[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018234669A1 - Procede de fabrication d'une piece en materiau composite presentant une ou plusieurs variations locales d'epaisseur - Google Patents

Procede de fabrication d'une piece en materiau composite presentant une ou plusieurs variations locales d'epaisseur Download PDF

Info

Publication number
WO2018234669A1
WO2018234669A1 PCT/FR2018/051439 FR2018051439W WO2018234669A1 WO 2018234669 A1 WO2018234669 A1 WO 2018234669A1 FR 2018051439 W FR2018051439 W FR 2018051439W WO 2018234669 A1 WO2018234669 A1 WO 2018234669A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
fibrous
fibrous texture
texture
impregnation
Prior art date
Application number
PCT/FR2018/051439
Other languages
English (en)
Inventor
Erwan CAMUS
Bruno Jacques Gérard Dambrine
Martine Marie-José DAUCHIER
Original Assignee
Safran Aircraft Engines
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines filed Critical Safran Aircraft Engines
Publication of WO2018234669A1 publication Critical patent/WO2018234669A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • B29C70/443Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding and impregnating by vacuum or injection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B19/00Machines or methods for applying the material to surfaces to form a permanent layer thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/003Pressing by means acting upon the material via flexible mould wall parts, e.g. by means of inflatable cores, isostatic presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C43/3642Bags, bleeder sheets or cauls for isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/544Details of vacuum bags, e.g. materials or shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/546Measures for feeding or distributing the matrix material in the reinforcing structure
    • B29C70/548Measures for feeding or distributing the matrix material in the reinforcing structure using distribution constructions, e.g. channels incorporated in or associated with the mould
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58071Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on titanium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/82Asbestos; Glass; Fused silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C43/3642Bags, bleeder sheets or cauls for isostatic pressing
    • B29C2043/3649Inflatable bladders using gas or fluid and related details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2507/00Use of elements other than metals as filler
    • B29K2507/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0012Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular thermal properties
    • B29K2995/0016Non-flammable or resistant to heat
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5228Silica and alumina, including aluminosilicates, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5232Silica or silicates other than aluminosilicates, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms

Definitions

  • the present invention relates to a method of manufacturing a composite material part, that is to say comprising a fiber reinforcement formed from fibers densified by a matrix.
  • the invention relates in particular to the manufacture of so-called "thermostructural" composite materials, namely materials having good mechanical properties and the ability to retain these properties at high temperature, such as carbon / carbon composite materials (C / C ) formed of carbon fiber reinforcement densified by a carbon matrix, the ceramic matrix composite materials (CMC) formed of a reinforcement of refractory fibers (carbon or ceramic) densified by an at least partially ceramic matrix and the materials Oxide / oxide type composites formed of a reinforcing fiber oxide (alumina) densified by an at least partially oxide matrix.
  • CMO organic matrix composite materials
  • a common process for obtaining composite material parts is the liquid process.
  • the liquid process consists in producing a fibrous preform having substantially the shape of a part to be produced, and intended to constitute the reinforcement of the composite material, and to impregnate this preform with a liquid composition containing a precursor of the material of the matrix.
  • the precursor is usually in the form of a polymer, such as a resin, optionally diluted in a solvent or a slurry-suspended filler.
  • the transformation of the precursor into a matrix is carried out by heat treatment. Several successive impregnation cycles can be performed to achieve the desired degree of densification.
  • liquid carbon precursors may be relatively high coke level resins, such as phenolic resins
  • liquid precursors of ceramics, in particular of SiC may be polycarbosilane type resins (PCS). or polytitanocarbosilane (PTCS) or polysilazanes (PSZ).
  • PCS polycarbosilane type resins
  • PTCS polytitanocarbosilane
  • PSZ polysilazanes
  • CMO organic matrix composite
  • a thermoplastic or thermosetting resin is used to impregnate the fiber preform.
  • the parts are generally produced by draping in a mold of a plurality of fibrous layers made from refractory oxide fibers, the layers being each impregnated with a pre-impregnated layer. slip loaded with refractory oxide particles.
  • the impregnation of the fibrous preform with a precursor liquid composition of the matrix material is an important step in that it then conditions the homogeneity and the level of matrix present in the resulting material and, consequently, , the mechanical properties of the material.
  • the macroporosity rate present in the final material directly influences the mechanical properties of the material.
  • a process for impregnating a fibrous texture with a precursor liquid composition of matrix material is disclosed in US 2012/0217670 which describes the placement of a fibrous texture in an impregnation chamber of an injection tooling the impregnation chamber being separated from a compression chamber by an impermeable and flexible membrane.
  • a matrix liquid precursor is injected directly into the preform via an injection port opening onto the underside of the preform. Part of the liquid precursor then directly impregnates the preform while another part of the liquid precursor spreads over the upper face of the preform causing the deformation of the membrane.
  • a compression fluid is then injected into the compression chamber so as to exert pressure on the membrane and to cause a distribution of the liquid precursor throughout the volume of the fibrous texture.
  • this impregnation method does not allow to satisfactorily impregnate fibrous textures with large thickness variations resulting in a significant relief on the surface of the preform.
  • this process is not suitable for the manufacture of oxide / oxide composite materials which consists in impregnating the fibrous texture with a slip loaded with refractory particles. oxide and remove the liquid phase of the slip of the texture to leave only the particles in the texture.
  • the object of the present invention is to remedy the aforementioned drawbacks by proposing a solution which makes it possible to impregnate fibrous textures having one or more portions of thickness variation, in a fast and reliable manner while allowing good control of the deposit and the distribution of the matrix precursor liquid composition in the fibrous texture to obtain a material with a very low macroporosity rate.
  • the invention proposes a process for impregnating a fibrous texture comprising the following steps:
  • the fibrous texture has on its exposed face at least a portion of extra thickness and in that the impermeable membrane comprises at least one shaped portion having a shape corresponding to the shape of the contour of said at least one portion of extra thickness present on the exposed face of the fibrous texture.
  • the excess thickness portion or portions of a fibrous texture may be impregnated homogeneously like the rest of the texture, and without deformation or wrinkling at the level of the or the portions of extra thickness that may occur when a simple flat membrane is forced to deform excessively at one or more portions of excess thickness.
  • each shaped portion of the impermeable membrane has a rigidity greater than the other portions of said membrane.
  • the mold impregnation chamber comprises in its lower part a piece of porous material on which the texture rests, the liquid composition injected into the impregnation chamber comprising a slip containing a powder of refractory particles, the method further comprising draining the porous material part of the liquid from the slip passed through the fibrous texture and retaining the powder of refractory particles within said texture by said piece of porous material so as to obtain a fibrous preform loaded with refractory particles.
  • the method of the invention eliminates the liquid phase of the slip introduced into the fibrous texture without removing the refractory solid particles also present in the texture.
  • the elimination of the liquid phase of the slurry by drainage also makes it possible not to disturb the distribution of the refractory particles within the fibrous texture and subsequently to obtain a composite material part with a high matrix volume ratio and having, therefore, improved mechanical properties.
  • the fibrous texture is obtained by three-dimensional weaving or by needling of a plurality of fibrous layers.
  • the impermeable membrane is made of silicone or EPDM (Ethylolene, Propylene, Diene and Monomer), each serving shaped being obtained by local forming of silicone or EPDM.
  • Each shaped portion may further be stiffened by adding a glass or polyester fabric between two layers of silicone or EPDM, or by local stacking additional layers of silicone or EPDM so as to form a local extra thickness in the membrane.
  • the subject of the invention is also a process for manufacturing a composite material part comprising the following steps:
  • the subject of the invention is also a process for manufacturing a composite material part comprising the following steps:
  • the present invention finally relates to an impregnation tool for a fibrous texture comprising:
  • a mold comprising an impregnation chamber comprising a bottom intended to receive a first face of a fibrous texture, the impregnation chamber being closed in its upper part by an impermeable membrane at least partly deformable and intended to be placed in looking at a second face of the fibrous texture, said membrane separating the impregnation chamber from a compaction chamber,
  • the impermeable membrane comprises at least one shaped portion having a shape in relief relative to the plane of the membrane.
  • the impregnation tool of the invention makes it possible to ensure homogeneous impregnation of the or portions of excess thickness of a fibrous texture, and without deformation or appearance of folds at the level or the portions of excess thickness that may occur. produce when a simple flat membrane is forced to deform excessively at one or more portions of extra thickness.
  • the tooling of the invention can be used to impregnate fibrous textures having various shapes and dimensions at the level or portions of extra thickness, only the membrane being changed to fit the shape and dimensions texture to impregnate.
  • each shaped portion of the impermeable membrane has a stiffness greater than the other portions of said membrane.
  • FIG. 1 is a schematic exploded sectional view of a tool according to an embodiment of the invention
  • FIG. 2 is a diagrammatic sectional view showing the tool of FIG. 1 closed with a fibrous texture positioned therein,
  • FIGS. 3 and 4 are diagrammatic sectional views showing the steps of impregnating a fibrous texture with a liquid composition in the tool of FIG. 2 in accordance with one embodiment of the method of the invention.
  • FIGS. 5 and 6 are diagrammatic sectional views showing the steps of impregnating a fibrous texture with a loaded slurry according to another embodiment of the method of the invention.
  • the process for impregnating a fibrous texture according to the present invention begins with the production of a fibrous texture intended to form the reinforcement of the part.
  • the fibrous texture is made in known manner by weaving by means of a jacquard loom on which a bundle of warp yarns or strands has been arranged in a plurality of layers, the warp yarns being bound by yarns of frame or vice versa.
  • the fibrous texture can be made by stacking strata or plies obtained by two-dimensional weaving (2D).
  • the fibrous texture can also be produced directly in one piece by three-dimensional weaving (3D).
  • two-dimensional weaving is meant here a conventional weaving mode whereby each weft yarn passes from one side to another son of a single chain layer or vice versa.
  • the method of the invention is particularly adapted to allow the introduction of a liquid composition in 2D fibrous textures (textures obtained by stacking layers or 2D folds) or 3D thick textures, that is to say fibrous structures having a thickness of at least 100 mm.
  • three-dimensional weaving or “3D weaving” or “multilayer weaving” is meant here a weaving mode whereby at least some of the weft yarns bind warp yarns on several layers of warp yarns or conversely following a weave corresponding to a weave weave which can be chosen in particular from one of the following armor: interlock, multi-fabric, multi-satin and multi-twill.
  • weave or interlock fabric is meant here a 3D weave armor, each layer of warp threads binding several layers of weft threads with all the threads of the same warp column having the same movement in the plane of the weave. armor.
  • armor or multi-fabric fabric is meant here a 3D weave with several layers of weft son whose basic armor each layer is equivalent to a conventional canvas type armor but with some points of the weave that bind the layers of weft threads between them.
  • multi-satin weave or fabric is meant here a 3D weave with several layers of weft yarns whose basic weave of each layer is equivalent to a classic satin-like weave but with certain points of the weave which bind the layers of weft threads together.
  • weave or multi-twill fabric is meant here a 3D weave with several layers of weft threads whose basic armor of each layer is equivalent to a classic twill type armor but with some points of the armor that bind the layers of weft threads together.
  • 3D textures have a complex geometry in which it is difficult to introduce and homogeneously distribute loaded or unloaded liquid compositions.
  • the process of the invention is also very well suited for introducing a liquid composition into 3D woven fiber textures.
  • the method of the invention also applies to the introduction of a liquid composition, for example a ceramic precursor, into needled textures formed for example by stacking uni or two-dimensional fibrous layers bonded together by needling.
  • the yarns used to weave the fibrous texture intended to form the fibrous reinforcement of the piece of composite material may in particular be formed of fibers consisting of one of the following materials: carbon, silicon carbide, glass, alumina, mullite, aluminosilicate, borosilicate, or a mixture of several of these materials.
  • a fibrous texture 10 is placed in a tool 100.
  • the fibrous texture 10 comprises, on its face 10a intended to be exposed in the mold, a portion of extra thickness 11 which forms a relief on said face of the texture.
  • the fibrous texture 10 is produced according to one of the techniques defined above (stacking 2D layers or 3D weaving) with carbon threads.
  • the Fibrous texture 10 is here intended to form the fibrous reinforcement of a piece of carbon / carbon (C / C) composite material.
  • the tooling 100 comprises a mold 110 whose bottom 111 is provided with a plurality of vents 112.
  • the mold 110 also comprises a side wall 113 having an injection port 114 equipped with a valve 1140.
  • the face 10b of the fibrous texture opposite its exposed face 10a is placed on the surface 111a of the bottom 111.
  • the tooling 100 further comprises a cover 130 comprising an injection port 131 equipped with a valve 1310 and an impermeable membrane 140 which, once the tool has been closed (FIG. 2), separates an impregnation chamber 101 in which is present the fibrous texture 10 of a compaction chamber 102 located above the membrane 140.
  • the membrane comprises one or more shaped portions each having a shape substantially corresponding to the portion or portions of extra thickness present on the exposed face of the fibrous texture in order to match these extra thicknesses during the injection of a fluid compaction as explained below in detail.
  • the membrane 140 comprises a shaped portion 141 which has at rest a relief shape relative to the plane of the membrane 140 defined here by plane portions 142 and 143.
  • the shaped portion 140 has a corresponding shape substantially to the shape of the contour of the portion of extra thickness 11 of the fibrous texture 10.
