WO2017110144A1 - 俯瞰映像生成装置、俯瞰映像生成システム、俯瞰映像生成方法およびプログラム - Google Patents
俯瞰映像生成装置、俯瞰映像生成システム、俯瞰映像生成方法およびプログラム Download PDFInfo
- Publication number
- WO2017110144A1 WO2017110144A1 PCT/JP2016/075021 JP2016075021W WO2017110144A1 WO 2017110144 A1 WO2017110144 A1 WO 2017110144A1 JP 2016075021 W JP2016075021 W JP 2016075021W WO 2017110144 A1 WO2017110144 A1 WO 2017110144A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- image
- overhead
- video
- bird
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 35
- 235000004522 Pentaglottis sempervirens Nutrition 0.000 claims description 164
- 240000004050 Pentaglottis sempervirens Species 0.000 claims description 163
- 230000002093 peripheral effect Effects 0.000 claims description 102
- 238000003384 imaging method Methods 0.000 abstract description 15
- 238000010586 diagram Methods 0.000 description 54
- 238000001514 detection method Methods 0.000 description 42
- 238000012790 confirmation Methods 0.000 description 10
- 230000006870 function Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 239000000470 constituent Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R1/00—Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
- B60R1/20—Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
- B60R1/22—Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle
- B60R1/23—Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle with a predetermined field of view
- B60R1/27—Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle with a predetermined field of view providing all-round vision, e.g. using omnidirectional cameras
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R1/00—Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
- B60R1/20—Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
- B60R1/22—Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle
- B60R1/28—Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle with an adjustable field of view
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T1/00—General purpose image data processing
- G06T1/0007—Image acquisition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
- G06T3/4038—Image mosaicing, e.g. composing plane images from plane sub-images
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/18—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/18—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
- H04N7/181—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a plurality of remote sources
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R2300/00—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
- B60R2300/10—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of camera system used
- B60R2300/105—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of camera system used using multiple cameras
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R2300/00—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
- B60R2300/30—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing
- B60R2300/302—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing combining image information with GPS information or vehicle data, e.g. vehicle speed, gyro, steering angle data
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R2300/00—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
- B60R2300/30—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing
- B60R2300/303—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing using joined images, e.g. multiple camera images
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R2300/00—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
- B60R2300/60—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by monitoring and displaying vehicle exterior scenes from a transformed perspective
- B60R2300/602—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by monitoring and displaying vehicle exterior scenes from a transformed perspective with an adjustable viewpoint
- B60R2300/605—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by monitoring and displaying vehicle exterior scenes from a transformed perspective with an adjustable viewpoint the adjustment being automatic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R2300/00—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
- B60R2300/60—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by monitoring and displaying vehicle exterior scenes from a transformed perspective
- B60R2300/607—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by monitoring and displaying vehicle exterior scenes from a transformed perspective from a bird's eye viewpoint
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R2300/00—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
- B60R2300/80—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement
- B60R2300/804—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement for lane monitoring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R2300/00—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
- B60R2300/80—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement
- B60R2300/8086—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement for vehicle path indication
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20212—Image combination
- G06T2207/20221—Image fusion; Image merging
Definitions
- the present invention relates to an overhead video generation device, an overhead video generation system, an overhead video generation method, and a program.
- Patent Document 1 A technique for displaying a bird's-eye view video of a vehicle together with a vehicle image is known (see, for example, Patent Document 1 and Patent Document 2).
- Patent Document 2 When the vehicle is switched from forward to backward, the technology of Patent Literature 1 expands the bird's-eye view video display area behind the vehicle image.
- the technology of Patent Document 2 automatically switches and displays an image in a range including a vehicle body portion having the highest risk of contact while driving on narrow roads and narrow curved roads for driving support during driving of the vehicle. .
- the vehicle driver checks the surroundings of the vehicle, including the rear, by checking with the side mirror and rearview mirror and visually checking when turning the vehicle.
- the side mirror and the rearview mirror may be difficult to visually recognize the range in which information to be watched is displayed, in other words, the direction that needs to be confirmed. Therefore, a technique that enables confirmation of the vicinity of the vehicle when the vehicle turns is desired.
- the present invention has been made in view of the above, and an object thereof is to enable appropriate confirmation of the periphery of a vehicle.
- an overhead image generation apparatus estimates a movement in the turning direction of the vehicle, and a video acquisition unit that acquires a peripheral video obtained by photographing the periphery of the vehicle
- a vehicle information acquisition unit that acquires vehicle information for performing control, and a control that generates a bird's-eye view image that includes a virtual host vehicle image that represents the vehicle and that looks down on the vehicle from above, based on the peripheral video acquired by the video acquisition unit
- the control unit needs to check in the estimated turning direction.
- a bird's-eye view image in which a display position of the bird's-eye view image including the virtual host vehicle image is changed so that a peripheral image in a direction is displayed widely is generated.
- An overhead video generation system displays the above-described overhead video generation device, an imaging unit that captures the periphery of the vehicle and supplies the peripheral image to the video acquisition unit, or the overhead image generated by the control unit It has at least any one of the display control part and display panel to perform.
- the bird's-eye view video generation method includes a video acquisition step of acquiring a peripheral video obtained by photographing the periphery of the vehicle, a vehicle information acquisition step of acquiring vehicle information for estimating movement of the vehicle in the turning direction, And a control step of generating a bird's-eye view image that includes a virtual host vehicle image showing the vehicle and looking down on the vehicle from above based on the surrounding video acquired in the video acquisition step.
- the vehicle When the movement of the vehicle in the turning direction is estimated based on the vehicle information acquired in the information acquisition step, the virtual image is displayed so that a peripheral image in a direction that needs to be confirmed in the estimated turning direction is displayed widely.
- a bird's-eye view image in which a display position of the bird's-eye view image including the host vehicle image is changed is generated.
- the program according to the present invention includes a video acquisition step of acquiring a peripheral video obtained by photographing the periphery of a vehicle, a vehicle information acquisition step of acquiring vehicle information for estimating movement of the vehicle in a turning direction, and the video acquisition Including a virtual own vehicle image showing the vehicle based on the surrounding video acquired in the step, and generating a bird's-eye view video looking down on the vehicle from above.
- the vehicle information acquisition step When the movement of the vehicle in the turning direction is estimated based on the vehicle information acquired in step 1, the virtual host vehicle image is displayed so that a peripheral image in a direction that needs to be confirmed in the estimated turning direction is displayed widely.
- the above steps are operated as a bird's-eye view image generation device, characterized in that a bird's-eye view image with a changed display position of the bird's-eye view image is generated. To be executed by a computer.
- FIG. 1 is a block diagram illustrating a configuration example of an overhead video generation system according to the first embodiment.
- FIG. 2 is a flowchart showing a flow of processing in the overhead video generation device of the overhead video generation system according to the first embodiment.
- FIG. 3 is a diagram illustrating an overhead video generated by the overhead video generation system according to the first embodiment.
- FIG. 4 is a diagram illustrating another example of an overhead video generated by the overhead video generation system according to the second embodiment.
- FIG. 5 is a diagram illustrating another example of the overhead view video generated by the overhead view video generation system according to the third embodiment.
- FIG. 6 is a block diagram illustrating a configuration example of the overhead view video generation system according to the fourth embodiment.
- FIG. 1 is a block diagram illustrating a configuration example of an overhead video generation system according to the first embodiment.
- FIG. 2 is a flowchart showing a flow of processing in the overhead video generation device of the overhead video generation system according to the first embodiment.
- FIG. 3 is a diagram illustrating an
- FIG. 7 is a flowchart showing the flow of processing in the overhead video generation device of the overhead video generation system according to the fourth embodiment.
- FIG. 8 is a diagram illustrating another example of an overhead video generated by the overhead video generation system according to the fourth embodiment.
- FIG. 9 is a flowchart showing the flow of processing in the overhead video generation device of the overhead video generation system according to the fifth embodiment.
- FIG. 10 is a diagram illustrating another example of an overhead video generated by the overhead video generation system according to the fifth embodiment.
- FIG. 11 is a block diagram illustrating a configuration example of the overhead view video generation system according to the sixth embodiment.
- FIG. 12 is a plan view showing a range captured by the left rear peripheral photographing camera and the right rear peripheral photographing camera of the overhead view video generation system according to the sixth embodiment.
- FIG. 12 is a plan view showing a range captured by the left rear peripheral photographing camera and the right rear peripheral photographing camera of the overhead view video generation system according to the sixth embodiment.
- FIG. 13 is a diagram illustrating an overhead video generated by the overhead video generation system according to the sixth embodiment.
- FIG. 14 is a block diagram illustrating a configuration example of the overhead view video generation system according to the seventh embodiment.
- FIG. 15 is a flowchart showing the flow of processing in the overhead video generation device of the overhead video generation system according to the seventh embodiment.
- FIG. 16 is a schematic diagram illustrating a situation around a vehicle that uses the overhead view video generation system according to the seventh embodiment.
- FIG. 17 is a diagram illustrating an overhead video generated by the overhead video generation system according to the seventh embodiment.
- FIG. 18 is a diagram showing a conventional overhead view video.
- FIG. 19 is a diagram illustrating another example of an overhead video generated by the overhead video generation system according to the seventh embodiment.
- FIG. 20 is a diagram illustrating another example of an overhead video generated by the overhead video generation system according to the seventh embodiment.
- FIG. 21 is a diagram illustrating an overhead video generated by the overhead video generation system according to the eighth embodiment.
- FIG. 22 is a diagram illustrating an overhead video generated by the overhead video generation system according to the ninth embodiment.
- FIG. 23 is a block diagram illustrating a configuration example of an overhead video generation system according to the tenth embodiment.
- FIG. 24 is a flowchart showing a flow of processing in the overhead video generation device of the overhead video generation system according to the tenth embodiment.
- FIG. 25 is a block diagram illustrating another configuration example of the overhead view video generation system.
- FIG. 26 is a block diagram illustrating another configuration example of the overhead view video generation system.
- FIG. 27 is a diagram illustrating another example of the overhead view image generated by the overhead view image generation system.
- FIG. 28 is a diagram illustrating another example of the overhead view video generated by the overhead view video generation system.
- FIG. 29 is a diagram illustrating another example of the overhead view video generated by the overhead view video generation system.
- FIG. 30 is a schematic diagram illustrating another situation around the vehicle using the overhead view video generation system.
- FIG. 31 is a diagram illustrating another example of the overhead view video generated by the overhead view video generation system.
- FIG. 32 is a schematic diagram illustrating another situation around the vehicle using the overhead view video generation system.
- FIG. 33 is a diagram illustrating another example of the overhead video generated by the overhead video generation system.
- FIG. 1 is a block diagram illustrating a configuration example of an overhead video generation system according to the first embodiment.
- the overhead image generation system 1 generates an overhead image B (see FIG. 3) of the vehicle 100.
- the vehicle 100 includes an overhead view video generation system 1, a display panel 101, a map information storage unit 102, a current location information detection unit 103, a direction indicator operation detection unit 104, and a gear operation detection unit. 105, a steering operation detection unit 106, and an angular velocity sensor 107.
- the overhead view video generation system 1 includes a display panel 101, a map information storage unit 102, a current location information detection unit 103, a direction indicator operation detection unit 104, a gear operation detection unit 105, and a steering operation detection.
- the unit 106 and the angular velocity sensor 107 are not included, each unit may be included in the overhead view video generation system 1.
- the overhead view video generation system 1 may be a portable device that can be used in the vehicle.
- the display panel 101 is a display including a liquid crystal display (LCD: Liquid Crystal Display) or an organic EL (Organic Electro-Luminescence) display, for example.
- the display panel 101 displays the overhead view video based on the video signal output from the overhead view video generation device 40 of the overhead view video generation system 1.
- the display panel 101 may be dedicated to the overhead view video generation system 1 or may be used jointly with other systems including a navigation system, for example.
- the display panel 101 is disposed at a position that is easily visible to the driver.
- the map information storage unit 102 stores map information.
- the map information is, for example, a road map including an intersection.
- the map information may include lane information in a road having a plurality of lanes.
- the map information may include route guidance information for the destination.
- the route guidance information may include, for example, right / left turn information at an intersection and lane change information near an intersection of a road having a plurality of lanes.
- the map information storage unit 102 outputs the stored map information to the vehicle information acquisition unit 42 of the overhead view video generation device 40 of the overhead view video generation system 1.
- the current location information detection unit 103 detects the current location of the vehicle 100.
- the current location information detection unit 103 is, for example, a GPS (Global Positioning System) receiver.
- the current location information detection unit 103 outputs the acquired current location information of the vehicle 100 to the vehicle information acquisition unit 42 of the overhead view video generation device 40 of the overhead view video generation system 1.
- the direction indicator operation detection unit 104 detects an operation on the direction indicator. More specifically, the direction indicator operation detection unit 104 detects, for example, an operation on a switch that operates the direction indicator as direction indicator operation information. The direction indicator operation detection unit 104 outputs the detected direction indicator operation information to the vehicle information acquisition unit 42 of the overhead view video generation device 40 of the overhead view video generation system 1.
- the gear operation detection unit 105 detects an operation on the gear. More specifically, the gear operation detection unit 105 detects a selection operation for a gear as gear operation information. The gear operation detection unit 105 outputs the detected gear operation information to the vehicle information acquisition unit 42 of the overhead view video generation device 40 of the overhead view video generation system 1.
- the steering operation detection unit 106 detects an operation on the steering wheel. More specifically, the steering operation detection unit 106 detects the operation angle of the steering wheel as steering operation information. The steering operation detection unit 106 outputs the detected steering operation information to the vehicle information acquisition unit 42 of the overhead view video generation device 40 of the overhead view video generation system 1.
- the angular velocity sensor 107 detects the angular velocity of the vehicle 100.
- the angular velocity sensor 107 is, for example, a gyro sensor.
- the angular velocity sensor 107 outputs the detected angular velocity to the vehicle information acquisition unit 42 of the overhead view video generation device 40 of the overhead view video generation system 1.
- the overhead image generation system 1 includes a first photographing device 20, a storage device 30, and an overhead image generation device 40.
- the first photographing device 20 photographs the periphery of the vehicle 100.
- the first photographing device 20 includes a front peripheral photographing camera 21, a rear peripheral photographing camera 22, a left side peripheral photographing camera 23, and a right side peripheral photographing camera 24.
- the first photographing device 20 photographs all directions of the vehicle 100 with a front peripheral photographing camera 21, a rear peripheral photographing camera 22, a left side peripheral photographing camera 23, and a right side peripheral photographing camera 24.
- the first image capturing device 20 obtains an image captured by the overhead view image generating device 40 from images taken by the front peripheral photographing camera 21, the rear peripheral photographing camera 22, the left peripheral photographing camera 23, and the right peripheral photographing camera 24. Output to the unit 41.
- the front peripheral photographing camera 21 is disposed in front of the vehicle 100 and photographs the periphery around the front of the vehicle 100.
- the front peripheral shooting camera 21 outputs the shot video to the video acquisition unit 41 of the overhead view video generation device 40.
- the rear periphery photographing camera 22 is arranged behind the vehicle 100 and photographs the periphery around the rear of the vehicle 100.
- the rear peripheral shooting camera 22 outputs the shot video to the video acquisition unit 41 of the overhead video generation device 40.
- the left side peripheral photographing camera 23 is arranged on the left side of the vehicle 100 and photographs the periphery around the left side of the vehicle 100.
- the left-side peripheral photographing camera 23 outputs the photographed video to the video acquisition unit 41 of the overhead view video generation device 40.
- the right-side peripheral photographing camera 24 is arranged on the right side of the vehicle 100 and photographs the periphery around the right side of the vehicle 100.
- the right-side peripheral camera 24 outputs the captured video to the video acquisition unit 41 of the overhead view video generation device 40.
- the storage device 30 stores data and various processing results required for various processing in the overhead view video generation device 40.
- the storage device 30 is, for example, a semiconductor memory device such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory (Flash Memory), or a storage device such as a hard disk or an optical disk.
- the bird's-eye view image generation device 40 is an arithmetic processing device configured with, for example, a CPU (Central Processing Unit).
- the overhead view video generation device 40 loads the program stored in the storage device 30 into the memory and executes instructions included in the program.
- the overhead video generation device 40 includes a video acquisition unit 41, a vehicle information acquisition unit 42, and a control unit 43 including an overhead video generation unit 43a and a display control unit 43b.
- the video acquisition unit 41 acquires a peripheral video that captures the periphery of the vehicle 100. More specifically, the video acquisition unit 41 outputs video output from the front peripheral photographing camera 21, the rear peripheral photographing camera 22, the left side peripheral photographing camera 23, and the right side peripheral photographing camera 24 of the first photographing device 20. To get. The video acquisition unit 41 outputs the acquired video to the overhead view video generation unit 43a.
- the vehicle information acquisition unit 42 acquires vehicle information for estimating movement of the vehicle 100 in the turning direction.
- the information for estimating the movement of the vehicle 100 in the turning direction includes map information around the vehicle 100, current location information of the vehicle 100, direction indicator operation information of the vehicle 100, gear operation information of the vehicle 100, and steering operation of the vehicle 100.
- the vehicle information is at least one of the information and the angular velocity of the vehicle 100. More specifically, the vehicle information acquisition unit 42 is at least one of the map information storage unit 102, the current location information detection unit 103, the direction indicator operation detection unit 104, the gear operation detection unit 105, the steering operation detection unit 106, and the angular velocity sensor 107. The vehicle information output by one of them is acquired.
- the vehicle information acquisition unit 42 outputs the acquired vehicle information to the display control unit 43b.
- the control unit 43 converts the viewpoint of the virtual host vehicle image A when the vehicle 100 is viewed from above and the video acquired by the video acquisition unit 41 into a video viewed from above the vehicle 100 to generate an overhead image B. It includes a video generation unit 43 a and a display control unit 43 b that processes the video generated by the overhead view video generation unit 43 a and sends it to the display panel 101.
- the control unit 43 processes the video generated by the overhead video generation unit 43 a and sends it to the display panel 101.
- the control unit 43 processes the overhead view video B generated by the overhead view video generation unit 43 a so that the virtual vehicle image A is displayed on the display panel 101 by the display control unit 43 b and sends the processed image to the display panel 101.
- the control unit 43 processes the overhead view video B generated by the overhead view video generation unit 43a so that the virtual vehicle image A is displayed and reduced on the display panel 101 by the display control unit 43b. Send to panel 101.
- the bird's-eye view video generation unit 43a generates the bird's-eye view video B based on the images shot by the front peripheral shooting camera 21, the rear peripheral shooting camera 22, the left-side peripheral shooting camera 23, and the right-side peripheral shooting camera 24. To do.
- the method for generating the overhead view video B may be any known method, and is not limited.
- the bird's-eye view video B includes the virtual host vehicle image A and at least one of the front video B1, the rear video B2, the left side video B3, and the right side video B4.
- the bird's-eye view video B is generated in a rectangular frame F.
- the frame F includes a first frame F1 that displays the front video B1, a second frame F2 that displays the rear video B2, a third frame F3 that displays the left video B3, and a fourth frame that displays the right video B4. It includes at least one of the frame F4.
- the overhead video generation unit 43a outputs the generated overhead video B to the display control unit 43b.
- the display control unit 43b displays information to be noted in the estimated turning direction.
- the overhead view video B in which the display position of the overhead view video B including the virtual host vehicle image A is changed is generated so that the peripheral video in the direction that needs to be confirmed is displayed widely.
- the display control unit 43b is opposite to the direction in which the vehicle 100 moves in the turning direction.
- An overhead view video B including a virtual host vehicle image A in which the vehicle 100 is looked down from above is generated with the vehicle 100 positioned in the direction.
- the movement in the turning direction of the vehicle 100 is a movement in a direction deviating from the direction in which the road on which the vehicle 100 is traveling (hereinafter referred to as “traveling road direction”).
- the movement in the turning direction is a movement in the left-right direction toward the front side of the vehicle 100 in the front-rear direction.
- the movement in the turning direction of the vehicle 100 does not include the movement of the vehicle 100 along a curved or curved road.
- the display control unit 43b may determine that the movement is in a deviating direction. This is because slight blurring during driving or play of the steering wheel is not determined as movement in the turning direction of the vehicle 100.
- FIG. 2 is a flowchart showing a flow of processing in the overhead video generation device of the overhead video generation system according to the first embodiment.
- the display control unit 43b determines whether or not movement in the turning direction is estimated (step S11). More specifically, the display control unit 43b acquires the map information around the vehicle 100, the current location information of the vehicle 100, the direction indicator operation information of the vehicle 100, the gear operation information of the vehicle 100, and the vehicle acquired by the vehicle information acquisition unit 42. Whether or not the movement of the vehicle 100 in the turning direction is estimated is determined based on at least one of the vehicle operation information of 100 and the angular velocity of the vehicle 100.
- the display control unit 43b determines whether or not the movement of the vehicle 100 in the turning direction is estimated based on the map information around the vehicle 100 acquired by the vehicle information acquisition unit 42 and the current location information of the vehicle 100. Will be described. For example, the display control unit 43b, based on the map information around the vehicle 100 and the current location information of the vehicle 100, when the vehicle 100 approaches within a predetermined distance of an intersection scheduled for a right / left turn in the route guidance information, It is determined that the movement of the vehicle 100 in the turning direction is estimated.
- the predetermined distance may be 5 m, for example.
- the display control unit 43b based on the map information around the vehicle 100 and the current location information of the vehicle 100, when the vehicle 100 approaches within a predetermined distance of the point where the lane change is scheduled in the route guidance information, It is determined that the movement of the vehicle 100 in the turning direction is estimated.
- the predetermined distance may be 5 m, for example.
- the display control unit 43b stores the estimated movement direction of the vehicle 100 in the storage device 30.
- the display control unit 43b determines whether or not the movement of the turning direction of the vehicle 100 is estimated based on the direction indicator operation information acquired by the vehicle information acquisition unit 42. For example, the display control unit 43b determines that the movement in the turning direction of the vehicle 100 is estimated when the direction indicator is operated based on the direction indicator operation information. When it is determined that the movement of the vehicle 100 in the turning direction is estimated, the display control unit 43b stores the estimated movement direction of the vehicle 100 in the storage device 30.
- the display control unit 43b determines whether or not the movement of the vehicle 100 in the turning direction is estimated based on the gear operation information and the steering operation information acquired by the vehicle information acquisition unit 42. For example, the display control unit 43b determines that the steering wheel is operated based on at least one of the gear operation information and the steering operation information, or the reverse gear is selected and the steering wheel is operated. In this case, it is determined that the movement of the vehicle 100 in the turning direction is estimated. When it is determined that the movement of the vehicle 100 in the turning direction is estimated, the display control unit 43b stores the estimated movement direction of the vehicle 100 in the storage device 30.
- the display control unit 43b Based on at least one of the map information around the vehicle 100 acquired by the vehicle information acquisition unit 42 and the current location information of the vehicle 100 and the steering operation information and the angular velocity of the vehicle 100 acquired by the display control unit 43b. A case where it is determined whether or not the movement in the turning direction is estimated will be described.
