[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018174173A1 - 熱電発電モジュール及びこれを用いた熱電発電装置、並びに温度測定方法 - Google Patents

熱電発電モジュール及びこれを用いた熱電発電装置、並びに温度測定方法 Download PDF

Info

Publication number
WO2018174173A1
WO2018174173A1 PCT/JP2018/011448 JP2018011448W WO2018174173A1 WO 2018174173 A1 WO2018174173 A1 WO 2018174173A1 JP 2018011448 W JP2018011448 W JP 2018011448W WO 2018174173 A1 WO2018174173 A1 WO 2018174173A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature side
side substrate
thermoelectric
power generation
high temperature
Prior art date
Application number
PCT/JP2018/011448
Other languages
English (en)
French (fr)
Inventor
高廣 林
Original Assignee
ヤマハ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ株式会社 filed Critical ヤマハ株式会社
Priority to EP18771452.2A priority Critical patent/EP3605624A4/en
Priority to JP2019506977A priority patent/JP6791357B2/ja
Publication of WO2018174173A1 publication Critical patent/WO2018174173A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Definitions

  • the present invention relates to a thermoelectric power generation module, a thermoelectric power generation apparatus using the same, and a temperature measurement method.
  • thermoelectric power generation module used for thermoelectric power generation has a configuration in which thermoelectric elements arranged in a predetermined pattern are sandwiched between a high temperature side substrate and a low temperature side substrate, and a temperature difference between the high temperature side substrate and the low temperature side substrate. The electric energy according to is generated.
  • thermoelectric power generation module if the temperature of the high temperature side substrate becomes too high, a failure is likely to occur. For example, thermoelectric elements connected to the high temperature side substrate are easily damaged by excessive temperature rise. Further, when the high temperature side substrate is thermally expanded as the temperature rises, the thermoelectric element may be damaged due to shear stress.
  • Patent Document 1 discloses a technique capable of managing the temperature of the thermoelectric cooling module.
  • a temperature measuring element is provided outside a region on a substrate constituting a cooling surface of the thermoelectric cooling module where a heating element to be cooled is disposed. Thereby, the temperature on the substrate of the thermoelectric cooling module can be grasped.
  • thermoelectric cooling module in order to effectively cool the heating element, it is common to make the substrate constituting the cooling surface larger than the heating element. For this reason, in the thermoelectric cooling module described in Patent Document 1, a region where the heating element is not disposed is formed on the substrate, and a temperature measuring element is provided in this region.
  • thermoelectric power generation module in order to obtain high heat collection efficiency in the high temperature side substrate, it is preferable that the heat collector is connected over the entire region of the high temperature side substrate. For this reason, in the thermoelectric power generation module, it is difficult to secure a region for providing the temperature measuring element on the high temperature side substrate without impairing the heat collection efficiency.
  • an object of the present invention is to provide a thermoelectric power generation module capable of preventing a failure due to overheating, a thermoelectric power generation device using the same, and a temperature measurement method.
  • thermoelectric power generation module includes a high temperature side substrate, a low temperature side substrate, a plurality of thermoelectric element pairs, a plurality of high temperature side electrodes, a plurality of low temperature side electrodes, And at least a pair of extraction electrodes.
  • the low temperature side substrate faces the high temperature side substrate.
  • the plurality of thermoelectric element pairs are composed of a P-type element and an N-type element adjacent to each other, and are arranged between the high temperature side substrate and the low temperature side substrate.
  • the plurality of high temperature side electrodes are provided on the high temperature side substrate, and connect a pair of the P-type element and the N-type element constituting each of the plurality of thermoelectric element pairs.
  • the plurality of low temperature side electrodes are provided on the low temperature side substrate, and connect the plurality of thermoelectric element pairs by connecting the P-type element and the N-type element.
  • the pair of first extraction electrodes are connected to both ends of the plurality of low temperature side electrodes that connect the plurality of thermoelectric element pairs in series.
  • the pair of second extraction electrodes are connected to some thermoelectric element pairs of the plurality of thermoelectric element pairs via the low temperature side electrode.
  • thermoelectromotive force generated by the thermoelectric element pair connected to the pair of extraction electrodes can be obtained.
  • the temperature difference between the low temperature side substrate and the high temperature side substrate in the region where the thermoelectric element pair is arranged can be calculated. Therefore, by detecting the temperature of the low temperature side substrate using a known method, the temperature of the high temperature side substrate in the region can be calculated. That is, in this configuration, the temperature of a specific region on the high temperature side substrate can be grasped without directly measuring.
  • the pair of second extraction electrodes may be disposed outside a region of the low temperature side substrate facing the high temperature side substrate.
  • the pair of second extraction electrodes may be extracted from the plurality of low temperature side electrodes arranged on the heat source side.
  • thermoelectric power generation device includes the thermoelectric power generation module and a voltage measurement unit.
  • the voltage measuring unit measures a voltage between the pair of second extraction electrodes.
  • the thermoelectric generator may further include a temperature detection unit that detects the temperature of the low-temperature side substrate.
  • the temperature of the high temperature side substrate of the thermoelectric power generation module is measured.
  • a voltage between at least one pair of thermoelectric elements among the plurality of electrothermal element pairs is measured.
  • a temperature difference between the high temperature side substrate and the low temperature side substrate is calculated from the voltage.
  • the temperature of the high temperature side substrate is calculated using the temperature difference.
  • thermoelectric element pairs At least a pair of electrical resistances among the plurality of thermoelectric element pairs are measured, an average temperature between the high temperature side substrate and the low temperature side substrate is calculated from the electrical resistance, and the temperature difference The temperature of the high temperature side substrate may be calculated using the average temperature.
  • thermoelectric power generation module which concerns on one Embodiment of this invention. It is a disassembled perspective view which shows the thermoelectric power generation module used for the said thermoelectric power generation apparatus. It is a top view which shows the structure of the said thermoelectric power generator.
  • FIG. 2 is a cross-sectional view of the thermoelectric generator taken along line AA ′ in FIG. It is a top view which shows the 1st modification of the thermoelectric power generation module in the said embodiment. It is a top view which shows the 2nd modification of the thermoelectric power generation module in the said embodiment. It is a top view which shows the 3rd modification of the thermoelectric power generation module in the said embodiment. It is a top view which shows the 4th modification of the thermoelectric power generation module in the said embodiment. It is a top view which shows the 5th modification of the thermoelectric power generation module in the said embodiment.
  • FIG. 1 is a perspective view of a thermoelectric generator 100 according to an embodiment of the present invention.
  • the thermoelectric generator 100 includes a thermoelectric generator module 10, a heat collector 20, and a radiator 30.
  • the thermoelectric power generation module 10 has a flat plate shape extending along the XY plane, and is sandwiched between the heat collector 20 and the radiator 30 in the Z-axis direction.
  • the thermoelectric power generation module 10 includes a high temperature side substrate 11, a low temperature side substrate 12, and a plurality of thermoelectric element pairs 13.
  • the plurality of thermoelectric element pairs 13 are sandwiched in the Z-axis direction by the high temperature side substrate 11 and the low temperature side substrate 12 extending along the XY plane.
  • the dimension of the low temperature side substrate 12 on the lower side in the Z axis direction is larger than that of the high temperature side substrate 11 on the upper side in the Z axis direction.
  • a heat collector 20 is connected to the upper surface of the high-temperature side substrate 11 in the Z-axis direction, and a radiator 30 is connected to the lower surface of the low-temperature side substrate 12 in the Z-axis direction. That is, in the thermoelectric power generation module 10, the high temperature side substrate 11 is supplied with heat from the heat collector 20, and the low temperature side substrate 12 is radiated by the radiator 30.
  • thermoelectric power generation module 10 This causes a temperature difference between the high temperature side substrate 11 and the low temperature side substrate 12 of the thermoelectric power generation module 10.
  • thermoelectric power generation module 10 electrical energy corresponding to the temperature difference between the high temperature side substrate 11 and the low temperature side substrate 12 is generated by the action of the plurality of thermoelectric element pairs 13. Details of the thermoelectric power generation module 10 will be described later.
  • the heat collector 20 includes a heat diffusion plate 21 connected to the high temperature side substrate 11 of the thermoelectric power generation module 10 and heat collection fins 22 arranged on the upper surface in the Z-axis direction of the heat diffusion plate 21.
  • Each heat collection fin 22 has a rod shape extending in the Z-axis direction.
  • the cross-sectional shape perpendicular to the Z-axis of each heat collection fin 22 is a rectangular shape.
  • the heat radiator 30 includes a heat diffusion plate 31 connected to the low temperature side substrate 12 of the thermoelectric power generation module 10 and heat radiation fins 32 arranged on the lower surface of the heat diffusion plate 31 in the Z-axis direction.
  • Each radiation fin 32 has a rod shape extending in the Z-axis direction.
  • the cross-sectional shape perpendicular to the Z axis of each radiating fin 32 is a rectangular shape.
