[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017018553A1 - 무선 통신 시스템에서 단말이 다중 링크를 설정하는 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 단말이 다중 링크를 설정하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2017018553A1
WO2017018553A1 PCT/KR2015/007797 KR2015007797W WO2017018553A1 WO 2017018553 A1 WO2017018553 A1 WO 2017018553A1 KR 2015007797 W KR2015007797 W KR 2015007797W WO 2017018553 A1 WO2017018553 A1 WO 2017018553A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
base station
link
relay
relay terminal
Prior art date
Application number
PCT/KR2015/007797
Other languages
English (en)
French (fr)
Inventor
한진백
조희정
이은종
변일무
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to PCT/KR2015/007797 priority Critical patent/WO2017018553A1/ko
Priority to US15/745,918 priority patent/US10368381B2/en
Publication of WO2017018553A1 publication Critical patent/WO2017018553A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2606Arrangements for base station coverage control, e.g. by using relays in tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for establishing a multiple link through a relay terminal by the terminal.
  • next generation mobile communication for example 5G mobile communication
  • reliable communication has been discussed.
  • Error Free Transmission is required in the Mission Critical Service (MCS), an example of high reliability communication.
  • MCS Mission Critical Service
  • M2M communication there is a need for high reliability communication as a way to satisfy the real-time for traffic safety, traffic efficiency, efficient industrial communication, and the like.
  • High reliability communications can be used in a variety of applications, including delay sensitive applications, medical / emergency response, remote control, and sensing.
  • the criterion for evaluating the reliability of communication may be defined according to various methods, for example, may be defined as the quality of a wireless connection that satisfies a specific service level, but is not limited thereto.
  • An object of the present invention is to provide a method for quickly and efficiently setting up a multi-link including a serving link and an alternate link through a relay terminal by a terminal that is out of coverage.
  • a method in which a terminal out of coverage establishes multiple links through relay terminals, among the relay terminals located around the terminal Transmitting an RRC connection request to a temporary relay terminal having the best device to device (D2D) signal quality; Receiving, from the temporary relay terminal, an RRC connection configuration indicating a first base station to provide a serving link to the terminal among the base stations to which the relay terminals are connected and a second base station to provide an alternative link; Establishing the serving link through the first relay terminal by transmitting an RRC connection complete message to a first relay terminal connected to the first base station among the relay terminals; And setting the alternate link in which unicast data transmission and reception are deactivated through a second relay terminal connected to the second base station among the relay terminals.
  • D2D device to device
  • the method may further include receiving system information including at least one of the numbers. More preferably, the RRC connection request includes a list of relay terminals in which the link quality with the base stations to which the relay terminals are connected among the relay terminals is greater than or equal to a threshold.
  • the first base station to provide the serving link may be determined based on the load status of each of the base stations to which the relay terminal is connected.
  • SLSSs side-link synchronization signals
  • the relay terminals Preferably, receiving, from the relay terminals, side-link synchronization signals (SLSSs) assigned to the relay terminals by base stations to which the relay terminals are connected; And synchronizing with the relay terminals based on the SSLSs, wherein the SSLSs may be assigned to have unique values for each of the relay terminals.
  • SSLSs side-link synchronization signals
  • the quality of the serving link set through the first relay terminal is less than the threshold, activating unicast data transmission and reception of the alternate link set through the second relay terminal; And releasing the RRC connection of the serving link established through the first relay terminal.
  • the quality of the replacement link set through the second relay terminal is less than the first threshold, searching for another alternative link through a third relay terminal of the relay terminal; And when the quality of the replacement link set through the second relay terminal is less than or equal to a second threshold value, releasing the RRC connection of the replacement link set through the second relay terminal.
  • a method for supporting the setting of multiple links of a terminal whose coverage is lost by a base station to which a temporary relay terminal is connected may include: Receiving an RRC connection request of a terminal that has left coverage; Transmitting a load query request to base stations to which the relay terminals access based on a list of relay terminals included in the RRC connection request; Determining a first base station to provide a serving link to the terminal that has left coverage and a second base station to provide an alternative link based on a response to a load query request from the base stations to which the relay terminals are connected; And transmitting an RRC connection setting including information indicating the first base station and the second base station to the terminal having deviated from the coverage through the temporary relay terminal, wherein the information provided by the second base station is provided. Unicast data transmission and reception is disabled on the alternate link.
  • the first base station is a base station having the lowest load state among the base stations to which the relay terminals are connected
  • the temporary relay terminal is a device to device (D2D) with which the coverage of the relay terminals deviates from the coverage. device)
  • the terminal may have the best signal quality.
  • the RRC connection establishment complete message transmitted by the terminal deviating from the coverage in response to the RRC connection establishment transmitted by the base station may be received at the first base station to establish the serving link.
  • the temporary relay terminal further includes the step of assigning a side-link synchronization signal (SLSS) to the temporary relay terminal to be transmitted to the terminal deviating from the coverage, wherein the SLSS assigned to the temporary relay terminal is It may have a unique value distinguishable from the relay terminals.
  • SLSS side-link synchronization signal
  • the method comprising the steps of: transmitting a multiple connectivity request to the first base station and the second base station, each of which includes an identifier of the terminal having left the coverage; And receiving a multiple connectivity response indicating whether to accept the multiple connectivity request from the first base station and the second base station, respectively.
  • the multi-connection request sent to the first base station includes an indicator indicating that the first base station is a base station to provide the serving link to the terminal that is out of coverage, and sent to the second base station
  • the multi-connection request includes an indicator indicating that the second base station is a base station to provide the replacement link to the terminal out of coverage, wherein each of the multiple connection responses received from the first base station and the second base station,
  • the first base station and the second base station may include an identifier and a dedicated preamble of the terminal deviating from the coverage allocated.
  • the terminal is out of coverage, the temporary relay terminal having the highest D2D (device to device) signal quality among the relay terminals located around the terminal
  • a transmitter for transmitting an RRC connection request to the transmitter
  • a receiver for receiving from the temporary relay terminal an RRC connection configuration indicating a first base station to provide a serving link to the terminal and a second base station to provide an alternative link among the base stations to which the relay terminals access;
  • setting the serving link through the first relay terminal by transmitting an RRC connection complete message to a first relay terminal connected to the first base station among the relay terminals, and accessing the second base station among the relay terminals.
  • a processor for establishing the alternate link in which unicast data transmission and reception are disabled through one second relay terminal.
  • a base station supporting the setting of multiple links of a terminal that has left coverage leaves the coverage through a temporary relay terminal connected to the base station.
  • the transmitter transmits an RRC connection setting including information indicating the first base station and the second base station to the terminal that has left the coverage through the temporary relay terminal, and is provided by the second base station. Unicast data transmission and reception is disabled on the alternate link.
  • the base station to provide the serving link is determined according to the load state of the base stations to which the discovered relay terminals access.
  • Multiple links, including links and alternate links, can be established quickly and efficiently.
  • FIG. 1 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a UE and an E-UTRAN based on a 3GPP radio access network standard.
  • FIG. 2 is a diagram illustrating physical channels used in a 3GPP system and a general signal transmission method using the same.
  • 3 is a diagram illustrating a structure of a radio frame used in an LTE system.
  • FIG. 4 is a diagram illustrating radio link failure in an LTE system.
  • FIG. 5 is a flowchart illustrating a multiple connection establishment method through a temporary relay terminal according to an embodiment of the present invention.
  • FIG. 6 is a flowchart illustrating a method for establishing a multiple connection through a temporary relay terminal according to another embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating a multiple connection establishment method through a temporary relay terminal according to another embodiment of the present invention.
  • FIG. 8 is a flowchart illustrating a method for establishing a multiple connection through a temporary relay terminal according to another embodiment of the present invention.
  • FIG 9 illustrates a synchronization process between a terminal and a relay terminal according to an embodiment of the present invention.
  • FIG. 10 illustrates a flow of a method for establishing multiple connections through a temporary relay terminal according to another embodiment of the present invention.
  • FIG. 11 is a flowchart illustrating a method for establishing a multiple connection through a temporary relay terminal according to another embodiment of the present invention.
  • FIG. 12 is a flowchart illustrating a method for establishing a multiple connection through a temporary relay terminal according to another embodiment of the present invention.
  • FIG. 13 is a flowchart illustrating a method for establishing a multiple connection through a temporary relay terminal according to another embodiment of the present invention.
  • FIG. 14 is a flowchart illustrating a method for searching for an alternative link and updating an alternative link through a relay terminal according to an embodiment of the present invention.
  • 15 is a flowchart illustrating a method for searching for an alternative link through a relay terminal according to an embodiment of the present invention.
  • 16 is a flowchart illustrating a method for updating an alternate link through a relay terminal according to an embodiment of the present invention.
  • 17 is a diagram illustrating a terminal and a base station in one embodiment of the present invention.
  • the present specification describes an embodiment of the present invention using an LTE system and an LTE-A system, this as an example may be applied to any communication system corresponding to the above definition.
  • the present specification describes an embodiment of the present invention on the basis of the FDD scheme, but this is an exemplary embodiment of the present invention can be easily modified and applied to the H-FDD scheme or the TDD scheme.
  • the specification of the base station may be used as a generic term including a remote radio head (RRH), an eNB, a transmission point (TP), a reception point (RP), a relay, and the like.
  • RRH remote radio head
  • TP transmission point
  • RP reception point
  • relay and the like.
  • FIG. 1 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a UE and an E-UTRAN based on a 3GPP radio access network standard.
  • the control plane refers to a path through which control messages used by the UE and the network to manage a call are transmitted.
  • the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
  • the physical layer which is the first layer, provides an information transfer service to an upper layer by using a physical channel.
  • the physical layer is connected to the upper layer of the medium access control layer through a transport channel. Data moves between the medium access control layer and the physical layer through the transport channel. Data moves between the physical layer between the transmitting side and the receiving side through the physical channel.
  • the physical channel utilizes time and frequency as radio resources.
  • the physical channel is modulated in an Orthogonal Frequency Division Multiple Access (OFDMA) scheme in downlink, and modulated in a Single Carrier Frequency Division Multiple Access (SC-FDMA) scheme in uplink.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
  • RLC radio link control
  • the RLC layer of the second layer supports reliable data transmission.
  • the function of the RLC layer may be implemented as a functional block inside the MAC.
  • the PDCP (Packet Data Convergence Protocol) layer of the second layer performs a header compression function to reduce unnecessary control information for efficiently transmitting IP packets such as IPv4 or IPv6 in a narrow bandwidth wireless interface.
  • IPv4 Packet Data Convergence Protocol
  • the Radio Resource Control (RRC) layer located at the bottom of the third layer is defined only in the control plane.
  • the RRC layer is responsible for control of logical channels, transport channels, and physical channels in connection with configuration, reconfiguration, and release of radio bearers (RBs).
  • RB means a service provided by the second layer for data transfer between the UE and the network.
  • the RRC layers of the UE and the network exchange RRC messages with each other. If there is an RRC connected between the UE and the RRC layer of the network, the UE is in an RRC connected mode, otherwise it is in an RRC idle mode.
  • the non-access stratum (NAS) layer above the RRC layer performs functions such as session management and mobility management.
  • One cell constituting the base station is set to one of the bandwidth, such as 1.25, 2.5, 5, 10, 15, 20Mhz to provide a downlink or uplink transmission service to several UEs.
  • Different cells may be configured to provide different bandwidths.
  • the downlink transport channel for transmitting data from the network to the UE includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a shared channel (SCH) for transmitting user traffic or a control message.
  • BCH broadcast channel
  • PCH paging channel
  • SCH shared channel
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transmission channel for transmitting data from the UE to the network includes a random access channel (RAC) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message.
  • RAC random access channel
  • SCH uplink shared channel
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast. Traffic Channel
  • FIG. 2 is a diagram for explaining physical channels used in a 3GPP system and a general signal transmission method using the same.
  • the UE When the UE is powered on or enters a new cell, the UE performs an initial cell search operation such as synchronizing with the base station (S301). To this end, the UE may receive a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station to synchronize with the base station and obtain information such as a cell ID. have. Thereafter, the UE may receive a physical broadcast channel from the base station to obtain broadcast information in a cell. Meanwhile, the UE may check a downlink channel state by receiving a downlink reference signal (DL RS) in an initial cell search step.
  • P-SCH Primary Synchronization Channel
  • S-SCH Secondary Synchronization Channel
  • DL RS downlink reference signal
  • the UE After the initial cell discovery, the UE receives a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) according to the information on the PDCCH to obtain more specific system information. It may be (S302).
  • a physical downlink control channel (PDCCH)
  • a physical downlink control channel (PDSCH)
  • the UE may perform a random access procedure (RACH) for the base station (steps S303 to S306).
  • RACH random access procedure
  • the UE may transmit a specific sequence to the preamble through the Physical Random Access Channel (PRACH) (S303 and S305), and receive a response message for the preamble through the PDCCH and the corresponding PDSCH ( S304 and S306).
  • PRACH Physical Random Access Channel
  • a contention resolution procedure may be additionally performed.
  • the UE which has performed the above-described procedure, will then receive the PDCCH / PDSCH (S307) and the Physical Uplink Shared Channel (PUSCH) / Physical Uplink Control Channel (Physical Uplink) as a general uplink / downlink signal transmission procedure.
  • Control Channel (PUCCH) transmission (S308) may be performed.
  • the UE receives downlink control information (DCI) through the PDCCH.
  • DCI downlink control information
  • the DCI includes control information such as resource allocation information for the UE, and the format is different according to the purpose of use.
  • the control information transmitted by the UE to the base station through the uplink or received by the UE from the base station includes a downlink / uplink ACK / NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), and a rank indicator (RI). ), And the like.
  • the UE may transmit control information such as the above-described CQI / PMI / RI through the PUSCH and / or the PUCCH.
  • 3 is a diagram illustrating a structure of a radio frame used in an LTE system.
  • a radio frame has a length of 10 ms (327200 ⁇ Ts) and consists of 10 equally sized subframes.
  • Each subframe has a length of 1 ms and consists of two slots.
  • Each slot has a length of 0.5 ms (15360 x Ts).
  • the slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • one resource block includes 12 subcarriers x 7 (6) OFDM symbols.
  • Transmission time interval which is a unit time for transmitting data, may be determined in units of one or more subframes.
  • the structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of OFDM symbols included in the slot may be variously changed.
  • FIG. 4 is a diagram illustrating radio link failure in an LTE system.
  • a radio link failure (RLF) between the base station and the terminal may occur.
  • the radio link failure refers to a state in which signal transmission and reception are difficult because the quality of the radio link between the base station and the terminal is degraded.
  • a process of detecting an RLF and finding a new radio link will be described.
  • a Radio Resource Control (RRC) state between a base station and a terminal may be defined as an RRC_CONNECTED state and an RRC_IDLE state.
  • the RRC_CONNECTED state means a state in which an RRC connection between the base station and the terminal is established, and the terminal may transmit and receive data with the base station.
  • the RRC_IDLE state means a state in which an RRC connection between the base station and the terminal is released.
  • Radio link failure (RLF) related operations may be described as (1) detection of physical layer problems in the RRC_CONNECTED state, (2) recovery of physical layer problems, and (3) RLF detection.
  • the terminal When the terminal receives continuous "out-of-sync" indications from the lower layer by a predetermined value defined by N310, the terminal drives a timer defined as T310.
  • the "out-of-sync" indication may be provided to the upper layer when the demodulation of the PDCCH received by the lower layer (physical layer) is impossible or the signal-to-interference plus noise ratio (SINR) is low.
  • SINR signal-to-interference plus noise ratio
  • N310 and T310 may be given as predefined values as upper layer parameters.
  • N311 may be given a predefined value as a higher layer parameter. RRC connection is maintained without explicit signaling when T310 timer is stopped
  • the UE expires the T310 timer, receives a random access problem indication from the MAC layer, or receives a signaling radio bearer (SRB) or data radio bearer (DRB) from the RLC. If an indication is received indicating that the maximum number of retransmissions has been exceeded, it is determined that an RLF has been detected. The UE initiates a connection reestablishment procedure according to the RLF detection.
  • the expiration of the T310 timer means that the T310 timer reaches a predetermined time T310 without stopping in the middle of driving.
  • connection reestablishment process is a process in which the UE sends a 'RRC connection reestablishment request' message to the base station, receives a 'RRC connection reestablishment' message from the base station, and sends a 'RRC connection reestablishment complete' message to the base station.
  • RLF related operation refer to 5.3.11 of 3GPP standard document TS36.331.
  • the RLF process may be referred to as a process of finding a new link when the link deterioration state continues while the terminal operates the internal timer.
  • the RLF process since it is difficult to predict a link (Uu link) between the base station and the terminal, as described above, it is determined whether to detect the RLF based on parameters such as N310, N311, and T310.
  • the UE determines the RLF only after the set timers (eg, T310, T312) have expired, even if a problem of the physical layer is recognized, and then, the RRC connection reestablishment procedure is performed. Should be.
  • the UE starts the T311 timer while performing the RRC connection reestablishment procedure, and if the RRC connection reestablishment is not successful before the T311 timer expires, the UE transitions to the RRC Idle state.
  • the current LTE / LTE-A system is designed to handle the recovery from the RLF fairly conservatively, to search for another available link that can be replaced quickly according to the channel conditions of the terminal, and to switch to the alternate link There is a problem that it is difficult to secure available alternative links. Thus, the LTE system is difficult to satisfy the reliability for the MCSs.
  • the LTE / LTE-A system assumes relatively good connectivity, which provides significantly lower data rates in case of severe interference or heavy network resources.
  • 10 to the next generation mobile communication is to support the MCS, as described above - it must meet the reliability requirements of not more than 6 - 6 or lower in the error rate and 10. It is necessary to build a high-reliability system that can always receive MCSs without being aware of the interruption of the radio link.
  • Applicable exemplary services of the 5G mobile communication environment for MCS include, for example, remote control of robot arms for industrial automation, logistics delivery via remote control of automated guided vehicles (AGVs), and remote control.
  • AGVs automated guided vehicles
  • the terminal In order to provide services seamlessly, the terminal must search for and secure an alternative link in advance when the serving link connection quality decreases, and if the quality of the serving link drops to an unsuitable level for the MCSs, it should be quickly switched to the alternative link. That is, the terminal determines the quality degradation of the serving link more quickly, thereby securing the replacement link before the RLF occurs and switching to the replacement link.
  • searching for and maintaining an alternative link in addition to the link used by the terminal means that the terminal has radio links satisfying the minimum QoE for MCSs in a specific geographic area.
  • LTE / LTE-A The radio link availability of the LTE / LTE-A system depends entirely on the probability of providing network coverage.
  • LTE / LTE-A system is applied to block error rate (BER) 10 -1 for unicast transmission through PDSCH without distinction between C-Plane and U-Plane, and can provide sufficient reliability by HARQ retransmission I assume.
  • BER block error rate
  • a terminal in order to provide MCSs through a 5G mobile communication environment, a terminal must always maintain an alternative link to satisfy the target reliability of the MCSs and always secure an alternative link.
  • the network may instruct the terminal to utilize the radio links around itself.
  • a method of avoiding interruption of a radio link for providing an MCS may be considered by allowing a terminal to search for and secure available alternative links in the vicinity.
  • the terminal capable of providing a relay function around the terminal eg, ProSe-supported terminal defined in 3GPP LTE / LTE-A Rel-12
  • the terminal may be provided with MCSs seamlessly using a direct link with the relay terminal.
  • a method for establishing a multi-connection with a base station by a terminal outside the coverage of the base station through relay terminals located in the coverage is proposed.
  • a method for switching a connection from a serving base station of a temporarily connected terminal to a serving base station of another relay terminal is proposed.
  • the relay terminals are connected to different base stations.
  • the relay terminal may be a ProSe supporting terminal capable of searching for an adjacent terminal and directly communicating between the terminals.
  • RLA Radio Link Availability
  • Equation 1 an index of reliability for MCS is referred to as RLA (Radio Link Availability)
  • QoE Quality of Experience
  • Equation 1 RLQ is measured radio link quality, and QoE is a QoE requirement in terms of link quality.
  • Embodiments of the present invention may be classified as follows, and detailed terminal operations for each component will be described later.
  • FIGS. 5 to 8 illustrate embodiments in which a terminal establishes a connection with a base station through a plurality of relay terminals in an initial access process.
  • synchronization between base stations of relay terminals is the same.
  • the present embodiments may be applied to an environment in which relay terminals are connected to a small cell, a TA between an MCS terminal and a small cell to which the relay terminals are connected to approximately 0, or an asynchronous system having a new waveform is constructed. .
  • relay terminal detection by the MCS terminal may be performed through Prose Direct Discovery defined in 3GPP LTE / LTE-A.
  • the relay terminal receives the E-UTRAN Direct Radio Signal (e.g., Discovery Message) transmitted by the MCS terminal (or relay terminal) through the PC5 interface. Through this, it can be seen that the relay terminal (or MCS terminal) is located adjacent to the MCS terminal (or relay terminal).
  • SIB system information block
  • the terminal acquires resource information for a synchronization signal and system information about each channel.
  • the SIB transmitted by the relay terminal may be a newly defined SIB or SIB 18 in which additional information is inserted.
  • 5 and 7 illustrate a case in which the access base station (base station 2) of the temporary relay terminal (relay terminal 1) to which the terminal attempts initial access becomes the serving link base station of the MCS terminal.
  • 6 and 8 illustrate a case in which the access base station (base station 1) of another relay terminal (relay terminal 3), which is not the base station of the temporary relay terminal that the terminal attempts to initially access, becomes the serving link base station of the MCS terminal.
  • relay terminal 1 and relay terminal 2 are respectively connected to base station 2, and relay terminal 3 is connected to base station 1, respectively.
  • the MCS terminal is out of coverage of base station 1 and base station 2.
  • the temporary relay terminal initially accessed by the MCS terminal may be determined as a terminal having the best D2D signal quality with the MCS terminal among the relay terminals.
  • relay terminal 1 performs the role of a temporary relay terminal to which the MCS terminal initially accesses.
