WO2017018335A1 - モータ駆動装置 - Google Patents
モータ駆動装置 Download PDFInfo
- Publication number
- WO2017018335A1 WO2017018335A1 PCT/JP2016/071507 JP2016071507W WO2017018335A1 WO 2017018335 A1 WO2017018335 A1 WO 2017018335A1 JP 2016071507 W JP2016071507 W JP 2016071507W WO 2017018335 A1 WO2017018335 A1 WO 2017018335A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle speed
- torque
- maximum
- vehicle
- command value
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/22—Current control, e.g. using a current control loop
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Definitions
- the present invention relates to a motor drive device, and relates to a technique capable of reducing a sense of discomfort given to a driver of a vehicle equipped with the motor drive device.
- the accelerator opening is linearly converted into a torque command value, and the electric motor is driven with the torque command value of the magnitude via an inverter.
- the change amount of the motor load factor is reduced in a region where the accelerator opening is small, and is increased in a region where the accelerator opening is medium.
- the inverter often performs control to limit the output of the electric motor. In this control, there is a device that reduces the output torque of the electric motor in accordance with an increase in the vehicle speed.
- the indications “100%”, “90%”,..., “50%” represent the ratio of the amount of depression that reaches the maximum torque corresponding to the vehicle speed with respect to the maximum depression amount of the accelerator pedal. .
- the critical speed of this ratio that is, the boundary speed between the ratio of 100% and the ratio less than 100% is set as the specified vehicle speed.
- An object of the present invention is to provide a motor drive device that can prevent a driver from feeling uncomfortable when a driver of a vehicle equipped with a motor drive device operates an accelerator operation means.
- a motor drive device includes an electric motor 5 that drives wheels 2 and 2 provided in a vehicle, vehicle speed detection means 7 that detects a vehicle speed of the vehicle, and a control that controls the electric motor 5.
- Device 6. receives a signal indicating the amount of operation of the accelerator operation means 12 of the vehicle and outputs a drive command, and outputs the drive command output from the host control unit 8 to the vehicle speed detection means.
- the vehicle speed-corresponding torque control means 10 includes an accelerator sensitivity adjustment unit 10a that adjusts according to the vehicle speed detected by the vehicle 7 and outputs the adjusted torque command value as an adjusted drive command, and is output by the vehicle speed-corresponding torque control means 10. And a torque control unit 11 for controlling the torque of the electric motor 5 in accordance with the adjusted drive command.
- the accelerator sensitivity adjusting unit 10a of the vehicle speed-corresponding torque control unit 10 includes the electric motor in which the adjusted torque command value when the operation amount of the accelerator operation unit 12 is the maximum operation amount depends on the vehicle speed and the vehicle speed. 5 and the maximum torque corresponding to the current vehicle speed detected by the vehicle speed detection means 7, which is uniquely determined from the relationship with the maximum torque corresponding to the vehicle speed 5, and the amount of operation of the accelerator operation means 12 is equal to the adjusted torque.
- the drive command is adjusted so that the command value is proportional.
- being uniquely determined means that since the motor maximum output is determined as the specification of the vehicle, the vehicle speed and the torque with respect to the motor maximum output have a one-to-one relationship.
- the relationship between the vehicle speed and the torque is expressed by, for example, an inversely proportional expression.
- the upper control unit 8 receives a signal indicating the operation amount of the accelerator operation means 12 and outputs a drive command.
- the accelerator sensitivity adjustment unit 10a of the vehicle speed corresponding torque control means 10 adjusts the torque command value given to the torque control unit 11 so as to satisfy all of the following conditions (1) and (2) according to the operation amount.
- the torque command value output from the vehicle speed corresponding torque control means 10 to the torque control unit 11 in response to the signal indicating the maximum operation amount of the accelerator operation means 12 corresponds to the vehicle speed and the vehicle speed of the electric motor 5 depending on the vehicle speed. It corresponds to the maximum torque corresponding to the current vehicle speed, which is uniquely determined from the relationship with the maximum torque.
- the adjusted torque command value is proportional to the operation amount of the accelerator operating means 12.
- the vehicle speed corresponding torque control means 10 can give a torque command value corresponding to the operation amount of the accelerator operation means 12 to the torque control unit 11 during acceleration, for example. Specifically, when the driver tries to operate the accelerator operation means 12 from the operation amount during acceleration to the maximum operation amount, this operation amount is reflected in the torque command value. Therefore, drivability is improved and it is possible to prevent the driver from feeling uncomfortable.
- the motor drive device controls the electric motor 5 that drives the wheels 2 and 2 provided in the vehicle, the vehicle speed detection means 7 that detects the vehicle speed of the vehicle, and the electric motor 5. And a control device 6.
- the control device 6 receives a signal indicating the amount of operation of the accelerator operation means 12 of the vehicle and outputs a drive command, and outputs the drive command output from the host control unit 8 to the vehicle speed detection means.
- the vehicle speed-corresponding torque control means 10 includes an accelerator sensitivity adjustment unit 10a that adjusts according to the vehicle speed detected by the vehicle 7 and outputs the adjusted torque command value as an adjusted drive command, and is output by the vehicle speed-corresponding torque control means 10.
- a torque control unit 11 for controlling the torque of the electric motor in accordance with the adjusted drive command.
- the accelerator sensitivity adjustment unit 10a of the vehicle speed corresponding torque control means 10 obtains the adjusted torque command value (T *) for the vehicle speed detected by the vehicle speed detection means 7 based on the following equation (1).
- T * (Tmax ( ⁇ ) / T0) ⁇ T Equation (1)
- Tmax ( ⁇ ) is the maximum torque corresponding to the vehicle speed at the vehicle speed ⁇ , and is a torque determined from the maximum output of the electric motor
- T0 the maximum motor torque
- T the pre-adjustment torque command value.
- the ratio of the vehicle speed corresponding maximum torque (Tmax ( ⁇ )) at the vehicle speed ⁇ to the motor maximum torque (T0) is multiplied by the pre-adjustment torque command value to obtain the adjusted torque command value. (1) and (2) are satisfied.
- the maximum output (W0) of the electric motor 5 is divided by the vehicle speed ( ⁇ ) detected by the vehicle speed detection means 7 and the vehicle speed ( ⁇ )
- the maximum vehicle speed corresponding torque (Tmax ( ⁇ )) may be obtained.
- the specified vehicle speed is obtained by calculation from the maximum output (W0) of the electric motor 5 and the motor maximum torque (T0), for example.
- the torque command value that follows the vehicle speed is accurately calculated as the adjusted torque command value by using the maximum torque corresponding to the vehicle speed.
- the maximum output (W0) of the electric motor 5 is divided by the specified vehicle speed ( ⁇ 0) to obtain the maximum vehicle speed corresponding torque (Tmax) at the vehicle speed ( ⁇ ). ( ⁇ )) may be obtained.
- the processing load is reduced when the vehicle speed is lower than the specified vehicle speed.
- the accelerator sensitivity adjustment unit 10a may use the current vehicle speed-corresponding maximum torque as the adjusted torque command value. Also in this case, the calculation processing load is reduced.
- the accelerator sensitivity adjustment unit 10a may obtain the adjusted torque command value by using a maximum vehicle speed corresponding torque that is inversely proportional to the vehicle speed.
- the maximum torque corresponding to the vehicle speed may be constant without depending on the vehicle speed depending on the range of the vehicle speed. Further, based on the output characteristics of the inverter and the motor, a maximum vehicle speed corresponding torque with respect to the vehicle speed may be obtained.
- the vehicle speed-corresponding maximum torque with respect to the vehicle speed may be determined by a result of, for example, a test or a simulation.
- FIG. 1 is a block diagram of a conceptual configuration showing, in plan view, an electric vehicle equipped with a motor drive device according to a first embodiment of the present invention. It is a block diagram of the control system of the motor drive device of FIG. It is a block diagram which shows each control part etc. of the motor drive device of FIG. 1 in detail.
- FIG. 1 is a block diagram of a conceptual configuration showing, in plan view, an electric vehicle equipped with a motor drive device according to this embodiment.
- This electric vehicle is a four-wheeled vehicle.
- the left and right rear wheels of the vehicle body 1 are drive wheels 2 and 2, and the left and right front wheels are driven wheels 3 and 3.