  • the heat collector 20 and the radiator 30 are made of a metal material having high thermal conductivity, for example, stainless steel having high heat resistance.
  • the material forming the heat collector 20 and the radiator 30 may be other than stainless steel, for example, copper or aluminum.
  • the heat collector 20 and the radiator 30 may be subjected to surface treatment such as plating.
  • the heat collector 20 and the radiator 30 can be designed in various ways.
  • the lengths in the Z-axis direction and the intervals in the X-axis and Y-axis directions of the heat collecting fins 22 and the radiation fins 32 can be designed according to required performance.
  • vertical to the Z-axis of the heat collection fin 22 and the radiation fin 32 can be determined arbitrarily, and polygonal shape, circular shape, etc. may be sufficient.
  • the thermoelectric power generation apparatus 100 further includes a power storage unit 40, a voltage measurement unit 50, and a temperature detection unit 60 (see FIG. 3 described later).
  • the power storage unit 40 is configured as a secondary battery having a function of storing electrical energy generated by the thermoelectric power generation module 10.
  • the voltage measurement unit 50 and the temperature detection unit 60 will be described later.
  • FIG. 2 is an exploded perspective view of the thermoelectric power generation module 10.
  • the thermoelectric power generation module 10 further includes a plurality of high temperature side electrodes 14 and a plurality of low temperature side electrodes 15 in addition to the above configuration.
  • Each thermoelectric element pair 13 includes a pair of P-type element 13a and N-type element 13b that are adjacent to each other in the X-axis or Y-axis direction.
  • the P-type element 13a is formed of a P-type thermoelectric material
  • the N-type element 13b is formed of an N-type thermoelectric material.
  • thermoelectric materials include bismuth-tellurium compounds, silicide compounds, half-Heusler compounds, lead-tellurium compounds, silicon-germanium compounds, skutterudite compounds, tetrahedrite compounds, and corusite compounds. Etc. can be used.
  • the high temperature side substrate 11 and the low temperature side substrate 12 are preferably formed of aluminum nitride having excellent heat resistance and thermal conductivity.
  • the material forming the high temperature side substrate 11 and the low temperature side substrate 12 is not limited to aluminum nitride, and may be other ceramic materials such as alumina, various resin materials, various composite materials, and the like.
  • the plurality of high temperature side electrodes 14 are patterned on the lower surface in the Z-axis direction of the high temperature side substrate 11. Each high-temperature side electrode 14 electrically connects a pair of P-type elements 13 a and N-type elements 13 b constituting each thermoelectric element pair 13. In the example shown in FIG. 2, twelve high temperature side electrodes 14 are provided to form twelve sets of thermoelectric element pairs 13.
  • the plurality of low temperature side electrodes 15 are patterned on the upper surface of the low temperature side substrate 12 in the Z-axis direction. Each low temperature side electrode 15 connects a plurality of thermoelectric element pairs 13 in series by connecting a P-type element 13a and an N-type element 13b. As described above, in the thermoelectric power generation module 10, the P-type elements 13a and the N-type elements 13b are alternately connected in series.
  • the high temperature side electrode 14 and the low temperature side electrode 15 can be formed of a metal material such as gold, nickel, or tin, for example.
  • the high temperature side electrode 14 and the low temperature side electrode 15 are configured as, for example, plating films formed by performing plating on the high temperature side substrate 11 and the low temperature side substrate 12.
  • the plating film may be a single layer film or a multilayer film.
  • Each P-type element 13 a and N-type element 13 b constituting the plurality of thermoelectric element pairs 13 are soldered to the high temperature side electrode 14 and the low temperature side electrode 15.
  • brazing material or metal paste can be used in addition to solder.
  • FIG. 3 is a plan view schematically showing a schematic configuration of the thermoelectric generator 100.
  • FIG. 3 shows the power storage unit 40, the voltage measurement unit 50, and the temperature detection unit 60 described above, and the position of the low temperature side electrode 15 is indicated by a broken line.
  • the thermoelectric power generation module 10 further includes a pair of first extraction electrodes 16, a pair of first lead wires 17, a pair of second extraction electrodes 18, and a pair of second lead wires 19.
  • the pair of first extraction electrodes 16 are provided on the two low temperature side electrodes 15 corresponding to both ends of the series connection of the plurality of thermoelectric element pairs 13 and are extracted to the outside in the X-axis direction. Only one of the P-type element 13a and the N-type element 13b is connected to the low temperature side electrode 15 provided with the first extraction electrode 16 on the inner side in the X-axis direction of the first extraction electrode 16.
  • the pair of first lead wires 17 are joined to the pair of first extraction electrodes 16 by solder or the like.
  • the first extraction electrode 16 extends outward in the X-axis direction from the region of the low temperature side substrate 12 facing the high temperature side substrate 11. Therefore, since the high temperature side substrate 11 does not exist on the first extraction electrode 16, the first lead wire 17 can be easily joined to the first extraction electrode 16.
  • thermoelectric power generation module 10 a pair of first extraction electrodes 16 are provided not on the high temperature side substrate 11 but on the low temperature side substrate 12. Therefore, the first lead wire 17 connected to the first extraction electrode 16 is not easily affected by the temperature rise of the high temperature side substrate 11. For this reason, in the thermoelectric power generation module 10, the connection between the first extraction electrode 16 and the first lead wire 17 is maintained well.
  • the pair of first lead wires 17 connects the thermoelectric power generation module 10 to the power storage unit 40.
  • thermoelectric power generation module 10 electrical energy corresponding to the temperature difference between the high temperature side electrode 14 and the low temperature side electrode 15 is stored in the power storage unit 40 via the first extraction electrode 16 and the first lead wire 17. It becomes possible. Therefore, the thermoelectric element pair 13 connected in series to the pair of first extraction electrodes 16 can be called a power generation circuit.
  • the pair of second extraction electrodes 18 are extracted from the low temperature side electrodes 15 connected to the P-type element 13a and the N-type element 13b of the pair of thermoelectric element pairs 13 in the Y-axis direction outside.
  • the second extraction electrode 18 is formed integrally with the low temperature side electrode 15 and is typically configured as a series of plating films with the low temperature side electrode 15.
  • the pair of second lead wires 19 are joined to the pair of second extraction electrodes 18 by solder or the like.
  • the second extraction electrode 18 extends outward in the Y-axis direction from a region of the low temperature side substrate 12 that faces the high temperature side substrate 11. Therefore, since the high temperature side substrate 11 does not exist on the second extraction electrode 18, the second lead wire 19 can be easily joined to the second extraction electrode 18.
  • thermoelectric power generation module 10 the pair of second extraction electrodes 18 are provided not on the high temperature side substrate 11 but on the low temperature side substrate 12. Therefore, the second lead wire 19 connected to the second extraction electrode 18 is not easily affected by the temperature rise of the high temperature side substrate 11. For this reason, in the thermoelectric power generation module 10, the connection between the second extraction electrode 18 and the second lead wire 19 is maintained well.
  • the pair of second lead wires 19 have a function of connecting the thermoelectric power generation module 10 to the voltage measuring unit 50.
  • the voltage measuring unit 50 is configured to be able to measure the voltage between the pair of second lead wires 19. Therefore, the thermoelectric force V generated by the thermoelectric element pair 13 connected to the pair of second extraction electrodes 18 can be obtained by the voltage measuring unit 50.
  • ⁇ P is the Seebeck coefficient of the P-type element 13a
  • ⁇ N is the Seebeck coefficient of the N-type element 13b.
  • the Seebeck coefficients ⁇ P and ⁇ N are average values in the temperature range corresponding to the temperature difference ⁇ T, and can be calculated from the temperature characteristics of the Seebeck coefficients in the P-type element 13a and the N-type element 13b.
  • the metal material forming the high temperature side electrode 14 and the low temperature side electrode 15 has high thermal conductivity, the temperature difference between the high temperature side electrode 14 and the high temperature side substrate 11, and the low temperature side electrode 15 and the low temperature side substrate 12. The temperature difference between and can be virtually ignored. That is, the temperature difference between the high temperature side substrate 11 and the low temperature side substrate 12 can be treated as ⁇ T.
  • thermoelectric power generation module 10 a temperature difference ⁇ T between the warm side substrate 11 and the low temperature side substrate 12 in the region where the thermoelectric element pair 13 is disposed is obtained. Therefore, the thermoelectric element pair 13 connected to the pair of second extraction electrodes 18 can be called a temperature measuring circuit.
  • the temperature detection unit 60 is typically configured to be able to detect the temperature TL of the low temperature side substrate 12 of the thermoelectric power generation module 10 by a known method.
  • thermoelectric power generation module 10 by measuring the voltage of the temperature measuring circuit between the pair of second lead wire 19, to convert the temperature T L of the low-temperature side substrate 12 to a temperature T H of the high-temperature side substrate 11 be able to. That is, in the thermoelectric power generation module 10, the temperature T H of the high-temperature side substrate 11, it is possible to grasp without direct measurement.