  • the shaped portion 141 can be obtained by forming a flat membrane made of silicone or EPDM (Ethylolene, Propylene, Diene and Monomer).
  • the shaped portion or portions of the membrane have a higher stiffness than the other portions of the membrane.
  • the shaped portion 141 of the membrane 140 has a greater rigidity than the other portions 142 and 143 of the membrane 140. This ensures the shape of the shaped portion of the membrane during its handling and particularly during the injection of a fluid compaction as explained below.
  • the membrane 140 may be made from a layer of a first impervious and deformable material such as silicone or EPDM, the shaped portion 141 being obtained by forming the silicone or EPDM.
  • the shaped portion 141 may be stiffened by adding a glass or polyester fabric between two layers of silicone or EPDM, or by locally stacking additional layers of silicone or EPDM to create a local extra thickness in the membrane.
  • the mold 110 After placing the texture 10 in the impregnation chamber, the mold 110 is closed with the lid 130 (FIG. 2).
  • a liquid composition 150 is then injected into the impregnation chamber 101 via the injection port 114, the valve 1140 of which is open (FIG. 3).
  • the liquid composition 150 is, in this example, intended to allow the formation of a carbon matrix in the texture.
  • the liquid composition 150 corresponds here to a phenolic resin.
  • the amount of liquid composition 150 injected into the impregnation chamber 101 is determined as a function of the volume of the fibrous texture to be impregnated.
  • the compaction operation is carried out by injecting a compression fluid 160, for example oil, into the compaction chamber 102 via the injection port 131. whose valve 1310 is open, the valve 1140 of the injection port 114 having been previously closed.
  • the compression fluid 160 applies a pressure on the liquid composition 150 through the membrane 140 which forces the liquid composition 150 to penetrate into the fibrous texture 10 as illustrated in FIG. 4.
  • the fluid 160 imposes a hydrostatic pressure on the entirety of the membrane 140 and, therefore, the entire liquid composition present above the texture 10, the membrane 140 deforming at its portions 142 and 143 to force the liquid composition to penetrate into the texture.
  • the pressure applied by the membrane 140 on the liquid composition and on the fibrous texture is preferably less than 15 bar, for example 7 bar, so as to make the liquid composition penetrate the texture.
  • the excess liquid composition is evacuated by the vents 112.
  • the thickening portion 11 of the fibrous texture 10 is impregnated homogeneously like the rest of the texture, and without deformation or appearance of folds at the portion of extra thickness 11 that can occur when constraining a simple membrane planar to deform excessively at the portion of this extra thickness.
  • a fibrous preform 20 impregnated with a matrix precursor is thus obtained, here a carbon matrix, which comprises a portion of extra thickness 21 corresponding to the portion of extra thickness 11 of the texture 10 (FIG. 4).
  • the preform is then demolded by emptying the compression fluid of the compaction chamber 102, the preform retaining after demolding its compaction geometry.
  • the preform is then extracted from the tooling and subjected to a treatment making it possible to transform the liquid composition into a matrix of a given material.
  • the impregnated fiber preform 20 is subjected to a heat treatment to carbonize the phenolic resin.
  • a piece of CMC composite material can be obtained in the same way by producing the fiber texture with silicon carbide or carbon fibers and by using a liquid composition containing a ceramic precursor such as a polycarbosilane resin (PCS) or polytitanocarbosilane (PTCS) or polysilazanes (PSZ) for obtaining silicon carbide (SiC) after heat treatment.
  • a ceramic precursor such as a polycarbosilane resin (PCS) or polytitanocarbosilane (PTCS) or polysilazanes (PSZ) for obtaining silicon carbide (SiC) after heat treatment.
  • a piece of CMO composite material can be obtained always in the same way by producing the fiber texture with fibers for example glass or carbon and using a liquid composition containing a precursor of organic material such as a polyester resin or a polyimide resin or a charged organic resin.
  • FIGs 5 and 6 illustrate the impregnation of a fibrous texture for producing an oxide / oxide composite material.
  • a fibrous texture 30 is placed in a tool 200.
  • the fibrous texture 30 has, on its face 30a intended to be exposed in the mold, a portion of extra thickness 31 which forms a relief on said face of the texture.
  • the fibrous texture 30 is made according to one of the techniques defined above (2D stack stacking or 3D weaving) with Nextel 610 TM alumina threads.
  • the fibrous texture 30 is here intended to form the fibrous reinforcement of a piece of oxide / oxide composite material.
  • the tool 200 comprises a mold 210 whose bottom 211 is provided with a vent 212.
  • the mold 210 also comprises a side wall 213 having an injection port 214 equipped with a valve 2140.
  • a piece of porous material 220 is also placed on the inner surface 211a of the bottom 211.
  • the piece of porous material 220 has a lower face 220b in contact with the inner surface 211a of the bottom 211 and an upper face 220a for to receive the fibrous texture 30.
  • the piece 220 may for example be made of microporous polytetrafluoroethylene (PTFE) such as "microporous PTFE" products sold by the company Porex®.
  • PTFE microporous polytetrafluoroethylene
  • the piece of porous material may have a thickness of several millimeters and an average porosity of about 30%.
  • the average pore size (D50) of the piece of porous material may for example be between 1 ⁇ m and 2 ⁇ m.
  • the tool 200 further comprises a cover 230 comprising an injection port 231 equipped with a valve 2310 and a partially deformable membrane 240 which, once the tool has been closed (FIG. 5), separates an impregnation chamber 201 wherein is present the fibrous texture 30 of a compaction chamber 202 located above the membrane 240.
  • the membrane comprises one or more shaped portions each having a shape substantially corresponding to the portion or portions of extra thickness present on the exposed face of the fibrous texture in order to match these extra thicknesses during the injection of a fluid compaction as explained below in detail.
  • the membrane 240 comprises a shaped portion 241 which has at rest a relief shape relative to the plane of the membrane 240 defined here by planar portions 242 and 243.
  • the shaped portion 240 has a corresponding shape substantially to the shape of the contour of the portion of extra thickness 31 of the fibrous texture.
  • the shaped portion 241 may be obtained by forming a flat membrane made of silicone or EPDM.
  • the shaped portion or portions of the membrane have a higher stiffness than the other portions of the membrane.
  • the shaped portion 241 of the membrane 240 has a higher rigidity than the other portions 242 and 243 of the membrane 240. This ensures the shape of the shaped portion of the membrane during its handling and in particular during the injection of a compaction fluid as explained below.
  • the membrane 240 may be made from a layer of a first impervious and deformable material such as silicone or EPDM, the shaped portion 241 being stiffened by the addition of a glass or polyester fabric between 2 Silicone or EPDM layers, or by local stacking of additional layers of silicone or EPDM to create a local extra thickness in the membrane.
  • the membrane used in the impregnation process of the invention may in particular be made from a silicone material reinforced with a glass or polyester fabric.
  • a silicone material reinforced with a glass or polyester fabric may be made from several layers of unvulcanized silicone.
  • several layers of unvulcanized silicone are draped over shaped tooling, a glass or polyester fabric being inserted locally between two layers of silicone to reinforce the membrane.
  • the number of layers is adjusted according to the rigidity to obtain.
  • a vacuum cover is applied to the assembly and the assembly is placed in an oven for vulcanizing the silicone. Once the mold has cooled, the membrane in one piece can be demolded.
  • a material capable of being conformed may be chosen in particular from one of the following materials: carbon, silicon carbide, glass, alumina, mullite, aluminosilicate, borosilicate, or a mixture of several of these materials.
  • the mold 210 is closed with the lid 230 ( Figure 5).
  • a slurry 250 is then injected into the impregnation chamber 201 via the injection port 214, the valve 2140 of which is open (FIG. 5).
  • the slurry 250 is, in this example, intended to allow the formation of a refractory oxide matrix in the texture.
  • the slurry 250 corresponds to a suspension containing a powder of refractory oxide particles, the particles having a mean particle size of between 0.1 ⁇ and 10 ⁇ .
  • the liquid phase of the slurry may in particular consist of water (acidic pH), ethanol or any other liquid in which it is possible to suspend the desired powder.
  • An organic binder can also be added (PVA for example, soluble in water). This binder ensures the holding of the raw material after drying and before sintering.
  • the slurry 250 may for example correspond to an aqueous suspension consisting of alumina powder whose average particle size (D50) is between 0.1 ⁇ m and 0.3 ⁇ m and whose volume fraction is between 27% and 42%. the suspension being acidified with nitric acid (pH between 1.5 and 4).
  • the refractory oxide particles may also be of a material selected from mullite, silica, aluminosilicate, aluminophosphate and zirconia.
  • the refractory oxide particles can be further mixed with particles of alumina, zirconia, aluminosilicate, rare earth oxides, rare earth di-silicates (used by example in environmental or thermal barriers) or any other load allowing to add functions specific to the final material (carbon black, graphite, silicon carbide, etc.).
  • the amount of slurry 250 injected into the impregnation chamber 201 is determined as a function of the volume of the fibrous texture to be impregnated. It is the quantity of powder initially introduced which will control the thickness of setting and thus the volume ratio of fibers (Tvf) and matrix (Tvm).
  • the compaction operation is carried out by injecting a compression fluid 260, for example oil, into the compaction chamber 202 through the injection port 231 of which the valve 2310 is open, the valve 2140 of the injection port 214 having been previously closed.
  • the fluid 260 imposes a hydrostatic pressure on the entire membrane 240 and, consequently, on the entirety of the liquid composition present above the texture 30, the membrane 240 deforming at its portions 242 and 243 to force the liquid composition to penetrate the texture.
  • the pressure applied by the membrane 240 on the slip and on the fibrous texture is preferably less than 15 bar, for example 7 bar, so as to penetrate the slip in the texture.
  • the thickening portion 31 of the fibrous texture 30 is impregnated homogeneously like the rest of the texture, and this without deformations or appearance of folds at the portion of thickening 31 that may occur when forced a simple flat membrane to deform excessively at the portion of extra thickness.
  • the porous material part 220 which is located on the side of the face 30b of the fibrous texture opposite the face 30a from which the slip penetrates the texture performs several functions. Indeed, the part 220 allows the liquid to be drained from the slip outside the fibrous texture, the liquid thus drained being evacuated here by the vent 212. The drainage is carried out both during and after the operation. compaction. When there is no more liquid flowing through the vent 212, drainage is complete.
  • a pumping P for example by means of a primary vacuum pump (not shown in Figure 6), can be achieved at the level of vent 212. This pumping is optional. Heating can suffice. However, the combination of both speeds up drying.
  • the tool may be provided with heating means, such as resistive elements integrated into the walls of the tool, in order to increase the temperature in the compaction chamber and facilitate evacuation of the liquid from the slip by evaporation.
  • the temperature in the compaction chamber can be raised to a temperature between 80 ° C and 105 ° C.
  • the porous material part 220 also makes it possible to retain the solid particles of refractory oxide present in the slip, the refractory oxide particles thus settling progressively by sedimentation in the fibrous texture. This makes it possible to obtain later (i.e. after sintering) the matrix.
  • the part 220 also makes it possible to maintain the fibrous texture in shape during the compaction operation because it resumes on its upper face 220a the shape of the bottom 211 of the mold 210 corresponding to the shape of the final piece to be manufactured.
  • a fibrous preform 40 is thus obtained, which is charged with refractory oxide particles, here particles of alumina of the type described above, which comprises a portion of extra thickness 41 corresponding to the portion of extra thickness 31 of the texture 30 (FIG. 6).
  • the preform is then demolded by emptying the compression fluid of the compaction chamber 202, the preform retaining after demolding its compaction geometry.
  • the preform is then extracted from the tooling and subjected to an air sinter heat treatment at a temperature of between 1000 ° C. and 1200 ° C. in order to sinter the refractory oxide particles together and thus form a refractory oxide matrix in the preform.
  • a piece of CMC composite material can be obtained in the same way by producing the fibrous texture with silicon carbide or carbon fibers and using a slurry loaded with carbide carbide particles (eg SiC), boride (ex. TiB2) or nitride (eg Si3N4).
  • carbide carbide particles eg SiC
  • boride e. TiB2
  • nitride eg Si3N4

