WO2017090730A1 - スピン流磁化反転素子、磁気抵抗効果素子、および磁気メモリ - Google Patents
スピン流磁化反転素子、磁気抵抗効果素子、および磁気メモリ Download PDFInfo
- Publication number
- WO2017090730A1 WO2017090730A1 PCT/JP2016/084976 JP2016084976W WO2017090730A1 WO 2017090730 A1 WO2017090730 A1 WO 2017090730A1 JP 2016084976 W JP2016084976 W JP 2016084976W WO 2017090730 A1 WO2017090730 A1 WO 2017090730A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- spin
- metal layer
- ferromagnetic metal
- group
- orbit torque
- Prior art date
Links
- 230000005415 magnetization Effects 0.000 title claims abstract description 101
- 230000005291 magnetic effect Effects 0.000 title claims description 23
- 230000015654 memory Effects 0.000 title claims description 9
- 230000000694 effects Effects 0.000 title description 73
- 229910052751 metal Inorganic materials 0.000 claims abstract description 126
- 239000002184 metal Substances 0.000 claims abstract description 126
- 230000005294 ferromagnetic effect Effects 0.000 claims abstract description 99
- 239000000463 material Substances 0.000 claims abstract description 92
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 25
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 16
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 11
- 229910052742 iron Inorganic materials 0.000 claims abstract description 10
- 150000004767 nitrides Chemical class 0.000 claims abstract description 10
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 9
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 9
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 8
- 229910052737 gold Inorganic materials 0.000 claims abstract description 7
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 7
- 229910002056 binary alloy Inorganic materials 0.000 claims abstract description 6
- 229910052741 iridium Inorganic materials 0.000 claims abstract description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 6
- 229910052703 rhodium Inorganic materials 0.000 claims abstract description 5
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 5
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 5
- 229910052797 bismuth Inorganic materials 0.000 claims abstract description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 5
- 238000005304 joining Methods 0.000 claims description 4
- 229910004261 CaF 2 Inorganic materials 0.000 claims description 3
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical group [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 claims description 3
- 239000013078 crystal Substances 0.000 abstract description 22
- 229910052796 boron Inorganic materials 0.000 abstract description 7
- 229910052715 tantalum Inorganic materials 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 165
- 101100167360 Drosophila melanogaster chb gene Proteins 0.000 description 107
- 239000010408 film Substances 0.000 description 44
- 238000000034 method Methods 0.000 description 19
- 238000004544 sputter deposition Methods 0.000 description 14
- 230000005355 Hall effect Effects 0.000 description 13
- 239000000203 mixture Substances 0.000 description 13
- 239000000758 substrate Substances 0.000 description 13
- 230000003993 interaction Effects 0.000 description 12
- 239000010931 gold Substances 0.000 description 10
- 239000010949 copper Substances 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 238000002441 X-ray diffraction Methods 0.000 description 6
- 230000004888 barrier function Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000003302 ferromagnetic material Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000000206 photolithography Methods 0.000 description 6
- 229910052709 silver Inorganic materials 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 5
- 229910052749 magnesium Inorganic materials 0.000 description 5
- 239000011777 magnesium Substances 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000000992 sputter etching Methods 0.000 description 4
- 229910052684 Cerium Inorganic materials 0.000 description 3
- 229910019236 CoFeB Inorganic materials 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 229910001385 heavy metal Inorganic materials 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- 238000001755 magnetron sputter deposition Methods 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910020598 Co Fe Inorganic materials 0.000 description 2
- 229910002519 Co-Fe Inorganic materials 0.000 description 2
- 229910005347 FeSi Inorganic materials 0.000 description 2
- 229910020068 MgAl Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000005290 antiferromagnetic effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910001291 heusler alloy Inorganic materials 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 239000010944 silver (metal) Substances 0.000 description 2
- 238000002233 thin-film X-ray diffraction Methods 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 238000004876 x-ray fluorescence Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910017028 MnSi Inorganic materials 0.000 description 1
- 229910003271 Ni-Fe Inorganic materials 0.000 description 1
- 229910019041 PtMn Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000002885 antiferromagnetic material Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical group [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 238000005564 crystal structure determination Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000001739 density measurement Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005307 ferromagnetism Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 150000003624 transition metals Chemical group 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N52/00—Hall-effect devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
- G01R33/098—Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/161—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/165—Auxiliary circuits
- G11C11/1675—Writing or programming circuits or methods
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/165—Auxiliary circuits
- G11C11/1697—Power supply circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/18—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using Hall-effect devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3254—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/329—Spin-exchange coupled multilayers wherein the magnetisation of the free layer is switched by a spin-polarised current, e.g. spin torque effect
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/10—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
- H01L27/105—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/82—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of the magnetic field applied to the device
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03B—GENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
- H03B15/00—Generation of oscillations using galvano-magnetic devices, e.g. Hall-effect devices, or using superconductivity effects
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03B—GENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
- H03B15/00—Generation of oscillations using galvano-magnetic devices, e.g. Hall-effect devices, or using superconductivity effects
- H03B15/006—Generation of oscillations using galvano-magnetic devices, e.g. Hall-effect devices, or using superconductivity effects using spin transfer effects or giant magnetoresistance
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B61/00—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/10—Magnetoresistive devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/80—Constructional details
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/80—Constructional details
- H10N50/85—Magnetic active materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N52/00—Hall-effect devices
- H10N52/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N52/00—Hall-effect devices
- H10N52/80—Constructional details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3286—Spin-exchange coupled multilayers having at least one layer with perpendicular magnetic anisotropy
Definitions
- the present invention relates to a spin current magnetization reversal element, a magnetoresistive effect element, and a magnetic memory.
- This application is filed on November 27, 2015, Japanese Patent Application No. 2015-232334 filed in Japan, March 16, 2016, Japanese Patent Application No. 2016-53072 filed in Japan, March 18, 2016 Japanese Patent Application No. 2016-56058 filed in Japan, Japanese Patent Application No. 2016-210531 filed in Japan on Oct. 27, 2016, Japanese Patent Application No. 2016- filed in Japan on Oct. 27, 2016 Claim priority based on 210533, the contents of which are incorporated herein.
- a giant magnetoresistive (GMR) element composed of a multilayer film of a ferromagnetic layer and a nonmagnetic layer and a tunnel magnetoresistive (TMR) element using an insulating layer (tunnel barrier layer, barrier layer) as a nonmagnetic layer are known.
- TMR tunnel magnetoresistive
- MR magnetoresistance
- MRAM reads and writes data using the characteristic that the element resistance of the TMR element changes when the directions of magnetization of the two ferromagnetic layers sandwiching the insulating layer change.
- writing magnetization reversal
- STT spin transfer torque
- Non-Patent Document 1 In recent years, attention has been focused on magnetization reversal using a pure spin current generated by the spin Hall effect as a means for reducing reversal current by a mechanism different from STT (for example, Non-Patent Document 1).
- the pure spin current generated by the spin Hall effect induces spin orbit torque (SOT) and causes magnetization reversal by SOT.
- SOT spin orbit torque
- magnetization reversal is caused by the same SOT even in a pure spin current generated by the Rashba effect at the interface of different materials.
- a pure spin current is generated by the same number of upward spin electrons and downward spin electrons flowing in opposite directions, and the charge flow is canceled out. Therefore, the current flowing through the magnetoresistive effect element is zero, and realization of a magnetoresistive effect element having a small reversal current density is expected.
- the spin Hall effect depends on the magnitude of the spin orbit interaction.
- Ta which is a heavy metal having d electrons that cause spin-orbit interaction
- GaAs which is a semiconductor, causes a spin-orbit interaction due to an electric field inside a crystal resulting from a collapse of spatial inversion symmetry.
- Non-Patent Document 2 reports that the reversal current density by SOT (hereinafter, also referred to as “SOT reversal current density”) is approximately the same as the reversal current density by STT.
- SOT reversal current density the reversal current density by SOT
- the present invention has been made in view of the above problems, and provides a spin current magnetization reversal element, a magnetoresistive effect element, and a magnetic memory capable of reversing magnetization by a pure spin current at a reversal current density lower than that of the prior art. Objective.
- the internal factor is due to the material itself constituting the spin orbit torque wiring. For example, there are those caused by the material type used for the spin orbit torque wiring and those caused by the crystal structure of the spin orbit torque wiring.
- external factors are caused by actions applied from the outside and are other than internal factors.
- scattering factors such as impurities contained in the spin orbit torque wiring and those caused by the interface between the spin orbit torque wiring and other layers.
- the inventors of the present invention have paid attention to the cause of the manifestation due to the crystal structure of the spin orbit torque wiring.
- a single heavy metal has been used as a material for the spin orbit torque wiring. This is because simple materials are more suitable for elucidating the physical phenomenon called SOT.
- the present inventors examined the effect of SOT with a wide range of combinations centering on an alloy having a crystal structure with a reversed inversion symmetry. This is because such a material can be expected to have a large SOT effect due to the internal field resulting from the loss of symmetry of the crystal structure.
- the inventors have found a predetermined material showing an SOT inversion current density that is about two orders of magnitude lower than the conventional single SOT inversion current density, and completed the present invention.
- the present invention provides the following means in order to solve the above problems.
- a spin current magnetization reversal element includes a first ferromagnetic metal layer having a variable magnetization direction and a first direction that is a perpendicular direction of the first ferromagnetic metal layer.
- a spin orbit torque wiring extending in a second direction intersecting and joining to the first ferromagnetic metal layer, wherein the material of the spin orbit torque wiring is represented by the formula A x B 1-x , Metal carbide, or metal nitride, wherein A is an element selected from the group consisting of Al, Ti, and Pt, and B is Al, Cr, Mn, Fe, Co, Ni, Y, It is an element selected from the group consisting of Ru, Rh, and Ir and has a cubic structure having symmetry of the space group Pm-3m or Fd-3m, or the A is Al, An element selected from the group consisting of Si, Ti, Y, and Ta, the B C, N, Co, Pt, an element selected from the group consisting of Au and Bi, and
- the material is Al x Fe 1-x , Al x Co 1-x , Al x Ni 1-x , Al x Ru 1 having a CsCl structure. -x, Al x Rh 1-x , Al x Ir 1-x, Ti x Fe 1-x, Ti x Co 1-x, and, which has been selected from the group consisting of Ti x Ni 1-x Also good.
- the material is made of Ti x Fe 1-x , Ti x Co 1-x , and Ti x Ni 1-x having a Ti 2 Ni structure. It may be selected from the group consisting of:
- the material is Pt x Al 1-x , Pt x Cr 1-x , Pt x Mn 1-x , Pt x having a Cu 3 Au structure. It may be selected from the group consisting of Fe 1-x and Pt x Y 1-x .
- the material is Al x N 1-x , Ti x C 1-x , Ti x N 1-x , Y x Bi 1 having a NaCl structure. It may be selected from the group consisting of -x and Ta x N 1-x .
- the material is made of Al x Fe 1-x , Si x Mn 1-x , and Si x Fe 1 -x having a BiF 3 structure. It may be selected from a group.
- the material is made of Al x Pt 1-x , Al x Au 1-x , and Al x Co 1-x having a CaF 2 structure. It may be selected from a group.
- a magnetoresistive effect element includes a spin current magnetization reversal element according to any one of (1) to (7), and a second ferromagnetic element having a fixed magnetization direction.
- a magnetic memory according to an aspect of the present invention includes a plurality of magnetoresistive elements described in (8) above.
- the spin current magnetization reversal element of the present invention it is possible to provide a spin current magnetization reversal element capable of reversal of magnetization by a pure spin current at a reversal current density lower than that of the prior art.
- BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram for demonstrating one Embodiment of the spin-current magnetization switching element of this invention, (a) is a top view, (b) is sectional drawing. It is a schematic diagram for demonstrating a spin Hall effect. BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram for demonstrating one Embodiment of the magnetoresistive effect element which concerns on one Embodiment of this invention, (a) is a top view, (b) is sectional drawing.
- FIG. 1 shows a schematic diagram of an example of a spin current magnetization switching element according to an embodiment of the present invention.
- 1A is a plan view
- FIG. 1B is a cross-sectional view taken along line XX, which is the center line in the width direction of the spin orbit torque wiring 2 of FIG. 1A.
- a spin current magnetization reversal element 10 shown in FIG. 1 has a first ferromagnetic metal layer 1 having a variable magnetization direction and a first direction (z direction) which is a direction perpendicular to the first ferromagnetic metal layer 1.
- a spin orbit torque wiring 2 extending in the intersecting second direction (x direction) and joining to the first surface 1a of the first ferromagnetic metal layer 1.
- the material of the spin orbit torque wiring 2 is a binary alloy, a metal carbide, or a metal nitride represented by the formula A x B 1-x , and the A is selected from the group consisting of Al, Ti, and Pt.
- B is an element selected from the group consisting of Al, Cr, Mn, Fe, Co, Ni, Y, Ru, Rh, and Ir, and a space group Pm-3m, or , Fd-3m or a cubic structure having symmetry
- A is an element selected from the group consisting of Al, Si, Ti, Y and Ta, and B is C, N, It is an element selected from the group consisting of Co, Pt, Au and Bi, and has a cubic structure having symmetry of the space group Fm-3m.
- the present inventors have mixed a heavy metal with good rotational symmetry of a cubic crystal as a host metal, mixed light elements as different kinds of substitutional metals that cause asymmetry, and lost the rotational symmetry.
- the search policy of the material centering on the binary alloy of the spin orbit torque wiring is that the lattice matching with Fe, which is mainly used as the material of the first ferromagnetic metal layer, is good.
- the substitution material mixed with the host material is not an impurity but a material constituting a crystal.
- the material of the spin orbit torque wiring may contain inevitable impurities inevitably mixed in the raw material or the manufacturing process.
- A is Al and B is Al, it is not a binary alloy, a metal carbide, or a metal nitride, so this case is not included in the present invention.
- the spin orbit torque wiring in which the direction perpendicular to the first ferromagnetic metal layer 1 or the direction in which the first ferromagnetic metal layer 1 and the spin orbit torque wiring 2 are stacked (first direction) is perpendicular to the z direction and the z direction.
- a direction (second direction) parallel to 2 is an x direction
- a direction (third direction) orthogonal to the x direction and the z direction is a y direction.
- the configuration is orthogonal to the first direction.
- a case of a configuration extending in the direction to be described will be described.
- the spin orbit interaction occurs more strongly in materials with low spatial inversion symmetry. Therefore, when the cubic structure belonging to the Pm-3m, Fd-3m, or Fm-3m space group of the present invention and a predetermined binary alloy, metal carbide, or metal nitride, the crystal is symmetrical. However, the inversion symmetry is lost due to the difference between the two types of materials, and a high spin-orbit interaction can be generated.
- the spin orbit torque wiring 2 is provided for performing magnetization reversal using the spin orbit torque (SOT), and when a current flows, a pure spin current is generated therein by a spin Hall effect.
- the spin Hall effect is a phenomenon in which a pure spin current is induced in a direction orthogonal to the direction of the current based on the spin-orbit interaction when a current is passed through the material.
- FIG. 2 is a schematic diagram for explaining the spin Hall effect.
- FIG. 2 is a cross-sectional view of the spin orbit torque wiring 2 shown in FIG. 1 cut along the x direction. A mechanism by which a pure spin current is generated by the spin Hall effect will be described with reference to FIG.
- the first spin S1 oriented on the front side of the paper and the second spin S2 oriented on the back side of the paper are orthogonal to the current, respectively. Bent in the direction.
- the normal Hall effect and the spin Hall effect are common in that the moving (moving) charge (electrons) can bend in the moving (moving) direction, but the normal Hall effect is that the charged particles moving in the magnetic field exert Lorentz force.
- the direction of motion is bent, but the spin Hall effect is greatly different in that the direction of movement is bent only by the movement of electrons (only the current flows) even though there is no magnetic field.
- the number of electrons of the first spin S1 and the number of electrons of the second spin S2 are equal in a non-magnetic material (a material that is not a ferromagnetic material), the number of electrons in the first spin S1 going upward in the figure and the downward direction The number of electrons of the second spin S2 heading is equal. Therefore, the current as a net flow of charge is zero.
- This spin current without current is particularly called a pure spin current.
- the material of the spin orbit torque wiring 2 does not include a material made only of a ferromagnetic material.
- the electron flow of the first spin S1 is J ⁇
- the electron flow of the second spin S2 is J ⁇
- the spin current is JS
- J S is an electron flow having a polarizability of 100%.
- the pure spin current diffuses into the ferromagnetic material. That is, spin is injected into the first ferromagnetic metal layer 1.
- the spin orbit torque wiring 2 and the first ferromagnetic metal layer 1 may be joined “directly” or “via another layer”.
- the method of joining (connecting or coupling) the spin orbit torque wiring and the first ferromagnetic metal layer is not limited.
- Examples of the material constituting the spin orbit torque wiring 2 include Al x Fe 1-x , Al x Co 1-x , Al x Ni 1-x , Al x Ru 1-x , and Al x Rh 1-x having a CsCl structure. , Al x Ir 1-x , Ti x Fe 1-x , Ti x Co 1-x , and Ti x Ni 1-x can be used. By using the spin orbit torque wiring 2 made of these materials, a high spin orbit interaction can be generated. In addition, since these materials have a lattice mismatch of 5% or less with a ferromagnetic metal layer such as Fe to be bonded, a high magnetoresistance ratio is maintained.
- the spin orbit torque wiring 2 As a material constituting the spin orbit torque wiring 2, a material selected from the group consisting of Ti x Fe 1-x , Ti x Co 1-x and Ti x Ni 1-x having a Ti 2 Ni structure is used. be able to. By using the spin orbit torque wiring 2 made of these materials, a high spin orbit interaction can be generated. In addition, since these materials have a lattice mismatch of 5% or less with a ferromagnetic metal layer such as Fe to be bonded, a high magnetoresistance ratio is maintained.
- the material constituting the spin-orbit torque wiring 2 a Cu 3 Au structure Pt x Al 1-x, Pt x Cr 1-x, Pt x Mn 1-x, Pt x Fe 1-x, and, Pt x Those selected from the group consisting of Y 1-x can be used.
- a high spin orbit interaction can be generated.
- these materials have a lattice mismatch of 5% or less with a ferromagnetic metal layer such as Fe to be bonded, a high magnetoresistance ratio is maintained.
- Examples of the material constituting the spin orbit torque wiring 2 include a NaCl structure of Al x N 1-x , Ti x C 1-x , Ti x N 1-x , Y x Bi 1-x , and Ta x N 1. Those selected from the group consisting of -x can be used. By using the spin orbit torque wiring 2 made of these materials, a high spin orbit interaction can be generated. In addition, since these materials have a lattice mismatch of 5% or less with a ferromagnetic metal layer such as Fe to be bonded, a high magnetoresistance ratio is maintained.
- the spin orbit torque wiring 2 As a material constituting the spin orbit torque wiring 2, a material selected from the group consisting of Al x Fe 1-x , Si x Mn 1-x , and Si x Fe 1-x having a BiF 3 structure is used. Can do. By using the spin orbit torque wiring 2 made of these materials, a high spin orbit interaction can be generated. In addition, since these materials have a lattice mismatch of 5% or less with a ferromagnetic metal layer such as Fe to be bonded, a high magnetoresistance ratio is maintained.
- the spin orbit torque wiring 2 As a material constituting the spin orbit torque wiring 2, a material selected from the group consisting of Al x Pt 1-x , Al x Au 1-x , and Al x Co 1-x having a CaF 2 structure is used. Can do. By using the spin orbit torque wiring 2 made of these materials, a high spin orbit interaction can be generated. In addition, since these materials have a lattice mismatch of 5% or less with a ferromagnetic metal layer such as Fe to be bonded, a high magnetoresistance ratio is maintained.