  • thermoelectric power generation module 10 it is not necessary to provide a configuration such as temperature measuring element for measuring the temperature T H of the high-temperature side substrate 11 to the high temperature side substrate 11. Further, the temperature measuring circuit configured by the thermoelectric element pair 13 connected to the pair of second extraction electrodes 18 is included in the power generation circuit configured by the thermoelectric element pair 13 connected to the pair of first extraction electrodes 16. . Therefore, all the thermoelectric element pairs 13 provided on the substrates 11 and 12 can contribute to power generation, and the heat collection efficiency in the high temperature side substrate 11 is not impaired. That is, in the thermoelectric power generation module 10, without impairing the heat collection efficiency, it is possible to grasp the temperature T H of the high-temperature side substrate 11.
  • FIG. 4 is a cross-sectional view taken along the line AA ′ of FIG. That is, FIG. 4 shows a cross section parallel to the YZ plane passing through the second extraction electrode 18 and the second lead wire 19 in the thermoelectric generator 100.
  • the thermoelectric power generation apparatus 100 further includes a high temperature side flow path 70 and a low temperature side flow path 80 in addition to the above configuration.
  • the heat collection fins 22 of the heat collector 20 are disposed in the high temperature side flow path 70.
  • heat generated by a heat source using gas as a medium is sent into the heat collector 20 by a blowing mechanism such as a fan.
  • the high temperature side flow path 70 is connected to the heat source in a region on the left side of the heat collector 20, and an air flow from left to right is generated in the high temperature side flow path 70.
  • the heat generated by the heat source can be collected by the heat collection fins 22 of the heat collector 20.
  • the heat collected by the heat collector 20 is supplied to the high temperature side substrate 11 of the thermoelectric power generation module 10 via the heat diffusion plate 21.
  • the temperature of the high temperature side substrate 11 of the thermoelectric power generation module 10 can be raised.
  • thermoelectric generator 100 can be applied to any heat source, and the heat source connected to the high temperature side flow path 70 is not limited to a specific one.
  • heat sources include waste heat from automobiles and motorcycles (exhaust gas, etc.), waste heat from factories (chemical, steel, machinery, etc.), waste heat from other power generation (thermal power generation, nuclear power generation, etc.) Is mentioned.
  • the radiation fin 32 of the radiator 30 is arrange
  • the cooling water cooled by a cooler or the like is circulated by a pump or the like. Thereby, the radiation fin 32 of the radiator 30 is cooled by the cooling water, and the radiator 30 and the low temperature side substrate 12 are substantially maintained at the temperature of the cooling water.
  • the temperature detector 60 can be configured as a water thermometer capable of detecting the temperature of the cooling water circulating in the low temperature side flow path 80. That is, in this configuration, the temperature of the cooling water detected by the temperature detection unit 60 can be set to the temperature TL of the low temperature side substrate 12.
  • the temperature detection unit 60 is not limited to the above configuration as long as it can detect the temperature TL of the low-temperature substrate 12.
  • the temperature detection unit 60 may be configured to be able to directly detect the temperatures of the low temperature side substrate 12 and the radiator 30.
  • a temperature sensor such as a thermocouple or a thermistor can be used to detect the temperatures of the low temperature side substrate 12 and the radiator 30.
  • the temperature detected by the temperature detection unit 60 is not limited to the temperature TL of the low temperature side substrate 12.
  • the temperature detection unit 60 may be configured to detect an average temperature T AVE of the thermoelectric element pair 13.
  • the temperature detection unit 60 can be configured to measure the electrical resistivity ⁇ between the second lead wires 19.
  • the electrical resistivity ⁇ is obtained as an average value of electrical resistivity between the second lead wires 19 in the temperature range corresponding to the temperature difference ⁇ T. Therefore, using the temperature characteristics of the electrical resistivity of the P-type element 13a and the N-type element 13b, the average temperature T AVE of the thermoelectric element pair 13 connected to the second lead wire 19 can be calculated from the electrical resistivity ⁇ . It is.
  • the temperature difference between the high temperature side electrode 14 and the high temperature side substrate 11 and the temperature difference between the low temperature side electrode 15 and the low temperature side substrate 12 can be substantially ignored. Therefore, it is possible to treat the average temperature T AVE of the thermoelectric element pair 13 as the average temperature between the high temperature side substrate 14 and the low temperature side substrate 15.
  • T H T AVE + ⁇ T / 2 (3)
  • the temperature detector 60 may measure the electrical resistivity ⁇ between the first lead wires 17 instead of the electrical resistivity ⁇ between the second lead wires 19.
  • thermoelectric generator 100 the temperature rises more easily in the portion closer to the heat source of the heat collector 20, that is, the portion arranged on the upstream side in the high-temperature channel 70. Therefore, in the high temperature side substrate 11 of the thermoelectric power generation module 10, the temperature rises more easily in the region on the heat source side. For this reason, in the thermoelectric power generation module 10, damage to the thermoelectric element pair 13 that causes failure in the region on the heat source side is likely to occur.
  • thermoelectric generator 100 by managing to the temperature T H of the heat source-side region is not too high in the high temperature side substrate 11, it is possible to effectively prevent the failure of the thermoelectric power generation module 10. For this reason, in the thermoelectric generation module 10, it is preferable that the 2nd extraction electrode 18 is extracted from the low temperature side electrode 15 arrange
  • thermoelectric generator 100 the thermoelectric power V generated by the thermoelectric element pair 13 arranged on the heat source side is obtained by the voltage measuring unit 50.
  • the thermoelectric generator 100 and accurately be grasped the temperature T H in the region of the temperature increase tends to heat source side of the high temperature side substrate 11.
  • thermoelectric generator 100 can monitor the temperature T H of the heat source-side region of the high temperature side substrate 11, and stops the blowing of hot-side flow path 70 when the temperature T H exceeds a predetermined threshold value . Thereby, since the further temperature rise of the area
  • the position of the second extraction electrode 18 in the thermoelectric power generation module 10 can be determined according to the position of the heat source and the like. For example, as shown in FIG. 5, the second extraction electrode 18 is arranged in the X-axis direction from the low-temperature side electrode 15 disposed at the X-axis direction end opposite to the low-temperature side electrode 15 where the first extraction electrode 16 is disposed. It may be drawn to.
  • the 2nd extraction electrode 18 may be comprised so that the thermoelectromotive force V produced
  • thermoelectric power generation module 10 may be provided with a plurality of pairs of second extraction electrodes 18. Accordingly, it is possible to measure the thermoelectromotive force V being generated by a plurality of thermoelectric element pairs 13 by the voltage measuring unit 50 separately, it is possible to grasp the temperature T H of the plurality of regions in the high temperature side substrate 11.
  • the high temperature side substrate 11 may be divided into a plurality of parts. Thus, it is possible to suppress the impact of the heat transfer along the XY plane in the high temperature side substrate 11, a measurement error of the temperature T H of the high-temperature side substrate 11.
  • substrate 11 can be variously changed according to the pattern of the high temperature side electrode 14 shown with a broken line in FIG. As shown in FIG. 8, when the high temperature side substrate 11 is divided into a plurality of portions, in the divided high temperature side substrate, the thermal diffusion and heat inflow of the high temperature side substrate in the portion where the temperature measuring circuit is arranged can be suppressed. The temperature of the high temperature side substrate at the portion where the temperature measuring circuit is arranged can be measured more accurately.
  • the temperature measuring circuit 55 configured by the thermoelectric element pair 13 connected to the pair of second extraction electrodes 18 and the thermoelectric element pair 13 connected in series to the pair of first extraction electrodes 16.
  • the power generation circuit 45 configured as described above may be provided independently. That is, the temperature measuring circuit 55 may be disposed in parallel with the power generation circuit 45 configured by the thermoelectric element pair 13 connected in series to the pair of first extraction electrodes 16. By providing the independent temperature measuring circuit 55 in this way, the temperature measuring accuracy of the portion where the temperature measuring circuit is arranged can be further improved as compared with the case where the temperature measuring circuit is included in the power generation circuit.
  • the temperature measuring circuit 55 may be made independent of the power generation circuit 45 and the high temperature side substrate 11 may be divided as shown in FIG. In this case, by disposing the temperature measuring circuit 55 on a portion of the divided high temperature side substrate that requires particularly high temperature measurement accuracy, the temperature of each divided high temperature side substrate can be accurately and individually determined. Can be measured.
  • thermoelectric power generation apparatus 100 may include a plurality of thermoelectric power generation modules 10. Further, the thermoelectric generator 100 has at least one of the heat collector 20, the radiator 30, the power storage unit 40, the voltage measurement unit 50, the temperature detection unit 60, the high temperature side channel 70, and the low temperature side channel 80 as an external configuration. A connectable configuration may be used.
  • thermoelectric power generation module capable of preventing a failure due to overheating, a thermoelectric power generation apparatus using the same, and a temperature measurement method.
  • thermoelectric power generation module 11 high temperature side substrate 12 low temperature side substrate 13 thermoelectric element pair 14 high temperature side electrode 15 low temperature side electrode 16 first extraction electrode 17 first lead wire 18 second extraction electrode 19 second lead wire 20 collector 30 heat dissipation 40 Power storage unit 50 Voltage measurement unit 60 Temperature detection unit 100 Thermoelectric generator