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

Un procédé d'imprégnation d'une texture fibreuse (10) comprenant les étapes suivantes : - placement d'une texture fibreuse (10) dans une chambre d'imprégnation (101) d'un moule (110), la chambre d'imprégnation (101) étant fermée dans sa partie supérieure par une membrane imperméable au moins en partie déformable (140) placée en regard d'une face exposée (10a) de la texture fibreuse (10), ladite membrane (140) séparant la chambre d'imprégnation (101) d'une chambre de compaction (102), - injection d'une composition liquide (150) contenant au moins un précurseur d'un matériau de matrice dans la chambre d'imprégnation, - injection d'un fluide de compression (160) dans la chambre de compaction (102) pour forcer la composition liquide (150) à pénétrer la texture fibreuse (10) de manière à obtenir une préforme fibreuse (20) imprégnée de ladite composition liquide. La texture fibreuse (10) présente sur sa face exposée (10a) une portion de surépaisseur (11). La membrane imperméable (140) comprend une portion conformée (141) présentant une forme correspondant à la forme du contour de la portion de surépaisseur (11) présente sur la face exposée (10a) de la texture fibreuse (10).

Description

Procédé de fabrication d'une pièce en matériau composite présentant une ou plusieurs variations locales d'épaisseur
Arrière-plan de l'invention
La présente invention concerne un procédé de fabrication d'une pièce en matériau composite, c'est-à-dire comportant un renfort fibreux formé à partir de fibres densifié par une matrice.
Plus précisément, l'invention concerne notamment la fabrication des matériaux composites dits « thermostructuraux », à savoir des matériaux ayant de bonnes propriétés mécaniques et la capacité à conserver ces propriétés à température élevée, tels que les matériaux composites carbone/carbone (C/C) formés d'un renfort en fibres de carbone densifié par une matrice en carbone, les matériaux composites à matrice céramique (CMC) formés d'un renfort en fibres réfractaires (carbone ou céramique) densifiés par une matrice au moins partiellement céramique et les matériaux composites de type oxyde/oxyde formés d'un renfort en fibres oxyde (alumine) densifiés par une matrice au moins partiellement oxyde. L'invention concerne également la fabrication des matériaux composites à matrice organique (CMO), c'est-à-dire comportant un renfort fibreux densifié par une matrice de nature organique.
Un procédé usuel d'obtention de pièces en matériau composite est le procédé par voie liquide. Le procédé par voie liquide consiste à réaliser une préforme fibreuse ayant sensiblement la forme d'une pièce à réaliser, et destinée à constituer le renfort du matériau composite, et à imprégner cette préforme par une composition liquide contenant un précurseur du matériau de la matrice. Le précurseur se présente habituellement sous forme d'un polymère, tel qu'une résine, éventuellement dilué dans un solvant ou d'une charge en suspension dans une barbotine. La transformation du précurseur en matrice est réalisée par traitement thermique. Plusieurs cycles d'imprégnation successifs peuvent être réalisés pour parvenir au degré de densification souhaité. A titre d'exemple, des précurseurs liquides de carbone peuvent être des résines à taux de coke relativement élevé, telles que des résines phénoliques, tandis que des précurseurs liquides de céramique, notamment de SiC, peuvent être des résines de type polycarbosilane (PCS) ou polytitanocarbosilane (PTCS) ou polysilazanes (PSZ). Concernant les matériaux composites à matrice organique (CMO), on utilise une résine thermoplastique ou thermodurcissable pour imprégner la préforme fibreuse.
Enfin, pour la fabrication de pièces en matériau composite de type oxyde/oxyde, les pièces sont généralement élaborées par drapage dans un moule d'une pluralité de strates fibreuses réalisées à partir de fibres en oxyde réfractaire, les strates étant chacune préalablement imprégnées avec une barbotine chargée de particules d'oxyde réfractaire.
Dans tous les cas, l'imprégnation de la préforme fibreuse par une composition liquide précurseur du matériau de la matrice est une étape importante en ce qu'elle conditionne ensuite l'homogénéité et le taux de matrice présent dans le matériau résultant et, par conséquent, les propriétés mécaniques du matériau. En effet, le taux de macroporosité présent dans le matériau final influence directement les propriétés mécaniques du matériau.
Un procédé d'imprégnation d'une texture fibreuse par une composition liquide précurseur de matériau de matrice est divulgué dans le document US 2012/0217670 qui décrit le placement d'une texture fibreuse dans une chambre d'imprégnation d'un outillage d'injection, la chambre d'imprégnation étant séparée d'une chambre de compression par une membrane imperméable et souple. Un précurseur liquide de matrice est injecté directement au niveau de la préforme via un port d'injection débouchant sur la face inférieure de la préforme. Une partie du précurseur liquide imprègne alors directement la préforme tandis qu'une autre partie du précurseur liquide se répand sur la face supérieure de la préforme entraînant la déformation de la membrane. Un fluide de compression est alors injecté dans la chambre de compression de manière à exercer une pression sur la membrane et à entraîner une répartition du précurseur liquide dans tout le volume de la texture fibreuse.
Toutefois, ce procédé d'imprégnation ne permet pas d'imprégner de façon satisfaisante des textures fibreuses présentant des variations d'épaisseur importantes entraînant en surface de la préforme un relief significatif. En outre, ce procédé n'est pas adapté pour la fabrication de matériaux composites de type oxyde/oxyde qui consiste à imprégner la texture fibreuse avec une barbotine chargée de particules réfractaires d'oxyde et à éliminer la phase liquide de la barbotine de la texture pour ne laisser subsister que les particules dans la texture.
Obiet et résumé de l'invention
La présente invention a pour but de remédier aux inconvénients précités en proposant une solution qui permet d'imprégner des textures fibreuses présentant une ou plusieurs portions de variation d'épaisseur, et ce de manière rapide et fiable tout en permettant un bon contrôle du dépôt et de la répartition de la composition liquide précurseur de matrice dans la texture fibreuse afin d'obtenir un matériau avec un taux de macroporosité très faible.
A cet effet, l'invention propose un procédé d'imprégnation d'une texture fibreuse comprenant les étapes suivantes :
- placement d'une texture fibreuse dans une chambre d'imprégnation d'un moule, la chambre d'imprégnation étant fermée dans sa partie supérieure par une membrane imperméable au moins en partie déformable placée en regard d'une face exposée de la texture fibreuse, ladite membrane séparant la chambre d'imprégnation d'une chambre de compaction,
- injection d'une composition liquide contenant au moins un précurseur d'un matériau de matrice dans la chambre d'imprégnation entre la face exposée de la texture fibreuse et la membrane,
- injection d'un fluide de compression dans la chambre de compaction, le fluide exerçant une pression sur la membrane pour forcer la composition liquide à pénétrer la texture fibreuse de manière à obtenir une préforme fibreuse imprégnée de ladite composition liquide,
caractérisé en ce que la texture fibreuse présente sur sa face exposée au moins une portion de surépaisseur et en ce que la membrane imperméable comprend au moins une portion conformée présentant une forme correspondant à la forme du contour de ladite au moins une portion de surépaisseur présente sur la face exposée de la texture fibreuse.
Grâce à la présence d'une ou plusieurs portions de conformation dans la membrane, la ou les portions de surépaisseur d'une texture fibreuse peuvent être imprégnées de manière homogène comme le reste de la texture, et ce sans déformation ou apparition de plis au niveau de la ou les portions de surépaisseur qui peuvent se produire lorsque l'on contraint une simple membrane plane à se déformer de manière excessive au niveau d'une ou plusieurs portions de surépaisseur.
En outre, avec le procédé de l'invention, il est possible d'imprégner avec un même outillage des textures fibreuses comportant des portions de surépaisseurs différentes, seule la membrane étant changée pour s'adapter à la forme et aux dimensions de la texture à imprégner.
Selon un mode de réalisation du procédé d'imprégnation de l'invention, chaque portion conformée de la membrane imperméable présente une rigidité supérieure aux autres portions de ladite membrane.
Selon un autre mode de réalisation du procédé d'imprégnation de l'invention, la chambre d'imprégnation du moule comporte dans sa partie inférieure une pièce en matériau poreux sur laquelle repose la texture, la composition liquide injectée dans la chambre d'imprégnation comprenant une barbotine contenant une poudre de particules réfractaires, le procédé comprenant en outre le drainage par la pièce en matériau poreux du liquide de la barbotine ayant traversé la texture fibreuse et la rétention de la poudre de particules réfractaires à l'intérieur de ladite texture par ladite pièce en matériau poreux de manière à obtenir une préforme fibreuse chargée de particules réfractaires.