- the first ferromagnetic metal layer is an in-plane magnetization film whose magnetization direction is an in-plane direction parallel to the layer, but the magnetization direction is perpendicular to the layer. Either a film or a film may be used.
- the first ferromagnetic metal layer has shape anisotropy having a major axis in the second direction, which is the extending direction of the spin orbit torque wiring, in plan view. Since the first ferromagnetic metal layer is elongated like this, the magnetization is easily reversed in this direction, and therefore the reversal current density can be reduced accordingly.
- the first ferromagnetic metal layer is rectangular (more precisely, rectangular) in plan view from the z direction, but may be elliptical. Other shapes may be used.
- the first ferromagnetic metal layer will be described later in detail.
- the use of the spin current magnetization reversal element is not limited to the magnetoresistive effect element.
- Other applications include, for example, a spatial light modulator that spatially modulates incident light using the magneto-optic effect by disposing the above-described spin current magnetization reversal element in each pixel.
- the magnetic field applied to the easy axis of the magnet may be replaced with SOT.
- a magnetoresistive effect element includes a spin current magnetization switching element of the present invention, a second ferromagnetic metal layer whose magnetization direction is fixed, a first ferromagnetic metal layer, and a second ferromagnetic metal. And a nonmagnetic layer sandwiched between metal layers.
- FIG. 3 is a schematic diagram of an example of a magnetoresistive effect element that is an application example of the spin current magnetization reversal element of the present invention and is also a magnetoresistive effect element according to an embodiment of the present invention.
- 3A is a plan view
- FIG. 3B is a cross-sectional view taken along line XX, which is the center line in the width direction of the spin orbit torque wiring 2 of FIG. 3A.
- the magnetoresistive effect element 100 shown in FIG. 3 has a magnetoresistive effect element portion 105 and a spin orbit torque wiring 120.
- the substrate 110 on which the magnetoresistive effect element 100 is manufactured is also illustrated.
- the magnetoresistive effect element includes a spin orbit torque wiring 120, and thereby performs a magnetization reversal of the magnetoresistive effect element only by SOT by a pure spin current (hereinafter referred to as “SOT only” configuration).
- SOT only a pure spin current
- a conventional magnetoresistive effect element using STT may be configured to use SOT with pure spin current (hereinafter, sometimes referred to as “STT and SOT combined” configuration). it can.
- the wiring for sending an electric current in the lamination direction of the magnetoresistive effect element 100 is needed.
- the magnetoresistive effect element unit 105 includes a second ferromagnetic metal layer 103 with a fixed magnetization direction, a first ferromagnetic metal layer 101 with a variable magnetization direction, a second ferromagnetic metal layer 103, and a first ferromagnetic metal layer. And a nonmagnetic layer 102 sandwiched between the metal layers 101.
- the magnetization of the second ferromagnetic metal layer 103 is fixed in one direction, and the magnetization direction of the first ferromagnetic metal layer 101 changes relatively, thereby functioning as the magnetoresistive effect element unit 105.
- the magnetoresistive effect element portion 105 is a tunneling magnetoresistance (TMR) element when the nonmagnetic layer 102 is made of an insulator, and a giant magnetoresistance (GMR) when the nonmagnetic layer 102 is made of metal. : Giant Magnetoresistance) element.
- TMR tunneling magnetoresistance
- GMR giant magnetoresistance
- each layer may be composed of a plurality of layers, or may be provided with other layers such as an antiferromagnetic layer for fixing the magnetization direction of the second ferromagnetic metal layer.
- the second ferromagnetic metal layer 103 is called a magnetization fixed layer or a reference layer
- the first ferromagnetic metal layer 101 is called a magnetization free layer or a memory layer.
- the second ferromagnetic metal layer 103 and the first ferromagnetic metal layer 101 may be an in-plane magnetization film whose magnetization direction is an in-plane direction parallel to the layer, or a perpendicular magnetization film whose magnetization direction is perpendicular to the layer. Either is acceptable.
- the material of the second ferromagnetic metal layer 103 a known material can be used.
- a metal selected from the group consisting of Cr, Mn, Co, Fe, and Ni and an alloy that includes one or more of these metals and exhibits ferromagnetism can be used.
- An alloy containing these metals and at least one element of B, C, and N can also be used. Specific examples include Co—Fe and Co—Fe—B.
- Heusler alloy such as Co 2 FeSi.
- the Heusler alloy includes an intermetallic compound having a chemical composition of X 2 YZ, where X is a transition metal element or noble metal element of Co, Fe, Ni, or Cu group on the periodic table, and Y is Mn, V It is a transition metal of Cr, Ti or Ti, and can take the elemental species of X, and Z is a typical element of Group III to Group V. Examples thereof include Co 2 FeSi, Co 2 MnSi, and Co 2 Mn 1-a Fe a Al b Si 1-b .
- an antiferromagnetic material such as IrMn or PtMn is used as a material in contact with the second ferromagnetic metal layer 103. Also good. Furthermore, in order to prevent the leakage magnetic field of the second ferromagnetic metal layer 103 from affecting the first ferromagnetic metal layer 101, a synthetic ferromagnetic coupling structure may be used.
- the second ferromagnetic metal layer 103 has [Co (0.24 nm) / Pt (0.16 nm)] 6 / Ru (0.9 nm) / [Pt (0.16 nm) / Co (0.16 nm). )] 4 / Ta (0.2 nm) / FeB (1.0 nm).
- a ferromagnetic material particularly a soft magnetic material
- a metal selected from the group consisting of Cr, Mn, Co, Fe, and Ni, an alloy containing one or more of these metals, these metals and at least one element of B, C, and N are included. Alloys that can be used can be used. Specific examples include Co—Fe, Co—Fe—B, and Ni—Fe.
- the thickness of the first ferromagnetic metal layer is preferably 2.5 nm or less.
- Perpendicular magnetic anisotropy can be added to the first ferromagnetic metal layer 101 at the interface between the first ferromagnetic metal layer 101 and the nonmagnetic layer 102. Further, since the effect of perpendicular magnetic anisotropy is attenuated by increasing the thickness of the first ferromagnetic metal layer 101, it is preferable that the thickness of the first ferromagnetic metal layer 101 is small.
- a known material can be used for the nonmagnetic layer 102.
- the nonmagnetic layer 102 is made of an insulator (when it is a tunnel barrier layer), as the material, Al 2 O 3 , SiO 2 , MgO, MgAl 2 O 4, or the like can be used.
- materials in which a part of Al, Si, Mg is substituted with Zn, Be, or the like can also be used.
- MgO and MgAl 2 O 4 are materials that can realize a coherent tunnel, spin can be injected efficiently.
- the nonmagnetic layer 102 is made of metal, Cu, Au, Ag, or the like can be used as the material.
- a cap layer 104 is preferably formed on the surface of the first ferromagnetic metal layer 101 opposite to the nonmagnetic layer 102 as shown in FIG.
- the cap layer 104 can suppress the diffusion of elements from the first ferromagnetic metal layer 101.
- the cap layer 104 also contributes to the crystal orientation of each layer of the magnetoresistive effect element portion 105.
- the magnetism of the second ferromagnetic metal layer 103 and the first ferromagnetic metal layer 101 of the magnetoresistive effect element portion 105 is stabilized, and the resistance of the magnetoresistive effect element portion 105 is reduced. be able to.
- cap layer 104 It is preferable to use a material having high conductivity for the cap layer 104.
- a material having high conductivity for the cap layer 104 For example, Ru, Ta, Cu, Ag, Au, etc. can be used.
- the crystal structure of the cap layer 104 is preferably set as appropriate from an fcc structure, an hcp structure, or a bcc structure in accordance with the crystal structure of the adjacent ferromagnetic metal layer.
- the cap layer 104 it is preferable to use any one selected from the group consisting of silver, copper, magnesium, and aluminum for the cap layer 104.
- the spin orbit torque wiring 120 and the magnetoresistive effect element portion 105 are connected via the cap layer 104, it is preferable that the cap layer 104 does not dissipate the spin propagating from the spin orbit torque wiring 120.
- silver, copper, magnesium, aluminum, and the like have a long spin diffusion length of 100 nm or more and are difficult to dissipate spin.
- the thickness of the cap layer 104 is preferably equal to or less than the spin diffusion length of the substance constituting the cap layer 104. If the thickness of the cap layer 104 is equal to or less than the spin diffusion length, the spin propagating from the spin orbit torque wiring 120 can be sufficiently transmitted to the magnetoresistive effect element portion 105.
- the substrate 110 is preferably excellent in flatness.
- Si, AlTiC, or the like can be used as a material.
- An underlayer (not shown) may be formed on the surface of the substrate 110 on the spin orbit torque wiring 120 side.
- crystallinity such as crystal orientation and crystal grain size of each layer including the spin orbit torque wiring 120 stacked on the substrate 110 can be controlled.
- the underlayer preferably has an insulating property. This is to prevent the current flowing through the spin orbit torque wiring 120 and the like from being dissipated.
- Various layers can be used for the underlayer.
- the underlayer has a (001) -oriented NaCl structure and is at least one selected from the group consisting of Ti, Zr, Nb, V, Hf, Ta, Mo, W, B, Al, and Ce.
- a nitride layer containing two elements can be used.
- a (002) -oriented perovskite conductive oxide layer represented by a composition formula of XYO 3 can be used for the underlayer.
- the site X includes at least one element selected from the group of Sr, Ce, Dy, La, K, Ca, Na, Pb, and Ba
- the site Y includes Ti, V, Cr, Mn, Fe, and Co. , Ni, Ga, Nb, Mo, Ru, Ir, Ta, Ce, and Pb.
- an oxide layer having an (001) -oriented NaCl structure and containing at least one element selected from the group consisting of Mg, Al, and Ce can be used for the base layer.
- the base layer has a (001) -oriented tetragonal structure or cubic structure, and Al, Cr, Fe, Co, Rh, Pd, Ag, Ir, Pt, Au, Mo, W A layer containing at least one element selected from the group can be used.
- the underlayer is not limited to a single layer, and a plurality of layers in the above example may be stacked.
- the crystallinity of each layer of the magnetoresistive element portion 105 can be increased, and the magnetic characteristics can be improved.
- An upper wiring (not shown) may be provided on the surface (upper surface in FIG. 3) opposite to the nonmagnetic layer 102 side of the second ferromagnetic metal layer 103.
- the upper wiring is electrically connected to the second ferromagnetic metal layer 103 of the magnetoresistive effect element portion 105, and the upper wiring, the spin orbit torque wiring 120, and a power source (not shown) constitute a closed circuit, and the magnetoresistance A current flows in the stacking direction of the effect element portion 105.
- the material of the upper wiring is not particularly limited as long as it is a highly conductive material. For example, aluminum, silver, copper, gold, or the like can be used.
- the first power source is connected to the upper wiring and the spin orbit torque wiring 120.
- the first power source can control the current flowing in the stacking direction of the magnetoresistive effect element portion 105.
- the second power supply 150 is connected to both ends of the spin orbit torque wiring 120.
- the second power supply 150 can control the current flowing in the spin orbit torque wiring 120, which is a current flowing in a direction orthogonal to the stacking direction of the magnetoresistive effect element portion 105.
- the current flowing in the stacking direction of the magnetoresistive effect element portion 105 induces STT.
- the current flowing through the spin orbit torque wiring 120 induces SOT. Both STT and SOT contribute to the magnetization reversal of the first ferromagnetic metal layer 101.
- the amount of current flowing from the first power source can be increased and the amount of current flowing from the second power source can be reduced.
- the amount of current flowing from the first power supply can be reduced, the amount of current flowing from the second power supply can be increased, and the contribution rate of SOT can be increased.
- a well-known thing can be used for the 1st power supply and the 2nd power supply.
- the contribution ratio of STT and SOT can be freely set by the amount of current supplied from the first power source and the second power source. Can be controlled. Therefore, the contribution ratio of STT and SOT can be freely controlled according to the performance required for the device, and it can function as a more versatile magnetoresistive element.
- the current density flowing through the spin orbit torque wiring can be less than 1 ⁇ 10 7 A / cm 2 . If the current density of the current flowing through the spin orbit torque wiring is too large, heat is generated by the current flowing through the spin orbit torque wiring. When heat is applied to the second ferromagnetic metal layer, the magnetization stability of the second ferromagnetic metal layer is lost, and unexpected magnetization reversal may occur. When such unexpected magnetization reversal occurs, there arises a problem that recorded information is rewritten.
- the current density of the current flowing through the spin orbit torque wiring is not excessively increased. If the current density of the current flowing through the spin orbit torque wiring is less than 1 ⁇ 10 7 A / cm 2 , it is possible to avoid at least magnetization reversal caused by generated heat.
- the magnetoresistive effect element in the case of the “STT and SOT combined use” configuration, even if a current is applied to the power source of the spin-orbit torque wiring after the current is applied to the power source of the magnetoresistive effect element, Good.
- the SOT magnetization reversal process and the STT magnetization reversal process may be performed at the same time, or may be performed after the SOT magnetization reversal process is performed in advance and the STT magnetization reversal process.
- the current may be supplied simultaneously from the first power supply and the second power supply, or the current may be supplied from the first power supply after the current is supplied from the second power supply, but the magnetization reversal assist using SOT is also possible.
- the current to the power source of the magnetoresistive effect element after applying the current to the power source of the spin orbit torque wiring. That is, it is preferable to supply current from the first power supply after supplying current from the second power supply.
- Magnetic memory The magnetic memory (MRAM) of the present invention includes a plurality of magnetoresistive elements of the present invention.
- the spin current magnetization reversal element can be obtained by using a film forming technique such as a sputtering method and a shape processing technique such as photolithography and Ar ion milling.
- a method for manufacturing a magneto-resistance effect element to which a spin current magnetization reversal element is applied will be described to also explain a method for manufacturing a spin current magnetization reversal element.
- a spin orbit torque wiring is prepared on a substrate serving as a support.
- a metal constituting the spin orbit torque wiring is formed by using a dual simultaneous sputtering method.
- the composition ratio can be adjusted by changing the applied DC voltage and adjusting each sputtering rate to realize various composition ratios.
- the spin orbit torque wiring is processed into a predetermined shape using a technique such as photolithography.
- the parts other than the spin orbit torque wiring are covered with an insulating film such as an oxide film.
- the exposed surfaces of the spin orbit torque wiring and the insulating film are preferably polished by chemical mechanical polishing (CMP).
- the magnetoresistive element can be manufactured using a known film forming means such as sputtering.
- the tunnel barrier layer is initially formed of a divalent positive ion of about 0.4 to 2.0 nm of magnesium, aluminum, and a plurality of nonmagnetic elements on the first ferromagnetic metal layer. It is formed by sputtering a metal thin film that becomes ions, performing natural oxidation by plasma oxidation or oxygen introduction, and subsequent heat treatment. Examples of the film forming method include sputtering, vapor deposition, laser ablation, and MBE.
- the obtained multilayer film is preferably annealed.
- the layer formed by reactive sputtering is amorphous and needs to be crystallized.
- part of B is removed by crystallization and crystallized.
- a magnetoresistive effect element manufactured by annealing treatment has an improved MR ratio compared to a magnetoresistive effect element manufactured without annealing treatment. It is considered that the annealing treatment improves the crystal size uniformity and orientation of the tunnel barrier layer of the nonmagnetic layer.
- heating is performed at a temperature of 300 ° C. or higher and 500 ° C. or lower for 5 minutes to 100 minutes in an inert atmosphere such as Ar, and then a magnetic field of 2 kOe or higher and 10 kOe or lower is applied. It is preferable to heat at a temperature of 500 ° C. or lower for 1 hour to 10 hours.
- a processing means such as photolithography can be used.
- a resist is applied to the surface of the magnetoresistive effect element opposite to the spin orbit torque wiring.
- a predetermined portion of the resist is cured, and unnecessary portions of the resist are removed.
- the portion where the resist is cured serves as a protective film for the magnetoresistive element.
- the portion where the resist is cured matches the shape of the finally obtained magnetoresistive element.
- the surface on which the protective film is formed is subjected to treatment such as ion milling and reactive ion etching (RIE).
- treatment such as ion milling and reactive ion etching (RIE).
- RIE reactive ion etching
- the present invention is not necessarily limited to the configuration and manufacturing method of the spin current magnetization reversal element according to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
- the first ferromagnetic metal layer disposed later on the side closer to the substrate is the magnetization free layer, and the layer is disposed earlier on the side farther from the substrate.
- An example of a so-called top pin structure in which the second ferromagnetic metal layer to be used is a magnetization fixed layer (pinned layer) is given, but the structure of the magnetoresistive effect element is not particularly limited, and a so-called bottom pin structure is used. There may be.
- the element resistance of the magnetoresistive effect element can be measured by a four-terminal method using a DC power source and a DC voltmeter with the upper electrode and the spin orbit torque wiring as the lower electrode.
- a pulse current is applied to the spin orbit torque wiring, and the magnetic resistance is measured after the application.
- the pulse width used is, for example, 0.5 seconds.
- An external magnetic field is applied in the extending direction of the spin orbit torque wiring.
- the magnitude of the external magnetic field is, for example, 1000 Oe (100 mT).
- the reversal current density was defined as the average of the absolute values of the reversal current density from the parallel state to the antiparallel state and the reversal current density from the antiparallel state to the parallel state.
- XRD Thin film X-ray diffraction
- X-ray fluorescence analysis can be used to identify the composition ratio of the spin orbit torque wiring material.
- the film structure of the sample for determining the crystal structure was thermally oxidized Si substrate / Ta (5 nm) / spin orbit torque wiring material (20 nm) / Ta (10 nm), and was prepared as follows.
- a Ta film of 5 nm was formed as a base layer on a thermally oxidized Si substrate, and then a 20 nm spin orbit torque wiring material film was formed on the Ta film using a DC / RF magnetron sputtering apparatus capable of two-way simultaneous sputtering. .
- the composition ratio was adjusted by changing the applied DC voltage and adjusting each sputtering rate.
- the nitride films of Examples 9 to 11 were formed by preparing a gas line different from the Ar gas line and a mass flow controller in addition to Ar gas, and flowing pure nitrogen gas into the sputtering chamber. Next, a 10 nm thick Ta film was formed on the spin orbit torque wiring material film to prepare a sample. Next, the crystal structure of each obtained sample was determined using thin-film X-ray diffraction (out-of-plane XRD and in-plane XRD). The results are shown in Tables 1 and 2.
- composition ratio of spin orbit torque wiring material (Identification of composition ratio of spin orbit torque wiring material)
- XRF X-ray fluorescence analysis
- the film configuration of the sample for identifying the composition ratio of the spin orbit torque wiring material is a thermally oxidized Si substrate / spin orbit torque wiring material (100 nm), and was prepared as follows.
- a spin orbit torque wiring material film was formed to a thickness of 100 nm on a thermally oxidized Si substrate by using a DC / RF magnetron sputtering apparatus capable of performing two-way simultaneous sputtering.
- the composition ratio was adjusted by changing the applied DC voltage and adjusting each sputtering rate. The results are shown in Tables 1 and 2.
- the reversal current density was measured while applying an external magnetic field of 1000 Oe (100 mT) in the extending direction of the spin orbit torque wiring.
- the reversal current density can be obtained by dividing the current when the resistance value of the magnetoresistive effect element is changed by the cross-sectional area of the cross section perpendicular to the longitudinal direction of the spin orbit torque wiring.
- the reversal current density shown in Tables 1 and 2 is an average of absolute values of values when the magnetization changes from the parallel state to the antiparallel state and values when the magnetization changes from the antiparallel state to the parallel state.