- the front wheels 3 and 3 are steering wheels.
- the left and right front wheels 3 and 3 can be steered via a steering mechanism (not shown) and are steered by a steering means 4 such as a steering wheel.
- the left and right drive wheels 2 and 2 are of a one-motor onboard type driven by a single electric motor 5 installed in the vehicle body 1.
- Each wheel 2 and 3 is provided with a brake (not shown).
- the motor drive device 100 includes the electric motor 5, the control device 6, and vehicle speed detection means 7 (FIG. 2) for detecting the vehicle speed.
- a control device 6 that controls the electric motor 5 is mounted on the vehicle body 1.
- the control device 6 includes an ECU 8 that is a host control unit and an inverter device 9.
- the inverter device 9 includes a vehicle speed corresponding torque control means 10 and a torque control unit 11. Between the ECU 8 and the torque control unit 11, a vehicle speed corresponding torque control means 10, which will be described later, is interposed.
- the ECU 8 performs overall control of the entire vehicle, and a drive command output from the ECU 8 is given to the vehicle speed corresponding torque control means 10.
- the ECU 8 includes a computer, a program executed on the computer, various electronic circuits, and the like.
- FIG. 2 is a block diagram of the control system of the motor drive device.
- the ECU 8 has a drive command generation unit 8a and a power running / regeneration control command unit 8b.
- the drive command generation unit 8a is provided with an acceleration command (power running) output from the accelerator operation means 12, a deceleration command (regeneration) output from the brake operation means 13 (see FIG. 1), and steering by the steering means 4 (see FIG. 1). From the turning command output by the steering angle sensor 4a for detecting the angle, an acceleration / deceleration command to be given to the electric motor 5 for traveling is generated as a drive command and output to the vehicle speed corresponding torque control means 10.
- the power running / regenerative control command unit 8 b gives a command flag for designating either power running or regeneration to the vehicle speed corresponding torque control means 10.
- the accelerator operating means 12 has an accelerator pedal 12a and an accelerator sensor 12b that detects the amount of depression (operation amount) of the accelerator pedal 12a.
- the brake operation means 13 includes a brake pedal 13a and a brake sensor 13b that detects the amount of depression of the brake pedal 13a (see FIG. 1).
- FIG. 3 is a block diagram showing in detail each control unit and the like of the motor drive device.
- the torque control unit 11 torque-controls the electric motor 5 in accordance with the drive command output from the drive command generation unit 8 a of the ECU 8 and passed through the vehicle speed corresponding torque control means 10.
- the torque control unit 11 includes a power circuit unit 14 provided for the electric motor 5 and a motor control unit 15 that controls the power circuit unit 14.
- the power circuit unit 14 includes an inverter 14a that converts DC power of the battery 16 into three-phase AC power used for powering or regeneration of the electric motor 5, and a PWM driver 14b that controls the inverter 14a.
- the inverter 14a is composed of a plurality of semiconductor switching elements, and the PWM driver 14b performs pulse width modulation on the input current command and gives an on / off command to each of the semiconductor switching elements.
- the electric motor 5 is a three-phase synchronous motor.
- the electric motor 5 is provided with a rotation angle sensor 17 that detects a rotation angle as an electric angle of the motor rotor.
- the motor control unit 15 is provided with speed calculation means 18.
- the speed calculation means 18 can calculate the vehicle speed by differentiating the rotation angle detected by the rotation angle sensor 17.
- the rotation angle sensor 17 and the speed calculation means 18 constitute the vehicle speed detection means 7.
- the vehicle speed detecting means 7 is not limited to this, and the vehicle speed may be detected by any method.
- the motor control unit 15 includes a current PI control unit 19, a three-phase two-phase conversion unit 20, and a two-phase three-phase conversion unit 21.
- the motor control unit 15 includes a computer, a program executed on the computer, and an electronic circuit.
- the motor control unit 15 generates a command current to the electric motor 5 based on the adjusted torque command value given from the vehicle speed corresponding torque control means 10 and the command flag.
- the motor control unit 15 increases the power running command torque as the depression amount of the accelerator pedal 12a (FIG. 2) increases.
- the motor control unit 15 increases the regenerative command torque as the amount of depression of the brake pedal 13a (FIG. 1) increases.
- the vehicle speed corresponding torque control means 10 includes an accelerator sensitivity adjustment unit 10a and a command current generation unit 10b.
- the accelerator sensitivity adjustment unit 10a adjusts the torque command value given to the torque control unit 11 so as to satisfy all of the following conditions (1) and (2) according to the depression amount of the accelerator pedal 12a (FIG. 2).
- the vehicle speed corresponding torque control means 10 includes a computer, a program executed on the computer, various electronic circuits, and the like.
- the adjusted torque command value output from the vehicle speed corresponding torque control means 10 to the torque control unit 11 in response to a signal indicating the maximum depression amount (maximum operation amount) of the accelerator pedal 12a (FIG. 2) is the vehicle speed. This corresponds to the vehicle speed maximum torque for the current vehicle speed, which is uniquely determined from the relationship with the vehicle speed maximum torque of the electric motor 5 depending on the vehicle speed.
- the adjusted torque command value is proportional to the depression amount of the accelerator pedal 12a (FIG. 2).
- FIG. 4 is a diagram showing the relationship between the depression amount of the accelerator pedal and the adjusted torque command value at an arbitrary vehicle speed.
- the torque command value is adjusted so that the depression amount, which is the operation amount of the accelerator pedal 12a (FIG. 2), is proportional to the adjusted torque command value.
- the accelerator sensitivity adjustment unit 10a (FIG. 3) sets the torque command value given to the torque control unit 11 (FIG. 3) so that the torque command value increases linearly as the depression amount of the accelerator pedal 12a (FIG. 2) increases. adjust.
- FIG. 5 is a diagram showing the relationship between the vehicle speed and the maximum torque corresponding to the vehicle speed by this motor drive device.
- the accelerator sensitivity adjustment unit 10a (FIG. 3) calculates the current maximum vehicle speed corresponding torque by using the relationship La of maximum vehicle speed corresponding to the maximum torque decreasing as the vehicle speed increases when the vehicle speed exceeds the specified vehicle speed ( ⁇ 0). You may ask.
- the relationship La of the maximum torque corresponding to the vehicle speed is stored in a rewritable manner in the storage means 22 (FIG. 3) provided in the inverter device 9, for example.
- the vehicle speed-related maximum torque relationship La may be constituted by a function that outputs a vehicle speed-corresponding maximum torque (Tmax ( ⁇ )) at the vehicle speed ⁇ with respect to an input of the vehicle speed ( ⁇ ).
- a mapping table indicating a correspondence relationship between the vehicle speed ( ⁇ ) and the maximum vehicle speed corresponding torque (Tmax) may be stored in the storage unit 22.
- the maximum value of the torque command value (maximum torque corresponding to the vehicle speed) decreases as the vehicle speed increases.
- the torque command value at the maximum depression amount of the accelerator pedal (100%, that is, full stroke) will be the maximum vehicle speed corresponding torque at the current vehicle speed (maximum value of the torque command value). Adjusted to That is, the maximum acceleration performance cannot be obtained unless the accelerator pedal is depressed to the maximum depression amount.
- the accelerator pedal is loosened from the maximum depression amount (100%), the electric vehicle decelerates following the loosening ratio (for example, the maximum depression amount 100% to half depression amount 50%).
- the acceleration / deceleration of the vehicle follows the amount of depression of the accelerator pedal, similarly to the engine vehicle of the following reference example.
- FIG. 9 is a diagram showing the relationship between the vehicle speed and the torque command value for the engine vehicle of the reference example. Also in the engine vehicle of the reference example, when the vehicle speed exceeds the specified vehicle speed, the maximum value of the torque command value decreases in inverse proportion as the vehicle speed increases. Regardless of the vehicle speed, the torque command value at the maximum depression amount (100%) of the accelerator pedal matches the vehicle speed-corresponding maximum torque at the current vehicle speed. When the accelerator pedal is loosened from the maximum depression amount (100%), the vehicle decelerates following the loosening rate.
- the accelerator sensitivity adjustment unit 10a outputs a torque command value according to the depression amount of the accelerator pedal 12a (FIG. 2).
- the torque command value in this case is adjusted as follows.