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

熱電発電モジュールは,高温側基板(11)と,低温側基板(12)と,複数の熱電素子対(13)と,複数の高温側電極(14)と,複数の低温側電極(15)と,少なくとも一対の引出電極(18)と,を具備する。上記低温側基板は,上記高温側基板に対向している。上記複数の熱電素子対は,相互に隣接するP型素子(13a)及びN型素子(13b)から構成され,上記高温側基板と上記低温側基板との間に配列されている。上記複数の高温側電極は,上記高温側基板に設けられ,上記複数の熱電素子対のそれぞれを構成する上記P型素子及び上記N型素子を接続している。上記複数の低温側電極は,上記低温側基板に設けられ,上記P型素子と上記N型素子とを接続することにより,上記複数の熱電素子対を直列接続している。上記少なくとも一対の引出電極は,上記複数の熱電素子対うちの一部の熱起電力を測定可能なように上記複数の低温側電極から引き出されている。

Description

熱電発電モジュール及びこれを用いた熱電発電装置、並びに温度測定方法
 本発明は、熱電発電モジュール及びこれを用いた熱電発電装置、並びに温度測定方法に関する。
 本願は、2017年3月24日に、日本に出願された特願2017-58694号に基づき優先権を主張し、その内容をここに援用する。
 熱電発電は、自動車や工場などの廃熱を電気エネルギに変換可能であり、クリーンなエネルギ資源として注目されている。熱電発電に用いられる熱電発電モジュールは、所定のパターンで配列された熱電素子が高温側基板と低温側基板とに挟まれた構成を有し、高温側基板と低温側基板との間の温度差に応じた電気エネルギを発生させる。
 熱電発電モジュールでは、高温側基板の温度が高くなりすぎると、故障が発生しやすくなる。例えば、高温側基板に接続された熱電素子は、過度の温度上昇によって損傷を受けやすい。また、高温側基板が温度上昇に伴って熱膨張すると、熱電素子にはせん断応力が加わることによって破損が生じることがある。
 これに対し、特許文献1には、熱電冷却モジュールを温度管理可能な技術が開示されている。この技術では、熱電冷却モジュールの冷却面を構成する基板上の、冷却対象である発熱体が配置される領域よりも外側に、測温素子が設けられる。これにより、熱電冷却モジュールの基板上の温度が把握可能となる。
特開2009-94130号公報
 熱電冷却モジュールでは、発熱体を効果的に冷却するために、冷却面を構成する基板を発熱体に対して大きくすることが一般的である。このため、特許文献1に記載の熱電冷却モジュールでは、基板上に発熱体が配置されない領域が形成され、この領域に測温素子が設けられる。
 この一方で、熱電発電モジュールでは、高温側基板における高い集熱効率を得るために、高温側基板の全領域にわたって集熱器が接続されていることが好ましい。このため、熱電発電モジュールでは、集熱効率を損なうことなく、高温側基板上に測温素子を設けるための領域を確保することは難しい。
 以上のような事情に鑑み、本発明の目的は、過熱による故障を防止可能な熱電発電モジュール及びこれを用いた熱電発電装置、並びに温度測定方法を提供することにある。
 上記目的を達成するため、本発明の一形態に係る熱電発電モジュールは、高温側基板と、低温側基板と、複数の熱電素子対と、複数の高温側電極と、複数の低温側電極と、少なくとも一対の引出電極と、を具備する。
 上記低温側基板は、上記高温側基板に対向している。
 上記複数の熱電素子対は、相互に隣接するP型素子及びN型素子から構成され、上記高温側基板と上記低温側基板との間に配列されている。
 上記複数の高温側電極は、上記高温側基板に設けられ、上記複数の熱電素子対のそれぞれを構成する一対の上記P型素子及び上記N型素子を接続している。
 上記複数の低温側電極は、上記低温側基板に設けられ、上記P型素子と上記N型素子とを接続することにより、上記複数の熱電素子対を接続する。
 一対の第1の引出電極は、前記複数の熱電素子対を直列接続する複数の前記低温側電極の両端に接続される。一対の第2の引出電極は、前記低温側電極を介して前記複数の熱電素子対のうちの一部の熱電素子対に接続される。
 この構成では、一対の第2の引出電極間の電圧を測定することにより、当該一対の引出電極に接続された熱電素子対によって生成されている熱起電力が得られる。この熱起電力により、当該熱電素子対が配置された領域における低温側基板と高温側基板との間の温度差を算出可能である。したがって、公知の手法を用いて低温側基板の温度を検出することにより、当該領域における高温側基板の温度を算出可能である。
 つまり、この構成では、高温側基板における特定の領域の温度を、直接測定することなく把握可能である。
 上記一対の第2の引出電極は、上記低温側基板における上記高温側基板の対向領域より外側に配置されていてもよい。
 上記一対の第2の引出電極は、上記複数の低温側電極のうち熱源側に配置されるものから引き出されていてもよい。
 この構成では、熱電発電モジュールの高温用基板における過熱しやすい領域の温度を把握可能となる。
 本発明の一形態に係る熱電発電装置は、上記熱電発電モジュールと、電圧測定部とを具備する。
 上記電圧測定部は、上記一対の第2の引出電極の間の電圧を測定する。
 上記熱電発電装置は、上記低温側基板の温度を検出する温度検出部を更に具備してもよい。
 本発明の一形態に係る温度測定方法では、上記熱電発電モジュールの上記高温側基板の温度を測定する。
 複数の電熱素子対のうち、少なくとも一対の熱電素子対間の電圧が測定される。
 次に、上記電圧から上記高温側基板と上記低温側基板との間の温度差が算出される。
 次に、上記温度差を用いて上記高温側基板の温度が算出される。
 上記温度測定方法では、上記複数の熱電素子対のうち少なくとも一対の電気抵抗が測定され、上記電気抵抗から上記高温側基板と上記低温側基板との間の平均温度が算出され、上記温度差と上記平均温度とを用いて上記高温側基板の温度が算出されてもよい。
本発明の一実施形態に係る熱電発電装置を示す斜視図である。 上記熱電発電装置に用いられる熱電発電モジュールを示す分解斜視図である。 上記熱電発電装置の構成を示す平面図である。 上記熱電発電装置の図1のA-A'線に沿った断面図である。 上記実施形態における熱電発電モジュールの第1の変形例を示す平面図である。 上記実施形態における熱電発電モジュールの第2の変形例を示す平面図である。 上記実施形態における熱電発電モジュールの第3の変形例を示す平面図である。 上記実施形態における熱電発電モジュールの第4の変形例を示す平面図である。 上記実施形態における熱電発電モジュールの第5の変形例を示す平面図である。
 次に、図面を参照して本発明の実施形態の詳細について説明する。なお、説明の便宜上、各図面は模式的に示しており、各図面に示される各構成の態様は正確でない場合がある。また、図面には、適宜相互に直交するX軸、Y軸、及びZ軸が示されている。X軸、Y軸、及びZ軸は全図において共通である。
1.熱電発電装置100の概略
 図1は、本発明の一実施形態に係る熱電発電装置100の斜視図である。熱電発電装置100は、熱電発電モジュール10と、集熱器20と、放熱器30と、を具備する。熱電発電モジュール10は、XY平面に沿って延びる平板状であり、集熱器20と放熱器30とによってZ軸方向に挟まれている。
 熱電発電モジュール10は、高温側基板11と、低温側基板12と、複数の熱電素子対13とを有する。複数の熱電素子対13は、XY平面に沿って延びる高温側基板11及び低温側基板12によってZ軸方向に挟まれている。Z軸方向上側の高温側基板11よりもZ軸方向下側の低温側基板12の方がX軸及びY軸方向の寸法が大きい。
 高温側基板11のZ軸方向上面には集熱器20が接続され、低温側基板12のZ軸方向下面には放熱器30が接続されている。つまり、熱電発電モジュール10では、高温側基板11が集熱器20から熱の供給を受け、低温側基板12が放熱器30によって放熱されている。
 これにより、熱電発電モジュール10の高温側基板11と低温側基板12との間には温度差が生じる。熱電発電モジュール10では、複数の熱電素子対13の作用によって高温側基板11と低温側基板12との間の温度差に応じた電気エネルギが生成される。熱電発電モジュール10の詳細については後述する。
 集熱器20は、熱電発電モジュール10の高温側基板11に接続された熱拡散板21と、熱拡散板21のZ軸方向上面に配列された集熱フィン22と、を有する。各集熱フィン22は、Z軸方向に延びる棒状である。各集熱フィン22のZ軸に垂直な断面形状は、矩形状である。
 放熱器30は、熱電発電モジュール10の低温側基板12に接続された熱拡散板31と、熱拡散板31のZ軸方向下面に配列された放熱フィン32と、を有する。各放熱フィン32は、Z軸方向に延びる棒状である。各放熱フィン32のZ軸に垂直な断面形状は、矩形状である。