- the reversal current was applied by connecting a direct current source to both ends of the spin orbit torque wiring.
- the current was a pulse current having a pulse width of 0.5 seconds.
- the amount of current was measured with a DC ammeter connected to both ends of the spin orbit torque wiring.
- the change in the resistance value of the magnetoresistive effect element was measured by a four-terminal method with a spin orbit torque wiring as a lower electrode and an upper electrode opposite to the spin orbit torque wiring with respect to the magnetoresistive effect element.
- a direct current source and a direct current voltmeter were connected between the upper electrode and the lower electrode.
- the film structure of magnetoresistive effect element samples (Examples 1 to 11) for measuring the reversal current is as follows: thermally oxidized Si substrate / Ta (5 nm) / spin orbit torque wiring material (10 nm) / Fe (0.9 nm) / MgO (1 .6 nm) / CoFeB (1.6 nm) / Ru (3 nm) / Ta (5 nm).
- a Ta film of 5 nm was formed as a base layer on a thermally oxidized Si substrate, and then a spin orbit torque wiring material film was formed on the Ta film using a DC / RF magnetron sputtering apparatus capable of performing dual simultaneous sputtering. .
- the composition ratio was adjusted by changing the applied DC voltage and adjusting each sputtering rate.
- the nitride films of Examples 9 to 11 were formed by preparing a gas line different from the Ar gas line and a mass flow controller in addition to Ar gas, and flowing pure nitrogen gas into the sputtering chamber.
- the film formed using photolithography was processed into a rectangular shape in plan view with a width of 200 nm and a length of 1000 nm to form a spin orbit torque wiring.
- a SiO 2 film was formed as an insulating film in the portion removed by photolithography, and the spin orbit torque wiring and the insulating film were polished by CMP to produce a flat surface.
- the Fe film is 0.9 nm as the first ferromagnetic metal layer (magnetization free layer), the MgO film is 1.6 nm as the tunnel barrier layer, and the second ferromagnetic metal layer (magnetization fixed layer).
- a CoFeB film having a thickness of 1.3 nm and a cap layer having a thickness of 3 nm and a Ta film having a thickness of 5 nm were sequentially formed.
- a columnar magnetoresistive element having a diameter of 100 nm was fabricated by using photolithography and Ar ion milling.
- Ar ion milling was shaved to the Fe film which is the first ferromagnetic metal layer.
- the film thickness of the ferromagnetic metal layer is a film thickness that provides perpendicular magnetization.
- the magnetoresistive effect element samples for comparative current measurement differ only in that the material of the spin orbit torque wiring is not an alloy, metal carbide, or metal nitride, but a single metal. Other than that, the same procedure as in Examples 1 to 11 was used.
- Tables 1 and 2 show the measurement results of the reversal current density for the magnetoresistive effect elements of Examples 1 to 11 and Comparative Examples 1 to 8 obtained as described above.
- the magnetoresistive effect is provided with a spin orbit torque wiring made of a material having a predetermined composition having a cubic structure having symmetry of the space group Pm-3m, Fd-3m, or Fm-3m.
- a spin orbit torque wiring made of a material having a predetermined composition having a cubic structure having symmetry of the space group Pm-3m, Fd-3m, or Fm-3m.
- the spin orbit torque wiring is made of a predetermined material, so that the magnetization of the first ferromagnetic metal layer is easily reversed.
- the concentration ranges of the alloys having the crystal structures shown in Tables 1 and 2 are as follows.
- Al x Ni 1-x (Example 1): 0.42 ⁇ X ⁇ 0.54 Al x Ru 1-x (Example 2): 0.48 ⁇ X ⁇ 0.51 Al x Rh 1-x (Example 3): 0.48 ⁇ X ⁇ 0.58 Ti x Ni 1-x (Example 4): 0.47 ⁇ X ⁇ 0.50
- Pt x Al 1-x (Example 5): 0.72 ⁇ X ⁇ 0.80
- Ti x Ni 1-x (Example 6): 0.50 ⁇ X ⁇ 0.67 Al x Au 1-x (Example 7): 0.50 ⁇ X ⁇ 0.67 Si x Mn 1-x (Example 8): 0.22 ⁇ X ⁇ 0.25
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Hall/Mr Elements (AREA)
- Mram Or Spin Memory Techniques (AREA)
Abstract
本発明のスピン流磁化反転素子は、磁化の向きが可変な第1強磁性金属層と、前記第1強磁性金属層の面直方向である第1方向に対して交差する第2方向に延在し、第1強磁性金属層に接合するスピン軌道トルク配線とを備え、前記スピン軌道トルク配線の材料は、式AxB1-xで表される二元合金、金属炭化物、又は金属窒化物であり、前記AがAl、Ti、及び、Ptからなる群から選択された元素であって、前記BがAl、Cr、Mn、Fe、Co、Ni、Y、Ru、Rh、及び、Irからなる群から選択された元素であり、かつ、空間群Pm-3m、又は、Fd-3mの対称性を有する立方晶構造であるか、又は、前記AがAl、Si、Ti、Y、及び、Taからなる群から選択された元素であって、前記BがC、N、Co、Pt、Au及びBiからなる群から選択された元素であり、かつ、空間群Fm-3mの対称性を有する立方晶構造である。
Description
本発明は、スピン流磁化反転素子、磁気抵抗効果素子、および磁気メモリに関する。
本願は、2015年11月27日に、日本に出願された特願2015-232334号、2016年3月16日に、日本に出願された特願2016-53072号、2016年3月18日に、日本に出願された特願2016-56058号、2016年10月27日に、日本に出願された特願2016-210531号、2016年10月27日に、日本に出願された特願2016-210533号に基づき優先権を主張し、その内容をここに援用する。
本願は、2015年11月27日に、日本に出願された特願2015-232334号、2016年3月16日に、日本に出願された特願2016-53072号、2016年3月18日に、日本に出願された特願2016-56058号、2016年10月27日に、日本に出願された特願2016-210531号、2016年10月27日に、日本に出願された特願2016-210533号に基づき優先権を主張し、その内容をここに援用する。
強磁性層と非磁性層の多層膜からなる巨大磁気抵抗(GMR)素子及び非磁性層として絶縁層(トンネルバリア層、バリア層)を用いたトンネル磁気抵抗(TMR)素子が知られている。一般に、TMR素子はGMR素子と比較して素子抵抗が高いものの、磁気抵抗(MR)比はGMR素子のMR比より大きい。そのため、磁気センサ、高周波部品、磁気ヘッド及び不揮発性ランダムアクセスメモリ(MRAM)用の素子として、TMR素子に注目が集まっている。
MRAMは、絶縁層を挟む二つの強磁性層の互いの磁化の向きが変化するとTMR素子の素子抵抗が変化するという特性を利用してデータを読み書きする。MRAMの書き込み方式としては、電流が作る磁場を利用して書き込み(磁化反転)を行う方式や磁気抵抗素子の積層方向に電流を流して生ずるスピントランスファートルク(STT)を利用して書き込み(磁化反転)を行う方式が知られている。STTを用いたTMR素子の磁化反転はエネルギーの効率の視点から考えると効率的ではあるが、磁化反転をさせるための反転電流密度が高い。TMR素子の長寿命の観点から、この反転電流密度は低いことが望ましい。この点は、GMR素子についても同様である。
近年、STTとは異なるメカニズムで反転電流を低減する手段としてスピンホール効果により生成された純スピン流を利用した磁化反転に注目が集まっている(例えば、非特許文献1)。スピンホール効果によって生じた純スピン流は、スピン軌道トルク(SOT)を誘起し、SOTにより磁化反転を起こす。あるいは、異種材料の界面におけるラシュバ効果によって生じた純スピン流でも同様のSOTにより磁化反転を起こす。純スピン流は上向きスピンの電子と下向きスピン電子が同数で互いに逆向きに流れることで生み出されるものであり、電荷の流れは相殺されている。そのため磁気抵抗効果素子に流れる電流はゼロであり、反転電流密度の小さな磁気抵抗効果素子の実現が期待されている。
スピンホール効果は、スピン軌道相互作用の大きさに依存する。非特許文献2では、スピン軌道トルク配線にスピン軌道相互作用を生じるd電子を有した重金属であるTaを用いている。また、半導体であるGaAsでは空間的な反転対称性の崩れから生じる結晶内部の電場によってスピン軌道相互作用が生じることが知られている。
I.M.Miron, K.Garello, G.Gaudin, P.-J.Zermatten, M.V.Costache, S.Auffret, S.Bandiera, B.Rodmacq, A.Schuhl, and P.Gambardella, Nature, 476, 189 (2011).
S.Fukami, T.Anekawa, C.Zhang,and H.Ohno, Nature Nanotechnology, DOI:10.1038/NNANO.2016.29.
非特許文献2では、SOTによる反転電流密度(以下、「SOT反転電流密度」ということがある。)はSTTによる反転電流密度と同程度と報告されている。SOTによる反転電流密度のさらなる低減のためには、高いスピンホール効果を生じる材料すなわち、純スピン流の発生効率が高い材料を使用する必要がある。
本発明は上記問題に鑑みてなされたものであり、従来よりも低い反転電流密度で純スピン流による磁化反転が可能なスピン流磁化反転素子、磁気抵抗効果素子、および磁気メモリを提供することを目的とする。
SOTの発現原因はまだ十分明確になっていないが、大きく分けて内的要因と、外的要因があると考えられている。
内的要因は、スピン軌道トルク配線を構成する材料そのものに起因するものである。例えば、スピン軌道トルク配線に用いられる材料種に起因するもの、スピン軌道トルク配線の結晶構造に起因するものがある。
一方、外的要因は外部から加えられた作用に起因し、内的要因以外のものである。例えば、スピン軌道トルク配線が含む不純物等の散乱因子に起因するもの、スピン軌道トルク配線とその他の層の界面に起因するものがある。
本発明者らは、種々の発現原因の中で、スピン軌道トルク配線の結晶構造に起因するものに着目した。従来、スピン軌道トルク配線の材料としては単体の重金属が用いられてきた。これは、SOTという物理現象を解明するためにはシンプルな材料の方が適しているからである。これに対して本発明者らは、反転対称性の崩れた結晶構造を有する合金を中心に広汎な組み合わせでSOTの効果を検討した。かかる材料では、その結晶構造の対称性の崩れから生じる内場によって大きなSOTの効果が期待できるからである。そして、従来の単体のSOT反転電流密度に比べて2桁程度低いSOT反転電流密度を示す所定の材料を見出し、本発明を完成させたのである。
本発明は、上記課題を解決するため、以下の手段を提供する。
(1)本発明の一態様に係るスピン流磁化反転素子は、磁化の向きが可変な第1強磁性金属層と、前記第1強磁性金属層の面直方向である第1方向に対して交差する第2方向に延在し、第1強磁性金属層に接合するスピン軌道トルク配線と、を備え、前記スピン軌道トルク配線の材料が式AxB1-xで表される二元合金、金属炭化物、又は金属窒化物であり、前記AがAl、Ti、及び、Ptからなる群から選択された元素であって、前記BがAl、Cr、Mn、Fe、Co、Ni、Y、Ru、Rh、及び、Irからなる群から選択された元素であり、かつ、空間群Pm-3m、又は、Fd-3mの対称性を有する立方晶構造であるか、又は、前記AがAl、Si、Ti、Y、及び、Taからなる群から選択された元素であって、前記BがC、N、Co、Pt、Au及びBiからなる群から選択された元素であり、かつ、空間群Fm-3mの対称性を有する立方晶構造である。
(2)上記(1)に記載のスピン流磁化反転素子において、前記材料が、CsCl構造であるAlxFe1-x、AlxCo1-x、AlxNi1-x、AlxRu1-x、AlxRh1-x、AlxIr1-x、TixFe1-x、TixCo1-x、及び、TixNi1-xからなる群から選択されたものであってもよい。
(3)上記(1)に記載のスピン流磁化反転素子において、前記材料が、Ti2Ni構造であるTixFe1-x、TixCo1-x、及び、TixNi1-xからなる群から選択されたものであってもよい。
(4)上記(1)に記載のスピン流磁化反転素子において、前記材料が、Cu3Au構造であるPtxAl1-x、PtxCr1-x、PtxMn1-x、PtxFe1-x、及び、PtxY1-xからなる群から選択されたものであってもよい。
(5)上記(1)に記載のスピン流磁化反転素子において、前記材料が、NaCl構造であるAlxN1-x、TixC1-x、TixN1-x、YxBi1-x、及び、TaxN1-xからなる群から選択されたものであってもよい。
(6)上記(1)に記載のスピン流磁化反転素子において、前記材料が、BiF3構造であるAlxFe1-x、SixMn1-x、及び、SixFe1-xからなる群から選択されたものであってもよい。
(7)上記(1)に記載のスピン流磁化反転素子において、前記材料が、CaF2構造であるAlxPt1-x、AlxAu1-x、及び、AlxCo1-xからなる群から選択されたものであってもよい。
(8)本発明の一態様に係る磁気抵抗効果素子は、上記(1)~(7)のいずれか一つに記載のスピン流磁化反転素子と、磁化方向が固定されている第2強磁性金属層と、前記第1強磁性金属層と前記第2強磁性金属層に挟持された非磁性層とを備える。
(9)本発明の一態様に係る磁気メモリは、上記(8)に記載の磁気抵抗効果素子を複数備える。
本発明のスピン流磁化反転素子によれば、従来よりも低い反転電流密度で純スピン流による磁化反転が可能なスピン流磁化反転素子を提供することができる。
以下、本発明について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、本発明の効果を奏する範囲で適宜変更して実施することが可能である。本発明の素子において、本発明の効果を奏する範囲で他の層を備えてもよい。
(スピン流磁化反転素子)
図1に、本発明の一実施形態に係るスピン流磁化反転素子の一例の模式図を示す。図1(a)は平面図であり、図1(b)は図1(a)のスピン軌道トルク配線2の幅方向の中心線であるX-X線で切った断面図である。
図1に示すスピン流磁化反転素子10は、磁化の向きが可変な第1強磁性金属層1と、第1強磁性金属層1の面直方向である第1方向(z方向)に対して交差する第2方向(x方向)に延在し、第1強磁性金属層1の第1面1aに接合するスピン軌道トルク配線2と、を備える。スピン軌道トルク配線2の材料は、式AxB1-xで表される二元合金、金属炭化物、又は金属窒化物であり、前記AがAl、Ti、及び、Ptからなる群から選択された元素であって、前記BがAl、Cr、Mn、Fe、Co、Ni、Y、Ru、Rh、及び、Irからなる群から選択された元素であり、かつ、空間群Pm-3m、又は、Fd-3mの対称性を有する立方晶構造であるか、又は、前記AがAl、Si、Ti、Y、及び、Taからなる群から選択された元素であり、前記BがC、N、Co、Pt、Au及びBiからなる群から選択された元素であり、かつ、空間群Fm-3mの対称性を有する立方晶構造である。
図1に、本発明の一実施形態に係るスピン流磁化反転素子の一例の模式図を示す。図1(a)は平面図であり、図1(b)は図1(a)のスピン軌道トルク配線2の幅方向の中心線であるX-X線で切った断面図である。
図1に示すスピン流磁化反転素子10は、磁化の向きが可変な第1強磁性金属層1と、第1強磁性金属層1の面直方向である第1方向(z方向)に対して交差する第2方向(x方向)に延在し、第1強磁性金属層1の第1面1aに接合するスピン軌道トルク配線2と、を備える。スピン軌道トルク配線2の材料は、式AxB1-xで表される二元合金、金属炭化物、又は金属窒化物であり、前記AがAl、Ti、及び、Ptからなる群から選択された元素であって、前記BがAl、Cr、Mn、Fe、Co、Ni、Y、Ru、Rh、及び、Irからなる群から選択された元素であり、かつ、空間群Pm-3m、又は、Fd-3mの対称性を有する立方晶構造であるか、又は、前記AがAl、Si、Ti、Y、及び、Taからなる群から選択された元素であり、前記BがC、N、Co、Pt、Au及びBiからなる群から選択された元素であり、かつ、空間群Fm-3mの対称性を有する立方晶構造である。
本発明者らは、立方晶の回転対称性が良い重金属をホスト金属に、非対称性を生じる異種の置換金属として軽元素を混ぜて回転対称性を崩すこと、及び、高い磁気抵抗効果を得るため、第1強磁性金属層の材料として主に用いられているFeとの格子整合性がよいこと、をスピン軌道トルク配線の二元合金を中心とする材料の探索方針とした。スピン軌道トルク配線の材料において、ホスト材料に混ぜる置換材料は不純物ではなく結晶を構成する材料である点に留意されたい。但し、スピン軌道トルク配線の材料は、原料もしくは製造工程において不可避的に混入する不可避不純物を含有していてもよい。
なお、AがAlでかつBがAlである場合は二元合金、金属炭化物、又は金属窒化物のいずれでもないから、この場合は、本発明には含まれない。
以下、第1強磁性金属層1の面直方向もしくは第1強磁性金属層1とスピン軌道トルク配線2とが積層する方向(第1方向)をz方向、z方向と垂直でスピン軌道トルク配線2と平行な方向(第2方向)をx方向、x方向及びz方向と直交する方向(第3方向)をy方向とする。
図1を含めて以下では、スピン軌道トルク配線が第1強磁性金属層の面直方向である第1方向に対して交差する方向に延在する構成の例として、第1方向に対して直交する方向に延在する構成の場合について説明する。
スピン軌道相互作用は空間反転対称性が低い材料でより強く発生する。そのため、本発明のPm-3m、Fd-3m、又は、Fm-3mの空間群に属する立方晶構造で、かつ所定の二元合金、金属炭化物、又は金属窒化物である場合、結晶は対称性が良好であっても2種類の材料の差異から反転対称性が崩れ、高いスピン軌道相互作用を生じさせることができる。
<スピン軌道トルク配線>
スピン軌道トルク配線2は、スピン軌道トルク(SOT)を利用して磁化反転を行うために備えたものであって、電流が流れるとその内部にスピンホール効果によって純スピン流が生成する。
スピンホール効果とは、材料に電流を流した場合にスピン軌道相互作用に基づき、電流の向きに直交する方向に純スピン流が誘起される現象である。
スピン軌道トルク配線2は、スピン軌道トルク(SOT)を利用して磁化反転を行うために備えたものであって、電流が流れるとその内部にスピンホール効果によって純スピン流が生成する。
スピンホール効果とは、材料に電流を流した場合にスピン軌道相互作用に基づき、電流の向きに直交する方向に純スピン流が誘起される現象である。
図2は、スピンホール効果について説明するための模式図である。図2は、図1に示すスピン軌道トルク配線2をx方向に沿って切断した断面図である。図2に基づいてスピンホール効果により純スピン流が生み出されるメカニズムを説明する。
図2に示すように、スピン軌道トルク配線2の延在方向に電流Iを流すと、紙面手前側に配向した第1スピンS1と紙面奥側に配向した第2スピンS2はそれぞれ電流と直交する方向に曲げられる。通常のホール効果とスピンホール効果とは運動(移動)する電荷(電子)が運動(移動)方向を曲げられる点で共通するが、通常のホール効果は磁場中で運動する荷電粒子がローレンツ力を受けて運動方向を曲げられるのに対して、スピンホール効果では磁場が存在しないのに電子が移動するだけ(電流が流れるだけ)で移動方向が曲げられる点で大きく異なる。
非磁性体(強磁性体ではない材料)では第1スピンS1の電子数と第2スピンS2の電子数とが等しいので、図中で上方向に向かう第1スピンS1の電子数と下方向に向かう第2スピンS2の電子数が等しい。そのため、電荷の正味の流れとしての電流はゼロである。この電流を伴わないスピン流は特に純スピン流と呼ばれる。
強磁性体中に電流を流した場合は、第1スピンS1と第2スピンS2が互いに反対方向に曲げられる点は同じである。一方で、強磁性体中では第1スピンS1と第2スピンS2のいずれかが多い状態であり、結果として電荷の正味の流れが生じてしまう(電圧が発生してしまう)点が異なる。従って、スピン軌道トルク配線2の材料としては、強磁性体だけからなる材料は含まれない。
ここで、第1スピンS1の電子の流れをJ↑、第2スピンS2の電子の流れをJ↓、スピン流をJSと表すと、JS=J↑-J↓で定義される。図2においては、純スピン流としてJSが図中の上方向に流れる。ここで、JSは分極率が100%の電子の流れである。