  • the MCS terminal broadcasts an Out of Coverage Indication and a Direct Radio Signal (S505).
  • the coverage deviation indicator is a signal for notifying the presence of the MCS terminal out of coverage to the neighboring device to device (D2D) support relay terminals.
  • the direct radio signal is a signal for notifying that the relay terminal needs to be relayed.
  • the out of coverage indicator triggers SIB (e.g., SIB for MCS) transmission by the relay terminal.
  • the relay terminals determined to relay the MCS terminal broadcast the SIB for the MCS (S510).
  • the SIB for the MCS includes information on a relay terminal link quality indicator, a radio link quality degradation (RLQD) threshold, and a maximum number of links.
  • the relay terminal link quality indicator is an indicator indicating whether the signal quality between the relay terminal and the base station is higher than a defined threshold value R MCS _L . Even if the link quality between the MCS terminal and the relay terminal is excellent, when the link quality between the relay terminal and the base station is less than or equal to the threshold value R MCS_L , the MCS terminal may not include a link to the corresponding relay terminal as a substitute link object. In addition, when the relay terminal set as the alternate link by satisfying the threshold value does not satisfy the threshold value later, the MCS terminal may receive another relay terminal link quality indicator and search for another alternate link relay terminal.
  • the RLQD threshold may include threshold information for the multilink connection. For example, a minimum signal quality threshold for selecting a serving base station at initial access, a signal quality threshold for searching for an alternate link, and a signal quality threshold for releasing a serving link (or alternative link) may be included.
  • the information on the maximum number of links means the maximum number of serving link replacement links that an MCS terminal can simultaneously connect to.
  • the MCS terminal transmits an RRC connection request to the temporary relay terminal (S515).
  • the temporary relay terminal is a terminal having the best D2D signal quality with the MCS terminal among the relay terminals transmitting the SIB.
  • the RRC connection request may include a list of base stations of relay terminals identified through the SIB.
  • the temporary relay terminal delivers the list of base stations received from the MCS terminal to the base station to which it is connected.
  • Base station 2 which is the access base station of the temporary relay terminal, transmits a load query request to the base station 1, which is the access base station of the relay terminal 3, to the load base station based on the list of base stations included in the RRC connection request ( S520).
  • Base station 2 receives a response to the load query request from the base station 1 (S525).
  • the response to the load inquiry request may indicate the load status as high, medium, or low.
  • the D2D signal quality between the MCS terminal and the specific relay terminal is good, it is not suitable to provide the MCS service when the base station of the specific relay terminal is overloaded. Therefore, even if the D2D signal quality is not the best, information on the load state is exchanged between the base stations in order to select a base station that can allocate a lot of resources for the MCS. That is, the base station with the most advantageous resource allocation for the MCS may be selected as the base station providing the MCS to the MCS terminal.
  • Base station 2 determines the base station to serve as the base station of the serving link for the MCS terminal based on the response to the load query request.
  • the base station with the lowest load state among the base stations may be determined as the serving link base station of the MCS terminal.
  • base station 2 is the serving link base station of the MCS terminal.
  • the remaining base stations other than base station 2 determined as the serving link base station become candidate base stations of the alternative link for the MCS terminal.
  • Base station 2 is a multi-link connection request including the MCS terminal identifier (eg, IMSI, GUTI), MCS terminal context, the identifier of the relay terminal to relay the MCS terminal to the base station 1, which is a candidate base station of the alternate link (Multi- Link Connectivity Request) is transmitted (S530).
  • the transmission and reception deactivation indicator is an indicator for specifying that the transmission and reception deactivation mode. If a base station other than the base station of the temporary relay terminal is determined as the serving base station, the multilink connection request may further include an indicator indicating the serving base station and the candidate base station.
  • the base station 2 receives a multi-link connectivity response including a C-RNTI for the MCS terminal and information indicating success / failure (ie, acceptance) of the multilink connection request from the base station 1. (S535).
  • Base station 2 transmits the RRC connection configuration to the MCS terminal through the temporary relay terminal (S540).
  • the RRC connection configuration includes an identifier of a serving link base station and an alternate link base station, an identifier of a relay terminal connected to each base station, and information on a C-RNTI allocated from the serving link base station and the alternate link base station.
  • the MCS terminal transmits an RRC connection setup complete message to the base station 2 accessed by the temporary relay terminal through the temporary relay terminal (S545).
  • a serving link is established between the MCS terminal and the base station 2 through the temporary relay terminal, and an alternative link is established between the MCS terminal and the base station 1 through the relay terminal 3.
  • the MCS terminal transmits the RLQD report to the base station 2 through the temporary relay terminal (S550).
  • the RLQD report may include an indicator indicating a deterioration of quality, information on a serving link's RLQ state (e.g. high, medium low), and base stations on the alternate link.
  • the MCS terminal transmits the activation instruction of the alternate link and the list of the alternative link base stations to the base station 1 through the relay terminal 3 (S555).
  • Base station 1 requests to release the RRC connection with the MCS terminal to the base station 2 (S560).
  • the base station 2 transmits an RRC connection release request to the temporary relay terminal (S565), and the temporary relay terminal releases the RRC connection with the MCS terminal (S570).
  • FIG. 6 illustrates an initial access procedure of an MCS terminal according to another embodiment of the present invention. Duplicate descriptions will be omitted.
  • the procedure of FIG. 6 exemplifies a case in which the base station 1 becomes the serving link base station for the MCS terminal instead of the base station 2 accessed by the temporary relay terminal.
  • the multi-link connection request transmitted by the base station 2 includes an indicator indicating which base station is determined as the serving link base station of the MCS terminal.
  • the RRC connection configuration transmitted to the MCS terminal includes an indicator indicating the serving link base station.
  • the MCS terminal transmits an RRC connection setup complete message to the relay terminal accessing the serving link base station.
  • the base station 2 becomes an alternative link base station of the MCS terminal, and sets the alternate link in which data transmission and reception with the MCS terminal is deactivated through the temporary relay terminal.
  • the MCS terminal requests the alternate link base station through the relay terminal, but in the embodiment shown in FIGS. 7 and 8, the serving link base station performs the alternate link activation to the alternate link base station. Instruct.
  • the base station 2 receiving the RLQD report of the MCS terminal through the temporary relay terminal transmits a transmission and reception activation instruction and a list of the alternative link base stations to the base station 1 (S755, S855).
  • the base station 1 instructs the relay terminal 3 to activate the alternate link transmission and reception.
  • Base station 1 transmits an RRC connection release request to base station 2 (S760, S860).
  • the base station 2 instructs the temporary relay terminal to release the RRC connection, the temporary relay terminal releases the RRC connection with the MCS terminal (S770, S865).
  • FIG 9 illustrates a synchronization process of a terminal according to an embodiment of the present invention.
  • the MCS terminal is out of coverage of the base stations and is not synchronized with any base station.
  • the MCS terminal broadcasts a Side-Link Synchronization Signal (SLSS) for allowing D2D relay terminals in synchronization with the MCS terminal (S905).
  • SLSS Side-Link Synchronization Signal
  • the MCS terminal broadcasts a discovery message (S910).
  • the discovery message informs the relay terminals of their presence (e.g., L2 Address, ProSe UE ID).
  • the discovery message may include a relay preference indicator to indicate that coverage coverage and relaying are preferred.
  • MCS terminal identifier e.g., GUTI
  • the MCS terminal may simultaneously broadcast the SLSS and the discovery message.
  • the relay terminal which intends to perform the relay transmits an indicator indicating the reception of the relay preference indicator to the base station to which the relay preference indicator is connected (S915).
  • the identifier of the MCS terminal may be transmitted together to the base station.
  • the base stations allocate the SLSS necessary for the MCS terminal to synchronize with the relay terminals to the relay terminal (S920).
  • SLSSs allocated by the base stations to the relay terminals may be uniquely allocated to each relay terminal.
  • the first SLSS may be allocated to the relay terminal 1
  • the second SLSS may be allocated to the relay terminal 2.
  • the MCS terminal may distinguish between the relay terminal 1 and the relay terminal 2 through the first SLSS and the second SLSS.
  • the base stations may allocate the relay terminal-specific side-link reference signal (SLRS) to the relay terminals.
  • the MCS terminal may measure which relay terminal has a good D2D link quality through the SLRS. That is, through the SLSS and the SRSS, the MCS terminal may determine which relay terminal is to be a temporary relay terminal.
  • the relay terminal broadcasts a discovery message (S935), and also broadcasts SIB (S940). 9 may be applied to the embodiments of FIGS. 5 to 8 and the embodiments of FIGS. 10 to 13 to be described later.
  • 10 to 13 illustrate embodiments in which an MCS terminal establishes a connection with a plurality of relay terminals upon initial access. Descriptions overlapping with the above are omitted.
  • the MCS terminal transmits the E-UTRAN Direct Radio Signal to the PC5 Interface based on Prose Direct Discovery defined in 3GPP LTE / LTE-A.
  • the relay terminal can know that the MCS terminal is located in the vicinity by receiving a direct radio signal.
  • the MCS terminal obtains the resource information of the synchronization signal and the system information on the channels through the SIB transmitted from the relay terminal.
  • 10 and 12 illustrate a case in which the base station 2 connected to the temporary relay terminal becomes a serving link base station of the MCS terminal.
  • 11 and 13 illustrate a case in which the base station 1 to which the relay terminal 3 is connected, not the temporary relay terminal, becomes the serving link base station of the MCS terminal.
  • 10 and 11 when the signal quality of the serving link falls below a predetermined threshold, the MCS terminal performs RLQD reporting to the serving link base station through the serving link relay terminal, and the MCS terminal performs the relay link of the alternate link. Instructing the base station of the alternate link to activate the RRC connection, and transmits information on the base station of another alternative link.
  • the MCS terminal broadcasts a direct radio signal and an out of coverage indicator (S1005).
  • the relay terminal which decides to perform the relay among the relay terminals receiving the direct radio signal and the coverage departure indicator broadcasts an SIB including link quality information between itself and its access base station (S1010).
  • the MCS terminal transmits an RRC connection request including a list of candidate base stations and relay terminals connected to the candidate base station to the temporary relay terminal (S1015).
  • the temporary relay terminal transmits the RRC connection request of the MCS terminal to the base station 2.
  • the base station 2 connected to the temporary relay terminal transmits a load state query request to the base station 1 which is a candidate base station of the alternate link based on the list included in the RRC connection request (S1020).
  • Base station 2 receives a response to the load status query request from the base station 1 (S1025).
  • Base station 2 determines the serving link base station of the MCS terminal. In this embodiment, it is assumed that base station 2 is determined as the serving link base station.
  • the base station 2 transmits to the base station 1 a multi-connection request including an MCS terminal identifier, an MCS terminal context, a candidate relay terminal, and transmission and reception deactivation (S1030).
  • Base station 2 receives a multi-link connection response indicating whether to accept the dedicated preamble and the multi-connection request for the MCS terminal from the base station 1 (S1035).
  • Base station 2 transmits the RRC connection configuration to the MCS terminal through the temporary relay terminal (S1040).
  • the RRC connection setup includes identifiers of serving / candidate base stations, identifiers of respective relay terminals connected to the serving / candidate base stations, and dedicated preambles allocated by candidate base stations.
  • the MCS terminal transmits an RRC connection setup complete message to the base station 2 through the relay terminal 1 (S1045).
  • the MCS terminal performs synchronization with the base station 1 using the dedicated preamble (S1050). That is, it transmits the dedicated preamble received by itself to the base station 1 through the relay terminal 3 and receives a random access response including the C-RNTI for the MCS terminal from the base station 1.
  • the MCS terminal establishes an alternate link with the base station 1 through the relay terminal 3.
  • Base station 2 determines the base station 1 as the serving link base station of the MCS terminal, and transmits a multi-connection request to the base station 1 (S1130).
  • the multiple connectivity request includes an indicator indicating that the base station 1 is to serve as a serving link base station of the MCS terminal.
  • the base station 2 transmits an indicator indicating the serving link base station determined through the RRC connection establishment message to the MCS terminal (S1140).
  • the MCS terminal transmits an RRC connection complete message to base station 1, which is a serving link base station.
  • the serving link base station transmits an activation instruction to the alternative link base station.
  • the MCS terminal transmits an RLQD report to the serving link base station through the serving link relay terminal.
  • the serving link base station instructs to activate the RRC connection with the MCS terminal to the alternative link base station having the best signal quality and transmits information on other alternative link base stations.
  • a method of allowing an MCS terminal directly connected to a serving link base station to recognize a deterioration in serving link quality and searching for an alternative link through a relay terminal is proposed.
  • the following thresholds are defined to determine signal degradation of the link.
  • First threshold (S MCS_U ): upper limit threshold defined for serving link quality (trigger point of alternate link search)
  • a MCS_U Upper Threshold defined for Alternate Link Quality (Trigger Point of Other Alternate Link Search)
  • a MCS_L Lower limit threshold defined for alternate link quality (trigger point of switching to another alternate link)
  • Such thresholds may be shared between the base station and the terminal through a system information block (SIB) or RRC signaling dedicated to the terminal.
  • SIB system information block
  • RRC signaling dedicated to the SIB or the UE may further include dedicated carrier information for the MCSs.
  • the thresholds are preferably set to meet the target BER of the physical layer for the MCSs. For example, if the target BER of the MCS is 10 -9 to 10 -6 , the MCS threshold corresponding to BER 10 -9 is set as the first threshold, and the MCS threshold corresponding to BER 10 -6 is set. Can be set to 2 thresholds.
  • the second threshold S MCS _L for serving link release should be set relatively higher than the RSRP / RSRQ threshold for handover.
  • the first threshold S MCS _U of the deterioration of the serving link for the replacement link search should be set higher than the second threshold S MCS _L for the serving link release.
  • the fourth threshold A MCS _L for releasing the alternate link may be set to be equal to or greater than the third threshold S MCS _U for alternate link search.
  • the third threshold A MCS _U of the deterioration of the reserved substitute link for searching for another substitute link may be set to be equal to or greater than the fourth threshold A MCS_L for releasing the substitute link. This is summarized as in Equation 2.
  • a fifth threshold value R MCS_L for the link quality between the relay terminal and the base station to which the relay terminal is connected is defined.
  • R MCS_L a lower limit threshold defined for a link between a relay terminal and a base station to which the relay terminal is connected;
  • the MCS terminal may determine whether to select the base station connected to the relay terminal and the relay terminal as an alternate link by using the fifth threshold value.
  • Equation 3 The relationship between the fifth threshold and the RSRP threshold of LTE / LTE-A is shown in Equation 3.
  • the relay terminal may broadcast whether it satisfies the fifth threshold.
  • the MCS terminal may not select the relay terminal and the base station of the relay terminal as an alternative link. have.
  • the MCS terminal receives information necessary to provide the MCS from the serving link base station (S1405).
  • the MCS terminal receives an MCS dedicated carrier, an MCS dedicated carrier used by the relay terminals for relaying, a serving link degradation threshold, a degradation threshold of the relay terminal, a maximum number of searchable serving links and alternate links.
  • the MCS terminal searches for an alternative link that can replace the serving link (S1410).
  • the alternative link search target may be limited to relay terminals capable of D2D communication.
  • the MCS terminal may measure link quality for relay terminals.
  • the MCS terminal may determine whether to establish an alternate link with the relay terminal based on whether the link quality between the relay terminal and the base station of the relay terminal satisfies the fifth threshold value.
  • the MCS terminal When the relay terminal to establish the alternative link is found, the MCS terminal reports the discovery result to the serving link base station, and establishes an RRC connection in which unicast data transmission and reception are disabled with the relay terminal (S1415).
  • the MCS terminal determines whether the quality of the serving link falls below S MCS _ L (S1420).
  • the terminal activates the RRC connection of the alternate link and releases the RRC connection with the serving link (S1430).
  • the activation of the RRC connection of the alternate link may be directly instructed by the MCS terminal or may be performed by the serving link base station requesting the base station to which the relay terminal of the alternate link is connected.
  • the MCS terminal transmits an RRC connection request to the base station 1 (S1505).
  • Base station 1 becomes a serving link base station of the MCS terminal.
  • the RRC connection request includes an indicator indicating that it is an MCS Capable terminal.
  • the base station 1 transmits an RRC connection setup message to the MCS terminal (S1510).
  • the RRC connection establishment message may include information such as a dedicated carrier for MCSs, an MCS dedicated carrier used for relay terminals to relay, a threshold for RLQD, and the like.
  • the base station 1 and the MCS terminal may transmit and receive an RRC connection setup message including an indicator indicating the start and end of the MCS.
  • the MCS terminal informs the serving link base station of the start of the MCS, the serving link base station may know that threshold values for the MCS are applied.
  • the serving link base station notifies the MCS of the start of the MCS, the MCS terminal can know that threshold values for the MCS are applied.
  • the serving link base station can know that the thresholds for the MCS are no longer applied.
  • the MCS terminal can know that the thresholds for the MCS are no longer applied.
  • the MCS terminal transmits the RLQD report to the serving link base station (S1520).
  • the MCS terminal starts searching for an alternate link.
  • the RLQD report contains the results of the alternate link search.
  • the RLQD report includes an RLQD indicator indicating that the serving link quality is less than or equal to the first threshold value, RLQ status information indicating the radio link quality as high, medium or low, and information about candidate relay terminals of the searched alternative link (eg, a relay terminal ID).
  • the MCS terminal may inform the relay terminals that it is an MCS Capable terminal.
  • the relay terminals provide MCS related information to the MCS terminal.
  • the MCS terminal may select the relay terminal having the best link quality between the relay terminal and the base station of the relay terminal through the information on whether the link quality between the relay terminal and the base station of the relay terminal satisfies the fifth threshold. In this embodiment, it is assumed that relay terminal 2 is selected.
  • the MCS terminal transmits an RRC connection establishment request message to the base station 2 through the relay terminal 2 (S1525 and S1530).
  • the RRC connection establishment request message may include an indicator that unicast data transmission and reception is in an inactive mode.
  • the RRC connection establishment request message may include information on the serving link base station.
  • the MCS terminal may transmit an indicator indicating the start and end of the MCS to the relay terminal 2.
  • the relay terminal 2 may know that threshold values for the MCS are applied.
  • the relay terminal can know that the thresholds for the MCS are no longer applied.
  • the base station 2 transmits an RRC connection establishment message to the MCS terminal through the relay terminal 2 (S1535).
  • Base station 2 transmits the result of the replacement link to the base station 1 (S1545).
  • the base station 2 may receive a request for activation of the alternate link from the base station 1 according to the deterioration of the serving link.
  • the MCS terminal determines whether the quality of the first substitute link through the relay terminal is smaller than the third threshold value A MCS _U (S1435).
  • the MCS terminal searches for the second substitute link (S540). Meanwhile, even when the link quality between the relay terminal of the first alternate link and the base station of the relay terminal is less than the fifth threshold, the MCS terminal searches for the second alternate link.
  • the MCS terminal When the second alternative link is found, the MCS terminal reports the search result of the second alternative link to the serving link base station, and establishes an RRC connection in which unicast data transmission and reception are disabled with the relay terminal of the second alternative link.
  • the MCS terminal releases the RRC connection of the first replacement link (S1450).
  • the MCS terminal maintains an RRC connection in which unicast data transmission and reception are disabled with the relay terminal of the second alternative link.
  • FIG. 16 illustrates a flow of an alternate link update method according to an embodiment of the present invention. Descriptions overlapping with the above are omitted.
  • the MCS terminal transmits an RRC connection request to base station 1 (S1605).
  • the base station 1 transmits an RRC connection establishment message to the MCS terminal (S1610). If the serving link quality is less than the predetermined threshold (S MCS_U ), the MCS terminal transmits the RLQD report to the base station 1 (S1620).
  • the MCS terminal transmits an RRC connection establishment request message to the base station 3 through the relay terminal 1 (S1625 and S1630).
  • the base station 3 transmits an RRC connection setup message to the MCS terminal through the relay terminal 1 (S1635). Base station 3 transmits the result of the replacement link to the base station 1 (S1640).
  • the MCS terminal searches for another alternate link through the relay terminal 2.
  • the MCS terminal transmits the search result to the base station 1 (S1645).
  • the MCS terminal establishes an RRC connection in which unicast data transmission and reception are disabled through the relay terminal 1. If the substitute link quality through the relay terminal 1 falls below A MCS_L , the MCS terminal releases the RRC connection of the alternate link through the relay terminal 1. The MCS terminal maintains an alternate link through the relay terminal 1.
  • the base station may be a fixed cell or a mobile cell.
  • the terminal and the base station illustrated in FIG. 17 may each perform the above-described methods.
  • the base station 10 may include a receiver 11, a transmitter 12, a processor 13, a memory 14, and a plurality of antennas 15.
  • the plurality of antennas 15 means a base station supporting MIMO transmission and reception.
  • the receiver 11 may receive various signals, data, and information on uplink from the terminal.
  • the transmitter 12 may transmit various signals, data, and information on downlink to the terminal.
  • the processor 13 may control the overall operation of the base station 10.
  • Receiver 11 of base station 10 may act as a receiver of a backhaul link or may act as a receiver of an access link.
  • the transmitter 12 may act as a transmitter of the backhaul link or as a transmitter of the access link.
  • the processor 13 of the base station 10 performs a function of processing the information received by the base station 10, information to be transmitted to the outside, and the like, and the memory 14 stores the processed information and the like for a predetermined time. It may be replaced by a component such as a buffer (not shown).
  • the terminal 20 may include a receiver 21, a transmitter 22, a processor 23, a memory 24, and a plurality of antennas 25.
  • the plurality of antennas 25 refers to a terminal that supports MIMO transmission and reception.
  • the receiver 21 may receive various signals, data, and information on downlink from the base station.
  • the transmitter 22 may transmit various signals, data, and information on the uplink to the base station.
  • the processor 23 may control operations of the entire terminal 20.
  • the processor 23 of the terminal 20 performs a function of processing the information received by the terminal 20, information to be transmitted to the outside, and the memory 24 stores the processed information and the like for a predetermined time. It may be replaced by a component such as a buffer (not shown).
  • Embodiments of the present invention described above may be implemented through various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • a method according to embodiments of the present invention may include one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), and Programmable Logic Devices (PLDs). It may be implemented by field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • the method according to the embodiments of the present invention may be implemented in the form of a module, a procedure, or a function that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • embodiments of the present invention can be applied to various mobile communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명의 일 실시예에 따른 무선 통신 시스템에서 커버리지를 이탈한 단말이 중계 단말들을 통해 다중 링크들을 설정하는 방법은, 상기 단말 주변에 위치한 중계 단말들 중 D2D (device to device) 신호 품질이 가장 우수한 임시 중계 단말에 RRC 연결 요청을 전송하는 단계; 상기 임시 중계 단말로부터 상기 중계 단말들이 접속한 기지국들 중 상기 단말에 서빙 링크를 제공할 제1 기지국과 대체 링크를 제공할 제2 기지국을 지시하는 RRC 연결 설정을 수신하는 단계; 상기 중계 단말들 중 상기 제1 기지국에 접속한 제1 중계 단말에 RRC 연결 완료 메시지를 전송함으로써 상기 제1 중계 단말을 통하여 상기 서빙 링크를 설정하는 단계; 및 상기 중계 단말들 중 상기 제2 기지국에 접속한 제2 중계 단말을 통하여 유니캐스트 데이터 송수신이 비활성화된 상기 대체 링크를 설정하는 단계를 포함한다.