- a formula for calculating the output (W) of the electric motor 5 is shown in Formula (2).
- W ⁇ ⁇ T
- T pre-adjustment torque command value
- the pre-adjustment torque command value (T) is obtained by applying the relationship defined for the drive command given from the drive command generation unit 8a.
- the predetermined relationship is acquired in advance based on, for example, a result of a test or a simulation.
- the pre-adjustment torque command value (T) is proportional to the depression amount of the accelerator pedal 12a, and this relationship between the pre-adjustment torque command value (T) and the depression amount is represented by the vehicle speed ( ⁇ ) Is constant regardless of.
- the accelerator sensitivity adjustment unit 10a determines whether or not the current vehicle speed exceeds a specified vehicle speed ( ⁇ 0: for example, several tens of km / h).
- the specified vehicle speed ( ⁇ 0) is obtained by dividing the maximum output (W0) of the electric motor 5 by the motor maximum torque (T0).
- the accelerator sensitivity adjustment unit 10a calculates a value (W0 / ⁇ ) obtained by dividing the maximum output (W0) of the electric motor 5 by the current vehicle speed ( ⁇ ).
- the maximum torque corresponding to the vehicle speed (Tmax ( ⁇ )) at the vehicle speed ( ⁇ ) is used.
- the accelerator sensitivity adjustment unit 10a obtains an adjusted torque command value (T *) based on the following equation (3).
- T * (Tmax ( ⁇ ) / T0) ⁇ T Equation (3)
- Tmax ( ⁇ ) vehicle speed corresponding maximum torque at vehicle speed ⁇
- T0 motor maximum torque
- T pre-adjustment torque command value.
- the torque command value following the vehicle speed is accurately calculated as the adjusted torque command value using the maximum torque corresponding to the vehicle speed.
- the accelerator sensitivity adjustment unit 10a determines a value (W0 / ⁇ 0) obtained by dividing the maximum output (W0) of the electric motor 5 by the specified vehicle speed ( ⁇ 0) as the maximum corresponding to the vehicle speed. Torque (Tmax ( ⁇ )). Next, the accelerator sensitivity adjustment unit 10a obtains an adjusted torque command value (T *) based on the above equation (3). Instead, the pre-adjustment command value T may be the adjusted torque command value (T *). As a result, the processing load is reduced when the vehicle speed is lower than the specified vehicle speed. However, when the adjusted torque command value T * exceeds the motor maximum torque (T0), the accelerator sensitivity adjustment unit 10a sets the motor maximum torque (T0) as the adjusted torque command value (T *).
- the command current generation unit 10b generates a primary current (Ia) and a current advance angle ( ⁇ ) of the electric motor 5 based on the adjusted torque command value T *. Further, the command current generation unit 10b has two values of the d-axis current (field component) Id * and the q-axis current (torque component) Iq * based on the values of the primary current (Ia) and the current advance angle ( ⁇ ). Generate command current.
- the current PI control unit 19 calculates the values of the d-axis current Id * and the q-axis current Iq * output from the command current generation unit 10b and the motor current and the rotor angle of the electric motor by the three-phase / two-phase conversion unit 20. From the two-phase currents Id and Iq, the control values Vdc and Vqc of the voltage value are calculated by PI control.
- the three-phase / two-phase converter 20 converts the three-phase currents Iu, Iv, and Iw into the two-phase currents Id and Iq.
- the rotor angle of the electric motor 5 used for this conversion is acquired from the rotation angle sensor 17.
- the two-phase three-phase converter 21 converts the input two-phase control amounts Vdc, Vqc into three-phase PWM duties Vu, Vv, Vw using the rotor angle acquired from the rotation angle sensor 17. .
- the power circuit unit 14 performs PWM control of the inverter according to the PWM duties Vu, Vv, and Vw, and drives the electric motor 5.
- FIG. 6 is a flowchart showing a process of adjusting the torque command value by the motor drive device according to the present embodiment. While the motor driving apparatus is not operating, the following steps S1 and S2 are executed. First, the accelerator sensitivity adjustment unit 10a of the vehicle speed corresponding torque control means 10 acquires the maximum output (W0) and the motor maximum torque (T0) of the electric motor 5 (step S1). The maximum output of the electric motor 5 is, for example, several tens kW, and more specifically 30 kW. These maximum output (W0) and maximum motor torque (T0) are rated values specific to the electric motor, and are stored in advance in the storage means 22, and are read out as necessary.
- W0 maximum output
- T0 maximum motor torque
- the accelerator sensitivity adjustment unit 10a calculates a specified vehicle speed ( ⁇ 0) (step S2).
- the specified vehicle speed ( ⁇ 0) is obtained by dividing the maximum output (W0) of the electric motor 5 by the motor maximum torque (T0).
- the calculated specified vehicle speed ( ⁇ 0) may be stored in the storage unit 12.
- the accelerator sensitivity adjustment unit 10a detects the amount of depression of the accelerator pedal 12a (accelerator signal A) from the accelerator sensor 12b (step S3).
- the accelerator sensitivity adjustment unit 10a acquires the vehicle speed ( ⁇ ) from the vehicle speed detection means 7 (step S4).
- the accelerator sensitivity adjustment unit 10a determines whether or not the current vehicle speed ( ⁇ ), that is, the vehicle speed ( ⁇ ) acquired by the vehicle speed detection means 7, exceeds the specified vehicle speed ( ⁇ 0) (step S5).
- the accelerator sensitivity adjustment unit 10a obtains the maximum vehicle speed torque (Tmax ( ⁇ )) (step S6). Specifically, the accelerator sensitivity adjustment unit 10a uses a function La of the maximum vehicle speed correspondence relationship La stored in the storage unit 22, and the like, for example, the maximum vehicle speed correspondence torque ( ⁇ ) acquired in step S4 ( ⁇ ). Tmax ( ⁇ )) may be acquired. Next, the torque command value after adjustment is obtained by multiplying the pre-adjustment torque command value (T) by the value obtained by dividing the vehicle speed-corresponding maximum torque (Tmax ( ⁇ )) by the motor maximum torque (T0) acquired in step S1. (T *) is calculated (step S7). That is, the calculation of the above formula (3) is executed. Thereafter, the process returns to step S3.
- step S5 When it is determined that the current vehicle speed ( ⁇ ) is equal to or lower than the specified vehicle speed (No in step S5), the accelerator sensitivity adjustment unit 10a sets the pre-adjustment command value T as the adjusted torque command value T * (step S8). . However, in step S8, when the adjusted torque command value T * exceeds the motor maximum torque (T0), the accelerator sensitivity adjustment unit 10a sets the motor maximum torque (T0) as the adjusted torque command value T *. . Thereafter, the process returns to step S3. Note that the current vehicle speed ( ⁇ ) is not compared with the specified vehicle speed, that is, step S5 is omitted, and the motor-speed maximum torque (Tmax ( ⁇ )) acquired in step S1 regardless of the current vehicle speed ( ⁇ ).
- the torque command value (T *) after adjustment may be calculated by multiplying the torque command value (T) before adjustment by the value divided by the maximum torque (T0).
- Tmax ( ⁇ ) the maximum torque corresponding to the vehicle speed (Tmax ( ⁇ )) is equal to the maximum motor torque (T0). Therefore, the adjusted torque command value (T *) is the pre-adjustment command value (T ).
- the vehicle speed corresponding torque control means 10 can give a torque command value corresponding to the depression amount of the accelerator pedal 12a to the torque control unit 11 during acceleration, for example. Specifically, when the driver tries to operate the accelerator pedal 12a from the depression amount during acceleration to the maximum depression amount, the depression amount is reflected in the torque command value. When the driver loosens the accelerator pedal 12a from the maximum depression amount, the electric vehicle decelerates following the loosening rate. Thus, the acceleration / deceleration of the vehicle follows the amount of depression of the accelerator pedal 12a. Therefore, drivability is improved and it is possible to prevent the driver from feeling uncomfortable.
- the electric motor 5 may constitute an in-wheel motor drive device IWM.
- the left and right drive wheels 2, 2 (FIG. 1) are driven by independent electric motors 5, respectively.