図1において、スピン軌道トルク配線2の上面に強磁性体を接触させると、純スピン流は強磁性体中に拡散して流れ込む。すなわち、第1強磁性金属層1にスピンが注入される。ここで、スピン軌道トルク配線2と第1強磁性金属層1との接合は、「直接」接合してもよいし、「他の層を介して」接合してもよく、スピン軌道トルク配線で発生した純スピン流が第1強磁性金属層に流れ込む構成であれば、スピン軌道トルク配線と第1強磁性金属層との接合(接続あるいは結合)の仕方は限定されない。
スピン軌道トルク配線2を構成する材料としては、CsCl構造であるAlxFe1-x、AlxCo1-x、AlxNi1-x、AlxRu1-x、AlxRh1-x、AlxIr1-x、TixFe1-x、TixCo1-x、及び、TixNi1-xからなる群から選択されたものを用いることができる。
スピン軌道トルク配線2をこれらの材料からなるものとすることにより、高いスピン軌道相互作用を生じさせることができる。
また、これらの材料は、接合するFeなどの強磁性金属層との格子不整合が5%以下であるため、高い磁気抵抗比が維持される。
スピン軌道トルク配線2をこれらの材料からなるものとすることにより、高いスピン軌道相互作用を生じさせることができる。
また、これらの材料は、接合するFeなどの強磁性金属層との格子不整合が5%以下であるため、高い磁気抵抗比が維持される。
スピン軌道トルク配線2を構成する材料としては、Ti2Ni構造であるTixFe1-x、TixCo1-x、及び、TixNi1-xからなる群から選択されたものを用いることができる。
スピン軌道トルク配線2をこれらの材料からなるものとすることにより、高いスピン軌道相互作用を生じさせることができる。
また、これらの材料は、接合するFeなどの強磁性金属層との格子不整合が5%以下であるため、高い磁気抵抗比が維持される。
スピン軌道トルク配線2をこれらの材料からなるものとすることにより、高いスピン軌道相互作用を生じさせることができる。
また、これらの材料は、接合するFeなどの強磁性金属層との格子不整合が5%以下であるため、高い磁気抵抗比が維持される。
スピン軌道トルク配線2を構成する材料としては、Cu3Au構造であるPtxAl1-x、PtxCr1-x、PtxMn1-x、PtxFe1-x、及び、PtxY1-xからなる群から選択されたものを用いることができる。
スピン軌道トルク配線2をこれらの材料からなるものとすることにより、高いスピン軌道相互作用を生じさせることができる。
また、これらの材料は、接合するFeなどの強磁性金属層との格子不整合が5%以下であるため、高い磁気抵抗比が維持される。
スピン軌道トルク配線2をこれらの材料からなるものとすることにより、高いスピン軌道相互作用を生じさせることができる。
また、これらの材料は、接合するFeなどの強磁性金属層との格子不整合が5%以下であるため、高い磁気抵抗比が維持される。
スピン軌道トルク配線2を構成する材料としては、NaCl構造であるAlxN1-x、TixC1-x、TixN1-x、YxBi1-x、及び、TaxN1-xからなる群から選択されたものを用いることができる。
スピン軌道トルク配線2をこれらの材料からなるものとすることにより、高いスピン軌道相互作用を生じさせることができる。
また、これらの材料は、接合するFeなどの強磁性金属層との格子不整合が5%以下であるため、高い磁気抵抗比が維持される。
スピン軌道トルク配線2をこれらの材料からなるものとすることにより、高いスピン軌道相互作用を生じさせることができる。
また、これらの材料は、接合するFeなどの強磁性金属層との格子不整合が5%以下であるため、高い磁気抵抗比が維持される。
スピン軌道トルク配線2を構成する材料としては、BiF3構造であるAlxFe1-x、SixMn1-x、及び、SixFe1-xからなる群から選択されたものを用いることができる。
スピン軌道トルク配線2をこれらの材料からなるものとすることにより、高いスピン軌道相互作用を生じさせることができる。
また、これらの材料は、接合するFeなどの強磁性金属層との格子不整合が5%以下であるため、高い磁気抵抗比が維持される。
スピン軌道トルク配線2をこれらの材料からなるものとすることにより、高いスピン軌道相互作用を生じさせることができる。
また、これらの材料は、接合するFeなどの強磁性金属層との格子不整合が5%以下であるため、高い磁気抵抗比が維持される。
スピン軌道トルク配線2を構成する材料としては、CaF2構造であるAlxPt1-x、AlxAu1-x、及び、AlxCo1-xからなる群から選択されたものを用いることができる。
スピン軌道トルク配線2をこれらの材料からなるものとすることにより、高いスピン軌道相互作用を生じさせることができる。
また、これらの材料は、接合するFeなどの強磁性金属層との格子不整合が5%以下であるため、高い磁気抵抗比が維持される。
スピン軌道トルク配線2をこれらの材料からなるものとすることにより、高いスピン軌道相互作用を生じさせることができる。
また、これらの材料は、接合するFeなどの強磁性金属層との格子不整合が5%以下であるため、高い磁気抵抗比が維持される。
<第1強磁性金属層>
図1に示すスピン流磁化反転素子においては、第1強磁性金属層は磁化方向が層に平行な面内方向である面内磁化膜でも、磁化方向が層に対して垂直方向である垂直磁化膜でもいずれでもよい。
図1に示すスピン流磁化反転素子においては、第1強磁性金属層は磁化方向が層に平行な面内方向である面内磁化膜でも、磁化方向が層に対して垂直方向である垂直磁化膜でもいずれでもよい。
図1に示すスピン流磁化反転素子において、第1強磁性金属層は平面視して、スピン軌道トルク配線の延在方向である第2方向を長軸とする形状異方性を有する。
このように第1強磁性金属層が細長状であることにより、この方向に磁化が反転しやすくなるので、その分、反転電流密度が小さくて済む。
このように第1強磁性金属層が細長状であることにより、この方向に磁化が反転しやすくなるので、その分、反転電流密度が小さくて済む。
図1に示すスピン流磁化反転素子においては、第1強磁性金属層はz方向から平面視して矩形(より正確には、長方形)であったが、楕円状であってもよいし、さらに他の形状であってもよい。
第1強磁性金属層については後でまた詳述する。
第1強磁性金属層については後でまた詳述する。
以下に、上記のスピン流磁化反転素子を用いた磁気抵抗効果素子について説明するが、上記のスピン流磁化反転素子の用途としては磁気抵抗効果素子に限られない。他の用途としては、例えば、上記のスピン流磁化反転素子を各画素に配設して、磁気光学効果を利用して入射光を空間的に変調する空間光変調器においても用いることができるし、磁気センサにおいて磁石の保磁力によるヒステリシスの効果を避けるために磁石の磁化容易軸に印加する磁場をSOTに置き換えてもよい。
(磁気抵抗効果素子)
本発明の一実施形態に係る磁気抵抗効果素子は、本発明のスピン流磁化反転素子と、磁化方向が固定されている第2強磁性金属層と、第1強磁性金属層と第2強磁性金属層に挟持された非磁性層とを備えるものである。
本発明の一実施形態に係る磁気抵抗効果素子は、本発明のスピン流磁化反転素子と、磁化方向が固定されている第2強磁性金属層と、第1強磁性金属層と第2強磁性金属層に挟持された非磁性層とを備えるものである。
図3は、本発明のスピン流磁化反転素子の応用例であり、また、本発明の一実施形態に係る磁気抵抗効果素子でもある磁気抵抗効果素子の一例の模式図を示す。図3(a)は平面図であり、図3(b)は図3(a)のスピン軌道トルク配線2の幅方向の中心線であるX-X線で切った断面図である。
図3に示す磁気抵抗効果素子100は、本発明のスピン流磁化反転素子(第1強磁性金属層101とスピン軌道トルク配線120)と、磁化方向が固定された第2強磁性金属層103と、第1強磁性金属層101及び第2強磁性金属層103に挟持された非磁性層102とを有する。また、図3に示す磁気抵抗効果素子100は、磁気抵抗効果素子部105とスピン軌道トルク配線120とを有するということもできる。
図3においては、磁気抵抗効果素子100を作製する基板110も図示した。
図3に示す磁気抵抗効果素子100は、本発明のスピン流磁化反転素子(第1強磁性金属層101とスピン軌道トルク配線120)と、磁化方向が固定された第2強磁性金属層103と、第1強磁性金属層101及び第2強磁性金属層103に挟持された非磁性層102とを有する。また、図3に示す磁気抵抗効果素子100は、磁気抵抗効果素子部105とスピン軌道トルク配線120とを有するということもできる。
図3においては、磁気抵抗効果素子100を作製する基板110も図示した。
本発明の一実施形態に係る磁気抵抗効果素子は、スピン軌道トルク配線120を備えることで、純スピン流によるSOTのみで磁気抵抗効果素子の磁化反転を行う構成(以下、「SOTのみ」構成ということがある)とすることもできるし、従来のSTTを利用する磁気抵抗効果素子において純スピン流によるSOTを併用する構成(以下、「STT及びSOT併用」構成ということがある)とすることもできる。なお、STTを利用する場合には、磁気抵抗効果素子100の積層方向に電流を流すための配線が必要となる。
図3を含めて以下では、スピン軌道トルク配線が磁気抵抗効果素子部の積層方向に対して交差する方向に延在する構成の例として、直交する方向に延在する構成の場合について説明する。
<磁気抵抗効果素子部>
磁気抵抗効果素子部105は、磁化方向が固定された第2強磁性金属層103と、磁化の向きが可変な第1強磁性金属層101と、第2強磁性金属層103及び第1強磁性金属層101に挟持された非磁性層102とを有する。
第2強磁性金属層103の磁化が一方向に固定され、第1強磁性金属層101の磁化の向きが相対的に変化することで、磁気抵抗効果素子部105として機能する。保磁力差型(擬似スピンバルブ型;Pseudo spin valve 型)のMRAMに適用する場合には、第2強磁性金属層の保持力は第1強磁性金属層の保磁力よりも大きいものであり、また、交換バイアス型(スピンバルブ;spin valve型)のMRAMに適用する場合には、第2強磁性金属層では反強磁性層との交換結合によって磁化方向が固定される。
また、磁気抵抗効果素子部105は、非磁性層102が絶縁体からなる場合は、トンネル磁気抵抗(TMR:Tunneling Magnetoresistance)素子であり、非磁性層102が金属からなる場合は巨大磁気抵抗(GMR:Giant Magnetoresistance)素子である。
磁気抵抗効果素子部105は、磁化方向が固定された第2強磁性金属層103と、磁化の向きが可変な第1強磁性金属層101と、第2強磁性金属層103及び第1強磁性金属層101に挟持された非磁性層102とを有する。
第2強磁性金属層103の磁化が一方向に固定され、第1強磁性金属層101の磁化の向きが相対的に変化することで、磁気抵抗効果素子部105として機能する。保磁力差型(擬似スピンバルブ型;Pseudo spin valve 型)のMRAMに適用する場合には、第2強磁性金属層の保持力は第1強磁性金属層の保磁力よりも大きいものであり、また、交換バイアス型(スピンバルブ;spin valve型)のMRAMに適用する場合には、第2強磁性金属層では反強磁性層との交換結合によって磁化方向が固定される。
また、磁気抵抗効果素子部105は、非磁性層102が絶縁体からなる場合は、トンネル磁気抵抗(TMR:Tunneling Magnetoresistance)素子であり、非磁性層102が金属からなる場合は巨大磁気抵抗(GMR:Giant Magnetoresistance)素子である。
本発明が備える磁気抵抗効果素子部としては、公知の磁気抵抗効果素子部の構成を用いることができる。例えば、各層は複数の層からなるものでもよいし、第2強磁性金属層の磁化方向を固定するための反強磁性層等の他の層を備えてもよい。
第2強磁性金属層103は磁化固定層や参照層、第1強磁性金属層101は磁化自由層や記憶層などと呼ばれる。
第2強磁性金属層103は磁化固定層や参照層、第1強磁性金属層101は磁化自由層や記憶層などと呼ばれる。
第2強磁性金属層103及び第1強磁性金属層101は、磁化方向が層に平行な面内方向である面内磁化膜でも、磁化方向が層に対して垂直方向である垂直磁化膜でもいずれでもよい。
第2強磁性金属層103の材料には、公知のものを用いることができる。例えば、Cr、Mn、Co、Fe及びNiからなる群から選択される金属及びこれらの金属を1種以上含み強磁性を示す合金を用いることができる。またこれらの金属と、B、C、及びNの少なくとも1種以上の元素とを含む合金を用いることもできる。具体的には、Co-FeやCo-Fe-Bが挙げられる。
また、より高い出力を得るためにはCo2FeSiなどのホイスラー合金を用いることが好ましい。ホイスラー合金は、X2YZの化学組成をもつ金属間化合物を含み、Xは、周期表上でCo、Fe、Ni、あるいはCu族の遷移金属元素または貴金属元素であり、Yは、Mn、V、CrあるいはTi族の遷移金属でありXの元素種をとることもでき、Zは、III族からV族の典型元素である。例えば、Co2FeSi、Co2MnSiやCo2Mn1-aFeaAlbSi1-bなどが挙げられる。
また、第2強磁性金属層103の第1強磁性金属層101に対する保磁力をより大きくするために、第2強磁性金属層103と接する材料としてIrMn、PtMnなどの反強磁性材料を用いてもよい。さらに、第2強磁性金属層103の漏れ磁場を第1強磁性金属層101に影響させないようにするため、シンセティック強磁性結合の構造としてもよい。
さらに第2強磁性金属層103の磁化の向きを積層面に対して垂直にする場合には、CoとPtの積層膜を用いることが好ましい。具体的には、第2強磁性金属層103は[Co(0.24nm)/Pt(0.16nm)]6/Ru(0.9nm)/[Pt(0.16nm)/Co(0.16nm)]4/Ta(0.2nm)/FeB(1.0nm)とすることができる。
第1強磁性金属層101の材料として、強磁性材料、特に軟磁性材料を適用できる。例えば、Cr、Mn、Co、Fe及びNiからなる群から選択される金属、これらの金属を1種以上含む合金、これらの金属とB、C、及びNの少なくとも1種以上の元素とが含まれる合金等を用いることができる。具体的には、Co-Fe、Co-Fe-B、Ni-Feが挙げられる。
第1強磁性金属層101の磁化の向きを積層面に対して垂直にする場合には、第1強磁性金属層の厚みを2.5nm以下とすることが好ましい。第1強磁性金属層101と非磁性層102の界面で、第1強磁性金属層101に垂直磁気異方性を付加することができる。また、垂直磁気異方性は第1強磁性金属層101の膜厚を厚くすることによって効果が減衰するため、第1強磁性金属層101の膜厚は薄い方が好ましい。
非磁性層102には、公知の材料を用いることができる。
例えば、非磁性層102が絶縁体からなる場合(トンネルバリア層である場合)、その材料としては、Al2O3、SiO2、MgO、及び、MgAl2O4等を用いることができる。またこれらの他にも、Al、Si、Mgの一部が、Zn、Be等に置換された材料等も用いることができる。これらの中でも、MgOやMgAl2O4はコヒーレントトンネルが実現できる材料であるため、スピンを効率よく注入できる。
また、非磁性層102が金属からなる場合、その材料としては、Cu、Au、Ag等を用いることができる。
例えば、非磁性層102が絶縁体からなる場合(トンネルバリア層である場合)、その材料としては、Al2O3、SiO2、MgO、及び、MgAl2O4等を用いることができる。またこれらの他にも、Al、Si、Mgの一部が、Zn、Be等に置換された材料等も用いることができる。これらの中でも、MgOやMgAl2O4はコヒーレントトンネルが実現できる材料であるため、スピンを効率よく注入できる。
また、非磁性層102が金属からなる場合、その材料としては、Cu、Au、Ag等を用いることができる。
また、第1強磁性金属層101の非磁性層102と反対側の面には、図3に示すようにキャップ層104が形成されていることが好ましい。キャップ層104は、第1強磁性金属層101からの元素の拡散を抑制することができる。またキャップ層104は、磁気抵抗効果素子部105の各層の結晶配向性にも寄与する。その結果、キャップ層104を設けることで、磁気抵抗効果素子部105の第2強磁性金属層103及び第1強磁性金属層101の磁性を安定化し、磁気抵抗効果素子部105を低抵抗化することができる。
キャップ層104には、導電性が高い材料を用いることが好ましい。例えば、Ru、Ta、Cu、Ag、Au等を用いることができる。キャップ層104の結晶構造は、隣接する強磁性金属層の結晶構造に合せて、fcc構造、hcp構造またはbcc構造から適宜設定することが好ましい。
また、キャップ層104には、銀、銅、マグネシウム、及び、アルミニウムからなる群から選択されるいずれかを用いることが好ましい。詳細は後述するが、キャップ層104を介してスピン軌道トルク配線120と磁気抵抗効果素子部105が接続される場合、キャップ層104はスピン軌道トルク配線120から伝播するスピンを散逸しないことが好ましい。銀、銅、マグネシウム、及び、アルミニウム等は、スピン拡散長が100nm以上と長く、スピンが散逸しにくいことが知られている。
キャップ層104の厚みは、キャップ層104を構成する物質のスピン拡散長以下であることが好ましい。キャップ層104の厚みがスピン拡散長以下であれば、スピン軌道トルク配線120から伝播するスピンを磁気抵抗効果素子部105に十分伝えることができる。
<基板>
基板110は、平坦性に優れることが好ましい。平坦性に優れた表面を得るために、材料として例えば、Si、AlTiC等を用いることができる。
基板110は、平坦性に優れることが好ましい。平坦性に優れた表面を得るために、材料として例えば、Si、AlTiC等を用いることができる。
基板110のスピン軌道トルク配線120側の面には、下地層(図示略)が形成されていてもよい。下地層を設けると、基板110上に積層されるスピン軌道トルク配線120を含む各層の結晶配向性、結晶粒径等の結晶性を制御することができる。
下地層は、絶縁性を有していることが好ましい。スピン軌道トルク配線120等に流れる電流が散逸しないようにするためである。下地層には、種々のものを用いることができる。
例えば1つの例として、下地層には(001)配向したNaCl構造を有し、Ti、Zr、Nb、V、Hf、Ta、Mo、W、B、Al、Ceの群から選択される少なくとも1つの元素を含む窒化物の層を用いることができる。
例えば1つの例として、下地層には(001)配向したNaCl構造を有し、Ti、Zr、Nb、V、Hf、Ta、Mo、W、B、Al、Ceの群から選択される少なくとも1つの元素を含む窒化物の層を用いることができる。
他の例として、下地層にはXYO3の組成式で表される(002)配向したペロブスカイト系導電性酸化物の層を用いることができる。ここで、サイトXはSr、Ce、Dy、La、K、Ca、Na、Pb、Baの群から選択された少なくとも1つの元素を含み、サイトYはTi、V、Cr、Mn、Fe、Co、Ni、Ga、Nb、Mo、Ru、Ir、Ta、Ce、Pbの群から選択された少なくとも1つの元素を含む。
他の例として、下地層には(001)配向したNaCl構造を有し、かつMg、Al、Ceの群から選択される少なくとも1つの元素を含む酸化物の層を用いることができる。
他の例として、下地層には(001)配向した正方晶構造または立方晶構造を有し、かつAl、Cr、Fe、Co、Rh、Pd、Ag、Ir、Pt、Au、Mo、Wの群から選択される少なくとも1つの元素を含む層を用いることができる。
また、下地層は一層に限られず、上述の例の層を複数層積層してもよい。下地層の構成を工夫することにより磁気抵抗効果素子部105の各層の結晶性を高め、磁気特性の改善が可能となる。
<上側配線>
第2強磁性金属層103の非磁性層102側と反対側の面(図3では上面)には、上側配線(図示略)を設けてもよい。
第2強磁性金属層103の非磁性層102側と反対側の面(図3では上面)には、上側配線(図示略)を設けてもよい。
上側配線は、磁気抵抗効果素子部105の第2強磁性金属層103に電気的に接続され、この上側配線とスピン軌道トルク配線120と電源(図示略)とで閉回路を構成し、磁気抵抗効果素子部105の積層方向に電流が流される。
上側配線の材料は、導電性の高い材料であれば特に問わない。例えば、アルミニウム、銀、銅、金等を用いることができる。
上側配線の材料は、導電性の高い材料であれば特に問わない。例えば、アルミニウム、銀、銅、金等を用いることができる。
「STT及びSOT併用」構成の場合は、第1電源と第2電源の二つの電源を用いてもよい。
第1電源は、上側配線とスピン軌道トルク配線120とに接続される。第1電源は磁気抵抗効果素子部105の積層方向に流れる電流を制御することができる。
第2電源150は、スピン軌道トルク配線120の両端に接続される。第2電源150は、磁気抵抗効果素子部105の積層方向に対して直交する方向に流れる電流である、スピン軌道トルク配線120に流れる電流を制御することができる。
第1電源は、上側配線とスピン軌道トルク配線120とに接続される。第1電源は磁気抵抗効果素子部105の積層方向に流れる電流を制御することができる。
第2電源150は、スピン軌道トルク配線120の両端に接続される。第2電源150は、磁気抵抗効果素子部105の積層方向に対して直交する方向に流れる電流である、スピン軌道トルク配線120に流れる電流を制御することができる。
上述のように、磁気抵抗効果素子部105の積層方向に流れる電流はSTTを誘起する。これに対して、スピン軌道トルク配線120に流れる電流はSOTを誘起する。STT及びSOTはいずれも第1強磁性金属層101の磁化反転に寄与する。
このように、磁気抵抗効果素子部105の積層方向と、この積層方向に直行する方向に流れる電流量を2つの電源によって制御することで、SOTとSTTが磁化反転に対して寄与する寄与率を自由に制御することができる。
例えば、デバイスに大電流を流すことができない場合は磁化反転に対するエネルギー効率の高いSTTが主となるように制御することができる。すなわち、第1電源から流れる電流量を増やし、第2電源から流れる電流量を少なくすることができる。
また、例えば薄いデバイスを作製する必要があり、非磁性層102の厚みを薄くせざる得ない場合は、非磁性層102に流れる電流を少なくことが求められる。この場合は、第1電源から流れる電流量を少なくし、第2電源から流れる電流量を多くし、SOTの寄与率を高めることができる。
また、例えば薄いデバイスを作製する必要があり、非磁性層102の厚みを薄くせざる得ない場合は、非磁性層102に流れる電流を少なくことが求められる。この場合は、第1電源から流れる電流量を少なくし、第2電源から流れる電流量を多くし、SOTの寄与率を高めることができる。
第1電源及び第2電源は公知のものを用いることができる。
上述のように、本発明の「STT及びSOT併用」構成の場合の磁気抵抗効果素子によれば、STT及びSOTの寄与率を、第1電源及び第2電源から供給される電流量により自由に制御することができる。そのため、デバイスに要求される性能に応じて、STTとSOTの寄与率を自由に制御することができ、より汎用性の高い磁気抵抗効果素子として機能することができる。
(磁化反転方法)
磁化反転方法は、本発明の磁気抵抗効果素子において、スピン軌道トルク配線に流れる電流密度が1×107A/cm2未満とすることができる。
スピン軌道トルク配線に流す電流の電流密度が大きすぎると、スピン軌道トルク配線に流れる電流によって熱が生じる。熱が第2強磁性金属層に加わると、第2強磁性金属層の磁化の安定性が失われ、想定外の磁化反転等が生じる場合がある。このような想定外の磁化反転が生じると、記録した情報が書き換わるという問題が生じる。すなわち、想定外の磁化反転を避けるためには、スピン軌道トルク配線に流す電流の電流密度が大きくなりすぎないようにすることが好ましい。スピン軌道トルク配線に流す電流の電流密度は1×107A/cm2未満であれば、少なくとも発生する熱により磁化反転が生じることを避けることができる。
磁化反転方法は、本発明の磁気抵抗効果素子において、スピン軌道トルク配線に流れる電流密度が1×107A/cm2未満とすることができる。
スピン軌道トルク配線に流す電流の電流密度が大きすぎると、スピン軌道トルク配線に流れる電流によって熱が生じる。熱が第2強磁性金属層に加わると、第2強磁性金属層の磁化の安定性が失われ、想定外の磁化反転等が生じる場合がある。このような想定外の磁化反転が生じると、記録した情報が書き換わるという問題が生じる。すなわち、想定外の磁化反転を避けるためには、スピン軌道トルク配線に流す電流の電流密度が大きくなりすぎないようにすることが好ましい。スピン軌道トルク配線に流す電流の電流密度は1×107A/cm2未満であれば、少なくとも発生する熱により磁化反転が生じることを避けることができる。
磁化反転方法は、本発明の磁気抵抗効果素子において、「STT及びSOT併用」構成の場合、スピン軌道トルク配線の電源に電流を印加した後に、磁気抵抗効果素子の電源に電流を印加してもよい。
SOT磁化反転工程とSTT磁化反転工程は、同時に行ってもよいし、SOT磁化反転工程を事前に行った後にSTT磁化反転工程を加えて行ってもよい。第1電源と第2電源から電流を同時に供給してもよいし、第2電源から電流を供給後に、加えて第1電源から電流を供給してもよいが、SOTを利用した磁化反転のアシスト効果をより確実に得るためには、スピン軌道トルク配線の電源に電流が印加した後に、磁気抵抗効果素子の電源に電流を印加することが好ましい。すなわち、第2電源から電流を供給後に、加えて第1電源から電流を供給することが好ましい。