- the display control unit 43b deviates from the traveling road direction based on at least one of the map information around the vehicle 100, the current location information of the vehicle 100, and the steering operation information and the angular velocity of the vehicle 100.
- the steering operation is performed or when the angular velocity changes in a direction deviating from the traveling road direction, it is determined that the movement of the vehicle 100 in the turning direction is estimated.
- the display control unit 43b stores the estimated movement direction of the vehicle 100 in the storage device 30.
- the display control unit 43b is at least one of map information around the vehicle 100 acquired by the vehicle information acquisition unit 42, current location information of the vehicle 100, direction indicator operation information, steering operation information, and angular velocity of the vehicle 100. A case will be described in which it is determined whether or not the movement of the vehicle 100 in the turning direction is estimated. For example, the display control unit 43b is based on at least one of map information around the vehicle 100, current location information of the vehicle 100, direction indicator operation information, steering operation information, and angular velocity of the vehicle 100. When 100 is within the predetermined distance of the intersection where the left and right turn is planned with the route guidance information and the direction indicator is operated, or the steering operation is performed in a direction deviating from the traveling road direction.
- the predetermined distance may be 5 m, for example.
- the display control unit 43b is based on at least one of map information around the vehicle 100, current location information of the vehicle 100, direction indicator operation information, steering operation information, and angular velocity of the vehicle 100.
- the predetermined distance may be 5 m, for example.
- the combination of at least one of the map information around the vehicle 100, the current location information of the vehicle 100, and the direction indicator operation information, the steering operation information, and the angular velocity of the vehicle 100 is determined, for example, This is because, although route guidance guides a left / right turn or lane change, it is not estimated that the vehicle 100 will accidentally move in the turning direction when the driver goes straight without following the route guidance.
- the display control unit 43b stores the estimated movement direction of the vehicle 100 in the storage device 30.
- step S11 If the movement of the vehicle 100 in the turning direction is not estimated (No in step S11), the display control unit 43b proceeds to step S12.
- Step S11 When it is estimated that the vehicle 100 moves in the turning direction (Yes in Step S11), the display control unit 43b proceeds to Step S13.
- the display control unit 43b generates a normal overhead image B in which the virtual host vehicle image A is located at the center (step S12). More specifically, the display control unit 43b generates a bird's-eye view video B including the virtual host vehicle image A when the vehicle 100 is looked down from above with the vehicle 100 positioned at the center. In the bird's-eye view video B, the center C of the virtual host vehicle image A is located at the center of the frame F.
- the display control unit 43b acquires the moving direction of the vehicle 100 (step S13).
- the display control unit 43b acquires the moving direction of the vehicle 100 stored in the storage device 30 in step S11.
- the display control unit 43b generates a bird's-eye view video B displayed on the display panel 101 in a state where the virtual host vehicle image A is shifted and positioned (step S14). More specifically, the display control unit 43b includes a virtual host vehicle image A in which the vehicle 100 is looked down from above in a state where the vehicle 100 is positioned in the direction opposite to the moving direction of the vehicle 100 in the turning direction. Video B is generated. In the present embodiment, the display control unit 43b moves the vehicle 100 from above in a state where the vehicle 100 is positioned in the direction opposite to the moving direction of the vehicle 100 in the turning direction and on the upper side of the frame F. An overhead video B including the virtual host vehicle image A looked down is generated.
- the display control unit 43b determines whether the moving direction of the vehicle 100 is located in the left or right direction with respect to the traveling road direction.
- the display control unit 43b determines that the moving direction of the vehicle 100 is the right direction
- the display unit 43b positions the virtual vehicle image A in the upper left of the frame F in the overhead view video B.
- the center line LA of the virtual host vehicle image A is located on the left side of the center line LF of the frame F.
- the center C of the virtual host vehicle image A is located above the frame F.
- the display control unit 43 b determines that the moving direction of the vehicle 100 is the left direction
- the virtual vehicle image A is positioned at the upper right of the frame F in the overhead view video B.
- the center line LA of the virtual host vehicle image A is located on the right side of the center line LF of the frame F.
- the center C of the virtual host vehicle image A is located above the frame F.
- the display control unit 43b generates a bird's-eye view video B in which the virtual host vehicle image A is positioned at the upper left or upper right of the frame F.
- the virtual host vehicle image A is located in the upper left of the frame F
- the right side of the virtual host vehicle image A is displayed widely in the overhead view video B.
- the virtual host vehicle image A is located on the upper right side of the frame F
- the left side of the virtual host vehicle image A is widely displayed in the overhead view video B. Since the virtual host vehicle image A shows the vehicle 100, it is possible to widely display a range in which information to be noted when moving in the turning direction is displayed around the vehicle 100.
- FIG. 3 is a diagram illustrating an overhead video generated by the overhead video generation system according to the first embodiment.
- the bird's-eye view video B includes a virtual host vehicle image A, a wide range of rear video B2 and a left side video B3, and a narrow range of front video B1 and a right side video B4.
- the frame F includes the second frame F2 and the third frame F3 widely, and includes the first frame F1 and the fourth frame F4 narrowly. As described above, the bird's-eye view video B widely displays the left side, which is the moving direction of the vehicle 100.
- the display control unit 43b When the movement in the turning direction of the vehicle 100 is completed, the display control unit 43b generates a bird's-eye view video B in which the virtual host vehicle image A is returned to the original state.
- the display control unit 43b describes a case where the movement of the vehicle 100 in the turning direction is estimated based on the map information around the vehicle 100 acquired by the vehicle information acquisition unit 42 and the current location information of the vehicle 100. For example, the display control unit 43b, based on the map information around the vehicle 100 and the current location information of the vehicle 100, when the vehicle 100 is more than a predetermined distance away from the intersection where a left / right turn is planned in the route guidance information, It determines with the movement of the turning direction of the vehicle 100 having been completed.
- the predetermined distance may be 5 m, for example.
- the display control unit 43b based on the map information around the vehicle 100 and the current location information of the vehicle 100, when the vehicle 100 is more than a predetermined distance from the point where the lane change is scheduled in the route guidance information, It determines with the movement of the turning direction of the vehicle 100 having been completed.
- the predetermined distance may be 5 m, for example.
- the display control unit 43b estimates the movement of the vehicle 100 in the turning direction based on the direction indicator operation information acquired by the vehicle information acquisition unit 42. For example, the display control unit 43b determines that the movement of the vehicle 100 in the turning direction is completed when the operation of the direction indicator is canceled based on the direction indicator operation information.
- the display control unit 43b estimates the movement of the vehicle 100 in the turning direction based on the gear operation information and the steering operation information acquired by the vehicle information acquisition unit 42 will be described. For example, when the steering wheel is operated in the return direction based on at least one of the gear operation information and the steering operation information, or the selection of the reverse gear is canceled, and the display control unit 43b When the wheel is operated in the return direction, it is determined that the movement of the vehicle 100 in the turning direction is completed.
- the display control unit 43b Based on at least one of the map information around the vehicle 100 acquired by the vehicle information acquisition unit 42 and the current location information of the vehicle 100 and the steering operation information and the angular velocity of the vehicle 100 acquired by the display control unit 43b. A case where the movement in the turning direction is estimated will be described.
- the display control unit 43b operates the steering wheel in the return direction based on at least one of the map information around the vehicle 100, the current location information of the vehicle 100, and the steering operation information and the angular velocity of the vehicle 100. If the vehicle speed is changed or the angular velocity changes in the return direction, it is determined that the movement of the vehicle 100 in the turning direction is completed.
- the display control unit 43b is at least one of map information around the vehicle 100 acquired by the vehicle information acquisition unit 42, current location information of the vehicle 100, direction indicator operation information, steering operation information, and angular velocity of the vehicle 100. A case where the movement of the vehicle 100 in the turning direction is estimated based on the above will be described.
- the display control unit 43b is based on at least one of map information around the vehicle 100, current location information of the vehicle 100, direction indicator operation information, steering operation information, and angular velocity of the vehicle 100.
- the display control unit 43b is based on at least one of map information around the vehicle 100, current location information of the vehicle 100, direction indicator operation information, steering operation information, and angular velocity of the vehicle 100.
- the predetermined distance may be 5 m, for example.
- the display control unit 43b determines that the movement in the turning direction of the vehicle 100 is completed, and generates a bird's-eye view image B in which the virtual vehicle image A is returned to the original state.
- the overhead video generation system 1 generates the overhead video B and outputs a video signal to the display panel 101 outside the overhead video generation system 1.
- the external display panel 101 displays, for example, an overhead video B together with a navigation screen based on the video signal output from the overhead video generation system 1.
- the bird's-eye view video generation system 1 when the movement of the vehicle 100 in the turning direction is estimated based on the vehicle information acquired by the vehicle information acquisition unit 42,
- the bird's-eye view video B including the virtual host vehicle image A in which the vehicle 100 is looked down from above can be generated in a state where the vehicle 100 is positioned in the direction opposite to the moving direction.
- the overhead view video B can widely display the left side that is the moving direction of the vehicle 100.
- the bird's-eye view video B can widely display the right side that is the moving direction of the vehicle 100.
- the moving direction of the vehicle 100 can be widely displayed on the overhead view video B.
- the overhead view video generation system 1 more appropriately confirms information to be noted around the vehicle, more specifically, when the vehicle 100 moves in the turning direction, according to the movement of the vehicle 100 in the turning direction. Can be possible.
- FIG. 4 is a diagram illustrating another example of an overhead video generated by the overhead video generation system according to the second embodiment.
- the overhead image generation system 1 has the same basic configuration as the overhead image generation system 1 of the first embodiment.
- components similar to those in the overhead view video generation system 1 are denoted by the same reference numerals or corresponding reference numerals, and detailed description thereof is omitted.
- the overhead view video generation system 1 of the present embodiment differs from the overhead view video generation system 1 of the first embodiment in the processing in the overhead view video generation device 40.
- the display control unit 43b generates a bird's-eye view video B behind the side mirror M of the vehicle 100 when generating the bird's-eye view image B in which the virtual host vehicle image A is shifted in step S14 of the flowchart shown in FIG. To do. More specifically, when the virtual host vehicle image A is positioned in the upper left or upper right of the frame F in the overhead view video B, the display control unit 43b positions the rear of the vehicle 100 in the frame F behind the side mirror M. .
- the moving direction of the vehicle 100 is the left direction
- the bird's-eye view image B is a virtual own vehicle image A in the upper right of the frame F and behind the side mirror M of the vehicle 100. It is located at a position that fits in F.
- the bird's-eye view video B includes a rear image B2, a left-side image B3, and a right-side image B4 of a narrow range behind the side mirror M of the virtual host vehicle image A.
- the frame F includes the second frame F2 and the third frame F3 widely, includes the fourth frame F4 narrowly, and does not include the first frame F1.
- the left side and the rear that are the moving direction of the vehicle 100 are displayed widely.
- the overhead view video generation system 1 can generate the overhead view video B behind the side mirror M of the vehicle 100.
- the overhead view video generation system 1 can display the moving direction and the rear of the vehicle 100 more widely. With such display, the viewing range by the side mirror M and the starting point of the range displayed as the overhead image B match, and the positional relationship of the overhead view image B with respect to the viewing range by the side mirror M and the blind spot can be easily grasped.
- the overhead view video generation system 1 more appropriately confirms information to be noted around the vehicle, more specifically, when the vehicle 100 moves in the turning direction, according to the movement of the vehicle 100 in the turning direction. Can be possible.
- FIG. 5 is a diagram illustrating another example of the overhead view video generated by the overhead view video generation system according to the third embodiment.
- the overhead view video generation system 1 of the present embodiment differs from the overhead view video generation system 1 of the first embodiment in the processing in the overhead view video generation device 40.
- step S14 of the flowchart shown in FIG. 2 the display control unit 43b generates a bird's-eye view video B obtained by reducing the virtual host vehicle image A when the bird's-eye view image B in which the virtual host vehicle image A is shifted is generated. . More specifically, the display control unit 43b reduces the virtual vehicle image A when the virtual vehicle image A is positioned at the upper left or upper right of the frame F in the overhead view video B.
- the reduced display of the virtual host vehicle image A means that the virtual host vehicle image A is displayed relatively small with respect to FIG.
- the moving direction of the vehicle 100 is the left direction, and as shown in FIG. 5, the bird's-eye view video B is displayed in the upper right of the frame F smaller than FIG.
- the bird's-eye view video B includes a reduced virtual host vehicle image A, a wide range of rear video B2 and a left side video B3, and a narrow range of front video B1 and a right side video B4.
- the frame F includes the second frame F2 and the third frame F3 more broadly, and includes the first frame F1 and the fourth frame F4 narrowly.
- the bird's-eye view video B displays the left side and the rear, which are the movement directions of the vehicle 100, more widely.
- the bird's-eye view video generation system 1 can generate the bird's-eye view video B obtained by reducing the virtual vehicle image A. For this reason, the overhead view video generation system 1 can display the moving direction and the rear of the vehicle 100 more widely. In this way, the overhead view video generation system 1 more appropriately confirms information to be noted around the vehicle, more specifically, when the vehicle 100 moves in the turning direction, according to the movement of the vehicle 100 in the turning direction. Can be possible.
- FIG. 6 is a block diagram illustrating a configuration example of the overhead view video generation system according to the fourth embodiment.
- the overhead view video generation system 1A of the present embodiment is that the vehicle information acquisition unit 42 of the overhead view video generation device 40 further acquires the vehicle speed from the vehicle speed sensor (vehicle speed acquisition unit) 108. Different from 1.
- the vehicle speed sensor 108 detects the vehicle speed. More specifically, the vehicle speed sensor 108 is disposed on the drive shaft or tire of the vehicle 100. The vehicle speed sensor 108 detects a pulse signal corresponding to the rotation of the drive shaft or the tire. The vehicle speed sensor 108 outputs the detected vehicle speed to the vehicle information acquisition unit 42 of the overhead view video generation device 40 of the overhead view video generation system 1.
- the vehicle information acquisition unit 42 further acquires the vehicle speed output by the vehicle speed sensor 108.
- the vehicle information acquisition unit 42 outputs vehicle information including the acquired vehicle speed to the display control unit 43b.
- the display control unit 43b generates a vehicle based on the vehicle speed acquired by the vehicle information acquisition unit 42 when generating the bird's-eye view video B in which the virtual host vehicle image A is shifted in step S14 of the flowchart shown in FIG.
- the bird's-eye view image B in the state where the vehicle 100 is decelerating generates the bird's-eye view image B in which the direction in which the vehicle 100 moves is widened.
- the display control unit 43b performs the process shown in the flowchart in FIG.
- FIG. 7 is a flowchart showing the flow of processing in the overhead video generation device of the overhead video generation system according to the fourth embodiment.
- the display control unit 43b determines whether or not the vehicle 100 is decelerating (step S1411). When the vehicle 100 is decelerating (Yes in step S1411), the display control unit 43b shifts and positions the virtual host vehicle image A, and generates a bird's-eye view video B that widens the direction in which the vehicle 100 moves (step S1412). ). More specifically, when the virtual host vehicle image A is positioned at the upper left of the frame F in the overhead view video B, the display control unit 43b moves the virtual host vehicle image A toward the upper left end of the frame F. When the virtual host vehicle image A is positioned at the upper right of the frame F in the overhead view video B, the display control unit 43b moves the virtual host vehicle image A toward the upper right end of the frame F.
- step S1411 When the vehicle 100 is not decelerating (No in step S1411), the display control unit 43b generates an overhead video B in which the virtual host vehicle image A is shifted and positioned (step S1413).
- step S1413 The process of step S1413 is the same process as step S14.
- FIG. 8 is a diagram illustrating another example of an overhead video generated by the overhead video generation system according to the fourth embodiment.
- the center C of the virtual host vehicle image A is located closer to the upper right end than the center C of the virtual host vehicle image A in FIG.
- the bird's-eye view image B includes a virtual host vehicle image A, a wide range of rear images B2, and a left side image B3.
- the frame F includes a second frame F2 and a third frame F3, and does not include the first frame F1 and the fourth frame F4.
- the left side and the rear which are the moving direction of the vehicle 100, are displayed more widely.
- the overhead view video generation system 1A has the overhead view video B in the state where the vehicle 100 is decelerated between the state where the vehicle 100 is decelerated and the state where the vehicle 100 is accelerated.
- the overhead view video generation system 1A can display the moving direction and the rear of the vehicle 100 more widely.
- the overhead view video generation system 1 ⁇ / b> A in addition to the movement of the vehicle 100 in the turning direction, according to whether the vehicle 100 is decelerating or accelerating, more specifically, around the vehicle 100. It is possible to more appropriately confirm information to be noted when moving in the turning direction.
- a bird's-eye view video generation system 1A according to the present embodiment will be described with reference to FIGS.
- the overhead view video generation system 1A of the present embodiment differs from the overhead view video generation system 1A of the fourth embodiment in the processing in the overhead view video generation device 40.
- the display control unit 43b generates a vehicle based on the vehicle speed acquired by the vehicle information acquisition unit 42 when generating the bird's-eye view video B in which the virtual host vehicle image A is shifted in step S14 of the flowchart shown in FIG.
- the bird's-eye view image B in the state where the vehicle 100 is accelerating has a wider direction opposite to the moving direction of the vehicle 100 in the turning direction.
- the overhead view video B is generated.
- the display control unit 43b performs the process shown in the flowchart in FIG.
- FIG. 9 is a flowchart showing the flow of processing in the overhead video generation device of the overhead video generation system according to the fifth embodiment.
- the display control unit 43b determines whether or not the vehicle 100 is accelerating (step S1421). When the vehicle 100 is accelerating (Yes in step S1421), the display control unit 43b shifts the virtual host vehicle image A so as to widen the direction opposite to the moving direction of the vehicle 100 in the turning direction. B is generated (step S1422). More specifically, when the virtual host vehicle image A is positioned at the upper left of the frame F in the overhead view video B, the display control unit 43b positions the virtual host vehicle image A away from the upper left end of the frame F. The display control unit 43 b positions the virtual host vehicle image A away from the upper right end of the frame F when the virtual host vehicle image A is positioned at the upper right of the frame F in the overhead view video B.
- step S1421 When the vehicle 100 is not accelerating (No in step S1421), the display control unit 43b generates an overhead image B in which the virtual host vehicle image A is shifted and positioned (step S1423).
- step S1423 The process of step S1423 is the same process as step S14.
- FIG. 10 is a diagram illustrating another example of an overhead video generated by the overhead video generation system according to the fifth embodiment.
- the center C of the virtual host vehicle image A is located closer to the center than the center C of the virtual host vehicle image A in FIG.
- the frame F includes the second frame F2 and the third frame F3 more broadly, and includes the first frame F1 and the fourth frame F4 narrowly.
- the bird's-eye view video B includes a virtual host vehicle image A, a wide range of rear video B2 and a left side video B3, and a narrow range of front video B1 and a right side video B4.
- a direction opposite to the movement direction is displayed.
- the overhead view video generation system 1A has the overhead view video B in the state where the vehicle 100 is accelerating between the state where the vehicle 100 is decelerated and the state where the vehicle 100 is accelerated.
- the overhead view video generation system 1A can display a direction opposite to the moving direction.
- the driver can check the direction opposite to the moving direction of the vehicle 100 in the turning direction in the overhead view video B in addition to the moving direction of the vehicle 100.
- the overhead view video generation system 1 ⁇ / b> A in addition to the movement of the vehicle 100 in the turning direction, according to whether the vehicle 100 is decelerating or accelerating, more specifically, around the vehicle 100. It is possible to more appropriately confirm information to be noted when moving in the turning direction.
- FIG. 11 is a block diagram illustrating a configuration example of the overhead view video generation system according to the sixth embodiment.
- the overhead view video generation system 1B of this embodiment is different from the overhead view video generation system 1 of the first embodiment in that it further includes a second imaging device 50.
- the second photographing apparatus 50 includes a left rear peripheral photographing camera 51 for photographing the left rear Q1 of the vehicle 100 and a right rear peripheral photographing camera 52 for photographing the right rear Q2.
- FIG. 12 is a plan view showing a range captured by the left rear peripheral photographing camera and the right rear peripheral photographing camera of the overhead view video generation system according to the sixth embodiment.
- the second imaging device 50 outputs the video captured by the left rear peripheral shooting camera 51 and the right rear peripheral shooting camera 52 to the video acquisition unit 41 of the overhead view video generation device 40.
- the left rear peripheral photographing camera 51 photographs an area indicated by reference sign Q1 in the figure.
- the region indicated by the reference sign Q1 is a region including a blind spot generated at the left rear when the driver performs confirmation by the side mirror and the rearview mirror and visual confirmation when turning left.
- the left rear peripheral camera 51 outputs the captured video to the video acquisition unit 41 of the overhead view video generation device 40.
- the right rear peripheral photographing camera 52 photographs an area indicated by a symbol Q2 in the drawing.
- the region indicated by the reference sign Q2 is a region including a blind spot generated at the right rear when the driver performs confirmation by the side mirror and the rearview mirror and visual confirmation when turning right.
- the right rear peripheral shooting camera 52 outputs the shot video to the video acquisition unit 41 of the overhead view video generation device 40.
- the video acquisition unit 41 further acquires the peripheral video output by the left rear peripheral camera 51 and the right rear peripheral camera 52.
- the video acquisition unit 41 outputs a peripheral video including the acquired left rear peripheral video and right rear peripheral video to the overhead view video generation unit 43a.
- step S14 of the flowchart shown in FIG. 2 the display control unit 43b generates a bird's-eye view video B in which the virtual vehicle image A is shifted and is generated, and the direction in which the vehicle 100 moves acquired by the video acquisition unit 41 is displayed.
- the side rear video B5 is generated.
- the display control unit 43b displays a bird's-eye view video B at the bottom of the frame F, and generates a video for displaying the side rear video B5 at the fifth frame F5 located at the top of the frame F.
- the fifth frame F5 may be a position in the frame F corresponding to the front side of the side mirror M of the virtual host vehicle image A.
- the fifth frame F5 may be a position in the frame F corresponding to a predetermined area such as one third of the upper part of the frame F.
- FIG. 13 is a diagram illustrating an overhead video generated by the overhead video generation system according to the sixth embodiment.
- the frame F includes the second frame F2 and the third frame F3 more broadly, includes the fourth frame F4 narrowly, and does not include the first frame F1.
- the upper portion of the frame F includes a fifth frame F5.
- the fifth frame F5 is a position in the frame F corresponding to the front of the side mirror M of the virtual host vehicle image A.
- the bird's-eye view video generation system 1B can generate a video that displays the bird's-eye view video B and the side rear video B5 that becomes a blind spot from the driver when turning right or left. For this reason, the bird's-eye view video generation system 1B can display the moving direction and the rear of the vehicle 100 more reliably. Thereby, in addition to the moving direction of the vehicle 100, the driver can confirm the area that becomes a blind spot from the driver when turning right or left in the side rear image B ⁇ b> 5. As described above, the overhead view video generation system 1B more appropriately confirms information to be noted around the vehicle, more specifically, when the vehicle 100 moves in the turning direction, according to the movement of the vehicle 100 in the turning direction. Can be possible.