 集熱器20及び放熱器30は、熱伝導性の高い金属材料で形成され、例えば耐熱性の高いステンレスで形成される。しかし、集熱器20及び放熱器30を形成する材料は、ステンレス以外であってもよく、例えば、銅やアルミニウムなどであってもよい。更に、集熱器20及び放熱器30には、めっきなどの表面処理が施されていてもよい。
 なお、集熱器20及び放熱器30では、様々な設計が可能である。例えば、集熱フィン22及び放熱フィン32のZ軸方向の長さやX軸及びY軸方向の間隔は、求められる性能などに応じて設計可能である。また、集熱フィン22及び放熱フィン32のZ軸に垂直な断面形状は、任意に決定可能であり、多角形状、円形状などであってもよい。
 また、熱電発電装置100は、蓄電部40と、電圧測定部50と、温度検出部60と、を更に具備する(後述の図3参照)。蓄電部40は、熱電発電モジュール10によって生成された電気エネルギを蓄える機能を有する二次電池として構成される。電圧測定部50及び温度検出部60については後述する。
2.熱電発電モジュール10の構成
 図2は、熱電発電モジュール10の分解斜視図である。熱電発電モジュール10は、上記の構成以外に、複数の高温側電極14と、複数の低温側電極15と、を更に有する。各熱電素子対13は、X軸又はY軸方向に相互に隣接する一対のP型素子13a及びN型素子13bによって構成されている。
 P型素子13aはP型の熱電材料によって形成され、N型素子13bはN型の熱電材料によって形成されている。熱電材料としては、例えば、ビスマス-テルル系化合物、シリサイド系化合物、ハーフホイスラー系化合物、鉛-テルル系化合物、シリコン-ゲルマニウム系化合物、スクッテルダイト系化合物、テトラヘドライト系化合物、コルーサイト系化合物などを用いることができる。
 高温側基板11及び低温側基板12は、耐熱性及び熱伝導性に優れる窒化アルミニウムで形成されていることが好ましい。しかしながら、高温側基板11及び低温側基板12を形成する材料は、窒化アルミニウムに限定されず、例えば、アルミナなどの他のセラミック材料や、各種樹脂材料や、各種複合材料などであってもよい。
 複数の高温側電極14は、高温側基板11のZ軸方向下面にパターニングされている。各高温側電極14は、各熱電素子対13を構成する一対のP型素子13a及びN型素子13bを電気的に接続している。図2に示す例では、12組の熱電素子対13を形成するために12枚の高温側電極14が設けられている。
 複数の低温側電極15は、低温側基板12のZ軸方向上面にパターニングされている。各低温側電極15は、P型素子13aとN型素子13bとを接続することにより、複数の熱電素子対13を直列接続している。このように、熱電発電モジュール10では、P型素子13aとN型素子13bとが交互に直列に接続されている。
 高温側電極14及び低温側電極15は、例えば、金やニッケルや錫などの金属材料によって形成することができる。高温側電極14及び低温側電極15は、例えば、高温側基板11及び低温側基板12にめっき処理を施して形成されるめっき膜として構成される。この場合、めっき膜は、単層膜であっても複層膜であってもよい。
 複数の熱電素子対13を構成するそれぞれのP型素子13a及びN型素子13bは、高温側電極14及び低温側電極15に半田付けされている。なお、高温側電極14及び低温側電極15に対するP型素子13a及びN型素子13bの接合には、半田以外にも、例えば、ろう材や金属ペーストを用いることができる。
 図3は、熱電発電装置100の概略構成を模式的に示す平面図である。図3には、上述の蓄電部40、電圧測定部50、及び温度検出部60が示され、低温側電極15の位置が破線で示されている。熱電発電モジュール10は、一対の第1引出電極16と、一対の第1リード線17と、一対の第2引出電極18と、一対の第2リード線19と、を更に有する。
 一対の第1引出電極16は、複数の熱電素子対13の直列接続の両端部にあたる2つの低温側電極15に設けられ、X軸方向外側に引き出されている。第1引出電極16が設けられた低温側電極15には、第1引出電極16のX軸方向内側において、P型素子13aとN型素子13bとのいずれか一方のみが接続されている。
 一対の第1リード線17は、一対の第1引出電極16に半田などによって接合されている。第1引出電極16は、低温側基板12における高温側基板11の対向領域よりX軸方向外側に延びている。したがって、第1引出電極16上には高温側基板11が存在しないため、第1リード線17の第1引出電極16への接合が容易になる。
 熱電発電モジュール10では、一対の第1引出電極16が、高温側基板11ではなく、低温側基板12に設けられている。したがって、第1引出電極16に接続された第1リード線17は、高温側基板11の温度上昇の影響を受けにくい。このため、熱電発電モジュール10では、第1引出電極16と第1リード線17との接続が良好に保たれる。
 一対の第1リード線17は、熱電発電モジュール10を蓄電部40に接続する。これにより、熱電発電モジュール10では、高温側電極14と低温側電極15との間の温度差に応じた電気エネルギを、第1引出電極16及び第1リード線17を介して蓄電部40に蓄えることが可能となる。
 したがって、一対の第1引出電極16に直列接続された熱電素子対13を発電回路と呼ぶことができる。
 一対の第2引出電極18は、一対の熱電素子対13のP型素子13a及びN型素子13bに接続された各低温側電極15からY軸方向外側に引き出されている。第2引出電極18は、低温側電極15と一体に形成され、典型的には低温側電極15と一連のめっき膜として構成される。
 一対の第2リード線19は、一対の第2引出電極18に半田などによって接合されている。第2引出電極18は、低温側基板12における高温側基板11の対向領域よりY軸方向外側に延びている。したがって、第2引出電極18上には高温側基板11が存在しないため、第2リード線19の第2引出電極18への接合が容易になる。
 熱電発電モジュール10では、一対の第2引出電極18が、高温側基板11ではなく、低温側基板12に設けられている。したがって、第2引出電極18に接続された第2リード線19は、高温側基板11の温度上昇の影響を受けにくい。このため、熱電発電モジュール10では、第2引出電極18と第2リード線19との接続が良好に保たれる。
 一対の第2リード線19は、熱電発電モジュール10を電圧測定部50に接続する機能を有する。電圧測定部50は、一対の第2リード線19間の電圧を測定可能に構成されている。したがって、電圧測定部50によって、一対の第2引出電極18に接続された熱電素子対13で生成されている熱起電力Vを得ることができる。
 熱電素子対13で生成されている熱起電力Vを用いると、熱電素子対13における高温側電極14との接続部と低温側電極15との接続部との間の温度差ΔTを、以下の式(1)によって算出可能である。
 ΔT=V/(α-α)   …(1)
 ここで、αはP型素子13aのゼーベック係数であり、αはN型素子13bのゼーベック係数である。ゼーベック係数α,αは、温度差ΔTに対応する温度域における平均値であり、P型素子13a及びN型素子13bにおけるゼーベック係数の温度特性から算出可能である。
 また、高温側電極14及び低温側電極15を形成する金属材料は高熱伝導率であるため、高温側電極14と高温側基板11との間の温度差、及び低温側電極15と低温側基板12との間の温度差は実質的に無視することができる。つまり、高温側基板11と低温側基板12との間の温度差をΔTとして扱うことが可能である。
 このように、熱電発電モジュール10では、熱電素子対13が配置された領域における温側基板11と低温側基板12との間の温度差ΔTが得られる。したがって、一対の第2引出電極18に接続された熱電素子対13を測温回路と呼ぶことができる。また、温度検出部60は、典型的には、公知の手法によって、熱電発電モジュール10の低温側基板12の温度Tを検出可能に構成されている。
 熱電素子対13が配置された領域における高温側基板11と低温側基板12との間の温度差ΔTと、低温側基板12の温度Tと、を用いると、高温側基板11の温度Tを、以下の式(2)によって算出可能である。
 T=T+ΔT   …(2)
 このように、熱電発電モジュール10では、一対の第2リード線19間の測温回路の電圧を測定することによって、低温側基板12の温度Tを高温側基板11の温度Tに換算することができる。つまり、熱電発電モジュール10では、高温側基板11の温度Tを、直接測定することなく把握可能である。
 したがって、熱電発電モジュール10では、高温側基板11の温度Tを測定するための測温素子などの構成を高温側基板11に設ける必要がない。また、一対の第2引出電極18に接続された熱電素子対13で構成される測温回路は、一対の第1引出電極16に接続された熱電素子対13で構成される発電回路に含まれる。そのため、基板11および12上に設けられたすべての熱電素子対13を発電に寄与させることができ、高温側基板11における集熱効率が損なわれない。つまり、熱電発電モジュール10では、集熱効率を損なうことなく、高温側基板11の温度Tを把握することができる。
