[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016133183A1 - ユーザ端末、無線基地局及び無線通信方法 - Google Patents

ユーザ端末、無線基地局及び無線通信方法 Download PDF

Info

Publication number
WO2016133183A1
WO2016133183A1 PCT/JP2016/054785 JP2016054785W WO2016133183A1 WO 2016133183 A1 WO2016133183 A1 WO 2016133183A1 JP 2016054785 W JP2016054785 W JP 2016054785W WO 2016133183 A1 WO2016133183 A1 WO 2016133183A1
Authority
WO
WIPO (PCT)
Prior art keywords
user terminal
transmission
signal
base station
tcc
Prior art date
Application number
PCT/JP2016/054785
Other languages
English (en)
French (fr)
Inventor
浩樹 原田
一樹 武田
和晃 武田
徹 内野
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to SG11201706410XA priority Critical patent/SG11201706410XA/en
Priority to US15/548,460 priority patent/US10512067B2/en
Priority to JP2017500744A priority patent/JP6408122B2/ja
Priority to EP16752569.0A priority patent/EP3261402A4/en
Priority to CN201680010952.9A priority patent/CN107409411B/zh
Publication of WO2016133183A1 publication Critical patent/WO2016133183A1/ja
Priority to US16/681,197 priority patent/US20200084763A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J1/00Frequency-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to a user terminal, a radio base station, and a radio communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • Non-Patent Document 1 a LTE successor system (also referred to as LTE-A) called LTE Advanced has been studied for the purpose of further broadbanding and speeding up from LTE, and LTE Rel. It is specified as 10-12.
  • LTE Rel. 12 includes at least one component carrier (CC: Component Carrier) having the system band of the LTE system as a unit. In this way, collecting a plurality of CCs to increase the bandwidth is called carrier aggregation (CA).
  • LTE Rel. 12 supports dual connectivity (DC) in which communication is performed using CCs respectively controlled by radio base stations (schedulers) with different user terminals.
  • DC dual connectivity
  • the number of CCs that can be set per user terminal (UE) is limited to a maximum of five.
  • LTE Rel. Is a further successor system of LTE.
  • LTE-U LTE Unlicensed
  • LAA Licensed-Assisted Access
  • a licensed band is a band that a specific operator is allowed to use exclusively
  • an unlicensed band is a band in which a radio station can be installed without being limited to a specific operator. It is.
  • LTE-U LTE / LTE-A system
  • the LTE-U base station / user terminal performs listening before signal transmission and restricts transmission based on the listening result.
  • an unlicensed band for example, use of a 2.4 GHz band, a 5 GHz band capable of using Wi-Fi (registered trademark) or Bluetooth (registered trademark), a 60 GHz band capable of using a millimeter wave radar, or the like is being studied. Yes. Application of such an unlicensed band in a small cell is also under consideration.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • an unlicensed CC is set as a SCC (for example, an extended CC) in a user terminal, depending on the listening result (LBT result), the user terminal may not be able to send and receive regular signals to and from the unlicensed CC. For this reason, if the user terminal performs a transmission operation such as UL transmission on the unlicensed CC in the same manner as the SCC (SCell) of the existing system, communication may not be performed appropriately.
  • a transmission operation such as UL transmission on the unlicensed CC in the same manner as the SCC (SCell) of the existing system
  • the present invention has been made in view of such a point, and communication is performed even when the number of CCs that can be set in a user terminal is extended from an existing system and / or when CA is performed using an unlicensed CC. It is an object to provide a user terminal, a radio base station, and a radio communication method that can be performed appropriately.
  • One aspect of the user terminal according to the present invention is a user terminal that communicates with a radio base station using carrier aggregation using a plurality of component carriers (CC), and transmits a DL signal transmitted from each CC.
  • a first CC corresponding to at least a primary CC of an existing system as a plurality of CCs, the receiving unit receiving, a transmitting unit transmitting a UL signal, and a control unit controlling a transmission operation in the transmitting unit
  • the third CC that is different from the second CC corresponding to the first CC and the secondary CC of the existing system is set, the control unit controls the second CC with respect to the third CC.
  • a transmission operation of a UL signal different from the above is applied.
  • communication can be appropriately performed even when the number of CCs that can be set in the user terminal is expanded from the existing system and / or when CA is performed using an unlicensed CC.
  • FIG. 1 is an explanatory diagram of carrier aggregation (CA).
  • CA carrier aggregation
  • LTE Rel in the CA of the existing system (up to LTE Rel. 12), LTE Rel. A maximum of five (CC # 1 to CC # 5) component carriers (CC) each having eight system bands as a unit are bundled. That is, LTE Rel.
  • CC component carriers
  • the carrier aggregation up to 12 the number of CCs that can be set per user terminal (UE: User Equipment) is limited to a maximum of 5 (one primary cell and a maximum of 4 secondary cells).
  • a primary cell is a cell that manages RRC connection and handover when performing CA / DC, and is a cell that also requires UL transmission to receive data and feedback signals from a terminal.
  • the primary cell is always set for both the upper and lower links.
  • the secondary cell (SCell, SCC) is another cell that is set in addition to the primary cell when CA / DC is applied.
  • a secondary cell can set only a downlink, and can also set up-and-down link simultaneously.
  • LTE / LTE-A Since existing LTE / LTE-A is premised on operation in a license band, a different frequency band is allocated to each operator. However, unlike the license band, the unlicensed band is not limited to use by a specific business operator. When operating LTE in an unlicensed band, it is also assumed that different operators and non-operators operate without synchronization, cooperation, and / or cooperation. In this case, in the unlicensed band, a plurality of operators and systems share and use the same frequency, which may cause mutual interference.
  • the Wi-Fi system operated in the unlicensed band employs Carrier Sense Multiple Access / Collision Avoidance (CSMA / CA) based on the LBT (Listen Before Talk) mechanism. .
  • CSMA Carrier Sense Multiple Access / Collision Avoidance
  • LBT Listen Before Talk
  • TP Transmission Point
  • AP Access Point
  • STA Wi-Fi terminal
  • CCA Clear Channel Assessment
  • a method is used in which transmission is performed only when there is no signal exceeding a predetermined level. When a signal exceeding a predetermined level exists, a waiting time (back-off time) given at random is provided, and then listening is performed again (see FIG. 2).
  • LTE / LTE-A system for example, LAA
  • LAA LTE / LTE-A
  • a radio base station and / or a user terminal performs listening (LBT) before transmitting a signal in an unlicensed band cell, and confirms whether another system (for example, Wi-Fi) or another operator is communicating.
  • LBT listening
  • the radio base station and / or the user terminal considers that the channel is in an idle state (LBT_idle) Send.
  • the received signal strength from the transmission point of another system or another LAA is larger than a predetermined value as a result of listening, the channel is regarded as being in a busy state (LBT_busy) and signal transmission is restricted.
  • listening means detecting whether or not a signal exceeding a predetermined level (for example, predetermined power) is transmitted from another transmission point before the radio base station and / or the user terminal transmits the signal.
  • a predetermined level for example, predetermined power
  • the listening performed by the radio base station and / or the user terminal may be referred to as LBT (Listen Before Talk), CCA (Clear Channel Assessment), or the like.
  • LBT Listen Before Talk
  • CCA Third Channel Assessment
  • Examples of the restriction on signal transmission based on the LBT result include a method of transitioning to another carrier by DFS (Dynamic Frequency Selection), performing transmission power control (TPC), or waiting (stopping) signal transmission.
  • LBT in communication of an LTE / LTE-A system (for example, LAA) operated in an unlicensed band, it becomes possible to reduce interference with other systems.
  • LTE / LTE-A system for example, LAA
  • the expansion of the number of CCs shown in FIG. 1 is effective for widening the band by carrier aggregation (LAA: License-Assisted Access) between the license band and the unlicensed band.
  • LAA License-Assisted Access
  • an unlicensed CC may be set as an extended CC.
  • LAA since an unlicensed carrier coexists with other systems, there is a high possibility that the quality fluctuation is large and the reliability of communication is lowered compared to a license carrier. For this reason, in LAA, it is conceivable to support communication in an unlicensed carrier using a license carrier (for example, notification of an LBT result using a license carrier). In this case, it is considered that the user terminal operations for the unlicensed CC and the existing SCC are different.
  • the present inventors have conceived to apply different operations / controls between the extended CC and unlicensed CC and the existing PCC and SCC to the user terminal.
  • a new CC different from the PCC and SCC is newly added so that the user terminal can distinguish between the PCC and SCC of the existing system (Rel. 10-12) and the CC to which different operation / control is applied (for example, UCC).
  • UCC universal resource code
  • extended CC and / or UCC are defined separately from existing PCC and SCC, and that control / operation different from existing SCC is applied (see FIG. 5).
  • a CC to which control / operation different from PCC and SCC in the existing system (Rel. 10-Rel. 12) is also referred to as TCC (Tertiary CC), TCell, third CC, or third cell.