SOT磁化反転工程とSTT磁化反転工程は、同時に行ってもよいし、SOT磁化反転工程を事前に行った後にSTT磁化反転工程を加えて行ってもよい。第1電源と第2電源から電流を同時に供給してもよいし、第2電源から電流を供給後に、加えて第1電源から電流を供給してもよいが、SOTを利用した磁化反転のアシスト効果をより確実に得るためには、スピン軌道トルク配線の電源に電流が印加した後に、磁気抵抗効果素子の電源に電流を印加することが好ましい。すなわち、第2電源から電流を供給後に、加えて第1電源から電流を供給することが好ましい。
(磁気メモリ)
本発明の磁気メモリ(MRAM)は、本発明の磁気抵抗効果素子を複数備える。
本発明の磁気メモリ(MRAM)は、本発明の磁気抵抗効果素子を複数備える。
(製造方法)
スピン流磁化反転素子は、スパッタリング法等の成膜技術と、フォトリソグラフィー及びArイオンミリング等の形状加工技術を用いて得ることができる。以下では、スピン流磁化反転素子を適用した磁気抵抗効果素子の製造方法について説明することでスピン流磁化反転素子の製造方法の説明も兼ねる。
スピン流磁化反転素子は、スパッタリング法等の成膜技術と、フォトリソグラフィー及びArイオンミリング等の形状加工技術を用いて得ることができる。以下では、スピン流磁化反転素子を適用した磁気抵抗効果素子の製造方法について説明することでスピン流磁化反転素子の製造方法の説明も兼ねる。
まず支持体となる基板上にスピン軌道トルク配線を作製する。スピン軌道トルク配線を構成する金属を、2元同時スパッタ法を用いて成膜する。組成比の調整は、印加DC電圧を変え各々のスパッタリングレートを調整することで種々の組成比を実現することができる。次いで、フォトリソグラフィー等の技術を用いて、スピン軌道トルク配線を所定の形状に加工する。
そして、スピン軌道トルク配線以外の部分は、酸化膜等の絶縁膜で覆う。スピン軌道トルク配線及び絶縁膜の露出面は、化学機械研磨(CMP)により研磨することが好ましい。
次いで、磁気抵抗効果素子を作製する。磁気抵抗効果素子はスパッタリング等の公知の成膜手段を用いて作製できる。磁気抵抗効果素子がTMR素子の場合、例えば、トンネルバリア層は第1強磁性金属層上に最初に0.4~2.0nm程度のマグネシウム、アルミニウム、及び複数の非磁性元素の二価の陽イオンとなる金属薄膜をスパッタリングし、プラズマ酸化あるいは酸素導入による自然酸化を行い、その後の熱処理によって形成される。成膜法としてはスパッタリング法のほか、蒸着法、レーザアブレーション法、MBE法等が挙げられる。
得られた積層膜は、アニール処理することが好ましい。反応性スパッタで形成した層は、アモルファスであり結晶化する必要がある。例えば、強磁性金属層としてCo-Fe-Bを用いる場合は、Bの一部がアニール処理により抜けて結晶化する。
アニール処理して製造した磁気抵抗効果素子は、アニール処理しないで製造した磁気抵抗効果素子と比較して、MR比が向上する。アニール処理によって、非磁性層のトンネルバリア層の結晶サイズの均一性および配向性が向上するためであると考えられる。
アニール処理としては、Arなどの不活性雰囲気中で、300℃以上500℃以下の温度で、5分以上100分以下の時間加熱した後、2kOe以上10kOe以下の磁場を印加した状態で、100℃以上500℃以下の温度で、1時間以上10時間以下の時間加熱することが好ましい。
磁気抵抗効果素子を所定の形状にする方法としては、フォトリソグラフィー等の加工手段を利用できる。まず磁気抵抗効果素子を積層した後、磁気抵抗効果素子のスピン軌道トルク配線と反対側の面に、レジストを塗工する。そして、所定の部分のレジストを硬化し、不要部のレジストを除去する。レジストが硬化した部分は、磁気抵抗効果素子の保護膜となる。レジストが硬化した部分は、最終的に得られる磁気抵抗効果素子の形状と一致する。
そして、保護膜が形成された面に、イオンミリング、反応性イオンエッチング(RIE)等の処理を施す。保護膜が形成されていない部分は除去され、所定の形状の磁気抵抗効果素子が得られる。
本発明は、上記実施形態にかかるスピン流磁化反転素子の構成及び製造方法に必ずしも限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上述した本実施形態では、磁気抵抗効果素子において、積層が後になり基板から近い側に配置する第1強磁性金属層が磁化自由層とされ、積層が先であり基板に遠い側に配置する第2強磁性金属層が磁化固定層(ピン層)とされている、いわゆるトップピン構造の例を挙げたが、磁気抵抗効果素子の構造は特に限定されるものではなく、いわゆるボトムピン構造であってもよい。
(反転電流密度の測定方法)
スピン軌道トルク配線の両端に直流電源と直流電圧計を設置する。また、磁気抵抗効果素子の素子抵抗の測定は、上部電極、及びスピン軌道トルク配線を下部電極とし、直流電源、直流電圧計を用いた4端子法にて測定を行うことができる。
スピン軌道トルク配線にパルス電流を印加し、印加後、磁気抵抗を測定する。用いるパルス幅は例えば、0.5秒とする。
また、外部磁場をスピン軌道トルク配線の延伸方向に印加する。外部磁場の大きさは例えば、1000Oe(100mT)とする。
後述する実施例では、反転電流密度は平行状態から反平行状態への反転電流密度と反平行状態から平行状態への反転電流密度の絶対値の平均として定義した。
スピン軌道トルク配線の両端に直流電源と直流電圧計を設置する。また、磁気抵抗効果素子の素子抵抗の測定は、上部電極、及びスピン軌道トルク配線を下部電極とし、直流電源、直流電圧計を用いた4端子法にて測定を行うことができる。
スピン軌道トルク配線にパルス電流を印加し、印加後、磁気抵抗を測定する。用いるパルス幅は例えば、0.5秒とする。
また、外部磁場をスピン軌道トルク配線の延伸方向に印加する。外部磁場の大きさは例えば、1000Oe(100mT)とする。
後述する実施例では、反転電流密度は平行状態から反平行状態への反転電流密度と反平行状態から平行状態への反転電流密度の絶対値の平均として定義した。
(結晶構造の決定方法)
薄膜X線回折(XRD)を用いて結晶構造を決定することができる。XRDは、面直測定(out-of-plane XRD)と面内測定(in-plane XRD)を行った。
また併せて、透過型電子顕微鏡(TEM)を用いて原子配列を直接確認してもよい。
薄膜X線回折(XRD)を用いて結晶構造を決定することができる。XRDは、面直測定(out-of-plane XRD)と面内測定(in-plane XRD)を行った。
また併せて、透過型電子顕微鏡(TEM)を用いて原子配列を直接確認してもよい。
(スピン軌道トルク配線材料の組成比の同定方法)
蛍光X線分析(XRF)を用いて、スピン軌道トルク配線材料の組成比の同定を行うことができる。
蛍光X線分析(XRF)を用いて、スピン軌道トルク配線材料の組成比の同定を行うことができる。
(結晶構造の決定)
実施例1~11について、スピン軌道トルク配線の構成材料の結晶構造は以下のようにして決定した。
実施例1~11について、スピン軌道トルク配線の構成材料の結晶構造は以下のようにして決定した。
結晶構造決定用のサンプルの膜構成は熱酸化Si基板/Ta(5nm)/スピン軌道トルク配線材料(20nm)/Ta(10nm)であり、以下のようにして作製した。
熱酸化Si基板上に下地層としてTa膜を5nm成膜し、次いでTa膜上に2元同時スパッタが可能なDC・RFマグネトロンスパッタ装置を用いて、スピン軌道トルク配線材料膜を20nm成膜した。組成比の調整は、印加DC電圧を変え各々のスパッタリングレートを調整することによって行った。実施例9~11の窒化物膜はArガスに加え、Arガスラインとは異なるガスラインとマスフローコントローラーを用意し、純窒素ガスをスパッタチャンバー内に流すことによって成膜した。次いで、スピン軌道トルク配線材料膜上にTa膜を10nm成膜してサンプルを作製した。
次いで、得られた各サンプルについて、薄膜X線回折(out-of-plane XRD、及び、in-plane XRD)を用いて結晶構造を決定した。その結果は表1及び表2に示した。
熱酸化Si基板上に下地層としてTa膜を5nm成膜し、次いでTa膜上に2元同時スパッタが可能なDC・RFマグネトロンスパッタ装置を用いて、スピン軌道トルク配線材料膜を20nm成膜した。組成比の調整は、印加DC電圧を変え各々のスパッタリングレートを調整することによって行った。実施例9~11の窒化物膜はArガスに加え、Arガスラインとは異なるガスラインとマスフローコントローラーを用意し、純窒素ガスをスパッタチャンバー内に流すことによって成膜した。次いで、スピン軌道トルク配線材料膜上にTa膜を10nm成膜してサンプルを作製した。
次いで、得られた各サンプルについて、薄膜X線回折(out-of-plane XRD、及び、in-plane XRD)を用いて結晶構造を決定した。その結果は表1及び表2に示した。
(スピン軌道トルク配線材料の組成比の同定)
実施例1~11について、スピン軌道トルク配線の構成材料の組成比は蛍光X線分析(XRF)を用いて同定した。
実施例1~11について、スピン軌道トルク配線の構成材料の組成比は蛍光X線分析(XRF)を用いて同定した。
スピン軌道トルク配線材料の組成比同定用のサンプルの膜構成は熱酸化Si基板/スピン軌道トルク配線材料(100nm)であり、以下のようにして作製した。
熱酸化Si基板上に2元同時スパッタが可能なDC・RFマグネトロンスパッタ装置を用いて、スピン軌道トルク配線材料膜を100nm成膜した。組成比の調整は、印加DC電圧を変え各々のスパッタリングレートを調整することによって行った。その結果は表1及び表2に示した。
熱酸化Si基板上に2元同時スパッタが可能なDC・RFマグネトロンスパッタ装置を用いて、スピン軌道トルク配線材料膜を100nm成膜した。組成比の調整は、印加DC電圧を変え各々のスパッタリングレートを調整することによって行った。その結果は表1及び表2に示した。
(反転電流密度の測定)
実施例1~11及び比較例1~8の磁気抵抗効果素子について、外部磁場1000Oe(100mT)をスピン軌道トルク配線の延在方向に印加しながら、反転電流密度を測定した。反転電流密度は、磁気抵抗効果素子の抵抗値が変化した際の電流を、スピン軌道トルク配線を長手方向に直交する断面の断面積で割ることにより得られる。表1及び表2に示した反転電流密度は、磁化が平行状態から反平行状態に変わる際の値と、反平行状態から平行状態に変わる際の値の絶対値の平均である。
実施例1~11及び比較例1~8の磁気抵抗効果素子について、外部磁場1000Oe(100mT)をスピン軌道トルク配線の延在方向に印加しながら、反転電流密度を測定した。反転電流密度は、磁気抵抗効果素子の抵抗値が変化した際の電流を、スピン軌道トルク配線を長手方向に直交する断面の断面積で割ることにより得られる。表1及び表2に示した反転電流密度は、磁化が平行状態から反平行状態に変わる際の値と、反平行状態から平行状態に変わる際の値の絶対値の平均である。
反転電流はスピン軌道トルク配線の両端に直流電流源を接続して流した。電流はパルス幅が0.5秒のパルス電流とした。電流量はスピン軌道トルク配線の両端に接続した直流電流計によって測定した。磁気抵抗効果素子の抵抗値変化は、磁気抵抗効果素子に対してスピン軌道トルク配線を下部電極とし、スピン軌道トルク配線と反対側に上部電極を設け、4端子法にて測定した。上部電極と下部電極間には直流電流源と直流電圧計とを接続した。
反転電流測定用の磁気抵抗効果素子サンプル(実施例1~11)の膜構成は熱酸化Si基板/Ta(5nm)/スピン軌道トルク配線材料(10nm)/Fe(0.9nm)/MgO(1.6nm)/CoFeB(1.6nm)/Ru(3nm)/Ta(5nm)であり、以下のようにして作製した。
熱酸化Si基板上に下地層としてTa膜を5nm成膜し、次いでTa膜上に2元同時スパッタが可能なDC・RFマグネトロンスパッタ装置を用いて、スピン軌道トルク配線材料膜を10nm成膜した。組成比の調整は、印加DC電圧を変え各々のスパッタリングレートを調整することによって行った。実施例9~11の窒化物膜はArガスに加え、Arガスラインとは異なるガスラインとマスフローコントローラーを用意し、純窒素ガスをスパッタチャンバー内に流すことによって成膜した。次いで、フォトリソグラフィーを用いて成膜した膜を幅200nm、長さ1000nmの平面視して長方形状に加工し、スピン軌道トルク配線を形成した。フォトリソグラフィーで削除した部分には絶縁膜としてSiO2膜を形成し、スピン軌道トルク配線及び絶縁膜をCMP研磨して平坦面を作製した。
次いで、このスピン軌道トルク配線上に、第1強磁性金属層(磁化自由層)としてFe膜を0.9nm、トンネルバリア層としてMgO膜を1.6nm、第2強磁性金属層(磁化固定層)としてCoFeB膜を1.3nm、キャップ層として3nm厚のRu膜及び5nm厚のTa膜とを順に成膜した。その後、フォトリソグラフィーとArイオンミリングを用いて、直径100nmの円柱状の磁気抵抗効果素子を作製した。なお、Arイオンミリングは第1強磁性金属層であるFe膜まで削った。強磁性金属層(Fe膜及びCoFeB膜)の膜厚は垂直磁化となる膜厚である。
また、反転電流測定用の磁気抵抗効果素子サンプル(比較例1~8)は、スピン軌道トルク配線の材料が合金、金属炭化物、金属窒化物のいずれでもなく、単体金属である点が異なるだけで、それ以外は実施例1~11と同様の手順で作製した。
以上のようにして得られた実施例1~11及び比較例1~8の磁気抵抗効果素子について反転電流密度の測定結果を表1及び表2に示す。
表1及び表2に示すように、空間群Pm-3m、Fd-3m又はFm-3mの対称性を有する立方晶構造である所定の組成の材料からなるスピン軌道トルク配線を備えた磁気抵抗効果素子である実施例1~11はいずれも、単体の金属からなるスピン軌道トルク配線を備えた磁気抵抗効果素子である比較例1~8よりも反転電流密度が小さかった。すなわち、反転電流密度は、比較例1~8では108A/cm2のオーダーであったのに対して、実施例1~11では106A/cm2のオーダーであった。このとおり、いずれもスピン軌道トルク配線を所定の材料かなるものとすることによって、第1強磁性金属層の磁化が反転しやすくなっていた。
なお、表1及び表2に示した結晶構造を有する合金の濃度範囲は以下の通りである。
AlxNi1-x(実施例1):0.42 ≦ X ≦ 0.54
AlxRu1-x(実施例2):0.48 ≦ X ≦ 0.51
AlxRh1-x(実施例3):0.48 ≦ X ≦ 0.58
TixNi1-x(実施例4):0.47 ≦ X ≦ 0.50
PtxAl1-x(実施例5):0.72 ≦ X ≦ 0.80
TixNi1-x(実施例6):0.50 ≦ X ≦ 0.67
AlxAu1-x(実施例7):0.50 ≦ X ≦ 0.67
SixMn1-x(実施例8):0.22 ≦ X ≦ 0.25
AlxNi1-x(実施例1):0.42 ≦ X ≦ 0.54
AlxRu1-x(実施例2):0.48 ≦ X ≦ 0.51
AlxRh1-x(実施例3):0.48 ≦ X ≦ 0.58
TixNi1-x(実施例4):0.47 ≦ X ≦ 0.50
PtxAl1-x(実施例5):0.72 ≦ X ≦ 0.80
TixNi1-x(実施例6):0.50 ≦ X ≦ 0.67
AlxAu1-x(実施例7):0.50 ≦ X ≦ 0.67
SixMn1-x(実施例8):0.22 ≦ X ≦ 0.25
1 第1強磁性金属層
2 スピン軌道トルク配線
100 磁気抵抗効果素子
101 第1強磁性金属層
102 非磁性層
103 第2強磁性金属層
105 磁気抵抗効果素子部
2 スピン軌道トルク配線
100 磁気抵抗効果素子
101 第1強磁性金属層
102 非磁性層
103 第2強磁性金属層
105 磁気抵抗効果素子部
Claims (9)
- 磁化の向きが可変な第1強磁性金属層と、
前記第1強磁性金属層の面直方向である第1方向に対して交差する第2方向に延在し、第1強磁性金属層に接合するスピン軌道トルク配線と、を備え、
前記スピン軌道トルク配線の材料が式AxB1-xで表される二元合金、金属炭化物、又は金属窒化物であり、
前記AがAl、Ti、及び、Ptからなる群から選択された元素であって、前記BがAl、Cr、Mn、Fe、Co、Ni、Y、Ru、Rh、及び、Irからなる群から選択された元素であり、かつ、空間群Pm-3m、又は、Fd-3mの対称性を有する立方晶構造であるか、又は、前記AがAl、Si、Ti、Y、及び、Taからなる群から選択された元素であって、前記BがC、N、Co、Pt、Au及びBiからなる群から選択された元素であり、かつ、空間群Fm-3mの対称性を有する立方晶構造である、スピン流磁化反転素子。 - 前記材料が、CsCl構造であるAlxFe1-x、AlxCo1-x、AlxNi1-x、AlxRu1-x、AlxRh1-x、AlxIr1-x、TixFe1-x、TixCo1-x、及び、TixNi1-xからなる群から選択されたものである請求項1に記載のスピン流磁化反転素子。
- 前記材料が、Ti2Ni構造であるTixFe1-x、TixCo1-x、及び、TixNi1-xからなる群から選択されたものである請求項1に記載のスピン流磁化反転素子。
- 前記材料が、Cu3Au構造であるPtxAl1-x、PtxCr1-x、PtxMn1-x、PtxFe1-x、及び、PtxY1-xからなる群から選択されたものであることを特徴とする請求項1に記載のスピン流磁化反転素子。
- 前記材料が、NaCl構造であるAlxN1-x、TixC1-x、TixN1-x、YxBi1-x、及び、TaxN1-xからなる群から選択されたものであることを特徴とする請求項1に記載のスピン流磁化反転素子。
- 前記材料が、BiF3構造であるAlxFe1-x、SixMn1-x、及び、SixFe1-xからなる群から選択されたものであることを特徴とする請求項1に記載のスピン流磁化反転素子。
- 前記材料が、CaF2構造であるAlxPt1-x、AlxAu1-x、及び、AlxCo1-xからなる群から選択されたものであることを特徴とする請求項1に記載のスピン流磁化反転素子。
- 請求項1~7のいずれか一項に記載のスピン流磁化反転素子と、磁化方向が固定されている第2強磁性金属層と、第1強磁性金属層と第2強磁性金属層に挟持された非磁性層とを備える磁気抵抗効果素子。
- 請求項8に記載の磁気抵抗効果素子を複数備える磁気メモリ。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680068769.4A CN108292703B (zh) | 2015-11-27 | 2016-11-25 | 自旋流磁化反转元件、磁阻效应元件及磁存储器 |
EP16868673.1A EP3382767B1 (en) | 2015-11-27 | 2016-11-25 | Spin current magnetization reversal element, magnetoresistance effect element, and magnetic memory |
JP2017552728A JP6777093B2 (ja) | 2015-11-27 | 2016-11-25 | スピン流磁化反転素子、磁気抵抗効果素子、および磁気メモリ |
US15/778,577 US10522742B2 (en) | 2015-11-27 | 2016-11-25 | Spin current magnetization reversal element, magnetoresistance effect element, and magnetic memory |
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015232334 | 2015-11-27 | ||
JP2015-232334 | 2015-11-27 | ||
JP2016-053072 | 2016-03-16 | ||
JP2016053072 | 2016-03-16 | ||
JP2016-056058 | 2016-03-18 | ||
JP2016056058 | 2016-03-18 | ||
JP2016210531 | 2016-10-27 | ||
JP2016210533 | 2016-10-27 | ||
JP2016-210533 | 2016-10-27 | ||
JP2016-210531 | 2016-10-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017090730A1 true WO2017090730A1 (ja) | 2017-06-01 |
Family
ID=58763271
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/085001 WO2017090739A1 (ja) | 2015-11-27 | 2016-11-25 | スピン流磁化反転素子、磁気抵抗効果素子および磁気メモリ |
PCT/JP2016/084974 WO2017090728A1 (ja) | 2015-11-27 | 2016-11-25 | スピン流磁化反転素子、磁気抵抗効果素子、および磁気メモリ |
PCT/JP2016/084979 WO2017090733A1 (ja) | 2015-11-27 | 2016-11-25 | 磁気抵抗効果素子、磁気メモリ、磁化反転方法、及び、スピン流磁化反転素子 |
PCT/JP2016/084995 WO2017090736A1 (ja) | 2015-11-27 | 2016-11-25 | スピン流磁化反転型磁気抵抗効果素子及びスピン流磁化反転型磁気抵抗効果素子の製造方法 |
PCT/JP2016/084968 WO2017090726A1 (ja) | 2015-11-27 | 2016-11-25 | スピン流磁化反転素子、磁気抵抗効果素子及び磁気メモリ |
PCT/JP2016/084976 WO2017090730A1 (ja) | 2015-11-27 | 2016-11-25 | スピン流磁化反転素子、磁気抵抗効果素子、および磁気メモリ |
Family Applications Before (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/085001 WO2017090739A1 (ja) | 2015-11-27 | 2016-11-25 | スピン流磁化反転素子、磁気抵抗効果素子および磁気メモリ |
PCT/JP2016/084974 WO2017090728A1 (ja) | 2015-11-27 | 2016-11-25 | スピン流磁化反転素子、磁気抵抗効果素子、および磁気メモリ |
PCT/JP2016/084979 WO2017090733A1 (ja) | 2015-11-27 | 2016-11-25 | 磁気抵抗効果素子、磁気メモリ、磁化反転方法、及び、スピン流磁化反転素子 |
PCT/JP2016/084995 WO2017090736A1 (ja) | 2015-11-27 | 2016-11-25 | スピン流磁化反転型磁気抵抗効果素子及びスピン流磁化反転型磁気抵抗効果素子の製造方法 |
PCT/JP2016/084968 WO2017090726A1 (ja) | 2015-11-27 | 2016-11-25 | スピン流磁化反転素子、磁気抵抗効果素子及び磁気メモリ |
Country Status (5)
Country | Link |
---|---|
US (13) | US10586916B2 (ja) |
EP (2) | EP3382768B1 (ja) |
JP (11) | JP6777094B2 (ja) |
CN (5) | CN108292705B (ja) |
WO (6) | WO2017090739A1 (ja) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018181975A (ja) * | 2017-04-07 | 2018-11-15 | 日本電信電話株式会社 | スピン軌道相互作用の増大方法およびスピンデバイス |
JP2019054079A (ja) * | 2017-09-14 | 2019-04-04 | 株式会社東芝 | 磁気記憶装置 |
JP6533356B1 (ja) * | 2018-02-22 | 2019-06-19 | Tdk株式会社 | スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ |
WO2019163203A1 (ja) * | 2018-02-22 | 2019-08-29 | Tdk株式会社 | スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ |
WO2019230352A1 (ja) * | 2018-05-31 | 2019-12-05 | Tdk株式会社 | スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ |
CN111095530A (zh) * | 2017-09-15 | 2020-05-01 | 国立大学法人东京工业大学 | 磁性体与BiSb的层叠构造的制造方法、磁阻存储器、纯自旋注入源 |
JP2020092144A (ja) * | 2018-12-04 | 2020-06-11 | 株式会社東芝 | 磁気記憶装置及びその製造方法 |
CN111279489A (zh) * | 2018-05-31 | 2020-06-12 | Tdk株式会社 | 自旋轨道转矩型磁阻效应元件及磁存储器 |
CN111492491A (zh) * | 2018-05-31 | 2020-08-04 | Tdk株式会社 | 自旋轨道转矩型磁化旋转元件、自旋轨道转矩型磁阻效应元件以及磁存储器 |