3.熱電発電装置100の構成例
 図4は、熱電発電装置100の構成例を示す図1のA-A'線に沿った断面図である。つまり、図4は、熱電発電装置100における第2引出電極18及び第2リード線19を通るYZ平面に平行な断面を示している。熱電発電装置100は、上記の構成以外に、高温側流路70及び低温側流路80を更に具備する。
 高温側流路70内には、集熱器20の集熱フィン22が配置されている。高温側流路70では、ファンなどの送風機構によって、気体を媒体として熱源が発する熱が集熱器20に送り込まれる。図4に示す例では、集熱器20よりも左側の領域で高温側流路70が熱源に接続され、高温側流路70には左から右への気流が生成されている。
 これにより、熱源が発する熱を集熱器20の集熱フィン22によって収集することができる。集熱器20で収集された熱は、熱拡散板21を介して熱電発電モジュール10の高温側基板11に供給される。このように、熱電発電装置100では、熱電発電モジュール10の高温側基板11を昇温させることができる。
 熱電発電装置100は任意の熱源に適用可能であり、高温側流路70に接続される熱源は特定のものに限定されない。このような熱源としては、例えば、自動車や自動二輪車などの廃熱(排気ガスなど)、工場(化学、鉄鋼、機械など)の廃熱、他の発電(火力発電、原子力発電など)の廃熱が挙げられる。
 低温側流路80内には、放熱器30の放熱フィン32が配置されている。低温側流路80内では、冷却器などによって冷却された冷却水が、ポンプなどによって循環させられている。これにより、放熱器30の放熱フィン32が冷却水によって冷却され、放熱器30及び低温側基板12が実質的に冷却水の温度に保持される。
 この構成の熱電発電装置100では、温度検出部60を、低温側流路80内を循環している冷却水の温度を検出可能な水温計として構成することができる。つまり、この構成では、温度検出部60によって検出された冷却水の温度を、低温側基板12の温度Tとすることができる。
 なお、温度検出部60は、低温側基板12の温度Tを検出可能であればよく、上記の構成に限定されない。例えば、温度検出部60は、低温側基板12や放熱器30の温度を直接検出可能に構成されていてもよい。低温側基板12や放熱器30の温度を検出には、熱電対やサーミスタなどの温度センサを用いることができる。
 更に、温度検出部60によって検出する温度は、低温側基板12の温度Tに限定されない。例えば、温度検出部60は、熱電素子対13の平均の温度TAVEを検出可能に構成されていてもよい。この場合、例えば、温度検出部60は、第2リード線19の間の電気抵抗率ρを測定可能に構成することができる。
 電気抵抗率ρは、温度差ΔTに対応する温度域の第2リード線19間の電気抵抗率の平均値として得られる。このため、P型素子13a及びN型素子13bの電気抵抗率の温度特性を用いると、電気抵抗率ρから第2リード線19に接続された熱電素子対13の平均の温度TAVEを算出可能である。
 上記のとおり、高温側電極14と高温側基板11との間の温度差、及び低温側電極15と低温側基板12との間の温度差は実質的に無視することができる。このため、熱電素子対13の平均の温度TAVEを高温側基板14と低温側基板15との間の平均の温度として扱うことが可能である。
 したがって、P型素子13a及びN型素子13bのZ軸方向の熱伝導率が均一であるものとすると、温度差ΔTと、熱電素子対13の平均の温度TAVEと、を用いると、高温側基板11の温度Tを、以下の式(3)によって算出可能である。
 T=TAVE+ΔT/2   …(3)
 このように、温度検出部60によって熱電素子対13の平均の温度TAVEを検出することによって、低温側基板12の温度Tを用いることなく、高温側基板11の温度Tを算出可能である。なお、温度検出部60は、第2リード線19間の電気抵抗率ρではなく、第1リード線17間の電気抵抗率ρを測定してもよい。
 熱電発電装置100では、集熱器20の熱源に近い部分、つまり高温側流路70内の上流側に配置された部分ほど温度上昇しやすい。したがって、熱電発電モジュール10の高温側基板11では熱源側の領域ほど温度上昇しやすい。このため、熱電発電モジュール10では、熱源側の領域において故障の原因となる熱電素子対13の損傷が発生しやすい。
 したがって、熱電発電装置100では、高温側基板11における熱源側の領域の温度Tが高くなりすぎないように管理することにより、熱電発電モジュール10の故障を効果的に防止することができる。このため、熱電発電モジュール10では、第2引出電極18が熱源側に配置された低温側電極15から引き出されていることが好ましい。
 この構成により、熱電発電装置100では、電圧測定部50によって、熱源側に配置された熱電素子対13で生成されている熱起電力Vが得られる。このため、熱電発電装置100では、高温側基板11における温度上昇しやすい熱源側の領域の温度Tを的確に把握可能となる。
 例えば、熱電発電装置100では、高温側基板11の熱源側の領域の温度Tをモニタリングし、温度Tが所定の閾値を超えた場合に高温側流路70における送風を停止することができる。これにより、高温側基板11の熱源側の領域の更なる温度上昇を抑制できるため、熱電発電モジュール10の故障を効果的に防止することができる。
4.熱電発電モジュール10の変形例
 熱電発電モジュール10における第2引出電極18の位置は、熱源の位置などに応じて決定可能である。例えば、図5に示すように、第2引出電極18は、第1引出電極16が配置された低温側電極15とは反対のX軸方向端部に配置された低温側電極15からX軸方向に引き出されていてもよい。
 また、図6に示すように、第2引出電極18は、複数の熱電素子対13で生成されている熱起電力Vを測定可能なように構成されていてもよい。n組の熱電素子対13で生成されている熱起電力Vを用いると、温度差ΔTを、以下の式(4)によって算出可能である。
 ΔT=V/n(α-α)   …(4)
 更に、図7に示すように、熱電発電モジュール10には、複数対の第2引出電極18が設けられていてもよい。これにより、電圧測定部50によって複数の熱電素子対13で生成されている熱起電力Vを個別に測定できるため、高温側基板11における複数の領域の温度Tを把握することができる。
 加えて、図8に示すように、高温側基板11が複数に分割されていてもよい。これにより、高温側基板11におけるXY平面に沿った熱伝達の影響による、高温側基板11の温度Tの測定誤差を抑制することができる。なお、高温側基板11の分割態様は、図8に破線で示される高温側電極14のパターンに応じて様々に変更可能である。
 図8に示すように、高温側基板11を複数に分割した場合には、分割された高温側基板において、測温回路が配置された部分の高温側基板の熱拡散や熱流入が抑えられるため、測温回路が配置された部分の高温側基板の温度がより正確に測定できる。
 さらに、図9に示すように、一対の第2引出電極18に接続された熱電素子対13で構成される測温回路55と、一対の第1引出電極16に直列接続された熱電素子対13で構成される発電回路45とを独立させて設けてもよい。すなわち、測温回路55を、一対の第1引出電極16に直列接続された熱電素子対13で構成される発電回路45と電気的に並列に配置してもよい。このように独立した測温回路55を設けることによって、測温回路が発電回路に含まれる場合に比べて、測温回路が配置された部分の測温精度をより向上させることができる。
 さらに、測温回路55を発電回路45から独立させるとともに、高温側基板11を図8に示すように分割するようにしてもよい。この場合には、分割された高温側基板のうち、特に高い測温精度が求められる基板部分に、測温回路55を配置することによって、分割された高温側基板ごとの温度を個別に精度よく測定することができる。
5.その他の実施形態
 以上、本発明の実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
 例えば、熱電発電装置100は、複数の熱電発電モジュール10を備えていても構わない。また、熱電発電装置100は、集熱器20、放熱器30、蓄電部40、電圧測定部50、温度検出部60、高温側流路70、及び低温側流路80の少なくとも1つが外部構成として接続可能な構成であってもよい。
 上述した本発明の実施形態によれば、熱電発電モジュールの集熱効率を損なうことなく、高温側基板の過熱による故障を未然に防ぐことが可能となる。したがって、過熱による故障を防止可能な熱電発電モジュール及びこれを用いた熱電発電装置、並びに温度測定方法を提供することができる。
10 熱電発電モジュール
11 高温側基板
12 低温側基板
13 熱電素子対
14 高温側電極
15 低温側電極
16 第1引出電極
17 第1リード線
18 第2引出電極
19 第2リード線
20 集熱器
30 放熱器
40 蓄電部
50 電圧測定部
60 温度検出部
100 熱電発電装置
 