- Each in-wheel motor drive device IWM has the electric motor 5, the reduction gear 24, and the wheel bearing 25, respectively, These are arrange
- a brake rotor 26 constituting a brake is fixed to the flange portion of the hub wheel 25a of the wheel bearing 25, and the brake rotor 26 rotates integrally with the drive wheel 2.
- the electric motor 5 is, for example, an embedded magnet type synchronous motor in which a permanent magnet is built in the core portion of the rotor 5a.
- the electric motor 5 is a motor in which a radial gap is provided between the stator 5 b fixed to the housing 27 and the rotor 5 a attached to the rotation output shaft 28.
- the in-wheel motor drive device IWM As the reducer 24 of the in-wheel motor drive device IWM, a cycloid type reducer, a planetary reducer, a parallel two-axis reducer, and other reducers can be applied. Instead, the in-wheel motor drive device IWM may be a so-called direct motor type that does not employ a reduction gear.
- the vehicle on which this motor drive device is mounted has two left and right rear wheels 2 and 2 independent by two electric motors 5 and 5 provided on the vehicle body 1.
- a two-motor on-board type that is driven in this manner may be used.
- a front-wheel drive type electric vehicle that drives the left and right front wheels in a 1-motor on-board format, a 2-motor on-board format, or an in-wheel motor drive format may be applied.
- a four-wheel drive type electric vehicle that drives the front, rear, left, and right wheels may be applied.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
モータ駆動装置を搭載した車両の運転者がアクセル操作手段を操作するとき、運転者に違和感を与えることを防止できるモータ駆動装置を提供する。このモータ駆動装置は、電動モータ(5)、車速検出手段(7)、および制御装置(6)を有する。制御装置(6)は、ECU(8)、車速対応トルク制御手段(10)、およびトルク制御部(11)を有する。車速対応トルク制御手段(10)は、アクセル操作手段(12)の最大操作量を示す信号を受けて車速対応トルク制御手段(10)からトルク制御部(11)に出力される調整後トルク指令値が、車速と、車速に依存する車速対応最大トルクとの関係から一意に定まる、現在の車速に対する車速対応最大トルクに一致し、かつアクセル操作手段(12)の操作量に、調整後トルク指令値が比例するように、駆動指令を調整するアクセル感度調整部を有する。
Description
本出願は、2015年7月30日出願の特願2015-150469の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
この発明は、モータ駆動装置に関し、このモータ駆動装置を搭載した車両の運転者に与えられる違和感を低減し得る技術に関する。
電気自動車において、一般に、アクセル開度は、リニアにトルク指令値へ変換され、インバータを経由して、その大きさのトルク指令値で電動モータが駆動される。特許文献1に記載の制御装置では、アクセル開度が小さい領域ではモータ負荷率の変化量を小さくし、アクセル開度が中程度の領域では大きくなるようにしている。但し、インバータでは、電動モータの出力に制限を掛ける制御を行うことが多い。この制御では、車速の増加に応じて、電動モータの出力トルクを減少させる装置がある。
車速の増加に応じて電動モータの出力トルクを減少させる装置では、アクセル開度に対応するトルク指令値が、電動モータの最大トルク(モータ最大トルク)を上回った分のアクセル踏込量は、トルクを発生させない余分の踏込量となる。この踏込みによって何の応答も得られないため、この電気自動車の運転者に違和感が与えられる。図10に示すように、従来の電気自動車では、加速時に、アクセルペダルが半分強踏込まれただけで、車速対応最大トルクに到達してしまう場合がある。
同図10において、「100%」,「90%」,…,「50%」の表示は、それぞれ、アクセルペダルの最大踏込み量に対して、車速対応最大トルクに到達する踏込量の割合を表す。この割合の臨界点、つまり100%の割合と100%を下回る割合との境界の速度が、規定車速とされる。車速が規定車速を超えている場合に、アクセルペダルが最大踏込み量に対して、ある割合(例えば、90%~50%)踏込まれると、その時点で車速対応最大トルクに到達する。この後、運転者がさらにアクセルペダルを踏み増ししても、実際に発生するトルクは増大しない。その結果として、運転者の操作が実際のトルクの変動として現れず、運転性が悪化したように運転者は感じる。このため、運転者に違和感が与えられる。
この発明の目的は、モータ駆動装置を搭載した車両の運転者がアクセル操作手段を操作するとき、運転者に違和感が与えられることを防止できるモータ駆動装置を提供することである。
以下、便宜上理解を容易にするために、実施形態の符号を参照して説明する。
この発明の一構成に係るモータ駆動装置は、車両に設けられた車輪2,2を駆動する電動モータ5と、前記車両の車速を検出する車速検出手段7と、前記電動モータ5を制御する制御装置6とを備える。前記制御装置6は、前記車両のアクセル操作手段12の操作量を示す信号を受けて駆動指令を出力する上位制御部8と、この上位制御部8から出力された駆動指令を、前記車速検出手段7によって検出される車速に応じて調整して調整後トルク指令値を調整後駆動指令として出力するアクセル感度調整部10aを含む車速対応トルク制御手段10と、前記車速対応トルク制御手段10によって出力された調整後駆動指令に従って前記電動モータ5をトルク制御するトルク制御部11とを有する。
この発明の一構成に係るモータ駆動装置は、車両に設けられた車輪2,2を駆動する電動モータ5と、前記車両の車速を検出する車速検出手段7と、前記電動モータ5を制御する制御装置6とを備える。前記制御装置6は、前記車両のアクセル操作手段12の操作量を示す信号を受けて駆動指令を出力する上位制御部8と、この上位制御部8から出力された駆動指令を、前記車速検出手段7によって検出される車速に応じて調整して調整後トルク指令値を調整後駆動指令として出力するアクセル感度調整部10aを含む車速対応トルク制御手段10と、前記車速対応トルク制御手段10によって出力された調整後駆動指令に従って前記電動モータ5をトルク制御するトルク制御部11とを有する。
この車速対応トルク制御手段10の前記アクセル感度調整部10aは、前記アクセル操作手段12の操作量が最大操作量である際における前記調整後トルク指令値が、車速と、車速に依存する前記電動モータ5の車速対応最大トルクとの関係から一意に定まる、前記車速検出手段7によって検出される現在の車速に対する車速対応最大トルクに一致し、かつ前記アクセル操作手段12の操作量に、前記調整後トルク指令値が比例するように、前記駆動指令を調整する。ここで、一意に定まるとは、車両の仕様としてモータ最大出力が決められているため、そのモータ最大出力についての車速とトルクとが一対一の関係を有することを意味する。車速とトルクとの関係は、例えば、反比例の式で表される。
この構成によると、運転者がアクセル操作手段12を操作すると、上位制御部8は、アクセル操作手段12の操作量の信号を受けて駆動指令を出力する。車速対応トルク制御手段10のアクセル感度調整部10aは、前記操作量に応じて、以下の条件(1),(2)を全て満たすようにトルク制御部11に与えられるトルク指令値を調整する。