Description

무선 통신 시스템에서 단말이 다중 링크를 설정하는 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 대한 것으로, 보다 상세하게는 단말이 중계 단말을 통해서 다중 링크를 설정하는 방법 및 이를 위한 장치에 대한 것이다.
차세대 이동 통신, 예컨대, 5G 이동 통신의 실현을 위하여 최근 고 신뢰 통신(Reliable Communication)이 논의되고 있다. 고 신뢰 통신의 일 예인 MCS(Mission Critical Service)에서는 무 에러 전송(Error Free Transmission)이 요구된다. M2M 통신 분야에서도 트래픽 안전성(Traffic Safety), 트래픽 효율성(Traffic Efficiency), 효율적 산업 통신(Efficient Industrial Communication)등을 위한 실 시간성을 만족시키는 방안으로서 고 신뢰 통신의 필요성이 제기되고 있다. 고 신뢰 통신은 지연에 민감한 애플리케이션, 의료/긴급 응답, 원격 제어, 센싱 등이 분야에서 다양하게 활용될 수 있다.
3GPP 표준화 회의에서 논의된 MCS들에 따를 때, 종래 UMTS/LTE, LTE-A/Wi-Fi 대비 종단 간 지연(End-to-End Latency), 유비쿼티(Ubiquity), 보안(Security), 가용성/신뢰성(Availability/Reliability) 측면에서 많은 향상이 있을 것이 예상된다. 현재까지 제안된 상용 무선 기술들(e,g, 3GPP LTE, LTE-A)은 실시간 성의 측면과 신뢰성 측면에서 상술된 MCS의 요구 조건을 만족시키지 못한다. 한편, 통신의 신뢰성의 평가 기준은 다양한 방식에 따라서 정의될 수 있는데 일 예로, 특정 서비스 수준을 만족하는 무선 연결의 품질로 정의될 수 있으며, 이에 한정되지 않는다.
MCS들을 위한 고 신뢰 통신을 통해 실현하기 위하여 무선링크 감지 및 제어 방법, 무선링크 연결 이중화 제어 방법, 신속한 무선링크 연결 복구 방법, 안전한 무선 전송을 위한 보안 키 관리, 인증, 개인 프라이버시 보호 방법 등의 향상이 요구된다. 이를 위하여 전력소모를 고려한 단말 주변의 가용 대체링크에 대한 빠른 탐색 및 유지 방안, 최적의 무선링크 상시 연결을 통한 서비스 제공 신뢰성/가용성 증진, 무선링크 끊김 시 빠른 복구를 통한 단말에 대한 서비스 중단 시간 최소화, 의도적 무선링크 훼손방지를 통한 안전한 통신 실현 등이 연구되고 있다.
본 발명이 이루고자 하는 기술적 과제는 커버리지를 이탈한 단말이 중계 단말을 통해서 서빙 링크와 대체 링크를 포함하는 다중 링크를 신속하게 효율적으로 설정하는 방법을 제공하는데 있다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 또 다른 기술적 과제들이 본 발명의 실시예들로부터 유추될 수 있다.
상술된 기술적 과제를 이루기 위한 본 발명의 일 측면에 따른 무선 통신 시스템에서의 무선 통신 시스템에서 커버리지를 이탈한 단말이 중계 단말들을 통해 다중 링크들을 설정하는 방법은, 상기 단말 주변에 위치한 중계 단말들 중 D2D (device to device) 신호 품질이 가장 우수한 임시 중계 단말에 RRC 연결 요청을 전송하는 단계; 상기 임시 중계 단말로부터 상기 중계 단말들이 접속한 기지국들 중 상기 단말에 서빙 링크를 제공할 제1 기지국과 대체 링크를 제공할 제2 기지국을 지시하는 RRC 연결 설정을 수신하는 단계; 상기 중계 단말들 중 상기 제1 기지국에 접속한 제1 중계 단말에 RRC 연결 완료 메시지를 전송함으로써 상기 제1 중계 단말을 통하여 상기 서빙 링크를 설정하는 단계; 및 상기 중계 단말들 중 상기 제2 기지국에 접속한 제2 중계 단말을 통하여 유니캐스트 데이터 송수신이 비활성화된 상기 대체 링크를 설정하는 단계를 포함한다.
바람직하게는, 상기 단말이 커버리지 이탈하였음을 나타내는 커버리지 이탈 지시자를 브로드캐스팅하는 단계; 및 상기 커버리지 이탈 지시자를 수신한 상기 중계 단말들로부터, 상기 중계 단말들과 상기 중계 단말들이 접속한 기지국들 간의 링크 품질에 대한 정보, 링크 품질 저하에 대한 임계값 및 상기 단말이 설정 가능한 최대 링크들의 개수 중 적어도 하나를 포함하는 시스템 정보를 수신하는 단계를 더 포함할 수 있다. 보다 바람직하게는, 상기 RRC 연결 요청은, 상기 중계 단말들 중 상기 중계 단말들이 접속한 기지국들과의 상기 링크 품질이 임계값 이상인 중계 단말들의 리스트를 포함한다.
바람직하게는, 상기 중계 단말이 접속한 기지국들 각각의 부하 상태(load status)에 기초하여 상기 서빙 링크를 제공할 상기 제1 기지국이 결정될 수 있다.
바람직하게는, 상기 중계 단말들이 접속한 기지국들이 상기 중계 단말들에 할당한 SLSS(side-link synchronization signal)들을 상기 중계 단말들로부터 수신하는 단계; 및 상기 SSLS들에 기초하여 상기 중계 단말들과 동기화를 수행하는 단계를 포함하고, 상기 SSLS들은 상기 각 중계 단말들 별로 고유한 값을 갖도록 할당될 수 있다.
바람직하게는, 상기 제1 중계 단말을 통하여 설정된 상기 서빙 링크의 품질이 임계값 이하가 되면, 상기 제2 중계 단말을 통하여 설정된 상기 대체 링크의 유니캐스트 데이터 송수신을 활성화하는 단계; 및 상기 제1 중계 단말을 통하여 설정된 상기 서빙 링크의 RRC 연결을 해제하는 단계를 더 포함할 수 있다.
바람직하게는, 상기 제2 중계 단말을 통하여 설정된 상기 대체 링크의 품질이 제1 임계값 이하가 되면, 상기 중계 단말들 중 제3 중계 단말을 통하여 또 다른 대체 링크를 탐색하는 단계; 및 상기 제2 중계 단말을 통하여 설정된 상기 대체 링크의 품질이 제2 임계값 이하가 되면, 상기 제2 중계 단말을 통하여 설정된 상기 대체 링크의 RRC 연결을 해제하는 단계를 더 포함할 수 있다.
상술된 기술적 과제를 이루기 위한 본 발명의 다른 일 측면에 따른 무선 통신 시스템에서 임시 중계 단말이 접속한 기지국이 커버리지를 이탈한 단말의 다중 링크들의 설정을 지원하는 방법은, 상기 임시 중계 단말을 통하여 상기 커버리지를 이탈한 단말의 RRC 연결 요청을 수신하는 단계; 상기 RRC 연결 요청에 포함된 중계 단말들의 리스트에 기초하여 상기 중계 단말들이 접속한 기지국들에 부하 문의 요청(load query request)을 전송하는 단계; 상기 중계 단말들이 접속한 기지국들로부터의 부하 문의 요청에 대한 응답에 기초하여 상기 커버리지를 이탈한 단말에 서빙 링크를 제공할 제1 기지국과 대체 링크를 제공할 제2 기지국을 결정하는 단계; 및 상기 제1 기지국과 상기 제2 기지국을 지시하는 정보를 포함하는 RRC 연결 설정을 상기 임시 중계 단말을 통하여 상기 커버리지를 이탈한 단말에 전송하는 단계를 포함하고, 상기 제2 기지국에 의해 제공되는 상기 대체 링크에서는 유니캐스트 데이터 송수신이 비활성화된다.
바람직하게는, 상기 제1 기지국은, 상기 중계 단말들이 접속한 기지국들 중 부하 상태가 가장 낮은 기지국이고, 상기 임시 중계 단말은, 상기 중계 단말 들 중 상기 커버리지를 이탈한 단말과의 D2D (device to device) 신호 품질이 가장 우수한 단말일 수 있다.
바람직하게는, 상기 기지국이 전송한 상기 RRC 연결 설정에 대한 응답으로 상기 커버리지를 이탈한 단말이 전송한 RRC 연결 설정 완료 메시지는 상기 서빙 링크를 설정할 상기 제1 기지국에서 수신될 수 있다.
바람직하게는, 상기 임시 중계 단말이 상기 커버리지를 이탈한 단말에 전송할 SLSS(side-link synchronization signal)를 상기 임시 중계 단말에 할당하는 단계를 더 포함하고, 상기 임시 중계 단말에 할당된 상기 SLSS는 상기 중계 단말들과 구별 가능한 고유한 값을 가질 수 있다.
바람직하게는, 상기 제1 기지국 및 상기 제2 기지국에 각각 상기 커버리지를 이탈한 단말의 식별자를 포함하는 다중 연결 요청을 전송하는 단계; 및 상기 제1 기지국 및 상기 제2 기지국으로부터 각각 상기 다중 연결 요청의 수락 여부를 지시하는 다중 연결 응답을 수신하는 단계를 더 포함할 수 있다. 보다 바람직하게는, 상기 제1 기지국으로 전송된 상기 다중 연결 요청은 상기 제1 기지국이 상기 커버리지를 이탈한 단말에 상기 서빙 링크를 제공할 기지국임을 나타내는 지시자를 포함하고, 상기 제2 기지국으로 전송된 상기 다중 연결 요청은 상기 제2 기지국이 상기 커버리지를 이탈한 단말에 상기 대체 링크를 제공할 기지국임을 나타내는 지시자를 포함하고, 상기 제1 기지국 및 상기 제2 기지국으로부터 수신된 상기 각 다중 연결 응답은, 상기 제1 기지국 및 상기 제2 기지국 각각이 할당한 상기 커버리지를 이탈한 단말의 식별자 및 전용 프리엠블을 포함할 수 있다.
상술된 기술적 과제를 이루기 위한 본 발명의 또 다른 일 측면에 따른 무선 통신 시스템에서 커버리지를 이탈한 단말은, 상기 단말 주변에 위치한 중계 단말들 중 D2D (device to device) 신호 품질이 가장 우수한 임시 중계 단말에 RRC 연결 요청을 전송하는 송신기; 상기 임시 중계 단말로부터 상기 중계 단말들이 접속한 기지국들 중 상기 단말에 서빙 링크를 제공할 제1 기지국과 대체 링크를 제공할 제2 기지국을 지시하는 RRC 연결 설정을 수신하는 수신기; 및 상기 중계 단말들 중 상기 제1 기지국에 접속한 제1 중계 단말에 RRC 연결 완료 메시지를 전송함으로써 상기 제1 중계 단말을 통하여 상기 서빙 링크를 설정하고, 상기 중계 단말들 중 상기 제2 기지국에 접속한 제2 중계 단말을 통하여 유니캐스트 데이터 송수신이 비활성화된 상기 대체 링크를 설정하는 프로세서를 포함한다.
상술된 기술적 과제를 이루기 위한 본 발명의 또 다른 일 측면에 따른 무선 통신 시스템에서 커버리지를 이탈한 단말의 다중 링크들의 설정을 지원하는 기지국은, 상기 기지국에 접속한 임시 중계 단말을 통하여 상기 커버리지를 이탈한 단말의 RRC 연결 요청을 수신하는 수신기; 상기 RRC 연결 요청에 포함된 중계 단말들의 리스트에 기초하여 상기 중계 단말들이 접속한 기지국들에 부하 문의 요청(load query request)을 전송하는 송신기; 및 상기 중계 단말들이 접속한 기지국들로부터의 부하 문의 요청에 대한 응답에 기초하여 상기 커버리지를 이탈한 단말에 서빙 링크를 제공할 제1 기지국과 대체 링크를 제공할 제2 기지국을 결정하는 프로세서를 포함하고, 상기 송신기는, 상기 제1 기지국과 상기 제2 기지국을 지시하는 정보를 포함하는 RRC 연결 설정을 상기 임시 중계 단말을 통하여 상기 커버리지를 이탈한 단말에 전송하고, 상기 제2 기지국에 의해 제공되는 상기 대체 링크에서는 유니캐스트 데이터 송수신이 비활성화된다.
본 발명의 일 실시예에 따르면 단말이 반드시 초기 접속한 임시 중계 단말을 통하여 서빙링크를 설정하는 것이 아니라 탐색된 중계 단말들이 접속한 기지국들의 부하 상태에 따라서 서빙링크를 제공할 기지국이 결정되므로, 서빙 링크와 대체 링크를 포함하는 다중 링크가 신속하게 효율적으로 설정될 수 있다.
본 발명에 따른 기술적 효과들은 이상에서 언급한 기술적 효과들로 제한되지 않으며, 또 다른 기술적 효과들이 본 발명의 실시예들로부터 유추될 수 있다.
도 1은 3GPP 무선 접속망 규격을 기반으로 한 UE과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다.
도 2는 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
도 3는 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면이다.
도 4는 LTE 시스템에서의 무선 링크 실패(radio link Failure)를 설명하는 도면이다.
도 5는 본 발명의 일 실시예에 따른 임시 중계 단말을 통한 다중 연결 설정 방법의 흐름을 도시한다.
도 6은 본 발명의 다른 일 실시예에 따른 임시 중계 단말을 통한 다중 연결 설정 방법의 흐름을 도시한다.
도 7은 본 발명의 또 다른 일 실시예에 따른 임시 중계 단말을 통한 다중 연결 설정 방법의 흐름을 도시한다.
도 8은 본 발명의 또 다른 일 실시예에 따른 임시 중계 단말을 통한 다중 연결 설정 방법의 흐름을 도시한다.
도 9은 본 발명의 일 실시예에 따른 단말과 중계 단말들 간의 동기화 과정을 도시한다.
도 10은 본 발명의 또 다른 일 실시예에 따른 임시 중계 단말을 통한 다중 연결 설정 방법의 흐름을 도시한다.
도 11은 본 발명의 또 다른 일 실시예에 따른 임시 중계 단말을 통한 다중 연결 설정 방법의 흐름을 도시한다.
도 12는 본 발명의 또 다른 일 실시예에 따른 임시 중계 단말을 통한 다중 연결 설정 방법의 흐름을 도시한다.
도 13은 본 발명의 또 다른 일 실시예에 따른 임시 중계 단말을 통한 다중 연결 설정 방법의 흐름을 도시한다.
도 14은 본 발명의 일 실시예에 따른 중계 단말을 통한 대체링크 탐색 및 대체링크 갱신 방법의 흐름을 도시한다.
도 15는 본 발명의 일 실시예에 따른 중계 단말을 통한 대체링크 탐색 방법의 흐름을 도시한다.
도 16은 본 발명의 일 실시예에 따른 중계 단말을 통한 대체링크 갱신 방법의 흐름을 도시한다.
도 17은 본 발명의 일 실시예에 단말과 기지국을 도시한 도면이다.
이하에서 첨부된 도면을 참조하여 설명된 본 발명의 실시예들에 의해 본 발명의 구성, 작용 및 다른 특징들이 용이하게 이해될 수 있을 것이다. 이하에서 설명되는 실시예들은 본 발명의 기술적 특징들이 3GPP 시스템에 적용된 예들이다.
본 명세서는 LTE 시스템 및 LTE-A 시스템을 사용하여 본 발명의 실시예를 설명하지만, 이는 예시로서 본 발명의 실시예는 상기 정의에 해당되는 어떤 통신 시스템에도 적용될 수 있다. 또한, 본 명세서는 FDD 방식을 기준으로 본 발명의 실시예에 대해 설명하지만, 이는 예시로서 본 발명의 실시예는 H-FDD 방식 또는 TDD 방식에도 용이하게 변형되어 적용될 수 있다.
또한, 본 명세서는 기지국의 명칭은 RRH(remote radio head), eNB, TP(transmission point), RP(reception point), 중계기(relay) 등을 포함하는 포괄적인 용어로 사용될 수 있다.
도 1는 3GPP 무선 접속망 규격을 기반으로 한 UE과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다. 제어평면은 UE와 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 전송되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 전송되는 통로를 의미한다.
제1계층인 물리계층은 물리채널(Physical Channel)을 이용하여 상위 계층에게 정보 전송 서비스(Information Transfer Service)를 제공한다. 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송채널(Transport Channel)을 통해 연결되어 있다. 상기 전송채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향링크에서 OFDMA(Orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상향링크에서 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식으로 변조된다.