  • TCC Tetiary CC
  • the TCC can be composed of a license CC and / or an unlicense CC.
  • a user terminal for which TCC is set can apply control / operation different from SCC to the TCC (see FIG. 5).
  • the user terminal performs a UL transmission operation different from PCC or SCC for TCC (for example, suppression of unnecessary UL transmission operation, UL HARQ operation, UL transmission operation considering LBT result, reporting operation considering LBT, etc. )I do.
  • a 1st aspect demonstrates an example in the case of suppressing UL transmission operation which a user terminal does not need.
  • the user terminal When the uplink data (UL data) to be transmitted occurs (ST10), the user terminal (UE) makes a scheduling request to the radio base station (eNB) (ST11). If the user terminal does not hold an individual UL resource in ST11, the user terminal activates a random access procedure. In response to the scheduling request from the user terminal, the radio base station transmits a UL grant instructing resource allocation for uplink data transmission (ST12). The user terminal transmits a buffer status report (BSR: Buffer Status Report) indicating the UL data amount to be transmitted based on the UL grant (ST13). The radio base station that has received the BSR notifies the user terminal of an UL grant indicating uplink resource allocation for a predetermined bit (ST14), and the user terminal transmits UL data within the limited number of bits using the allocated PUSCH. (ST15).
  • BSR Buffer Status Report
  • the user terminal when uplink data to be transmitted is generated, the user terminal wirelessly transmits a buffer status report (BSR) indicating a retention amount (buffer amount) of the uplink data. It is specified to notify the base station.
  • BSR buffer status report
  • the buffer status report (BSR) indicating the UL data amount transmitted by the user terminal is lost (ST13), and the radio base station may erroneously estimate the UL data amount.
  • the user terminal may discard data on the user terminal side when the data discard timer expires. In such a case, the user terminal that has received the UL grant from the radio base station in ST14 has a situation in which there is no data to be transmitted in ST15.
  • the load such as the battery consumption of the user terminal increases.
  • the above-described missing BSR occurs, for example, when the user terminal is instructed to transmit the BSR in the unlicensed band.
  • the user terminal determines that the pre-interference station is nearby as a result of the LBT, the user terminal stops transmitting the BSR.
  • the radio base station cannot grasp the BSR, there is a possibility that a UL resource is allocated to the user terminal assuming a larger UL data amount.
  • the user terminal even when the user terminal is instructed to transmit uplink data (PUSCH) with a UL grant in TCC, if there is no UL data to be transmitted, the user terminal transmits ( It can be controlled not to perform (padding bit transmission). That is, the user terminal applies an UL transmission operation different from PCC and SCC for TCC to suppress unnecessary UL transmission operations.
  • An example of the operation method of the user terminal when transmitting UL data using TCC is shown in FIG.
  • uplink data (UL data) to be transmitted occurs (ST20)
  • the user terminal makes a scheduling request to the radio base station (ST21). If the user terminal does not hold an individual UL resource in ST21, the user terminal activates a random access procedure.
  • the radio base station transmits an UL grant that instructs resource allocation for uplink data transmission (ST22).
  • the user terminal transmits a buffer status report (BSR) indicating the UL data amount to be transmitted based on the UL grant (ST23).
  • BSR buffer status report
  • the radio base station that has received the BSR notifies the user terminal of an UL grant indicating the TCC uplink resource allocation for a predetermined bit (ST24), and the user terminal uses the allocated TCC PUSCH within the limited number of bits.
  • UL data can be transmitted (ST25).
  • the user terminal When the user terminal that has received the UL grant from the radio base station in ST24 has a situation in which there is no data to be transmitted in ST25, the user terminal performs control so as not to perform UL transmission (padding bit transmission) in TCC in ST25. be able to.
  • the user terminal that has received the UL grant from the radio base station in ST24 has a UL data amount to be transmitted in ST25 that is equal to or smaller than a predetermined value
  • the user terminal performs UL transmission in TCC (a lot of padding bits occupy in ST25). It may be controlled not to perform (UL transmission).
  • the predetermined value may be a predetermined value or a value set for the user terminal in an upper layer such as RRC signaling.
  • a predetermined value is provided for the ratio of the UL resource allocation amount and the UL data amount to control the presence or absence of UL transmission in the TCC. Good. For example, when the UL data amount to be actually transmitted is less than 1% with respect to the allocated UL resource amount, the user terminal can operate so as not to perform the UL transmission in TCC.
  • the user terminal may notify the radio base station that there is no transmission data corresponding to the UL grant (ST26).
  • the user terminal can perform information indicating that there is no transmission data corresponding to the UL grant using the PCC and / or the SCC UL (for example, PUSCH).
  • a 2nd aspect demonstrates UL HARQ operation
  • the user terminal applies the synchronous UL HARQ based on the PHICH (Physical Hybrid-ARQ Indicator Channel) notified from the radio base station.
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • FIG. 9 shows a case where the user terminal transmits UL data (for example, PUSHC) in subframe # 0.
  • the radio base station determines whether or not the UL data (PUSCH) transmitted from the user terminal has been properly received, and transmits a retransmission control PHICH (ACK / NACK) to the user terminal after a predetermined timing.
  • the radio base station can set the timing of transmitting PHICH, for example, after 4 subframes (here, subframe # 4) in FDD.
  • the user terminal transmits new UL data when the PHICH transmitted from the radio base station is ACK, and performs retransmission control of the UL data when the PHICH is NACK.
  • the user terminal When retransmitting UL data, the user terminal retransmits UL data after a predetermined timing after receiving PHICH.
  • the user terminal can set a predetermined timing after 4 subframes (here, subframe # 8) in FDD.
  • the user terminal and the radio base station control UL data retransmission control (UL HARQ) at a predetermined timing (synchronous HARQ). Also in TDD, the user terminal and the radio base station can control UL data retransmission control (UL HARQ) at a predetermined timing (synchronous HARQ).
  • the user terminal may not be able to perform UL retransmission at a predetermined timing depending on the LBT result. For example, when the user terminal retransmits UL data based on PHICH (NACK), when transmission is restricted based on the LBT result performed before resending UL data (channel is busy (LBT_busy)), UL data cannot be retransmitted at a predetermined timing. Therefore, in an unlicensed band (for example, TCC), it becomes difficult for a user terminal to apply synchronous HARQ like PCC and SCC of the existing system.
  • NACK PHICH
  • LBT_busy channel is busy
  • the user terminal applies asynchronous HARQ in TCC.
  • the user terminal can operate without reading (without detecting) ACK / NACK for PHICH (synchronous HARQ operation) (see FIG. 10).
  • HARQ operation synchronous HARQ operation
  • the user terminal does not read PHICH Can operate with (not detected).
  • FIG. 10 shows a case where the user terminal transmits UL data (for example, PUSHC) in subframe # 0 in TCC.
  • the radio base station determines whether or not UL data (PUSCH) transmitted from the user terminal has been properly received, and notifies that when retransmission control is necessary.
  • UL grant using the PDCCH of the TCC or UL grant (cross-carrier scheduling) using PUCCH of another CC (PCC or SCC) can be used.
  • the radio base station transmits a UL grant for retransmission control to the user terminal at a predetermined timing.
  • the predetermined timing may be four subframes before the subframe to which retransmission of UL data is allocated (subframe # 6 in FIG. 10), or may be other timing.
  • the user terminal controls retransmission of UL data based on the UL grant, not the PHICH transmitted from the radio base station. In this case, the user terminal can perform LBT after receiving the UL grant, and can control the transmission timing of UL data according to the result of the LBT (asynchronous UL HARQ).
  • the user terminal can perform LBT in the TCC after receiving the UL grant, and can retransmit the UL data in the earliest subframe (subframe # 10 in FIG. 10) that can be transmitted (LBT_idle). .
  • the user terminal can control retransmission of UL data according to UL grant and LBT result in TCC (asynchronous UL HARQ).
  • TCC asynchronous UL HARQ
  • FIG. 10 shows the case where TCC is FDD, asynchronous UL HARQ can be applied even when TCC is TDD.
  • a HARQ process number may be assigned to the UL grant for asynchronous HARQ.
  • the HARQ process number indicates a number for a HARQ process (HARQ process) for one transport block (TB).
  • the radio base station can include the HARQ process number corresponding to UL data # 0 in the UL grant and transmit it to the user terminal.
  • the bit field for HPN set in the UL grant can be, for example, 3 bits. In the case of 3 bits, a maximum of 8 HARQ process numbers are designated, and each HARQ process can be performed in parallel. Also, by including information on UL data to be retransmitted (here, the HARQ process number) in the UL grant, the user terminal can appropriately grasp the UL data to be retransmitted.
  • the UL HARQ operation method of the user terminal in which TCC is set will be specifically described.
  • this Embodiment is not restricted to this.
  • the present invention can be similarly applied to a case where a PDCCH trigger is performed from PCC and / or SCC to TCC at the time of non-collision type random access (CFRA: Contention Free Random Access).