Claims (11)

  1.  高温側基板と、
     前記高温側基板に対向する低温側基板と、
     相互に隣接するP型素子及びN型素子から構成され、前記高温側基板と前記低温側基板との間に配列された複数の熱電素子対と、
     前記高温側基板に設けられ、前記複数の熱電素子対のそれぞれを構成する一対の前記P型素子及び前記N型素子を接続する複数の高温側電極と、
     前記低温側基板に設けられ、前記P型素子と前記N型素子とを接続することにより、前記複数の熱電素子対を接続する複数の低温側電極と、
     前記複数の熱電素子対を直列接続する複数の前記低温側電極の両端に接続された一対の第1の引出電極と、
     前記低温側電極を介して前記複数の熱電素子対のうちの一部の熱電素子対に接続された一対の第2の引出電極と、
     を具備する熱電発電モジュール。
  2.  前記第2の引出電極は、前記直列接続された前記複数の熱電素子対のうちの一部の熱電素子対に接続される請求項1に記載の熱電発電モジュール。
  3.  前記第2の引出電極は、前記複数の熱電素子対の前記直列接続の途中に接続される請求項2に記載の熱電発電モジュール。
  4.  前記第2の引出電極は、前記直列接続された前記複数の熱電素子対とは別個の複数の熱電素子対を含む測温回路に接続された請求項1に記載の熱電発電モジュール。
  5.  前記高温側基板は、複数に分割されている請求項1から4のいずれか1項に記載の熱電発電モジュール。
  6.  前記第2の引出電極は、前記低温側基板における前記高温側基板の対向領域より外側に延びている請求項1から5のいずれか1項に記載の熱電発電モジュール。
  7.  前記第2の引出電極は、前記複数の低温側電極のうち熱源側に配置された低温側電極に接続された請求項1から6のいずれか1項に記載された熱電発電モジュール。
  8.  請求項1から7のいずれか1項に記載の熱電発電モジュールと、
     前記第2の引出電極の間の電圧を測定する電圧測定部と、
     を具備する熱電発電装置。
  9.  前記低温側基板の温度を検出する温度検出部を更に具備する請求項8に記載の熱電発電装置。
  10.  複数の熱電素子対と、前記複数の電熱素子対を接続する高温側電極および低温側電極と、前記高温側電極および低温側電極をそれぞれ有する高温側基板および低温側基板とを有する熱電発電モジュールにおける前記高温側基板の温度測定方法であって、
     前記複数の電熱素子対のうち、少なくとも一対の熱電素子対間の電圧を測定し、
     前記電圧から前記高温側基板と前記低温側基板との間の温度差を算出し、
     前記温度差を用いて前記高温側基板の温度を算出する
     温度測定方法。
  11.  前記複数の熱電素子対のうち少なくとも一対の熱電素子対間の電気抵抗を測定し、
     前記電気抵抗から前記高温側基板と前記低温側基板との間の平均温度を算出し、
     前記温度差と前記平均温度とを用いて前記高温側基板の温度を算出する
     請求項10に記載の温度測定方法。
PCT/JP2018/011448 2017-03-24 2018-03-22 熱電発電モジュール及びこれを用いた熱電発電装置、並びに温度測定方法 WO2018174173A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18771452.2A EP3605624A4 (en) 2017-03-24 2018-03-22 MODULE FOR THERMOELECTRIC POWER GENERATION, DEVICE FOR THERMOELECTRIC POWER GENERATION USING THE MODULE FOR THERMOELECTRIC POWER GENERATION AND TEMPERATURE MEASUREMENT METHOD
JP2019506977A JP6791357B2 (ja) 2017-03-24 2018-03-22 熱電発電装置及び温度測定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017058694 2017-03-24
JP2017-058694 2017-03-24