제2계층의 매체접속제어(Medium Access Control; MAC) 계층은 논리채널(Logical Channel)을 통해 상위계층인 무선링크제어(Radio Link Control; RLC) 계층에 서비스를 제공한다. 제2계층의 RLC 계층은 신뢰성 있는 데이터 전송을 지원한다. RLC 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다. 제2계층의 PDCP(Packet Data Convergence Protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4나 IPv6와 같은 IP 패킷을 효율적으로 전송하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(Header Compression) 기능을 수행한다.
제3계층의 최하부에 위치한 무선 자원제어(Radio Resource Control; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선베어러(Radio Bearer; RB)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 UE과 네트워크 간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, UE과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다. UE과 네트워크의 RRC 계층 사이에 RRC 연결(RRC Connected)이 있을 경우, UE은 RRC 연결 상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 휴지 상태(Idle Mode)에 있게 된다. RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
기지국(eNB)을 구성하는 하나의 셀은 1.25, 2.5, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정되어 여러 UE에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다.
네트워크에서 UE로 데이터를 전송하는 하향 전송채널은 시스템 정보를 전송하는 BCH(Broadcast Channel), 페이징 메시지를 전송하는 PCH(Paging Channel), 사용자 트래픽이나 제어 메시지를 전송하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 전송될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, UE에서 네트워크로 데이터를 전송하는 상향 전송채널로는 초기 제어 메시지를 전송하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 전송하는 상향 SCH(Shared Channel)가 있다. 전송채널의 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
도 2은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
UE은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S301). 이를 위해, UE은 기지국으로부터 주 동기 채널(Primary Synchronization Channel; P-SCH) 및 부 동기 채널(Secondary Synchronization Channel; S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, UE은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, UE은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal; DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 UE은 물리 하향링크 제어 채널(Physical Downlink Control Channel; PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S302).
한편, 기지국에 최초로 접속하거나 신호 전송을 위한 무선 자원이 없는 경우 UE은 기지국에 대해 임의 접속 과정(Random Access Procedure; RACH)을 수행할 수 있다(단계 S303 내지 단계 S306). 이를 위해, UE은 물리 임의 접속 채널(Physical Random Access Channel; PRACH)을 통해 특정 시퀀스를 프리앰블로 전송하고(S303 및 S305), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S304 및 S306). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 UE은 이후 일반적인 상/하향링크 신호 전송 절차로서 PDCCH/PDSCH 수신(S307) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel; PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel; PUCCH) 전송(S308)을 수행할 수 있다. 특히 UE은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information; DCI)를 수신한다. 여기서 DCI는 UE에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 그 사용 목적에 따라 포맷이 서로 다르다.
한편, UE이 상향링크를 통해 기지국에 전송하는 또는 UE이 기지국으로부터 수신하는 제어 정보는 하향링크/상향링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix Index), RI(Rank Indicator) 등을 포함한다. 3GPP LTE 시스템의 경우, UE은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 전송할 수 있다.
도 3은 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면이다.
도 3을 참조하면, 무선 프레임(radio frame)은 10ms(327200×Ts)의 길이를 가지며 10개의 균등한 크기의 서브프레임(subframe)으로 구성되어 있다. 각각의 서브프레임은 1ms의 길이를 가지며 2개의 슬롯(slot)으로 구성되어 있다. 각각의 슬롯은 0.5ms(15360×Ts)의 길이를 가진다. 여기에서, Ts 는 샘플링 시간을 나타내고, Ts=1/(15kHz×2048)=3.2552×10-8(약 33ns)로 표시된다. 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 복수의 자원블록(Resource Block; RB)을 포함한다. LTE 시스템에서 하나의 자원블록은 12개의 부반송파×7(6)개의 OFDM 심볼을 포함한다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 하나 이상의 서브프레임 단위로 정해질 수 있다. 상술한 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.
도 4는 LTE 시스템에서의 무선 링크 실패(radio link Failure)를 설명하는 도면이다.
기지국과 단말간의 무선 링크 실패(Radio Link Failure; RLF)가 발생할 수 있다. 무선 링크 실패란 기지국과 단말 간의 무선 링크의 품질이 저하되어 신호 송수신이 어려운 상태를 것을 의미한다. 이하에서는 RLF를 검출하고 새로운 무선 링크를 찾는 과정에 대해서 설명한다.
3GPP LTE 시스템에서는 기지국과 단말 간의 RRC(Radio Resource Control) 상태를 RRC_CONNECTED 상태와 RRC_IDLE 상태로 정의할 수 있다. RRC_CONNECTED 상태는 기지국과 단말 간의 RRC 연결이 확립된(established) 상태를 의미하고, 단말은 기지국과 데이터를 송수신할 수 있다. RRC_IDLE 상태는 기지국과 단말 간의 RRC 연결이 해제된(released) 상태를 의미한다.
무선 링크 실패(RLF) 관련 동작은, (1) RRC_CONNECTED 상태에서 물리 계층 문제(physical layer problems)의 검출, (2) 물리 계층 문제의 복구(recovery) 및 (3) RLF 검출로 설명할 수 있다.
(1) 단말이 N310 으로 정의되는 소정의 값 만큼 연속적인 "out-of-sync" 지시(indications)를 하위 계층으로부터 받게 되면, 단말은 T310이라고 정의되는 타이머를 구동시킨다. "out-of-sync" 지시는 하위 계층(물리 계층)에서 수신하는 PDCCH의 복조가 불가능하거나 SINR(Signal-to-Interference plus Noise Ratio)가 낮을 때 상위 계층으로 제공될 수 있다. N310 및 T310는 상위계층 파라미터로서 미리 정의된 값으로 주어질 수 있다.
(2) T310 타이머가 구동되고 있는 중에 단말이 N311 로 정의되는 소정의 값 만큼 연속적인 "in-sync" 지시(indications)를 하위계층으로부터 받게 되면, 단말은 T310 타이머를 정지한다. N311은 상위계층 파라미터로서 미리 정의된 값으로 주어질 수 있다. T310 타이머가 정지되면 명시적인 시그널링 없이 RRC 연결이 유지된다
(3) 반면, 단말은 T310 타이머가 만료(expiry)되거나, MAC 계층으로부터 랜덤 엑세스 문제 지시(random access problem indication)을 수신하거나, 또는 RLC로부터 SRB(signaling radio bearer) 또는 DRB(data radio bearer)에 대한 최대 재전송 회수가 초과되었음을 나타내는 지시가 수신되면, RLF 가 검출된 것으로 판단한다. 단말은 RLF 검출에 따라서, 연결 재확립 과정(connection re-establishment procedure)을 개시한다. T310 타이머가 만료되는 것은 T310 타이머가 구동 중간에 정지하지 않고 정해진 시간(T310)에 도달하는 것을 의미한다. 또한, 연결 재확립 과정이란, 단말이 기지국으로 'RRC 연결 재확립 요청' 메시지를 보내고, 기지국으로부터 'RRC 연결 재확립' 메시지를 수신하고, 기지국으로 'RRC 연결 재확립 완료' 메시지를 보내는 과정이다. RLF 관련 동작에 대한 구체적인 사항은 3GPP 표준 문서 TS36.331의 5.3.11 절을 참고할 수 있다.
전술한 바와 같이, RLF 과정은 송신기와 수신기 사이의 링크 상황이 악화되면, 단말이 내부 타이머를 동작시키는 동안에 링크 악화 상태가 지속되는 경우에, 새로운 링크를 찾는 과정이라 할 수 있다. 기존의 3GPP LTE 표준에 따른 시스템에서는 기지국과 단말 간의 링크(Uu 링크)에 대한 예측이 어렵기 때문에, 전술한 바와 같이, N310, N311, T310 등의 파라미터에 기초하여 RLF 검출 여부를 판정하게 된다.
이처럼, 복수의 타이머 기반으로 RLF를 제어할 경우, 단말은 물리 계층의 문제가 인지되더라도 설정된 타이머(e.g., T310, T312)가 만료된 이후에야 RLF를 판단하고, 이후, RRC연결 재확립 절차를 수행해야 한다. 단말이 RRC 연결 재확립 절차를 수행하면서 T311 타이머를 시작하며, T311 타이머가 만료되기 전에 RRC 연결 재확립 성공하지 못하면, RRC Idle 상태로 천이한다
이와 같은 현재 LTE/LTE-A 시스템은 RLF로부터의 복구를 상당히 보수적으로 처리하도록 설계되어 있어, 단말의 채널상황에 따라 신속하게 대체가 가능한 다른 가용링크를 탐색하고, 대체링크로의 연결전환을 위한 가용 대체링크의 확보가 어려운 문제점이 있다. 따라서, LTE 시스템은 MCS들을 위한 신뢰성을 만족하기는 어렵다. LTE/LTE-A 시스템은 상대적으로 좋은 연결성을 가정하고 있으므로, 극심한 간섭을 겪거나 네트워크 자원이 과부하 상태인 경우 현저히 낮은 전송률이 제공된다.
하지만, 상술된 바와 같이 차세대 이동 통신은 MCS들을 지원하기 위해 10- 6이하의 에러 발생률과 10- 6이하의 신뢰성 요구사항을 만족시켜야 한다. 단말이 무선링크의 중단을 인지하지 못하면서 항상 MCS들을 제공받을 수 있는 고 신뢰 시스템의 구축이 필요하다.
MCS에 대한 5G 이동통신 환경의 적용 가능한 예시적 서비스로서는, 예컨대, 산업 자동화를 위하여 원격으로 로봇 암(Robot Arm)을 제어하거나, AGV(Automated Guided Vehicle)들에 대한 원격 제어를 통한 물류 배송, 원격 의료 서비스, 드론 원격 제어, 자율 주행 서비스를 제공하기 위한 차량간 정보 교환, 차량의 센서(e.g., 카메라, 레이더)로 포착되지 않는 사각의 차량(Hidden Vehicle)이나 전방 충돌(Forward Collision)을 알리는 신호의 전송 등이 있으며, 이에 한정되지 않는다.
서비스들을 끊김 없이 제공하기 위해서는, 단말이 서빙 링크 연결 품질의 저하 시 대체 링크를 사전에 탐색 및 확보하여, 서빙링크의 품질이 MCS들을 위해 적합하지 않을 정도로 떨어지는 경우, 대체 링크로 신속히 전환 해야 한다. 즉, 단말이 서빙링크의 품질 저하를 보다 신속히 판단함으로써 RLF가 발생하기 이전에 미리 대체 링크를 확보하고, 대체링크로 전환한다.
이하에서 단말이 사용하고 있는 링크 이외에 대체링크를 탐색하고 유지한다는 것은 단말이 특정 지리적 영역 내에서 MCS들을 위한 최소한의 QoE 를 만족시키는 무선링크들을 보유하는 것을 의미한다.
LTE/LTE-A 시스템의 무선링크 가용성은 전적으로 네트워크 커버리지 제공 확률에 의존한다고 볼 수 있다. LTE/LTE-A 시스템은 C-Plane과 U-Plane의 구분 없이, PDSCH를 통한 유니캐스트 전송의 경우, BER(Block Error Rate) 10-1이 적용되고, HARQ 재전송으로 충분한 신뢰성을 제공할 수 있다고 가정하고 있다. 그러나, 5G 이동통신 환경을 통해 MCS들을 제공하기 위해서는 단말이 항상 대체링크를 유지하여 MCS들의 목표 신뢰성을 만족시키면서 대체 링크를 항상 확보하여야 한다.
한편, 단말의 주변 상황에 따라 가능한 대체 링크를 네트워크가 일일이 지시하기는 어렵기 때문에, 네트워크는 단말이 스스로 자기 주변의 무선링크들을 활용할 것을 지시할 수 있다. 예컨대, 단말이 주변의 가용한 대체링크들을 탐색하여 확보하도록 함에 의해 MCS 제공을 위한 무선링크의 중단을 회피하는 방안을 고려해 볼 수 있다.
그러나, MCS들의 제공환경에 따라 단말 주변에 서빙링크 기지국이 존재하지 않거나(Out of Coverage), 서빙링크 기지국과의 무선링크 품질이 떨어지는 경우, 단말 주변에 중계 기능을 제공할 수 있는 단말(e.g., 3GPP LTE/LTE-A Rel-12에 정의된 ProSe 지원 단말)을 활용하는 방안을 고려할 수 있다. 중계 단말과의 무선링크 품질이 서빙링크 기지국과의 무선링크 품질보다 더 좋은 경우, 단말은 중계 단말과의 다이렉트 링크(Direct Link)를 사용하여 MCS들을 끊김 없이 제공받을 수 있다.
이하에서는 중계 단말을 이용하여, MCS들을 제공받는 단말이 다중 연결을 설정하고 신속하게 대체링크를 탐색 및 유지하는 방법에 대해 살펴본다. 예를 들어, 기지국의 커버리지 밖에 있는 단말이 커버리지 내에 위치한 중계 단말들을 통해 기지국과 다중 연결을 설정하는 방법이 제안된다. 또한 단말은 임시로 접속한 중계 단말의 서빙 기지국에서, 또 다른 중계 단말의 서빙 기지국으로 연결을 전환하기 위한 방법이 제안된다. 이 경우, 중계 단말들은 서로 다른 기지국들에 연결된 것을 가정한다. 본 발명에서의 중계 단말은 인접 단말 탐색과 단말간 직접 통신이 가능한 ProSe 지원 단말일 수 있다.
이하에서는 MCS를 위한 신뢰성의 지표를 RLA(Radio Link Availability)로 명명하며, 단말의 QoE(Quality of Experience)가 Link Quality 측면에서 표현되는 경우에 대해 RLA를 수학식 1과 같이 정의하기로 한다.