  • CFRA non-collision type random access
  • Method 1 When the user terminal is instructed to transmit UL of the TCC from the PCC and / or SCC (eg, using the PUCCH), the user terminal operates so as not to read (not detect) the PHICH corresponding to the PUSCH scheduled for the TCC. can do. On the other hand, the user terminal can detect the PHICH corresponding to the PUSCH scheduled for the PCC and / or the SCC in the same manner as the existing system, and can control retransmission control.
  • the radio base station can add information (for example, 3 bits) on the HARQ process number to the UL grant scheduled in the TCC.
  • the UL grant scheduled for the PCC and / or SCC may be configured not to add information related to the HARQ process number.
  • the user terminal applies synchronous HARQ using PHICH in PCC and / or SCC, and applies asynchronous HARQ in TCC.
  • PCC and / or SCC the increase in the information amount of UL grant can be suppressed and PDCCH overhead can be reduced.
  • the user terminal can operate so as not to read (not detect) the PHICH corresponding to the PUSCH scheduled for the TCC when the UL transmission of the TCC is instructed from the PCC and / or the SCC. Similarly, the user terminal may operate so as not to read (not detect) PHICH corresponding to PUSCH scheduled to PCC and / or SCC.
  • the radio base station can add information (for example, 3 bits) on the HARQ process number to the UL grant scheduled for the PCC, SCC, and TCC.
  • the search space can be shared. That is, the user terminal can detect downlink control information for PCC, SCC, and TCC at a time in blind decoding for downlink control information (for example, UL grant).
  • a predetermined bit value (for example, a fixed value of 0) is set when scheduling for CCs other than the TCC (PCC and / or SCC). It may be set.
  • the user terminal Based on the HARQ process number (for example, a fixed value) included in the UL grant of the PCC and / or the SCC, the user terminal can perform retransmission control at a predetermined timing, as in the case of using PHICH.
  • TCC is an unlicensed band
  • the radio base station eNB
  • assigns UL transmission for example, PUSCH
  • the LBT result of the TCC is (LBT_busy)
  • the UL transmission of the user terminal is restricted. Is done.
  • the radio base station simultaneously allocates resources (for example, PUSCH resources, PUCCH resources, etc.) from one CC to a plurality of TCCs. That is, when instructed to transmit UL in TCC, the user terminal can perform UL transmission using TCC (LBT_idle) that can be transmitted among a plurality of TCCs.
  • resources for example, PUSCH resources, PUCCH resources, etc.
  • the radio base station can associate CCs with user terminals in advance. For example, as shown in FIG. 11, a TCC group # 1 including a plurality of TCC # 1 and # 2 (CC # 2, # 3) is associated with the PCC (CC # 1). Alternatively, the TCC group # 2 including a plurality of TCC # 3 and # 4 (CC # 5, # 6) is associated with the SCC (CC # 4). The association information between CCs can be notified from the radio base station to the user terminal.
  • the radio base station transmits UL signal allocation information (for example, UL grant) to the TCC group # 1 from the PCC (CC # 1) to the user terminal.
  • UL signal allocation information for example, UL grant
  • the user terminal performs LBT in TCC group # 1 (multiple TCCs # 1 and # 2) associated with the PCC.
  • a user terminal can perform UL transmission using TCC (LBT_idle) which can be transmitted among a plurality of TCCs.
  • UL signal allocation information for example, UL grant
  • the user terminal performs LBT in TCC group # 2 (a plurality of TCCs # 3 and # 4) associated with the SCC.
  • a user terminal can perform UL transmission using TCC (LBT_idle) which can be transmitted among a plurality of TCCs.
  • the user terminal can select a specific TCC based on a predetermined condition and perform UL transmission. For example, a user terminal selects a TCC with a small cell index (CellIndex / SCellIndex) (or a TCC with a large cell index) or a TCC with good communication quality (for example, reception quality, channel quality, etc.) and performs UL transmission. be able to.
  • the user terminal may perform UL transmission using a plurality of TCCs that can be transmitted (LBT_idle). In this case, a transmission diversity effect can be obtained.
  • the radio base station can perform a reception operation on a plurality of TCCs (for example, both TCC # 1 and # 2) assuming an uplink signal (PUSCH) from the user terminal. Thereby, even if the radio base station cannot grasp the result of the uplink LBT of each TCC, it is possible to appropriately receive UL data from the user terminal.
  • TCCs for example, both TCC # 1 and # 2
  • PUSCH uplink signal
  • the user terminal transmits a power headroom (PH) indicating surplus transmission power to the radio base station for the CC (PCC and / or SCC) that performs transmission.
  • PH power headroom
  • FIG. 12 shows a conceptual diagram of the power headroom. In addition, in FIG. 12, it shows about the transmission power with respect to PUSCH.
  • the user terminal when the transmission power P PUSCH of the user terminal does not reach the maximum transmission power P CMAX , the user terminal sets a value obtained by subtracting the transmission power P PUSCH from the maximum transmission power P CMAX to the surplus transmission power PH. Notify as a value. Also, as shown in FIG. 12B, when the transmission power P PUSCH of the user terminal exceeds the maximum transmission power P CMAX , the user terminal sets the value of the surplus transmission power PH with the actual transmission power as the value of the maximum transmission power P CMAX. Notifies a negative value based on the following equation (1).
  • c (i) P CMAX, c (i) ⁇ ⁇ 10log 10 (M PUSCH, c (i)) + P O_PUSCH, c (j) + ⁇ c (j) ⁇ PL c + ⁇ TF, c (i) + f c (i) ⁇ (1)
  • the user terminal feeds back a PHR (Power Headroom Report) for reporting the surplus transmission power of the user terminal to the radio base station.
  • the PHR includes PH that is difference information between the transmission power P PUSCH of the user terminal and the maximum transmission power P CMAX and a 2-bit reserved area.
  • Type 1 and Type 2 are supported for PH, Type 1 PH is a PH when only PUSCH is transmitted, and Type 2 PH is assumed to transmit PUSCH and PUCCH. It is PH of the case.
  • the user terminal reports information on real PHR (Real PHR) in consideration of actual transmission power for CCs that perform UL transmission, and information on virtual PHR (Virtual PHR) for CCs that do not perform UL transmission.
  • Real PHR real PHR
  • Virtual PHR Virtual PHR
  • a virtual PH (VPH) corresponds to a PH that does not depend on the PUSCH bandwidth
  • a PHR including the virtual PH is also referred to as a virtual PHR.
  • the user terminal reports information related to the real PHR and the virtual PHR to the radio base station using the PU PU of the CC that performs UL transmission by being included in the MAC CE.
  • the radio base station can take into account the total surplus transmission power including uplink transmission power control of CCs that do not transmit by receiving information on the virtual PHR in addition to the real PHR.
  • the user terminal reports a virtual PHR to a TCC whose transmission is restricted by the LBT result even if UL transmission is allocated in the TCC.
  • the virtual PHR is reported from the user terminal for the TCC on the radio base station side, it is difficult to grasp accurate UL transmission power.
  • the user terminal when the user terminal performs LBT immediately before UL transmission, the LBT result may be found immediately before UL transmission. Therefore, the user terminal needs to create a virtual PHR if the LBT result is LBT_busy even if the MAC CE is created using information related to the real PHR in order to perform UL transmission in the TCC. In such a case, there is a possibility that the change of information transmitted by the user terminal (real PHR ⁇ virtual PHR) may not be in time.
  • the user terminal can be controlled to transmit information on a predetermined PHR regardless of the LBT result of UL transmission in TCC.
  • the user terminal can appropriately generate and transmit information on PHR.
  • the user terminal may notify the radio base station in advance of information relating to the type of information relating to the PHR to be generated / transmitted (for example, real PHR or virtual PHR). Or you may set the kind of PHR which a wireless base station transmits to a user terminal previously.
  • the user terminal can report the real PHR to the TCC even when UL transmission in the TCC is restricted (LBT_busy).
  • LBT_busy since the UL signal is assigned in the TCC from the radio base station to the user terminal, the user terminal can calculate and report the real PHR.
  • the user terminal can perform real PHR reporting to the TCC in another CC (for example, PCC and / or SCC) that enables UL transmission.
  • the user terminal can determine the type of PHR to be reported based on whether a UL signal is assigned and generate PHR (generate MAC CE), thereby reducing the burden on the user terminal. It becomes possible.
  • the user terminal may be configured to always report the virtual PHR for TCC, or may be configured to select the type of PHR reported by the user terminal (real PHR / virtual PHR).
  • FIG. 13 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment of the present invention.
  • the radio communication system shown in FIG. 13 is a system including, for example, an LTE system, SUPER 3G, LTE-A system, and the like.
  • carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of component carriers (PCC, SCC, TCC) are integrated can be applied.
  • This wireless communication system may be called IMT-Advanced, or may be called 4G, 5G, FRA (Future Radio Access), or the like.