En utilisant une pièce en matériau poreux permettant de drainer le liquide de la barbotine, le procédé de l'invention permet d'éliminer la phase liquide de la barbotine introduite dans la texture fibreuse sans éliminer les particules solides réfractaires également présentes dans la texture. L'élimination de la phase liquide de la barbotine par drainage permet en outre de ne pas perturber la répartition des particules réfractaires au sein de la texture fibreuse et d'obtenir ultérieurement une pièce en matériau composite avec un taux volumique de matrice élevé et présentant, par conséquent, des propriétés mécaniques améliorées.
Selon une caractéristique particulière du procédé d'imprégnation de l'invention, la texture fibreuse est obtenue par tissage tridimensionnel ou par aiguilletage d'une pluralité de strates fibreuses.
Selon une caractéristique particulière du procédé d'imprégnation de l'invention, la membrane imperméable est réalisée en silicone ou en EPDM (Ethyolène, Propylène, Diène et Monomère), chaque portion conformée étant obtenue par formage local du silicone ou EPDM. Chaque portion conformée peut en outre être rigidifiée par ajout d'un tissu de verre ou polyester entre deux couches de silicone ou d'EPDM, ou par empilement local de strates supplémentaires de silicone ou d'EPDM de manière à former une surépaisseur locale dans la membrane.
L'invention a également pour objet un procédé de fabrication d'une pièce en matériau composite comprenant les étapes suivantes :
- imprégnation d'une texture fibreuse selon le procédé d'imprégnation de l'invention,
- démoulage de la préforme fibreuse imprégnée, et
- transformation de la composition liquide afin de former une matrice dans ladite préforme.
L'invention a encore pour objet un procédé de fabrication d'une pièce en matériau composite comprenant les étapes suivantes :
- imprégnation d'une texture fibreuse selon le procédé d'imprégnation de l'invention mettant en œuvre une pièce en matériau poreux et une barbotine chargée comme définies ci-avant,
- séchage de la préforme fibreuse,
- démoulage de la préforme fibreuse, et
- frittage des particules réfractaires présentes dans la préforme fibreuse afin de former une matrice réfractaire dans ladite préforme.
La présente invention concerne enfin un outillage d'imprégnation pour une texture fibreuse comprenant :
- un moule comprenant une chambre d'imprégnation comportant un fond destiné à recevoir une première face d'une texture fibreuse, la chambre d'imprégnation étant fermée dans sa partie supérieure par une membrane imperméable au moins en partie déformable et destinée à être placée en regard d'une deuxième face de la texture fibreuse, ladite membrane séparant la chambre d'imprégnation d'une chambre de compaction,
- au moins un premier port d'injection débouchant dans la chambre d'imprégnation,
- au moins un deuxième port d'injection débouchant dans la chambre de compaction, caractérisé en ce que la membrane imperméable comprend au moins une portion conformée présentant une forme en relief par rapport au plan de la membrane.
L'outillage d'imprégnation de l'invention permet d'assurer une imprégnation homogène de la ou les portions de surépaisseur d'une texture fibreuse, et ce sans déformation ou apparition de plis au niveau de la ou les portions de surépaisseur qui peuvent se produire lorsque l'on contraint une simple membrane plane à se déformer de manière excessive au niveau d'une ou plusieurs portions de surépaisseur.
En outre, l'outillage de l'invention peut être utilisé pour imprégner des textures fibreuses ayant des formes et des dimensions variées au niveau de la ou les portions de surépaisseur, seule la membrane étant changée pour s'adapter à la forme et aux dimensions de la texture à imprégner.
Selon un mode de réalisation de l'outillage d'imprégnation de l'invention, chaque portion conformée de la membrane imperméable présente une rigidité supérieure aux autres portions de ladite membrane.
Brève description des dessins
D'autres caractéristiques et avantages de l'invention ressortiront de la description suivante de modes particuliers de réalisation de l'invention, donnés à titre d'exemples non limitatifs, en référence aux dessins annexés, sur lesquels :
- la figure 1 est une vue schématique en coupe éclatée d'un outillage conformément à un mode de réalisation de l'invention,
- la figure 2 est une vue schématique en coupe montrant l'outillage de la figure 1 fermé avec une texture fibreuse positionnée dans celui-ci,
- les figures 3 et 4 sont des vues schématiques en coupe montrant les étapes d'imprégnation d'une texture fibreuse avec une composition liquide dans l'outillage de la figure 2 conformément à un mode de réalisation du procédé de l'invention, et
- les figures 5 et 6 sont des vues schématiques en coupe montrant les étapes d'imprégnation d'une texture fibreuse avec une barbotine chargée conformément à un autre mode de réalisation du procédé de l'invention.
Description détaillée de modes de réalisation
Le procédé d'imprégnation d'une texture fibreuse conforme à la présente invention débute par la réalisation d'une texture fibreuse destinée à former le renfort de la pièce.
La texture fibreuse est réalisée de façon connue par tissage au moyen d'un métier à tisser de type jacquard sur lequel on a disposé un faisceau de fils de chaînes ou torons en une pluralité de couches, les fils de chaînes étant liés par des fils de trame ou inversement. La texture fibreuse peut être réalisée par empilement de strates ou plis obtenu par tissage bidimensionnel (2D). La texture fibreuse peut être également réalisée directement en une seule pièce par tissage tridimensionnel (3D). Par « tissage bidimensionnel », on entend ici un mode de tissage classique par lequel chaque fil de trame passe d'un côté à l'autre de fils d'une seule couche de chaîne ou inversement. Le procédé de l'invention est particulièrement adapté pour permettre l'introduction d'une composition liquide dans des textures fibreuses 2D (textures obtenues par empilement de strates ou plis 2D) ou 3D d'épaisseur importante, c'est-à-dire des structures fibreuses ayant une épaisseur d'au moins 100 mm.
Par « tissage tridimensionnel » ou « tissage 3D » ou encore « tissage multicouche », on entend ici un mode de tissage par lequel certains au moins des fils de trame lient des fils de chaîne sur plusieurs couches de fils de chaîne ou inversement suivant un tissage correspondant à une armure de tissage qui peut être notamment choisie parmi une des armures suivantes : interlock, multi-toile, multi-satin et multi-sergé.
Par « armure ou tissu interlock », on entend ici une armure de tissage 3D dont chaque couche de fils de chaîne lie plusieurs couches de fils de trame avec tous les fils de la même colonne de chaîne ayant le même mouvement dans le plan de l'armure.
Par « armure ou tissu multi-toile », on désigne ici un tissage 3D avec plusieurs couches de fils de trame dont l'armure de base de chaque couche est équivalente à une armure de type toile classique mais avec certains points de l'armure qui lient les couches de fils de trame entre elles.
Par « armure ou tissu multi-satin », on désigne ici un tissage 3D avec plusieurs couches de fils de trame dont l'armure de base de chaque couche est équivalente à une armure de type satin classique mais avec certains points de l'armure qui lient les couches de fils de trame entre elles.
Par « armure ou tissu multi-sergé », on désigne ici un tissage 3D avec plusieurs couches de fils de trame dont l'armure de base de chaque couche est équivalente à une armure de type sergé classique mais avec certains points de l'armure qui lient les couches de fils de trame entre elles.
Les textures 3D présentent une géométrie complexe dans laquelle il est difficile d'introduire et de répartir de manière homogène des compositions liquides chargées ou non. Le procédé de l'invention est également très bien adapté pour l'introduction d'une composition liquide dans des textures fibreuses tissées 3D. Le procédé de l'invention s'applique également à l'introduction d'une composition liquide, par exemple précurseur de céramique, dans des textures aiguilletées formées par exemple par empilement de strates fibreuses uni ou bidimensionnelles liées entre elles par aiguilletage.
Les fils utilisés pour tisser la texture fibreuse destinée à former le renfort fibreux de la pièce en matériau composite peuvent être notamment formés de fibres constituées d'un des matériaux suivants: carbone, carbure de silicium, verre, l'alumine, mullite, aluminosilicate, borosilicate, ou d'un mélange de plusieurs de ces matériaux.