Publications (1)

Publication Number Publication Date
WO2018174173A1 true WO2018174173A1 (ja) 2018-09-27

Family

ID=63585839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011448 WO2018174173A1 (ja) 2017-03-24 2018-03-22 熱電発電モジュール及びこれを用いた熱電発電装置、並びに温度測定方法

Country Status (3)

Country Link
EP (1) EP3605624A4 (ja)
JP (1) JP6791357B2 (ja)
WO (1) WO2018174173A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020137244A1 (ja) * 2018-12-27 2020-07-02 株式会社Kelk 熱電モジュール及び熱電モジュールの調整方法
KR20200129233A (ko) * 2019-05-07 2020-11-18 한국생산기술연구원 연소로 내부 환경 측정장치
CN112242481A (zh) * 2020-09-23 2021-01-19 浙江先导热电科技股份有限公司 一种设有测温功能的台阶式热电模块及基板测温方法
RU2755980C1 (ru) * 2020-10-01 2021-09-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Башкирский государственный аграрный университет" Термоэлектрический генератор с принудительной системой охлаждения
JP2021150349A (ja) * 2020-03-17 2021-09-27 三菱電機株式会社 熱電変換モジュールおよび光モジュール
JP7502165B2 (ja) 2020-12-02 2024-06-18 トヨタ自動車株式会社 熱電変換モジュール及びそれを備える熱電発電装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03181185A (ja) * 1989-12-11 1991-08-07 Nippon Inter Electronics Corp 熱電変換装置
JPH10270762A (ja) * 1997-03-27 1998-10-09 S I I R D Center:Kk 熱電変換素子
JP2005117835A (ja) * 2003-10-09 2005-04-28 Toyota Motor Corp 熱電発電システムの温度検出装置
JP2008244100A (ja) * 2007-03-27 2008-10-09 Yamaha Corp 熱電モジュールおよびその製造方法
JP2009094130A (ja) 2007-10-04 2009-04-30 Sony Corp 冷却モジュール
JP2015138949A (ja) * 2014-01-24 2015-07-30 京セラ株式会社 熱電モジュール
JP2017058694A (ja) 2013-03-07 2017-03-23 株式会社半導体エネルギー研究所 腕時計

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3234178B2 (ja) * 1997-08-04 2001-12-04 株式会社エスアイアイ・アールディセンター 冷却装置
WO2015045602A1 (ja) * 2013-09-27 2015-04-02 京セラ株式会社 熱電モジュール

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03181185A (ja) * 1989-12-11 1991-08-07 Nippon Inter Electronics Corp 熱電変換装置
JPH10270762A (ja) * 1997-03-27 1998-10-09 S I I R D Center:Kk 熱電変換素子
JP2005117835A (ja) * 2003-10-09 2005-04-28 Toyota Motor Corp 熱電発電システムの温度検出装置
JP2008244100A (ja) * 2007-03-27 2008-10-09 Yamaha Corp 熱電モジュールおよびその製造方法
JP2009094130A (ja) 2007-10-04 2009-04-30 Sony Corp 冷却モジュール
JP2017058694A (ja) 2013-03-07 2017-03-23 株式会社半導体エネルギー研究所 腕時計
JP2015138949A (ja) * 2014-01-24 2015-07-30 京セラ株式会社 熱電モジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3605624A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7308614B2 (ja) 2018-12-27 2023-07-14 株式会社Kelk 熱電モジュール及び熱電モジュールの調整方法
GB2592525A (en) * 2018-12-27 2021-09-01 Kelk Ltd Thermoelectric module and method for adjusting thermoelectric module
US12022734B2 (en) 2018-12-27 2024-06-25 Kelk Ltd. Thermoelectric module and adjustment method of thermoelectric module
WO2020137244A1 (ja) * 2018-12-27 2020-07-02 株式会社Kelk 熱電モジュール及び熱電モジュールの調整方法
GB2592525B (en) * 2018-12-27 2023-08-16 Kelk Ltd Thermoelectric module and adjustment method of thermoelectric module
CN113169262A (zh) * 2018-12-27 2021-07-23 株式会社Kelk 热电模块以及热电模块的调整方法
JP2020107748A (ja) * 2018-12-27 2020-07-09 株式会社Kelk 熱電モジュール及び熱電モジュールの調整方法
KR102222426B1 (ko) * 2019-05-07 2021-03-05 한국생산기술연구원 연소로 내부 환경 측정장치
KR20200129233A (ko) * 2019-05-07 2020-11-18 한국생산기술연구원 연소로 내부 환경 측정장치
JP2021150349A (ja) * 2020-03-17 2021-09-27 三菱電機株式会社 熱電変換モジュールおよび光モジュール
JP7419899B2 (ja) 2020-03-17 2024-01-23 三菱電機株式会社 熱電変換モジュールおよび光モジュール
CN112242481A (zh) * 2020-09-23 2021-01-19 浙江先导热电科技股份有限公司 一种设有测温功能的台阶式热电模块及基板测温方法
RU2755980C1 (ru) * 2020-10-01 2021-09-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Башкирский государственный аграрный университет" Термоэлектрический генератор с принудительной системой охлаждения
JP7502165B2 (ja) 2020-12-02 2024-06-18 トヨタ自動車株式会社 熱電変換モジュール及びそれを備える熱電発電装置

Also Published As

Publication number Publication date
JPWO2018174173A1 (ja) 2020-05-14
JP6791357B2 (ja) 2020-11-25
EP3605624A1 (en) 2020-02-05
EP3605624A4 (en) 2020-12-09

Similar Documents

Publication Publication Date Title
WO2018174173A1 (ja) 熱電発電モジュール及びこれを用いた熱電発電装置、並びに温度測定方法
Zhang et al. High-temperature and high-power-density nanostructured thermoelectric generator for automotive waste heat recovery
EP1594173A1 (en) Cooling device for electronic component using thermo-electric conversion material
US20090205694A1 (en) Thermoelectric Generation Device for Energy Recovery
Cheng et al. A thermoelectric generator for scavenging gas-heat: from module optimization to prototype test
JP6348207B2 (ja) 排気系のための熱電発電装置および熱電発電装置の接点部材
US11393969B2 (en) Thermoelectric generation cell and thermoelectric generation module
Wang et al. Characterization of a bulk-micromachined membraneless in-plane thermopile
TWI495868B (zh) 熱電模組性質測量系統及其測量方法
Chang et al. An experimental investigation of thermoelectric air-cooling module
JP2011082252A (ja) 3次元半導体装置および3次元半導体装置の冷却方法
JP2011082272A (ja) 熱電冷却装置
TWI454672B (zh) 熱電式熱流計與熱電轉換效率量測裝置
JP7396621B2 (ja) 熱発電セル及び熱発電モジュール
TWI570972B (zh) 熱電轉換裝置以及熱電轉換器
JP2016092017A (ja) 熱電モジュール
Ahmed Dynamic performance characteristics of a thermoelectric generator
Kashid et al. Thermoelectric power generation using waste-heat energy from internal combustion engine
JP2017152618A (ja) 熱電モジュールとその製造方法および熱電装置
SINGH et al. DYNAMIC PERFORMANCE CHARACTERISTICS OF A THERMOELECTRIC GENERATOR
RU2280919C2 (ru) Термоэлектрическая батарея
JP2021078351A (ja) 校正用熱電発電モジュール
JP2004158582A (ja) 多段熱電モジュール
Hsu et al. Stacked Thermoelectric Generator Module Integrated with Partial Electric Conducted Interposer Structure
Wang et al. A thermoelectric air-liquid cooling system for electronic devices: Model, performance and analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771452

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019506977

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018771452

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018771452

Country of ref document: EP

Effective date: 20191024