  • the radio communication system 1 shown in FIG. 13 includes a radio base station 11 that forms a macro cell C1, and radio base stations 12a-12c that are arranged in the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. . Moreover, the user terminal 20 is arrange
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 that use different frequencies simultaneously by CA or DC. Further, the user terminal 20 can apply CA or DC using at least six or more CCs (cells). As an example, the macro cell C1 can be set as a PCell (PCC) and the small cell C2 as a SCell (SCC) and / or a TCell (TCC) in a user terminal. In addition, a license band and / or an unlicensed band can be set as the TCC.
  • PCC PCell
  • SCC SCell
  • TCC TCell
  • a license band and / or an unlicensed band can be set as the TCC.
  • Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (referred to as an existing carrier or a legacy carrier).
  • a carrier having a relatively high frequency band for example, 3.5 GHz, 5 GHz, etc.
  • a wide bandwidth may be used between the user terminal 20 and the radio base station 12, or The same carrier may be used.
  • a wired connection optical fiber, X2 interface, etc.
  • a wireless connection may be employed between the wireless base station 11 and the wireless base station 12 (or between the two wireless base stations 12).
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point.
  • the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
  • Each user terminal 20 is a terminal that supports various communication schemes such as LTE and LTE-A, and may include not only a mobile communication terminal but also a fixed communication terminal.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single-carrier transmission scheme that reduces interference between terminals by dividing the system bandwidth into bands consisting of one or continuous resource blocks for each terminal and using a plurality of terminals with mutually different bands. is there.
  • the uplink and downlink radio access methods are not limited to these combinations.
  • downlink channels include a downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like. Used. User data, higher layer control information, and predetermined SIB (System Information Block) are transmitted by PDSCH. Moreover, MIB (Master Information Block) etc. are transmitted by PBCH.
  • PDSCH downlink shared channel
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • MIB Master Information Block
  • Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), and the like.
  • Downlink control information (DCI: Downlink Control Information) including scheduling information of PDSCH and PUSCH is transmitted by PDCCH.
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
  • the HAICH transmission confirmation signal (ACK / NACK) for PUSCH is transmitted by PHICH.
  • the EPDCCH is frequency division multiplexed with a PDSCH (downlink shared data channel) and may be used to transmit DCI or the like in the same manner as the PDCCH.
  • a downlink reference signal a cell-specific reference signal (CRS), a channel state measurement reference signal (CSI-RS), a user-specific reference signal used for demodulation includes reference signals (DM-RS: Demodulation Reference Signal).
  • CRS cell-specific reference signal
  • CSI-RS channel state measurement reference signal
  • DM-RS Demodulation Reference Signal
  • an uplink shared channel (PUSCH: Physical Uplink Shared Channel), an uplink control channel (PUCCH: Physical Uplink Control Channel), and a random access channel (PRACH) shared by each user terminal 20 are used. Physical Random Access Channel) is used. User data and higher layer control information are transmitted by PUSCH. Also, downlink radio quality information (CQI: Channel Quality Indicator), a delivery confirmation signal (HARQ-ACK), and the like are transmitted by PUCCH.
  • CQI Channel Quality Indicator
  • HARQ-ACK delivery confirmation signal
  • a random access preamble (RA preamble) for establishing a connection with the cell is transmitted by the PRACH.
  • FIG. 14 is a diagram illustrating an example of the overall configuration of a radio base station according to an embodiment of the present invention.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • the transmission / reception unit 103 includes a transmission unit and a reception unit.
  • User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access
  • Retransmission control for example, transmission processing of HARQ (Hybrid Automatic Repeat reQuest)
  • HARQ Hybrid Automatic Repeat reQuest
  • IFFT inverse Fast Fourier Transform
  • precoding processing etc.
  • the downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and transferred to each transmitting / receiving unit 103.
  • Each transmission / reception unit 103 converts the baseband signal output by precoding from the baseband signal processing unit 104 for each antenna to a radio frequency band and transmits the converted signal.
  • the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
  • the transmission / reception unit 103 can transmit information related to a CC performing CA (for example, information on a cell serving as a TCC).
  • the transmission / reception unit 103 can transmit downlink control information (for example, UL grant) instructing UL transmission in TCC.
  • the transceiver 103 may transmit a UL grant for the TCC using a TCC downlink control channel (PDCCH / EPDCCH), or may transmit using a PCC and / or SCC downlink control channel.
  • Good cross carrier scheduling
  • the transmission / reception unit 103 can transmit the UL grant including the HARQ process number for asynchronous HARQ to the user terminal (see FIG. 10). Moreover, the transmission / reception part 103 can transmit UL grant containing the radio
  • the transmission / reception unit 103 can be a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present invention.
  • the radio frequency signal received by each transmitting / receiving antenna 101 is amplified by the amplifier unit 102.
  • Each transmitting / receiving unit 103 receives the upstream signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs fast Fourier transform (FFT) processing, inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) processing, and error correction on user data included in the input upstream signal.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • Decoding, MAC retransmission control reception processing, RLC layer, and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing such as communication channel setting and release, status management of the radio base station 10, and radio resource management.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
  • the transmission path interface 106 may transmit and receive signals (backhaul signaling) to and from the adjacent radio base station 10 via an inter-base station interface (for example, an optical fiber or an X2 interface).
  • FIG. 15 is a diagram illustrating an example of a functional configuration of the radio base station according to the present embodiment. Note that FIG. 15 mainly shows functional blocks of characteristic portions in the present embodiment, and the wireless base station 10 also has other functional blocks necessary for wireless communication. As shown in FIG. 15, the baseband signal processing unit 104 includes a control unit (scheduler) 301, a transmission signal generation unit (generation unit) 302, a mapping unit 303, and a reception signal processing unit 304. .
  • the baseband signal processing unit 104 includes a control unit (scheduler) 301, a transmission signal generation unit (generation unit) 302, a mapping unit 303, and a reception signal processing unit 304.
  • the control unit (scheduler) 301 controls scheduling (for example, resource allocation) of downlink data signals transmitted on PDSCH and downlink control signals transmitted on PDCCH and / or EPDCCH. It also controls scheduling of system information, synchronization signals, paging information, CRS, CSI-RS, and the like.
  • the control unit 301 controls the transmission of the DL signal based on the result of the DL LBT for the unlicensed CC (for example, TCC).
  • the control unit 301 may perform control so as to notify the user terminal of the LBT result in the license band (PCC and / or SCC).
  • the control unit 301 can apply asynchronous HARQ in TCC.
  • the control unit 301 can control the transmission / reception operation on the assumption that the user terminal operates without reading (without detecting) ACK / NACK for PHICH (synchronous HARQ operation).
  • the control unit 301 can perform control to add a HARQ process number indicating predetermined UL data to the UL grant (see FIG. 10).
  • control unit 301 can perform control so that resources from one CC (PCC and / or SCC) to a plurality of TCCs are simultaneously allocated (see FIG. 11). In this case, the control unit 301 can perform control such that association between CCs is set in advance for the user terminal, and association information between CCs is notified to the user terminal.
  • control unit 301 controls scheduling of an uplink reference signal, an uplink data signal transmitted by PUSCH, an uplink control signal transmitted by PUCCH and / or PUSCH, a random access preamble transmitted by PRACH, and the like.
  • the control unit 301 can be a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 302 generates a DL signal based on an instruction from the control unit 301 and outputs the DL signal to the mapping unit 303. For example, based on an instruction from the control unit 301, the transmission signal generation unit 302 generates a DL assignment that notifies downlink signal allocation information and a UL grant that notifies uplink signal allocation information. Further, the downlink data signal is subjected to coding processing and modulation processing according to a coding rate, a modulation scheme, and the like determined based on channel state information (CSI) from each user terminal 20.
  • the transmission signal generation unit 302 can be a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the mapping unit 303 maps the downlink signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs it to the transmission / reception unit 103.
  • the mapping unit 303 can be a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 receives UL signals (for example, a delivery confirmation signal (HARQ-ACK), a data signal transmitted on the PUSCH, a random access preamble transmitted on the PRACH, etc.) transmitted from the user terminal. Processing (for example, demapping, demodulation, decoding, etc.) is performed. The processing result is output to the control unit 301.
  • UL signals for example, a delivery confirmation signal (HARQ-ACK), a data signal transmitted on the PUSCH, a random access preamble transmitted on the PRACH, etc.
  • Processing for example, demapping, demodulation, decoding, etc.
  • the processing result is output to the control unit 301.
  • the received signal processing unit 304 may measure received power (for example, RSRP (Reference Signal Received Power)), received quality (RSRQ (Reference Signal Received Quality)), channel state, and the like using the received signal. .
  • the reception signal processing unit 304 may perform DL LBT before transmitting a DL signal. Note that the measurement result in the reception signal processing unit 304 may be output to the control unit 301. Note that a measurement unit that performs a measurement operation may be provided separately from the reception signal processing unit 304.