- FIG. 14 is a block diagram illustrating a configuration example of the overhead view video generation system according to the seventh embodiment.
- the overhead view video generation system 1 ⁇ / b> C of the present embodiment is the first in that the overhead view video generation device 40 has a peripheral information acquisition unit 44 and acquires obstacle information related to the obstacle X detected by the obstacle detection unit 109. This is different from the overhead view video generation system 1 of the embodiment.
- the overhead image generation system 1C includes a display panel 101, a map information storage unit 102, a current location information detection unit 103, a direction indicator operation detection unit 104, a gear operation detection unit 105, and a steering operation detection.
- the unit 106, the angular velocity sensor 107, and the obstacle detection unit 109 are not included, each unit may be included in the overhead view video generation system 1C.
- the map information storage unit 102 stores, for example, map information that is a road map including intersection and road width information.
- the map information storage unit 102 outputs the stored map information to the peripheral information acquisition unit 44 of the overhead view video generation device 40 of the overhead view video generation system 1C.
- the obstacle detection unit 109 is a sensor that detects an obstacle X around the vehicle 100.
- the obstacle X is, for example, a wall surface, a curb, a guardrail, a road sign pole, a utility pole, a two-wheeled vehicle, a pedestrian, another vehicle that is parked and stopped, and the like. More specifically, the obstacle detection unit 109 detects an obstacle X that exists within a predetermined range of the vehicle 100. The predetermined range is, for example, 5 m.
- the obstacle detection unit 109 outputs the detected obstacle information of the obstacle X to the peripheral information acquisition unit 44 of the overhead image generation device 40 of the overhead image generation system 1C.
- the peripheral information acquisition unit 44 acquires the peripheral information of the vehicle 100.
- the surrounding information of the vehicle 100 is obstacle information of the obstacle X around the vehicle 100, map information including the width of the road around the vehicle 100, and the like. More specifically, the peripheral information acquisition unit 44 acquires the vehicle information output by the obstacle detection unit 109 or the map information storage unit 102. The peripheral information acquisition unit 44 outputs the acquired peripheral information to the display control unit 43b.
- the vehicle information acquisition unit 42 acquires vehicle information for estimating movement of the vehicle 100 in the turning direction.
- the information for estimating the movement of the vehicle 100 in the turning direction includes the current location information of the vehicle 100, the direction indicator operation information of the vehicle 100, the gear operation information of the vehicle 100, the steering operation information of the vehicle 100, and the angular velocity of the vehicle 100. It is at least any one vehicle information.
- the vehicle information acquisition unit 42 acquires vehicle information output by at least one of the current location information detection unit 103, the direction indicator operation detection unit 104, the gear operation detection unit 105, the steering operation detection unit 106, and the angular velocity sensor 107. .
- the control unit 43 processes the overhead view video B generated by the overhead view video generation unit 43 a so as to be displayed on the display panel 101 by being rotated by the display control unit 43 b, and sends it to the display panel 101.
- the control unit 43 processes the overhead view video B generated by the overhead view video generation unit 43 a so that the display control unit 43 b rotates and enlarges it so as to be displayed on the display panel 101, and sends it to the display panel 101.
- the display control unit 43 b is estimated to move in the turning direction of the vehicle 100.
- the overhead image B in a tilted state is generated such that the front side surface P1 on the outer wheel side in the turning direction in the virtual host vehicle image A is positioned on the upper side. For example, when turning right or left, the vehicle 100 moves in the turning direction.
- the display control unit 43b provides, as information to be noted when the vehicle 100 moves in the turning direction, an obstacle X (hereinafter referred to as “the vehicle 100”) that is less than a predetermined distance from the vehicle 100 when the vehicle 100 moves in the turning direction. If there is a surrounding obstacle X), or if the width of the road that passes when the vehicle 100 moves in the turning direction is smaller than a predetermined value, there is information to be noted when the vehicle 100 moves in the turning direction. Judge that it exists.
- FIG. 15 is a flowchart showing the flow of processing in the overhead video generation device of the overhead video generation system according to the seventh embodiment.
- the display control unit 43b determines whether or not a contact is predicted (step S21).
- the display control unit 43b predicts contact when there is an obstacle X around the vehicle 100 or when the width of a road that passes when the vehicle 100 moves in the turning direction is smaller than a predetermined value (Yes). Is determined.
- the display control unit 43b does not predict contact (No). judge.
- the display control unit 43b determines whether there is an obstacle X around the vehicle 100 based on the obstacle information acquired by the peripheral information acquisition unit 44.
- the distance less than the predetermined distance from the vehicle 100 is, for example, a range within 1 m from the vehicle 100 in the moving direction (turning direction) of the vehicle 100, for example.
- the display control unit 43b is a road that passes when the vehicle 100 moves in the turning direction based on the map information including the width of the road that passes when the vehicle 100 moves in the turning direction acquired by the surrounding information acquisition unit 44. It is determined whether or not the width is less than a predetermined value. More specifically, it is determined whether the width of the road in the turning direction of the vehicle 100 is smaller than a predetermined value.
- the predetermined value is 4 m, for example.
- FIG. 16 is a schematic diagram illustrating a situation around a vehicle that uses the overhead view video generation system according to the seventh embodiment.
- the direction in which the road R0 in which the vehicle 100 is traveling extends is illustrated as a traveling road direction D0 and the turning direction of the vehicle 100 is illustrated as D.
- the side surface front side P1 on the outer ring side in the turning direction D and the side surface P2 on the inner ring side in the turning direction D of the vehicle 100 are likely to contact the obstacle X.
- the vehicle 100 moves in the turning direction D such as when turning left or right
- the side surface front side P1 opposite to the rotation center of the vehicle 100 and the side surface P2 on the rotation center side of the vehicle 100 contact the obstacle X. It becomes easy to do.
- the vehicle 100 is turning right.
- the width W1 is smaller than a predetermined value.
- the curb X2 is present on the rotation center side at the right turn position.
- the side surface front side P1 of the vehicle 100 may be in contact with the wall surface X1.
- the side surface P2 of the vehicle 100 may come into contact with the curb stone X2.
- the display control unit 43b determines that the obstacle X exists.
- step S21 if it is not determined that the contact is predicted (No in step S21), the display control unit 43b proceeds to step S23.
- step S21 If the display control unit 43b determines that contact is predicted (Yes in step S21), the process proceeds to step S22.
- the display control unit 43b determines whether or not movement in the turning direction is estimated (step S22). More specifically, the display control unit 43b includes the map information around the vehicle 100 acquired by the peripheral information acquisition unit 44, the current location information of the vehicle 100 acquired by the vehicle information acquisition unit 42, the direction indicator operation information of the vehicle 100, and the vehicle. Whether or not the movement of the vehicle 100 in the turning direction is estimated is determined based on at least one of the vehicle operation information of the gear 100, the steering operation information of the vehicle 100, and the angular velocity of the vehicle 100.
- the movement in the turning direction of the vehicle 100 is estimated.
- the display control unit 43b based on the map information around the vehicle 100 and the current location information of the vehicle 100, when the vehicle 100 approaches within a predetermined distance of an intersection scheduled for a right / left turn in the route guidance information, It is determined that the movement of the vehicle 100 in the turning direction is estimated.
- the predetermined distance may be 5 m, for example.
- the display control unit 43b obtains the map information around the vehicle 100 acquired by the peripheral information acquisition unit 44, the current location information of the vehicle 100 acquired by the vehicle information acquisition unit 42, and the direction indicator operation acquired by the vehicle information acquisition unit 42. A case where it is determined whether or not the movement of the vehicle 100 in the turning direction is estimated based on at least one of the information, the steering operation information, and the angular velocity of the vehicle 100 will be described.
- the display control unit 43b is based on at least one of map information around the vehicle 100, current location information of the vehicle 100, direction indicator operation information, steering operation information, and angular velocity of the vehicle 100.
- Steering operation is performed in a direction deviating from the traveling road direction D0 when 100 is within the predetermined distance of the intersection where the route guidance information is scheduled to turn right and left and the direction indicator is operated. If the angular velocity changes in a direction deviating from the traveling road direction D0, it is determined that the movement in the turning direction of the vehicle 100 is estimated.
- the predetermined distance may be 5 m, for example. For example, when the deviation from the traveling road direction D0 is 15 ° or more, it may be determined that the movement is in a deviating direction.
- the combination of at least one of the map information around the vehicle 100, the current location information of the vehicle 100, and the direction indicator operation information, the steering operation information, and the angular velocity of the vehicle 100 is determined, for example, This is because, although the route guidance provides guidance for turning left and right, it is not estimated that the vehicle 100 will accidentally move in the turning direction when the driver goes straight without following the route guidance.
- the display control unit 43b stores the estimated turning direction of the vehicle 100 in the storage device 30.
- the display control unit 43b determines whether or not the movement of the turning direction of the vehicle 100 is estimated by another method described in the first embodiment, and stores the turning direction of the vehicle 100 in the storage device 30. May be.
- step S22 If the movement of the vehicle 100 in the turning direction is not estimated (No in step S22), the display control unit 43b proceeds to step S23.
- Step S22 When it is estimated that the vehicle 100 moves in the turning direction (Yes in Step S22), the display control unit 43b proceeds to Step S24.
- the display control unit 43b generates a normal overhead view video B (step S23). More specifically, the display control unit 43b generates a bird's-eye view image B including a virtual host vehicle image A looking down at the vehicle 100 from above with the vehicle 100 positioned in a straight line parallel to the vertical direction of the frame F. To do. In the bird's-eye view video B, the center C of the virtual host vehicle image A is located at the center of the frame F.
- the display control unit 43b acquires the turning direction of the vehicle 100 (step S24).
- the display control unit 43b acquires the turning direction of the vehicle 100 stored in the storage device 30 in step S22.
- the display control unit 43b generates a bird's-eye view video B displayed on the display panel 101 while being tilted in the turning direction (step S25). More specifically, the display control unit 43b displays the bird's-eye view video B including the virtual host vehicle image A in a tilted state so that the front side surface P1 on the outer ring side in the turning direction of the virtual host vehicle image A is positioned above the frame F. Generate. In the present embodiment, the display control unit 43b displays the overhead image B including the virtual host vehicle image A around the center C of the virtual host vehicle image A on the display panel 101 in a state of being rotated and tilted in the turning direction. To do.
- the display control unit 43b determines whether the turning direction of the vehicle 100 is located in the left or right direction with respect to the traveling road direction D0. When determining that the turning direction of the vehicle 100 is the right direction, the display control unit 43b tilts the bird's-eye view video B with respect to the frame F by a predetermined angle around the center C of the virtual host vehicle image A. In the state, the overhead view video B is generated.
- the predetermined angle is, for example, 20 ° or more and 45 ° or less.
- the display control unit 43b determines that the turning direction of the vehicle 100 is the left direction
- the display control unit 43b tilts the overhead view video B with respect to the frame F by a predetermined angle around the center C of the virtual host vehicle image A.
- the overhead view video B is generated.
- the predetermined angle is, for example, 20 ° or more and 45 ° or less.
- the display control unit 43b generates the overhead view video B tilted clockwise or counterclockwise with respect to the frame F.
- the left front of the virtual host vehicle image A and its periphery, and the right side surface and its periphery are widely displayed on the bird's-eye view image B. .
- the bird's-eye view video B When the bird's-eye view video B is tilted counterclockwise with respect to the frame F, the bird's-eye view video B displays the right front and its periphery, and the left side and its periphery of the virtual host vehicle image A widely. Since the virtual host vehicle image A shows the vehicle 100, it is possible to widely display a range in which information to be noted when moving in the turning direction is displayed around the vehicle 100.
- FIG. 17 is a diagram illustrating an overhead video generated by the overhead video generation system according to the seventh embodiment.
- the bird's-eye view video B widely displays the front side P1 of the vehicle 100 and the periphery of the wall surface X1 that is the obstacle X, and the side surface P2 of the vehicle 100 and the periphery of the curb X2 that is the obstacle X.
- FIG. 18 is a diagram showing a conventional overhead view video.
- the virtual host vehicle image A is not inclined with respect to the frame F, and the center line LA of the virtual host vehicle image A coincides with the center line LF of the frame F.
- the bird's-eye view image B displayed on the rectangular frame F a portion easily touched by the vehicle 100 and the obstacle X, specifically, the side surface front side P1 and the periphery of the wall surface X1, and the vehicle 100
- the side surface P2 and the periphery of the curb X2 are displayed narrower than those in FIG.
- FIG. 19 is a diagram illustrating another example of an overhead video generated by the overhead video generation system according to the seventh embodiment.
- the side surface front P1 and the periphery of the wall surface X1 of the vehicle 100, and the side surface P2 of the vehicle 100 and the periphery of the curb X2 are displayed more widely.
- the front side P1 and the periphery of the wall surface X1 of the vehicle 100 and the side surface P2 of the vehicle 100 and the periphery of the curb X2 are located near the center line LF of the frame F.
- FIG. 20 is a diagram illustrating another example of an overhead video generated by the overhead video generation system according to the seventh embodiment.
- the side surface front P1 and the periphery of the wall surface X1 of the vehicle 100, and the side surface P2 of the vehicle 100 and the periphery of the curb X2 are displayed more widely.
- the front side P1 and the periphery of the wall surface X1 of the vehicle 100 and the side surface P2 of the vehicle 100 and the periphery of the curb X2 are located near the center line LF of the frame F.
- the display control unit 43b rotates the overhead video B with respect to the overhead video B generated by the overhead video generation unit 43a, and further moves the overhead video B in the direction opposite to the turning direction.
- the generated overhead view video B is generated.
- the display control unit 43b When the movement of the vehicle 100 in the turning direction is completed, the display control unit 43b generates a bird's-eye view video B that cancels the inclination of the virtual host vehicle image A and returns to the original state.
- the display control unit 43b Based on the map information around the vehicle 100 acquired by the peripheral information acquisition unit 44 and the current location information of the vehicle 100 acquired by the vehicle information acquisition unit 42 in step S22 of the flowchart shown in FIG. A case where the movement of the vehicle 100 in the turning direction is estimated will be described.
- the display control unit 43b based on the map information around the vehicle 100 and the current location information of the vehicle 100, when the vehicle 100 is more than a predetermined distance away from the intersection where a left / right turn is planned in the route guidance information, It determines with the movement of the turning direction of the vehicle 100 having been completed.
- the predetermined distance may be 5 m, for example.
- step S22 of the flowchart shown in FIG. 15 the display control unit 43b obtains the map information around the vehicle 100 acquired by the peripheral information acquisition unit 44, the current location information of the vehicle 100 acquired by the vehicle information acquisition unit 42, and the vehicle information.
- the display control unit 43b is based on at least one of map information around the vehicle 100, current location information of the vehicle 100, direction indicator operation information, steering operation information, and angular velocity of the vehicle 100.
- the predetermined distance may be 5 m, for example.
- the display control unit 43b may determine that the movement of the vehicle 100 in the turning direction is completed by another method described in the first embodiment.
- the display control unit 43b determines that the movement in the turning direction of the vehicle 100 is completed, and generates a bird's-eye view image B in which the virtual vehicle image A is returned to the original state.
- the overhead view video generation system 1C generates the overhead view video B and outputs the video signal to the display panel 101 outside the overhead view video generation system 1C.
- the external display panel 101 displays, for example, the overhead view video B together with the navigation based on the video signal output from the overhead view video generation system 1C.
- the overhead view video generation system 1 ⁇ / b> C has the vehicle 100 around the vehicle 100 based on the peripheral information acquired by the peripheral information acquisition unit 44 and the vehicle information acquired by the vehicle information acquisition unit 42.
- an overhead image B in a state of being tilted so that the front side surface P1 on the outer wheel side in the turning direction in the virtual host vehicle image A is positioned on the upper side is generated.
- the bird's-eye view video B is displayed while being tilted clockwise with respect to the frame F.
- the bird's-eye view image B includes the left front of the vehicle 100, its periphery, and the right side surface.
- the surrounding area can be displayed widely.
- the bird's-eye view image B is displayed tilted counterclockwise with respect to the frame F, and the bird's-eye view image B includes the right front side, the periphery thereof, the left side surface, and the periphery thereof. Can be displayed widely.
- the overhead view video generation system 1C more appropriately displays information to be noted when the vehicle 100 moves in the vicinity of the vehicle 100, more specifically, in the turning direction, even when the rectangular display device is used.
- a verifiable overhead image B can be generated.
- the bird's-eye view video generation system 1 ⁇ / b> C uses the bird's-eye view image B obtained by tilting the center line LA of the virtual host vehicle image A by 45 ° clockwise with respect to the center line LF of the frame F, or the center line LA of the virtual host vehicle image A as the frame F. It is possible to generate a bird's-eye view image B in which the side surface front P1 is positioned on the center line LF of the frame F. Thereby, the bird's-eye view video B can display the front side surface P1 and the periphery of the wall surface X1 of the vehicle 100, and the side surface P2 of the vehicle 100 and the periphery of the curb X2 more widely.
- the bird's-eye view video B can position the front side P1 of the vehicle 100 and the periphery of the wall surface X1, and the side surface P2 of the vehicle 100 and the periphery of the curb X2 near the center line LF of the frame F.
- the overhead view video generation system 1C can generate the overhead view video B that can more appropriately confirm the information to be noted when the vehicle 100 moves in the periphery, more specifically, in the turning direction of the vehicle 100. .
- FIG. 21 is a diagram illustrating an overhead video generated by the overhead video generation system according to the eighth embodiment.
- the overhead image generation system 1C has the same basic configuration as the overhead image generation system 1C of the seventh embodiment.
- the same components as those in the overhead view video generation system 1C are denoted by the same reference numerals or corresponding reference numerals, and detailed description thereof is omitted.
- the overhead image generation system 1C of the present embodiment is different from the overhead image generation system 1C of the seventh embodiment in the processing in the overhead image generation device 40.
- the display control unit 43b expands the bird's-eye view video B when generating the bird's-eye view video B tilted with the bird's-eye view video B generated by the bird's-eye view video generation unit 43a in step S25 of the flowchart shown in FIG.
- the turning direction of the vehicle 100 is the right direction, and as shown in FIG. 21, the overhead image B is such that the center line LA of the virtual vehicle image A is inclined with respect to the center line LF of the frame F.
- the bird's-eye view video B is displayed on an enlarged scale as compared with FIG. Thereby, in the bird's-eye view image B, the side surface front P1 and the periphery of the wall surface X1 of the vehicle 100, and the side surface P2 of the vehicle 100 and the periphery of the curb X2 are displayed in an enlarged manner.
- the overhead video generation system 1C generates the overhead video B obtained by enlarging the overhead video B generated by the overhead video generation unit 43a. Therefore, the bird's-eye view video generation system 1C can enlarge and display the front side P1 of the vehicle 100 and the periphery of the wall surface X1, and the side surface P2 of the vehicle 100 and the periphery of the curb X2. As described above, the overhead view video generation system 1C can generate the overhead view video B that can more appropriately confirm the information around the vehicle 100, more specifically, information that should be noted when the vehicle 100 moves in the turning direction. it can.
- FIG. 22 is a diagram illustrating an overhead video generated by the overhead video generation system according to the ninth embodiment.
- the overhead view video generation system 1C of the present embodiment differs from the overhead view video generation system 1C of the first embodiment in the processing in the overhead view video generation device 40.
- step S25 the display control unit 43b generates the bird's-eye view video B in a direction different from the turning direction of the vehicle 100 when the bird's-eye view image B generated by the overhead view image generation unit 43a is tilted.
- the display control unit 43b generates the vehicle 100 when generating the bird's-eye view video B tilted so that the front side face P1 on the outer ring side in the turning direction of the virtual host vehicle image A is positioned above the frame F.
- the bird's-eye view video B is generated by shifting the bird's-eye view video B in a direction different from the turning direction.
- the center C of the virtual host vehicle image A is a position moved from the center line LF of the frame F in a direction different from the turning direction.
- the display control unit 43b When the vehicle 100 turns to the right, the display control unit 43b generates an overhead video B that is shifted leftward from the overhead video B generated by the overhead video generation unit 43a.
- the display control unit 43b When the vehicle 100 turns to the left, the display control unit 43b generates an overhead image B in which the overhead image B generated by the overhead image generation unit 43a is shifted to the right.
- the turning direction of the vehicle 100 is the right direction
- the overhead image B is displayed so that the center C of the virtual vehicle image A is closer to the left side than the center line LF of the frame F as shown in FIG. Has been.
- the side surface P1 and the periphery of the wall surface X1 which is the obstacle X
- the side surface P2 and the periphery of the curb X2 are displayed more widely.
- the front side P1 and the periphery of the wall surface X1 that is the obstacle X, and the side surface P2 and the periphery of the curb X2 are located near the center line LF of the frame F.
- the overhead view video generation system 1C generates a bird's-eye view video B generated by tilting the overhead view video B generated by the overhead view video generation unit 43a in a direction different from the turning direction of the vehicle 100.
- the collected overhead view video B is generated.
- 1 C of bird's-eye view image generation systems can display the part which the vehicle 100 touches easily, and the obstruction X more widely.
- the overhead view video generation system 1 ⁇ / b> C can position a portion that easily contacts the vehicle 100 and the obstacle X in the overhead view video B near the center line LF of the frame F.
- the overhead view video generation system 1C can generate the overhead view video B that can more appropriately confirm the information that should be noted when the vehicle 100 moves in the turning direction, more specifically, around the vehicle 100. .
- FIG. 23 is a block diagram illustrating a configuration example of an overhead video generation system according to the tenth embodiment.
- the bird's-eye view video generation system 1D of the present embodiment is such that the vehicle information acquisition unit 42 of the bird's-eye view image generation device 40 further acquires the vehicle speed from the vehicle speed sensor (vehicle speed acquisition unit) 108. Different from 1C.
- the vehicle information acquisition unit 42 further acquires the vehicle speed output by the vehicle speed sensor 108.
- the vehicle information acquisition unit 42 outputs vehicle information including the acquired vehicle speed to the display control unit 43b.
- the display control unit 43b A bird's-eye view video B in a tilted state is generated so that the front side face P1 on the outer ring side in the turning direction in the virtual host vehicle image A is positioned on the upper side.
- the predetermined value may be a speed corresponding to 10 km / h or slow driving, for example. This is to assist the driver in driving when the driver is predicted to drive more carefully by decelerating to a speed lower than the predetermined value.
- FIG. 24 is a flowchart showing a flow of processing in the overhead video generation device of the overhead video generation system according to the tenth embodiment.
- Step S31 is the same process as step S21.
- the display control unit 43b determines whether or not movement in the turning direction is estimated (step S32). Step S32 is the same process as step S22.
- the display control unit 43b determines whether or not the vehicle speed is smaller than a predetermined value (step S33). If it is not determined that the vehicle speed is smaller than the predetermined value (No in step S33), the display control unit 43b proceeds to step S34. If the display control unit 43b determines that the vehicle speed is smaller than the predetermined value (Yes in step S33), the display control unit 43b proceeds to step S35.
- the display control unit 43b generates a bird's-eye view video B in which the virtual host vehicle image A is arranged straight (step S34).
- Step S34 is the same process as step S23.
- the display control unit 43b acquires the turning direction of the vehicle 100 (step S35).
- Step S35 is the same process as step S24.
- the display control unit 43b generates a bird's-eye view video B in which the virtual host vehicle image A is tilted (step S36).
- Step S36 is the same process as step S25.
- the overhead image B generated by the overhead image generation unit 43a is displayed.
- a tilted overhead view video B is generated.
- the overhead view video generation system 1D has information that should be noted when the vehicle 100 moves in the turning direction around the vehicle 100, and further, when the vehicle speed is smaller than a predetermined value, A bird's-eye view video B in a state of being tilted so that the front side face P1 on the outer wheel side in the turning direction in the virtual vehicle image A is positioned on the upper side is generated.
- the overhead view video generation system 1D can support the driving of the driver. .
- the bird's-eye view video generation system 1D can more appropriately confirm information to be noted when moving in the vicinity of the vehicle 100, more specifically, in the turning direction of the vehicle 100, according to the driving situation.
- B can be generated and driving assistance can be performed appropriately.
- the constituent elements of the overhead view video generation system 1 shown in the figure are functionally conceptual, and need not be physically configured as shown in the figure. That is, the specific form of each device is not limited to the one shown in the figure, and all or a part of them is functionally or physically distributed or integrated in arbitrary units according to the processing load or usage status of each device. May be.
- the control unit 43 converts the virtual vehicle image A when the overhead view video generation unit 43a is viewed from above and the video acquired by the video acquisition unit 41 into video viewed from above the vehicle 100, so that the overhead view is generated.
- the video is output as video B
- the display control unit 43b processes the virtual vehicle image A and the video around the virtual vehicle image A out of the video generated by the overhead view video generation unit 43a, and displays the video on the display panel 101.
- the present invention is not limited to this configuration.
- the display control unit determines how to arrange the virtual vehicle image A and the video around the virtual vehicle image A in the frame F, and the overhead video generation unit is controlled by the display control unit.
- the virtual host vehicle image A and the video acquired by the video acquisition unit 41 are The image may be converted into an image viewed from above 100 and output to the display control unit as an overhead image B, and the display control unit may send the overhead image B to the display panel 101.
- the overhead image generation unit 27 of the overhead image generation system 1E may be one of the functions of the first imaging device 20.
- FIG. 25 is a block diagram illustrating another configuration example of the overhead view video generation system.
- the video acquisition unit 41 of the overhead view video generation device 40 acquires the overhead view video B generated by the overhead view video generation unit 27 of the first imaging device 20.
- the display control unit 43b processes the virtual vehicle image A and the video around the virtual vehicle image A from the overhead video B generated by the overhead video generation unit 27 of the first imaging device 20 into an extracted video, Send to display panel 101.
- the overhead view video generation unit 27 of the first imaging device 20 and the display control unit 43b of the overhead view video generation device 40 realize a function as a control unit.
- the overhead image generation unit 27 of the overhead image generation system 1F may be one of the functions of the first imaging device 20.
- FIG. 26 is a block diagram illustrating another configuration example of the overhead view video generation system.
- the video acquisition unit 41 of the overhead view video generation device 40 acquires the overhead view video B generated by the overhead view video generation unit 27 of the first imaging device 20.
- the display control unit 43b processes the virtual vehicle image A and the video around the virtual vehicle image A from the overhead video B generated by the overhead video generation unit 27 of the first imaging device 20 into an extracted video, Send to display panel 101.
- the overhead view video generation unit 27 of the first imaging device 20 and the display control unit 43b of the overhead view video generation device 40 realize a function as a control unit.
- the configuration of the overhead view video generation system 1 is realized by, for example, a program loaded in a memory as software.
- the above embodiment has been described as a functional block realized by cooperation of these hardware or software. That is, these functional blocks can be realized in various forms by hardware only, software only, or a combination thereof.
- an overhead video B shown in FIG. 27 is a combination of the second embodiment and the fourth embodiment.
- FIG. 27 is a diagram illustrating another example of the overhead view image generated by the overhead view image generation system.
- the display control unit 43b may generate such a bird's-eye view video B in step S14 of the flowchart shown in FIG.
- the bird's-eye view video B is located at a position where the virtual vehicle image A is located in the upper right of the frame F and the rear side of the side mirror M of the vehicle 100 is accommodated in the frame F. It is displayed close to the edge.
- the bird's-eye view video B displays the left side and the rear, which are the moving directions of the vehicle 100, more widely.
- the frame F includes the second frame F2 and the third frame F3 more broadly, and does not include the first frame F1 and the fourth frame F4.
- the bird's-eye view video generation system 1 can generate the bird's-eye view image B that facilitates confirmation of the periphery of the vehicle in accordance with the movement of the vehicle 100 in the turning direction.
- a bird's-eye view video B shown in FIG. 28 is a combination of the third embodiment and the fourth embodiment.
- FIG. 28 is a diagram illustrating another example of the overhead view video generated by the overhead view video generation system.
- the display control unit 43b may generate such a bird's-eye view video B in step S14 of the flowchart shown in FIG.
- the virtual host vehicle image A is displayed in the upper right of the frame F to be smaller than FIG. 3, and the virtual host vehicle image A is displayed near the upper right end of the frame F.
- the bird's-eye view video B displays the left side and the rear, which are the moving directions of the vehicle 100, more widely.
- the frame F includes the second frame F2 and the third frame F3 more broadly, and does not include the first frame F1 and the fourth frame F4.
- the bird's-eye view video generation system 1 can generate the bird's-eye view image B that facilitates confirmation of the periphery of the vehicle in accordance with the movement of the vehicle 100 in the turning direction.
- an overhead video B shown in FIG. 29 is a combination of the second embodiment, the third embodiment, and the fourth embodiment.
- FIG. 29 is a diagram illustrating another example of the overhead view video generated by the overhead view video generation system.
- the display control unit 43b may generate such a bird's-eye view video B in step S14 of the flowchart shown in FIG.
- the bird's-eye view video B is located at a position where the virtual vehicle image A is located in the upper right of the frame F and the rear side of the side mirror M of the vehicle 100 fits in the frame F, and the virtual vehicle image A is located in the upper right of the frame F.
- 3 is displayed smaller than FIG. 3 and the virtual vehicle image A is displayed near the upper right end of the frame F.
- the bird's-eye view video B displays the left side and the rear, which are the moving directions of the vehicle 100, more widely.
- the frame F includes the second frame F2 and the third frame F3 more broadly, and does not include the first frame F1 and the fourth frame F4.
- the bird's-eye view video generation system 1 can generate the bird's-eye view image B that facilitates confirmation of the periphery of the vehicle in accordance with the movement of the vehicle 100 in the turning direction.
- step S14 of the flowchart shown in FIG. 2 the display control unit 43b generates the desired overhead view video B, the front peripheral photographing camera 21, the rear peripheral photographing camera 22, and the left-hand side photographing of the first photographing device 20. Even if control is performed to change the camera direction and angle of view of the peripheral photographing camera 23, the right-side peripheral photographing camera 24, and the left rear peripheral photographing camera 51 and the right rear peripheral photographing camera 52 of the second photographing device 50. Good.
- the display control unit 43b in step S25 of the flowchart shown in FIG. 15, generates a desired bird's-eye view video B, the front peripheral photographing camera 21 and the rear peripheral photographing camera 22 on the left side of the first photographing device 20.
- the display control unit 43b may change the direction of the camera that captures the moving direction of the vehicle 100 or widen the angle of view.
- the bird's-eye view video generation system 1 can generate the bird's-eye view image B that facilitates confirmation of the periphery of the vehicle in accordance with the movement of the vehicle 100 in the turning direction.
- the display control unit 43b When it is estimated that the vehicle 100 moves in the turning direction in the flowchart shown in FIG. 2, the display control unit 43b generates the overhead view video B in which the virtual host vehicle image A is shifted and positioned in step S14.
- the position of the virtual vehicle image A in the frame F may be gradually shifted according to a predetermined condition.
- the display control unit 43 b may gradually shift the position of the virtual host vehicle image A in the frame F according to the acceleration of the vehicle 100.
- the position of the virtual host vehicle image A in the frame F gradually changes. For this reason, the driver can more easily check the vicinity of the vehicle.
- step S22 is executed after step S21.
- the order of step S21 and step S22 may be reversed.
- the display control unit 43b may determine whether or not contact is predicted after determining whether or not movement in the turning direction is estimated.
- step S32 is executed after execution of step S31
- step S33 is executed after execution of step S32.
- the order of S31, step S32, and step S33 may be different. More specifically, for example, the display control unit 43b determines whether or not contact is predicted after determining whether or not movement in the turning direction is estimated, and then determines whether or not the vehicle speed is smaller than a predetermined value. You may make it determine.
- the obstacle X exists on the side surface front side P1 on the outer wheel side in the turning direction and the side surface P2 on the inner wheel side in the turning direction of the vehicle 100.
- the position of the obstacle X is not limited to this.
- FIG. 30 is a schematic diagram illustrating another situation around the vehicle using the overhead view video generation system.
- FIG. 31 is a diagram illustrating another example of the overhead view video generated by the overhead view video generation system.
- the vehicle 100 is turning right.
- the width of the road in the turning direction is larger than the predetermined value, but the wall surface X1 may come into contact with the side surface front side P1.
- the display control unit 43b determines that contact is predicted.
- the bird's-eye view video B is enlarged, and the bird's-eye view video B is shifted and displayed below the frame F as a direction different from the turning direction of the vehicle 100.
- the side front P1 of the vehicle 100 is enlarged and displayed.
- FIG. 32 is a schematic diagram illustrating another situation around the vehicle using the overhead view video generation system.
