200 to which the scroll compressor 100 according to Embodiment 4 of the present invention is applied.
<冷凍サイクル装置200>
図13は、本発明の実施の形態4に係るスクロール圧縮機100を適用した冷凍サイクル装置200を示す冷媒回路図である。 Fourth Embodiment
<
FIG. 13 is a refrigerant circuit diagram showing a
図13に示すように、冷凍サイクル装置200は、スクロール圧縮機100、凝縮器201、膨張弁202および蒸発器203を備えている。これらスクロール圧縮機100、凝縮器201、膨張弁202および蒸発器203が冷媒配管で接続されて冷凍サイクル回路を形成している。そして、蒸発器203から流出した冷媒は、スクロール圧縮機100に吸入されて高温高圧となる。高温高圧となった冷媒は、凝縮器201において凝縮されて液体になる。液体となった冷媒は、膨張弁202で減圧膨張されて低温低圧の気液二相となり、気液二相の冷媒が蒸発器203において熱交換される。
As shown in FIG. 13, the refrigeration cycle apparatus 200 includes a scroll compressor 100, a condenser 201, an expansion valve 202 and an evaporator 203. The scroll compressor 100, the condenser 201, the expansion valve 202, and the evaporator 203 are connected by refrigerant pipes to form a refrigeration cycle circuit. Then, the refrigerant flowing out of the evaporator 203 is drawn into the scroll compressor 100 and becomes high temperature and high pressure. The high temperature and pressure refrigerant is condensed in the condenser 201 to become a liquid. The refrigerant that has become a liquid is decompressed and expanded by the expansion valve 202 and becomes a low-temperature low-pressure gas-liquid two phase, and the gas-liquid two-phase refrigerant is heat-exchanged in the evaporator 203.
実施の形態1~3のスクロール圧縮機100は、このような冷凍サイクル装置200に適用できる。なお、冷凍サイクル装置200としては、たとえば空気調和装置、冷凍装置および給湯器などに採用できる。
The scroll compressor 100 according to the first to third embodiments can be applied to such a refrigeration cycle apparatus 200. For example, the refrigeration cycle apparatus 200 can be employed in an air conditioner, a refrigeration apparatus, a water heater, and the like.
<実施の形態4の効果>
冷凍サイクル装置200は、上記の実施の形態1~3に記載のスクロール圧縮機100を備える。 <Effect of Fourth Embodiment>
Therefrigeration cycle apparatus 200 includes the scroll compressor 100 described in the above first to third embodiments.
冷凍サイクル装置200は、上記の実施の形態1~3に記載のスクロール圧縮機100を備える。 <Effect of Fourth Embodiment>
The
この構成によれば、スクロール圧縮機100を備える冷凍サイクル装置200にて、リード弁51の開弁タイミングの適正化が図られて過圧縮が抑制でき、吐出弁機構50での高圧空間から低圧空間への冷媒漏れ損失が抑制でき、リード弁51の強度の信頼性が確保できる。
According to this configuration, in the refrigeration cycle apparatus 200 equipped with the scroll compressor 100, the valve opening timing of the reed valve 51 can be optimized to suppress over-compression and the high pressure space to the low pressure space in the discharge valve mechanism 50. Refrigerant leakage loss can be suppressed, and the reliability of the strength of the reed valve 51 can be secured.
2 シェル、2a アッパーシェル、2b ロアーシェル、3 油ポンプ、3a 油溜り、4 モータ、4a ロータ、4b ステータ、5 圧縮機構部、5a 圧縮室、6 フレーム、6a 吸入ポート、6b スラスト軸受、6c 給油溝、6d 内部空間、7 軸部、7a 油通路、8a 主軸受、8b 副軸受、8c 揺動軸受、11 吸入管、12 吐出管、13 吐出チャンバ、15 オルダムリング、15b オルダムリング空間、16 スライダ、17 スリーブ、18 第1バランサ、18a バランサカバー、19 第2バランサ、20 サブフレーム、21 排油パイプ、30 固定スクロール、30a 鏡板、31 渦巻部、32 吐出口、33 溝部、40 揺動スクロール、40a 鏡板、41 渦巻部、50 吐出弁機構、51 リード弁、51a 固定端部、51b 先端部、51b1 平面視投影線、51c 中間部、52 弁座、52a 外周縁部、52b 内周縁部、53 弁押え、53a 固定端部、53b 先端部、54 切欠き、100 スクロール圧縮機、200 冷凍サイクル装置、201 凝縮器、202 膨張弁、203 蒸発器、X 中心軸、Y 直交軸。
Reference Signs List 2 shell 2a upper shell 2b lower shell 3 oil pump 3a oil reservoir 4 motor 4a rotor 4b stator 5 compression mechanism portion 5a compression chamber 6 frame 6a suction port 6b thrust bearing 6c oil groove , 6d internal space, 7 shaft portion, 7a oil passage, 8a main bearing, 8b sub bearing, 8c rocking bearing, 11 suction pipe, 12 discharge pipe, 13 discharge chamber, 15 oldham ring, 15b oldham ring space, 16 slider, Reference Signs List 17 sleeve 18 first balancer 18 a balancer cover 19 second balancer 20 sub frame 21 oil drain pipe 30 fixed scroll 30 a end plate 31 spiral portion 32 discharge port 33 groove portion 40 oscillating scroll 40 a End plate, 41 spiral parts, 5 Discharge valve mechanism, 51 reed valve, 51a fixed end, 51b tip, 51b1 projection line, 51c middle part, 52 valve seat, 52a outer peripheral part, 52b inner peripheral part, 53 valve retainer, 53a fixed end, 53b tip, 54 notches, 100 scroll compressor, 200 refrigeration cycle device, 201 condenser, 202 expansion valve, 203 evaporator, X central axis, Y orthogonal axis.