  • the reception signal processing unit 304 may be composed of a signal processor, a signal processing circuit or a signal processing device, and a measuring device, a measurement circuit or a measuring device which are described based on common recognition in the technical field according to the present invention. it can.
  • FIG. 16 is a diagram illustrating an example of the overall configuration of the user terminal according to the present embodiment.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201 for MIMO transmission, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the transmission / reception unit 203 may include a transmission unit and a reception unit.
  • the radio frequency signals received by the plurality of transmission / reception antennas 201 are each amplified by the amplifier unit 202.
  • Each transmitting / receiving unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
  • the transmission / reception unit 203 receives a DL signal such as downlink control information (for example, UL grant) instructing UL transmission in TCC.
  • a DL signal such as downlink control information (for example, UL grant) instructing UL transmission in TCC.
  • the transmission / reception unit 203 can receive downlink control information including a TCC UL grant from a PCC, SCC, and / or TCC downlink control channel (PDCCH / EPDCCH).
  • the transmission / reception unit 203 transmits UL data using the padding bits, and determines that there is no UL data corresponding to the UL grant in the TCC. In this case, UL data can not be transmitted. In this case, the transmission / reception unit 203 may transmit information indicating that there is no UL data corresponding to the UL grant in the TCC in the UL signal of the PCC and / or SCC (see FIG. 8).
  • the transmission / reception unit 203 can notify the radio base station of capability information (capability) of the user terminal. For example, the transmission / reception unit 203 transmits information related to TCCs that can be set simultaneously (for example, TCC combination information) to the radio base station in addition to information related to frequencies that can use TCC.
  • the transmission / reception unit 203 can be a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present invention.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer.
  • broadcast information in the downlink data is also transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs retransmission control transmission processing (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like.
  • the data is transferred to the transmission / reception unit 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
  • FIG. 17 is a diagram illustrating an example of a functional configuration of the user terminal according to the present embodiment. Note that FIG. 17 mainly shows functional blocks of characteristic portions in the present embodiment, and the user terminal 20 also has other functional blocks necessary for wireless communication. As illustrated in FIG. 17, the baseband signal processing unit 204 included in the user terminal 20 includes a control unit 401, a transmission signal generation unit 402, a mapping unit 403, and a reception signal processing unit 404.
  • the control unit 401 obtains, from the received signal processing unit 404, a downlink control signal (a signal transmitted by PDCCH / EPDCCH) and a downlink data signal (a signal transmitted by PDSCH) transmitted from the radio base station 10.
  • the control unit 401 controls generation of an uplink control signal (for example, a delivery confirmation signal) and an uplink data signal based on a downlink control signal, a result of determining whether or not retransmission control is required for the downlink data signal, and the like.
  • the control unit 401 can control the transmission signal generation unit 402, the mapping unit 403, and the reception signal processing unit 404.
  • the control unit 401 can also control the transmission / reception unit 203.
  • the control unit 401 may apply a UL signal transmission operation different from PCC and / or SCC to TCC. it can.
  • control unit 401 determines that there is no UL data corresponding to the UL grant in the PCC or the SCC, the control unit 401 performs control so that UL data is transmitted using a padding bit. Further, the control unit 401 can perform control so as not to transmit UL data when it is determined that there is no UL data corresponding to the UL grant in the TCC (see FIG. 8).
  • control unit 401 can apply asynchronous HARQ to the UL signal transmitted in the TCC (see FIG. 10).
  • the control unit 401 can perform control so that the PHICH is not detected in the TCC when the transmission / reception unit 203 receives a UL grant that instructs transmission of a UL signal in the TCC.
  • control unit 401 can perform retransmission control on the UL signal transmitted in the TCC based on the HARQ process number included in the UL grant.
  • the control unit 401 performs listening for a plurality of TCCs set in advance, and the UL signal is transmitted at a predetermined TCC based on the listening result. Can be transmitted (see FIG. 11).
  • control unit 401 can control to report a predetermined PHR (for example, real PHR) to the radio base station as a TCC PHR (Power Headroom Report) regardless of the listening result.
  • a predetermined PHR for example, real PHR
  • TCC PHR Power Headroom Report
  • the control unit 401 can be a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 402 generates a UL signal based on an instruction from the control unit 401 and outputs the UL signal to the mapping unit 403. For example, the transmission signal generation unit 402 generates an uplink control signal such as a delivery confirmation signal (HARQ-ACK) or channel state information (CSI) based on an instruction from the control unit 401.
  • HARQ-ACK delivery confirmation signal
  • CSI channel state information
  • the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401.
  • the transmission signal generation unit 402 can operate so as not to generate UL data (padding bits) when it is determined that there is no UL data corresponding to the UL grant in the TCC.
  • the transmission signal generation unit 402 generates an uplink data signal for retransmission based on an instruction from the control unit 401 (such as a HARQ process number included in the UL grant).
  • the transmission signal generation unit 402 may be a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the mapping unit 403 maps the uplink signal (uplink control signal and / or uplink data) generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs the radio resource to the transmission / reception unit 203.
  • the mapping unit 403 may be a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 404 performs reception processing (for example, demapping and demodulation) on a DL signal (for example, a downlink control signal transmitted from a radio base station using PDCCH / EPDCCH, a downlink data signal transmitted using PDSCH, etc.). , Decryption, etc.).
  • the reception signal processing unit 404 outputs information received from the radio base station 10 to the control unit 401.
  • the reception signal processing unit 404 outputs broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401, for example.
  • the reception signal processing unit 404 can control the reception operation of the DL signal based on an instruction from the control unit 401. For example, when applying asynchronous UL HARQ in TCC, received signal processing section 404 operates so as not to detect PHICH in TCC when receiving UL grant instructing transmission of UL signal in TCC. Can do.
  • the received signal processing unit 404 may measure received power (for example, RSRP (Reference Signal Received Power)), received quality (RSRQ (Reference Signal Received Quality)), channel state, and the like using the received signal. .
  • the reception signal processing unit 404 may perform UL LBT before transmitting a UL signal.
  • the measurement result in the reception signal processing unit 404 may be output to the control unit 401. Note that a measurement unit that performs a measurement operation may be provided separately from the reception signal processing unit 404.
  • the reception signal processing unit 404 may be configured by a signal processor, a signal processing circuit or a signal processing device, and a measuring device, a measurement circuit or a measuring device which are described based on common recognition in the technical field according to the present invention. it can.
  • each functional block is realized by one physically coupled device, or may be realized by two or more physically separated devices connected by wire or wirelessly and by a plurality of these devices. Good.
  • radio base station 10 and the user terminal 20 are realized using hardware such as ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), and FPGA (Field Programmable Gate Array). May be.
  • the radio base station 10 and the user terminal 20 may be realized by a computer apparatus including a processor (CPU), a communication interface for network connection, a memory, and a computer-readable storage medium holding a program. Good.
  • the processor and memory are connected by a bus for communicating information.
  • the computer-readable recording medium is a storage medium such as a flexible disk, a magneto-optical disk, a ROM, an EPROM, a CD-ROM, a RAM, and a hard disk.
  • the program may be transmitted from a network via a telecommunication line.
  • the radio base station 10 and the user terminal 20 may include an input device such as an input key and an output device such as a display.
  • the functional configurations of the radio base station 10 and the user terminal 20 may be realized by the hardware described above, may be realized by a software module executed by a processor, or may be realized by a combination of both.
  • the processor controls the entire user terminal by operating an operating system. Further, the processor reads programs, software modules and data from the storage medium into the memory, and executes various processes according to these.
  • the program may be a program that causes a computer to execute the operations described in the above embodiments.