[수학식 1]
RLA = Pr (RLQ >= QoE)
수학식 1에서 RLQ는 측정된 무선 링크 품질이고, QoE는 링크 품질 측면에서 QoE 요구 조건이다.
본 발명의 실시예들은 다음과 같이 분류될 수 있으며, 각 구성에 대한 자세한 단말 동작은 후술한다.
- 서빙링크 기지국의 품질 저하시 임계 값 기반으로 대체 링크를 탐색하는 과정
단말이 대체 링크를 서빙링크 기지국에 통보하고, 유니캐스트 데이터 송수신이 비활성화(Inactive) 모드로 대체링크와 RRC 연결설정 과정
- 탐색된 대체링크 기지국의 품질 변화에 따른 다른 대체링크 탐색 및 확보 과정
도 5 내지 도 8은 단말이 초기 접속을 수행하는 과정에서 복수 개의 중계 단말들을 통해서 기지국과의 연결을 설정하는 실시예들을 도시한다. 도 5내지 도 8의 실시예들에서 중계 단말들의 기지국들 간에 동기는 같다고 가정한다. 예컨대, 본 실시예들은 중계 단말들이 스몰 셀에 접속해 있고, MCS 단말과 중계 단말들이 접속한 스몰 셀 간의 TA가 근사적으로 0에 이르는 경우 또는 새로운 파형의 비동기 시스템이 구축된 환경에 적용될 수 있다.
중계 단말에 의한 MCS 단말 검출, MCS 단말에 의한 중계 단말 검출은 3GPP LTE/LTE-A에 정의된 Prose Direct Discovery를 통해 수행될 수 있다. MCS 단말 (또는 중계 단말)이 전송한 E-UTRAN Direct Radio Signal(e.g., Discovery Message)을 PC5 Interface를 통해 중계 단말(또는 MCS 단말)이 수신한다. 이를 통해서 중계 단말 (또는 MCS 단말)은 MCS 단말(또는 중계 단말)이 인접하여 위치하고 있음을 알 수 있다.
중계 단말이 전송하는 SIB(system information block) 예컨대, SIB18를 통해, 단말은 동기 신호를 위한 자원 정보와 각 채널들에 관한 시스템 정보를 획득한다. 중계 단말이 전송하는 SIB는 새롭게 정의된 SIB거나 또는 추가적인 정보가 삽입된 SIB 18일 수 있다.
도 5 및 도 7의 실시예에서는 단말이 초기 접속을 시도한 임시 중계 단말(중계 단말 1)의 접속 기지국(기지국 2)이 MCS 단말의 서빙링크 기지국이 되는 경우를 예시한다. 도 6 및 도 8은 단말이 초기 접속을 시도한 임시 중계 단말의 기지국이 아닌 또 다른 중계 단말(중계 단말3)의 접속 기지국(기지국1)이 MCS 단말의 서빙링크 기지국이 되는 경우를 예시한다.
이하의 실시예들에서 중계 단말 1 및 중계 단말 2는 각각 기지국 2에 접속되고, 중계 단말 3은 기지국 1에 접속되어 있다. MCS 단말은 기지국 1 및 기지국 2의 커버리지로부터 벗어나 있다. MCS 단말이 초기 접속하는 임시 중계 단말은 중계 단말들 중 MCS 단말과 D2D 신호 품질이 가장 우수한 단말로 결정될 수 있다. 본 실시예에서 중계 단말 1이 MCS 단말이 초기 접속하는 임시 중계 단말의 역할을 수행한다.
먼저, 도 5의 실시예를 참조하면, MCS 단말은 커버리지 이탈 지시자(Out of Coverage Indication) 및 다이렉트 무선 신호(Direct Radio Signal)를 브로드캐스팅한다(S505). 커버리지 이탈 지시자는 커버리지를 벗어난 MCS 단말이 주변의 D2D(device to device) 지원 중계 단말들에게 자신의 존재를 알리기 위한 신호이다. 다이렉트 무선 신호는 중계 단말의 중계가 필요함을 알리기 위한 신호이다. 커버리지 이탈 지시자는 중계 단말에 의한 SIB(e.g., MCS를 위한 SIB) 전송을 트리거한다.
커버리지 이탈 지시자의 수신에 따라서 MCS 단말을 중계하기로 결정한 중계 단말들은 MCS를 위한 SIB를 브로드캐스트한다(S510). MCS를 위한 SIB는 중계 단말 링크 품질 지시자, RLQD(radio link quality degradation) 임계값 및 최대 링크 개수에 관한 정보를 포함한다. 중계 단말 링크 품질 지시자는, 중계 단말과 기지국간의 신호 품질이 정의된 임계값(RMCS _L)보다 높은지 아닌지를 알려주는 지시자이다. MCS 단말과 중계 단말간의 링크 품질이 우수하더라도 중계 단말과 기지국간의 링크 품질이 임계값(RMCS_L)이하인 경우, MCS 단말은 해당 중계 단말로의 링크를 대체링크 대상에 포함시키지 않도록 할 수 있다. 또한, 임계값를 만족하여 대체링크로 설정된 중계 단말이 추후 임계값을 만족하지 못하게 되는 경우, MCS 단말은 중계 단말 링크 품질 지시자를 수신하여 또 다른 대체링크 중계 단말을 탐색할 수 있다.
RLQD 임계치는 다중링크 접속을 위한 임계값 정보들을 포함할 수 있다. 예컨대, 초기접속 시 서빙 기지국을 선택하기 위한 최소 신호품질 임계값, 대체링크 탐색을 위한 신호품질 임계값, 서빙링크(혹은 대체링크) 해제를 위한 신호품질 임계값 등이 포함될 수 있다.
최대 링크 개수에 관한 정보는 MCS 단말이 동시에 연결할 수 있는 서빙링크 대체링크의 최대치를 의미한다.
MCS 단말은 임시 중계 단말로 RRC 연결 요청을 전송한다(S515). 임시 중계 단말은 SIB 를 전송한 중계 단말들 중에서 MCS 단말과의 D2D 신호 품질이 가장 우수한 단말이다. RRC 연결 요청은, SIB를 통해서 파악된 중계 단말들의 기지국들의 리스트를 포함할 수 있다. 임시 중계 단말은 MCS 단말로부터 수신한 기지국들의 리스트를 자신이 접속한 기지국으로 전달한다.
임시 중계 단말의 접속 기지국인 기지국 2는, RRC 연결 요청에 포함된 기지국들의 리스트에 기초하여 중계 단말3의 접속 기지국인 기지국 1에 부하 상태를 문의하는 부하 문의 요청(load query request)을 전송한다(S520).
기지국 2는 기지국 1로부터 부하 문의 요청에 대한 응답을 수신한다(S525). 부하 문의 요청에 대한 응답은 부하 상태를 높음, 중간, 낮음으로 지시할 수 있다. MCS 단말과 특정 중계 단말 간의 D2D 신호 품질이 좋더라도 특정 중계 단말의 기지국이 과부하된 경우 MCS 서비스를 제공하기에 부적합하다. 따라서, D2D 신호 품질이 가장 좋지는 않더라도, MCS를 위해 자원을 많이 할당해줄 수 있는 기지국을 선택하기 위하여, 부하 상태에 대한 정보가 기지국간에 교환된다. 즉, MCS를 위한 자원 할당이 가장 유리한 기지국이 MCS 단말에 MCS를 제공하는 기지국으로 선택될 수 있다.
기지국 2는 부하 문의 요청에 대한 응답을 기반으로, MCS 단말에 대해 서빙링크의 기지국 역할을 수행할 기지국을 결정한다. 기지국들 중 부하 상태가 가장 낮은 기지국이 MCS 단말의 서빙링크 기지국으로 결정될 수 있다. 본 실시예에서 기지국 2가 MCS 단말의 서빙링크 기지국이라고 가정한다. 서빙링크 기지국으로 결정된 기지국 2 외의 나머지 기지국은 MCS 단말에 대한 대체링크의 후보 기지국이 된다.
기지국 2은 대체링크의 후보 기지국인 기지국1에 MCS 단말 식별자(e.g., IMSI, GUTI), MCS 단말 컨텍스트, MCS 단말을 중계할 중계단말의 식별자, 송수신 비활성화 지시자를 포함하는 다중링크 연결 요청(Multi-Link Connectivity Request)을 전송한다(S530). 송수신 비활성화 지시자는 송수신 비활성화 모드임을 명시하기 위한 지시자이다. 만약, 임시 중계 단말의 기지국 외의 다른 기지국이 서빙 기지국으로 결정된 경우, 다중링크 연결 요청은 서빙 기지국과 후보 기지국을 나타내는 지시자를 더 포함할 수 있다.
기지국 2는 기지국 1로부터 MCS 단말을 위한 C-RNTI와 다중링크 연결 요청에 대한 성공/실패 여부(i.e., 수락 여부)를 지시하는 정보를 포함하는 다중 링크 연결 응답(Multi-Link Connectivity Response)을 수신한다(S535).
기지국 2는 임시 중계 단말을 통해서 MCS 단말에 RRC 연결 설정을 전송한다(S540). RRC 연결 설정은, 서빙링크 기지국 및 대체링크 기지국의 식별자, 각 기지국들에 접속한 중계 단말의 식별자 및 서빙링크 기지국 및 대체링크 기지국으로부터 할당된 C-RNTI에 대한 정보를 포함한다.
MCS 단말은 임시 중계 단말을 통해서 RRC 연결 설정 완료 메시지를 임시 중계 단말이 접속한 기지국 2에 전송한다(S545). MCS 단말과 기지국 2 간에는 임시 중계 단말을 통해서 서빙 링크가 설정되며, MCS 단말과 기지국 1 간에는 중계 단말 3을 통해서 대체 링크가 설정된다.
MCS 단말은 서빙 링크의 품질이 임계치 이하로 저하되는 경우, RLQD 보고를 임시 중계 단말을 통해서 기지국 2으로 전송한다(S550). RLQD 보고는 품질 저하를 나타내는 지시자, 서빙링크의 RLQ 상태(e.g., 높음, 중간 낮음) 및 대체링크의 기지국들에 대한 정보를 포함할 수 있다.
MCS 단말은 중계 단말 3을 통해서 대체링크의 활성화 지시 및 대체링크 기지국의 리스트를 기지국 1에 전송한다(S555). 기지국 1은 기지국 2로 MCS 단말과의 RRC 연결 해제를 요청한다(S560). 기지국 2는 RRC 연결 해제 요청을 임시 중계 단말에 전송하고(S565), 임시 중계 단말은 MCS 단말과의 RRC 연결을 해제한다(S570).
도 6은 본 발명의 다른 일 실시예에 따른 MCS 단말의 초기 접속 과정을 도시한다. 상술된 내용과 중복되는 설명은 생략한다. 도 6의 절차는 임시 중계 단말이 접속한 기지국 2 가 아니라 기지국 1이 MCS 단말에 대한 서빙링크 기지국이 되는 경우를 예시한다. 기지국 2가 전송한 다중 링크 연결 요청에는 어느 기지국이 MCS 단말의 서빙링크 기지국으로 결정되었는지를 나타내는 지시자가 포함된다. 또한, MCS 단말로 전송되는 RRC 연결 설정은 서빙링크 기지국을 나타내는 지시자를 포함한다. MCS 단말은 서빙링크 기지국에 접속한 중계 단말로 RRC 연결 설정 완료 메시지를 전송한다. 기지국 2은 MCS 단말의 대체링크 기지국이 되고, 임시 중계 단말을 통해서 MCS 단말과 데이터 송수신이 비활성화된 대체링크를 설정한다.
도 5 및 도 6의 실시예에서는 MCS 단말이 중계 단말을 통해서 대체링크 활성화를 대체링크 기지국에 요청하였지만, 도 7 및 도 8에 도시된 실시예에서는 서빙링크 기지국이 대체링크 기지국에 대체링크 활성화를 지시한다. 임시 중계 단말을 통해서 MCS 단말의 RLQD 보고를 수신한 기지국 2는 기지국 1에 송수신 활성화 지시 및 대체링크 기지국들의 리스트를 전송한다(S755, S855). 기지국 1은 중계 단말 3에 대체링크 송수신 활성화를 지시한다. 기지국 1은 RRC 연결 해제 요청을 기지국 2에 전송한다(S760, S860). 기지국 2은 RRC 연결 해제를 임시 중계 단말에 지시하고, 임시 중계 단말은 MCS 단말과의 RRC 연결을 해제한다(S770, S865).
도 9는 본 발명의 일 실시예에 따른 단말의 동기화 과정을 도시한다. 본 실시예에서 MCS 단말은 기지국들의 커버리지를 벗어나 있으며, 어떠한 기지국과도 동기가 맞춰지지 않은 상태라고 가정한다.
도 9를 참조하면, MCS 단말은 주변에 있는 D2D 중계 단말들이 MCS 단말에 동기를 맞추도록 하기 위한 SLSS(Side-Link Synchronization Signal)을 브로드캐스팅한다(S905).
MCS 단말은 디스커버리 메시지(Discovery Message)를 브로드캐스트한다(S910). 디스커버리 메시지 통해 MCS 단말은 중계 단말들에게 자신의 존재(e.g., L2 Address, ProSe UE ID)를 알린다. 디스커버리 메시지는 커버리지 이탈 및 중계를 선호한다는 것을 알리기 위한 중계 선호 지시자를 포함할 수 있다. MCS 단말 식별자(e.g., GUTI)가 디스커버리 메시지에 포함될 수 있다. 한편, 본 발명의 다른 일 실시예에 따르면 MCS 단말은 SLSS와 디스커버리 메시지를 동시에 브로드캐스트 할 수도 있다.
중계 선호 지시자를 수신한 중계 단말들 중에서 중계를 수행하고자 하는 중계 단말은, 중계 선호 지시자의 수신을 알리는 지시자를 자신이 접속한 기지국에 전송한다(S915). MCS 단말의 식별자가 기지국으로 함께 전송될 수 있다.
기지국들은 MCS 단말이 중계 단말들에게 동기를 맞추는데 필요한 SLSS를 중계 단말에 할당한다(S920). 기지국들이 중계 단말들에 할당한 SLSS는 중계 단말 별로 유니크하게 할당될 수 있다. 예컨대, 중계 단말 1에는 제1 SLSS가 할당되고, 중계 단말 2에는 제2 SLSS가 할당될 수 있다. MCS 단말은 제1 SLSS와 제2 SLSS를 통해서 중계 단말 1과 중계 단말 2를 서로 구분할 수 있다.
이와 달리 SLSS가 동일하게 설정된다면, MCS 단말이 중계 단말들을 식별하여 선택할 수 없으므로, 기지국들은 중계 단말-특정의 SLRS(Side-Link Reference Signal)를 중계 단말들에 할당할 수 있다. MCS 단말은 SLRS를 통해서 어떤 중계 단말 과의 D2D 링크품질이 좋은지를 측정할 수 있다. 즉, SLSS와 SRSS를 통해, MCS 단말은 어떤 중계 단말이 임시 중계 단말이 될지를 판단할 수 있다.
이후, 중계 단말은 디스커버리 메시지를 브로드캐스트하고(S935), SIB도 브로드캐스트(S940) 한다. 도 9의 실시예는 상술된 도 5 내지 도 8의 실시예들, 후술하는 도 10 내지 도 13의 실시예들에 적용될 수 있다.
도 10 내지 도 13은 MCS 단말이 초기접속 시 복수 개의 중계 단말들과 연결을 설정하는 실시예들을 도시한다. 상술된 내용과 중복되는 설명은 생략된다.
도 10 내지 도 13의 실시예들에서 MCS 단말은 중계 단말과 동기화가 필요하다고 가정한다. MCS 단말은 3GPP LTE/LTE-A에 정의된 Prose 직접 디스커버리(Direct Discovery)를 기반으로 E-UTRAN 다이렉트 무선 신호(Direct Radio Signal)를 PC5 Interface로 전송한다. 중계 단말은 다이렉트 무선 신호를 수신함으로써 주변에 MCS 단말이 위치하고 있음을 알 수 있다. MCS 단말은 중계 단말이 전송하는 SIB를 통해서 동기 신호의 자원 정보와 채널들에 대한 시스템 정보를 획득한다.
도 10 및 도 12는 임시 중계 단말이 접속한 기지국 2가 MCS 단말의 서빙링크 기지국이 되는 경우를 예시한다. 도 11 및 도 13은 임시 중계 단말이 아닌 중계 단말3 이 접속한 기지국 1이 MCS 단말의 서빙링크 기지국이 되는 경우를 예시한다. 도 10 및 도 11에서는 서빙링크의 신호품질이 정해진 임계값 이하로 떨어지는 경우, MCS 단말이 서빙링크의 중계단말을 통해서 서빙링크 기지국에 RLQD 보고를 수행하고, MCS 단말이 대체링크의 중계 단말을 통해서 대체링크의 기지국으로 RRC 연결에 대한 활성화를 지시하면서, 또 다른 대체링크의 기지국들에 대한 정보를 전송한다.
도 10을 참조하면 MCS 단말은 다이렉트 무선 신호 및 커버리지 이탈 지시자를 브로드캐스트 한다(S1005).
다이렉트 무선 신호 및 커버리지 이탈 지시자를 수신한 중계 단말들 중 중계를 수행하기로 결정한 중계 단말은 자신과 자신의 접속 기지국 간 링크품질 정보 등을 포함하는 SIB를 브로드캐스트한다(S1010).
MCS 단말은 후보 기지국들과 후보 기지국에 접속된 중계 단말들의 리스트가 포함된 RRC 연결 요청을 임시 중계 단말에 전송한다(S1015). 임시 중계 단말은 MCS 단말의 RRC 연결 요청을 기지국 2에 전송한다.
임시 중계 단말이 접속한 기지국 2는 RRC 연결 요청에 포함된 리스트에 기초하여 대체링크의 후보 기지국인 기지국 1에 부하 상태 문의 요청을 전송한다(S1020).
기지국 2는 기지국 1으로부터 부하 상태 문의 요청에 대한 응답을 수신한다(S1025). 기지국 2는 MCS 단말의 서빙링크 기지국을 결정한다. 본 실시예에서 기지국 2가 서빙링크 기지국으로 결정되었다고 가정한다.
기지국 2는 기지국 1에 MCS 단말 식별자, MCS 단말 컨텍스트, 후보 중계단말, 송수신 비활성화를 포함하는 다중 연결 요청을 전송한다(S1030).
기지국 2는 기지국 1로부터 MCS 단말을 위한 전용 프리엠블 및 다중 연결 요청의 수락 여부를 나타내는 다중 링크 연결 응답을 수신한다(S1035).
기지국 2는 임시 중계 단말을 통하여 MCS 단말로 RRC 연결 설정을 전송한다(S1040). RRC 연결 설정은 서빙/후보 기지국들의 식별자, 서빙/후보 기지국들에 접속된 각 중계 단말들의 식별자 및 후보 기지국들이 할당한 전용 프리엠블이 포함된다.
MCS 단말은 RRC 연결 설정에 대한 응답으로서, RRC 연결 설정 완료 메시지를 중계 단말 1을 통해서 기지국 2에 전송한다(S1045).
MCS 단말은 전용 프리엠블을 이용하여 기지국 1과 동기화를 수행한다(S1050). 즉, 중계 단말 3을 통해서 기지국 1로 자신이 수신한 전용 프리엠블을 전송하고, 기지국 1으로부터 MCS 단말을 위한 C-RNTI를 포함하는 랜덤 엑세스 응답을 수신한다. MCS 단말은 중계 단말 3을 통해서 기지국 1과 대체링크를 설정한다.
도 11을 참조하면, 임시 중계 단말이 접속한 기지국 2가 아니라 중계 단말 3이 접속한 기지국 1이 MCS 단말의 서빙링크 기지국이 된다. 기지국 2는 기지국 1을 MCS 단말의 서빙링크 기지국으로 결정하고, 기지국 1로 다중 연결 요청을 전송한다(S1130). 다중 연결 요청에는 기지국 1이 MCS 단말의 서빙링크 기지국 역할을 수행할 것을 나타내는 지시자가 포함된다. 기지국 2는 RRC 연결 설정 메시지를 통해 결정된 서빙링크 기지국을 나타내는 지시자를 MCS 단말에 전송한다(S1140). MCS 단말은 서빙링크 기지국인 기지국 1로 RRC 연결 완료 메시지를 전송한다.
도 12 및 도 13의 실시예에서는 도 10 및 도 11의 실시예와 달리, 서빙링크 기지국이 대체링크 기지국에 활성화 지시를 전송한다. 서빙링크의 신호품질이 정해진 임계값 이하로 떨어지는 경우, MCS 단말은 RLQD 보고를 서빙링크 중계단말을 통해서 서빙링크 기지국에 전송한다. 서빙링크 기지국은 신호품질이 가장 좋은 대체링크 기지국으로 MCS 단말과의 RRC 연결을 활성화할 것을 지시하고 다른 대체링크 기지국들에 대한 정보를 전송한다.
서빙링크 기지국의 품질 저하에 따른 대체 링크 탐색 및 연결 설정
서빙 링크 기지국에 직접 접속한 MCS 단말이 서빙링크 품질 저하를 인지하고 중계 단말을 통해서 대체 링크를 탐색하도록 하는 방법이 제안된다. 링크의 신호 품질 저하를 판단하기 위하여 다음과 같은 임계값들이 정의된다.
- 제1 임계값(SMCS_U):서빙링크 품질에 대하여 정의된 상한 임계치 (대체링크 탐색의 트리거 포인트)
- 제2 임계값(SMCS_L):서빙링크 품질에 대하여 정의된 하한 임계치 (대체링크로 전환의 트리거 포인트)
- 제3 임계값(AMCS_U):대체링크 품질에 대하여 정의된 상한 임계치 (다른 대체링크 탐색의 트리거 포인트)
- 제4 임계값(AMCS_L):대체링크 품질에 대하여 정의된 하한 임계치 (다른 대체링크로 전환의 트리거 포인트)
이와 같은 임계값들은 SIB(System Information Block) 또는 단말 전용의 RRC 시그널링을 통해 기지국과 단말간에 공유될 수 있다. SIB 또는 단말 전용의 RRC 시그널링은 MCS들을 위한 전용 캐리어 정보를 더 포함할 수 있다.
임계값들은 MCS들을 위한 물리 계층의 목표 BER을 만족시키도록 설정되는 것이 바람직하다. 예를 들어, MCS의 목표 BER이 10-9~10-6이라고 하면, BER 10-9에 대응되는 MCS 임계값을 제1 임계값으로 설정하고, BER 10-6에 대응되는 MCS 임계값을 제2 임계값으로 설정할 수 있다.
위 임계값들과 핸드오버를 위한 RSRP/RSRQ Threshold 간의 관계를 살펴본다. 서빙링크 해제를 위한 제2 임계값(SMCS _L)은 핸드오버를 위한 RSRP/RSRQ 임계값보다는 상대적으로 높게 설정되어야 한다. 대체링크 탐색을 위한 서빙링크의 품질저하의 제1 임계값(SMCS _U)은 서빙링크 해제를 위한 제2 임계값(SMCS _L)보다는 높게 설정되어야 한다. 또한, 대체링크의 해제를 위한 제4 임계값(AMCS _L)은 대체링크 탐색을 위한 제3 임계값(SMCS _U)이상으로 설정될 수 있다. 다른 대체링크 탐색을 위한 확보된 대체링크의 품질저하의 제3 임계값(AMCS _U)은 대체링크의 해제를 위한 제4 임계값(AMCS_L)이상으로 설정될 수 있다. 이를 정리하면 수학식 2와 같다.
[수학식 2]
RSRP/RSRQ Threshold ≪ SMCS _L< SMCS _U≤ AMCS _L≤ AMCS _U
또한, 중계 단말과 중계 단말이 접속한 기지국 간의 링크품질에 대한 제5 임계값(RMCS_L)이 정의된다.
- 제5 임계값(RMCS_L):중계 단말과 중계 단말이 접속한 기지국간의 링크에 대하여 정의된 하한 임계치
MCS 단말은 제5 임계값을 이용하여 중계 단말과 중계 단말이 접속한 기지국을 대체링크로 선택할지 여부를 결정할 수 있다.
제5 임계값과 LTE/LTE-A의 RSRP 임계치와의 관계는 수학식 3과 같다.
[수학식 3]
LTE/LTE-A RSRP/RSRQ Threshold ≪ SMCS _L< SMCS _U< RMCS _L
중계 단말은 자신이 제5 임계값을 만족시키는지 여부를 브로드캐스트할 수 있다.
MCS 단말과 중계 단말 간의 D2D 링크품질이 우수하더라도 중계 단말과 중계 단말의 기지국간 링크 품질이 제5 임계값을 만족시키지 않는다면, MCS 단말은 중계 단말 및 중계 단말의 기지국을 대체 링크로 선택하지 않을 수 있다.
도 14의 (a)는 본 발명의 일 실시예에 따른 중계 단말들을 활용한 대체링크 탐색 방법을 도시한다.
MCS 단말은 서빙링크 기지국으로부터 MCS 제공에 필요한 정보들을 수신한다(S1405). 예컨대, MCS 단말은 MCS 전용 캐리어, 중계 단말들이 중계에 사용하는 MCS 전용 캐리어, 서빙링크 품질저하 임계값, 중계 단말의 품질저하 임계값, 탐색가능 서빙링크 및 대체링크의 최대 개수를 수신한다.
MCS 단말은 서빙링크 품질이 SMCS _ U이하로 떨어짐을 감지하면, 서빙링크를 대체할 수 있는 대체링크를 탐색한다(S1410). 대체링크 탐색 대상은 D2D 통신이 가능한 중계 단말들로 한정될 수 있다. MCS 단말은 중계 단말들에 대한 링크 품질을 측정할 수 있다. MCS 단말은 중계 단말과 중계 단말의 기지국 간의 링크 품질이 제5 임계 값을 만족시키는지 아닌지의 여부에 기초하여, 중계 단말과 대체 링크를 설정할지 여부를 결정할 수 있다.
대체 링크를 설정할 중계 단말이 탐색되면, MCS 단말은 서빙링크 기지국으로 탐색 결과를 보고하고, 중계 단말과 유니캐스트 데이터 송수신이 비활성화된 RRC 연결을 설정한다(S1415).
MCS 단말은 서빙링크의 품질이 SMCS _ L이하로 떨어지는지 여부를 판단한다(S1420).
단말은 서빙링크의 품질이 SMCS _ L이하로 떨어지면, 대체 링크의 RRC 연결을 활성화시키고, 서빙링크와의 RRC 연결을 해제한다(S1430). 대체링크의 RRC 연결에 대한 활성화는 MCS 단말이 직접 지시할 수도 있고, 서빙링크 기지국이 대체링크의 중계 단말이 접속한 기지국으로 요청하여 수행될 수도 있다.
도 15는 본 발명의 일 실시예에 따른 대체링크 탐색 과정을 도시한다. 전술한 내용과 중복되는 설명은 생략된다.
MCS 단말은 RRC 연결 요청을 기지국 1에 전송한다(S1505). 기지국 1은 MCS 단말의 서빙링크 기지국이 된다. RRC 연결 요청은 자신이 MCS Capable 단말임을 알리는 지시자를 포함한다.
기지국 1은 RRC 연결 설정 메시지를 MCS 단말에 전송한다(S1510). RRC 연결 설정 메시지는 MCS들을 위한 전용 캐리어, 중계 단말들이 중계하는데 사용하는 MCS 전용 캐리어, RLQD에 대한 임계값 등의 정보를 포함할 수 있다. 또한, 기지국 1과 MCS 단말은 MCS의 시작과 종료를 알리는 지시자를 포함하는 RRC 연결 설정 메시지를 송수신 할 수 있다. MCS 단말이 MCS 시작을 서빙링크 기지국에 알리면, 서빙링크 기지국은 MCS를 위한 임계값들이 적용됨을 알 수 있다. 반대로 서빙링크 기지국이 MCS 단말에게 MCS의 시작을 알리면, MCS 단말은 MCS를 위한 임계값들이 적용됨을 알 수 있다. 단말이 MCS의 종료를 알리면 서빙링크 기지국은 MCS를 위한 임계값들이 더 이 상 적용되지 않음을 알 수 있다. 반대로 서빙링크 기지국이 MCS의 종료를 알리면, MCS 단말은 MCS를 위한 임계값들이 더 이상 적용되지 않음을 알 수 있다.
서빙링크 품질이 정해진 임계값(SMCS_U)이하가 되면, MCS 단말은 단말은 서빙링크 기지국에 RLQD 보고를 전송한다(S1520). MCS 단말은 대체링크의 탐색을 시작한다. RLQD 보고는 대체링크 탐색의 결과를 포함한다. RLQD 보고는 서빙링크 품질이 제1 임계값 이하임을 나타내는 RLQD 지시자, 무선 링크 품질을 높음, 중간 또는 낮음으로 표시하는 RLQ 상태 정보 및 탐색된 대체링크의 후보 중계 단말들에 대한 정보(예컨대, 중계 단말 ID)를 포함할 수 있다.
MCS 단말은 중계 단말들에 MCS Capable 단말임을 알릴 수 있다. 중계 단말들은 MCS 관련 정보를 MCS 단말에게 제공한다.
MCS 단말은 중계 단말과 중계 단말의 기지국 간 링크 품질이 제5 임계값을 만족시키는지 여부에 대한 정보를 통해서, 중계 단말과 중계 단말의 기지국 간 링크 품질이 가장 좋은 중계 단말을 선택할 수 있다. 본 실시예에서 중계 단말 2가 선택되었다고 가정한다.
중계 단말 2를 통한 대체링크가 탐색되면, MCS 단말은 중계 단말 2를 통해서 기지국 2에 RRC 연결 설정 요청 메시지를 전송한다(S1525, S1530). RRC 연결 설정 요청 메시지는, 유니캐스트 데이터 송수신이 비활성화된 모드임을 지시자를 포함할 수 있다. RRC 연결 설정 요청 메시지는 서빙링크 기지국에 대한 정보를 포함할 수 있다. MCS 단말은 중계 단말 2에 MCS의 시작과 종료를 알리는 지시자를 전송할 수 있다. MCS 단말이 MCS 시작을 중계 단말 2에 알리면, 중계 단말 2는 MCS를 위한 임계값들이 적용됨을 알 수 있다. MCS 단말이 MCS의 종료를 알리면 중계 단말 2는 MCS를 위한 임계값들이 더 이 상 적용되지 않음을 알 수 있다.
기지국 2는 중계 단말 2를 통해서 RRC 연결 설정 메시지를 MCS 단말에 전송한다(S1535).
기지국 2는 대체링크의 설정 결과를 기지국 1에 전송한다(S1545). 기지국 2는, 서빙링크의 품질저하에 따라 기지국 1로부터 대체링크 활성화에 대한 요청을 수신할 수 있다.
탐색된 대체링크의 유지 및 갱신
도 14의 (b)는 대체 링크를 갱신하는 과정의 흐름을 도시한다.
MCS 단말은 중계 단말을 통한 제1 대체링크의 품질이 제3 임계값(AMCS _U)보다 작은지 여부를 판단한다(S1435).
중계 단말을 통한 제1 대체링크의 품질이 제3 임계값(AMCS _U)보다 작으면, MCS 단말은 제2 대체링크를 탐색한다(S540). 한편, 제1 대체링크의 중계 단말과 중계 단말의 기지국 간의 링크 품질이 제5 임계치 미만인 경우에도 MCS 단말은 제2 대체링크를 탐색하게 된다.
제2 대체링크가 탐색되면, MCS 단말은 제2 대체링크의 탐색결과를 서빙링크 기지국에 보고하고, 제2 대체링크의 중계 단말과 유니캐스트 데이터 송수신이 비활성화된 RRC 연결을 설정한다.
제1 대체링크의 품질이 제4 임계값(AMCS_L)이하로 떨어짐을 감지하면(S1445), MCS 단말은 제1 대체링크의 RRC 연결을 해제한다(S1450). MCS 단말은 제2 대체링크의 중계 단말과 유니캐스트 데이터 송수신이 비활성된 RRC 연결을 유지한다.
도 16은 본 발명의 일 실시예에 따른 대체링크 갱신 방법의 흐름을 도시한다. 전술한 내용과 중복되는 설명은 생략된다.
도 16을 참조하면, MCS 단말은 RRC 연결 요청을 기지국 1에 전송한다(S1605). 기지국 1은 RRC 연결 설정 메시지를 MCS 단말에 전송한다(S1610). 서빙링크 품질이 정해진 임계값(SMCS_U)이하가 되면, MCS 단말은 기지국 1에 RLQD 보고를 전송한다(S1620). 중계 단말 1를 통한 대체링크가 탐색되면, MCS 단말은 중계 단말 1를 통해서 기지국 3에 RRC 연결 설정 요청 메시지를 전송한다(S1625, S1630). 기지국 3은 중계 단말 1을 통해서 RRC 연결 설정 메시지를 MCS 단말에 전송한다(S1635). 기지국 3은 대체링크의 설정 결과를 기지국 1에 전송한다(S1640).
중계 단말 1을 통한 대체링크의 품질이 AMCS _ U이하로 떨어지면, MCS 단말은 중계 단말 2을 통해 다른 대체 링크를 탐색한다.
중계 단말 2를 통해 다른 대체 링크가 탐색되면, MCS 단말은 탐색 결과를 기지국 1에 전송한다(S1645). MCS 단말은 중계 단말 1을 통해서 유니캐스트 데이터 송수신이 비활성화된 RRC 연결을 설정한다. 중계 단말 1을 통한 대체링크 품질이 AMCS_L이하로 떨어지면, MCS 단말은 중계 단말 1을 통한 대체링크의 RRC 연결을 해제한다. MCS 단말은 중계 단말 1을 통한 대체링크를 유지한다.
도 17는 본 발명의 일 실시예에 따른 단말과 기지국의 구조를 도시한 도면이다. 기지국은 고정 셀이거나 또는 이동 셀일 수 있다. 도 17에 도시된 단말과 기지국은 각각 상술된 방법들을 수행할 수 있다.
기지국(10)은, 수신기(11), 송신기(12), 프로세서(13), 메모리(14) 및 복수개의 안테나(15)를 포함할 수 있다. 복수개의 안테나(15)는 MIMO 송수신을 지원하는 기지국을 의미한다. 수신기(11)은 단말로부터의 상향링크 상의 각종 신호, 데이터 및 정보를 수신할 수 있다. 송신기(12)은 단말로의 하향링크 상의 각종 신호, 데이터 및 정보를 전송할 수 있다. 프로세서(13)는 기지국(10) 전반의 동작을 제어할 수 있다.
기지국(10)의 수신기(11)는 백홀 링크의 수신기로 동작하거나 또는 엑세스 링크의 수신기로 동작할 수 있다. 송신기(12)는 백홀 링크의 송신기로 동작하거나 또는 엑세스 링크의 송신기로 동작할 수 있다.
기지국(10)의 프로세서(13)는 그 외에도 기지국(10)가 수신한 정보, 외부로 전송할 정보 등을 연산 처리하는 기능을 수행하며, 메모리(14)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다.
단말(20)은, 수신기(21), 송신기(22), 프로세서(23), 메모리(24) 및 복수개의 안테나(25)를 포함할 수 있다. 복수개의 안테나(25)는 MIMO 송수신을 지원하는 단말을 의미한다. 수신기(21)은 기지국으로부터의 하향링크 상의 각종 신호, 데이터 및 정보를 수신할 수 있다. 송신기(22)는 기지국으로의 상향링크 상의 각종 신호, 데이터 및 정보를 전송할 수 있다. 프로세서(23)는 단말(20) 전반의 동작을 제어할 수 있다.
단말(20)의 프로세서(23)는 그 외에도 단말(20)가 수신한 정보, 외부로 전송할 정보 등을 연산 처리하는 기능을 수행하며, 메모리(24)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다.
상술한 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시예들에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 본 발명의 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 예를 들어, 당업자는 상술한 실시예들에 기재된 각 구성을 서로 조합하는 방식으로 이용할 수 있다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.
상술된 바와 같이 본 발명의 실시예들은 다양한 이동 통신 시스템에 적용될 수 있다.