Une fois la texture fibreuse réalisée, celle-ci est placée dans un outillage conforme à l'invention qui permet, comme expliqué ci-après, d'imprégner la texture fibreuse avec une composition liquide. A cet effet et comme illustrée sur les figures 1 et 2, une texture fibreuse 10 est placée dans un outillage 100. La texture fibreuse 10 comporte, sur sa face 10a destinée à être exposée dans le moule, une portion de surépaisseur 11 qui forme un relief sur ladite face de la texture. Dans l'exemple décrit ici, la texture fibreuse 10 est réalisée suivant une des techniques définies ci- avant (empilement strates 2D ou tissage 3D) avec des fils de carbone. La texture fibreuse 10 est ici destinée à former le renfort fibreux d'une pièce en matériau composite carbone/carbone (C/C).
L'outillage 100 comprend un moule 110 dont le fond 111 est muni d'une pluralité d'évents 112. Le moule 110 comprend également une paroi latérale 113 comportant un port d'injection 114 équipé d'une vanne 1140. La face 10b de la texture fibreuse 10 opposée à sa face exposée 10a est placée sur la surface 111a du fond 111.
L'outillage 100 comprend en outre un couvercle 130 comportant un port d'injection 131 équipé d'une vanne 1310 et une membrane imperméable 140 qui, une fois l'outillage fermé (figure 2), sépare une chambre d'imprégnation 101 dans laquelle est présente la texture fibreuse 10 d'une chambre de compaction 102 située au-dessus de la membrane 140.
Conformément à l'invention, la membrane comprend une ou plusieurs portions conformées ayant chacune une forme correspondant sensiblement à la ou les portions de surépaisseur présentes sur la face exposée de la texture fibreuse afin d'épouser ces surépaisseurs lors de l'injection d'un fluide compaction comme expliqué ci-après en détails. Dans l'exemple décrit ici, la membrane 140 comprend une portion conformée 141 qui présente au repos une forme en relief par rapport au plan de la membrane 140 défini ici par des portions planes 142 et 143. La portion conformée 140 présente une forme correspondant sensiblement à la forme du contour de la portion de surépaisseur 11 de la texture fibreuse 10. La portion conformée 141 peut être obtenue par formage d'une membrane plane réalisée en silicone ou EPDM (Ethyolène, Propylène, Diène et Monomère).
Selon une variante de réalisation, la ou les portions conformées de la membrane présentent une rigidité supérieure aux autres portions de la membrane. Dans l'exemple décrit ici, la portion conformée 141 de la membrane 140 présente une rigidité supérieure aux autres portions 142 et 143 de la membrane 140. On assure ainsi le maintien en forme de la portion conformée de la membrane lors de ses manipulations et en particulier lors de l'injection d'un fluide compaction comme expliqué ci- après. A cet effet, la membrane 140 peut être réalisée à partir d'une couche d'un premier matériau imperméable et déformable tel que silicone ou EPDM, la portion conformée 141 étant obtenue par formage du silicone ou EPDM. La portion conformée 141 peut être rigidifiée par l'ajout d'un tissu de verre ou polyester entre deux couches de silicone ou d'EPDM, ou par l'empilement local de couches supplémentaires de silicone ou d'EPDM afin de créer une surépaisseur locale dans la membrane.
Après placement de la texture 10 dans la chambre d'imprégnation, on ferme le moule 110 avec le couvercle 130 (figure 2). On injecte alors une composition liquide 150 dans la chambre d'imprégnation 101 par le port d'injection 114 dont la vanne 1140 est ouverte (figure 3). La composition liquide 150 est, dans cet exemple, destinée à permettre la formation d'une matrice carbone dans la texture. La composition liquide 150 correspond ici à une résine phénolique.
La quantité de composition liquide 150 injectée dans la chambre d'imprégnation 101 est déterminée en fonction du volume de la texture fibreuse 10 à imprégner.
Une fois la composition liquide injectée dans la chambre d'imprégnation 101, on procède à l'opération de compaction en injectant un fluide de compression 160, par exemple de l'huile, dans la chambre de compaction 102 par le port d'injection 131 dont la vanne 1310 est ouverte, la vanne 1140 du port d'injection 114 ayant été préalablement fermée. Le fluide de compression 160 applique une pression sur la composition liquide 150 au travers de la membrane 140 qui force la composition liquide 150 à pénétrer dans la texture fibreuse 10 comme illustré sur la figure 4. Le fluide 160 impose une pression hydrostatique sur l'intégralité de la membrane 140 et, par conséquent, sur l'intégralité de la composition liquide présente au-dessus de la texture 10, la membrane 140 se déformant au niveau de ses portions 142 et 143 pour forcer la composition liquide à pénétrer dans la texture. La pression appliquée par la membrane 140 sur la composition liquide et sur la texture fibreuse est de préférence inférieure à 15 bars, par exemple 7 bars, de manière à faire pénétrer la composition liquide dans la texture. L'excédent de composition liquide est évacué par les évents 112.
Grâce à la présence de la portion de conformation 141 dans la membrane 141, la portion de surépaisseur 11 de la texture fibreuse 10 est imprégnée de manière homogène comme le reste de la texture, et ce sans déformation ou apparition de plis au niveau de la portion de surépaisseur 11 qui peuvent se produire lorsqu'on contraint une simple membrane plane à se déformer de manière excessive au niveau de la portion de cette surépaisseur.
On obtient alors une préforme fibreuse 20 imprégnée d'un précurseur de matrice, ici une matrice carbone, qui comporte une portion de surépaisseur 21 correspondant à la portion de surépaisseur 11 de la texture 10 (figure 4). La préforme est ensuite démoulée par vidange du fluide de compression de la chambre de compaction 102, la préforme conservant après démoulage sa géométrie de compaction.
La préforme est ensuite extraite de l'outillage et soumise à un traitement permettant de transformer la composition liquide en une matrice d'un matériau donner. Dans l'exemple décrit ici, la préforme fibreuse 20 imprégnée est soumise à un traitement thermique permettant de carboniser la résine phénolique.
Une pièce en matériau composite CMC peut être obtenue de la même façon en réalisant la texture fibreuse avec des fibres de carbure de silicium ou de carbone et en utilisant une composition liquide contenant un précurseur de céramique telle qu'une résine de type polycarbosilane (PCS) ou polytitanocarbosilane (PTCS) ou polysilazanes (PSZ) permettant d'obtenir du carbure de silicium (SiC) après traitement thermique.
De même, une pièce en matériau composite CMO peut être obtenue toujours de la même façon en réalisant la texture fibreuse avec des fibres par exemple de verre ou de carbone et en utilisant une composition liquide contenant un précurseur de matériau organique telle qu'une résine polyester ou une résine polyimide ou une résine organique chargée.
Les figures 5 et 6 illustrent l'imprégnation d'une texture fibreuse en vue de la réalisation d'un matériau composite oxyde/oxyde. A cet effet et comme illustrée sur les figures 5 et 6, une texture fibreuse 30 est placée dans un outillage 200. La texture fibreuse 30 comporte, sur sa face 30a destinée à être exposée dans le moule, une portion de surépaisseur 31 qui forme un relief sur ladite face de la texture. Dans l'exemple décrit ici, la texture fibreuse 30 est réalisée suivant une des techniques définies ci-avant (empilement strates 2D ou tissage 3D) avec des fils d'alumine Nextel 610™. La texture fibreuse 30 est ici destinée à former le renfort fibreux d'une pièce en matériau composite oxyde/oxyde. De même que pour l'outillage 100 déjà décrit, l'outillage 200 comprend un moule 210 dont le fond 211 est muni d'un évent 212. Le moule 210 comprend également une paroi latérale 213 comportant un port d'injection 214 équipé d'une vanne 2140. Une pièce en matériau poreux 220 est en outre placée sur la surface interne 211a du fond 211. La pièce en matériau poreux 220 comporte une face inférieure 220b en contact avec la surface interne 211a du fond 211 et une face supérieure 220a destinée à recevoir la texture fibreuse 30. La pièce 220 peut par exemple être réalisée en polytétrafluoroéthylène (PTFE) microporeux comme les produits « microporous PTFE » vendus par la société Porex®.
A titre d'exemple, la pièce en matériau poreux peut présenter une épaisseur de plusieurs millimètres et un taux moyen de porosités d'environ 30%. La taille moyenne des pores (D50) de la pièce en matériau poreux peut par exemple être comprise entre 1 pm et 2 μιτι.
L'outillage 200 comprend en outre un couvercle 230 comportant un port d'injection 231 équipé d'une vanne 2310 et une membrane en partie déformable 240 qui, une fois l'outillage fermé (figure 5), sépare une chambre d'imprégnation 201 dans laquelle est présente la texture fibreuse 30 d'une chambre de compaction 202 située au-dessus de la membrane 240.