Claims (13)
- 固定スクロールの吐出チャンバ側に配置される吐出弁機構を備え、
前記吐出弁機構は、1つのリード弁と、前記固定スクロールの吐出チャンバ側での表面に設けられ、中央部に開く吐出口周りにて前記リード弁が着座する1つの弁座と、を有するスクロール圧縮機であって、
前記弁座の縁部には、1つ以上の切欠きが形成されるスクロール圧縮機。 A discharge valve mechanism disposed on the discharge chamber side of the fixed scroll,
The discharge valve mechanism is a scroll having one reed valve, and one valve seat provided on the surface on the discharge chamber side of the fixed scroll and having the reed valve seated around a discharge opening opening in the center. A compressor,
The scroll compressor in which one or more notch is formed in the edge of said valve seat. - 前記切欠きは、前記弁座の内周縁部に形成される請求項1に記載のスクロール圧縮機。 The scroll compressor according to claim 1, wherein the notch is formed in an inner peripheral edge portion of the valve seat.
- 前記切欠きは、前記弁座の外周縁部に形成される請求項1または2に記載のスクロール圧縮機。 The scroll compressor according to claim 1, wherein the notch is formed in an outer peripheral edge portion of the valve seat.
- 前記切欠きは、前記リード弁の固定端部と前記弁座に着座する先端部とを繋ぐ中心軸に対して線対称に形成される請求項1~3のいずれか1項に記載のスクロール圧縮機。 The scroll compression according to any one of claims 1 to 3, wherein the notch is formed in line symmetry with respect to a central axis connecting a fixed end of the reed valve and a tip end seated on the valve seat. Machine.
- 前記切欠きは、前記中心軸に対して線対称に2つ形成される請求項4に記載のスクロール圧縮機。 The scroll compressor according to claim 4, wherein two notches are formed in line symmetry with respect to the central axis.
- 前記中心軸に対して線対称に2つ形成される前記切欠きは、前記弁座の中心に対して前記リード弁の前記先端部側に位置する請求項5に記載のスクロール圧縮機。 The scroll compressor according to claim 5, wherein the two notches formed in line symmetry with respect to the central axis are located on the tip end side of the reed valve with respect to the center of the valve seat.
- 前記切欠きは、前記中心軸上、かつ、前記弁座の中心に対して前記リード弁の前記固定端部側に更に1つ形成される請求項6に記載のスクロール圧縮機。 The scroll compressor according to claim 6, wherein the notch is further formed on the central axis and at the fixed end side of the reed valve with respect to the center of the valve seat.
- 前記切欠きが形成される前記弁座の周方向部分の表面は、他の周方向部分と同一面として形成される請求項1~7のいずれか1項に記載のスクロール圧縮機。 The scroll compressor according to any one of claims 1 to 7, wherein the surface of the circumferential portion of the valve seat where the notches are formed is formed in the same plane as other circumferential portions.
- 前記切欠きの形状は、前記弁座の表面における平面視にて円弧形状である請求項1~8のいずれか1項に記載のスクロール圧縮機。 The scroll compressor according to any one of claims 1 to 8, wherein a shape of the notch is an arc shape in a plan view on a surface of the valve seat.
- 前記切欠きは、前記弁座の表面から反吐出チャンバ側に凹む請求項1~9のいずれか1項に記載のスクロール圧縮機。 The scroll compressor according to any one of claims 1 to 9, wherein the notch is recessed from the surface of the valve seat to the side opposite to the discharge chamber.
- 前記固定スクロールの吐出チャンバ側での表面は、平面であり、
前記弁座の外周縁部の外側は、前記固定スクロールの吐出チャンバ側での表面の平面に対して凹んだ溝部であり、
前記リード弁が着座する前記弁座の表面は、前記固定スクロールの吐出チャンバ側での表面の平面に面一に形成される請求項1~10のいずれか1項に記載のスクロール圧縮機。 The surface of the fixed scroll on the discharge chamber side is a plane,
The outer side of the outer peripheral edge of the valve seat is a groove recessed with respect to the plane of the surface on the discharge chamber side of the fixed scroll,
The scroll compressor according to any one of claims 1 to 10, wherein a surface of the valve seat on which the reed valve is seated is formed flush with a surface of the surface on the discharge chamber side of the fixed scroll. - 前記リード弁の前記弁座に着座する先端部の外周縁部における平面視投影線は、前記リード弁が前記弁座に着座するときに、前記溝部の領域に重なる請求項11に記載のスクロール圧縮機。 The scroll compression according to claim 11, wherein a plan view projection line at an outer peripheral edge portion of a tip end portion of the reed valve seated on the valve seat overlaps an area of the groove when the reed valve is seated on the valve seat. Machine.