(1)アクセル操作手段12の最大操作量を示す信号を受けて車速対応トルク制御手段10からトルク制御部11に出力されるトルク指令値が、車速と、車速に依存する電動モータ5の車速対応最大トルクとの関係から一意に定まる、現在の車速に対する車速対応最大トルクに一致する。
(2)アクセル操作手段12の操作量に調整後のトルク指令値が比例する。
(2)アクセル操作手段12の操作量に調整後のトルク指令値が比例する。
したがって、車速対応トルク制御手段10は、例えば、加速時に、アクセル操作手段12の操作量に応じたトルク指令値をトルク制御部11に与えることができる。具体的には、運転者がアクセル操作手段12を加速途中の操作量から最大操作量まで操作しようとするとき、この操作量分がトルク指令値に反映される。したがって、ドライバビリティが向上し、運転者に違和感を与えることを防止できる。
この発明の別の構成に係るモータ駆動装置は、車両に設けられた車輪2,2を駆動する電動モータ5と、前記車両の車速を検出する車速検出手段7と、前記電動モータ5を制御する制御装置6とを備える。前記制御装置6は、前記車両のアクセル操作手段12の操作量を示す信号を受けて駆動指令を出力する上位制御部8と、この上位制御部8から出力された駆動指令を、前記車速検出手段7によって検出される車速に応じて調整して調整後トルク指令値を調整後駆動指令として出力するアクセル感度調整部10aを含む車速対応トルク制御手段10と、前記車速対応トルク制御手段10によって出力された調整後駆動指令に従って前記電動モータをトルク制御するトルク制御部11とを有する。
前記車速対応トルク制御手段10の前記アクセル感度調整部10aが、前記車速検出手段7によって検出された車速について、以下の式(1)に基づいて前記調整後トルク指令値(T*)を求める。
T*=(Tmax(ω)/T0)×T 式(1)
但し、Tmax(ω):車速ω時の車速対応最大トルクであって、前記電動モータの最大出力から決まるトルクであり、T0:モータ最大トルクであり、T:調整前トルク指令値である。
T*=(Tmax(ω)/T0)×T 式(1)
但し、Tmax(ω):車速ω時の車速対応最大トルクであって、前記電動モータの最大出力から決まるトルクであり、T0:モータ最大トルクであり、T:調整前トルク指令値である。
この構成によると、モータ最大トルク(T0)に対する、車速ω時の車速対応最大トルク(Tmax(ω))の比を、調整前トルク指令値に乗じて調整後トルク指令値を求めるため、上記条件(1)および(2)が満足される。
前記車速検出手段7によって検出された車速が規定車速を超えるとき、前記電動モータ5の最大出力(W0)を前記車速検出手段7によって検出された車速(ω)で除して車速(ω)時の前記車速対応最大トルク(Tmax(ω))が求められても良い。前記規定車速は、例えば、前記電動モータ5の最大出力(W0)とモータ最大トルク(T0)とから計算により求められる。
この構成によると、車速が時々刻々と変化する場合においても、車速対応最大トルクを用いて、車速に追従したトルク指令値が調整後のトルク指令値として精度良く算出される。
前記車速検出手段によって検出された車速が規定車速以下のとき、前記電動モータ5の最大出力(W0)を前記規定車速(ω0)で除して車速(ω)時の前記車速対応最大トルク(Tmax(ω))が求められても良い。これにより、規定車速以下のとき演算処理負荷が低減される。
好ましくは、前記アクセル感度調整部10aは、前記調整後トルク指令値が前記現在の車速対応最大トルクを超える場合に、前記現在の車速対応最大トルクを調整後のトルク指令値としても良い。この場合にも、演算処理負荷が低減される。
前記アクセル感度調整部10aは、車速に反比例する車速対応最大トルクを用いて、前記調整後トルク指令値を求めても良い。また前記車速対応最大トルクは、車速の範囲によっては、車速に依存せずに一定であってもよい。またインバータおよびモータの出力特性に基づいて、車速に対する車速対応最大トルクが得られてもよい。車速に対する前記車速対応最大トルクは、例えば、試験やシミュレーション等の結果により定められてもよい。
請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の第1の実施形態に係るモータ駆動装置を搭載した電気自動車を平面図で示す概念構成のブロック図である。
図1のモータ駆動装置の制御系のブロック図である。
図1のモータ駆動装置の各制御部等を詳細に示すブロック図である。
図1の電気自動車のアクセルペダルの踏込み量と調整後のトルク指令値との関係を示す図である。
図1のモータ駆動装置による車速と車速対応最大トルクとの関係を示す図である。
図1のモータ駆動装置によるトルク指令値の調整を示すフローチャートである。
この発明の第2の実施形態に係るモータ駆動装置の断面図である。
この発明の第3の実施形態に係るモータ駆動装置を搭載した電気自動車を示す図である。
参考例のエンジン車による車速とトルク指令値との関係を示す図である。
従来例の電気自動車の車速と車速対応最大トルクとの関係を示す図である。
この発明の第1の実施形態を図1ないし図6と共に説明する。
図1は、この実施形態に係るモータ駆動装置を搭載した電気自動車を平面図で示す概念構成のブロック図である。この電気自動車は四輪自動車であり、車体1の左右の後輪が駆動輪2,2とされ、左右の前輪が従動輪3,3とされている。前輪3,3は操舵輪である。左右の前輪3,3は、図示しない転舵機構を介して転舵可能であり、ハンドル等の操舵手段4により操舵される。左右の駆動輪2,2は、この実施形態では、車体1に設置される一台の電動モータ5により駆動される1モータオンボード形式とされる。各車輪2,3には、図示外のブレーキが設けられている。モータ駆動装置100は、前記電動モータ5と、制御装置6と、車速を検出する車速検出手段7(図2)とを有する。
図1は、この実施形態に係るモータ駆動装置を搭載した電気自動車を平面図で示す概念構成のブロック図である。この電気自動車は四輪自動車であり、車体1の左右の後輪が駆動輪2,2とされ、左右の前輪が従動輪3,3とされている。前輪3,3は操舵輪である。左右の前輪3,3は、図示しない転舵機構を介して転舵可能であり、ハンドル等の操舵手段4により操舵される。左右の駆動輪2,2は、この実施形態では、車体1に設置される一台の電動モータ5により駆動される1モータオンボード形式とされる。各車輪2,3には、図示外のブレーキが設けられている。モータ駆動装置100は、前記電動モータ5と、制御装置6と、車速を検出する車速検出手段7(図2)とを有する。
制御系について説明する。
車体1には、電動モータ5を制御する制御装置6が搭載されている。この制御装置6は、上位制御部であるECU8と、インバータ装置9とを有する。インバータ装置9は、車速対応トルク制御手段10と、トルク制御部11とを含む。ECU8とトルク制御部11との間に、後述する車速対応トルク制御手段10を介在させている。ECU8は、自動車全般の統括制御を行い、このECU8から出力された駆動指令が車速対応トルク制御手段10に与えられる。ECU8は、コンピュータとこれに実行されるプログラム、並びに各種の電子回路等で構成される。
車体1には、電動モータ5を制御する制御装置6が搭載されている。この制御装置6は、上位制御部であるECU8と、インバータ装置9とを有する。インバータ装置9は、車速対応トルク制御手段10と、トルク制御部11とを含む。ECU8とトルク制御部11との間に、後述する車速対応トルク制御手段10を介在させている。ECU8は、自動車全般の統括制御を行い、このECU8から出力された駆動指令が車速対応トルク制御手段10に与えられる。ECU8は、コンピュータとこれに実行されるプログラム、並びに各種の電子回路等で構成される。
図2は、モータ駆動装置の制御系のブロック図である。図1および図2に示すように、ECU8は、駆動指令生成部8aと、力行・回生制御指令部8bとを有する。駆動指令生成部8aは、アクセル操作手段12の出力する加速指令(力行)と、ブレーキ操作手段13(図1参照)の出力する減速指令(回生)と、操舵手段4(図1参照)の操舵角を検出する操舵角センサ4aの出力する旋回指令とから、走行用の電動モータ5に与える加減速指令を駆動指令として生成し、車速対応トルク制御手段10へ出力する。力行・回生制御指令部8bは、力行と回生のいずれかを指定するための指令フラグを、車速対応トルク制御手段10に与える。
アクセル操作手段12は、アクセルペダル12aと、このアクセルペダル12aの踏込み量(操作量)を検出するアクセルセンサ12bとを有する。ブレーキ操作手段13は、ブレーキペダル13aと、このブレーキペダル13aの踏込み量を検出するブレーキセンサ13bとを有する(図1参照)。
図3は、このモータ駆動装置の各制御部等を詳細に示すブロック図である。
トルク制御部11は、ECU8の駆動指令生成部8aから出力されて車速対応トルク制御手段10を経た駆動指令に従って、電動モータ5をトルク制御する。このトルク制御部11は、電動モータ5に対して設けられたパワー回路部14と、このパワー回路部14を制御するモータコントロール部15とを有する。パワー回路部14は、バッテリ16の直流電力を電動モータ5の力行または回生に用いる3相の交流電力に変換するインバータ14aと、このインバータ14aを制御するPWMドライバ14bとを有する。前記インバータ14aは、複数の半導体スイッチング素子で構成され、前記PWMドライバ14bは、入力された電流指令をパルス幅変調し、前記各半導体スイッチング素子にオンオフ指令を与える。