Conformément à l'invention, la membrane comprend une ou plusieurs portions conformées ayant chacune une forme correspondant sensiblement à la ou les portions de surépaisseur présentes sur la face exposée de la texture fibreuse afin d'épouser ces surépaisseurs lors de l'injection d'un fluide compaction comme expliqué ci-après en détails. Dans l'exemple décrit ici, la membrane 240 comprend une portion conformée 241 qui présente au repos une forme en relief par rapport au plan de la membrane 240 défini ici par des portions planes 242 et 243. La portion conformée 240 présente une forme correspondant sensiblement à la forme du contour de la portion de surépaisseur 31 de la texture fibreuse. La portion conformée 241 peut être obtenue par formage d'une membrane plane réalisée en silicone ou EPDM.
Selon une variante de réalisation, la ou les portions conformées de la membrane présentent une rigidité supérieure aux autres portions de la membrane. Dans l'exemple décrit ici, la portion conformée 241 de la membrane 240 présente une rigidité supérieure aux autres portions 242 et 243 de la membrane 240. On assure ainsi le maintien en forme de la portion conformée de la membrane lors de ses manipulations et en particulier lors de l'injection d'un fluide compaction comme expliqué ci- après. A cet effet, la membrane 240 peut être réalisée à partir d'une couche d'un premier matériau imperméable et déformable tel que silicone ou EPDM, la portion conformée 241 étant rigidifiée par l'ajout d'un tissu de verre ou polyester entre 2 couches de silicone ou d'EPDM, ou par l'empilement local de couches supplémentaires de silicone ou d'EPDM afin de créer une surépaisseur locale dans la membrane.
Comme indiquée ci-avant, la membrane utilisée dans le procédé d'imprégnation de l'invention peut être notamment réalisée à partir d'un matériau silicone renforcé par un tissu de verre ou polyester. Dans ce cas, plusieurs strates de silicone non vulcanisé sont drapées sur un outillage en forme, un tissu de verre ou polyester étant inséré localement entre deux strates de silicone pour renforcer la membrane. Le nombre de strates est ajustée en fonction de la rigidité à obtenir. Une fois le drapage terminé, une bâche à vide est appliqué sur le montage et l'ensemble est placé dans un four pour la vulcanisation du silicone. Une fois le moule refroidi, la membrane d'un seul tenant peut être démoulée.
Un matériau apte à être conformé peut être notamment choisi parmi un des matériaux suivants : carbone, carbure de silicium, verre, l'alumine, mullite, aluminosilicate, borosilicate, ou un mélange de plusieurs de ces matériaux.
Après placement de la texture 30 sur la face supérieure 220a de la pièce en matériau poreux 220, on ferme le moule 210 avec le couvercle 230 (figure 5). On injecte alors une barbotine 250 dans la chambre d'imprégnation 201 par le port d'injection 214 dont la vanne 2140 est ouverte (figure 5). La barbotine 250 est, dans cet exemple, destinée à permettre la formation d'une matrice d'oxyde réfractaire dans la texture. La barbotine 250 correspond à une suspension contenant une poudre de particules d'oxyde réfractaire, les particules présentant une dimension particulaire moyenne comprise entre 0,1 μηι et 10 μηι. La phase liquide de la barbotine peut être notamment constituée par de l'eau (pH acide), de l'éthanol ou tout autre liquide dans lequel il est possible de mettre la poudre désirée en suspension. Un liant organique peut être aussi ajouté (PVA par exemple, soluble dans l'eau). Ce liant permet d'assurer la tenue du cru après séchage et avant frittage.
La barbotine 250 peut par exemple correspondre à une suspension aqueuse constituée de poudre d'alumine dont la dimension particulaire moyenne (D50) est comprise entre 0,1 pm et 0,3 pm et dont la fraction volumique est comprise entre 27% et 42%, la suspension étant acidifiée par de l'acide nitrique (pH compris entre 1,5 et 4). En outre de l'alumine, les particules d'oxyde réfractaire peuvent être également en un matériau choisi parmi la mullite, la silice, un aluminosilicate, un aluminophosphate et la zircone. En fonction de leur composition de base, les particules d'oxyde réfractaire peuvent être en outre mélangées avec des particules d'alumine, de zircone, d'aluminosilicate, d'oxydes de Terre rare, de di-silicates de Terre rare (utilisés par exemple dans les barrières environnementales ou thermiques) ou toute autre charge permettant de rajouter des fonctions spécifiques au matériau final (noir de carbone, graphite, carbure de silicium, etc.).
La quantité de barbotine 250 injectée dans la chambre d'imprégnation 201 est déterminée en fonction du volume de la texture fibreuse 30 à imprégner. C'est la quantité de poudre initialement introduite qui pilotera l'épaisseur de calage et donc le taux volumique de fibres (Tvf) et de matrice (Tvm).
Une fois la barbotine injectée dans la chambre d'imprégnation 201, on procède à l'opération de compaction en injectant un fluide de compression 260, par exemple de l'huile, dans la chambre de compaction 202 par le port d'injection 231 dont la vanne 2310 est ouverte, la vanne 2140 du port d'injection 214 ayant été préalablement fermée. Le fluide 260 impose une pression hydrostatique sur l'intégralité de la membrane 240 et, par conséquent, sur l'intégralité de la composition liquide présente au-dessus de la texture 30, la membrane 240 se déformant au niveau de ses portions 242 et 243 pour forcer la composition liquide à pénétrer dans la texture. La pression appliquée par la membrane 240 sur la barbotine et sur la texture fibreuse est de préférence inférieure à 15 bars, par exemple 7 bars, de manière à faire pénétrer la barbotine dans la texture.
Grâce à la présence de la portion de conformation 241 dans la membrane 241, la portion de surépaisseur 31 de la texture fibreuse 30 est imprégnée de manière homogène comme le reste de la texture, et ce sans déformations ou apparition de plis au niveau de la portion de surépaisseur 31 qui peuvent se produire lorsqu'on contraint une simple membrane plane à se déformer de manière excessive au niveau de la portion de surépaisseur.
La pièce en matériau poreux 220 qui est située du côté de la face 30b de la texture fibreuse opposée à la face 30a à partir de laquelle la barbotine pénètre dans la texture remplit plusieurs fonctions. En effet, la pièce 220 permet le drainage du liquide de la barbotine à l'extérieur de la texture fibreuse, le liquide ainsi drainé étant évacué ici par l'évent 212. Le drainage est réalisé à la fois pendant et après l'opération de compaction. Lorsqu'il n'y a plus de liquide s'écouiant par l'évent 212, le drainage est terminé. En combinaison avec l'application d'une pression sur la barbotine par le fluide de compression, un pompage P, par exemple au moyen d'une pompe à vide primaire (non représentée sur la figure 6), peut être réalisé au niveau de l'évent 212. Ce pompage est optionnel. Un chauffage peut suffire. Toutefois la combinaison des deux permet d'accélérer le séchage.
En outre, l'outillage peut être muni de moyens de chauffage, comme des éléments résistifs intégrés aux parois de l'outillage, afin d'augmenter la température dans la chambre de compaction et faciliter l'évacuation du liquide de la barbotine par évaporation. La température dans la chambre de compaction peut être élevée à une température comprise entre 80°C et 105°C.
La pièce en matériau poreux 220 permet également de retenir les particules solides d'oxyde réfractaire présentes dans la barbotine, les particules d'oxyde réfractaire se déposant ainsi progressivement par sédimentation dans la texture fibreuse. Cela permet d'obtenir ultérieurement (i.e. après frittage) la matrice.
La pièce 220 permet également de maintenir la texture fibreuse en forme pendant l'opération de compaction car elle reprend sur sa face supérieure 220a la forme du fond 211 du moule 210 correspondant à la forme de la pièce finale à fabriquer.
On obtient alors une préforme fibreuse 40 chargée de particules d'oxyde réfractaire, ici des particules d'alumine du type décrit précédemment, qui comporte une portion de surépaisseur 41 correspondant à la portion de surépaisseur 31 de la texture 30. (figure 6). La préforme est ensuite démoulée par vidange du fluide de compression de la chambre de compaction 202, la préforme conservant après démoulage sa géométrie de compaction.
La préforme est ensuite extraite de l'outillage et soumise à un traitement thermique de frittage sous air à une température comprise entre 1000°C et 1200°C afin de fritter les particules d'oxyde réfractaire ensemble et former ainsi une matrice en oxyde réfractaire dans la préforme. On obtient alors une pièce en matériau composite oxyde/oxyde munie d'un renfort fibreux obtenu par tissage 3D qui présente un taux volumique de matrice élevé avec une répartition homogène de la matrice dans tout le renfort fibreux.
Une pièce en matériau composite CMC peut être obtenue de la même façon en réalisant la texture fibreuse avec des fibres de carbure de silicium ou de carbone et en utilisant une barbotine chargée de particules de carbure de carbure (ex. SiC), de borure (ex. TiB2) ou de nitrure (ex. Si3N4).