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in a memory and operated by a processor, and may be realized similarly for other functional blocks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 ユーザ端末に設定可能なCC数が既存システムより拡張される場合及び/又はアンライセンスCCを用いてCAを行う場合であっても、通信を適切に行うこと。複数のコンポーネントキャリア(CC)を用いたキャリアアグリゲーションを利用して無線基地局と通信するユーザ端末であって、各CCから送信されるDL信号を受信する受信部と、UL信号を送信する送信部と、送信部における送信動作を制御する制御部と、を有し、複数のCCとして、少なくとも既存システムのプライマリCCに対応する第1のCCと、第1のCC及び既存システムのセカンダリCCに対応する第2のCCとは異なる第3のCCと、が設定される場合、制御部は、第3のCCに対して第2のCCとは異なるUL信号の送信動作を適用する。

Description

ユーザ端末、無線基地局及び無線通信方法
 本発明は、次世代移動通信システムにおけるユーザ端末、無線基地局及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、さらなる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。そして、LTEからのさらなる広帯域化及び高速化を目的として、LTEアドバンストと呼ばれるLTEの後継システム(LTE-Aとも呼ばれる)が検討され、LTE Rel.10-12として仕様化されている。
 LTE Rel.10-12のシステム帯域は、LTEシステムのシステム帯域を一単位とする少なくとも1つのコンポーネントキャリア(CC:Component Carrier)を含んでいる。このように、複数のCCを集めて広帯域化することをキャリアアグリゲーション(CA:Carrier Aggregation)という。また、LTE Rel.12においては、ユーザ端末が異なる無線基地局(スケジューラー)がそれぞれ制御するCCを用いて通信を行うデュアルコネクティビティ(DC:Dual Connectivity)がサポートされている。
 上述したLTEの後継システム(LTE Rel.10-12)におけるCA/DCでは、ユーザ端末(UE)当たりに設定可能なCC数が最大5個に制限されている。LTEのさらなる後継システムであるLTE Rel.13以降においては、より柔軟且つ高速な無線通信を実現するために、ユーザ端末に設定可能なCC数の制限を緩和し、6個以上のCC(例えば、32CC)を設定することが検討されている。
 また、Rel.8-12のLTEでは、事業者に免許された周波数帯、すなわちライセンスバンドにおいて排他的な運用がなされることを想定して仕様化が行われている。ライセンスバンドとしては、例えば、800MHz、2GHzまたは1.7GHzなどが使用される。
 さらに、将来の無線通信システム(Rel.13以降)では、LTEシステムを、通信事業者(オペレータ)にライセンスされた周波数帯域(Licensed band)だけでなく、ライセンス不要の周波数帯域(Unlicensed band)で運用するシステム(LTE-U:LTE Unlicensed)も検討されている。特に、ライセンスバンドを前提として非ライセンスバンド(アンライセンスバンド)を運用するシステム(LAA:Licensed-Assisted Access)も検討されている。なお、アンライセンスバンドでLTE/LTE-Aを運用するシステムを総称して「LAA」と呼ぶ場合もある。ライセンスバンド(Licensed band)は、特定の事業者が独占的に使用することを許可された帯域であり、アンライセンスバンド(Unlicensed band)は特定事業者に限定せずに無線局を設置可能な帯域である。
 アンライセンスバンドでは、異なるオペレータや非オペレータ間において、同期、協調または連携などがなされずに運用されることが想定され、ライセンスバンドと比較して大きな相互干渉が生じるおそれがある。そのため、アンライセンスバンドでLTE/LTE-Aシステム(LTE-U)を運用する場合、アンライセンスバンドで運用されるWi-Fi等の他システムや他オペレータのLTE-Uとの相互干渉を考慮して動作することが望まれる。アンライセンスバンドにおける相互干渉を避けるために、LTE-U基地局/ユーザ端末が、信号の送信前にリスニングを行い、リスニング結果により送信を制限することが検討されている。
 また、アンライセンスバンドとして、例えば、Wi-Fi(登録商標)やBluetooth(登録商標)を使用可能な2.4GHz帯や5GHz帯、ミリ波レーダーを使用可能な60GHz帯等の利用が検討されている。このようなアンライセンスバンドをスモールセルで適用することも検討されている。
 LTE Rel.10-12のシステムにおけるCA/DCでは、ユーザ端末に設定されるセル(CC)として、1個のプライマリセル(PCell、PCC)と、最大4個までのセカンダリセル(SCell、SCC)がサポートされている。このように、既存システム(LTE Rel.10-12)のCAでは、ユーザ端末(UE)当たりに設定可能なCC数が最大5個に制限されている。
 一方で、LTEのさらなる後継システム(例えば、LTE Rel.13以降)において、ユーザ端末に設定可能なCC数が6個以上(例えば、32CC)に拡張される場合、CC数の増加に伴いユーザ端末の負担が増大することが想定される。例えば、拡張されるCC(拡張CC)をSCCとしてユーザ端末に設定する場合、各SCellに対するUL信号の送信動作に要するユーザ端末の負担が増大することが想定される。
 また、アンライセンスCCをSCC(例えば、拡張CC)としてユーザ端末に設定する場合、リスニング結果(LBT結果)次第ではユーザ端末がアンライセンスCCと定常的な信号の送受信を行えない場合が生じる。そのため、ユーザ端末が既存システムのSCC(SCell)と同様にアンライセンスCCに対してUL送信等の送信動作を行うと通信が適切に行えないおそれがある。
 本発明はかかる点に鑑みてなされたものであり、ユーザ端末に設定可能なCC数が既存システムより拡張される場合及び/又はアンライセンスCCを用いてCAを行う場合であっても、通信を適切に行うことができるユーザ端末、無線基地局及び無線通信方法を提供することを目的の1つとする。
 本発明のユーザ端末の一態様は、複数のコンポーネントキャリア(CC:Component Carrier)を用いたキャリアアグリゲーションを利用して無線基地局と通信するユーザ端末であって、各CCから送信されるDL信号を受信する受信部と、UL信号を送信する送信部と、前記送信部における送信動作を制御する制御部と、を有し、複数のCCとして、少なくとも既存システムのプライマリCCに対応する第1のCCと、第1のCC及び既存システムのセカンダリCCに対応する第2のCCとは異なる第3のCCと、が設定される場合、前記制御部は、第3のCCに対して第2のCCとは異なるUL信号の送信動作を適用することを特徴とする。
 本発明によれば、ユーザ端末に設定可能なCC数が既存システムより拡張される場合及び/又はアンライセンスCCを用いてCAを行う場合であっても、通信を適切に行うことができる。
LTEの後継システムにおけるキャリアアグリゲーションの概要の説明図である。 リスニング(LBT)を適用する場合の送信制御の一例を示す図である。 既存システムPCCとSCCを利用したCAと、アンライセンスCCを説明する図である。 アンライセンスCCをSCCとして設定する場合を示す図である。 TCCを用いたキャリアアグリゲーションの一例を示す図である。 TCCを用いたキャリアアグリゲーションの他の例を示す図である。 UL送信の動作方法の一例を示す図である。 TCCにおけるUL送信の動作方法の一例を示す図である。 同期型のUL HARQの一例を示す図である。 TCCにおける非同期型のUL HARQの一例を示す図である。 TCCを用いたUL送信方法の一例を示す図である。 パワーヘッドルームの概念図を示す図である。 本実施の形態に係る無線通信システムの概略構成の一例を示す概略構成図である。 本実施の形態に係る無線基地局の全体構成の一例を示す図である。 本実施の形態に係る無線基地局の機能構成の一例を示す図である。 本実施の形態に係るユーザ端末の全体構成の一例を示す図である。 本実施の形態に係るユーザ端末の機能構成の一例を示す図である。
 図1は、キャリアアグリゲーション(CA)の説明図である。図1に示すように、既存システム(LTE Rel.12まで)のCAでは、LTE Rel.8のシステム帯域を一単位とするコンポーネントキャリア(CC)が最大5個(CC#1~CC#5)束ねられる。すなわち、LTE Rel.12までのキャリアアグリゲーションでは、ユーザ端末(UE:User Equipment)あたりに設定可能なCC数は、最大5個(1個のプライマリセル、最大4個のセカンダリセル)に制限される。
 プライマリセル(PCell、PCC)とは、CA/DCを行う場合にRRC接続やハンドオーバを管理するセルであり、端末からのデータやフィードバック信号を受信するためにUL伝送も必要となるセルである。プライマリセルは、上下リンクともに常に設定される。セカンダリセル(SCell、SCC)とは、CA/DCを適用する際にプライマリセルに加えて設定する他のセルである。セカンダリセルは、下りリンクだけ設定することもできるし、上下リンクを同時に設定することもできる。
 一方、LTEのさらなる後継システム(例えば、LTE Rel.13以降)では、ユーザ端末当たりに設定可能なCCの数の制限を緩和し、6個以上のCC(セル)を設定する拡張キャリアアグリゲーション(CA enhancement)が検討されている。例えば、図1に示すように、32個のCC(CC#1~CC#32)を束ねる場合、最大640MHzの帯域を確保可能となる。このように、ユーザ端末あたりに設定可能なCC数を拡張することにより、より柔軟且つ高速な無線通信を実現することが期待されている。