Claims (15)

  1. 무선 통신 시스템에서 커버리지를 이탈한 단말이 중계 단말들을 통해 다중 링크들을 설정하는 방법에 있어서,
    상기 단말 주변에 위치한 중계 단말들 중 D2D (device to device) 신호 품질이 가장 우수한 임시 중계 단말에 RRC 연결 요청을 전송하는 단계;
    상기 임시 중계 단말로부터 상기 중계 단말들이 접속한 기지국들 중 상기 단말에 서빙 링크를 제공할 제1 기지국과 대체 링크를 제공할 제2 기지국을 지시하는 RRC 연결 설정을 수신하는 단계;
    상기 중계 단말들 중 상기 제1 기지국에 접속한 제1 중계 단말에 RRC 연결 완료 메시지를 전송함으로써 상기 제1 중계 단말을 통하여 상기 서빙 링크를 설정하는 단계; 및
    상기 중계 단말들 중 상기 제2 기지국에 접속한 제2 중계 단말을 통하여 유니캐스트 데이터 송수신이 비활성화된 상기 대체 링크를 설정하는 단계를 포함하는, 방법.
  2. 제 1 항에 있어서,
    상기 단말이 커버리지 이탈하였음을 나타내는 커버리지 이탈 지시자를 브로드캐스팅하는 단계; 및
    상기 커버리지 이탈 지시자를 수신한 상기 중계 단말들로부터, 상기 중계 단말들과 상기 중계 단말들이 접속한 기지국들 간의 링크 품질에 대한 정보, 링크 품질 저하에 대한 임계값 및 상기 단말이 설정 가능한 최대 링크들의 개수 중 적어도 하나를 포함하는 시스템 정보를 수신하는 단계를 더 포함하는, 방법.
  3. 제 2 항에 있어서, 상기 RRC 연결 요청은,
    상기 중계 단말들 중 상기 중계 단말들이 접속한 기지국들과의 상기 링크 품질이 임계값 이상인 중계 단말들의 리스트를 포함하는, 방법.
  4. 제 1 항에 있어서,
    상기 제1 기지국은 상기 중계 단말이 접속한 기지국들 각각의 부하 상태(load status)에 기초하여 결정되는, 방법.
  5. 제 1 항에 있어서,
    상기 중계 단말들이 접속한 기지국들이 상기 중계 단말들에 할당한 SLSS(side-link synchronization signal)들을 상기 중계 단말들로부터 수신하는 단계; 및
    상기 SSLS들에 기초하여 상기 중계 단말들과 동기화를 수행하는 단계를 포함하고,
    상기 SSLS들은 상기 각 중계 단말들 별로 고유한 값을 갖도록 할당되는, 방법.
  6. 제 1 항에 있어서,
    상기 제1 중계 단말을 통하여 설정된 상기 서빙 링크의 품질이 임계값 이하가 되면, 상기 제2 중계 단말을 통하여 설정된 상기 대체 링크의 유니캐스트 데이터 송수신을 활성화하는 단계; 및
    상기 제1 중계 단말을 통하여 설정된 상기 서빙 링크의 RRC 연결을 해제하는 단계를 더 포함하는, 방법.
  7. 제 1 항에 있어서,
    상기 제2 중계 단말을 통하여 설정된 상기 대체 링크의 품질이 제1 임계값 이하가 되면, 상기 중계 단말들 중 제3 중계 단말을 통하여 또 다른 대체 링크를 탐색하는 단계; 및
    상기 제2 중계 단말을 통하여 설정된 상기 대체 링크의 품질이 제2 임계값 이하가 되면, 상기 제2 중계 단말을 통하여 설정된 상기 대체 링크의 RRC 연결을 해제하는 단계를 더 포함하는, 방법.
  8. 무선 통신 시스템에서 임시 중계 단말이 접속한 기지국이 커버리지를 이탈한 단말의 다중 링크들의 설정을 지원하는 방법에 있어서,
    상기 임시 중계 단말을 통하여 상기 커버리지를 이탈한 단말의 RRC 연결 요청을 수신하는 단계;
    상기 RRC 연결 요청에 포함된 중계 단말들의 리스트에 기초하여 상기 중계 단말들이 접속한 기지국들에 부하 문의 요청(load query request)을 전송하는 단계;
    상기 중계 단말들이 접속한 기지국들로부터의 부하 문의 요청에 대한 응답에 기초하여 상기 커버리지를 이탈한 단말에 서빙 링크를 제공할 제1 기지국과 대체 링크를 제공할 제2 기지국을 결정하는 단계; 및
    상기 제1 기지국과 상기 제2 기지국을 지시하는 정보를 포함하는 RRC 연결 설정을 상기 임시 중계 단말을 통하여 상기 커버리지를 이탈한 단말에 전송하는 단계를 포함하고,
    상기 제2 기지국에 의해 제공되는 상기 대체 링크에서는 유니캐스트 데이터 송수신이 비활성화되는, 방법.
  9. 제 8 항에 있어서,
    상기 제1 기지국은, 상기 중계 단말들이 접속한 기지국들 중 부하 상태가 가장 낮은 기지국이고,
    상기 임시 중계 단말은, 상기 중계 단말 들 중 상기 커버리지를 이탈한 단말과의 D2D (device to device) 신호 품질이 가장 우수한 단말인, 방법.
  10. 제 8 항에 있어서,
    상기 기지국이 전송한 상기 RRC 연결 설정에 대한 응답으로 상기 커버리지를 이탈한 단말이 전송한 RRC 연결 설정 완료 메시지는 상기 서빙 링크를 설정할 상기 제1 기지국에서 수신되는, 방법.
  11. 제 8 항에 있어서,
    상기 임시 중계 단말이 상기 커버리지를 이탈한 단말에 전송할 SLSS(side-link synchronization signal)를 상기 임시 중계 단말에 할당하는 단계를 더 포함하고,
    상기 임시 중계 단말에 할당된 상기 SLSS는 상기 중계 단말들과 구별 가능한 고유한 값을 갖는, 방법.
  12. 제 8 항에 있어서,
    상기 제1 기지국 및 상기 제2 기지국에 각각 상기 커버리지를 이탈한 단말의 식별자를 포함하는 다중 연결 요청을 전송하는 단계; 및
    상기 제1 기지국 및 상기 제2 기지국으로부터 각각 상기 다중 연결 요청의 수락 여부를 지시하는 다중 연결 응답을 수신하는 단계를 더 포함하는, 방법.
  13. 제 12 항에 있어서,
    상기 제1 기지국으로 전송된 상기 다중 연결 요청은 상기 제1 기지국이 상기 커버리지를 이탈한 단말에 상기 서빙 링크를 제공할 기지국임을 나타내는 지시자를 포함하고,
    상기 제2 기지국으로 전송된 상기 다중 연결 요청은 상기 제2 기지국이 상기 커버리지를 이탈한 단말에 상기 대체 링크를 제공할 기지국임을 나타내는 지시자를 포함하고,
    상기 제1 기지국 및 상기 제2 기지국으로부터 수신된 상기 각 다중 연결 응답은, 상기 제1 기지국 및 상기 제2 기지국 각각이 할당한 상기 커버리지를 이탈한 단말의 식별자 및 전용 프리엠블을 포함하는, 방법.
  14. 무선 통신 시스템에서 커버리지를 이탈한 단말에 있어서,
    상기 단말 주변에 위치한 중계 단말들 중 D2D (device to device) 신호 품질이 가장 우수한 임시 중계 단말에 RRC 연결 요청을 전송하는 송신기;
    상기 임시 중계 단말로부터 상기 중계 단말들이 접속한 기지국들 중 상기 단말에 서빙 링크를 제공할 제1 기지국과 대체 링크를 제공할 제2 기지국을 지시하는 RRC 연결 설정을 수신하는 수신기; 및
    상기 중계 단말들 중 상기 제1 기지국에 접속한 제1 중계 단말에 RRC 연결 완료 메시지를 전송함으로써 상기 제1 중계 단말을 통하여 상기 서빙 링크를 설정하고, 상기 중계 단말들 중 상기 제2 기지국에 접속한 제2 중계 단말을 통하여 유니캐스트 데이터 송수신이 비활성화된 상기 대체 링크를 설정하는 프로세서를 포함하는, 단말.
  15. 무선 통신 시스템에서 커버리지를 이탈한 단말의 다중 링크들의 설정을 지원하는 기지국에 있어서,
    상기 기지국에 접속한 임시 중계 단말을 통하여 상기 커버리지를 이탈한 단말의 RRC 연결 요청을 수신하는 수신기;
    상기 RRC 연결 요청에 포함된 중계 단말들의 리스트에 기초하여 상기 중계 단말들이 접속한 기지국들에 부하 문의 요청(load query request)을 전송하는 송신기; 및
    상기 중계 단말들이 접속한 기지국들로부터의 부하 문의 요청에 대한 응답에 기초하여 상기 커버리지를 이탈한 단말에 서빙 링크를 제공할 제1 기지국과 대체 링크를 제공할 제2 기지국을 결정하는 프로세서를 포함하고,
    상기 송신기는, 상기 제1 기지국과 상기 제2 기지국을 지시하는 정보를 포함하는 RRC 연결 설정을 상기 임시 중계 단말을 통하여 상기 커버리지를 이탈한 단말에 전송하고, 상기 제2 기지국에 의해 제공되는 상기 대체 링크에서는 유니캐스트 데이터 송수신이 비활성화되는, 기지국.
PCT/KR2015/007797 2015-07-27 2015-07-27 무선 통신 시스템에서 단말이 다중 링크를 설정하는 방법 및 이를 위한 장치 WO2017018553A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2015/007797 WO2017018553A1 (ko) 2015-07-27 2015-07-27 무선 통신 시스템에서 단말이 다중 링크를 설정하는 방법 및 이를 위한 장치
US15/745,918 US10368381B2 (en) 2015-07-27 2015-07-27 Method for terminal to establish multi-links in wireless communication system, and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2015/007797 WO2017018553A1 (ko) 2015-07-27 2015-07-27 무선 통신 시스템에서 단말이 다중 링크를 설정하는 방법 및 이를 위한 장치