Claims

REVENDICATIONS
1. Procédé d'imprégnation d'une texture fibreuse (10) comprenant les étapes suivantes :
- placement d'une texture fibreuse (10) dans une chambre d'imprégnation (101) d'un moule (110), la chambre d'imprégnation (101) étant fermée dans sa partie supérieure par une membrane imperméable au moins en partie déformable (140) placée en regard d'une face exposée (10a) de la texture fibreuse (10), ladite membrane (140) séparant la chambre d'imprégnation (101) d'une chambre de compaction (102),
- injection d'une composition liquide (150) contenant au moins un précurseur d'un matériau de matrice dans la chambre d'imprégnation entre la face exposée (10a) de la texture fibreuse (10) et la membrane (140),
- injection d'un fluide de compression (160) dans la chambre de compaction (102), le fluide exerçant une pression sur la membrane (140) pour forcer la composition liquide (150) à pénétrer la texture fibreuse (10) de manière à obtenir une préforme fibreuse (20) imprégnée de ladite composition liquide,
caractérisé en ce que la texture fibreuse (10) présente sur sa face exposée (10a) au moins une portion de surépaisseur (11) et en ce que la membrane imperméable (140) comprend au moins une portion conformée (141) présentant une forme correspondant à la forme du contour de ladite au moins une portion de surépaisseur (11) présente sur la face exposée (10a) de la texture fibreuse (10).
2. Procédé selon la revendication 1, caractérisé en ce que chaque portion conformée (141) de la membrane imperméable (140) présente une rigidité supérieure aux autres portions (142, 143) de ladite membrane.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la chambre d'imprégnation (201) du moule (210) comporte dans sa partie inférieure une pièce en matériau poreux (220) sur laquelle repose la texture (30) et en ce que la composition liquide injectée dans la chambre d'imprégnation comprend une barbotine (250) contenant une poudre de particules réfractaires, le procédé comprenant en outre le drainage par la pièce en matériau poreux (220) du liquide de la barbotine ayant traversé la texture fibreuse (30) et la rétention de la poudre de particules réfractaires à l'intérieur de ladite texture par ladite pièce en matériau poreux (220) de manière à obtenir une préforme fibreuse (40) chargée de particules réfractaires.
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la texture fibreuse (10) est obtenue par tissage tridimensionnel ou par aiguilletage d'une pluralité de strates fibreuses.
5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel la membrane imperméable (140) est réalisée en silicone ou en EPDM (Ethyolène, Propylène, Diène et Monomère), chaque portion conformée (141) étant obtenue par formage local du silicone ou EPDM.
6. Procédé selon l'une quelconque des revendications 2 à 4, dans lequel la membrane imperméable (140) est réalisée à partir d'une pluralité de strates de silicone ou EPDM (Ethyolène, Propylène, Diène et Monomère) empilées, chaque portion conformée (141) étant obtenue par formage local du silicone ou EPDM et dans lequel chaque portion conformée (141) est rigidifiée par ajout d'un tissu de verre ou polyester entre deux couches de silicone ou d'EPDM, ou par empilement local de strates supplémentaires de silicone ou d'EPDM de manière à former une surépaisseur locale dans la membrane.
7. Procédé de fabrication d'une pièce en matériau composite comprenant les étapes suivantes :
- imprégnation d'une texture fibreuse (10) selon le procédé d'imprégnation de l'une quelconque des revendications 1 à 2,
- démoulage de la préforme fibreuse imprégnée (20), et
- transformation de la composition liquide afin de former une matrice dans ladite préforme. 8. Procédé de fabrication d'une pièce en matériau composite comprenant les étapes suivantes : - imprégnation d'une texture fibreuse (30) selon le procédé d'imprégnation de la revendication 3 ou 4,
- séchage de la préforme fibreuse (40),
- démoulage de la préforme fibreuse (40), et
- frittage des particules réfractaires présentes dans la préforme fibreuse afin de former une matrice réfractaire dans ladite préforme.
9. Outillage d'imprégnation pour une texture fibreuse (10) comprenant :
- un moule (110) comprenant une chambre d'imprégnation
(101) comportant un fond destiné à recevoir une première face (10b) d'une texture fibreuse (10), la chambre d'imprégnation (101) étant fermée dans sa partie supérieure par une membrane imperméable au moins en partie déformable (140) et destinée à être placée en regard d'une deuxième face (10a) de la texture fibreuse (10), ladite membrane (140) séparant la chambre d'imprégnation (101) d'une chambre de compaction
(102) ,
- au moins un premier port d'injection (114) débouchant dans la chambre d'imprégnation,
- au moins un deuxième port d'injection (131) débouchant dans la chambre de compaction (102),
caractérisé en ce que la membrane imperméable (140) comprend au moins une portion conformée (141) présentant une forme en relief par rapport au plan de la membrane (140).
10. Outillage selon la revendication 9, caractérisé en ce que chaque portion conformée de la membrane imperméable présente une rigidité supérieure aux autres portions de ladite membrane.
PCT/FR2018/051439 2017-06-19 2018-06-18 Procede de fabrication d'une piece en materiau composite presentant une ou plusieurs variations locales d'epaisseur WO2018234669A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA2971426 2017-06-19
CA2971426A CA2971426A1 (fr) 2017-06-19 2017-06-19 Procede de fabrication d'une piece en materiau composite presentant une ou plusieurs variations locales d'epaisseur

Publications (1)

Publication Number Publication Date
WO2018234669A1 true WO2018234669A1 (fr) 2018-12-27

Family

ID=62948257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2018/051439 WO2018234669A1 (fr) 2017-06-19 2018-06-18 Procede de fabrication d'une piece en materiau composite presentant une ou plusieurs variations locales d'epaisseur

Country Status (2)

Country Link
CA (1) CA2971426A1 (fr)
WO (1) WO2018234669A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3114990A1 (fr) * 2020-10-12 2022-04-15 Safran Ceramics Texture fibreuse comprenant des plis unidirectionnels avec des mèches espacées
WO2022214765A1 (fr) 2021-04-08 2022-10-13 Safran Aircraft Engines Virole exterieure de carter intermediaire en materiau composite, pour turbomachine d'aeronef
FR3134095A1 (fr) * 2022-04-04 2023-10-06 Safran Ceramics Procédé de densification d’une texture fibreuse par injection de barbotine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3132461B1 (fr) * 2022-02-10 2024-10-25 Safran Aircraft Engines Procédé de fabrication d’une plateforme inter-aubes avec bords sacrificiels

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5087193A (en) * 1990-08-09 1992-02-11 Herbert Jr Kenneth H Apparatus for forming a composite article
US5152949A (en) * 1990-12-19 1992-10-06 United Technologies Corporation Tooling method for resin transfer molding
US6257866B1 (en) * 1996-06-18 2001-07-10 Hy-Tech Forming Systems, Inc. Apparatus for accurately forming plastic sheet
US20120217670A1 (en) 2003-06-27 2012-08-30 Polyvalor, Limited Partnership Manufacture of Composites by a Flexible Injection Process Using a Double or Multiple Cavity Mold
FR3030502A1 (fr) * 2014-12-23 2016-06-24 Snecma Procede de fabrication d'une piece en materiau composite

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5087193A (en) * 1990-08-09 1992-02-11 Herbert Jr Kenneth H Apparatus for forming a composite article
US5152949A (en) * 1990-12-19 1992-10-06 United Technologies Corporation Tooling method for resin transfer molding
US6257866B1 (en) * 1996-06-18 2001-07-10 Hy-Tech Forming Systems, Inc. Apparatus for accurately forming plastic sheet
US20120217670A1 (en) 2003-06-27 2012-08-30 Polyvalor, Limited Partnership Manufacture of Composites by a Flexible Injection Process Using a Double or Multiple Cavity Mold
FR3030502A1 (fr) * 2014-12-23 2016-06-24 Snecma Procede de fabrication d'une piece en materiau composite

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3114990A1 (fr) * 2020-10-12 2022-04-15 Safran Ceramics Texture fibreuse comprenant des plis unidirectionnels avec des mèches espacées
WO2022214765A1 (fr) 2021-04-08 2022-10-13 Safran Aircraft Engines Virole exterieure de carter intermediaire en materiau composite, pour turbomachine d'aeronef
FR3121709A1 (fr) 2021-04-08 2022-10-14 Safran Aircraft Engines Virole extérieure de carter intermédiaire en matériau composite, pour turbomachine d’aéronef
FR3134095A1 (fr) * 2022-04-04 2023-10-06 Safran Ceramics Procédé de densification d’une texture fibreuse par injection de barbotine
WO2023194673A1 (fr) * 2022-04-04 2023-10-12 Safran Ceramics Procede de densification d'une texture fibreuse par injection de barbotine.

Also Published As

Publication number Publication date
CA2971426A1 (fr) 2018-12-19

Similar Documents

Publication Publication Date Title
EP3448829B1 (fr) Procédé de fabrication d'une pièce en matériau composite par injection d'une barbotine chargée dans une texture fibreuse
EP3237358B1 (fr) Procédé de fabrication d'une pièce réfractaire en matériau composite
FR3030503B1 (fr) Procede de fabrication d'une piece en materiau composite
EP3237660B1 (fr) Procédé de fabrication d'une préforme fibreuse chargée de particules céramiques réfractaires
EP3359506B1 (fr) Procédé de fabrication d'une pièce en matériau composite céramique par injection sous pression d'une barbotine chargée dans un moule poreux
EP3768405B1 (fr) Procédé de fabrication d'une pièce en matériau composite céramique par injection de poudre dans un renfort fibreux avec drainage par strate de filtration composite
WO2018234669A1 (fr) Procede de fabrication d'une piece en materiau composite presentant une ou plusieurs variations locales d'epaisseur
EP3996889B1 (fr) Procede de fabrication d'une piece en materiau composite par injection d'une barbotine chargee dans une texture fibreuse
EP3863992B1 (fr) Procédé de fabrication d'une pièce en matériau composite avec contrôle de conformité
EP4355542A1 (fr) Procede d'injection de poudres ceramiques avec filtre cree in situ dans la preforme fibreuse
FR3098433A1 (fr) Procédé de fabrication d’une pièce en matériau composite par injection d’une barbotine chargée dans une texture fibreuse
EP4225571A1 (fr) Texture fibreuse non tissee avec embuvage
FR3114990A1 (fr) Texture fibreuse comprenant des plis unidirectionnels avec des mèches espacées
FR3098434A1 (fr) Outillage pour l’injection d’une barbotine chargée

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18742532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18742532

Country of ref document: EP

Kind code of ref document: A1