トルク制御部11は、ECU8の駆動指令生成部8aから出力されて車速対応トルク制御手段10を経た駆動指令に従って、電動モータ5をトルク制御する。このトルク制御部11は、電動モータ5に対して設けられたパワー回路部14と、このパワー回路部14を制御するモータコントロール部15とを有する。パワー回路部14は、バッテリ16の直流電力を電動モータ5の力行または回生に用いる3相の交流電力に変換するインバータ14aと、このインバータ14aを制御するPWMドライバ14bとを有する。前記インバータ14aは、複数の半導体スイッチング素子で構成され、前記PWMドライバ14bは、入力された電流指令をパルス幅変調し、前記各半導体スイッチング素子にオンオフ指令を与える。
電動モータ5は3相の同期モータである。電動モータ5には、そのモータロータの電気角としての回転角度を検出する回転角度センサ17が設けられている。モータコントロール部15には、速度計算手段18が設けられている。速度計算手段18は、回転角度センサ17で検出された回転角度を微分することにより車速を計算し得る。本実施形態では、回転角度センサ17と速度計算手段18とによって、車速検出手段7が構成される。ただし、車速検出手段7は、これに限定されるわけものではなく、いかなる手法によって車速が検出されてもよい。
モータコントロール部15は、電流PI制御部19と、3相2相変換部20と、2相3相変換部21とを有する。モータコントロール部15は、コンピュータとこれに実行されるプログラム、および電子回路により構成される。このモータコントロール部15は、車速対応トルク制御手段10から与えられる調整後のトルク指令値および前記指令フラグにより、電動モータ5への指令電流を生成する。モータコントロール部15は、前記指令フラグにより力行制御が選択されている場合、アクセルペダル12a(図2)の踏込み量が大きくなる程、力行指令トルクを増加させる。モータコントロール部15は、前記指令フラグにより回生制御が選択されている場合、ブレーキペダル13a(図1)の踏込み量が大きくなる程、回生指令トルクを増加させる。
車速対応トルク制御手段10は、アクセル感度調整部10aと、指令電流生成部10bとを有する。アクセル感度調整部10aは、アクセルペダル12a(図2)の踏込み量に応じて、以下の条件(1),(2)を全て満たすようにトルク制御部11に与えられるトルク指令値を調整する。車速対応トルク制御手段10は、コンピュータとこれに実行されるプログラム、並びに各種の電子回路等で構成される。
(1)アクセルペダル12a(図2)の最大踏込み量(最大操作量)を示す信号を受けて車速対応トルク制御手段10からトルク制御部11に出力される調整後のトルク指令値が、車速と、車速に依存する電動モータ5の車速対応最大トルクとの関係から一意に定まる、現在の車速に対する車速対応最大トルクに一致する。
(2)アクセルペダル12a(図2)の踏込み量に調整後のトルク指令値が比例する。
(2)アクセルペダル12a(図2)の踏込み量に調整後のトルク指令値が比例する。
ここで図4は、任意の車速における、アクセルペダルの踏込み量と調整後のトルク指令値との関係を示す図である。以下、図3も参照しつつ説明する。アクセルペダル12a(図2)の操作量である踏込み量と、調整後のトルク指令値とが比例関係になるように、トルク指令値が調整される。アクセル感度調整部10a(図3)は、アクセルペダル12a(図2)の踏込み量が増えるに従ってトルク指令値がリニアに増加するように、トルク制御部11(図3)に与えられるトルク指令値を調整する。
図5は、このモータ駆動装置による車速と車速対応最大トルクとの関係を示す図である。アクセル感度調整部10a(図3)は、規定車速(ω0)を超えると車速が速くなるに従って最大トルクが低下する車速対応最大トルクの関係Laを用いて、前記現在の車速対応最大トルクを計算により求めても良い。この場合、車速対応最大トルクの関係Laは、例えば、インバータ装置9に設けられる記憶手段22(図3)に書換え可能に記憶される。車速対応最大トルクの関係Laは、車速(ω)の入力に対して車速ω時の車速対応最大トルク(Tmax(ω))を出力する関数から構成されてもよい。代わりに、記憶手段22に、車速(ω)と車速対応最大トルク(Tmax)との対応関係を示すマッピングテーブルが記憶されてもよい。
この車速対応最大トルクの関係Laによると、車速が規定車速を超えているとき、車速が速くなるに従ってトルク指令値の最大値(車速対応最大トルク)が低下する。但し、車速の大きさにかかわらず、アクセルペダルの最大踏込み量(100%、つまりフルストローク)でのトルク指令値が、現在の車速の車速対応最大トルク(トルク指令値の最大値)となるように調整される。すなわちアクセルペダルを最大踏込み量まで踏まないと、最大の加速性能は得られない。アクセルペダルを最大踏込み量(100%)から緩めるとき、緩める割合(例えば、最大踏込み量100%から半分の踏込み量50%)に追従して電気自動車は減速していく。本実施形態のモータ駆動装置を搭載した電気自動車によると、以下の参考例のエンジン車と同様に、アクセルペダルの踏込み量に車両の加減速が追従する。
図9は、参考例のエンジン車による車速とトルク指令値との関係を示す図である。参考例のエンジン車においても、車速が規定車速を超えているとき、車速が速くなるに従って反比例してトルク指令値の最大値が低下する。また、車速の大きさにかかわらず、アクセルペダルの最大踏込み量(100%)でのトルク指令値が、現在の車速の車速対応最大トルクに一致する。またアクセルペダルを最大踏込み量(100%)から緩めるとき、緩める割合に追従して車両は減速していく。
図3に示すように、アクセル感度調整部10aは、アクセルペダル12a(図2)の踏込み量に応じてトルク指令値を出力する。この場合のトルク指令値は以下のように調整される。
先ず、電動モータ5の出力(W)の計算式を式(2)に示す。
W=ω×T 式(2)
但し、ω:車速、T:調整前トルク指令値
調整前トルク指令値(T)は、駆動指令生成部8aから与えられた駆動指令に対して定められた関係を適用して求められる。前記定められた関係は、例えば、試験やシミュレーション等の結果により予め取得されている。指令フラグが力行に選択されている間、調整前トルク指令値(T)はアクセルペダル12aの踏込み量に比例し、調整前トルク指令値(T)と踏込み量とのこの関係は、車速(ω)に関係なく一定である。
先ず、電動モータ5の出力(W)の計算式を式(2)に示す。
W=ω×T 式(2)
但し、ω:車速、T:調整前トルク指令値
調整前トルク指令値(T)は、駆動指令生成部8aから与えられた駆動指令に対して定められた関係を適用して求められる。前記定められた関係は、例えば、試験やシミュレーション等の結果により予め取得されている。指令フラグが力行に選択されている間、調整前トルク指令値(T)はアクセルペダル12aの踏込み量に比例し、調整前トルク指令値(T)と踏込み量とのこの関係は、車速(ω)に関係なく一定である。
アクセル感度調整部10aは、電動モータ5の出力(W)を前述のように計算した後、現在の車速が規定車速(ω0:例えば、数十Km/h)を超えるか否かを判定する。規定車速(ω0)は、電動モータ5の最大出力(W0)をモータ最大トルク(T0)で除して求められる。現在の車速が規定車速(ω0)を超えたとの判定で、アクセル感度調整部10aは、電動モータ5の最大出力(W0)を現在の車速(ω)で除した値(W0/ω)を、車速(ω)時の車速対応最大トルク(Tmax(ω))とする。アクセル感度調整部10aは、次に、以下の式(3)に基づいて調整後のトルク指令値(T*)を求める。
T*=(Tmax(ω)/T0)×T 式(3)
但し、Tmax(ω):車速ω時の車速対応最大トルク、T0:モータ最大トルク、T:調整前トルク指令値である。
T*=(Tmax(ω)/T0)×T 式(3)
但し、Tmax(ω):車速ω時の車速対応最大トルク、T0:モータ最大トルク、T:調整前トルク指令値である。
これにより、車速が時々刻々と変化する場合においても、車速対応最大トルクを用いて、車速に追従したトルク指令値が調整後のトルク指令値として精度良く算出される。
現在の車速が規定車速以下であるとの判定で、アクセル感度調整部10aは、電動モータ5の最大出力(W0)を規定車速(ω0)で除した値(W0/ω0)を、車速対応最大トルク(Tmax(ω))とする。アクセル感度調整部10aは、次に、上記式(3)に基づいて調整後のトルク指令値(T*)を求める。代わりに、調整前指令値Tを調整後のトルク指令値(T*)としてもよい。これにより、規定車速以下のとき演算処理負荷が低減される。但し、アクセル感度調整部10aは、前記調整後のトルク指令値T*がモータ最大トルク(T0)を超えるとき、モータ最大トルク(T0)を調整後のトルク指令値(T*)とする。
指令電流生成部10bは、調整後のトルク指令値T*に基づき、電動モータ5の1次電流(Ia)と電流進角(β)を生成する。さらに指令電流生成部10bは、これら1次電流(Ia)と電流進角(β)の値に基づき、d軸電流(界磁成分)Id*およびq軸電流(トルク成分)Iq*の2つの指令電流を生成する。
電流PI制御部19は、指令電流生成部10bから出力されたd軸電流Id*およびq軸電流Iq*の値と、モータ電流および電動モータの回転子角度から3相2相変換部20で計算された2相電流Id,Iqとから、PI制御によって、電圧値の制御量Vdc,Vqcを算出する。3相2相変換部20では、電流センサ23で検出された電動モータ5のu相電流(Iu)とw相電流(Iw)の検出値から、式Iv=-(Iu+Iw)を用いてv相電流(Iv)を算出する。3相2相変換部20は、これらIu,Iv,Iwの3相電流をId,Iqの2相電流に変換する。
この変換に使われる前記電動モータ5の回転子角度は、回転角度センサ17から取得される。2相3相変換部21は、入力された2相の制御量Vdc,Vqcを、回転角度センサ17から取得された回転子角度を用いて、3相のPWMデューティーVu,Vv,Vwに変換する。パワー回路部14は、PWMデューティーVu,Vv,Vwに従って前記インバータをPWM制御し、電動モータ5を駆動する。
図6は、本実施形態に係るモータ駆動装置によるトルク指令値の調整の処理を示すフローチャートである。
本モータ駆動装置が動作していない間に、以下のステップS1およびS2が実行される。まず、車速対応トルク制御手段10のアクセル感度調整部10aは、電動モータ5の最大出力(W0)およびモータ最大トルク(T0)をそれぞれ取得する(ステップS1)。電動モータ5の最大出力は、例えば数十kWで、より具体的には30kWであってもよい。これら最大出力(W0)およびモータ最大トルク(T0)は、電動モータ固有の定格値であって、記憶手段22に予め記憶されており、必要に応じて読み出される。
本モータ駆動装置が動作していない間に、以下のステップS1およびS2が実行される。まず、車速対応トルク制御手段10のアクセル感度調整部10aは、電動モータ5の最大出力(W0)およびモータ最大トルク(T0)をそれぞれ取得する(ステップS1)。電動モータ5の最大出力は、例えば数十kWで、より具体的には30kWであってもよい。これら最大出力(W0)およびモータ最大トルク(T0)は、電動モータ固有の定格値であって、記憶手段22に予め記憶されており、必要に応じて読み出される。
次に、アクセル感度調整部10aは、規定車速(ω0)を算出する(ステップS2)。この規定車速(ω0)は、電動モータ5の最大出力(W0)をモータ最大トルク(T0)で除して求められる。算出された規定車速(ω0)は、記憶手段12に記憶されてもよい。本モータ駆動装置が動作中、特に車両の走行中に、アクセル感度調整部10aは、アクセルセンサ12bからアクセルペダル12aの踏込み量(アクセル信号A)を検出する(ステップS3)。次に、アクセル感度調整部10aは、車速検出手段7から車速(ω)を取得する(ステップS4)。
その後、アクセル感度調整部10aは、現在の車速(ω)、つまり車速検出手段7によって取得された車速(ω)が、規定車速(ω0)を超えているか否かを判定する(ステップS5)。
現在の車速(ω)が規定車速(ω0)を超えたとの判定で(ステップS5のYes)、アクセル感度調整部10aは、車速対応最大トルク(Tmax(ω))を求める(ステップS6)。具体的には、アクセル感度調整部10aは、記憶手段22に記憶された車速対応最大トルクの関係Laの関数を用いるなどして、ステップS4で取得した車速(ω)についての車速対応最大トルク(Tmax(ω))を取得してもよい。次に、この車速対応最大トルク(Tmax(ω))をステップS1で取得したモータ最大トルク(T0)で除した値を調整前トルク指令値(T)に乗算して、調整後のトルク指令値(T*)を算出する(ステップS7)。すなわち、上記式(3)の演算を実行する。この後、ステップS3に戻る。
現在の車速(ω)が規定車速以下であるとの判定で(ステップS5のNo)、アクセル感度調整部10aは、調整前指令値Tを調整後のトルク指令値T*とする(ステップS8)。但し、このステップS8において、アクセル感度調整部10aは、調整後のトルク指令値T*がモータ最大トルク(T0)を超えるとき、モータ最大トルク(T0)を調整後のトルク指令値T*とする。その後ステップS3に戻る。なお、現在の車速(ω)を規定車速と比較せず、つまりステップS5を省略して、現在の車速(ω)にかかわらず車速対応最大トルク(Tmax(ω))をステップS1で取得したモータ最大トルク(T0)で除した値を調整前トルク指令値(T)に乗算して、調整後のトルク指令値(T*)を算出してもよい。現在の車速(ω)が規定車速以下では、車速対応最大トルク(Tmax(ω))がモータ最大トルク(T0)と等しいため、調整後のトルク指令値(T*)は調整前指令値(T)のままである。
以上説明したモータ駆動装置によると、車速対応トルク制御手段10は、例えば、加速時に、アクセルペダル12aの踏込み量に応じたトルク指令値をトルク制御部11に与えることができる。具体的には、運転者がアクセルペダル12aを加速途中の踏込み量から最大踏込み量まで操作しようとするとき、この踏込み量分がトルク指令値に反映される。また、運転者がアクセルペダル12aを最大踏込み量から緩めるとき、緩める割合に追従して電気自動車は減速していく。このようにアクセルペダル12aの踏込み量に車両の加減速が追従する。したがって、ドライバビリティが向上し、運転者に違和感を与えることを防止できる。
この発明の第2の実施形態について説明する。
以下の説明においては、各形態で先行する形態で説明している事項に対応している部分には同一の参照符号を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。同一の構成から同一の作用効果を奏する。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。
以下の説明においては、各形態で先行する形態で説明している事項に対応している部分には同一の参照符号を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。同一の構成から同一の作用効果を奏する。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。
図7に示すように、電動モータ5は、インホイールモータ駆動装置IWMを構成するものとしても良い。この場合、左右の駆動輪2,2(図1)は、それぞれ独立の電動モータ5により駆動される。各インホイールモータ駆動装置IWMは、それぞれ、電動モータ5、減速機24、および車輪用軸受25を有し、これらの一部または全体が車輪内に配置される。電動モータ5の回転は、減速機24および車輪用軸受25を介して駆動輪2に伝達される。
車輪用軸受25のハブ輪25aのフランジ部にはブレーキを構成するブレーキロータ26が固定され、同ブレーキロータ26は駆動輪2と一体に回転する。
電動モータ5は、例えば、ロータ5aのコア部に永久磁石が内蔵された埋込磁石型同期モータである。電動モータ5は、ハウジング27に固定されたステータ5bと、回転出力軸28に取り付けられたロータ5aとの間にラジアルギャップを設けたモータである。
インホイールモータ駆動装置IWMの減速機24としては、サイクロイド式の減速機、遊星減速機、平行2軸減速機、その他の減速機が適用可能である。代わりに、インホイールモータ駆動装置IWMは、減速機を採用しない、所謂ダイレクトモータタイプであっても良い。
図8に示す第3の実施形態に係るモータ駆動装置では、このモータ駆動装置を搭載する車両が、車体1に設けた2個の電動モータ5,5で左右の後輪二輪2,2を独立して駆動する2モータオンボード形式であっても良い。
車両として、1モータオンボード形式、2モータオンボード形式、またはインホイールモータ駆動形式において、左右の前輪二輪を駆動する前輪駆動式の電気自動車を適用しても良い。前記各モータ駆動形式において、前後左右の車輪を駆動する四輪駆動式の電気自動車を適用しても良い。
以上、実施形態に基づいてこの発明を実施するための形態を説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではない。この発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
2…車輪
5…電動モータ
6…制御装置
7…車速検出手段
8…ECU(上位制御部)
10…車速対応トルク制御手段
10a…アクセル感度調整部
11…トルク制御部
12…アクセル操作手段
5…電動モータ
6…制御装置
7…車速検出手段
8…ECU(上位制御部)
10…車速対応トルク制御手段
10a…アクセル感度調整部
11…トルク制御部
12…アクセル操作手段
Claims (6)
- 車両に設けられた車輪を駆動する電動モータと、
前記車両の車速を検出する車速検出手段と、
前記電動モータを制御する制御装置であって、
前記車両のアクセル操作手段の操作量を示す信号を受けて駆動指令を出力する上位制御部、
この上位制御部から出力された駆動指令を、前記車速検出手段によって検出される車速に応じて調整して調整後トルク指令値を調整後駆動指令として出力するアクセル感度調整部を含む車速対応トルク制御手段、および
前記車速対応トルク制御手段によって出力された調整後駆動指令に従って前記電動モータをトルク制御するトルク制御部を有する制御装置とを備えたモータ駆動装置であって、
前記車速対応トルク制御手段の前記アクセル感度調整部が、
前記アクセル操作手段の操作量が最大操作量である際における前記調整後トルク指令値が、車速と、車速に依存する前記電動モータの車速対応最大トルクとの関係から一意に定まる、前記車速検出手段によって検出される現在の車速に対する車速対応最大トルクに一致し、かつ前記アクセル操作手段の操作量に、前記調整後トルク指令値が比例するように、前記駆動指令を調整するモータ駆動装置。 - 請求項1に記載のモータ駆動装置において、
前記アクセル感度調整部が、前記車速検出手段によって検出された車速(ω)について、以下の式(1)に基づいて前記調整後トルク指令値(T*)を求めるモータ駆動装置。