 また、LTEのさらなる後継システム(例えば、LTE Rel.13以降)では、LTEシステムを、通信事業者(オペレータ)にライセンスされた周波数帯域(Licensed band)だけでなく、ライセンス不要の周波数帯域(Unlicensed band)で運用するシステムも検討されている。
 既存のLTE/LTE-Aでは、ライセンスバンドでの運用が前提となっているため、各オペレータに対して異なる周波数帯域が割当てられている。しかし、アンライセンスバンドは、ライセンスバンドと異なり特定の事業者のみの使用に限られない。アンライセンスバンドでLTEを運用する場合、異なるオペレータや非オペレータ間において、同期、協調及び/又は連携などがなされずに運用されることも想定される。この場合、アンライセンスバンドにおいて、複数のオペレータやシステムが同一周波数を共有して利用することとなるため、相互干渉が生じるおそれがある。
 このため、アンライセンスバンドにおいて運用されるWi-Fiシステムでは、LBT(Listen Before Talk)メカニズムに基づくキャリア検知多重アクセス/衝突回避(CSMA/CA:Carrier Sense Multiple Access/Collision Avoidance)が採用されている。具体的には、各送信ポイント(TP:Transmission Point)、アクセスポイント(AP:Access Point)、Wi-Fi端末(STA:Station)等が、送信を行う前にリスニング(CCA:Clear Channel Assessment)を実行し、所定レベルを超える信号が存在しない場合にのみ送信を行う方法等が用いられている。所定レベルを超える信号が存在する場合には、ランダムに与えられる待ち時間(バックオフ時間)を設け、その後再びリスニングを行う(図2参照)。
 そこで、アンライセンスバンドで運用するLTE/LTE-Aシステム(例えば、LAA)においても、リスニング結果に基づいた送信制御を行うことが検討されている。例えば、無線基地局及び/又はユーザ端末は、アンライセンスバンドセルにおいて信号を送信する前にリスニング(LBT)を行い、他システム(たとえば、Wi-Fi)や他オペレータが通信を行っているか確認する。リスニングの結果、他システムや別のLAAの送信ポイントからの受信信号強度が所定値以下である場合、無線基地局及び/又はユーザ端末は、チャネルがアイドル状態(LBT_idle)であるとみなし、信号の送信を行う。一方で、リスニングの結果、他システムや他のLAAの送信ポイントからの受信信号強度が所定値より大きい場合、チャネルがビジー状態(LBT_busy)であるとみなし、信号の送信を制限する。
 ここで、リスニングとは、無線基地局及び/又はユーザ端末が信号の送信を行う前に、他の送信ポイントから所定レベル(例えば、所定電力)を超える信号が送信されているか否かを検出/測定する動作を指す。また、無線基地局及び/又はユーザ端末が行うリスニングは、LBT(Listen Before Talk)、CCA(Clear Channel Assessment)等とも呼ばれることがある。LBT結果に基づく信号送信の制限としては、DFS(Dynamic Frequency Selection)により別キャリアに遷移する、送信電力制御(TPC)を行う、又は、信号送信を待機(停止)する方法が挙げられる。
 このように、アンライセンスバンドで運用するLTE/LTE-Aシステム(例えば、LAA)の通信においてLBTを適用することにより、他のシステムとの干渉等を低減することが可能となる。
 ところで、図1に示すCC数の拡張は、ライセンスバンドとアンライセンスバンドとの間のキャリアアグリゲーション(LAA:License-Assisted Access)による広帯域化に効果的である。例えば、ライセンスバンドの5個のCC(=100MHz)とアンライセンスバンドの15個のCC(=300MHz)とを束ねる場合、400MHzの帯域を確保可能となる。
 一方で、ユーザ端末に設定可能なCC数を拡張する場合やアンライセンスCC(UCC)を用いてCAを適用する場合、拡張CCやアンライセンスCC(UCC)をどのように設定してユーザ端末動作を制御するかが問題となる(図3参照)。
 例えば、図4に示すようにアンライセンスCC(UCC:Unlicensed Component Carrier)を既存システムのセカンダリセル(SCC)と仮定してCAを適用することが考えられる。なお、図4において、アンライセンスCC(UCC)は拡張CCとして設定することも考えられる。
 しかし、上述したようにアンライセンスキャリアでは送信時にLBTが前提となるため、アンライセンスCCでは送信/無送信(ON/OFF)状態が動的に変更される。このため、ユーザ端末はPCCやアクティブ状態のSCCのように定常的な信号送信を想定できないおそれがある。一方で、UCCでは、定常的な信号の送信はないがLBTの結果によってはすぐに信号の送受信が開始されるため、ユーザ端末は当該信号を送受信できるように制御する必要がある。このように、本発明者等は、ユーザ端末のUCCに対する必要な動作は既存の非アクティブ状態のSCCと異なる点に着目した。
 また、アンライセンスキャリアは、他システムと共存するため、ライセンスキャリアと比較して品質変動が大きく通信の信頼性が低下する可能性が高くなる。このため、LAAでは、ライセンスキャリアを利用してアンライセンスキャリアにおける通信をサポートすること(例えば、ライセンスキャリアを用いたLBT結果の通知等)が考えられる。この場合、アンライセンスCCと既存のSCCに対するユーザ端末動作が異なると考えられる。
 そこで本発明者等は、ユーザ端末に対して拡張CCやアンライセンスCCと、既存のPCCやSCC間で異なる動作/制御を適用することを着想した。また、ユーザ端末が、既存システム(Rel.10-12)のPCC及びSCCと、異なる動作/制御を適用するCC(例えば、UCC)とを区別できるように、新たにPCC及びSCCと異なるCCを設定してユーザ端末に設定/通知することを着想した。
 具体的に本発明者等は、拡張CC及び/又はUCCを既存のPCCやSCCとは区別して定義すると共に、既存のSCCと異なる制御/動作を適用することを着想した(図5参照)。本明細書では、既存システム(Rel.10-Rel.12)におけるPCC及びSCCと異なる制御/動作を適用するCCを、TCC(Tertiary CC)、TCell、第3のCC又は第3のセルとも呼ぶ(以下、「TCC」と記す)。TCCは、ライセンスCC及び/又はアンライセンスCCで構成することができる。
 TCCが設定されたユーザ端末は、当該TCCに対してSCCと異なる制御/動作を適用することができる(図5参照)。例えば、ユーザ端末は、TCCに対してPCCやSCCと異なるULの送信動作(例えば、不要なUL送信動作の抑制、UL HARQ動作、LBT結果を考慮したUL送信動作、LBTを考慮した報告動作等)を行う。
 これにより、ユーザ端末に多数のCCが設定される場合であっても、TCCについては簡易な制御や測定動作等を適用することによりユーザ端末の負荷の増大を抑制することが可能となる。また、アンライセンスCCをTCCとしてユーザ端末に設定する場合、TCCについてはLBTを考慮した(PCCやSCCと異なる)UL送信動作等を適用することで、LBT結果に起因する誤動作を抑制し通信を適切に行うことが可能となる。
 以下に、本実施の形態について詳細に説明する。なお、以下の説明では、TCCとして1個以上のライセンスCC及び/又はアンライセンスCCを設定する場合を示すがこれに限られない。例えば、TCCをアンライセンスCCだけで構成することも可能である。また、本実施の形態では、ユーザ端末に対してPCC(PCell)とTCC(TCell)を設定してCA/DCを適用する(つまり、SCC(SCell)を設定しない)ことも可能である(図6参照)。また、ユーザ端末に対して、SCC(SCell)として5個以上のCCを設定することも可能である。また、ライセンスバンドでは、UL LBT及び/又はDL LBTを適用することができる。
(第1の態様)
 第1の態様では、ユーザ端末が不要なUL送信動作を抑制する場合の一例について説明する。
 既存システム(Rel.10-12)のPCC及びSCCでは、ユーザ端末は無線基地局からULデータ(PUSCH)の割当てを指示する下り制御情報(ULグラント)を受信した場合に、ULデータの送信を行う。以下に、既存システムにおけるPUSCH送信動作の一例について図7を参照して説明する。
 ユーザ端末(UE)は送信すべき上りデータ(ULデータ)が発生した場合(ST10)、無線基地局(eNB)に対してスケジューリング要求を行う(ST11)。ユーザ端末は、ST11において個別のULリソースを保持していない場合には、ランダムアクセス手順を起動する。無線基地局は、ユーザ端末からのスケジューリング要求に応じて、上りデータ送信のリソース割当てを指示するULグラントを送信する(ST12)。ユーザ端末は当該ULグラントに基づいて送信すべきULデータ量を示すバッファ状態報告(BSR:Buffer Status Report)を送信する(ST13)。BSRを受信した無線基地局は、所定ビット分の上りリソース割り当てを示すULグラントをユーザ端末に通知し(ST14)、ユーザ端末は、割り当てられたPUSCHを用いて制限bit数内でULデータを送信することができる(ST15)。
 このように、既存システム(Rel.10-12)では、ユーザ端末は、送信すべき上りデータが発生した場合に、当該上りデータの滞留量(バッファ量)を示すバッファ状態報告(BSR)を無線基地局に対して通知することが規定されている。