- 請求項1~12のいずれか1項に記載のスクロール圧縮機を備える冷凍サイクル装置。 A refrigeration cycle apparatus comprising the scroll compressor according to any one of claims 1 to 12.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/031565 WO2019043905A1 (en) | 2017-09-01 | 2017-09-01 | Scroll compressor and refrigeration cycle device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/031565 WO2019043905A1 (en) | 2017-09-01 | 2017-09-01 | Scroll compressor and refrigeration cycle device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019043905A1 true WO2019043905A1 (en) | 2019-03-07 |
Family
ID=65525105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/031565 WO2019043905A1 (en) | 2017-09-01 | 2017-09-01 | Scroll compressor and refrigeration cycle device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019043905A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114729630A (en) * | 2019-12-04 | 2022-07-08 | 三菱电机株式会社 | Compressor |
WO2025104901A1 (en) * | 2023-11-17 | 2025-05-22 | 三菱電機株式会社 | Scroll compressor and refrigeration cycle device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5043387Y2 (en) * | 1971-05-31 | 1975-12-11 | ||
JPS5439714Y2 (en) * | 1974-12-19 | 1979-11-24 | ||
JPH05106580A (en) * | 1991-10-14 | 1993-04-27 | Daikin Ind Ltd | Positive displacement compressor |
JPH06330864A (en) * | 1993-05-19 | 1994-11-29 | Daikin Ind Ltd | Scroll compressor |
JPH11270723A (en) * | 1998-03-24 | 1999-10-05 | Sanden Corp | Valve plate device |
JP2001221173A (en) * | 2000-02-04 | 2001-08-17 | Mitsubishi Heavy Ind Ltd | Scroll compressor |
US20060269433A1 (en) * | 2005-05-31 | 2006-11-30 | Skinner Robin G | Discharge port for a scroll compressor |
-
2017
- 2017-09-01 WO PCT/JP2017/031565 patent/WO2019043905A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5043387Y2 (en) * | 1971-05-31 | 1975-12-11 | ||
JPS5439714Y2 (en) * | 1974-12-19 | 1979-11-24 | ||
JPH05106580A (en) * | 1991-10-14 | 1993-04-27 | Daikin Ind Ltd | Positive displacement compressor |
JPH06330864A (en) * | 1993-05-19 | 1994-11-29 | Daikin Ind Ltd | Scroll compressor |
JPH11270723A (en) * | 1998-03-24 | 1999-10-05 | Sanden Corp | Valve plate device |
JP2001221173A (en) * | 2000-02-04 | 2001-08-17 | Mitsubishi Heavy Ind Ltd | Scroll compressor |
US20060269433A1 (en) * | 2005-05-31 | 2006-11-30 | Skinner Robin G | Discharge port for a scroll compressor |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114729630A (en) * | 2019-12-04 | 2022-07-08 | 三菱电机株式会社 | Compressor |
CN114729630B (en) * | 2019-12-04 | 2024-04-19 | 三菱电机株式会社 | Compressor with a compressor body having a rotor with a rotor shaft |
WO2025104901A1 (en) * | 2023-11-17 | 2025-05-22 | 三菱電機株式会社 | Scroll compressor and refrigeration cycle device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101165350B (en) | scroll compressor | |
US7607904B2 (en) | Rotary compressor with low pressure space surrounding outer peripheral face of compression mechanism and discharge passage passing through housing | |
US8118563B2 (en) | Tandem compressor system and method | |
US11906060B2 (en) | Rotary compressor with backflow suppresion mechanism for an introduction path | |
WO2019043905A1 (en) | Scroll compressor and refrigeration cycle device | |
WO2022244240A1 (en) | Compressor | |
CN118202151A (en) | Compressor and refrigeration cycle device | |
JP7337283B2 (en) | Scroll compressor and refrigeration cycle device | |
KR102461067B1 (en) | Scroll compressor and air conditioner having this | |
JP2007085297A (en) | Scroll compressor | |
JP6762113B2 (en) | Scroll compressor and air conditioner | |
JP6743407B2 (en) | Scroll compressor and air conditioner including the same | |
JP7399193B2 (en) | compressor | |
CN112412789B (en) | Compressor and refrigeration cycle device | |
JP2018071493A (en) | Compressor | |
JP2003269335A (en) | Rotary compressor | |
JPH02227583A (en) | Scroll compressor | |
WO2024147173A1 (en) | Compressor | |
JP7606947B2 (en) | Scroll compressor and refrigeration cycle device using the same | |
WO2022149225A1 (en) | Compressor | |
WO2022149184A1 (en) | Two-stage scroll compressor | |
CN111684158B (en) | Compressor and refrigeration cycle device | |
JP6943345B2 (en) | Multi-stage compressor | |
JP2000009065A (en) | Scroll type compressor | |
WO2023188422A1 (en) | Compressor and upper shell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17922930 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17922930 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |