[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017158741A1 - 蓄電池装置及び車両 - Google Patents

蓄電池装置及び車両 Download PDF

Info

Publication number
WO2017158741A1
WO2017158741A1 PCT/JP2016/058208 JP2016058208W WO2017158741A1 WO 2017158741 A1 WO2017158741 A1 WO 2017158741A1 JP 2016058208 W JP2016058208 W JP 2016058208W WO 2017158741 A1 WO2017158741 A1 WO 2017158741A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
storage battery
temperature
battery device
output terminal
Prior art date
Application number
PCT/JP2016/058208
Other languages
English (en)
French (fr)
Inventor
敦美 近藤
萩原 敬三
雅秋 山本
黒田 和人
関野 正宏
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to CN201680060005.0A priority Critical patent/CN108140908A/zh
Priority to SG11201806961WA priority patent/SG11201806961WA/en
Priority to EP16894359.5A priority patent/EP3432410A4/en
Priority to JP2018505119A priority patent/JP6549306B2/ja
Priority to PCT/JP2016/058208 priority patent/WO2017158741A1/ja
Publication of WO2017158741A1 publication Critical patent/WO2017158741A1/ja
Priority to US16/114,381 priority patent/US20180366791A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H5/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection
    • H02H5/04Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/46The network being an on-board power network, i.e. within a vehicle for ICE-powered road vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • Embodiments described herein relate generally to a storage battery device and a vehicle.
  • the storage battery device is placed under the floor or in the vehicle body when mounted on a vehicle.
  • the storage battery device is a high energy body, and should be in a very dangerous state in the event of a fire, and it is desirable to build a highly reliable storage battery device equipped with a further fail-safe mechanism from the viewpoint of safety. ing.
  • Embodiments of the present invention have been made in view of the above, and an object of the present invention is to provide a storage battery device and a vehicle that can detect a sign of a fire and ensure safety more reliably.
  • the storage battery device electrically connects an output terminal, a switch that switches the output state of the output terminal, a battery module that outputs temperature information of a built-in battery cell, a main circuit, and the battery module.
  • the temperature of the battery cell is equal to or higher than the first overtemperature threshold when the temperature of the battery cell is compared with the first overtemperature threshold based on the temperature information of the contactor and the temperature information of the battery cell
  • the storage battery device management unit that opens the contactor and switches the output state of the output terminal, and compares the temperature of the battery cell and a second overtemperature threshold based on the temperature information of the battery cell
  • a safety monitoring unit that opens the contactor and switches the state of the output terminal when the temperature of the battery cell becomes equal to or higher than the second overtemperature threshold.
  • First over-temperature threshold is lower than the second over-temperature threshold.
  • FIG. 1 is a block diagram schematically illustrating a configuration example of a storage battery device and a vehicle according to the first embodiment.
  • FIG. 2 is a block diagram schematically illustrating a configuration example of the storage battery device and the vehicle according to the second embodiment.
  • FIG. 1 is a schematic configuration block diagram of the storage battery device and the vehicle according to the first embodiment.
  • the vehicle of this embodiment includes an inverter INV, a motor M, a driver's cab 100, a storage battery device 200, and a fire detection line (signal line) L1.
  • the vehicle according to the present embodiment includes at least one storage battery device 200 and may include a plurality of storage battery devices 200. Since the plurality of storage battery devices 200 have the same configuration, in the following description, only one storage battery device 200 will be described with reference to the drawings, and description of the other storage battery devices 200 will be omitted.
  • the cab 100 is provided with a fire detection indicator (indicator) 40.
  • the fire detection indicator 40 is electrically connected to one end of a power supply line (fire detection line L1).
  • the other end of the fire detection line L1 is electrically connected to a voltage supply source of 24V that is a power supply voltage of the cab 100.
  • the fire detection line L1 is a signal line extending in a loop form from the cab 100 via a mounting device such as the storage battery device 200, the inverter INV, and the motor M. At the normal time, both ends of the fire detection line L1 are in a conductive state.
  • a fire is detected in a storage device such as the storage battery device 200, the inverter INV, or the motor M, one end and the other end of the fire detection line L1 are in a non-conductive state, and the fire detection indicator light 40 side of the fire detection line L1 The voltage changes.
  • the fire detection indicator 40 is turned on when the output state (for example, voltage) of the fire detection line L1 changes.
  • the inverter INV is, for example, a bidirectional three-phase AC inverter that can convert a DC current supplied from the storage battery device 200 into an AC current and convert a regenerative current from the motor M into a DC current. Inverter INV outputs an alternating current to motor M and outputs a direct current to storage battery device 200.
  • the inverter INV includes a fire detection unit (not shown), and disconnects the electrical connection of the power supply line through which a fire is detected when the fire detection unit detects a fire.
  • the motor M is driven to rotate by the alternating current supplied from the inverter INV.
  • the power generated by the rotation of the motor M is transmitted to wheels (not shown) via the axle.
  • the motor M includes a fire detection unit (not shown), and disconnects the electrical connection of the power supply line through which a fire is detected when the fire detection unit detects a fire.
  • the storage battery device 200 includes a plurality of battery modules MDL, a storage battery device management unit (BMU: Battery Management Unit) 16, a safety monitoring unit (SSU: Safety Supervisor Unit) 18, a current sensor 14, contactors 12p and 12n, The contactor driving devices 10p and 10n, a relay circuit (switcher) 20, an input terminal TI, and an output terminal TO are provided.
  • Each of the battery modules MDL includes an assembled battery BT and a battery monitoring unit (CMU: Cell Monitoring Unit) 11.
  • the current sensor 14 is provided in the current line on the low potential side, detects the output current of the storage battery device 200, and outputs the detected information to the storage battery device management unit 16 and the safety monitoring unit 18.
  • the contactor 12p is provided on a high potential side current line extending between the positive electrode terminal of the battery module MDL on the highest potential side and the high potential side external output terminal (p).
  • the contactor 12n is provided on a low potential side current line extending between the negative electrode terminal of the battery module MDL on the lowest potential side and the low potential side external output terminal (n).
  • the contactors 12p and 12n have normally open contacts, and are closed when the battery module MDL is charged and discharged.
  • the contactor driving device 10p drives the contactor 12p in accordance with signals from the storage battery device management unit 16 and the safety monitoring unit 18.
  • the contactor driving device 10n drives the contactor 12n according to signals from the storage battery device management unit 16 and the safety monitoring unit 18.
  • the storage battery device management unit 16 is configured to be able to communicate with a host control device (not shown) and the battery monitoring unit 11, and in accordance with signals from the host control device, the current sensor 14 and the battery monitoring unit 11, the contactor driving device 10 p. 10n and the relay circuit 20 are controlled.
  • the storage battery device management unit 16 uses the voltage and temperature information received from the battery monitoring unit 11 and the value based on the current information received from the current sensor 14 to determine the SOC (or battery cell) of each assembled battery BT (or battery cell). Calculation of state (of charge) and SOH (stage of health) is performed.
  • the storage battery device management unit 16 performs safety monitoring of the battery cell based on the voltage and temperature information received from the battery monitoring unit 11 and the current information received from the current sensor 14.
  • the storage battery device management unit 16 includes, for example, a processor such as an MPU (Micro Processing Unit) and a memory.
  • the safety monitoring unit 18 is configured to be communicable with the battery module MDL, and controls the operations of the contactor driving devices 10p and 10n and the relay circuit 20.
  • the safety monitoring unit 18 performs safety monitoring of the battery cell based on the voltage and temperature information received from the battery monitoring unit 11.
  • the safety monitoring unit 18 is provided separately from the storage battery device management unit 16 and is configured to be able to perform safety monitoring of battery cells even when the storage battery device management unit 16 does not operate normally.
  • the safety monitoring unit 18 includes a processor such as an MPU and a memory.
  • the relay circuit 20 switches the electrical connection of a voltage supply line (a part of the fire detection line L1) that extends between an input terminal TI that receives a signal from the outside and an output terminal TO that outputs the signal to the outside.
  • the output state of the output terminal TO is switched depending on the temperature detection state in the battery monitoring unit 11.
  • the relay circuit 20 switches the electrical connection of the power supply line (a part of the fire detection line L1) extending from the cab 100 via the relay circuit 20. That is, the output state of the output terminal TO is switched by the relay circuit 20.
  • the relay circuit 20 is controlled in operation by a signal driven by a 12 V power source in the storage battery device 200, and based on a temperature detection state in the battery monitoring unit 11, a 24 V power source supplied from the cab 100 to the power supply line. Switch the signal connection.
  • the relay circuit 20 is normally in a state in which the contact is closed, and when the control signal based on the overtemperature state is received from the storage battery device management unit 16 and the safety monitoring unit 18, the contact is opened and the power supply line is turned off. .
  • the assembled battery BT includes a plurality of battery cells connected in series or in parallel.
  • the battery cell is a secondary battery such as a lithium ion battery or a nickel metal hydride battery.
  • the battery monitoring unit 11 is controlled by the storage battery device management unit 16 and monitors the voltage of a plurality of battery cells and the temperature near the assembled battery BT.
  • the battery monitoring unit 11 is configured to be communicable with the safety monitoring unit 18, and is configured to be communicable between the battery monitoring units 11 of adjacent battery modules MDL, for example.
  • the battery monitoring unit 11 is controlled in operation by the storage battery device management unit 16, monitors the assembled battery BT, and notifies the storage battery device management unit 16 and the safety monitoring unit 18 of the monitoring result.
  • the battery monitoring unit 11 includes a temperature detection circuit 11A, a voltage detection circuit 11B, an MPU (not shown), and a memory.
  • the temperature detection circuit 11A includes a temperature sensor that detects temperatures in the vicinity of the plurality of battery cells, and notifies the storage battery device management unit 16 and the safety monitoring unit 18 of the temperatures of the plurality of battery cells. Note that the temperature detection circuit 11A only needs to detect the temperature in the vicinity of a plurality of battery cells, and does not need to detect the temperature in the vicinity of all the battery cells. Values based on the temperature information output from the temperature detection circuit 11A are supplied to the storage battery device management unit 16 and the safety monitoring unit 18 from the respective temperature detection circuits 11A.
  • the voltage detection circuit 11B includes a voltage sensor that detects the positive terminal voltage and the negative terminal voltage of a plurality of battery cells, and stores the voltage (difference between the positive terminal voltage and the negative terminal voltage) of each of the plurality of battery cells. The unit 16 and the safety monitoring unit 18 are notified. The voltage detection circuit 11B may notify the storage battery device management unit 16 and the safety monitoring unit 18 of the positive terminal voltage and the negative terminal voltage detected by the voltage detection unit. The voltage value output from the voltage detection circuit 11B is supplied to the safety monitoring unit 18 from each voltage detection circuit 11B.
  • the storage battery device management unit 16 compares each of the values based on the temperature information notified from the plurality of temperature detection circuits 11A with a predetermined threshold (first overtemperature threshold), and the assembled battery BT of each battery module MDL. It is determined whether (or individual battery cells) are in an overtemperature state.
  • a predetermined threshold first overtemperature threshold
  • the storage battery device management unit 16 detects that the assembled battery BT (or individual battery cell) is overtemperature. As a state, the contactor drive devices 10p and 10n open the contactors 12p and 12n to electrically disconnect the plurality of battery modules MDL from the main circuit, and the relay circuit 20 connects the contact point of the power supply line from the cab 100. Open, power supply line is turned off, and output state of output terminal TO is switched.
  • a predetermined threshold first overtemperature threshold
  • the storage battery device management unit 16 compares each of the values based on the voltage information notified from the plurality of voltage detection circuits 11B with a predetermined threshold (first overcharge threshold), and the assembled battery of each battery module MDL It is determined whether BT (or individual battery cells) is in an overcharged state.
  • the storage battery device management unit 16 determines that the assembled battery BT (or individual battery cells) is in an overcharged state when the voltage notified from the voltage detection circuit 11B is equal to or higher than a predetermined threshold (first overcharge threshold).
  • the contactor drive devices 10p and 10n open the contactors 12p and 12n to electrically disconnect the plurality of battery modules MDL from the main circuit, and the relay circuit 20 opens the contact point of the power supply line from the cab 100.
  • the supply line is turned off and the output state of the output terminal TO is switched.
  • the storage battery device management unit 16 compares each of the values based on the voltage information notified from the plurality of voltage detection circuits 11B with a predetermined threshold (first overdischarge threshold), and the assembled battery of each battery module MDL It is determined whether BT (or individual battery cells) is in an overdischarged state.
  • a predetermined threshold first overdischarge threshold
  • the storage battery device management unit 16 When the voltage based on the voltage information notified from the voltage detection circuit 11B is less than a predetermined threshold (first overdischarge threshold), the storage battery device management unit 16 overdischarges the assembled battery BT (or individual battery cells). As a state, the contactor drive devices 10p and 10n open the contactors 12p and 12n to electrically disconnect the plurality of battery modules MDL from the main circuit, and the relay circuit 20 connects the contact point of the power supply line from the cab 100. Open, power supply line is turned off, and output state of output terminal TO is switched.
  • a predetermined threshold first overdischarge threshold
  • the safety monitoring unit 18 compares each of the values based on the temperature information notified from the plurality of temperature detection circuits 11A with a predetermined threshold value (second overtemperature threshold value), and the assembled battery BT of each battery module MDL. It is determined whether (or individual battery cells) are in an initial fire state.
  • a predetermined threshold value second overtemperature threshold value
  • the safety monitoring unit 18 causes the assembled battery BT (or individual battery cells) to be in an initial fire state.
  • the contactor drive devices 10p and 10n open the contactors 12p and 12n to electrically disconnect the plurality of battery modules MDL from the main circuit, and the relay circuit 20 opens the contact of the power supply line from the cab 100. Then, the power supply line is turned off and the output state of the output terminal TO is switched.
  • the safety monitoring unit 18 compares each of the values based on the voltage information notified from the plurality of voltage detection circuits 11B with a predetermined threshold value (second overcharge threshold value), and the assembled battery BT of each battery module MDL. It is determined whether (or individual battery cells) are overcharged.
  • a predetermined threshold value second overcharge threshold value
  • the safety monitoring unit 18 assumes that the assembled battery BT (or individual battery cells) is in an overcharge state.
  • the contactor driving devices 10p and 10n open the contactors 12p and 12n to electrically disconnect the plurality of battery modules MDL from the main circuit, and the relay circuit 20 opens the contact of the power supply line from the cab 100 to supply power. The line is turned off and the output state of the output terminal TO is switched.
  • the safety monitoring unit 18 compares each of the values based on the voltage information notified from the plurality of voltage detection circuits 11B with a predetermined threshold value (second overdischarge threshold value), and the assembled battery BT of each battery module MDL. It is determined whether (or individual battery cells) are in an overdischarged state.
  • a predetermined threshold value second overdischarge threshold value
  • the safety monitoring unit 18 assumes that the assembled battery BT (or individual battery cells) is in an overdischarge state.
  • the contactor driving devices 10p and 10n open the contactors 12p and 12n to electrically disconnect the plurality of battery modules MDL from the main circuit, and the relay circuit 20 opens the contact of the power supply line from the cab 100 to supply power. The line is turned off and the output state of the output terminal TO is switched.
  • the first overtemperature threshold is the upper limit of the operating temperature of the battery cell during normal use
  • the second overtemperature threshold is the upper limit of the operating temperature of the battery cell for safety and the temperature of the battery cell in the initial stage of fire. . Therefore, the first overtemperature threshold is lower than the second overtemperature threshold.
  • the first overcharge threshold is the upper limit of the operating voltage of the battery cell during normal use
  • the second overcharge threshold is the upper limit of the operating voltage of the battery cell for safety.
  • the first overdischarge threshold is the lower limit of the operating voltage of the battery cell during normal use
  • the second overdischarge threshold is the lower limit of the operating voltage of the battery cell for safety. Therefore, the first overcharge threshold value is smaller than the second overcharge threshold value, and the first overdischarge threshold value is larger than the second overdischarge threshold value.
  • the second overtemperature threshold is the upper limit of the operating temperature of the battery module MDL, and is a temperature between the first overtemperature threshold and the lower limit temperature when the battery cell is in a thermal runaway state. .
  • the second overtemperature threshold is the upper limit of the operating temperature of the battery module MDL, and is a temperature between the first overtemperature threshold and the lower limit temperature when the battery cell is in a thermal runaway state.
  • the upper limit of the operating temperature of the battery module MDL is determined by the electrochemical characteristics of the battery cell to be mounted, and is preferably set to 100 ° C. or lower, for example.
  • the battery cell is actually ignited at 200 ° C. or more, for example, and the second overtemperature threshold is set to a temperature much lower than the temperature at which the battery cell ignites. This makes it possible to prevent a fire of the storage battery device 200.
  • the second overtemperature threshold is not limited to 100 ° C., and is desirably set to an appropriate value according to the characteristics of the battery cells mounted on the battery module MDL.
  • the storage battery device management unit 16 opens the contactors 12p and 12n to open a plurality of batteries when the assembled battery BT (or battery cell) reaches a temperature that is equal to or higher than the upper limit of the normal operating temperature (first overvoltage threshold).
  • the module MDL is disconnected from the main circuit. Therefore, in the state controlled by the storage battery device management unit 16, no fire occurs in the battery module MDL.
  • the storage battery device 200 may not function normally. there were. That is, by detecting a state where the temperature of the battery cell reaches around 100 ° C., it is possible to detect a state where the storage battery device 200 is not functioning normally.
  • the safety monitoring unit 18 provided separately from the storage battery device management unit 16 detects an abnormality of the storage battery device 200 and fires at a temperature sufficiently lower than 200 ° C. at which the battery cell ignites. By notifying the driver's cab 100 of a fire sign by the detection indicator lamp 40, it is possible to ensure safety more reliably.
  • the safety monitoring unit 18 disconnects the electrical connection of the power supply line by the relay circuit 20 when the temperature supplied from the battery module MDL is equal to or higher than the second temperature threshold. .
  • the fire detection indicator 40 lights up according to the output state of the output terminal TO. That is, the fire detection indicator light 40 is turned on when the voltage of the power supply line is changed.
  • the safety monitoring unit 18 opens the contactors 12p and 12n and separates the plurality of battery modules MDL from the main circuit. Therefore, the driver of the vehicle can know that the vehicle is in the initial fire stage by turning on the fire detection indicator light 40, can take an early response to the fire, and can ensure safety. it can. That is, according to the present embodiment, it is possible to provide a storage battery device and a vehicle that can detect a sign of fire and ensure safety more reliably.
  • FIG. 2 is a block diagram schematically illustrating a configuration example of the storage battery device and the vehicle according to the second embodiment. Since the storage battery device 200 of the present embodiment has the same configuration as the storage battery device 200 of the first embodiment described above, a description thereof will be omitted below. In this embodiment, the path
  • the vehicle of this embodiment includes an inverter INV, a motor M, a driver's cab 100, a storage battery device 200, a vehicle driving main circuit 300, and a fire detection line L2.
  • the vehicle according to the present embodiment includes at least one storage battery device 200 and may include a plurality of storage battery devices 200.
  • the vehicle driving main circuit 300 is driven by a power supply voltage of 110V, for example.
  • a fire detection line (signal line) L ⁇ b> 2 extends from the vehicle driving main circuit 300 in a loop via the input terminal TI and the output terminal TO of the storage battery device 200.
  • the vehicle drive main circuit 300 supplies a power supply voltage of 110 V to the relay circuit 20 of the storage battery device 200 via the fire detection line L2.
  • the vehicle driving main circuit 300 includes a comparator that compares the voltage of the power supply line with a predetermined threshold (for example, 110 V), and the difference between the voltage of the power supply line and the predetermined threshold is greater than or equal to a predetermined magnitude.
  • a predetermined threshold for example, 110 V
  • the fire detection signal is supplied to the fire detection indicator 40.
  • the relay circuit 20 switches connection of a voltage supply line (part of the fire detection line L2) extending from the vehicle driving main circuit 300.
  • the relay circuit 20 is normally in a state in which the contact is closed, and when the control signal based on the overtemperature state is received from the storage battery device management unit 16 and the safety monitoring unit 18, the contact is opened to open the power supply line (of the fire detection line L2). A part) is turned off.
  • a fire detection line L2 extends in a loop between the vehicle drive main circuit 300 and the inverter INV and between the vehicle drive main circuit 300 and the motor M.
  • the vehicle drive main circuit 300 can determine the fire of the inverter INV and the motor M based on the voltage of the fire detection line L2.
  • the vehicle driving main circuit 300 compares the voltages of the fire detection line L2 extending from the inverter INV and the fire detection line L2 extending from the motor M with a predetermined threshold value (for example, 110 V), and the difference becomes equal to or larger than a predetermined magnitude.
  • the fire detection signal is supplied to the fire detection indicator 40.
  • the fire detection indicator 40 is turned on when a fire detection signal is received from the vehicle driving main circuit 300.
  • a sign of a fire of the storage battery device 200 can be detected, and the same effect as in the first embodiment described above can be obtained. That is, according to the present embodiment, it is possible to provide a storage battery device and a vehicle that can detect a sign of fire and ensure safety more reliably.
  • the vehicle driving main circuit 300 is provided independently of the storage battery device 200, the inverter INV, and the motor M, but is integrated with a control board of a device mounted on the vehicle. May be provided.
  • the vehicle drive main circuit 300 may be provided integrally with the control board of the inverter INV and may be formed inside the inverter INV. Even in this case, the same effect as that of the second embodiment described above can be obtained.
  • the contactors 12p and 12n are arranged on the positive electrode side and the negative electrode side of the plurality of battery modules MDL, respectively, but on both sides of the positive electrode side and the negative electrode side. There is no need to provide a contactor. Any contactor may be used as long as it switches the connection between at least one of the positive electrode side and the negative electrode side of the plurality of battery modules MDL and the main circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Protection Of Static Devices (AREA)

Abstract

 実施形態の蓄電池装置は、出力端子TOと、出力端子TOの出力状態を切り替える切替器40と、内蔵している電池セルの温度情報を出力する電池モジュールMDLと、主回路と電池モジュールMDLとを電気的に接続するコンタクタ12p、12nと、電池セルの温度情報に基づいて電池セルの温度と第1過温度閾値とを比較して、電池セルの温度が第1過温度閾値以上となったときに、コンタクタ12p、12nを開くとともに、出力端子TOの出力状態を切替える蓄電池装置管理ユニットと、電池セルの温度情報に基づいて電池セルの温度と第2過温度閾値とを比較して、電池セルの温度が第2過温度閾値以上となったときに、コンタクタ12p、12nを開くとともに、出力端子TOの出力状態を切替える安全監視ユニット12と、を備え、第1過温度閾値は第2過温度閾値よりも低い。

Description

蓄電池装置及び車両
 本発明の実施形態は、蓄電池装置及び車両に関する。
 近年、省エネルギーを図るため、電力を蓄えて利用することにより、利用効率を向上させるべく、様々な分野において、蓄電池装置が適用されてきている。
 特に、鉄道等の大量輸送車両においては、省エネルギーの効果も大きいため、より一層、高電圧、高電力容量の大型蓄電池装置の適用が望まれている。
特開2013-187159号公報
 蓄電池装置は、車両に搭載される場合には床下や車体内に配置される。蓄電池装置は高エネルギー体であって、万が一、火災が発生した場合に非常に危険な状態となり、安全性の観点からより一層のフェイルセーフ機構を装備した信頼性の高い蓄電池装置の構築が望まれている。
 本発明の実施形態は、上記に鑑みてなされたものであって、火災の兆候を検知して、より確実に安全を確保することが可能な蓄電池装置及び車両を提供することを目的としている。
 本実施形態による蓄電池装置は、出力端子と、前記出力端子の出力状態を切り替える切替器と、内蔵している電池セルの温度情報を出力する電池モジュールと、主回路と前記電池モジュールとを電気的に接続するコンタクタと、前記電池セルの前記温度情報に基づいて前記電池セルの温度と第1過温度閾値とを比較して、前記電池セルの温度が前記第1過温度閾値以上となったときに、前記コンタクタを開くとともに、前記出力端子の出力状態を切替える蓄電池装置管理ユニットと、前記電池セルの前記温度情報に基づいて前記電池セルの温度と第2過温度閾値とを比較して、前記電池セルの温度が前記第2過温度閾値以上となったときに、前記コンタクタを開くとともに、前記出力端子の状態を切替える安全監視ユニットと、を備え、前記第1過温度閾値は前記第2過温度閾値よりも低い。
図1は、第1実施形態の蓄電池装置および車両の構成例を概略的に示すブロック図である。 図2は、第2実施形態の蓄電池装置および車両の構成例を概略的に示すブロック図である。
実施形態
 次に図面を参照して本願の実施形態について詳細に説明する。
 図1は、第1実施形態の蓄電池装置及び車両の概要構成ブロック図である。
 本実施形態の車両は、インバータINVと、モータMと、運転台100と、蓄電池装置200と、火災検知ライン(信号線)L1と、を備えている。なお、本実施形態の車両は少なくとも1つの蓄電池装置200を備えるものであって、複数の蓄電池装置200を備えていてもよい。複数の蓄電池装置200は同様の構成であるので、以下の説明では1つの蓄電池装置200のみについて図面を参照して説明し、他の蓄電池装置200についての説明を省略する。
 運転台100は、火災検知表示灯(表示灯)40を備えている。火災検知表示灯40は、電源供給ライン(火災検知ラインL1)の一端と電気的に接続している。火災検知ラインL1の他端は、運転台100の電源電圧である24Vの電圧供給源と電気的に接続している。
 火災検知ラインL1は、蓄電池装置200、インバータINV、モータMなどの搭載装置を経由して運転台100からループ状に延びた信号線である。正常時には、火災検知ラインL1の両端は導通した状態である。蓄電池装置200、インバータINV、モータMなどの搭載装置において火災が検知された際には、火災検知ラインL1の一端と他端とは非導通状態となり、火災検知ラインL1の火災検知表示灯40側の電圧が変化する。火災検知表示灯40は、火災検知ラインL1の出力状態(例えば電圧)が変化することにより点灯する。
 インバータINVは、例えば、蓄電池装置200から供給される直流電流を交流電流に変換可能であり、モータMからの回生電流を直流電流に変換可能な双方向の3相交流インバータである。インバータINVは、交流電流をモータMへ出力し、直流電流を蓄電池装置200へ出力する。インバータINVは火災検知部(図示せず)を備え、火災検知部において火災が検知された際に、経由する電源供給ラインの電気的接続を切断する。
 モータMは、インバータINVから供給された交流電流により回転駆動する。モータMの回転による動力は、車軸を介して車輪(図示せず)へ伝達される。モータMは火災検知部(図示せず)を備え、火災検知部において火災が検知された際に、経由する電源供給ラインの電気的接続を切断する。
 蓄電池装置200は、複数の電池モジュールMDLと、蓄電池装置管理ユニット(BMU:Battery Management Unit)16と、安全監視ユニット(SSU:Safety Supervisor Unit)18と、電流センサ14と、コンタクタ12p、12nと、コンタクタ駆動装置10p、10nと、リレー回路(切替器)20と、入力端子TIと、出力端子TOと、を備えている。電池モジュールMDLはそれぞれ、組電池BTと、電池監視ユニット(CMU:Cell Monitoring Unit)11と、を備えている。
 電流センサ14は、低電位側の電流ラインに設けられ、蓄電池装置200の出力電流を検出し、蓄電池装置管理ユニット16と安全監視ユニット18へ検出した情報を出力する。
 コンタクタ12pは、最も高電位側の電池モジュールMDLの正極端子と高電位側外部出力端子(p)との間に延びた高電位側の電流ラインに設けられている。コンタクタ12nは、最も低電位側の電池モジュールMDLの負極端子と低電位側外部出力端子(n)との間に延びた低電位側の電流ラインに設けられている。コンタクタ12p、12nは、常開接点(Normally open)を備え、電池モジュールMDLを充電する際および放電する際に閉じた状態となる。
 コンタクタ駆動装置10pは、蓄電池装置管理ユニット16および安全監視ユニット18からの信号に応じてコンタクタ12pを駆動する。コンタクタ駆動装置10nは、蓄電池装置管理ユニット16および安全監視ユニット18からの信号に応じてコンタクタ12nを駆動する。
 蓄電池装置管理ユニット16は、図示しない上位制御装置および電池監視ユニット11との間で通信可能に構成され、上位制御装置、電流センサ14および電池監視ユニット11からの信号に応じて、コンタクタ駆動装置10p、10nおよびリレー回路20の制御を行う。蓄電池装置管理ユニット16は、電池監視ユニット11から受信した電圧および温度の情報と、電流センサ14から受信した電流の情報に基づく値とを用いて、組電池BT(あるいは電池セル)それぞれのSOC(state of charge)やSOH(stage of health)の演算等を行う。蓄電池装置管理ユニット16は、電池監視ユニット11から受信した電圧および温度の情報と、電流センサ14から受信した電流の情報とにより、電池セルの安全監視を行う。蓄電池装置管理ユニット16は、例えば、MPU(Micro Processing Unit)等のプロセッサとメモリとを備えている。
 安全監視ユニット18は、電池モジュールMDLと通信可能に構成され、コンタクタ駆動装置10p、10nおよびリレー回路20の動作を制御する。安全監視ユニット18は、電池監視ユニット11から受信した電圧および温度の情報により、電池セルの安全監視を行う。安全監視ユニット18は、蓄電池装置管理ユニット16とは別に設けられ、蓄電池装置管理ユニット16が正常に動作しないときでも、電池セルの安全監視を行うことが可能に構成されている。安全監視ユニット18は、例えば、MPU等のプロセッサとメモリとを備えている。
 リレー回路20は、外部から信号が入力される入力端子TIと外部へ信号を出力する出力端子TOとの間に延びた電圧供給ライン(火災検知ラインL1の一部)の電気的接続を切替えて、電池監視ユニット11における温度検出状態により出力端子TOの出力状態を切替える。
 すなわち、リレー回路20は、運転台100からリレー回路20を経由して延びる電源供給ライン(火災検知ラインL1の一部)の電気的接続を切替える。すなわち、リレー回路20により、出力端子TOの出力状態が切替えられる。リレー回路20は、蓄電池装置200内の12Vの電源で駆動される信号により動作を制御され、電池監視ユニット11における温度検出状態に基づいて、運転台100から電源供給ラインに供給される24Vの電源信号の接続を切替える。
 リレー回路20は通常は接点を閉じた状態であり、蓄電池装置管理ユニット16および安全監視ユニット18から過温度状態に基づく制御信号を受信したときに接点を開いて電源供給ラインを非導通状態とする。
 組電池BTは、直列或いは並列に接続された複数の電池セルを備えている。電池セルは、例えば、リチウムイオン電池やニッケル水素電池等の2次電池である。
 電池監視ユニット11は、蓄電池装置管理ユニット16により制御され、複数の電池セルの電圧と、組電池BT近傍の温度と、を監視する。電池監視ユニット11は、安全監視ユニット18との間で通信可能に構成され、例えば、隣接した電池モジュールMDLの電池監視ユニット11間で通信可能に構成されている。
 電池監視ユニット11は、蓄電池装置管理ユニット16により動作を制御され、組電池BTの監視を行い、監視結果を蓄電池装置管理ユニット16および安全監視ユニット18へ通知する。電池監視ユニット11は、温度検出回路11Aと電圧検出回路11Bと、図示しないMPUと、メモリと、を含む。
 温度検出回路11Aは、複数の電池セル近傍の温度を検出する温度センサを含み、複数の電池セルの温度を蓄電池装置管理ユニット16および安全監視ユニット18へ通知する。なお、温度検出回路11Aは、複数の電池セル近傍の少なくとも1ヶ所の温度を検出すればよく、全ての電池セルの近傍の温度を検出する必要はない。温度検出回路11Aから出力された温度情報に基づく値は、それぞれの温度検出回路11Aから蓄電池装置管理ユニット16および安全監視ユニット18へ供給される。
 電圧検出回路11Bは、複数の電池セルの正極端子電圧と負極端子電圧とを検出する電圧センサを含み、複数の電池セルそれぞれの電圧(正極端子電圧と負極端子電圧との差)を蓄電池装置管理ユニット16および安全監視ユニット18へ通知する。なお、電圧検出回路11Bは、電圧検出手段で検出した正極端子電圧と負極端子電圧とを蓄電池装置管理ユニット16および安全監視ユニット18へ通知してもよい。電圧検出回路11Bから出力された電圧値は、それぞれの電圧検出回路11Bから安全監視ユニット18へ供給される。
 蓄電池装置管理ユニット16は、複数の温度検出回路11Aから通知された温度情報に基づく値のそれぞれと所定の閾値(第1過温度閾値)とを比較して、それぞれの電池モジュールMDLの組電池BT(若しくは個々の電池セル)が過温度状態であるか否かを判断する。
 蓄電池装置管理ユニット16は、温度検出回路11Aから通知された温度情報に基づく温度が所定の閾値(第1過温度閾値)以上であるときに、組電池BT(若しくは個々の電池セル)が過温度状態であるとして、コンタクタ駆動装置10p、10nによりコンタクタ12p、12nを開いて、複数の電池モジュールMDLを主回路から電気的に切り離すとともに、リレー回路20により運転台100からの電源供給ラインの接点を開いて、電源供給ラインを非導通状態とし、出力端子TOの出力状態を切り替える。
 蓄電池装置管理ユニット16は、複数の電圧検出回路11Bから通知された電圧情報に基づく値のそれぞれと、所定の閾値(第1過充電閾値)とを比較して、それぞれの電池モジュールMDLの組電池BT(若しくは個々の電池セル)が過充電状態であるか否かを判断する。
 蓄電池装置管理ユニット16は、電圧検出回路11Bから通知された電圧が所定の閾値(第1過充電閾値)以上であるときに、組電池BT(若しくは個々の電池セル)が過充電状態であるとして、コンタクタ駆動装置10p、10nによりコンタクタ12p、12nを開いて、複数の電池モジュールMDLを主回路から電気的に切り離すとともに、リレー回路20により運転台100からの電源供給ラインの接点を開いて、電源供給ラインを非導通状態とし、出力端子TOの出力状態を切り替える。
 蓄電池装置管理ユニット16は、複数の電圧検出回路11Bから通知された電圧情報に基づく値のそれぞれと、所定の閾値(第1過放電閾値)とを比較して、それぞれの電池モジュールMDLの組電池BT(若しくは個々の電池セル)が過放電状態であるか否かを判断する。
 蓄電池装置管理ユニット16は、電圧検出回路11Bから通知された電圧情報に基づく電圧が所定の閾値(第1過放電閾値)未満であるときに、組電池BT(若しくは個々の電池セル)が過放電状態であるとして、コンタクタ駆動装置10p、10nによりコンタクタ12p、12nを開いて、複数の電池モジュールMDLを主回路から電気的に切り離すとともに、リレー回路20により運転台100からの電源供給ラインの接点を開いて、電源供給ラインを非導通状態とし、出力端子TOの出力状態を切り替える。
 安全監視ユニット18は、複数の温度検出回路11Aから通知された温度情報に基づく値のそれぞれと、所定の閾値(第2過温度閾値)とを比較して、それぞれの電池モジュールMDLの組電池BT(若しくは個々の電池セル)が火災初期状態であるか否かを判断する。
 安全監視ユニット18は、温度検出回路11Aから通知された温度情報に基づく温度が所定の閾値(第2過温度閾値)以上であるときに、組電池BT(若しくは個々の電池セル)が火災初期状態であるとして、コンタクタ駆動装置10p、10nによりコンタクタ12p、12nを開いて、複数の電池モジュールMDLを主回路から電気的に切り離すとともに、リレー回路20により運転台100からの電源供給ラインの接点を開いて、電源供給ラインを非導通状態とし、出力端子TOの出力状態を切り替える。
 安全監視ユニット18は、複数の電圧検出回路11Bから通知された電圧情報に基づく値のそれぞれと、所定の閾値(第2過充電閾値)とを比較して、それぞれの電池モジュールMDLの組電池BT(若しくは個々の電池セル)が過充電状態であるか否かを判断する。
 安全監視ユニット18は、電圧検出回路11Bから通知された電圧が所定の閾値(第2過充電閾値)以上であるときに、組電池BT(若しくは個々の電池セル)が過充電状態であるとして、コンタクタ駆動装置10p、10nによりコンタクタ12p、12nを開いて、複数の電池モジュールMDLを主回路から電気的に切り離すとともに、リレー回路20により運転台100からの電源供給ラインの接点を開いて、電源供給ラインを非導通状態とし、出力端子TOの出力状態を切り替える。
 安全監視ユニット18は、複数の電圧検出回路11Bから通知された電圧情報に基づく値のそれぞれと、所定の閾値(第2過放電閾値)とを比較して、それぞれの電池モジュールMDLの組電池BT(若しくは個々の電池セル)が過放電状態であるか否かを判断する。
 安全監視ユニット18は、電圧検出回路11Bから通知された電圧が所定の閾値(第2過放電閾値)未満であるときに、組電池BT(若しくは個々の電池セル)が過放電状態であるとして、コンタクタ駆動装置10p、10nによりコンタクタ12p、12nを開いて、複数の電池モジュールMDLを主回路から電気的に切り離すとともに、リレー回路20により運転台100からの電源供給ラインの接点を開いて、電源供給ラインを非導通状態とし、出力端子TOの出力状態を切り替える。
 ここで、第1過温度閾値は通常使用時の電池セルの動作温度上限であり、第2過温度閾値は、安全上の電池セルの動作温度上限であり火災初期段階における電池セルの温度である。したがって、第1過温度閾値は第2過温度閾値よりも低い値である。
 また、第1過充電閾値は通常使用時の電池セルの動作電圧上限であり、第2過充電閾値は安全上の電池セルの動作電圧上限である。第1過放電閾値は通常使用時の電池セルの動作電圧下限であり、第2過放電閾値は安全上の電池セルの動作電圧下限である。したがって、第1過充電閾値は第2過充電閾値よりも小さい値であり、第1過放電閾値は第2過放電閾値よりも大きい値である。
 なお、本実施形態では、第2過温度閾値は電池モジュールMDLの動作温度上限であって、第1過温度閾値と、電池セルの熱暴走状態であるときの下限温度との間の温度としている。これにより、電池セルが発熱を開始した火災の初期段階を検知することが可能となり、電池セルの熱暴走による火災を未然に防ぐことが可能となる。
 電池モジュールMDLの動作温度上限は、搭載される電池セルの電気化学特性により決定され、例えば100℃以下に設定されることが望ましい。実際に電池セルが発火に至るとされるのは例えば200℃以上であり、第2過温度閾値は電池セルが発火する温度よりもはるかに低い温度に設定されている。このことにより、蓄電池装置200の火災を未然に防ぐことが可能となる。また、電池セルの温度変化特性は時定数が非常に長いため、電池セルの内部発熱の事象をごく初期段階で検出することは、電池セル起因の火災を未然に防止する観点からも効果的である。なお、第2過温度閾値は100℃に限定されるものではなく、電池モジュールMDLに搭載される電池セルの特性に応じて適切な値に設定されることが望ましい。
 通常、蓄電池装置管理ユニット16は、組電池BT(或いは電池セル)が通常使用上の動作温度上限(第1過電圧閾値)以上の温度となった際に、コンタクタ12p、12nを開いて複数の電池モジュールMDLを主回路から切り離す。そのため、蓄電池装置管理ユニット16により制御されている状態において、電池モジュールMDLに火災が発生することはない。
 しかしながら、蓄電池装置管理ユニット16や他の何らかの異常により、組電池BTを構成する電池セルの温度が100℃近傍に到達するような場合には、蓄電池装置200が正常に機能していない可能性があった。すなわち、電池セルの温度が100℃近傍に達する状態を検出することにより、蓄電池装置200が正常に機能していない状態を検知することができる。
 本実施形態の蓄電池装置および車両では、蓄電池装置管理ユニット16とは別に設けられた安全監視ユニット18により蓄電池装置200の異常を検知し、電池セルが発火する200℃よりも十分低い温度において、火災検知表示灯40により運転台100へ火災の兆候を通知することにより、より確実に安全を確保することを実現している。
 すなわち、本実施形態の蓄電池装置および車両では、安全監視ユニット18は、電池モジュールMDLから供給された温度が第2温度閾値以上であるときに、リレー回路20により電源供給ラインの電気的接続を切り離す。火災検知表示灯40は、出力端子TOの出力状態に応じて点灯する。すなわち、火災検知表示灯40は、電源供給ラインの電圧が変化したことにより点灯する。これと同時に、安全監視ユニット18は、コンタクタ12p、12nを開いて、複数の電池モジュールMDLを主回路から切り離す。したがって、車両の運転手は、火災検知表示灯40の点灯により車両が初期火災段階であることを知ることが可能となり、早期に火災に対する対応を取ることが可能となり、安全性を確保することができる。
 すなわち、本実施形態によれば、火災の兆候を検知して、より確実に安全を確保することが可能な蓄電池装置及び車両を提供することができる。
 次に、第2実施形態の蓄電池装置および車両について図面を参照して詳細に説明する。
 図2は、第2実施形態の蓄電池装置および車両の構成例を概略的に示すブロック図である。本実施形態の蓄電池装置200は上述の第1実施形態の蓄電池装置200と同様の構成であるので、以下では説明を省略する。本実施形態では、蓄電池装置200から火災検知表示灯40へ火災を通知する経路が上述の第1実施形態と異なっている。
 本実施形態の車両は、インバータINVと、モータMと、運転台100と、蓄電池装置200と、車両駆動用主回路300と、火災検知ラインL2と、を備えている。なお、本実施形態の車両は少なくとも1つの蓄電池装置200を備えるものであって、複数の蓄電池装置200を備えていてもよい。
 車両駆動用主回路300は、例えば110Vの電源電圧により駆動される。車両駆動用主回路300から、蓄電池装置200の入力端子TIおよび出力端子TOを介してループ状に火災検知ライン(信号線)L2が延びている。車両駆動用主回路300は火災検知ラインL2を介して110Vの電源電圧を蓄電池装置200のリレー回路20へ供給する。
 車両駆動用主回路300は、電源供給ラインの電圧と所定の閾値(例えば110V)とを比較する比較器を備え、電源供給ラインの電圧と所定の閾値との差が所定の大きさ以上となったときに、火災検知表示灯40へ火災検知信号を供給する。
 リレー回路20は、車両駆動用主回路300から延びた電圧供給ライン(火災検知ラインL2の一部)の接続を切替える。リレー回路20は通常は接点を閉じた状態であり、蓄電池装置管理ユニット16および安全監視ユニット18から過温度状態に基づく制御信号を受信したときに接点を開いて電源供給ライン(火災検知ラインL2の一部)を非導通状態とする。
 なお、車両駆動用主回路300とインバータINVとの間、および車両駆動用主回路300とモータMとの間には、同様に、火災検知ラインL2がループ状に延びている。車両駆動用主回路300は、火災検知ラインL2の電圧によりインバータINVおよびモータMの火災の判定を行うことができる。車両駆動用主回路300は、インバータINVから延びた火災検知ラインL2およびモータMから延びた火災検知ラインL2の電圧を所定の閾値(例えば110V)と比較し、差が所定の大きさ以上となったときに、火災検知表示灯40へ火災検知信号を供給する。
 火災検知表示灯40は、車両駆動用主回路300から火災検知信号を受信したときに点灯する。
 上記のように、本実施形態の蓄電池装置200および車両によれば、蓄電池装置200の火災の兆候を検知することができ、上述の第1実施形態と同様の効果を得ることができる。すなわち、本実施形態によれば、火災の兆候を検知して、より確実に安全を確保することが可能な蓄電池装置及び車両を提供することができる。
 なお、上述の第2実施形態では、車両駆動用主回路300は、蓄電池装置200、インバータINVおよびモータMとは独立して設けられていたが、車両に搭載されている機器の制御基板と一体に設けられても構わない。例えば、車両駆動用主回路300は、インバータINVの制御基板と一体に設けられ、インバータINVの内部に形成されてもよい。その場合であっても、上述の第2実施形態と同様の効果を得ることができる。
 また、上述の第1実施形態および第2実施形態では、コンタクタ12p、12nは複数の電池モジュールMDLの正極側と負極側とのそれぞれに配置されていたが、正極側と負極側との両側にコンタクタを設ける必要はない。コンタクタは、複数の電池モジュールMDLの正極側と負極側との少なくとも一方側と主回路との接続を切替えるものであれば構わない。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。
 10n…コンタクタ駆動装置、10p…コンタクタ駆動装置、11…電池監視ユニット(CMU)、11A…温度検出回路、11B…電圧検出回路、12n…コンタクタ、12p…コンタクタ、14…電流センサ、16…蓄電池装置管理ユニット(BMU)、18…安全監視ユニット(SSU)、20…リレー回路(切替器)、40…火災検知表示灯(表示灯)、100…運転台、200…蓄電池装置、300…車両駆動用主回路、TI…入力端子、TO…出力端子、L1、L2…火災検知ライン。

Claims (2)

  1.  出力端子と、
     前記出力端子の出力状態を切り替える切替器と、
     内蔵している電池セルの温度情報を出力する電池モジュールと、
     主回路と前記電池モジュールとを電気的に接続するコンタクタと、
     前記電池セルの前記温度情報に基づいて前記電池セルの温度と第1過温度閾値とを比較して、前記電池セルの温度が前記第1過温度閾値以上となったときに、前記コンタクタを開くとともに、前記出力端子の出力状態を切替える蓄電池装置管理ユニットと、
     前記電池セルの前記温度情報に基づいて前記電池セルの温度と第2過温度閾値とを比較して、前記電池セルの温度が前記第2過温度閾値以上となったときに、前記コンタクタを開くとともに、前記出力端子の出力状態を切替える安全監視ユニットと、を備え、
     前記第1過温度閾値は前記第2過温度閾値よりも低い、ことを特徴とする蓄電池装置。
  2.  請求項1記載の蓄電池装置と、
     前記蓄電池装置の出力端子の出力状態に応じて点灯状態が切り替わる表示灯を備えた運転台と、を備えた車両。
PCT/JP2016/058208 2016-03-15 2016-03-15 蓄電池装置及び車両 WO2017158741A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201680060005.0A CN108140908A (zh) 2016-03-15 2016-03-15 蓄电池装置以及车辆
SG11201806961WA SG11201806961WA (en) 2016-03-15 2016-03-15 Storage battery apparatus and vehicle
EP16894359.5A EP3432410A4 (en) 2016-03-15 2016-03-15 RECHARGEABLE BATTERY DEVICE AND VEHICLE
JP2018505119A JP6549306B2 (ja) 2016-03-15 2016-03-15 車両
PCT/JP2016/058208 WO2017158741A1 (ja) 2016-03-15 2016-03-15 蓄電池装置及び車両
US16/114,381 US20180366791A1 (en) 2016-03-15 2018-08-28 Storage battery apparatus and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/058208 WO2017158741A1 (ja) 2016-03-15 2016-03-15 蓄電池装置及び車両

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/114,381 Continuation US20180366791A1 (en) 2016-03-15 2018-08-28 Storage battery apparatus and vehicle

Publications (1)

Publication Number Publication Date
WO2017158741A1 true WO2017158741A1 (ja) 2017-09-21

Family

ID=59851153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058208 WO2017158741A1 (ja) 2016-03-15 2016-03-15 蓄電池装置及び車両

Country Status (6)

Country Link
US (1) US20180366791A1 (ja)
EP (1) EP3432410A4 (ja)
JP (1) JP6549306B2 (ja)
CN (1) CN108140908A (ja)
SG (1) SG11201806961WA (ja)
WO (1) WO2017158741A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020226041A1 (ja) 2019-05-09 2020-11-12 株式会社東芝 蓄電池装置
JP7561401B2 (ja) 2020-06-23 2024-10-04 パナソニックIpマネジメント株式会社 点灯装置、照明装置、及び照明器具

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180056428A (ko) * 2016-11-09 2018-05-29 현대오트론 주식회사 배터리 과방전 방지 장치
DE102018208994A1 (de) * 2018-06-07 2019-12-12 Robert Bosch Gmbh Verfahren zum betriebssicheren Aktivieren von mindestens einem elektronischen Bauteil
US12128788B2 (en) * 2019-03-31 2024-10-29 Ruichen Zhao Systems and applications based on modular battery packs
US20210226468A1 (en) * 2019-10-31 2021-07-22 Rolls-Royce Plc Over-temperature battery protection
US11264815B2 (en) * 2019-11-07 2022-03-01 GM Global Technology Operations LLC Control of thermal runaway event in battery system
DE102020200011A1 (de) * 2020-01-02 2021-07-08 Volkswagen Aktiengesellschaft Warnsystem für einen elektrischen Energiespeicher
JP7388318B2 (ja) * 2020-09-02 2023-11-29 トヨタ自動車株式会社 電源装置
EP4320671A1 (en) * 2021-04-09 2024-02-14 Brunswick Corporation Marine battery safety system and method
DE102023201951A1 (de) * 2023-03-03 2024-09-05 Siemens Mobility GmbH Kurzschlussschutz mit Halbleiterschalter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05328630A (ja) * 1992-05-25 1993-12-10 Hino Motors Ltd 電装品保護回路
JP2009168720A (ja) * 2008-01-18 2009-07-30 Honda Motor Co Ltd 蓄電器及び電池システム
JP2011222409A (ja) * 2010-04-13 2011-11-04 Might Industry Co Ltd リチウムイオン電池パック、そのリチウムイオン電池パックが用いられた電源装置、およびバッテリー投光機
JP2012050258A (ja) * 2010-08-27 2012-03-08 Sanyo Electric Co Ltd 電源装置
JP2012079547A (ja) * 2010-10-01 2012-04-19 Sanyo Electric Co Ltd 電池パック
JP2013187159A (ja) 2012-03-09 2013-09-19 Hitachi Ltd 電池システム及びその温度制御方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008095313A1 (en) * 2007-02-09 2008-08-14 Advanced Lithium Power Inc. Battery thermal management system
KR20140070447A (ko) * 2012-11-30 2014-06-10 주식회사 엘지화학 배터리 사용 환경과 사용 이력을 관리하는 장치 및 방법
KR20150102778A (ko) * 2013-11-13 2015-09-08 삼성에스디아이 주식회사 배터리 팩, 배터리 팩을 포함하는 장치, 및 배터리 팩의 관리 방법
US9437850B2 (en) * 2014-04-30 2016-09-06 Johnson Controls Technology Company Battery construction for integration of battery management system and method
US20170317333A1 (en) * 2016-04-28 2017-11-02 Arthur F. Seymour Multiple Voltage Output Battery Case with Protection and Alarm System

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05328630A (ja) * 1992-05-25 1993-12-10 Hino Motors Ltd 電装品保護回路
JP2009168720A (ja) * 2008-01-18 2009-07-30 Honda Motor Co Ltd 蓄電器及び電池システム
JP2011222409A (ja) * 2010-04-13 2011-11-04 Might Industry Co Ltd リチウムイオン電池パック、そのリチウムイオン電池パックが用いられた電源装置、およびバッテリー投光機
JP2012050258A (ja) * 2010-08-27 2012-03-08 Sanyo Electric Co Ltd 電源装置
JP2012079547A (ja) * 2010-10-01 2012-04-19 Sanyo Electric Co Ltd 電池パック
JP2013187159A (ja) 2012-03-09 2013-09-19 Hitachi Ltd 電池システム及びその温度制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3432410A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020226041A1 (ja) 2019-05-09 2020-11-12 株式会社東芝 蓄電池装置
JP7561401B2 (ja) 2020-06-23 2024-10-04 パナソニックIpマネジメント株式会社 点灯装置、照明装置、及び照明器具

Also Published As

Publication number Publication date
CN108140908A (zh) 2018-06-08
US20180366791A1 (en) 2018-12-20
JP6549306B2 (ja) 2019-07-24
EP3432410A4 (en) 2019-11-20
EP3432410A1 (en) 2019-01-23
SG11201806961WA (en) 2018-09-27
JPWO2017158741A1 (ja) 2018-07-05

Similar Documents

Publication Publication Date Title
WO2017158741A1 (ja) 蓄電池装置及び車両
US10179519B2 (en) Multi-battery system for increasing the electric range
KR200491964Y1 (ko) 배터리 디스커넥트 유닛
JP2017004968A (ja) 安全性の向上した電池パック
JP2018073560A (ja) 電源装置及びこれを用いる車両並びに蓄電装置
JP2011130551A (ja) 電源装置及びこれを備える車両
KR20130001239A (ko) 고전류 배터리 시스템 및 고전류 배터리 시스템을 제어하기 위한 방법
JP2014512089A (ja) 安全性の向上した電池パック
US20130026992A1 (en) Rechargeable battery device, and power supplying system incorporating the same
JP2015202029A (ja) 二次電池用保護装置
US9472941B2 (en) Battery module
JP2013226016A (ja) 蓄電池システム
JP2011078184A (ja) 車両用の電源装置及びこの電源装置を搭載する車両
US20120148885A1 (en) Protective unit for galvanic cells
WO2022009639A1 (ja) 配電モジュール
US20140042936A1 (en) Battery Module, Battery Management System, System for Supplying a Drive of a Machine Suitable for Generating Torque with Electrical Energy, and a Motor Vehicle
US11114877B2 (en) Battery device and vehicle
CN111095719A (zh) 蓄电池装置
WO2017191818A1 (ja) 電源装置
JP6772931B2 (ja) 電池パックの放電制御装置
JP6291287B2 (ja) 電池モジュール
WO2019193637A1 (ja) 電池装置および車両
JP2007166747A (ja) 組電池および組電池の充電方法
JP2021087280A (ja) 電池制御装置
KR20210000598A (ko) 배터리 시스템

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018505119

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11201806961W

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016894359

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016894359

Country of ref document: EP

Effective date: 20181015

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894359

Country of ref document: EP

Kind code of ref document: A1