JP2021034480A (ja) * | 2019-08-21 | 2021-03-01 | 国立大学法人東京工業大学 | 磁気記録デバイス |
JPWO2019203132A1 (ja) * | 2018-04-18 | 2021-07-15 | 国立大学法人東北大学 | 磁気抵抗効果素子、磁気メモリ装置並びに磁気メモリ装置の書き込み及び読み出し方法 |
CN113571632A (zh) * | 2021-09-23 | 2021-10-29 | 南开大学 | 一种反常霍尔元件及其制备方法 |
Families Citing this family (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6777094B2 (ja) * | 2015-11-27 | 2020-10-28 | Tdk株式会社 | スピン流磁化反転素子、磁気抵抗効果素子および磁気メモリ |
CN108701721B (zh) * | 2016-12-02 | 2022-06-14 | Tdk株式会社 | 自旋流磁化反转元件及其制造方法、磁阻效应元件、磁存储器 |
JP6509971B2 (ja) * | 2017-08-08 | 2019-05-08 | 株式会社東芝 | 磁気記憶素子及び磁気記憶装置 |
JP6686990B2 (ja) * | 2017-09-04 | 2020-04-22 | Tdk株式会社 | スピン軌道トルク型磁化反転素子及び磁気メモリ |
JP7139701B2 (ja) * | 2017-09-05 | 2022-09-21 | Tdk株式会社 | スピン流磁化反転素子、スピン軌道トルク型磁気抵抗効果素子、磁気メモリ及び高周波磁気素子 |
JP7098914B2 (ja) * | 2017-11-14 | 2022-07-12 | Tdk株式会社 | スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ |
WO2019111765A1 (ja) * | 2017-12-04 | 2019-06-13 | 株式会社村田製作所 | 磁気センサ |
WO2019139025A1 (ja) * | 2018-01-10 | 2019-07-18 | Tdk株式会社 | スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ |
CN110392931B (zh) | 2018-02-19 | 2022-05-03 | Tdk株式会社 | 自旋轨道转矩型磁化旋转元件、自旋轨道转矩型磁阻效应元件及磁存储器 |
US11031541B2 (en) | 2018-02-19 | 2021-06-08 | Tdk Corporation | Spin-orbit torque type magnetization rotating element, spin-orbit torque type magnetoresistance effect element, and magnetic memory |
JP6919608B2 (ja) * | 2018-03-16 | 2021-08-18 | Tdk株式会社 | スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ |
JP7052448B2 (ja) * | 2018-03-16 | 2022-04-12 | Tdk株式会社 | スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子、磁気メモリ及び発振器 |
US11374164B2 (en) * | 2018-06-29 | 2022-06-28 | Intel Corporation | Multi-layer spin orbit torque electrodes for perpendicular magnetic random access memory |
CN109285577B (zh) * | 2018-08-31 | 2021-07-30 | 北京大学(天津滨海)新一代信息技术研究院 | 一种基于分子自旋态的超低功耗存储器件及数据存储方法 |
CN110890115A (zh) * | 2018-09-07 | 2020-03-17 | 上海磁宇信息科技有限公司 | 一种自旋轨道矩磁存储器 |
JP6625281B1 (ja) * | 2018-09-12 | 2019-12-25 | Tdk株式会社 | リザボア素子及びニューロモルフィック素子 |
CN109301063B (zh) * | 2018-09-27 | 2022-05-13 | 中国科学院微电子研究所 | 自旋轨道转矩驱动器件 |
US11165012B2 (en) | 2018-10-29 | 2021-11-02 | Taiwan Semiconductor Manufacturing Co., Ltd. | Magnetic device and magnetic random access memory |
US11810700B2 (en) | 2018-10-30 | 2023-11-07 | Tanaka Kikinzoku Kogyo K.K. | In-plane magnetized film, in-plane magnetized film multilayer structure, hard bias layer, magnetoresistive element, and sputtering target |
US11069853B2 (en) * | 2018-11-19 | 2021-07-20 | Applied Materials, Inc. | Methods for forming structures for MRAM applications |
US10756259B2 (en) * | 2018-11-20 | 2020-08-25 | Applied Materials, Inc. | Spin orbit torque MRAM and manufacture thereof |
CN109638151B (zh) * | 2018-12-04 | 2020-07-31 | 中国科学院上海微系统与信息技术研究所 | 存储单元、低温存储器及其读写方法 |
KR102604743B1 (ko) * | 2018-12-11 | 2023-11-22 | 삼성전자주식회사 | 자기 메모리 장치 |
US10658021B1 (en) | 2018-12-17 | 2020-05-19 | Spin Memory, Inc. | Scalable spin-orbit torque (SOT) magnetic memory |
US10600465B1 (en) | 2018-12-17 | 2020-03-24 | Spin Memory, Inc. | Spin-orbit torque (SOT) magnetic memory with voltage or current assisted switching |
US10930843B2 (en) | 2018-12-17 | 2021-02-23 | Spin Memory, Inc. | Process for manufacturing scalable spin-orbit torque (SOT) magnetic memory |
WO2020131893A2 (en) * | 2018-12-17 | 2020-06-25 | Spin Memory, Inc. | Process for manufacturing scalable spin-orbit torque (sot) magnetic memory |
US11276730B2 (en) * | 2019-01-11 | 2022-03-15 | Intel Corporation | Spin orbit torque memory devices and methods of fabrication |
CN109888089A (zh) * | 2019-01-28 | 2019-06-14 | 北京航空航天大学 | 一种制备sot-mram底电极的方法 |
US11832531B2 (en) * | 2019-01-31 | 2023-11-28 | Tdk Corporation | Spin-orbit torque magnetization rotational element, spin-orbit torque magnetoresistance effect element, magnetic memory, and reservoir element |
JP6838694B2 (ja) * | 2019-02-06 | 2021-03-03 | Tdk株式会社 | スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ |
CN112753099B (zh) * | 2019-03-28 | 2024-04-16 | Tdk株式会社 | 存储元件、半导体装置、磁记录阵列和存储元件的制造方法 |
JP7192611B2 (ja) * | 2019-03-28 | 2022-12-20 | Tdk株式会社 | 記憶素子、半導体装置、磁気記録アレイ及び記憶素子の製造方法 |
CN112789734A (zh) * | 2019-04-08 | 2021-05-11 | Tdk株式会社 | 磁性元件、磁存储器、储备池元件、识别器及磁性元件的制造方法 |
JP2021057357A (ja) * | 2019-09-26 | 2021-04-08 | 国立大学法人東京工業大学 | 磁気抵抗メモリ |
CN110752288B (zh) * | 2019-09-29 | 2022-05-20 | 华中科技大学 | 一种基于非易失器件阵列构造可重构强puf的方法 |
US11895928B2 (en) * | 2019-10-03 | 2024-02-06 | Headway Technologies, Inc. | Integration scheme for three terminal spin-orbit-torque (SOT) switching devices |
US11328757B2 (en) * | 2019-10-24 | 2022-05-10 | Regents Of The University Of Minnesota | Topological material for trapping charge and switching a ferromagnet |
US11437059B2 (en) * | 2019-11-07 | 2022-09-06 | Kabushiki Kaisha Toshiba | Magnetic head and magnetic recording device with stacked body material configurations |
CN111235423B (zh) * | 2020-01-15 | 2021-10-26 | 电子科技大学 | 室温高自旋霍尔角铂-稀土薄膜材料及其制备方法和应用 |
CN111406326B (zh) * | 2020-02-19 | 2021-03-23 | 长江存储科技有限责任公司 | 磁性存储结构和器件 |
WO2021166155A1 (ja) * | 2020-02-20 | 2021-08-26 | Tdk株式会社 | 磁化回転素子、磁気抵抗効果素子および磁気メモリ |
JP7168123B2 (ja) * | 2020-03-13 | 2022-11-09 | Tdk株式会社 | 磁化回転素子、磁気抵抗効果素子、磁気記録アレイ、高周波デバイスおよび磁化回転素子の製造方法 |
DE102020204391B4 (de) * | 2020-04-03 | 2021-12-02 | Infineon Technologies Ag | Vorrichtung und verfahren zum detektieren eines magnetfelds unter ausnutzung des spin-bahn-drehmoment-effekts |
US11489108B2 (en) | 2020-04-28 | 2022-11-01 | Western Digital Technologies, Inc. | BiSb topological insulator with seed layer or interlayer to prevent sb diffusion and promote BiSb (012) orientation |
US11844287B2 (en) * | 2020-05-20 | 2023-12-12 | Taiwan Semiconductor Manufacturing Co., Ltd. | Magnetic tunneling junction with synthetic free layer for SOT-MRAM |
US11495741B2 (en) | 2020-06-30 | 2022-11-08 | Western Digital Technologies, Inc. | Bismuth antimony alloys for use as topological insulators |
US11100946B1 (en) | 2020-07-01 | 2021-08-24 | Western Digital Technologies, Inc. | SOT differential reader and method of making same |
US11094338B1 (en) | 2020-07-09 | 2021-08-17 | Western Digital Technologies, Inc. | SOT film stack for differential reader |
US11222656B1 (en) | 2020-07-09 | 2022-01-11 | Western Digital Technologies, Inc. | Method to reduce baseline shift for a SOT differential reader |
IL276842B (en) * | 2020-08-20 | 2021-12-01 | Yeda Res & Dev | Spin current and magnetoresistance from the orbital Hall effect |
JP7520651B2 (ja) * | 2020-09-04 | 2024-07-23 | Tdk株式会社 | 磁気抵抗効果素子および磁気メモリ |
US20220173307A1 (en) * | 2020-12-02 | 2022-06-02 | Northeastern University | Topological Insulator/Normal Metal Bilayers as Spin Hall Materials for Spin Orbit Torque Devices, and Methods of Fabrication of Same |
US11282538B1 (en) * | 2021-01-11 | 2022-03-22 | Seagate Technology Llc | Non-local spin valve sensor for high linear density |
US11805706B2 (en) | 2021-03-04 | 2023-10-31 | Tdk Corporation | Magnetoresistance effect element and magnetic memory |
US11961544B2 (en) | 2021-05-27 | 2024-04-16 | International Business Machines Corporation | Spin-orbit torque (SOT) magnetoresistive random-access memory (MRAM) with low resistivity spin hall effect (SHE) write line |
KR102550681B1 (ko) * | 2021-07-21 | 2023-06-30 | 한양대학교 산학협력단 | 자화 씨드층과 자화 자유층 접합 계면의 비대칭 구조를 이용하는 스핀 소자 |
US11763973B2 (en) | 2021-08-13 | 2023-09-19 | Western Digital Technologies, Inc. | Buffer layers and interlayers that promote BiSbx (012) alloy orientation for SOT and MRAM devices |
US11532323B1 (en) | 2021-08-18 | 2022-12-20 | Western Digital Technologies, Inc. | BiSbX (012) layers having increased operating temperatures for SOT and MRAM devices |
US20230066358A1 (en) * | 2021-08-30 | 2023-03-02 | Infineon Technologies Ag | Strayfield insensitive magnetic sensing device and method using spin orbit torque effect |
CN117694031A (zh) | 2021-12-22 | 2024-03-12 | 西部数据技术公司 | 细化晶粒尺寸以获得更光滑的BiSb膜表面的新型掺杂工艺 |
US11875827B2 (en) | 2022-03-25 | 2024-01-16 | Western Digital Technologies, Inc. | SOT reader using BiSb topological insulator |
US11783853B1 (en) | 2022-05-31 | 2023-10-10 | Western Digital Technologies, Inc. | Topological insulator based spin torque oscillator reader |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006080379A (ja) * | 2004-09-10 | 2006-03-23 | Sharp Corp | 異種結晶多層構造体ならびに異種結晶多層構造体を含む金属ベーストランジスタ、面発光レーザ、磁気抵抗膜および共鳴トンネルダイオード |
JP2014179618A (ja) * | 2013-03-14 | 2014-09-25 | Samsung Electronics Co Ltd | スピン軌道相互作用基礎のスイッチングを利用する磁気トンネル接合を含む磁気メモリ構造 |
US20150036415A1 (en) * | 2013-07-30 | 2015-02-05 | Commissariat à l'Energie Atomique et aux Energies Alternatives | Non-volatile memory cell |
WO2015137021A1 (ja) * | 2014-03-13 | 2015-09-17 | 株式会社 東芝 | 磁気抵抗素子および磁気メモリ |
Family Cites Families (146)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4785241A (en) * | 1985-08-08 | 1988-11-15 | Canon Denshi Kabushiki Kaisha | Encoder unit using magnetoresistance effect element |
JPH05217996A (ja) * | 1992-02-05 | 1993-08-27 | Mitsuba Electric Mfg Co Ltd | メサ型半導体素子の形成方法 |
JP2000285413A (ja) * | 1999-03-26 | 2000-10-13 | Fujitsu Ltd | スピンバルブ磁気抵抗効果型素子とその製造法、及びこの素子を用いた磁気ヘッド |
US6937446B2 (en) * | 2000-10-20 | 2005-08-30 | Kabushiki Kaisha Toshiba | Magnetoresistance effect element, magnetic head and magnetic recording and/or reproducing system |
US6761982B2 (en) * | 2000-12-28 | 2004-07-13 | Showa Denko Kabushiki Kaisha | Magnetic recording medium, production process and apparatus thereof, and magnetic recording and reproducing apparatus |
JP2002208682A (ja) * | 2001-01-12 | 2002-07-26 | Hitachi Ltd | 磁気半導体記憶装置及びその製造方法 |
JP2004179483A (ja) | 2002-11-28 | 2004-06-24 | Hitachi Ltd | 不揮発性磁気メモリ |
JP2004235512A (ja) * | 2003-01-31 | 2004-08-19 | Sony Corp | 磁気記憶装置およびその製造方法 |
JP2006100424A (ja) * | 2004-09-28 | 2006-04-13 | Tdk Corp | 磁気記憶装置 |
JP2006156608A (ja) | 2004-11-29 | 2006-06-15 | Hitachi Ltd | 磁気メモリおよびその製造方法 |
US7430135B2 (en) | 2005-12-23 | 2008-09-30 | Grandis Inc. | Current-switched spin-transfer magnetic devices with reduced spin-transfer switching current density |
JP2007266498A (ja) * | 2006-03-29 | 2007-10-11 | Toshiba Corp | 磁気記録素子及び磁気メモリ |
JP2007299931A (ja) * | 2006-04-28 | 2007-11-15 | Toshiba Corp | 磁気抵抗効果素子および磁気メモリ |
KR100709395B1 (ko) * | 2006-06-23 | 2007-04-20 | 한국과학기술연구원 | 강자성체를 이용한 스핀 트랜지스터 |
US8593862B2 (en) * | 2007-02-12 | 2013-11-26 | Avalanche Technology, Inc. | Spin-transfer torque magnetic random access memory having magnetic tunnel junction with perpendicular magnetic anisotropy |
WO2008099626A1 (ja) | 2007-02-13 | 2008-08-21 | Nec Corporation | 磁気抵抗効果素子、および磁気ランダムアクセスメモリ |
JP2008311373A (ja) | 2007-06-13 | 2008-12-25 | Toshiba Corp | 磁性多層膜通電素子 |
KR100855105B1 (ko) * | 2007-06-14 | 2008-08-29 | 한국과학기술연구원 | 수직자화를 이용한 스핀 트랜지스터 |
US7978439B2 (en) | 2007-06-19 | 2011-07-12 | Headway Technologies, Inc. | TMR or CPP structure with improved exchange properties |
JP4820783B2 (ja) | 2007-07-11 | 2011-11-24 | 昭和電工株式会社 | 磁気記録媒体の製造方法および製造装置 |
JP2009094104A (ja) | 2007-10-03 | 2009-04-30 | Toshiba Corp | 磁気抵抗素子 |
KR100938254B1 (ko) * | 2007-12-13 | 2010-01-22 | 한국과학기술연구원 | 에피택셜 성장 강자성체-반도체 접합을 이용한 스핀트랜지스터 |
JP4934582B2 (ja) * | 2007-12-25 | 2012-05-16 | 株式会社日立製作所 | スピンホール効果素子を用いた磁気センサ、磁気ヘッド及び磁気メモリ |
JP2009158877A (ja) | 2007-12-28 | 2009-07-16 | Hitachi Ltd | 磁気メモリセル及びランダムアクセスメモリ |
JP5036585B2 (ja) | 2008-02-13 | 2012-09-26 | 株式会社東芝 | 磁性発振素子、この磁性発振素子を有する磁気ヘッド、および磁気記録再生装置 |