Publications (1)

Publication Number Publication Date
WO2017018553A1 true WO2017018553A1 (ko) 2017-02-02

Family

ID=57885231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007797 WO2017018553A1 (ko) 2015-07-27 2015-07-27 무선 통신 시스템에서 단말이 다중 링크를 설정하는 방법 및 이를 위한 장치

Country Status (2)

Country Link
US (1) US10368381B2 (ko)
WO (1) WO2017018553A1 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180105463A (ko) * 2017-03-15 2018-09-28 한국전자통신연구원 통신 네트워크에서 통신 노드의 동작 방법
CN109315016A (zh) * 2017-03-24 2019-02-05 华为技术有限公司 一种系统信息传输方法及装置
CN110971354A (zh) * 2018-09-28 2020-04-07 电信科学技术研究院有限公司 单播传输方法、配置方法、终端及网络侧设备
CN113972974A (zh) * 2020-07-24 2022-01-25 大唐移动通信设备有限公司 系统信息处理方法、获取方法、装置及终端
WO2022037254A1 (zh) * 2020-08-21 2022-02-24 华为技术有限公司 一种多链路通信方法、业务与链路映射的方法及设备
WO2022060052A1 (ko) * 2020-09-16 2022-03-24 삼성전자 주식회사 차량에 탑재된 통신 장치 및 그 동작 방법
CN116389406A (zh) * 2023-06-05 2023-07-04 上海星思半导体有限责任公司 Ue id的确定方法、ue id范围的发送方法、装置及处理器

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106211026B (zh) * 2014-12-22 2019-05-24 中兴通讯股份有限公司 一种实现设备直通中继选择的方法、网络控制节点及用户设备
EP3520563A1 (en) * 2016-09-30 2019-08-07 Telefonaktiebolaget LM Ericsson (PUBL) Radio resource control connection establishment
JP6933225B2 (ja) * 2016-12-08 2021-09-08 日本電気株式会社 リレー選択のための装置及び方法
WO2018174477A1 (en) * 2017-03-22 2018-09-27 Lg Electronics Inc. Method for transmitting a mac ce in different tti durations in wireless communication system and a device therefor
CN109246774B (zh) * 2017-06-16 2021-01-05 华为技术有限公司 通信方法及装置
CN111356131B (zh) * 2018-12-20 2022-04-29 华为技术有限公司 通信方法、装置及系统
CN112737755B (zh) 2019-03-29 2022-12-02 华为技术有限公司 通信方法和通信装置
CN111615219B (zh) * 2019-04-30 2022-02-22 维沃移动通信有限公司 一种pc5链路建立方法、设备及系统
CN111818592A (zh) * 2019-07-31 2020-10-23 维沃移动通信有限公司 一种网络切换方法、网络设备及终端
CN115460719A (zh) * 2019-08-13 2022-12-09 苹果公司 远程无线设备的无线电资源控制连接过程
EP4142430A1 (en) 2019-08-13 2023-03-01 Apple Inc. Radio resource control connection procedures for remote wireless devices
US11622409B2 (en) * 2020-03-10 2023-04-04 Qualcomm Incorporated User equipment relay procedure
CN114080044A (zh) 2020-08-13 2022-02-22 维沃移动通信有限公司 传输系统消息的方法、终端设备和网络设备
CN114340033A (zh) * 2020-10-10 2022-04-12 大唐移动通信设备有限公司 无线资源控制rrc连接的处理方法、终端及网络设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101054077B1 (ko) * 2008-12-18 2011-08-03 인하대학교 산학협력단 단말-중계국 시스템 기반의 데이터 전송 방법 및 이를 위한단말
KR20150022240A (ko) * 2013-08-22 2015-03-04 삼성전자주식회사 이동 통신 시스템에서 고립 사용자 단말기에 대한 디바이스-투-디바이스 통신 기반 서비스 제공 장치 및 방법
KR101506295B1 (ko) * 2008-10-06 2015-03-27 삼성전자주식회사 무선 셀룰러 통신 시스템에서 기지국과의 직접 통신이 불가능한 단말의 통신 경로를 재설정하기 위한 장치 및 방법
KR101521894B1 (ko) * 2008-02-20 2015-05-29 삼성전자주식회사 이동통신시스템에서 셀 영역을 벗어난 단말의 통신 설정을위한 장치 및 방법
KR20150062858A (ko) * 2013-11-29 2015-06-08 삼성전자주식회사 중계 장치를 결정하기 위한 전자장치 및 그에 대한 방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201342821A (zh) * 2011-12-08 2013-10-16 Interdigital Patent Holdings 交叉連結建立方法及裝置
US9319127B2 (en) * 2013-08-09 2016-04-19 Electronics And Telecommunications Research Institute Method of relay between devices
US10455400B2 (en) * 2014-06-02 2019-10-22 Qualcomm Incorporated Peer discovery in neighbor awareness networking (NAN) aided data link networks
WO2016021983A1 (ko) * 2014-08-08 2016-02-11 주식회사 아이티엘 단말간 통신을 지원하는 무선 통신 시스템에서 무선 통신 방법 및 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101521894B1 (ko) * 2008-02-20 2015-05-29 삼성전자주식회사 이동통신시스템에서 셀 영역을 벗어난 단말의 통신 설정을위한 장치 및 방법
KR101506295B1 (ko) * 2008-10-06 2015-03-27 삼성전자주식회사 무선 셀룰러 통신 시스템에서 기지국과의 직접 통신이 불가능한 단말의 통신 경로를 재설정하기 위한 장치 및 방법
KR101054077B1 (ko) * 2008-12-18 2011-08-03 인하대학교 산학협력단 단말-중계국 시스템 기반의 데이터 전송 방법 및 이를 위한단말
KR20150022240A (ko) * 2013-08-22 2015-03-04 삼성전자주식회사 이동 통신 시스템에서 고립 사용자 단말기에 대한 디바이스-투-디바이스 통신 기반 서비스 제공 장치 및 방법
KR20150062858A (ko) * 2013-11-29 2015-06-08 삼성전자주식회사 중계 장치를 결정하기 위한 전자장치 및 그에 대한 방법

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180105463A (ko) * 2017-03-15 2018-09-28 한국전자통신연구원 통신 네트워크에서 통신 노드의 동작 방법
KR102287032B1 (ko) * 2017-03-15 2021-08-06 한국전자통신연구원 통신 네트워크에서 통신 노드의 동작 방법
CN109315016B (zh) * 2017-03-24 2021-10-19 华为技术有限公司 一种系统信息传输方法及装置
CN109315016A (zh) * 2017-03-24 2019-02-05 华为技术有限公司 一种系统信息传输方法及装置
EP3592103A4 (en) * 2017-03-24 2020-01-22 Huawei Technologies Co., Ltd. METHOD AND DEVICE FOR TRANSMITTING SYSTEM INFORMATION
US10798641B2 (en) 2017-03-24 2020-10-06 Huawei Technologies Co., Ltd. System information transmission method and apparatus
CN110971354A (zh) * 2018-09-28 2020-04-07 电信科学技术研究院有限公司 单播传输方法、配置方法、终端及网络侧设备
CN110971354B (zh) * 2018-09-28 2022-07-15 大唐移动通信设备有限公司 单播传输方法、配置方法、终端及网络侧设备
CN113972974A (zh) * 2020-07-24 2022-01-25 大唐移动通信设备有限公司 系统信息处理方法、获取方法、装置及终端
WO2022037254A1 (zh) * 2020-08-21 2022-02-24 华为技术有限公司 一种多链路通信方法、业务与链路映射的方法及设备
WO2022060052A1 (ko) * 2020-09-16 2022-03-24 삼성전자 주식회사 차량에 탑재된 통신 장치 및 그 동작 방법
CN116389406A (zh) * 2023-06-05 2023-07-04 上海星思半导体有限责任公司 Ue id的确定方法、ue id范围的发送方法、装置及处理器
CN116389406B (zh) * 2023-06-05 2023-08-15 上海星思半导体有限责任公司 Ue id的确定方法、ue id范围的发送方法、装置及处理器

Also Published As

Publication number Publication date
US20180199390A1 (en) 2018-07-12
US10368381B2 (en) 2019-07-30

Similar Documents

Publication Publication Date Title
WO2017018553A1 (ko) 무선 통신 시스템에서 단말이 다중 링크를 설정하는 방법 및 이를 위한 장치
WO2016140409A1 (ko) 무선 통신 시스템에서 초기 접속을 수행하는 방법 및 이를 위한 장치
WO2018044079A1 (ko) 무선 통신 시스템에서 단말의 사이드링크 제어 정보 전송 방법 및 상기 방법을 이용하는 단말
WO2017191917A1 (ko) 무선 통신 시스템에서 sps 동작을 변경하는 방법 및 장치
WO2017196056A2 (ko) 무선 통신 시스템에서 sib을 요청하는 방법 및 장치
WO2015026111A1 (ko) 무선 통신 시스템에서 중계기 동작 방법 및 장치
WO2015142082A1 (en) Method and apparatus for configuring buffer status report for public safety transmission or vehicle-related transmission in wireless communication system
WO2013191353A1 (ko) 단말 간 통신에서의 버퍼 상태 보고 방법 및 이를 위한 장치
WO2015167266A1 (en) Method and apparatus for handling secondary cell deactivation timer in wireless communication system
WO2016159559A1 (ko) Mcptt에서 단말이 우선 순위를 변경하는 방법 및 장치
WO2014116063A1 (ko) 이동 통신 시스템에서 셀 서비스 영역이 작은 셀에 대한 이동성을 제어하는 방법 및 장치
WO2018088837A1 (ko) 단말이 셀 재선택 절차를 수행하는 방법 및 이를 지원하는 장치
KR20170125296A (ko) 단말의 연결 상태 변경 방법 및 그 장치
WO2018066905A1 (ko) V2x 통신을 수행하는 방법 및 장치
WO2017086720A1 (ko) 무선 통신 시스템에서 단말의 v2x 신호의 전송 방법 및 상기 방법을 이용하는 단말
WO2017052103A1 (en) Method for handling an id collision for a d2d communication system and device therefor
WO2018131935A1 (ko) 근접 기반 무선 통신 방법 및 사용자기기
WO2017034324A1 (ko) 무선 통신 시스템에서 단말의 v2x 신호의 송수신 방법 및 상기 방법을 이용하는 단말
EP2813008A1 (en) Method and apparatus for transmitting/receiving data on multiple carriers in mobile communication system
WO2016144074A1 (ko) 페이징 시그널링을 감소시키기 위한 방법 및 장치
WO2017192018A1 (ko) 무선 통신 시스템에서 라이트 연결 상태에 있는 단말을 페이징하는 방법 및 장치
WO2016153325A1 (ko) V2x 통신에서 사건 정보를 전송하는 방법 및 장치
WO2022131765A1 (en) Method and apparatus for handling sl drx inactivity timer in wireless communication system
WO2017073992A1 (ko) 세션을 제어하는 방법 및 장치
WO2019143146A1 (en) Method and apparatus for performing measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15899699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15899699

Country of ref document: EP

Kind code of ref document: A1