- FIG. 33 is a diagram illustrating another example of the overhead video generated by the overhead video generation system.
- the vehicle 100 is turning right.
- the width of the road in the turning direction is larger than a predetermined value, but the curb X2 exists at a position where the vehicle turns to the right, and there is a possibility that the curb may come into contact with the side surface P2.
- the display control unit 43b determines that contact is predicted. In this case, as shown in FIG.
- the bird's-eye view video B is enlarged and displayed with the bird's-eye view video B shifted and displayed above the frame F as a direction different from the turning direction of the vehicle 100.
- the side surface P2 of the vehicle 100 is enlarged and displayed.
- the display control unit 43b may generate a bird's-eye view video B that highlights the obstacle X and a portion where the contact of the vehicle 100 is predicted with a different color. For example, in FIG. 17, a bird's-eye view image B in which the colors of the front side P1 of the vehicle 100 and the periphery of the wall surface X1 that is the obstacle X and the side surface P2 of the vehicle 100 and the periphery of the curb X2 are changed may be generated. .
- the obstacle detection unit 109 has been described as a sensor that detects an obstacle X around the vehicle 100, but is not limited thereto.
- the obstacle detection unit 109 may detect the obstacle X around the vehicle 100 by performing image processing on the peripheral video output from the first imaging device 20.
- the display control unit 43 b When it is estimated that the vehicle 100 moves in the turning direction in the flowchart illustrated in FIG. 15, the display control unit 43 b generates the overhead image B that is obtained by tilting the overhead image B generated by the overhead image generation unit 43 a.
- the bird's-eye view video B may be gradually inclined according to a predetermined condition.
- the display control unit 43b may gradually tilt the overhead view video B in the frame F according to map information around the vehicle 100, current location information of the vehicle 100, steering operation information, angular velocity of the vehicle 100, and the like.
- the display control unit 43b may gradually restore the bird's-eye view video B in the frame F based on the map information around the vehicle 100, the current location information of the vehicle 100, the steering operation information, the angular velocity of the vehicle 100, and the like. Thereby, in the overhead view video B displayed on the external display panel 101, the inclination of the overhead view video B in the frame F gradually changes. For this reason, the bird's-eye view video generation system 1 can generate the bird's-eye view video B that can more appropriately confirm information to be noted when the vehicle 100 moves in the turning direction, more specifically, in the turning direction. .
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Signal Processing (AREA)
- Closed-Circuit Television Systems (AREA)
- Traffic Control Systems (AREA)
Abstract
車両の周辺を撮影した周辺映像を取得する映像取得部41と、車両の旋回方向への移動を推定する車両情報を取得する車両情報取得部42と、車両情報取得部42で取得した車両情報に基づいて、車両の旋回方向への移動が推定された場合、推定された旋回方向において確認が必要となる方向の周辺映像が広く表示されるように仮想自車両画像を含む俯瞰映像の表示位置を変更した俯瞰映像を生成する制御部43とを有する。生成された俯瞰映像は、表示制御部43bにより表示パネル101に表示される。
Description
本発明は、俯瞰映像生成装置、俯瞰映像生成システム、俯瞰映像生成方法およびプログラムに関する。
車両の俯瞰映像を車両画像と共に表示する技術が知られている(例えば、特許文献1、特許文献2参照)。特許文献1の技術は、車両が前進から後退に切り替わったとき、車両画像よりも後方について俯瞰映像の表示領域を広げる。特許文献2の技術は、車両の走行時の運転支援のため、狭路や狭い屈曲路を走行中に最も接触の危険性が高い車体部分を含んだ範囲の映像に自動的に切り替えて表示する。
車両の運転手は、車両の旋回時に、サイドミラーとバックミラーとによる確認と、目視による確認とで、後方を含めた車両周辺を確認する。ところが、サイドミラーおよびバックミラーは、車両の旋回時に、注意すべき情報が表示される範囲、言い換えると、確認が必要となる方向が視認しにくい場合がある。そこで、車両の旋回時に、車両周辺の確認を可能にする技術が望まれている。
本発明は、上記に鑑みてなされたものであって、適切に車両周辺の確認を可能とすることを目的とする。
上述した課題を解決し、目的を達成するために、本発明に係る俯瞰映像生成装置は、車両の周辺を撮影した周辺映像を取得する映像取得部と、前記車両の旋回方向への移動を推定するための車両情報を取得する車両情報取得部と、前記映像取得部が取得した周辺映像に基づき、前記車両を示す仮想自車両画像を含み、前記車両を上方から見下ろした俯瞰映像を生成する制御部と、を備え、前記制御部は、前記車両情報取得部で取得した車両情報に基づいて、前記車両の旋回方向への移動が推定された場合、推定された旋回方向において確認が必要となる方向の周辺映像が広く表示されるように前記仮想自車両画像を含む前記俯瞰映像の表示位置を変更した俯瞰映像を生成することを特徴とする。
本発明に係る俯瞰映像生成システムは、上記の俯瞰映像生成装置と、前記車両の周辺を撮影し前記映像取得部に周辺映像を供給する撮影部と、または前記制御部が生成した俯瞰映像を表示する表示制御部および表示パネルと、の少なくともいずれかを有することを特徴とする。
本発明に係る俯瞰映像生成方法は、車両の周辺を撮影した周辺映像を取得する映像取得ステップと、前記車両の旋回方向への移動を推定するための車両情報を取得する車両情報取得ステップと、前記映像取得ステップで取得した周辺映像に基づき、前記車両を示す仮想自車両画像を含み、前記車両を上方から見下ろした俯瞰映像を生成する制御ステップと、を含み、前記制御ステップにおいては、前記車両情報取得ステップで取得した車両情報に基づいて、前記車両の旋回方向への移動が推定された場合、推定された旋回方向において確認が必要となる方向の周辺映像が広く表示されるように前記仮想自車両画像を含む前記俯瞰映像の表示位置を変更した俯瞰映像を生成することを特徴とする。
本発明に係るプログラムは、車両の周辺を撮影した周辺映像を取得する映像取得ステップと、前記車両の旋回方向への移動を推定するための車両情報を取得する車両情報取得ステップと、前記映像取得ステップで取得した周辺映像に基づき、前記車両を示す仮想自車両画像を含み、前記車両を上方から見下ろした俯瞰映像を生成する制御ステップと、を含み、前記制御ステップにおいては、前記車両情報取得ステップで取得した車両情報に基づいて、前記車両の旋回方向への移動が推定された場合、推定された旋回方向において確認が必要となる方向の周辺映像が広く表示されるように前記仮想自車両画像を含む前記俯瞰映像の表示位置を変更した俯瞰映像を生成することを特徴とする、上記各ステップを俯瞰映像生成装置として動作するコンピュータに実行させる。
本発明によれば、適切に車両周辺の確認を可能とすることができるという効果を奏する。
以下に添付図面を参照して、本発明に係る俯瞰映像生成装置40、俯瞰映像生成システム1、俯瞰映像生成方法およびプログラムの実施形態を詳細に説明する。なお、以下の実施形態により本発明が限定されるものではない。
[第一実施形態]
図1は、第一実施形態に係る俯瞰映像生成システムの構成例を示すブロック図である。俯瞰映像生成システム1は、車両100の俯瞰映像B(図3参照)を生成する。
図1は、第一実施形態に係る俯瞰映像生成システムの構成例を示すブロック図である。俯瞰映像生成システム1は、車両100の俯瞰映像B(図3参照)を生成する。
まず、車両100について説明する。車両100は、図1に示すように、俯瞰映像生成システム1と、表示パネル101と、地図情報記憶部102と、現在地情報検出部103と、方向指示器操作検出部104と、ギア操作検出部105と、ステアリング操作検出部106と、角速度センサ107とを有する。本実施形態では、俯瞰映像生成システム1に、表示パネル101と、地図情報記憶部102と、現在地情報検出部103と、方向指示器操作検出部104と、ギア操作検出部105と、ステアリング操作検出部106と、角速度センサ107とを含めていないが、各部を俯瞰映像生成システム1に含めてもよい。俯瞰映像生成システム1は、車両100に載置されているものに加えて、可搬型で車両において利用可能な装置であってもよい。
表示パネル101は、例えば、液晶ディスプレイ(LCD:Liquid Crystal Display)または有機EL(Organic Electro-Luminescence)ディスプレイを含むディスプレイである。表示パネル101は、俯瞰映像生成システム1の俯瞰映像生成装置40から出力された映像信号に基づいて、俯瞰映像を表示する。表示パネル101は、俯瞰映像生成システム1に専用のものであっても、例えば、ナビゲーションシステムを含む他のシステムと共同で使用するものであってもよい。表示パネル101は、運転者から視認容易な位置に配置されている。
地図情報記憶部102は、地図情報を記憶する。地図情報は、例えば、交差点を含む道路地図である。地図情報は、複数車線を有する道路においては車線情報を含んでもよい。地図情報は、目的地に対する経路案内情報を含んでもよい。経路案内情報は、例えば、交差点における右左折情報と複数車線を有する道路の交差点付近における車線変更情報とを含んでもよい。地図情報記憶部102は、記憶している地図情報を俯瞰映像生成システム1の俯瞰映像生成装置40の車両情報取得部42へ出力する。
現在地情報検出部103は、車両100の現在地を検出する。現在地情報検出部103は、例えば、GPS(Global Positioning System)受信機である。現在地情報検出部103は、取得した車両100の現在地情報を俯瞰映像生成システム1の俯瞰映像生成装置40の車両情報取得部42へ出力する。
方向指示器操作検出部104は、方向指示器に対する操作を検出する。より詳しくは、方向指示器操作検出部104は、例えば、方向指示器を操作するスイッチに対する操作を方向指示器操作情報として検出する。方向指示器操作検出部104は、検出した方向指示器操作情報を俯瞰映像生成システム1の俯瞰映像生成装置40の車両情報取得部42へ出力する。
ギア操作検出部105は、ギアに対する操作を検出する。より詳しくは、ギア操作検出部105は、ギアに対する選択操作をギア操作情報として検出する。ギア操作検出部105は、検出したギア操作情報を俯瞰映像生成システム1の俯瞰映像生成装置40の車両情報取得部42へ出力する。
ステアリング操作検出部106は、ステアリングホイールに対する操作を検出する。より詳しくは、ステアリング操作検出部106は、ステアリングホイールの操作角度をステアリング操作情報として検出する。ステアリング操作検出部106は、検出したステアリング操作情報を俯瞰映像生成システム1の俯瞰映像生成装置40の車両情報取得部42へ出力する。
角速度センサ107は、車両100の角速度を検出する。角速度センサ107は、例えばジャイロセンサである。角速度センサ107は、検出した角速度を俯瞰映像生成システム1の俯瞰映像生成装置40の車両情報取得部42へ出力する。
俯瞰映像生成システム1は、第一撮影装置20と、記憶装置30と、俯瞰映像生成装置40とを有する。
第一撮影装置20は、車両100の周辺を撮影する。第一撮影装置20は、前方用周辺撮影カメラ21と、後方用周辺撮影カメラ22と、左側方用周辺撮影カメラ23と、右側方用周辺撮影カメラ24とを有する。第一撮影装置20は、前方用周辺撮影カメラ21と後方用周辺撮影カメラ22と左側方用周辺撮影カメラ23と右側方用周辺撮影カメラ24とで、車両100の全方位を撮影する。第一撮影装置20は、前方用周辺撮影カメラ21と後方用周辺撮影カメラ22と左側方用周辺撮影カメラ23と右側方用周辺撮影カメラ24とで撮影した映像を俯瞰映像生成装置40の映像取得部41へ出力する。
前方用周辺撮影カメラ21は、車両100の前方に配置され、車両100の前方を中心とした周辺を撮影する。前方用周辺撮影カメラ21は、撮影した映像を俯瞰映像生成装置40の映像取得部41へ出力する。
後方用周辺撮影カメラ22は、車両100の後方に配置され、車両100の後方を中心とした周辺を撮影する。後方用周辺撮影カメラ22は、撮影した映像を俯瞰映像生成装置40の映像取得部41へ出力する。
左側方用周辺撮影カメラ23は、車両100の左側方に配置され、車両100の左側方を中心とした周辺を撮影する。左側方用周辺撮影カメラ23は、撮影した映像を俯瞰映像生成装置40の映像取得部41へ出力する。
右側方用周辺撮影カメラ24は、車両100の右側方に配置され、車両100の右側方を中心とした周辺を撮影する。右側方用周辺撮影カメラ24は、撮影した映像を俯瞰映像生成装置40の映像取得部41へ出力する。
記憶装置30は、俯瞰映像生成装置40における各種処理に要するデータおよび各種処理結果を記憶する。記憶装置30は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ(Flash Memory)などの半導体メモリ素子、または、ハードディスク、光ディスクなどの記憶装置である。
俯瞰映像生成装置40は、例えば、CPU(Central Processing Unit)などで構成された演算処理装置である。俯瞰映像生成装置40は、記憶装置30に記憶されているプログラムをメモリにロードして、プログラムに含まれる命令を実行する。俯瞰映像生成装置40は、映像取得部41と、車両情報取得部42と、俯瞰映像生成部43aと表示制御部43bとを含む制御部43と、を有する。
映像取得部41は、車両100の周辺を撮影した周辺映像を取得する。より詳しくは、映像取得部41は、第一撮影装置20の前方用周辺撮影カメラ21と後方用周辺撮影カメラ22と左側方用周辺撮影カメラ23と右側方用周辺撮影カメラ24とが出力した映像を取得する。映像取得部41は、取得した映像を俯瞰映像生成部43aに出力する。
車両情報取得部42は、車両100の旋回方向への移動を推定するための車両情報を取得する。車両100の旋回方向への移動を推定する情報とは、車両100の周辺の地図情報と車両100の現在地情報と車両100の方向指示器操作情報と車両100のギア操作情報と車両100のステアリング操作情報と車両100の角速度との少なくともいずれか一つの車両情報などである。より詳しくは、車両情報取得部42は、地図情報記憶部102と現在地情報検出部103と方向指示器操作検出部104とギア操作検出部105とステアリング操作検出部106と角速度センサ107との少なくともいずれか一つが出力した車両情報を取得する。車両情報取得部42は、取得した車両情報を表示制御部43bに出力する。
制御部43は、車両100を上方から見た仮想自車両画像Aと、映像取得部41で取得した映像を、車両100の上方から見た映像に視点変換して、俯瞰映像Bを生成する俯瞰映像生成部43aと、俯瞰映像生成部43aで生成した映像を加工し、表示パネル101に送る表示制御部43bとを含む。制御部43は、俯瞰映像生成部43aで生成した映像を加工し、表示パネル101に送る。例えば、制御部43は、俯瞰映像生成部43aで生成した俯瞰映像Bを、表示制御部43bで仮想自車両画像Aを寄せて表示パネル101に表示されるように加工し、表示パネル101に送る。また、制御部43は、俯瞰映像生成部43aで生成した俯瞰映像Bを、表示制御部43bで仮想自車両画像Aを寄せておよび縮小して表示パネル101に表示されるように加工し、表示パネル101に送る。
俯瞰映像生成部43aは、前方用周辺撮影カメラ21と後方用周辺撮影カメラ22と左側方用周辺撮影カメラ23と右側方用周辺撮影カメラ24とで撮影した映像に基づいて、俯瞰映像Bを生成する。俯瞰映像Bを生成する方法は、公知のいずれの方法でもよく、限定されない。俯瞰映像Bには、仮想自車両画像A、および、前方映像B1と後方映像B2と左側方映像B3と右側方映像B4との少なくともいずれか一つを含む。俯瞰映像Bは、矩形状のフレームF内に生成される。フレームFは、前方映像B1を表示する第一フレームF1と、後方映像B2を表示する第二フレームF2と、左側方映像B3を表示する第三フレームF3と、右側方映像B4を表示する第四フレームF4との少なくともいずれか一つを含む。俯瞰映像生成部43aは、生成した俯瞰映像Bを表示制御部43bに出力する。
表示制御部43bは、車両情報取得部42で取得した車両情報に基づいて、車両100の旋回方向(左右方向)の移動が推定された場合、推定された旋回方向において、注意すべき情報が表示される範囲、言い換えると、確認が必要となる方向の周辺映像が広く表示されるように、仮想自車両画像Aを含む俯瞰映像Bの表示位置を変更した俯瞰映像Bを生成する。表示制御部43bは、車両情報取得部42で取得した車両情報に基づいて、車両100の旋回方向(左右方向)の移動が推定された場合、旋回方向において車両100が移動する方向とは反対の方向に、車両100を寄せて位置させた状態で、車両100を上方から見下ろした仮想自車両画像Aを含む俯瞰映像Bを生成する。車両100の旋回方向の移動とは、車両100が走行中の道路が延びる方向(以下、「走行道路方向」という)に対して、逸れる方向の移動である。旋回方向の移動は、車両100の前後方向の前側に向かって左右方向の移動である。例えば、右左折時や車線変更時に、車両100は、旋回方向に移動する。車両100の旋回方向の移動には、屈曲またはカーブしている道路に沿った車両100の移動は含まない。表示制御部43bは、例えば、走行道路方向とのズレが15°以上となったら、逸れる方向の移動と判定するようにしてもよい。これは、走行時の多少のブレやステアリングホイールの遊びを、車両100の旋回方向の移動として判定しないためである。
次に、図2を用いて、俯瞰映像生成システム1の俯瞰映像生成装置40における処理の流れについて説明する。図2は、第一実施形態に係る俯瞰映像生成システムの俯瞰映像生成装置における処理の流れを示すフローチャートである。
表示制御部43bは、旋回方向の移動が推定されるか否かを判定する(ステップS11)。より詳しくは、表示制御部43bは、車両情報取得部42で取得した、車両100の周辺の地図情報と車両100の現在地情報と車両100の方向指示器操作情報と車両100のギア操作情報と車両100のステアリング操作情報と車両100の角速度との少なくともいずれか一つの車両情報に基づいて、車両100の旋回方向の移動が推定されるか否かを判定する。
表示制御部43bが、車両情報取得部42で取得した車両100の周辺の地図情報と車両100の現在地情報とに基づいて、車両100の旋回方向の移動が推定されるか否かを判定する場合について説明する。例えば、表示制御部43bは、車両100の周辺の地図情報と車両100の現在地情報とに基づいて、車両100が経路案内情報で右左折が予定されている交差点の所定距離内に近づいた場合、車両100の旋回方向の移動が推定されると判定する。所定距離は、例えば、5mとしてもよい。例えば、表示制御部43bは、車両100の周辺の地図情報と車両100の現在地情報とに基づいて、車両100が経路案内情報で車線変更が予定されている地点の所定距離内に近づいた場合、車両100の旋回方向の移動が推定されると判定する。所定距離は、例えば、5mとしてもよい。表示制御部43bは、車両100の旋回方向の移動が推定されると判定した際に、推定した車両100の移動方向を記憶装置30に記憶する。
表示制御部43bが、車両情報取得部42で取得した方向指示器操作情報に基づいて、車両100の旋回方向の移動が推定されるか否かを判定する場合について説明する。例えば、表示制御部43bは、方向指示器操作情報に基づいて、方向指示器が操作された場合、車両100の旋回方向の移動が推定されると判定する。表示制御部43bは、車両100の旋回方向の移動が推定されると判定した際に、推定した車両100の移動方向を記憶装置30に記憶する。
表示制御部43bが、車両情報取得部42で取得したギア操作情報とステアリング操作情報とに基づいて、車両100の旋回方向の移動が推定されるか否かを判定する場合について説明する。例えば、表示制御部43bは、ギア操作情報とステアリング操作情報との少なくともいずれか一方に基づいて、ステアリングホイールが操作された場合、または、リバースギアが選択されて、かつ、ステアリングホイールが操作された場合、車両100の旋回方向の移動が推定されると判定する。表示制御部43bは、車両100の旋回方向の移動が推定されると判定した際に、推定した車両100の移動方向を記憶装置30に記憶する。
表示制御部43bが、車両情報取得部42で取得した車両100の周辺の地図情報と車両100の現在地情報、および、ステアリング操作情報と車両100の角速度との少なくともいずれか一方に基づいて、車両100の旋回方向の移動が推定されるか否かを判定する場合について説明する。例えば、表示制御部43bは、車両100の周辺の地図情報と車両100の現在地情報、および、ステアリング操作情報と車両100の角速度との少なくともいずれか一方に基づいて、走行道路方向に対して逸れる方向にステアリング操作がされた場合、または、走行道路方向に対して逸れる方向に角速度が変化した場合、車両100の旋回方向の移動が推定されると判定する。例えば、走行道路方向とのズレが15°以上となったら、逸れる方向の移動と判定するようにしてもよい。このように、車両100の周辺の地図情報と車両100の現在地情報、および、ステアリング操作情報と車両100の角速度との少なくともいずれか一方を組み合わせて判定するのは、例えば、屈曲またはカーブしている道路に沿ってステアリング操作がされたり、角速度が変化したりした場合に、誤って車両100の旋回方向の移動が推定されると判定しないためである。表示制御部43bは、車両100の旋回方向の移動が推定されると判定した際に、推定した車両100の移動方向を記憶装置30に記憶する。
表示制御部43bが、車両情報取得部42で取得した車両100の周辺の地図情報と車両100の現在地情報、および、方向指示器操作情報とステアリング操作情報と車両100の角速度との少なくともいずれか一つに基づいて、車両100の旋回方向の移動が推定されるか否かを判定する場合について説明する。例えば、表示制御部43bは、車両100の周辺の地図情報と車両100の現在地情報、および、方向指示器操作情報とステアリング操作情報と車両100の角速度との少なくともいずれか一つに基づいて、車両100が経路案内情報で右左折が予定されている交差点の所定距離内に近づいた場合で、かつ、方向指示器が操作された場合、または、走行道路方向に対して逸れる方向にステアリング操作がされた場合、または、走行道路方向に対して逸れる方向に角速度が変化した場合、車両100の旋回方向の移動が推定されると判定する。所定距離は、例えば、5mとしてもよい。例えば、走行道路方向とのズレが15°以上となったら、逸れる方向の移動と判定するようにしてもよい。例えば、表示制御部43bは、車両100の周辺の地図情報と車両100の現在地情報、および、方向指示器操作情報とステアリング操作情報と車両100の角速度との少なくともいずれか一つに基づいて、車両100が経路案内情報で車線変更が予定されている地点の所定距離内に近づいた場合で、かつ、方向指示器が操作された場合、または、走行道路方向に対して逸れる方向にステアリング操作がされた場合、または、走行道路方向に対して逸れる方向に角速度が変化した場合、車両100の旋回方向の移動が推定されると判定する。所定距離は、例えば、5mとしてもよい。例えば、走行道路方向とのズレが15°以上となったら、逸れる方向の移動と判定するようにしてもよい。このように、車両100の周辺の地図情報と車両100の現在地情報、および、方向指示器操作情報とステアリング操作情報と車両100の角速度との少なくともいずれか一つを組み合わせて判定するのは、例えば、経路案内では右左折や車線変更が案内されているものの、運転者が経路案内に従わないで直進する場合に、誤って車両100が旋回方向に移動すると推定しないためである。表示制御部43bは、車両100の旋回方向の移動が推定されると判定した際に、推定した車両100の移動方向を記憶装置30に記憶する。
表示制御部43bは、車両100の旋回方向の移動が推定されていない場合(ステップS11でNo)、ステップS12に進む。
表示制御部43bは、車両100が旋回方向に移動すると推定した場合(ステップS11でYes)、ステップS13に進む。
表示制御部43bは、仮想自車両画像Aを中央に位置させた、通常の俯瞰映像Bを生成する(ステップS12)。より詳しくは、表示制御部43bは、車両100を中央に位置させた状態で、車両100を上方から見下ろした仮想自車両画像Aを含む俯瞰映像Bを生成する。この俯瞰映像Bは、仮想自車両画像Aの中心CがフレームFの中央に位置する。
表示制御部43bは、車両100の移動方向を取得する(ステップS13)。表示制御部43bは、ステップS11で記憶装置30に記憶した車両100の移動方向を取得する。
表示制御部43bは、仮想自車両画像Aをずらして位置させた状態で表示パネル101に表示される俯瞰映像Bを生成する(ステップS14)。より詳しくは、表示制御部43bは、旋回方向において車両100の移動方向と反対の方向に、車両100を寄せて位置させた状態で、車両100を上方から見下ろした仮想自車両画像Aを含む俯瞰映像Bを生成する。本実施形態では、表示制御部43bは、旋回方向において車両100の移動方向とは反対の方向で、かつ、フレームFの上側に、車両100を寄せて位置させた状態で、車両100を上方から見下ろした仮想自車両画像Aを含む俯瞰映像Bを生成する。
より詳しくは、まず、表示制御部43bは、車両100の移動方向が、走行道路方向に対して、左右どちらの方向に位置するかを判定する。表示制御部43bは、車両100の移動方向を右方向と判定した場合、俯瞰映像Bにおいて、仮想自車両画像AをフレームFの左上に位置させる。この場合、仮想自車両画像Aの中心線LAは、フレームFの中心線LFよりも左側に位置する。仮想自車両画像Aの中心Cは、フレームFの上側に位置する。表示制御部43bは、車両100の移動方向を左方向と判定した場合、俯瞰映像Bにおいて、仮想自車両画像AをフレームFの右上に位置させる。この場合、仮想自車両画像Aの中心線LAは、フレームFの中心線LFよりも右側に位置する。仮想自車両画像Aの中心Cは、フレームFの上側に位置する。そして、表示制御部43bは、仮想自車両画像AをフレームFの左上または右上に位置させた俯瞰映像Bを生成する。これにより、仮想自車両画像AがフレームFの左上に位置している場合、俯瞰映像Bには、仮想自車両画像Aの右側が広く表示される。仮想自車両画像AがフレームFの右上に位置している場合、俯瞰映像Bには、仮想自車両画像Aの左側が広く表示される。仮想自車両画像Aは車両100を示しているため、車両100の周辺において、旋回方向への移動時に注意すべき情報が表示される範囲を広く表示することができる。
本実施形態では、車両100の移動方向が左方向であり、図3に示すように、俯瞰映像Bは、仮想自車両画像AがフレームFの右上に位置している。図3は、第一実施形態に係る俯瞰映像生成システムで生成した俯瞰映像を示す図である。俯瞰映像Bは、仮想自車両画像Aと、広い範囲の後方映像B2と左側方映像B3と、狭い範囲の前方映像B1と右側方映像B4とを含む。フレームFは、第二フレームF2と第三フレームF3とを広く含み、第一フレームF1と第四フレームF4とを狭く含む。このように、俯瞰映像Bには、車両100の移動方向である左側が広く表示される。
表示制御部43bは、車両100の旋回方向に移動が完了した場合、仮想自車両画像Aを元の状態に復帰した俯瞰映像Bを生成する。
表示制御部43bは、車両情報取得部42で取得した車両100の周辺の地図情報と車両100の現在地情報とに基づいて、車両100の旋回方向への移動を推定した場合について説明する。例えば、表示制御部43bは、車両100の周辺の地図情報と車両100の現在地情報とに基づいて、車両100が経路案内情報で右左折が予定されている交差点から所定距離以上に離れた場合、車両100の旋回方向の移動が完了したと判定する。所定距離は、例えば、5mとしてもよい。例えば、表示制御部43bは、車両100の周辺の地図情報と車両100の現在地情報とに基づいて、車両100が経路案内情報で車線変更が予定されている地点から所定距離以上に離れた場合、車両100の旋回方向の移動が完了したと判定する。所定距離は、例えば、5mとしてもよい。
表示制御部43bが、車両情報取得部42で取得した方向指示器操作情報に基づいて、車両100の旋回方向への移動を推定した場合について説明する。例えば、表示制御部43bは、方向指示器操作情報に基づいて、方向指示器の操作が解除された場合、車両100の旋回方向の移動が完了したと判定する。
表示制御部43bが、車両情報取得部42で取得したギア操作情報とステアリング操作情報とに基づいて、車両100の旋回方向への移動を推定した場合について説明する。例えば、表示制御部43bは、ギア操作情報とステアリング操作情報との少なくともいずれか一方に基づいて、ステアリングホイールが復帰方向に操作された場合、または、リバースギアの選択が解除されて、かつ、ステアリングホイールが復帰方向に操作された場合、車両100の旋回方向の移動が完了したと判定する。
表示制御部43bが、車両情報取得部42で取得した車両100の周辺の地図情報と車両100の現在地情報、および、ステアリング操作情報と車両100の角速度との少なくともいずれか一方に基づいて、車両100の旋回方向への移動を推定した場合について説明する。例えば、表示制御部43bは、車両100の周辺の地図情報と車両100の現在地情報、および、ステアリング操作情報と車両100の角速度との少なくともいずれか一方に基づいて、ステアリングホイールが復帰方向に操作がされた場合、または、角速度が復帰方向に変化した場合、車両100の旋回方向の移動が完了したと判定する。
表示制御部43bが、車両情報取得部42で取得した車両100の周辺の地図情報と車両100の現在地情報、および、方向指示器操作情報とステアリング操作情報と車両100の角速度との少なくともいずれか一つに基づいて、車両100の旋回方向への移動を推定した場合について説明する。例えば、表示制御部43bは、車両100の周辺の地図情報と車両100の現在地情報、および、方向指示器操作情報とステアリング操作情報と車両100の角速度との少なくともいずれか一つに基づいて、車両100が経路案内情報で右左折が予定されている交差点から所定距離以上離れた場合で、かつ、方向指示器の操作が解除された場合、または、ステアリングホイールが復帰方向に操作された場合、または、角速度が復帰方向に変化した場合、車両100の旋回方向の移動が完了したと判定する。所定距離は、例えば、5mとしてもよい。例えば、表示制御部43bは、車両100の周辺の地図情報と車両100の現在地情報、および、方向指示器操作情報とステアリング操作情報と車両100の角速度との少なくともいずれか一つに基づいて、車両100が経路案内情報で車線変更が予定されている地点から所定距離以上離れた場合で、かつ、方向指示器の操作が解除された場合、または、ステアリングホイールが復帰方向に操作された場合、または、角速度が復帰方向に変化した場合、車両100の旋回方向の移動が完了したと判定する。所定距離は、例えば、5mとしてもよい。
このような場合に、表示制御部43bは、車両100の旋回方向に移動が完了したと判定して、仮想自車両画像Aを元の状態に復帰した俯瞰映像Bを生成する。
このようにして、俯瞰映像生成システム1は、俯瞰映像Bを生成して、俯瞰映像生成システム1の外部の表示パネル101に映像信号を出力する。外部の表示パネル101は、俯瞰映像生成システム1から出力された映像信号に基づいて、例えば、ナビゲーション画面とともに俯瞰映像Bを表示する。
上述したように、本実施形態に係る俯瞰映像生成システム1は、車両情報取得部42で取得した車両情報に基づいて、車両100の旋回方向の移動が推定される場合、旋回方向において車両100の移動方向とは反対の方向に、車両100を寄せて位置させた状態で、車両100を上方から見下ろした仮想自車両画像Aを含む俯瞰映像Bを生成することができる。これにより、例えば、車両100の移動方向が左方向の場合、俯瞰映像Bは、車両100の移動方向である左側を広く表示することができる。例えば、車両100の移動方向が右方向の場合、俯瞰映像Bは、車両100の移動方向である右側を広く表示することができる。このようにして、俯瞰映像Bには、車両100の移動方向を広く表示することができる。このように、俯瞰映像生成システム1は、車両100の旋回方向の移動に応じて、車両周辺の、より具体的には、車両100の旋回方向への移動時に注意すべき情報をより適切に確認可能とすることができる。
[第二実施形態]
図4を参照しながら、本実施形態に係る俯瞰映像生成システム1について説明する。図4は、第二実施形態に係る俯瞰映像生成システムで生成した俯瞰映像の他の例を示す図である。俯瞰映像生成システム1は、基本的な構成は第一実施形態の俯瞰映像生成システム1と同様である。以下の説明においては、俯瞰映像生成システム1と同様の構成要素には、同一の符号または対応する符号を付し、その詳細な説明は省略する。本実施形態の俯瞰映像生成システム1は、俯瞰映像生成装置40における処理が、第一実施形態の俯瞰映像生成システム1と異なる。
図4を参照しながら、本実施形態に係る俯瞰映像生成システム1について説明する。図4は、第二実施形態に係る俯瞰映像生成システムで生成した俯瞰映像の他の例を示す図である。俯瞰映像生成システム1は、基本的な構成は第一実施形態の俯瞰映像生成システム1と同様である。以下の説明においては、俯瞰映像生成システム1と同様の構成要素には、同一の符号または対応する符号を付し、その詳細な説明は省略する。本実施形態の俯瞰映像生成システム1は、俯瞰映像生成装置40における処理が、第一実施形態の俯瞰映像生成システム1と異なる。
表示制御部43bは、図2に示すフローチャートのステップS14で、仮想自車両画像Aをずらして位置させた俯瞰映像Bを生成する際に、車両100のサイドミラーMより後方の俯瞰映像Bを生成する。より詳しくは、表示制御部43bは、俯瞰映像Bにおいて、仮想自車両画像AをフレームFの左上または右上に位置させる際に、車両100のサイドミラーMより後方がフレームFに収まる位置に位置させる。
本実施形態では、車両100の移動方向が左方向であり、図4に示すように、俯瞰映像Bは、仮想自車両画像AがフレームFの右上に、車両100のサイドミラーMより後方がフレームFに収まる位置に位置している。俯瞰映像Bは、仮想自車両画像AのサイドミラーMより後方と、広い範囲の後方映像B2と左側方映像B3と、狭い範囲の右側方映像B4とを含む。フレームFは、第二フレームF2と第三フレームF3とを広く含み、第四フレームF4を狭く含み、第一フレームF1を含まない。このように、俯瞰映像Bには、車両100の移動方向である左側と後方とが広く表示される。
上述したように、本実施形態に係る俯瞰映像生成システム1は、車両100のサイドミラーMより後方の俯瞰映像Bを生成することができる。このため、俯瞰映像生成システム1は、車両100の移動方向と後方とをより広く表示することができる。このような表示とすることで、サイドミラーMによる目視範囲と俯瞰映像Bとして表示される範囲の起点が一致し、サイドミラーMによる目視範囲および死角に対する俯瞰映像Bの位置関係が把握しやすい。このように、俯瞰映像生成システム1は、車両100の旋回方向の移動に応じて、車両周辺の、より具体的には、車両100の旋回方向への移動時に注意すべき情報をより適切に確認可能とすることができる。
[第三実施形態]
図5を参照しながら、本実施形態に係る俯瞰映像生成システム1について説明する。図5は、第三実施形態に係る俯瞰映像生成システムで生成した俯瞰映像の他の例を示す図である。本実施形態の俯瞰映像生成システム1は、俯瞰映像生成装置40における処理が、第一実施形態の俯瞰映像生成システム1と異なる。
図5を参照しながら、本実施形態に係る俯瞰映像生成システム1について説明する。図5は、第三実施形態に係る俯瞰映像生成システムで生成した俯瞰映像の他の例を示す図である。本実施形態の俯瞰映像生成システム1は、俯瞰映像生成装置40における処理が、第一実施形態の俯瞰映像生成システム1と異なる。
表示制御部43bは、図2に示すフローチャートのステップS14で、仮想自車両画像Aをずらして位置させた俯瞰映像Bを生成する際に、仮想自車両画像Aを縮小した俯瞰映像Bを生成する。より詳しくは、表示制御部43bは、俯瞰映像Bにおいて、仮想自車両画像AをフレームFの左上または右上に位置させる際に、仮想自車両画像Aを縮小する。ここでいう仮想自車両画像Aの縮小表示とは、俯瞰映像Bをより広範囲に表示することで図3に対して相対的に仮想自車両画像Aが小さく表示されることである。
本実施形態では、車両100の移動方向が左方向であり、図5に示すように、俯瞰映像Bは、車両100がフレームFの右上に図3よりも小さく表示されている。俯瞰映像Bは、縮小した仮想自車両画像Aと、広い範囲の後方映像B2と左側方映像B3と、狭い範囲の前方映像B1と右側方映像B4とを含む。フレームFは、第二フレームF2と第三フレームF3とをより広く含み、第一フレームF1と第四フレームF4とを狭く含む。このように、俯瞰映像Bには、車両100の移動方向である左側と後方とがより広く表示される。
上述したように、本実施形態に係る俯瞰映像生成システム1は、仮想自車両画像Aを縮小した俯瞰映像Bを生成することができる。このため、俯瞰映像生成システム1は、車両100の移動方向と後方とをより広く表示することができる。このように、俯瞰映像生成システム1は、車両100の旋回方向の移動に応じて、車両周辺の、より具体的には、車両100の旋回方向への移動時に注意すべき情報をより適切に確認可能とすることができる。
[第四実施形態]
図6ないし図8を参照しながら、本実施形態に係る俯瞰映像生成システム1Aについて説明する。図6は、第四実施形態に係る俯瞰映像生成システムの構成例を示すブロック図である。本実施形態の俯瞰映像生成システム1Aは、俯瞰映像生成装置40の車両情報取得部42が、さらに車速センサ(車速取得部)108から車速を取得する点で、第一実施形態の俯瞰映像生成システム1と異なる。
図6ないし図8を参照しながら、本実施形態に係る俯瞰映像生成システム1Aについて説明する。図6は、第四実施形態に係る俯瞰映像生成システムの構成例を示すブロック図である。本実施形態の俯瞰映像生成システム1Aは、俯瞰映像生成装置40の車両情報取得部42が、さらに車速センサ(車速取得部)108から車速を取得する点で、第一実施形態の俯瞰映像生成システム1と異なる。
車速センサ108は、車速を検出する。より詳しくは、車速センサ108は、車両100の駆動軸またはタイヤに配置されている。車速センサ108は、駆動軸またはタイヤの回転に応じたパルス信号を検出する。車速センサ108は、検出した車速を俯瞰映像生成システム1の俯瞰映像生成装置40の車両情報取得部42へ出力する。
車両情報取得部42は、さらに車速センサ108で出力された車速を取得する。車両情報取得部42は、取得した車速も含む車両情報を表示制御部43bに出力する。
表示制御部43bは、図2に示すフローチャートのステップS14で、仮想自車両画像Aをずらして位置させた俯瞰映像Bを生成する際に、車両情報取得部42で取得した車速に基づいて、車両100が減速している状態と車両100が加速している状態とでは、車両100が減速している状態における俯瞰映像Bの方が、車両100が移動する方向を広くした俯瞰映像Bを生成する。表示制御部43bは、図2に示すフローチャートのステップS14に進むと、図7に示すフローチャートの処理を行う。図7は、第四実施形態に係る俯瞰映像生成システムの俯瞰映像生成装置における処理の流れを示すフローチャートである。
表示制御部43bは、車両100が減速しているか否かを判定する(ステップS1411)。表示制御部43bは、車両100が減速している場合(ステップS1411でYes)、仮想自車両画像Aをずらして位置させ、車両100が移動する方向を広くした俯瞰映像Bを生成する(ステップS1412)。より詳しくは、表示制御部43bは、俯瞰映像Bにおいて、仮想自車両画像AをフレームFの左上に位置させる際に、仮想自車両画像AをフレームFの左上端に寄せて位置させる。表示制御部43bは、俯瞰映像Bにおいて、仮想自車両画像AをフレームFの右上に位置させる際に、仮想自車両画像AをフレームFの右上端に寄せて位置させる。
表示制御部43bは、車両100が減速していない場合(ステップS1411でNo)、仮想自車両画像Aをずらして位置させた俯瞰映像Bを生成する(ステップS1413)。ステップS1413の処理は、ステップS14と同様の処理である。
本実施形態では、車両100の移動方向が左方向であり、図8に示すように、俯瞰映像Bは、仮想自車両画像AがフレームFの右上端に寄せて表示されている。図8は、第四実施形態に係る俯瞰映像生成システムで生成した俯瞰映像の他の例を示す図である。仮想自車両画像Aの中心Cは、図3における仮想自車両画像Aの中心Cよりも右上端寄りに位置する。俯瞰映像Bは、仮想自車両画像Aと、広い範囲の後方映像B2と左側方映像B3とを含む。フレームFは、第二フレームF2と第三フレームF3とを含み、第一フレームF1と第四フレームF4とを含まない。このように、俯瞰映像Bには、車両100の移動方向である左側と後方がより広く表示される。
上述したように、本実施形態に係る俯瞰映像生成システム1Aは、車両100が減速している状態と車両100が加速している状態とでは、車両100が減速している状態における俯瞰映像Bの方が、車両100が移動する方向を広くした俯瞰映像Bを生成することができる。このため、俯瞰映像生成システム1Aは、車両100の移動方向と後方とをより広く表示することができる。このように、俯瞰映像生成システム1Aは、車両100の旋回方向の移動に加えて、車両100が減速しているか加速しているかに応じて、車両周辺の、より具体的には、車両100の旋回方向への移動時に注意すべき情報をより適切に確認可能とすることができる。
[第五実施形態]
図9、図10を参照しながら、本実施形態に係る俯瞰映像生成システム1Aについて説明する。本実施形態の俯瞰映像生成システム1Aは、俯瞰映像生成装置40における処理が、第四実施形態の俯瞰映像生成システム1Aと異なる。
図9、図10を参照しながら、本実施形態に係る俯瞰映像生成システム1Aについて説明する。本実施形態の俯瞰映像生成システム1Aは、俯瞰映像生成装置40における処理が、第四実施形態の俯瞰映像生成システム1Aと異なる。
表示制御部43bは、図2に示すフローチャートのステップS14で、仮想自車両画像Aをずらして位置させた俯瞰映像Bを生成する際に、車両情報取得部42で取得した車速に基づいて、車両100が減速している状態と車両100が加速している状態とでは、車両100が加速している状態における俯瞰映像Bの方が、旋回方向において車両100の移動方向とは反対の方向を広くした俯瞰映像Bを生成する。表示制御部43bは、図2に示すフローチャートのステップS14に進むと、図9に示すフローチャートの処理を行う。図9は、第五実施形態に係る俯瞰映像生成システムの俯瞰映像生成装置における処理の流れを示すフローチャートである。
表示制御部43bは、車両100が加速しているか否かを判定する(ステップS1421)。表示制御部43bは、車両100が加速している場合(ステップS1421でYes)、仮想自車両画像Aをずらして位置させ、旋回方向において車両100の移動方向とは反対の方向を広くした俯瞰映像Bを生成する(ステップS1422)。より詳しくは、表示制御部43bは、俯瞰映像Bにおいて、仮想自車両画像AをフレームFの左上に位置させる際に、仮想自車両画像AをフレームFの左上端から離して位置させる。表示制御部43bは、俯瞰映像Bにおいて、仮想自車両画像AをフレームFの右上に位置させる際に、仮想自車両画像AをフレームFの右上端から離して位置させる。
表示制御部43bは、車両100が加速していない場合(ステップS1421でNo)、仮想自車両画像Aをずらして位置させた俯瞰映像Bを生成する(ステップS1423)。ステップS1423の処理は、ステップS14と同様の処理である。
本実施形態では、車両100の移動方向が左方向であり、図10に示すように、俯瞰映像Bは、仮想自車両画像AがフレームFの右上端から離れて表示されている。図10は、第五実施形態に係る俯瞰映像生成システムで生成した俯瞰映像の他の例を示す図である。仮想自車両画像Aの中心Cは、図3における仮想自車両画像Aの中心Cよりも中央寄りに位置する。フレームFは、第二フレームF2と第三フレームF3とをより広く含み、第一フレームF1と第四フレームF4とを狭く含む。俯瞰映像Bは、仮想自車両画像Aと、広い範囲の後方映像B2と左側方映像B3と、狭い範囲の前方映像B1と右側方映像B4とを含む。このように、俯瞰映像Bには、車両100の移動方向である左側と後方とに加えて、移動方向と反対の方向が表示される。
上述したように、本実施形態に係る俯瞰映像生成システム1Aは、車両100が減速している状態と車両100が加速している状態とでは、車両100が加速している状態における俯瞰映像Bの方が、旋回方向において車両100が移動する方向と反対の方向を広くした俯瞰映像Bを生成することができる。このため、俯瞰映像生成システム1Aは、車両100の移動方向と後方とに加えて、移動方向と反対の方向を表示することができる。これにより、車両100が加速している状態において、運転者は、車両100の移動方向に加えて、旋回方向において車両100の移動方向と反対の方向も俯瞰映像Bで確認することができる。このように、俯瞰映像生成システム1Aは、車両100の旋回方向の移動に加えて、車両100が減速しているか加速しているかに応じて、車両周辺の、より具体的には、車両100の旋回方向への移動時に注意すべき情報をより適切に確認可能とすることができる。
[第六実施形態]
図11ないし図13を参照しながら、本実施形態に係る俯瞰映像生成システム1Bについて説明する。図11は、第六実施形態に係る俯瞰映像生成システムの構成例を示すブロック図である。本実施形態の俯瞰映像生成システム1Bは、さらに第二撮影装置50を有する点で、第一実施形態の俯瞰映像生成システム1と異なる。
図11ないし図13を参照しながら、本実施形態に係る俯瞰映像生成システム1Bについて説明する。図11は、第六実施形態に係る俯瞰映像生成システムの構成例を示すブロック図である。本実施形態の俯瞰映像生成システム1Bは、さらに第二撮影装置50を有する点で、第一実施形態の俯瞰映像生成システム1と異なる。
第二撮影装置50は、図12に示すように、車両100の左後方Q1を撮影する左後方用周辺撮影カメラ51と、右後方Q2を撮影する右後方用周辺撮影カメラ52とを有する。図12は、第六実施形態に係る俯瞰映像生成システムの左後方周辺撮影カメラと右後方周辺撮影カメラで撮影する範囲を示す平面図である。第二撮影装置50は、左後方用周辺撮影カメラ51と右後方用周辺撮影カメラ52とで撮影した映像を俯瞰映像生成装置40の映像取得部41へ出力する。
左後方用周辺撮影カメラ51は、図中の符号Q1で示す領域を撮影する。符号Q1で示す領域は、左折時に、運転者がサイドミラーとバックミラーによる確認と目視による確認をする際に、左後方に生じる死角を含む領域である。左後方用周辺撮影カメラ51は、撮影した映像を俯瞰映像生成装置40の映像取得部41へ出力する。
右後方用周辺撮影カメラ52は、図中の符号Q2で示す領域を撮影する。符号Q2で示す領域は、右折時に、運転者がサイドミラーとバックミラーによる確認と目視による確認をする際に、右後方に生じる死角を含む領域である。右後方用周辺撮影カメラ52は、撮影した映像を俯瞰映像生成装置40の映像取得部41へ出力する。
映像取得部41は、さらに左後方用周辺撮影カメラ51と右後方用周辺撮影カメラ52とが出力した周辺映像を取得する。映像取得部41は、取得した左後方周辺映像と右後方周辺映像とを含む周辺映像を俯瞰映像生成部43aに出力する。
表示制御部43bは、図2に示すフローチャートのステップS14で、仮想自車両画像Aをずらして位置させた俯瞰映像Bを生成する際に、映像取得部41で取得した、車両100が移動する方向の側部後方映像B5を生成する。表示制御部43bは、フレームFの下部に俯瞰映像Bを表示し、フレームFの上部に位置する第五フレームF5に側部後方映像B5を表示する映像を生成する。例えば、第五フレームF5は、仮想自車両画像AのサイドミラーMより前方に該当するフレームF内の位置としてもよい。例えば、第五フレームF5は、フレームFの上部の三分の一など所定領域に該当するフレームF内の位置としてもよい。
本実施形態では、車両100の移動方向が左方向であり、図13に示すように、フレームFの下部に俯瞰映像Bが表示され、フレームFの上部に側部後方映像B5が表示されている。図13は、第六実施形態に係る俯瞰映像生成システムで生成した俯瞰映像を示す図である。フレームFは、第二フレームF2と第三フレームF3とをより広く含み、第四フレームF4を狭く含み、第一フレームF1は含まない。さらに、フレームFの上部には、第五フレームF5を含む。第五フレームF5は、仮想自車両画像AのサイドミラーMより前方に該当するフレームF内の位置である。
上述したように、本実施形態に係る俯瞰映像生成システム1Bは、俯瞰映像Bとともに、右左折時に運転者から死角となる側部後方映像B5を表示する映像を生成することができる。このため、俯瞰映像生成システム1Bは、車両100の移動方向と後方とをより確実に表示することができる。これにより、運転者は、車両100の移動方向に加えて、右左折時に運転者から死角となる領域を側部後方映像B5で確認することができる。このように、俯瞰映像生成システム1Bは、車両100の旋回方向の移動に応じて、車両周辺の、より具体的には、車両100の旋回方向への移動時に注意すべき情報をより適切に確認可能とすることができる。
[第七実施形態]
図14は、第七実施形態に係る俯瞰映像生成システムの構成例を示すブロック図である。本実施形態の俯瞰映像生成システム1Cは、俯瞰映像生成装置40が周辺情報取得部44を有し、障害物検出部109で検出された障害物Xに関する障害物情報を取得する点で、第一実施形態の俯瞰映像生成システム1と異なる。
図14は、第七実施形態に係る俯瞰映像生成システムの構成例を示すブロック図である。本実施形態の俯瞰映像生成システム1Cは、俯瞰映像生成装置40が周辺情報取得部44を有し、障害物検出部109で検出された障害物Xに関する障害物情報を取得する点で、第一実施形態の俯瞰映像生成システム1と異なる。
本実施形態では、俯瞰映像生成システム1Cに、表示パネル101と、地図情報記憶部102と、現在地情報検出部103と、方向指示器操作検出部104と、ギア操作検出部105と、ステアリング操作検出部106と、角速度センサ107と、障害物検出部109とを含めていないが、各部を俯瞰映像生成システム1Cに含めてもよい。
地図情報記憶部102は、例えば、交差点や道路の幅員情報を含む道路地図である地図情報を記憶する。地図情報記憶部102は、記憶している地図情報を俯瞰映像生成システム1Cの俯瞰映像生成装置40の周辺情報取得部44へ出力する。
障害物検出部109は、車両100の周辺の障害物Xを検出するセンサである。障害物Xは、例えば、壁面、縁石、ガードレール、道路標識柱、電柱、二輪車、歩行者、駐停車中の他の車両などである。より詳しくは、障害物検出部109は、車両100の所定範囲内に存在する障害物Xを検出する。所定範囲は、例えば、5mである。障害物検出部109は、検出した障害物Xの障害物情報を俯瞰映像生成システム1Cの俯瞰映像生成装置40の周辺情報取得部44へ出力する。
周辺情報取得部44は、車両100の周辺情報を取得する。車両100の周辺情報とは、車両100の周辺の障害物Xの障害物情報や、車両100の周辺の道路の幅員を含む地図情報などである。より詳しくは、周辺情報取得部44は、障害物検出部109または地図情報記憶部102が出力した車両情報を取得する。周辺情報取得部44は、取得した周辺情報を表示制御部43bに出力する。
車両情報取得部42は、車両100の旋回方向への移動を推定するための車両情報を取得する。車両100の旋回方向への移動を推定する情報とは、車両100の現在地情報と車両100の方向指示器操作情報と車両100のギア操作情報と車両100のステアリング操作情報と車両100の角速度との少なくともいずれか一つの車両情報などである。車両情報取得部42は、現在地情報検出部103と方向指示器操作検出部104とギア操作検出部105とステアリング操作検出部106と角速度センサ107との少なくともいずれか一つが出力した車両情報を取得する。
制御部43は、俯瞰映像生成部43aで生成した俯瞰映像Bを、表示制御部43bで回転させて表示パネル101に表示されるように加工し、表示パネル101に送る。また、制御部43は、俯瞰映像生成部43aで生成した俯瞰映像Bを、表示制御部43bで回転および拡大して表示パネル101に表示されるように加工し、表示パネル101に送る。