JP2009239135A (ja) * | 2008-03-28 | 2009-10-15 | Tokyo Metropolitan Univ | 磁気メモリセル及びそれを用いた磁気記憶装置、磁気記憶方法 |
KR100985409B1 (ko) | 2008-08-29 | 2010-10-06 | 주식회사 하이닉스반도체 | 반도체 장치의 캐패시터 제조 방법 |
WO2010047276A1 (ja) * | 2008-10-20 | 2010-04-29 | 日本電気株式会社 | 磁気抵抗素子、mram及び磁気抵抗素子の初期化方法 |
US20100148167A1 (en) | 2008-12-12 | 2010-06-17 | Everspin Technologies, Inc. | Magnetic tunnel junction stack |
US9368716B2 (en) | 2009-02-02 | 2016-06-14 | Qualcomm Incorporated | Magnetic tunnel junction (MTJ) storage element and spin transfer torque magnetoresistive random access memory (STT-MRAM) cells having an MTJ |
EP2405504B1 (en) * | 2009-03-04 | 2014-12-17 | Hitachi, Ltd. | Magnetic memory |
US8072800B2 (en) * | 2009-09-15 | 2011-12-06 | Grandis Inc. | Magnetic element having perpendicular anisotropy with enhanced efficiency |
US8513749B2 (en) | 2010-01-14 | 2013-08-20 | Qualcomm Incorporated | Composite hardmask architecture and method of creating non-uniform current path for spin torque driven magnetic tunnel junction |
JP5600344B2 (ja) * | 2010-03-10 | 2014-10-01 | 株式会社日立製作所 | 磁気抵抗効果素子及び磁気メモリ |
JP5725735B2 (ja) * | 2010-06-04 | 2015-05-27 | 株式会社日立製作所 | 磁気抵抗効果素子及び磁気メモリ |
FR2963153B1 (fr) | 2010-07-26 | 2013-04-26 | Centre Nat Rech Scient | Element magnetique inscriptible |
FR2963152B1 (fr) * | 2010-07-26 | 2013-03-29 | Centre Nat Rech Scient | Element de memoire magnetique |
JP5232206B2 (ja) * | 2010-09-21 | 2013-07-10 | 株式会社東芝 | 磁気抵抗素子及び磁気ランダムアクセスメモリ |
JP5565238B2 (ja) * | 2010-09-24 | 2014-08-06 | Tdk株式会社 | 磁気センサ及び磁気ヘッド |
US9991436B2 (en) * | 2011-02-09 | 2018-06-05 | Nec Corporation | Thermoelectric converter element, method of manufacturing thermoelectric converter element, and thermoelectric conversion method |
US9006704B2 (en) * | 2011-02-11 | 2015-04-14 | Headway Technologies, Inc. | Magnetic element with improved out-of-plane anisotropy for spintronic applications |
US9196332B2 (en) * | 2011-02-16 | 2015-11-24 | Avalanche Technology, Inc. | Perpendicular magnetic tunnel junction (pMTJ) with in-plane magneto-static switching-enhancing layer |
JP5655646B2 (ja) * | 2011-03-11 | 2015-01-21 | Tdk株式会社 | スピン素子及びこれを用いた磁気センサ及びスピンfet |
JP5486731B2 (ja) * | 2011-03-22 | 2014-05-07 | ルネサスエレクトロニクス株式会社 | 磁気メモリ |
JP5443420B2 (ja) * | 2011-03-23 | 2014-03-19 | 株式会社東芝 | 半導体記憶装置 |
JP5644620B2 (ja) * | 2011-03-23 | 2014-12-24 | Tdk株式会社 | スピン伝導素子及び磁気ヘッド |
US20120250189A1 (en) | 2011-03-29 | 2012-10-04 | Tdk Corporation | Magnetic head including side shield layers on both sides of a mr element |
SG185922A1 (en) * | 2011-06-02 | 2012-12-28 | Agency Science Tech & Res | Magnetoresistive device |
US8693241B2 (en) * | 2011-07-13 | 2014-04-08 | SK Hynix Inc. | Semiconductor intergrated circuit device, method of manufacturing the same, and method of driving the same |
US9105832B2 (en) | 2011-08-18 | 2015-08-11 | Cornell University | Spin hall effect magnetic apparatus, method and applications |
US9293694B2 (en) | 2011-11-03 | 2016-03-22 | Ge Yi | Magnetoresistive random access memory cell with independently operating read and write components |
US20150001601A1 (en) * | 2012-02-14 | 2015-01-01 | Tdk Corporation | Spin injection electrode structure and spin transport element having the same |
JP5935444B2 (ja) * | 2012-03-29 | 2016-06-15 | Tdk株式会社 | スピン伝導素子、及びスピン伝導を用いた磁気センサ及び磁気ヘッド |
CN104704564B (zh) * | 2012-08-06 | 2017-05-31 | 康奈尔大学 | 磁性纳米结构中基于自旋霍尔扭矩效应的电栅控式三端子电路及装置 |
US9076537B2 (en) * | 2012-08-26 | 2015-07-07 | Samsung Electronics Co., Ltd. | Method and system for providing a magnetic tunneling junction using spin-orbit interaction based switching and memories utilizing the magnetic tunneling junction |
US9105830B2 (en) * | 2012-08-26 | 2015-08-11 | Samsung Electronics Co., Ltd. | Method and system for providing dual magnetic tunneling junctions using spin-orbit interaction-based switching and memories utilizing the dual magnetic tunneling junctions |
US9379313B2 (en) | 2012-09-01 | 2016-06-28 | Purdue Research Foundation | Non-volatile spin switch |
US9099641B2 (en) | 2012-11-06 | 2015-08-04 | The Regents Of The University Of California | Systems and methods for implementing magnetoelectric junctions having improved read-write characteristics |
US8981505B2 (en) * | 2013-01-11 | 2015-03-17 | Headway Technologies, Inc. | Mg discontinuous insertion layer for improving MTJ shunt |
KR102023626B1 (ko) | 2013-01-25 | 2019-09-20 | 삼성전자 주식회사 | 스핀 홀 효과를 이용한 메모리 소자와 그 제조 및 동작방법 |
US9007837B2 (en) * | 2013-02-11 | 2015-04-14 | Sony Corporation | Non-volatile memory system with reset control mechanism and method of operation thereof |
US10783943B2 (en) * | 2013-02-19 | 2020-09-22 | Yimin Guo | MRAM having novel self-referenced read method |
US20140252439A1 (en) * | 2013-03-08 | 2014-09-11 | T3Memory, Inc. | Mram having spin hall effect writing and method of making the same |
US9130155B2 (en) * | 2013-03-15 | 2015-09-08 | Samsung Electronics Co., Ltd. | Magnetic junctions having insertion layers and magnetic memories using the magnetic junctions |
US8963222B2 (en) * | 2013-04-17 | 2015-02-24 | Yimin Guo | Spin hall effect magnetic-RAM |
CN105229741B (zh) | 2013-06-21 | 2018-03-30 | 英特尔公司 | Mtj自旋霍尔mram位单元以及阵列 |
US9147833B2 (en) | 2013-07-05 | 2015-09-29 | Headway Technologies, Inc. | Hybridized oxide capping layer for perpendicular magnetic anisotropy |
US20150028440A1 (en) * | 2013-07-26 | 2015-01-29 | Agency For Science, Technology And Research | Magnetoresistive device and method of forming the same |
JP6413428B2 (ja) * | 2013-08-02 | 2018-10-31 | Tdk株式会社 | 磁気センサ、磁気ヘッド及び生体磁気センサ |
US9076954B2 (en) | 2013-08-08 | 2015-07-07 | Samsung Electronics Co., Ltd. | Method and system for providing magnetic memories switchable using spin accumulation and selectable using magnetoelectric devices |
US9461242B2 (en) | 2013-09-13 | 2016-10-04 | Micron Technology, Inc. | Magnetic memory cells, methods of fabrication, semiconductor devices, memory systems, and electronic systems |
EP2851903B1 (en) * | 2013-09-19 | 2017-03-01 | Crocus Technology S.A. | Self-referenced memory device and method for operating the memory device |
WO2015047194A1 (en) * | 2013-09-24 | 2015-04-02 | National University Of Singapore | Spin orbit and spin transfer torque-based spintronics devices |
KR20150036987A (ko) * | 2013-09-30 | 2015-04-08 | 에스케이하이닉스 주식회사 | 전자 장치 및 그 제조 방법 |
US9460397B2 (en) | 2013-10-04 | 2016-10-04 | Samsung Electronics Co., Ltd. | Quantum computing device spin transfer torque magnetic memory |
WO2015102739A2 (en) | 2013-10-18 | 2015-07-09 | Cornell University | Circuits and devices based on spin hall effect to apply a spin transfer torque with a component perpendicular to the plane of magnetic layers |
US9343658B2 (en) * | 2013-10-30 | 2016-05-17 | The Regents Of The University Of California | Magnetic memory bits with perpendicular magnetization switched by current-induced spin-orbit torques |
WO2015068509A1 (ja) | 2013-11-06 | 2015-05-14 | 日本電気株式会社 | 磁気抵抗効果素子、磁気メモリ、及び磁気記憶方法 |
US9099115B2 (en) * | 2013-11-12 | 2015-08-04 | HGST Netherlands B.V. | Magnetic sensor with doped ferromagnetic cap and/or underlayer |
US20150213867A1 (en) * | 2014-01-28 | 2015-07-30 | Qualcomm Incorporated | Multi-level cell designs for high density low power gshe-stt mram |
US9384812B2 (en) * | 2014-01-28 | 2016-07-05 | Qualcomm Incorporated | Three-phase GSHE-MTJ non-volatile flip-flop |
US9251883B2 (en) * | 2014-01-28 | 2016-02-02 | Qualcomm Incorporated | Single phase GSHE-MTJ non-volatile flip-flop |
US9864950B2 (en) | 2014-01-29 | 2018-01-09 | Purdue Research Foundation | Compact implementation of neuron and synapse with spin switches |
US9824711B1 (en) | 2014-02-14 | 2017-11-21 | WD Media, LLC | Soft underlayer for heat assisted magnetic recording media |
SG10201501339QA (en) * | 2014-03-05 | 2015-10-29 | Agency Science Tech & Res | Magnetoelectric Device, Method For Forming A Magnetoelectric Device, And Writing Method For A Magnetoelectric Device |
US10460804B2 (en) * | 2014-03-14 | 2019-10-29 | Massachusetts Institute Of Technology | Voltage-controlled resistive devices |
CN106062880A (zh) | 2014-03-28 | 2016-10-26 | 英特尔公司 | 用于形成具有点接触的自由磁性层的自旋转移扭矩存储器的技术 |
KR102419536B1 (ko) | 2014-07-17 | 2022-07-11 | 코넬 유니버시티 | 효율적인 스핀 전달 토크를 위한 향상된 스핀 홀 효과에 기초한 회로들 및 디바이스들 |
WO2016021468A1 (ja) | 2014-08-08 | 2016-02-11 | 国立大学法人東北大学 | 磁気抵抗効果素子、及び磁気メモリ装置 |
KR20170057254A (ko) * | 2014-09-22 | 2017-05-24 | 소니 세미컨덕터 솔루션즈 가부시키가이샤 | 메모리 셀 유닛 어레이 |
US9218864B1 (en) * | 2014-10-04 | 2015-12-22 | Ge Yi | Magnetoresistive random access memory cell and 3D memory cell array |
CN104393169B (zh) * | 2014-10-10 | 2017-01-25 | 北京航空航天大学 | 一种无需外部磁场的自旋轨道动量矩磁存储器 |
US10103317B2 (en) * | 2015-01-05 | 2018-10-16 | Inston, Inc. | Systems and methods for implementing efficient magnetoelectric junctions |
US9589619B2 (en) | 2015-02-09 | 2017-03-07 | Qualcomm Incorporated | Spin-orbit-torque magnetoresistive random access memory with voltage-controlled anisotropy |
WO2016159017A1 (ja) | 2015-03-31 | 2016-10-06 | 国立大学法人東北大学 | 磁気抵抗効果素子、磁気メモリ装置、製造方法、動作方法、及び集積回路 |
US20160300999A1 (en) | 2015-04-07 | 2016-10-13 | Ge Yi | Magnetoresistive Random Access Memory Cell |
KR101683440B1 (ko) | 2015-05-13 | 2016-12-07 | 고려대학교 산학협력단 | 자기 메모리 소자 |
KR102466032B1 (ko) * | 2015-06-24 | 2022-11-11 | 타호 리서치 리미티드 | 로직 및 메모리 디바이스들을 위한 금속 스핀 초격자 |
US9768229B2 (en) | 2015-10-22 | 2017-09-19 | Western Digital Technologies, Inc. | Bottom pinned SOT-MRAM bit structure and method of fabrication |
US9830966B2 (en) | 2015-10-29 | 2017-11-28 | Western Digital Technologies, Inc. | Three terminal SOT memory cell with anomalous Hall effect |
US9608039B1 (en) * | 2015-11-16 | 2017-03-28 | Samsung Electronics Co., Ltd. | Magnetic junctions programmable using spin-orbit interaction torque in the absence of an external magnetic field |
JP6777094B2 (ja) | 2015-11-27 | 2020-10-28 | Tdk株式会社 | スピン流磁化反転素子、磁気抵抗効果素子および磁気メモリ |
US10490735B2 (en) | 2016-03-14 | 2019-11-26 | Tdk Corporation | Magnetic memory |
JP2017199443A (ja) * | 2016-04-27 | 2017-11-02 | ソニー株式会社 | 半導体記憶装置、駆動方法、および電子機器 |
US10497417B2 (en) | 2016-06-01 | 2019-12-03 | Tdk Corporation | Spin current assisted magnetoresistance effect device |
US9734850B1 (en) | 2016-06-28 | 2017-08-15 | Western Digital Technologies, Inc. | Magnetic tunnel junction (MTJ) free layer damping reduction |
US9979401B2 (en) | 2016-07-19 | 2018-05-22 | Georgia Tech Research Corporation | Magnetoelectric computational devices |
US10381060B2 (en) * | 2016-08-25 | 2019-08-13 | Qualcomm Incorporated | High-speed, low power spin-orbit torque (SOT) assisted spin-transfer torque magnetic random access memory (STT-MRAM) bit cell array |
WO2018063159A1 (en) * | 2016-09-27 | 2018-04-05 | Intel Corporation | Spin transfer torque memory devices having heusler magnetic tunnel junctions |
KR101998268B1 (ko) | 2016-10-21 | 2019-07-11 | 한국과학기술원 | 반도체 소자 |
KR101825318B1 (ko) | 2017-01-03 | 2018-02-05 | 고려대학교 산학협력단 | 스핀필터 구조체를 포함하는 자기 터널 접합 소자 |
US10211393B2 (en) | 2017-02-23 | 2019-02-19 | Sandisk Technologies Llc | Spin accumulation torque MRAM |
US11107615B2 (en) | 2017-02-24 | 2021-08-31 | Tdk Corporation | Magnetization rotational element, magnetoresistance effect element, and memory device |
US11250897B2 (en) | 2017-02-27 | 2022-02-15 | Tdk Corporation | Spin current magnetization rotational element, magnetoresistance effect element, and magnetic memory |
JP6290487B1 (ja) | 2017-03-17 | 2018-03-07 | 株式会社東芝 | 磁気メモリ |