T*=(Tmax(ω)/T0)×T 式(1)
但し、Tmax(ω):車速ω時の前記車速対応最大トルク、T0:モータ最大トルク、T:調整前トルク指令値である。 - 請求項1または請求項2に記載のモータ駆動装置において、前記車速検出手段によって検出された車速が規定車速を超えるとき、前記電動モータの最大出力(W0)を前記車速検出手段によって検出された車速(ω)で除して前記車速対応最大トルク(Tmax(ω))が求められるモータ駆動装置。
- 請求項1ないし請求項3に記載のモータ駆動装置において、前記車速検出手段によって検出された車速が規定車速以下のとき、前記電動モータの最大出力(W0)を前記規定車速(ω0)で除して前記車速対応最大トルク(Tmax(ω))が求められるモータ駆動装置。
- 請求項4に記載のモータ駆動装置において、前記アクセル感度調整部は、前記調整後トルク指令値が前記現在の車速対応最大トルクを超える場合に、前記現在の車速対応最大トルクを調整後のトルク指令値とするモータ駆動装置。
- 請求項1ないし請求項5のいずれか1項に記載のモータ駆動装置において、前記アクセル感度調整部は、車速に反比例する車速対応最大トルクを用いて、前記調整後トルク指令値を求めるモータ駆動装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-150469 | 2015-07-30 | ||
JP2015150469A JP2017034785A (ja) | 2015-07-30 | 2015-07-30 | モータ駆動装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017018335A1 true WO2017018335A1 (ja) | 2017-02-02 |
Family
ID=57884819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/071507 WO2017018335A1 (ja) | 2015-07-30 | 2016-07-22 | モータ駆動装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2017034785A (ja) |
WO (1) | WO2017018335A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110562046A (zh) * | 2019-08-09 | 2019-12-13 | 武汉格罗夫氢能汽车有限公司 | 一种驾驶特性可调的氢能汽车实时交互系统及其控制方法 |
CN112644500A (zh) * | 2019-10-09 | 2021-04-13 | 广州汽车集团股份有限公司 | 驾驶模式调整方法、装置、计算机设备及存储介质 |
CN113085567A (zh) * | 2019-12-23 | 2021-07-09 | 博世汽车部件(苏州)有限公司 | 驱动扭矩控制方法和系统、电动骑行车辆及可读存储介质 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7279576B2 (ja) * | 2019-08-13 | 2023-05-23 | トヨタ車体株式会社 | 車載モータの制御装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09193675A (ja) * | 1996-01-23 | 1997-07-29 | Aqueous Res:Kk | ハイブリッド車両 |
JPH10325345A (ja) * | 1997-12-25 | 1998-12-08 | Aisin Aw Co Ltd | ハイブリッド車両 |
JP2005348482A (ja) * | 2004-06-01 | 2005-12-15 | Fuji Heavy Ind Ltd | ハイブリッド車両の制御装置 |
JP2007055535A (ja) * | 2005-08-26 | 2007-03-08 | Toyota Motor Corp | 自動車およびその制御方法 |
WO2012066673A1 (ja) * | 2010-11-19 | 2012-05-24 | トヨタ自動車株式会社 | 電動車両の制御装置および制御方法 |
-
2015
- 2015-07-30 JP JP2015150469A patent/JP2017034785A/ja active Pending
-
2016
- 2016-07-22 WO PCT/JP2016/071507 patent/WO2017018335A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09193675A (ja) * | 1996-01-23 | 1997-07-29 | Aqueous Res:Kk | ハイブリッド車両 |
JPH10325345A (ja) * | 1997-12-25 | 1998-12-08 | Aisin Aw Co Ltd | ハイブリッド車両 |
JP2005348482A (ja) * | 2004-06-01 | 2005-12-15 | Fuji Heavy Ind Ltd | ハイブリッド車両の制御装置 |
JP2007055535A (ja) * | 2005-08-26 | 2007-03-08 | Toyota Motor Corp | 自動車およびその制御方法 |
WO2012066673A1 (ja) * | 2010-11-19 | 2012-05-24 | トヨタ自動車株式会社 | 電動車両の制御装置および制御方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110562046A (zh) * | 2019-08-09 | 2019-12-13 | 武汉格罗夫氢能汽车有限公司 | 一种驾驶特性可调的氢能汽车实时交互系统及其控制方法 |
CN112644500A (zh) * | 2019-10-09 | 2021-04-13 | 广州汽车集团股份有限公司 | 驾驶模式调整方法、装置、计算机设备及存储介质 |
CN112644500B (zh) * | 2019-10-09 | 2022-09-06 | 广州汽车集团股份有限公司 | 驾驶模式调整方法、装置、计算机设备及存储介质 |
CN113085567A (zh) * | 2019-12-23 | 2021-07-09 | 博世汽车部件(苏州)有限公司 | 驱动扭矩控制方法和系统、电动骑行车辆及可读存储介质 |
Also Published As
Publication number | Publication date |
---|---|
JP2017034785A (ja) | 2017-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6472626B2 (ja) | 車両の横滑り防止制御装置 | |
US9855858B2 (en) | Control device for electric vehicle | |
US10017075B2 (en) | Device for controlling electric automobile | |
JP6534509B2 (ja) | 車輪独立駆動式車両の駆動制御装置 | |
WO2017204070A1 (ja) | 車両旋回制御装置 | |
WO2015080021A1 (ja) | 電気自動車の制御装置 | |
WO2017018335A1 (ja) | モータ駆動装置 | |
US9586484B2 (en) | Electric-vehicle control device | |
JP2017005899A (ja) | 車輪独立駆動式車両の駆動制御装置 | |
US9956890B2 (en) | Device for controlling electric automobile | |
WO2016052234A1 (ja) | 電気自動車の制御装置 | |
US10889188B2 (en) | Drive control device for vehicle with independently driven wheels | |
JP5915349B2 (ja) | 電動車両の制振制御装置 | |
JP6663724B2 (ja) | 電動モータ装置 | |
WO2016125686A1 (ja) | 車両の制駆動トルク制御装置 | |
JP2013251988A (ja) | モータジェネレータ制御装置 | |
JP6137045B2 (ja) | 車両の駆動電動機制御装置 | |
WO2016043077A1 (ja) | 車両の駆動制御装置 | |
JP5496294B2 (ja) | 車両共振抑制制御装置 | |
JP2003219508A (ja) | 車両の制御装置 | |
JP2016220271A (ja) | 電気自動車の制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16830440 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16830440 Country of ref document: EP Kind code of ref document: A1 |