表示制御部43bは、周辺情報取得部44で取得した周辺情報と車両情報取得部42で取得した車両情報とに基づいて、車両100の旋回方向への移動が推定され、車両100の周辺に車両100の旋回方向への移動時に注意すべき情報が存在する場合、仮想自車両画像Aにおける旋回方向の外輪側の側面前方P1が上側に位置するように傾けた状態の俯瞰映像Bを生成する。例えば、右左折時に、車両100は、旋回方向に移動する。
表示制御部43bは、車両100の旋回方向への移動時に注意すべき情報として、車両100の旋回方向への移動時に車両100との距離が所定未満となる障害物X(以下、「車両100の周辺の障害物X」という)が存在する場合、または車両100の旋回方向への移動時に通過する道路の幅員が所定値より小さい場合に、車両100の旋回方向への移動時に注意すべき情報が存在すると判断する。
次に、図15を用いて、俯瞰映像生成システム1Cの俯瞰映像生成装置40における処理の流れについて説明する。図15は、第七実施形態に係る俯瞰映像生成システムの俯瞰映像生成装置における処理の流れを示すフローチャートである。
表示制御部43bは、接触が予測されるか否かを判定する(ステップS21)。表示制御部43bは、車両100の周辺の障害物Xが存在する場合、または、車両100の旋回方向への移動時に通過する道路の幅員が所定値より小さい場合、接触が予測される(Yes)と判定する。表示制御部43bは、車両100の周辺の障害物Xが存在しない場合、かつ、車両100の旋回方向への移動時に通過する道路の幅員が所定値より大きい場合、接触が予測されない(No)と判定する。
例えば、表示制御部43bは、周辺情報取得部44で取得した障害物情報に基づいて、車両100の周辺の障害物Xが存在するか否かを判定する。車両100との所定未満の距離とは、例えば、車両100の移動方向(旋回方向)において、例えば、車両100から1m以内の範囲である。
例えば、表示制御部43bは、周辺情報取得部44で取得した車両100の旋回方向への移動時に通過する道路の幅員を含む地図情報に基づいて、車両100の旋回方向への移動時に通過する道路の幅員が所定値より小さいか否かを判定する。より詳しくは、車両100の旋回方向の道路の幅員が所定値より小さいか否かを判定する。所定値とは、例えば、4mである。
図16を用いて、車両100の周辺の障害物Xについて説明する。図16は、第七実施形態に係る俯瞰映像生成システムを使用する車両の周辺の状況を説明する概略図である。図16においては、車両100が走行中の道路R0が延びる方向を、走行道路方向D0、車両100の旋回方向をDとして図示する。車両100は、旋回方向Dに移動する場合、旋回方向Dの外輪側の側面前方P1と、車両100の旋回方向Dの内輪側の側面P2とが、障害物Xに接触し易くなる。言い換えると、車両100は、右左折などで旋回方向Dに移動する場合、車両100の回転中心と反対側の側面前方P1と、車両100の回転中心側の側面P2とが、障害物Xに接触し易くなる。図16において、車両100は、右折している。旋回方向Dの道路Rは、幅員W1が所定値より小さい。右折する位置には、回転中心側に縁石X2が存在する。このため、車両100の側面前方P1は、壁面X1に接触するおそれがある。車両100の側面P2は、縁石X2に接触するおそれがある。この場合、表示制御部43bは、障害物Xが存在すると判定する。
図15に戻って、表示制御部43bは、接触が予測されると判定されていない場合(ステップS21でNo)、ステップS23に進む。
表示制御部43bは、接触が予測されると判定した場合(ステップS21でYes)、ステップS22に進む。
表示制御部43bは、旋回方向の移動が推定されるか否かを判定する(ステップS22)。より詳しくは、表示制御部43bは、周辺情報取得部44で取得した車両100の周辺の地図情報と車両情報取得部42で取得した車両100の現在地情報と車両100の方向指示器操作情報と車両100のギア操作情報と車両100のステアリング操作情報と車両100の角速度との少なくともいずれか一つの車両情報に基づいて、車両100の旋回方向の移動が推定されるか否かを判定する。
表示制御部43bが、周辺情報取得部44で取得した車両100の周辺の地図情報と車両情報取得部42で取得した車両100の現在地情報とに基づいて、車両100の旋回方向の移動が推定されるか否かを判定する場合について説明する。例えば、表示制御部43bは、車両100の周辺の地図情報と車両100の現在地情報とに基づいて、車両100が経路案内情報で右左折が予定されている交差点の所定距離内に近づいた場合、車両100の旋回方向の移動が推定されると判定する。所定距離は、例えば、5mとしてもよい。表示制御部43bは、車両100の旋回方向の移動が推定されると判定した際に、推定した車両100の旋回方向を記憶装置30に記憶する。
表示制御部43bが、周辺情報取得部44で取得した車両100の周辺の地図情報と車両情報取得部42で取得した車両100の現在地情報、および、車両情報取得部42で取得した方向指示器操作情報とステアリング操作情報と車両100の角速度との少なくともいずれか一つに基づいて、車両100の旋回方向の移動が推定されるか否かを判定する場合について説明する。例えば、表示制御部43bは、車両100の周辺の地図情報と車両100の現在地情報、および、方向指示器操作情報とステアリング操作情報と車両100の角速度との少なくともいずれか一つに基づいて、車両100が経路案内情報で右左折が予定されている交差点の所定距離内に近づいた場合で、かつ、方向指示器が操作された場合、または、走行道路方向D0に対して逸れる方向にステアリング操作がされた場合、または、走行道路方向D0に対して逸れる方向に角速度が変化した場合、車両100の旋回方向の移動が推定されると判定する。所定距離は、例えば、5mとしてもよい。例えば、走行道路方向D0とのズレが15°以上となったら、逸れる方向の移動と判定するようにしてもよい。このように、車両100の周辺の地図情報と車両100の現在地情報、および、方向指示器操作情報とステアリング操作情報と車両100の角速度との少なくともいずれか一つを組み合わせて判定するのは、例えば、経路案内では右左折が案内されているものの、運転者が経路案内に従わないで直進する場合に、誤って車両100が旋回方向に移動すると推定しないためである。表示制御部43bは、車両100の旋回方向の移動が推定されると判定した際に、推定した車両100の旋回方向を記憶装置30に記憶する。
または、表示制御部43bは、第一実施形態で説明した他の方法で、車両100の旋回方向の移動が推定されるか否かを判定し、車両100の旋回方向を記憶装置30に記憶してもよい。
表示制御部43bは、車両100の旋回方向の移動が推定されていない場合(ステップS22でNo)、ステップS23に進む。
表示制御部43bは、車両100が旋回方向に移動すると推定した場合(ステップS22でYes)、ステップS24に進む。
表示制御部43bは、通常の俯瞰映像Bを生成する(ステップS23)。より詳しくは、表示制御部43bは、車両100の前後方向をフレームFの上下方向と平行に真っすぐ位置させた状態で、車両100を上方から見下ろした仮想自車両画像Aを含む俯瞰映像Bを生成する。この俯瞰映像Bは、仮想自車両画像Aの中心CがフレームFの中央に位置する。
表示制御部43bは、車両100の旋回方向を取得する(ステップS24)。表示制御部43bは、ステップS22で記憶装置30に記憶した車両100の旋回方向を取得する。
表示制御部43bは、旋回方向に傾けた状態で表示パネル101に表示される俯瞰映像Bを生成する(ステップS25)。より詳しくは、表示制御部43bは、仮想自車両画像Aの旋回方向の外輪側の側面前方P1がフレームFの上側に位置するように傾けた状態の仮想自車両画像Aを含む俯瞰映像Bを生成する。本実施形態では、表示制御部43bは、仮想自車両画像Aの中心Cを中心として、仮想自車両画像Aを含む俯瞰映像Bを旋回方向に回転して傾けた状態で、表示パネル101に表示する。
より詳しくは、まず、表示制御部43bは、車両100の旋回方向が、走行道路方向D0に対して、左右どちらの方向に位置するかを判定する。表示制御部43bは、車両100の旋回方向を右方向と判定した場合、仮想自車両画像Aの中心Cを中心として、俯瞰映像BをフレームFに対して時計回りに所定角度回転して傾けた状態で、俯瞰映像Bを生成する。所定角度とは、例えば20°以上45°以下である。表示制御部43bは、車両100の旋回方向を左方向と判定した場合、仮想自車両画像Aの中心Cを中心として、俯瞰映像BをフレームFに対して反時計回りに所定角度回転して傾けた状態で、俯瞰映像Bを生成する。所定角度とは、例えば20°以上45°以下である。このようにして、表示制御部43bは、フレームFに対して時計回り、または、反時計回りに傾けた俯瞰映像Bを生成する。これにより、俯瞰映像BがフレームFに対して時計回りに傾いている場合、俯瞰映像Bには、仮想自車両画像Aの左前方とその周辺と、右側面とその周辺とが広く表示される。俯瞰映像BがフレームFに対して反時計回りに傾いている場合、俯瞰映像Bには、仮想自車両画像Aの右前方とその周辺と、左側面とその周辺とが広く表示される。仮想自車両画像Aは車両100を示しているため、車両100の周辺において、旋回方向への移動時に注意すべき情報が表示される範囲を広く表示することができる。
本実施形態では、車両100の旋回方向が右方向であり、図17に示すように、俯瞰映像Bは、仮想自車両画像Aの中心線LAがフレームFの中心線LFに対して傾いている。図17は、第七実施形態に係る俯瞰映像生成システムで生成した俯瞰映像を示す図である。これにより、俯瞰映像Bには、車両100の側面前方P1と障害物Xである壁面X1の周辺と、車両100の側面P2と障害物Xである縁石X2の周辺とが広く表示される。
ここで、図18を用いて、比較のために、従来の俯瞰映像Bを説明する。図18は、従来の俯瞰映像を示す図である。図18に示すように、俯瞰映像Bは、仮想自車両画像AがフレームFに対して傾いておらず、仮想自車両画像Aの中心線LAがフレームFの中心線LFと一致している。このため、矩形状のフレームFに表示された俯瞰映像Bには、車両100の接触し易い部分と障害物X、具体的には、車両100の側面前方P1と壁面X1の周辺と、車両100の側面P2と縁石X2の周辺とが、図17に比べて狭く表示される。
図19に示すように、俯瞰映像Bは、仮想自車両画像Aの中心線LAがフレームFの中心線LFに対して時計回りに45°傾いていてもよい。図19は、第七実施形態に係る俯瞰映像生成システムで生成した俯瞰映像の他の例を示す図である。これにより、俯瞰映像Bには、車両100の側面前方P1と壁面X1の周辺と、車両100の側面P2と縁石X2の周辺とがより広く表示される。しかも、俯瞰映像Bには、車両100の側面前方P1と壁面X1の周辺と、車両100の側面P2と縁石X2の周辺とが、フレームFの中心線LF近くに位置する。
さらに、図20に示すように、俯瞰映像Bは、仮想自車両画像Aの中心線LAがフレームFの中心線LFに対して傾き、側面前方P1をフレームFの中心線LF上に位置させてもよい。図20は、第七実施形態に係る俯瞰映像生成システムで生成した俯瞰映像の他の例を示す図である。これにより、俯瞰映像Bには、車両100の側面前方P1と壁面X1の周辺と、車両100の側面P2と縁石X2の周辺とがより広く表示される。しかも、俯瞰映像Bには、車両100の側面前方P1と壁面X1の周辺と、車両100の側面P2と縁石X2の周辺とが、フレームFの中心線LF近くに位置する。図20の俯瞰映像Bの生成処理は、俯瞰映像生成部43aが生成した俯瞰映像Bに対し、表示制御部43bが俯瞰映像Bを回転させ、さらに旋回方向とは反対方向に俯瞰映像Bを移動させた俯瞰映像Bを生成する。
表示制御部43bは、車両100の旋回方向の移動が完了した場合、仮想自車両画像Aの傾きを解除して元の状態に復帰した俯瞰映像Bを生成する。
表示制御部43bが、図15に示すフローチャートのステップS22で、周辺情報取得部44で取得した車両100の周辺の地図情報と車両情報取得部42で取得した車両100の現在地情報とに基づいて、車両100の旋回方向への移動を推定した場合について説明する。例えば、表示制御部43bは、車両100の周辺の地図情報と車両100の現在地情報とに基づいて、車両100が経路案内情報で右左折が予定されている交差点から所定距離以上に離れた場合、車両100の旋回方向の移動が完了したと判定する。所定距離は、例えば、5mとしてもよい。
表示制御部43bが、図15に示すフローチャートのステップS22で、周辺情報取得部44で取得した車両100の周辺の地図情報と車両情報取得部42で取得した車両100の現在地情報、および、車両情報取得部42で取得した方向指示器操作情報とステアリング操作情報と車両100の角速度との少なくともいずれか一つに基づいて、車両100の旋回方向への移動を推定した場合について説明する。例えば、表示制御部43bは、車両100の周辺の地図情報と車両100の現在地情報、および、方向指示器操作情報とステアリング操作情報と車両100の角速度との少なくともいずれか一つに基づいて、車両100が経路案内情報で右左折が予定されている交差点から所定距離以上離れた場合で、かつ、方向指示器の操作が解除された場合、または、ステアリングホイールが復帰方向に操作された場合、または、角速度が復帰方向に変化した場合、車両100の旋回方向の移動が完了したと判定する。所定距離は、例えば、5mとしてもよい。
または、表示制御部43bは、第一実施形態で説明した他の方法で、車両100の旋回方向の移動が完了したと判定してもよい。
このような場合に、表示制御部43bは、車両100の旋回方向に移動が完了したと判定して、仮想自車両画像Aを元の状態に復帰した俯瞰映像Bを生成する。
このようにして、俯瞰映像生成システム1Cは、俯瞰映像Bを生成して、俯瞰映像生成システム1Cの外部の表示パネル101に映像信号を出力する。外部の表示パネル101は、俯瞰映像生成システム1Cから出力された映像信号に基づいて、例えば、ナビゲーションとともに俯瞰映像Bを表示する。
上述したように、本実施形態に係る俯瞰映像生成システム1Cは、周辺情報取得部44で取得した周辺情報と車両情報取得部42で取得した車両情報とに基づいて、車両100の周辺に車両100の旋回方向への移動時に注意すべき情報が存在する場合、仮想自車両画像Aにおける旋回方向の外輪側の側面前方P1が上側に位置するように傾けた状態の俯瞰映像Bを生成する。より詳しくは、車両100の旋回方向が右方向の場合、俯瞰映像BがフレームFに対して時計回りに傾いて表示され、俯瞰映像Bには、車両100の左前方とその周辺と右側面とその周辺とを広く表示することができる。車両100の旋回方向が左方向の場合、俯瞰映像BがフレームFに対して反時計回りに傾いて表示され、俯瞰映像Bには、車両100の右前方とその周辺と左側面とその周辺とを広く表示することができる。これにより、俯瞰映像Bには、車両100の接触し易い部分と障害物Xとを広く表示することができる。このように、俯瞰映像生成システム1Cは、矩形状の表示装置を使用しても、車両100の周辺、より具体的には、車両100の旋回方向への移動時に注意すべき情報をより適切に確認可能な俯瞰映像Bを生成することができる。
俯瞰映像生成システム1Cは、仮想自車両画像Aの中心線LAをフレームFの中心線LFに対して時計回りに45°傾けた俯瞰映像Bや、仮想自車両画像Aの中心線LAをフレームFの中心線LFに対して傾けて、側面前方P1をフレームFの中心線LFに位置させた俯瞰映像Bを生成することができる。これにより、俯瞰映像Bは、車両100の側面前方P1と壁面X1の周辺と、車両100の側面P2と縁石X2の周辺とをより広く表示することができる。しかも、俯瞰映像Bは、車両100の側面前方P1と壁面X1の周辺と、車両100の側面P2と縁石X2の周辺とを、フレームFの中心線LF近くに位置させることができる。このため、俯瞰映像生成システム1Cは、車両100の周辺、より具体的には、車両100の旋回方向への移動時に注意すべき情報をより適切に確認可能な俯瞰映像Bを生成することができる。
[第八実施形態]
図21を参照しながら、本実施形態に係る俯瞰映像生成システム1Cについて説明する。図21は、第八実施形態に係る俯瞰映像生成システムで生成した俯瞰映像を示す図である。俯瞰映像生成システム1Cは、基本的な構成は第七実施形態の俯瞰映像生成システム1Cと同様である。以下の説明においては、俯瞰映像生成システム1Cと同様の構成要素には、同一の符号または対応する符号を付し、その詳細な説明は省略する。本実施形態の俯瞰映像生成システム1Cは、俯瞰映像生成装置40における処理が、第七実施形態の俯瞰映像生成システム1Cと異なる。
図21を参照しながら、本実施形態に係る俯瞰映像生成システム1Cについて説明する。図21は、第八実施形態に係る俯瞰映像生成システムで生成した俯瞰映像を示す図である。俯瞰映像生成システム1Cは、基本的な構成は第七実施形態の俯瞰映像生成システム1Cと同様である。以下の説明においては、俯瞰映像生成システム1Cと同様の構成要素には、同一の符号または対応する符号を付し、その詳細な説明は省略する。本実施形態の俯瞰映像生成システム1Cは、俯瞰映像生成装置40における処理が、第七実施形態の俯瞰映像生成システム1Cと異なる。
表示制御部43bは、図15に示すフローチャートのステップS25で、俯瞰映像生成部43aが生成した俯瞰映像Bを傾けた俯瞰映像Bを生成する際に、俯瞰映像Bを拡大する。
本実施形態では、車両100の旋回方向が右方向であり、図21に示すように、俯瞰映像Bは、仮想自車両画像Aの中心線LAがフレームFの中心線LFに対して傾いており、俯瞰映像Bが図17よりも拡大されて表示されている。これにより、俯瞰映像Bには、車両100の側面前方P1と壁面X1の周辺と、車両100の側面P2と縁石X2の周辺とが拡大して表示される。
上述したように、本実施形態に係る俯瞰映像生成システム1Cは、俯瞰映像生成部43aが生成した俯瞰映像Bを拡大した俯瞰映像Bを生成する。このため、俯瞰映像生成システム1Cは、車両100の側面前方P1と壁面X1の周辺と、車両100の側面P2と縁石X2の周辺とを拡大して表示することができる。このように、俯瞰映像生成システム1Cは、車両100の周辺、より具体的には、車両100の旋回方向への移動時に注意すべき情報をより適切に確認可能な俯瞰映像Bを生成することができる。
[第九実施形態]
図22を参照しながら、本実施形態に係る俯瞰映像生成システム1Cについて説明する。図22は、第九実施形態に係る俯瞰映像生成システムで生成した俯瞰映像を示す図である。本実施形態の俯瞰映像生成システム1Cは、俯瞰映像生成装置40における処理が、第一実施形態の俯瞰映像生成システム1Cと異なる。
図22を参照しながら、本実施形態に係る俯瞰映像生成システム1Cについて説明する。図22は、第九実施形態に係る俯瞰映像生成システムで生成した俯瞰映像を示す図である。本実施形態の俯瞰映像生成システム1Cは、俯瞰映像生成装置40における処理が、第一実施形態の俯瞰映像生成システム1Cと異なる。
表示制御部43bは、ステップS25で、俯瞰映像生成部43aが生成した俯瞰映像Bを傾けた俯瞰映像Bを生成する際に、車両100の旋回方向とは異なる方向に寄せた俯瞰映像Bを生成する。より詳しくは、表示制御部43bは、仮想自車両画像Aの旋回方向の外輪側の側面前方P1がフレームFの上側に位置するように傾けた状態の俯瞰映像Bを生成する際に、車両100の旋回方向とは異なる方向に、俯瞰映像Bをずらした俯瞰映像Bを生成する。この場合、仮想自車両画像Aの中心CはフレームFの中心線LFから旋回方向とは異なる方向に移動した位置となる。表示制御部43bは、車両100が右折する場合、俯瞰映像生成部43aが生成した俯瞰映像Bを左方向にずらした俯瞰映像Bを生成する。表示制御部43bは、車両100が左折する場合、俯瞰映像生成部43aが生成した俯瞰映像Bを右方向にずらした俯瞰映像Bを生成する。
本実施形態では、車両100の旋回方向が右方向であり、図22に示すように、俯瞰映像Bは、仮想自車両画像Aの中心CがフレームFの中心線LFより左側に寄るように表示されている。これにより、俯瞰映像Bには、側面前方P1と障害物Xである壁面X1の周辺と、側面P2と縁石X2の周辺とがより広く表示される。しかも、俯瞰映像Bは、側面前方P1と障害物Xである壁面X1の周辺と、側面P2と縁石X2の周辺とが、フレームFの中心線LF近くに位置する。
上述したように、本実施形態に係る俯瞰映像生成システム1Cは、俯瞰映像生成部43aが生成した俯瞰映像Bを傾けた俯瞰映像Bを生成する際に、車両100の旋回方向とは異なる方向に寄せた俯瞰映像Bを生成する。このため、俯瞰映像生成システム1Cは、車両100の接触し易い部分と障害物Xとをより広く表示することができる。しかも、俯瞰映像生成システム1Cは、俯瞰映像Bにおいて、車両100の接触し易い部分と障害物Xとを、フレームFの中心線LF近くに位置させることができる。このように、俯瞰映像生成システム1Cは、車両100の周辺より具体的には、車両100の旋回方向への移動時に注意すべき情報をより適切に確認可能な俯瞰映像Bを生成することができる。
[第十実施形態]
図23、図24を参照しながら、本実施形態に係る俯瞰映像生成システム1Dについて説明する。図23は、第十実施形態に係る俯瞰映像生成システムの構成例を示すブロック図である。本実施形態の俯瞰映像生成システム1Dは、俯瞰映像生成装置40の車両情報取得部42が、さらに車速センサ(車速取得部)108から車速を取得する点で、第七実施形態の俯瞰映像生成システム1Cと異なる。
図23、図24を参照しながら、本実施形態に係る俯瞰映像生成システム1Dについて説明する。図23は、第十実施形態に係る俯瞰映像生成システムの構成例を示すブロック図である。本実施形態の俯瞰映像生成システム1Dは、俯瞰映像生成装置40の車両情報取得部42が、さらに車速センサ(車速取得部)108から車速を取得する点で、第七実施形態の俯瞰映像生成システム1Cと異なる。
車両情報取得部42は、さらに車速センサ108で出力された車速を取得する。車両情報取得部42は、取得した車速も含む車両情報を表示制御部43bに出力する。
表示制御部43bは、車両100の周辺に車両100の旋回方向への移動時に注意すべき情報が存在する場合、さらに、車速センサ108で取得した車速に基づいて、車速が所定値より小さい場合、仮想自車両画像Aにおける旋回方向の外輪側の側面前方P1が上側に位置するように傾けた状態の俯瞰映像Bを生成する。所定値は、例えば、10km/hや徐行に該当する速度としてもよい。所定値より低い速度まで減速して、運転者がより慎重に運転していると予測される場合に、運転者の運転を支援するためである。
図24を用いて、より詳しく、表示制御部43bにおける処理の流れについて説明する。図24は、第十実施形態に係る俯瞰映像生成システムの俯瞰映像生成装置における処理の流れを示すフローチャートである。
表示制御部43bは、接触が予測されるか否かを判定する(ステップS31)。ステップS31は、ステップS21と同様の処理である。
表示制御部43bは、旋回方向の移動が推定されるか否かを判定する(ステップS32)。ステップS32は、ステップS22と同様の処理である。
表示制御部43bは、車速が所定値より小さいか否かを判定する(ステップS33)。表示制御部43bは、車速が所定値より小さいと判定されていない場合(ステップS33でNo)、ステップS34に進む。表示制御部43bは、車速が所定値より小さいと判定した場合(ステップS33でYes)、ステップS35に進む。
表示制御部43bは、仮想自車両画像Aを真っすぐに配置した俯瞰映像Bを生成する(ステップS34)。ステップS34は、ステップS23と同様の処理である。
表示制御部43bは、車両100の旋回方向を取得する(ステップS35)。ステップS35は、ステップS24と同様の処理である。
表示制御部43bは、仮想自車両画像Aを傾けた俯瞰映像Bを生成する(ステップS36)。ステップS36は、ステップS25と同様の処理である。
本実施形態では、車両100の周辺に車両100の旋回方向への移動時に注意すべき情報が存在する場合、さらに、車速が所定値より小さい場合、俯瞰映像生成部43aが生成した俯瞰映像Bを傾けた俯瞰映像Bが生成される。
上述したように、本実施形態に係る俯瞰映像生成システム1Dは、車両100の周辺に車両100の旋回方向への移動時に注意すべき情報が存在する場合、さらに、車速が所定値より小さい場合、仮想自車両画像Aにおける旋回方向の外輪側の側面前方P1が上側に位置するように傾けた状態の俯瞰映像Bを生成する。このように、車速を所定値より低い速度まで減速して、運転者がより慎重に運転していると予測される場合に、俯瞰映像生成システム1Dは、運転者の運転を支援することができる。このように、俯瞰映像生成システム1Dは、運転状況に合わせて、車両100の周辺、より具体的には、車両100の旋回方向への移動時に注意すべき情報をより適切に確認可能な俯瞰映像Bを生成し、適切に運転支援を行うことができる。
さて、これまで本発明に係る俯瞰映像生成システム1について説明したが、上述した実施形態以外にも種々の異なる形態にて実施されてよいものである。
図示した俯瞰映像生成システム1の各構成要素は、機能概念的なものであり、必ずしも物理的に図示の如く構成されていなくてもよい。すなわち、各装置の具体的形態は、図示のものに限られず、各装置の処理負担や使用状況などに応じて、その全部または一部を任意の単位で機能的または物理的に分散または統合してもよい。
制御部43は、俯瞰映像生成部43aが、車両100を上方から見た仮想自車両画像Aと、映像取得部41で取得した映像を、車両100の上方から見た映像に変換して、俯瞰映像Bとして出力し、表示制御部43bが、俯瞰映像生成部43aで生成した映像のうち、仮想自車両画像Aと仮想自車両画像Aの周囲の映像を抽出した映像に加工し、表示パネル101に送るものとして説明したが、この構成に限定されるものではない。例えば、表示制御部が、仮想自車両画像Aと仮想自車両画像Aの周囲の映像をフレームF内にどのように配置するかを判定し、俯瞰映像生成部が、表示制御部の制御で、表示制御部が判定したフレームF内の仮想自車両画像Aと仮想自車両画像Aの周囲の映像との配置に基づいて、仮想自車両画像Aと、映像取得部41で取得した映像を、車両100の上方から見た映像に変換して、俯瞰映像Bとして表示制御部に出力し、さらに、表示制御部は、俯瞰映像Bを表示パネル101に送ってもよい。
図25に示すように、俯瞰映像生成システム1Eの俯瞰映像生成部27は、第一撮影装置20の機能の一つとしてもよい。図25は、俯瞰映像生成システムの他の構成例を示すブロック図である。この場合、俯瞰映像生成装置40の映像取得部41は、第一撮影装置20の俯瞰映像生成部27で生成された俯瞰映像Bを取得する。表示制御部43bは、第一撮影装置20の俯瞰映像生成部27で生成された俯瞰映像Bのうち、仮想自車両画像Aと仮想自車両画像Aの周囲の映像を抽出した映像に加工し、表示パネル101に送る。このように、俯瞰映像生成システム1Eにおいては、第一撮影装置20の俯瞰映像生成部27と俯瞰映像生成装置40の表示制御部43bとで制御部としての機能を実現している。
図26に示すように、俯瞰映像生成システム1Fの俯瞰映像生成部27は、第一撮影装置20の機能の一つとしてもよい。図26は、俯瞰映像生成システムの他の構成例を示すブロック図である。この場合、俯瞰映像生成装置40の映像取得部41は、第一撮影装置20の俯瞰映像生成部27で生成された俯瞰映像Bを取得する。表示制御部43bは、第一撮影装置20の俯瞰映像生成部27で生成された俯瞰映像Bのうち、仮想自車両画像Aと仮想自車両画像Aの周囲の映像を抽出した映像に加工し、表示パネル101に送る。このように、俯瞰映像生成システム1Fにおいては、第一撮影装置20の俯瞰映像生成部27と俯瞰映像生成装置40の表示制御部43bとで制御部としての機能を実現している。
俯瞰映像生成システム1の構成は、例えば、ソフトウェアとして、メモリにロードされたプログラムなどによって実現される。上記実施形態では、これらのハードウェアまたはソフトウェアの連携によって実現される機能ブロックとして説明した。すなわち、これらの機能ブロックについては、ハードウェアのみ、ソフトウェアのみ、または、それらの組み合わせによって種々の形で実現できる。
上記に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものを含む。さらに、上記に記載した構成は適宜組み合わせが可能である。また、本発明の要旨を逸脱しない範囲において構成の種々の省略、置換または変更が可能である。
例えば、図27に示す俯瞰映像Bは、第二実施形態と第四実施形態とを組み合わせたものである。図27は、俯瞰映像生成システムで生成した俯瞰映像の他の例を示す図である。表示制御部43bは、図2に示すフローチャートのステップS14で、このような俯瞰映像Bを生成してもよい。この場合、俯瞰映像Bは、仮想自車両画像AがフレームFの右上に、車両100のサイドミラーMより後方がフレームFに収まる位置に位置し、かつ、仮想自車両画像AがフレームFの右上端に寄せて表示されている。これにより、俯瞰映像Bには、車両100の移動方向である左側と後方とがより広く表示される。フレームFは、第二フレームF2と第三フレームF3とをより広く含み、第一フレームF1と第四フレームF4とを含まない。このように、俯瞰映像生成システム1は、車両100の旋回方向の移動に応じて、車両周辺の確認が容易になるような俯瞰映像Bを生成することができる。
例えば、図28に示す俯瞰映像Bは、第三実施形態と第四実施形態とを組み合わせたものである。図28は、俯瞰映像生成システムで生成した俯瞰映像の他の例を示す図である。表示制御部43bは、図2に示すフローチャートのステップS14で、このような俯瞰映像Bを生成してもよい。この場合、俯瞰映像Bは、仮想自車両画像AがフレームFの右上に図3よりも小さく表示され、かつ、仮想自車両画像AがフレームFの右上端に寄せて表示されている。これにより、俯瞰映像Bには、車両100の移動方向である左側と後方とがより広く表示される。フレームFは、第二フレームF2と第三フレームF3とをより広く含み、第一フレームF1と第四フレームF4とを含まない。このように、俯瞰映像生成システム1は、車両100の旋回方向の移動に応じて、車両周辺の確認が容易になるような俯瞰映像Bを生成することができる。
例えば、図29に示す俯瞰映像Bは、第二実施形態と第三実施形態と第四実施形態とを組み合わせたものである。図29は、俯瞰映像生成システムで生成した俯瞰映像の他の例を示す図である。表示制御部43bは、図2に示すフローチャートのステップS14で、このような俯瞰映像Bを生成してもよい。この場合、俯瞰映像Bは、仮想自車両画像AがフレームFの右上に、車両100のサイドミラーMより後方がフレームFに収まる位置に位置し、かつ、仮想自車両画像AがフレームFの右上に図3よりも小さく表示され、かつ、仮想自車両画像AがフレームFの右上端に寄せて表示されている。これにより、俯瞰映像Bには、車両100の移動方向である左側と後方とがより広く表示される。フレームFは、第二フレームF2と第三フレームF3とをより広く含み、第一フレームF1と第四フレームF4とを含まない。このように、俯瞰映像生成システム1は、車両100の旋回方向の移動に応じて、車両周辺の確認が容易になるような俯瞰映像Bを生成することができる。
表示制御部43bは、図2に示すフローチャートのステップS14で、所望の俯瞰映像Bを生成するように、第一撮影装置20の前方用周辺撮影カメラ21と後方用周辺撮影カメラ22と左側方用周辺撮影カメラ23と右側方用周辺撮影カメラ24と、第二撮影装置50の左後方用周辺撮影カメラ51と右後方用周辺撮影カメラ52とのカメラの向き、画角を変える制御を行ってもよい。または、表示制御部43bは、図15に示すフローチャートのステップS25で、所望の俯瞰映像Bを生成するように、第一撮影装置20の前方用周辺撮影カメラ21と後方用周辺撮影カメラ22と左側方用周辺撮影カメラ23と右側方用周辺撮影カメラ24とのカメラの向き、画角を変える制御を行ってもよい。例えば、表示制御部43bは、車両100の移動方向を撮影するカメラの向きを変えたり、画角を広げたりしてもよい。このように、俯瞰映像生成システム1は、車両100の旋回方向の移動に応じて、車両周辺の確認が容易になるような俯瞰映像Bを生成することができる。
表示制御部43bは、図2に示すフローチャートにおいて、車両100が旋回方向に移動すると推定した場合、仮想自車両画像Aをずらして位置させた俯瞰映像Bを生成するものとしたが、ステップS14で、所定条件に応じて、フレームFにおける仮想自車両画像Aの位置を徐々にずらすようにしてもよい。例えば、表示制御部43bは、車両100の加速度に応じて、フレームFにおける仮想自車両画像Aの位置を徐々にずらしてもよい。これにより、外部の表示パネル101に表示される俯瞰映像Bにおいて、フレームF内の仮想自車両画像Aの位置が徐々に変化する。このため、運転者は、車両周辺の確認をより容易にすることができる。
図15に示す、俯瞰映像生成システム1の俯瞰映像生成装置40における処理の流れにおいて、ステップS21の実行後にステップS22を実行するものとしたが、ステップS21とステップS22とは、順番が逆でもよい。より詳しくは、表示制御部43bは、旋回方向の移動が推定されるか否かを判定した後に、接触が予測されるか否かを判定するようにしてもよい。図24に示す、俯瞰映像生成システム1Dの俯瞰映像生成装置40における処理の流れにおいて、ステップS31の実行後にステップS32を実行して、ステップS32の実行後にステップS33を実行するものとしたが、ステップS31とステップS32とステップS33とは、順番が異なっていてもよい。より詳しくは、例えば、表示制御部43bは、旋回方向の移動が推定されるか否かを判定した後に、接触が予測されるか否かを判定し、その後、車速が所定値より小さいか否かを判定するようにしてもよい。
上記実施形態では、一例として、図16に示すように、旋回方向の外輪側の側面前方P1と車両100の旋回方向の内輪側の側面P2とに障害物Xが存在するものとして説明したが、障害物Xの位置はこれに限定されるものではない。
図30を用いて説明する。図30は、俯瞰映像生成システムを使用する車両の周辺の他の状況を説明する概略図である。図31は、俯瞰映像生成システムで生成した俯瞰映像の他の例を示す図である。図30において、車両100は、右折している。この場合、旋回方向の道路の幅員は所定値より大きいが、壁面X1が側面前方P1に接触するおそれがある。このため、表示制御部43bは、接触が予測されると判定する。この場合、図31に示すように、俯瞰映像Bは、拡大されるとともに、車両100の旋回方向とは異なる方向としてフレームFの下側に俯瞰映像Bをずらして表示させる。これにより、俯瞰映像Bには、車両100の側面前方P1が拡大して表示される。
図32を用いて説明する。図32は、俯瞰映像生成システムを使用する車両の周辺の他の状況を説明する概略図である。図33は、俯瞰映像生成システムで生成した俯瞰映像の他の例を示す図である。図32において、車両100は、右折している。この場合、旋回方向の道路の幅員は所定値より大きいが、右折する位置に縁石X2が存在し、側面P2に接触するおそれがある。このため、表示制御部43bは、接触が予測されると判定する。この場合、図32に示すように、俯瞰映像Bは、拡大されるとともに、車両100の旋回方向とは異なる方向としてフレームFの上側に俯瞰映像Bをずらして表示させる。これにより、俯瞰映像Bには、車両100の側面P2が拡大して表示される。
表示制御部43bは、障害物Xと車両100の接触が予測される部分とを色を変えて強調した俯瞰映像Bを生成してもよい。例えば、図17においては、車両100の側面前方P1と障害物Xである壁面X1の周辺と、車両100の側面P2と縁石X2の周辺との色を変えた俯瞰映像Bを生成してもよい。
障害物検出部109は、車両100の周辺の障害物Xを検出するセンサとして説明したが、これに限定されない。例えば、障害物検出部109は、第一撮影装置20から出力された周辺映像を画像処理することで車両100の周辺の障害物Xを検出してもよい。
表示制御部43bは、図15に示すフローチャートにおいて、車両100が旋回方向に移動すると推定した場合、俯瞰映像生成部43aが生成した俯瞰映像Bを傾けた俯瞰映像Bを生成するものとしたが、ステップS25で、所定条件に応じて、俯瞰映像Bが徐々に傾くようにしてもよい。例えば、表示制御部43bは、車両100の周辺の地図情報と車両100の現在地情報、ステアリング操作情報、車両100の角速度などに応じて、フレームFにおける俯瞰映像Bを徐々に傾けてもよい。表示制御部43bは、車両100の周辺の地図情報と車両100の現在地情報、ステアリング操作情報、車両100の角速度などに応じて、フレームFにおける俯瞰映像Bを徐々に元に復帰させてもよい。これにより、外部の表示パネル101に表示される俯瞰映像Bにおいて、フレームF内の俯瞰映像Bの傾きが徐々に変化する。このため、俯瞰映像生成システム1は、車両100の周辺、より具体的には、車両100の旋回方向への移動時に注意すべき情報をより適切に確認可能な俯瞰映像Bを生成することができる。
1 俯瞰映像生成システム
20 第一撮影装置
21 前方用周辺撮影カメラ
22 後方用周辺撮影カメラ
23 左側方用周辺撮影カメラ
24 右側方用周辺撮影カメラ
30 記憶装置
40 俯瞰映像生成装置
41 映像取得部
42 車両情報取得部
43 制御部
43a 俯瞰映像生成部
43b 表示制御部
50 第二撮影装置
51 左後方用周辺撮影カメラ
52 右後方用周辺撮影カメラ
100 車両
101 表示パネル
102 地図情報記憶部
104 方向指示器操作検出部
105 ギア操作検出部
107 角速度センサ
108 車速センサ
A 仮想自車両画像
B 俯瞰映像
F フレーム
20 第一撮影装置
21 前方用周辺撮影カメラ
22 後方用周辺撮影カメラ
23 左側方用周辺撮影カメラ
24 右側方用周辺撮影カメラ
30 記憶装置
40 俯瞰映像生成装置
41 映像取得部
42 車両情報取得部
43 制御部
43a 俯瞰映像生成部
43b 表示制御部
50 第二撮影装置
51 左後方用周辺撮影カメラ
52 右後方用周辺撮影カメラ
100 車両
101 表示パネル
102 地図情報記憶部
104 方向指示器操作検出部
105 ギア操作検出部
107 角速度センサ
108 車速センサ
A 仮想自車両画像
B 俯瞰映像
F フレーム
Claims (16)
- 車両の周辺を撮影した周辺映像を取得する映像取得部と、
前記車両の旋回方向への移動を推定するための車両情報を取得する車両情報取得部と、
前記映像取得部が取得した周辺映像に基づき、前記車両を示す仮想自車両画像を含み、前記車両を上方から見下ろした俯瞰映像を生成する制御部と、
を備え、
前記制御部は、前記車両情報取得部で取得した車両情報に基づいて、前記車両の旋回方向への移動が推定された場合、推定された旋回方向において確認が必要となる方向の周辺映像が広く表示されるように前記仮想自車両画像を含む前記俯瞰映像の表示位置を変更した俯瞰映像を生成することを特徴とする俯瞰映像生成装置。 - 前記制御部は、前記車両情報取得部で取得した前記車両情報に基づいて、前記車両の旋回方向への移動が推定された場合、前記旋回方向において前記車両が移動する方向とは反対の方向に、前記車両を寄せて位置させた状態の俯瞰映像を生成することを特徴とする請求項1に記載の俯瞰映像生成装置。
- 前記制御部は、前記車両の旋回方向において前記車両が移動する方向とは反対の方向に、前記仮想自車両画像を寄せて位置させた状態で、前記車両のサイドミラーより後方の前記俯瞰映像を生成することを特徴とする請求項2に記載の俯瞰映像生成装置。
- 前記制御部は、前記車両の旋回方向において前記車両が移動する方向とは反対の方向に、前記仮想自車両画像を寄せて位置させた状態で、前記仮想自車両画像を縮小した前記俯瞰映像を生成することを特徴とする請求項2または3に記載の俯瞰映像生成装置。
- 前記車両情報取得部は、前記車両の車速を取得し、
前記制御部は、前記車両情報取得部で取得した前記車速に基づいて、前記車両が減速している状態と前記車両が加速している状態とでは、前記車両が減速している状態における前記俯瞰映像の方が、前記車両が移動する方向を広くした前記俯瞰映像を生成することを特徴とする請求項2から4のいずれか一項に記載の俯瞰映像生成装置。 - 前記車両情報取得部は、前記車両の車速を取得し、
前記制御部は、前記車両情報取得部で取得した前記車速に基づいて、前記車両が減速している状態と前記車両が加速している状態とでは、前記車両が加速している状態における前記俯瞰映像の方が、前記車両の旋回方向において前記車両が移動する方向とは反対の方向を広くした前記俯瞰映像を生成することを特徴とする請求項2から4のいずれか一項に記載の俯瞰映像生成装置。 - 前記映像取得部は、前記車両の左後方と右後方とを撮影した後方映像を取得し、
前記制御部は、前記映像取得部で取得した、前記車両が移動する方向の後方映像と前記俯瞰映像とを合成した映像を生成することを特徴とする請求項2から6のいずれか一項に記載の俯瞰映像生成装置。 - 前記車両の周辺情報を取得する周辺情報取得部、を備え、
前記制御部は、前記車両情報取得部で取得した前記車両情報と前記周辺情報取得部で取得した前記周辺情報とに基づいて、前記車両の旋回方向への移動が推定され、前記車両の周辺に前記車両の旋回方向への移動時に注意すべき情報が存在する場合、前記仮想自車両画像における前記旋回方向の外輪側の側面が内輪側の側面よりも上側に位置する向きとなるように傾けた状態の俯瞰映像を生成することを特徴とする請求項1に記載の俯瞰映像生成装置。 - 前記周辺情報取得部は、前記車両の周辺情報として前記車両の周辺における障害物情報または前記車両が走行中の道路の幅員情報を取得し、
前記制御部は、前記車両の旋回方向への移動時に前記車両との距離が所定未満となる障害物が存在する場合、または前記車両の旋回方向への移動時に通過する道路の幅員が所定値より小さい場合、前記車両の旋回方向への移動時に注意すべき情報が存在すると判断することを特徴とする請求項8に記載の俯瞰映像生成装置。 - 前記制御部は、前記仮想自車両画像における前記車両の旋回方向の外輪側の側面が内輪側の側面よりも上側に位置する向きとなるように傾けた状態で、拡大した俯瞰映像を生成することを特徴とする請求項8または9に記載の俯瞰映像生成装置。
- 前記制御部は、前記旋回方向において前記車両が移動する方向とは反対の方向に、前記仮想自車両画像を寄せて位置させた状態の俯瞰映像を生成することを特徴とする請求項8から10のいずれか一項に記載の俯瞰映像生成装置。
- 前記車両情報取得部は、前記車両の車速を取得し、
前記制御部は、前記車両情報取得部で取得した前記車速が所定値より小さい場合、前記仮想自車両画像における前記旋回方向の外輪側の側面が内輪側の側面よりも上側に位置する向きとなるように傾けた状態の俯瞰映像を生成することを特徴とする請求項8から11のいずれか一項に記載の俯瞰映像生成装置。 - 前記車両情報取得部は、前記車両の目的地に対する経路案内情報と前記車両の現在地情報と前記車両の方向指示器操作情報と前記車両のギア操作情報と前記車両の角速度との少なくともいずれか一つを前記車両の旋回方向への移動を推定するための車両情報として取得し、
前記制御部は、前記車両の目的地に対する経路案内情報と前記車両の現在地情報と前記車両の方向指示器操作情報と前記車両のギア操作情報と前記車両の角速度との少なくともいずれか一つに基づいて、前記車両の旋回方向への移動を推定することを特徴とする請求項1から12のいずれか一項に記載の俯瞰映像生成装置。 - 請求項1から13のいずれか一項に記載の俯瞰映像生成装置と、
前記車両の周辺を撮影し前記映像取得部に周辺映像を供給する撮影部と、または前記制御部が生成した俯瞰映像を表示する表示制御部および表示パネルと、の少なくともいずれかを有することを特徴とする俯瞰映像生成システム。 - 車両の周辺を撮影した周辺映像を取得する映像取得ステップと、
前記車両の旋回方向への移動を推定するための車両情報を取得する車両情報取得ステップと、
前記映像取得ステップで取得した周辺映像に基づき、前記車両を示す仮想自車両画像を含み、前記車両を上方から見下ろした俯瞰映像を生成する制御ステップと、を含み、
前記制御ステップにおいては、前記車両情報取得ステップで取得した車両情報に基づいて、前記車両の旋回方向への移動が推定された場合、推定された旋回方向において確認が必要となる方向の周辺映像が広く表示されるように前記仮想自車両画像を含む前記俯瞰映像の表示位置を変更した俯瞰映像を生成することを特徴とする俯瞰映像生成方法。 - 車両の周辺を撮影した周辺映像を取得する映像取得ステップと、
前記車両の旋回方向への移動を推定するための車両情報を取得する車両情報取得ステップと、
前記映像取得ステップで取得した周辺映像に基づき、前記車両を示す仮想自車両画像を含み、前記車両を上方から見下ろした俯瞰映像を生成する制御ステップと、を含み、
前記制御ステップにおいては、前記車両情報取得ステップで取得した車両情報に基づいて、前記車両の旋回方向への移動が推定された場合、推定された旋回方向において確認が必要となる方向の周辺映像が広く表示されるように前記仮想自車両画像を含む前記俯瞰映像の表示位置を変更した俯瞰映像を生成することを特徴とする、上記各ステップを俯瞰映像生成装置として動作するコンピュータに実行させるためのプログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/997,847 US10549693B2 (en) | 2015-12-22 | 2018-06-05 | Bird's-eye view video generation device, bird's-eye view video generation system, bird's-eye view video generation method and program |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-249905 | 2015-12-22 | ||
JP2015249905A JP2017114218A (ja) | 2015-12-22 | 2015-12-22 | 俯瞰映像生成装置、俯瞰映像生成システム、俯瞰映像生成方法およびプログラム |
JP2015250426A JP6644256B2 (ja) | 2015-12-22 | 2015-12-22 | 俯瞰映像生成装置、俯瞰映像生成システム、俯瞰映像生成方法およびプログラム |
JP2015-250426 | 2015-12-22 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/997,847 Continuation US10549693B2 (en) | 2015-12-22 | 2018-06-05 | Bird's-eye view video generation device, bird's-eye view video generation system, bird's-eye view video generation method and program |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017110144A1 true WO2017110144A1 (ja) | 2017-06-29 |
Family
ID=59090012
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/075021 WO2017110144A1 (ja) | 2015-12-22 | 2016-08-26 | 俯瞰映像生成装置、俯瞰映像生成システム、俯瞰映像生成方法およびプログラム |
Country Status (2)
Country | Link |
---|---|
US (1) | US10549693B2 (ja) |
WO (1) | WO2017110144A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11620834B2 (en) | 2019-09-12 | 2023-04-04 | Aisin Corporation | Periphery monitoring device |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6723820B2 (ja) * | 2016-05-18 | 2020-07-15 | 株式会社デンソーテン | 画像生成装置、画像表示システムおよび画像表示方法 |
JP6730177B2 (ja) * | 2016-12-28 | 2020-07-29 | 株式会社デンソーテン | 画像生成装置および画像生成方法 |
US11270589B2 (en) * | 2017-08-25 | 2022-03-08 | Nissan Motor Co., Ltd. | Surrounding vehicle display method and surrounding vehicle display device |
JP6877571B2 (ja) * | 2017-11-10 | 2021-05-26 | 本田技研工業株式会社 | 表示システム、表示方法、およびプログラム |
JP7160702B2 (ja) * | 2019-01-23 | 2022-10-25 | 株式会社小松製作所 | 作業機械のシステム及び方法 |
JP7331511B2 (ja) * | 2019-07-16 | 2023-08-23 | 株式会社アイシン | 車両周辺表示装置 |
US11640715B2 (en) * | 2021-06-21 | 2023-05-02 | Caterpillar Paving Products Inc. | Birds eye view camera for an asphalt paver |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0848198A (ja) * | 1994-08-08 | 1996-02-20 | Nissan Motor Co Ltd | 車両用周囲モニタ装置 |
JPH10257482A (ja) * | 1997-03-13 | 1998-09-25 | Nissan Motor Co Ltd | 車両周辺状況表示装置 |
JP2008148114A (ja) * | 2006-12-12 | 2008-06-26 | Clarion Co Ltd | 運転支援装置 |
JP2014004931A (ja) * | 2012-06-25 | 2014-01-16 | Aisin Seiki Co Ltd | 駐車支援装置、駐車支援方法、及び駐車支援プログラム |
WO2015159407A1 (ja) * | 2014-04-17 | 2015-10-22 | 三菱電機株式会社 | 車載表示装置 |
JP2015220729A (ja) * | 2014-05-21 | 2015-12-07 | トヨタ自動車株式会社 | 車両周辺監視装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4923647B2 (ja) * | 2006-03-17 | 2012-04-25 | 株式会社デンソー | 運転支援画像表示装置及びプログラム |
JP2010079454A (ja) | 2008-09-24 | 2010-04-08 | Sanyo Electric Co Ltd | 運転支援装置 |
JP5278528B2 (ja) | 2011-12-27 | 2013-09-04 | 日産自動車株式会社 | 車両用表示装置および車両用映像表示制御方法 |
JP2014103433A (ja) | 2012-11-16 | 2014-06-05 | Honda Motor Co Ltd | 車両用画像表示装置 |
JP5872517B2 (ja) | 2013-10-04 | 2016-03-01 | 本田技研工業株式会社 | 車両周辺表示装置 |
-
2016
- 2016-08-26 WO PCT/JP2016/075021 patent/WO2017110144A1/ja active Application Filing
-
2018
- 2018-06-05 US US15/997,847 patent/US10549693B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0848198A (ja) * | 1994-08-08 | 1996-02-20 | Nissan Motor Co Ltd | 車両用周囲モニタ装置 |
JPH10257482A (ja) * | 1997-03-13 | 1998-09-25 | Nissan Motor Co Ltd | 車両周辺状況表示装置 |
JP2008148114A (ja) * | 2006-12-12 | 2008-06-26 | Clarion Co Ltd | 運転支援装置 |
JP2014004931A (ja) * | 2012-06-25 | 2014-01-16 | Aisin Seiki Co Ltd | 駐車支援装置、駐車支援方法、及び駐車支援プログラム |
WO2015159407A1 (ja) * | 2014-04-17 | 2015-10-22 | 三菱電機株式会社 | 車載表示装置 |
JP2015220729A (ja) * | 2014-05-21 | 2015-12-07 | トヨタ自動車株式会社 | 車両周辺監視装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11620834B2 (en) | 2019-09-12 | 2023-04-04 | Aisin Corporation | Periphery monitoring device |
Also Published As
Publication number | Publication date |
---|---|
US10549693B2 (en) | 2020-02-04 |
US20180281681A1 (en) | 2018-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017110144A1 (ja) | 俯瞰映像生成装置、俯瞰映像生成システム、俯瞰映像生成方法およびプログラム | |
JP6521086B2 (ja) | 表示支援装置及び表示支援方法 | |
JP4855158B2 (ja) | 運転支援装置 | |
JP5836490B2 (ja) | 運転支援装置 | |
EP3650285B1 (en) | Parking assistance method and parking assistance device | |
US9589194B2 (en) | Driving assistance device and image processing program | |
JP5810773B2 (ja) | 二輪車の後方映像表示装置 | |
CN110386066B (zh) | 车辆用显示控制装置和方法、车辆用显示系统及存储介质 | |
JP2009227245A (ja) | 車載機器の操作装置 | |
JP7006460B2 (ja) | 車両用表示制御装置、車両用表示システム、車両用表示制御方法、およびプログラム | |
JP2005186648A (ja) | 車両用周囲視認装置および表示制御装置 | |
WO2018159016A1 (ja) | 俯瞰映像生成装置、俯瞰映像生成システム、俯瞰映像生成方法およびプログラム | |
JP2008276642A (ja) | 走行車線認識装置および走行車線認識方法 | |
JP2006088758A (ja) | 車両用表示装置 | |
JP2017114218A (ja) | 俯瞰映像生成装置、俯瞰映像生成システム、俯瞰映像生成方法およびプログラム | |
JP3968720B2 (ja) | 車両用画像表示装置 | |
JP2007299047A (ja) | 運転支援装置 | |
JP6644256B2 (ja) | 俯瞰映像生成装置、俯瞰映像生成システム、俯瞰映像生成方法およびプログラム | |
JP6852556B2 (ja) | 俯瞰映像生成装置、俯瞰映像表示システム、俯瞰映像生成方法およびプログラム | |
JP6662655B2 (ja) | 車両用画像表示装置 | |
JP6662175B2 (ja) | 表示方法及び運転支援装置 | |
JP4081548B2 (ja) | 運転支援システム | |
JP2006268224A (ja) | 車両用運転支援装置 | |
JP6809113B2 (ja) | 車両用周辺監視方法及び車両用周辺監視装置 | |
JP6621969B2 (ja) | 後側方映像制御装置および後側方映像制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16878044 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16878044 Country of ref document: EP Kind code of ref document: A1 |