JP6316474B1 (ja) | 2017-03-21 | 2018-04-25 | 株式会社東芝 | 磁気メモリ |
US9953692B1 (en) * | 2017-04-11 | 2018-04-24 | Sandisk Technologies Llc | Spin orbit torque MRAM memory cell with enhanced thermal stability |
JP6733822B2 (ja) * | 2017-08-07 | 2020-08-05 | Tdk株式会社 | スピン流磁気抵抗効果素子及び磁気メモリ |
US10374151B2 (en) * | 2017-08-22 | 2019-08-06 | Tdk Corporation | Spin current magnetoresistance effect element and magnetic memory |
US10134457B1 (en) * | 2017-08-31 | 2018-11-20 | Sandisk Technologies Llc | Cross-point spin accumulation torque MRAM |
JP2019047119A (ja) | 2017-09-04 | 2019-03-22 | Tdk株式会社 | 磁気抵抗効果素子、磁気メモリ、および磁気デバイス |
US10229723B1 (en) | 2017-09-12 | 2019-03-12 | Sandisk Technologies Llc | Spin orbit torque magnetoresistive random access memory containing composite spin hall effect layer including beta phase tungsten |
JP6542319B2 (ja) * | 2017-09-20 | 2019-07-10 | 株式会社東芝 | 磁気メモリ |
JP7098914B2 (ja) | 2017-11-14 | 2022-07-12 | Tdk株式会社 | スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ |
US10361359B1 (en) * | 2017-12-30 | 2019-07-23 | Spin Memory, Inc. | Magnetic random access memory with reduced internal operating temperature range |
US10381548B1 (en) * | 2018-02-08 | 2019-08-13 | Sandisk Technologies Llc | Multi-resistance MRAM |
JP6610847B1 (ja) | 2018-02-28 | 2019-11-27 | Tdk株式会社 | スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ |
US11502188B2 (en) | 2018-06-14 | 2022-11-15 | Intel Corporation | Apparatus and method for boosting signal in magnetoelectric spin orbit logic |
US10553783B2 (en) | 2018-06-29 | 2020-02-04 | Sandisk Technologies Llc | Spin orbit torque magnetoresistive random access memory containing shielding element and method of making thereof |
US10726893B2 (en) | 2018-08-02 | 2020-07-28 | Sandisk Technologies Llc | Perpendicular SOT-MRAM memory cell using spin swapping induced spin current |
JP2020035971A (ja) | 2018-08-31 | 2020-03-05 | Tdk株式会社 | スピン流磁化回転型磁気素子、スピン流磁化回転型磁気抵抗効果素子及び磁気メモリ |
US11264558B2 (en) | 2018-09-11 | 2022-03-01 | Intel Corporation | Nano-rod spin orbit coupling based magnetic random access memory with shape induced perpendicular magnetic anisotropy |
US11411047B2 (en) | 2018-09-11 | 2022-08-09 | Intel Corporation | Stacked transistor bit-cell for magnetic random access memory |
US11594270B2 (en) | 2018-09-25 | 2023-02-28 | Intel Corporation | Perpendicular spin injection via spatial modulation of spin orbit coupling |
US20200105324A1 (en) * | 2018-09-27 | 2020-04-02 | Intel Corporation | Multi-magnet stabilized spin orbit torque mram |
US11107975B2 (en) * | 2018-10-30 | 2021-08-31 | Taiwan Semiconductor Manufacturing Co., Ltd. | Magnetic tunnel junction structures and related methods |
US11605670B2 (en) | 2018-10-30 | 2023-03-14 | Taiwan Semiconductor Manufacturing Co., Ltd. | Magnetic tunnel junction structures and related methods |
US10726892B2 (en) | 2018-12-06 | 2020-07-28 | Sandisk Technologies Llc | Metallic magnetic memory devices for cryogenic operation and methods of operating the same |
US11127896B2 (en) | 2019-01-18 | 2021-09-21 | Everspin Technologies, Inc. | Shared spin-orbit-torque write line in a spin-orbit-torque MRAM |
US11637235B2 (en) * | 2019-01-18 | 2023-04-25 | Everspin Technologies, Inc. | In-plane spin orbit torque magnetoresistive stack/structure and methods therefor |
KR102650546B1 (ko) | 2019-01-28 | 2024-03-27 | 삼성전자주식회사 | 자기 기억 소자 |
JP7441483B2 (ja) | 2019-08-23 | 2024-03-01 | 国立大学法人東北大学 | 磁気メモリ素子及びその製造方法、並びに磁気メモリ |
US11177431B2 (en) | 2019-12-02 | 2021-11-16 | HeFeChip Corporation Limited | Magnetic memory device and method for manufacturing the same |
US11217744B2 (en) | 2019-12-10 | 2022-01-04 | HeFeChip Corporation Limited | Magnetic memory device with multiple sidewall spacers covering sidewall of MTJ element and method for manufacturing the same |
US11387406B2 (en) | 2020-01-17 | 2022-07-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Magnetic of forming magnetic tunnel junction device using protective mask |
US11139340B2 (en) | 2020-02-12 | 2021-10-05 | Tdk Corporation | Spin element and reservoir element |
-
2016
- 2016-11-25 JP JP2017552735A patent/JP6777094B2/ja active Active
- 2016-11-25 WO PCT/JP2016/085001 patent/WO2017090739A1/ja active Application Filing
- 2016-11-25 JP JP2017552727A patent/JPWO2017090728A1/ja active Pending
- 2016-11-25 JP JP2017552731A patent/JP6621839B2/ja active Active
- 2016-11-25 US US15/778,115 patent/US10586916B2/en active Active
- 2016-11-25 JP JP2017552725A patent/JP6777649B2/ja active Active
- 2016-11-25 JP JP2017552728A patent/JP6777093B2/ja active Active
- 2016-11-25 US US15/778,159 patent/US11374166B2/en active Active
- 2016-11-25 EP EP16868682.2A patent/EP3382768B1/en active Active
- 2016-11-25 WO PCT/JP2016/084974 patent/WO2017090728A1/ja active Application Filing
- 2016-11-25 CN CN201680068794.2A patent/CN108292705B/zh active Active
- 2016-11-25 WO PCT/JP2016/084979 patent/WO2017090733A1/ja active Application Filing
- 2016-11-25 JP JP2017552733A patent/JPWO2017090736A1/ja active Pending
- 2016-11-25 US US15/777,884 patent/US10490731B2/en active Active
- 2016-11-25 EP EP16868673.1A patent/EP3382767B1/en active Active
- 2016-11-25 CN CN202210022833.2A patent/CN114361329A/zh active Pending
- 2016-11-25 CN CN201680068776.4A patent/CN108292704B/zh active Active
- 2016-11-25 WO PCT/JP2016/084995 patent/WO2017090736A1/ja active Application Filing
- 2016-11-25 WO PCT/JP2016/084968 patent/WO2017090726A1/ja active Application Filing
- 2016-11-25 US US15/778,577 patent/US10522742B2/en active Active
- 2016-11-25 CN CN201680068515.2A patent/CN108292702B/zh active Active
- 2016-11-25 CN CN201680068769.4A patent/CN108292703B/zh active Active
- 2016-11-25 US US15/778,174 patent/US20180351084A1/en active Pending
- 2016-11-25 US US15/777,894 patent/US10510948B2/en active Active
- 2016-11-25 WO PCT/JP2016/084976 patent/WO2017090730A1/ja active Application Filing
-
2019
- 2019-09-18 US US16/574,221 patent/US10892401B2/en active Active
- 2019-11-01 US US16/671,567 patent/US10964885B2/en active Active
- 2019-11-19 JP JP2019209055A patent/JP6845300B2/ja active Active
-
2020
- 2020-10-08 JP JP2020170783A patent/JP7035147B2/ja active Active
-
2021
- 2021-02-24 US US17/184,206 patent/US11355698B2/en active Active
- 2021-02-25 JP JP2021028881A patent/JP7168922B2/ja active Active
-
2022
- 2022-02-09 US US17/667,948 patent/US20220223786A1/en active Pending
- 2022-04-07 US US17/715,477 patent/US11637237B2/en active Active
- 2022-10-12 JP JP2022164291A patent/JP7495463B2/ja active Active
-
2023
- 2023-02-10 US US18/167,325 patent/US12096699B2/en active Active
-
2024
- 2024-05-23 JP JP2024084269A patent/JP2024100961A/ja active Pending
- 2024-07-12 US US18/771,471 patent/US20240365684A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006080379A (ja) * | 2004-09-10 | 2006-03-23 | Sharp Corp | 異種結晶多層構造体ならびに異種結晶多層構造体を含む金属ベーストランジスタ、面発光レーザ、磁気抵抗膜および共鳴トンネルダイオード |
JP2014179618A (ja) * | 2013-03-14 | 2014-09-25 | Samsung Electronics Co Ltd | スピン軌道相互作用基礎のスイッチングを利用する磁気トンネル接合を含む磁気メモリ構造 |
US20150036415A1 (en) * | 2013-07-30 | 2015-02-05 | Commissariat à l'Energie Atomique et aux Energies Alternatives | Non-volatile memory cell |
WO2015137021A1 (ja) * | 2014-03-13 | 2015-09-17 | 株式会社 東芝 | 磁気抵抗素子および磁気メモリ |
Non-Patent Citations (2)
Title |
---|
M. MIRON; K. GARELLO; G. GAUDIN; P.-J. ZERMATTEN; M. V. COSTACHE; S. AUFFRET; S. BANDIERA; B. RODMACQ; A. SCHUHL; P. GAMBARDELLA, NATURE, vol. 476, 2011, pages 189 |
S. FUKAMI; T. ANEKAWA; C. ZHANG; H. OHNO, NATURE NANOTECHNOLOGY, 2016, pages 29 |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018181975A (ja) * | 2017-04-07 | 2018-11-15 | 日本電信電話株式会社 | スピン軌道相互作用の増大方法およびスピンデバイス |
JP2019054079A (ja) * | 2017-09-14 | 2019-04-04 | 株式会社東芝 | 磁気記憶装置 |
US11637234B2 (en) | 2017-09-15 | 2023-04-25 | Tokyo Institute Of Technology | Manufacturing method for multilayer structure of magnetic body and BiSb layer, magnetoresistive memory, and pure spin injection source |
CN111095530A (zh) * | 2017-09-15 | 2020-05-01 | 国立大学法人东京工业大学 | 磁性体与BiSb的层叠构造的制造方法、磁阻存储器、纯自旋注入源 |
CN111095530B (zh) * | 2017-09-15 | 2023-11-14 | 国立大学法人东京工业大学 | 磁性体与BiSb的层叠构造的制造方法、磁阻存储器、纯自旋注入源 |
JP6533356B1 (ja) * | 2018-02-22 | 2019-06-19 | Tdk株式会社 | スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ |
WO2019163203A1 (ja) * | 2018-02-22 | 2019-08-29 | Tdk株式会社 | スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ |
JP2019165244A (ja) * | 2018-02-22 | 2019-09-26 | Tdk株式会社 | 磁化回転素子、磁気抵抗効果素子及び磁気メモリ |
US11127894B2 (en) | 2018-02-22 | 2021-09-21 | Tdk Corporation | Spin-orbit-torque magnetization rotating element, spin-orbit-torque magnetoresistance effect element, and magnetic memory |
JP7251811B2 (ja) | 2018-04-18 | 2023-04-04 | 国立大学法人東北大学 | 磁気抵抗効果素子、磁気メモリ装置並びに磁気メモリ装置の書き込み及び読み出し方法 |
JPWO2019203132A1 (ja) * | 2018-04-18 | 2021-07-15 | 国立大学法人東北大学 | 磁気抵抗効果素子、磁気メモリ装置並びに磁気メモリ装置の書き込み及び読み出し方法 |
WO2019230352A1 (ja) * | 2018-05-31 | 2019-12-05 | Tdk株式会社 | スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ |
CN111492491B (zh) * | 2018-05-31 | 2024-04-09 | Tdk株式会社 | 自旋轨道转矩型磁化旋转元件、自旋轨道转矩型磁阻效应元件以及磁存储器 |
JPWO2019230352A1 (ja) * | 2018-05-31 | 2020-06-11 | Tdk株式会社 | スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ |
CN111480240A (zh) * | 2018-05-31 | 2020-07-31 | Tdk株式会社 | 自旋轨道转矩型磁阻效应元件和磁存储器 |
CN111492491A (zh) * | 2018-05-31 | 2020-08-04 | Tdk株式会社 | 自旋轨道转矩型磁化旋转元件、自旋轨道转矩型磁阻效应元件以及磁存储器 |
CN111279489A (zh) * | 2018-05-31 | 2020-06-12 | Tdk株式会社 | 自旋轨道转矩型磁阻效应元件及磁存储器 |
US11744163B2 (en) | 2018-05-31 | 2023-08-29 | Tdk Corporation | Spin-orbit-torque type magnetoresistance effect element and magnetic memory |
CN111279489B (zh) * | 2018-05-31 | 2023-08-29 | Tdk株式会社 | 自旋轨道转矩型磁阻效应元件及磁存储器 |
CN111480240B (zh) * | 2018-05-31 | 2024-03-22 | Tdk株式会社 | 自旋轨道转矩型磁阻效应元件和磁存储器 |
JP2020092144A (ja) * | 2018-12-04 | 2020-06-11 | 株式会社東芝 | 磁気記憶装置及びその製造方法 |
JP2021034480A (ja) * | 2019-08-21 | 2021-03-01 | 国立大学法人東京工業大学 | 磁気記録デバイス |
CN113571632A (zh) * | 2021-09-23 | 2021-10-29 | 南开大学 | 一种反常霍尔元件及其制备方法 |
CN113571632B (zh) * | 2021-09-23 | 2021-12-10 | 南开大学 | 一种反常霍尔元件及其制备方法 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6777093B2 (ja) | スピン流磁化反転素子、磁気抵抗効果素子、および磁気メモリ | |
US10193061B2 (en) | Spin-orbit torque magnetization rotational element | |
JP5586028B2 (ja) | 強磁性トンネル接合体とそれを用いた磁気抵抗効果素子並びにスピントロニクスデバイス | |
JP5988019B2 (ja) | 強磁性トンネル接合体とそれを用いた磁気抵抗効果素子及びスピントロニクスデバイス | |
US10396276B2 (en) | Electric-current-generated magnetic field assist type spin-current-induced magnetization reversal element, magnetoresistance effect element, magnetic memory and high-frequency filter | |
JP6972542B2 (ja) | スピン流磁化反転素子、磁気抵抗効果素子および磁気メモリ | |
EP2434556B1 (en) | Ferromagnetic tunnel junction structure and magnetoresistive element using same | |
CN111276600B (zh) | 磁阻效应元件 | |
CN112349831B (zh) | 磁阻效应元件以及惠斯勒合金 | |
CN112349833B (zh) | 磁阻效应元件以及惠斯勒合金 | |
JP2019046976A (ja) | スピン流磁化反転素子、磁気メモリ | |
JP2019057626A (ja) | スピン流磁化反転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ | |
CN112349832B (zh) | 磁阻效应元件以及惠斯勒合金 | |
US10355202B2 (en) | Magnetoresistance effect element | |
WO2018101028A1 (ja) | スピン流磁化反転素子とその製造方法、磁気抵抗効果素子、磁気メモリ | |
JP4061590B2 (ja) | 磁性薄膜及びそれを用いた磁気抵抗効果素子並びに磁気デバイス | |
CN111512456B (zh) | 铁磁性层叠膜、自旋流磁化旋转元件、磁阻效应元件和磁存储器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16868673 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017552728 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016868673 Country of ref document: EP |