 しかし、ユーザ端末が送信するULデータ量を示すバッファ状態報告(BSR)が欠落し(ST13)、無線基地局がULデータ量の推定を誤る場合がある。あるいは、ユーザ端末がデータ破棄タイマの満了に伴って、ユーザ端末側でデータを破棄する場合もある。このような場合、ST14で無線基地局からULグラントを受信したユーザ端末が、ST15において送信すべきデータがない状況が発生する。
 既存システムでは、無線基地局からULグラントを受信した際に(ST14)、ユーザ端末において送信すべきデータがない場合、ユーザ端末はST15においてパディングビット(空ビット)を用いてUL送信(PUSCH送信)を行うことが規定されている。
 ユーザ端末がTCCに対してもPCC/SCCと同様にUL送信動作(パディングビット送信)を行う場合、ユーザ端末のバッテリー消費等の負荷が増大する。また、上述したBSRの欠落は、例えばユーザ端末がBSRをアンライセンスバンドで送信することを指示された場合などに発生する。ユーザ端末は、LBTの結果予干渉局が近くにあると判断した場合、BSRの送信を中止する。これにより無線基地局がBSRを把握できなくなるため、当該ユーザ端末に対し、大きめのULデータ量を想定してULリソースを割り当てる可能性がある。
 このように、SCC等と比較してチャネル品質の変動が大きいTCCを用いてBSRを報告する場合、ユーザ端末が送信するBSRが欠落する可能性も高くなり、パディングビット送信の機会が増えるおそれがある。また、TCCがアンライセンスバンドである場合、パディングビットの送信であっても周囲への干渉を引き起こすおそれがある。
 そこで、本実施の形態では、ユーザ端末は、TCCにおいてULグラントで上りデータ(PUSCH)の送信を指示された場合であっても、送信すべきULデータがない場合には、TCCでの送信(パディングビット送信)を行わないように制御することができる。つまり、ユーザ端末は、TCCについてPCC及びSCCと異なるUL送信動作を適用して、不要なUL送信動作を抑制する。TCCを用いてULデータを送信する場合のユーザ端末の動作方法の一例について図8に示す。
 ユーザ端末(UE)は送信すべき上りデータ(ULデータ)が発生した場合(ST20)、無線基地局に対してスケジューリング要求を行う(ST21)。ユーザ端末は、ST21において個別のULリソースを保持していない場合には、ランダムアクセス手順を起動する。無線基地局は、ユーザ端末からのスケジューリング要求に応じて、上りデータ送信のリソース割当てを指示するULグラントを送信する(ST22)。ユーザ端末は当該ULグラントに基づいて送信すべきULデータ量を示すバッファ状態報告(BSR)を送信する(ST23)。BSRを受信した無線基地局は、所定ビット分のTCCの上りリソース割り当てを示すULグラントをユーザ端末に通知し(ST24)、ユーザ端末は、割り当てられたTCCのPUSCHを用いて制限bit数内でULデータを送信することができる(ST25)。
 ST24で無線基地局からULグラントを受信したユーザ端末が、ST25において送信すべきデータがない状況が発生した場合、ユーザ端末はST25においてTCCにおけるUL送信(パディングビット送信)を行わないように制御することができる。
 あるいは、ST24で無線基地局からULグラントを受信したユーザ端末が、ST25において送信すべきULデータ量が所定値以下である場合、当該ユーザ端末はST25においてTCCにおけるUL送信(パディングビットが多くを占めるUL送信)を行わないように制御するものとしてもよい。当該所定値は、あらかじめ定められた値であってもよいし、RRCシグナリング等上位レイヤでユーザ端末に対して設定される値であってもよい。ここで、ULデータ量に所定値を設けてTCCにおけるUL送信有無を制御する代わりに、ULリソース割り当て量とULデータ量の比に所定値を設けて、TCCにおけるUL送信有無を制御してもよい。例えば、ユーザ端末は、割り当てられたULリソース量に対し、実際に送信するULデータ量が1%未満の場合、TCCにおける当該UL送信を行わないように動作することができる。
 さらに、ユーザ端末は、TCCにおいてULグラントに基づくULデータの送信を行わない場合、当該ULグラントに対応する送信データがないことを無線基地局に通知してもよい(ST26)。この場合、ユーザ端末は、ULグラントに対応する送信データがないことを示す情報をPCC及び/又はSCCのUL(例えば、PUSCH)を用いて行うことができる。
 これにより、TCCにおけるユーザ端末の無駄なUL送信を抑制することができる。また、TCCがアンライセンスバンドである場合には、無駄なUL送信を抑制することで、周囲に及ぼす影響を低減することも可能となる。また、ULグラントに対応する送信データがないことを無線基地局へ通知することにより、無線基地局側でユーザ端末が送信すべきULデータがないことを適切に把握することが可能となる。
(第2の態様)
 第2の態様では、TCCにおけるユーザ端末のUL HARQ動作について説明する。
 既存システム(Rel.10-12)では、ユーザ端末は無線基地局から通知されるPHICH(Physical Hybrid-ARQ Indicator Channel)に基づいて同期型のUL HARQを適用する。既存システムにおける同期型のUL HARQの一例を図9に示す。
 図9では、ユーザ端末がサブフレーム#0でULデータ(例えば、PUSHC)を送信する場合を示している。この場合、無線基地局は、ユーザ端末から送信されたULデータ(PUSCH)が適切に受信できたか否かを判断し、再送制御用のPHICH(ACK/NACK)を所定タイミング後にユーザ端末に送信する。無線基地局は、PHICHを送信するタイミングとして、例えば、FDDでは4サブフレーム後(ここでは、サブフレーム#4)とすることができる。
 ユーザ端末は、無線基地局から送信されたPHICHがACKである場合には新規ULデータを送信し、NACKである場合にはULデータの再送制御を行う。ユーザ端末は、ULデータの再送を行う場合、PHICHを受信してから所定タイミング後にULデータの再送を行う。ユーザ端末は、所定タイミングとして、FDDでは4サブフレーム後(ここでは、サブフレーム#8)とすることができる。
 このように、既存システム(Rel.10-12)において、ユーザ端末及び無線基地局は、ULデータの再送制御(UL HARQ)を所定タイミングで制御する(同期型HARQ)。また、TDDにおいても、ユーザ端末及び無線基地局は、ULデータの再送制御(UL HARQ)をあらかじめ決められたタイミングで制御することができる(同期型HARQ)。
 一方で、アンライセンスバンドでは、LBT結果によってはユーザ端末が所定のタイミングでUL再送を行うことができない場合が生じる。例えば、ユーザ端末がPHICH(NACK)に基づいてULデータを再送する際に、ULデータを再送する前に実施したLBT結果に基づいて送信が制限される場合(チャネルがビジー状態(LBT_busy))、ULデータを所定タイミングで再送することが出来なくなる。したがって、アンライセンスバンド(例えば、TCC)において、ユーザ端末は既存システムのPCC及びSCCのように同期型のHARQを適用することが困難となる。
 そこで、本実施の形態では、ユーザ端末は、TCCにおいて非同期型のHARQを適用する。かかる場合、ユーザ端末は、PHICH(同期型HARQ動作)のためのACK/NACKを読まずに(検出せずに)動作することができる(図10参照)。例えば、ULグラントがTCCから送信される場合、又はPCC又はSCCで送信されるULグラント(CIF(Carrier Indicator Field))がTCCを指示する場合(ULクロスキャリアスケジューリング)、ユーザ端末はPHICHを読まない(検出しない)で動作することができる。
 図10では、TCCにおいてユーザ端末がサブフレーム#0でULデータ(例えば、PUSHC)を送信する場合を示している。この場合、無線基地局は、ユーザ端末から送信されたULデータ(PUSCH)が適切に受信できたか否かを判断し、再送制御が必要な場合にその旨を通知する。ユーザ端末への再送制御の通知方法としては、当該TCCのPDCCHを利用したULグラント、又は他のCC(PCC又はSCC)のPUCCHを利用したULグラント(クロスキャリアスケジューリング)を利用することができる。
 図10では、無線基地局は、再送制御用のULグラントを所定のタイミングでユーザ端末に送信する。所定のタイミングとしては、ULデータの再送を割り当てるサブフレームから4サブフレーム前(図10におけるサブフレーム#6)としてもよいし、その他のタイミングとしてもよい。ユーザ端末は、無線基地局から送信されたPHICHでなく、ULグラントに基づいてULデータの再送を制御する。この場合、ユーザ端末は、ULグラントを受信した後にLBTを実施し、当該LBTの結果に応じてULデータの送信タイミングを制御することができる(非同期型のUL HARQ)。
 例えば、ユーザ端末は、ULグラントを受信してからTCCにおいてLBTを実施し、送信可能(LBT_idle)となる最も早いサブフレーム(図10におけるサブフレーム#10)においてULデータの再送を行うことができる。
 このように、ユーザ端末は、TCCではULグラントとLBT結果に応じてULデータの再送を制御することができる(非同期型のUL HARQ)。なお、図10では、TCCがFDDの場合を示したが、TCCがTDDの場合においても、非同期型のUL HARQを適用することができる。
 また、非同期型のHARQを適用する場合、ULグラントに非同期型HARQのためにHARQプロセス番号(HPN:HARQ Process Number)を付与してもよい。HARQプロセス番号は、1つのトランスポートブロック(TB:Transport Block)に対するHARQ処理(HARQプロセス)に対する番号を示す。例えば、図10に示す場合、無線基地局は、ULデータ#0に対応するHARQプロセス番号をULグラントに含めてユーザ端末に送信することができる。
 ULグラントに設定するHPN用のビットフィールドは、例えば、3ビットとすることができる。3ビットとする場合、最大8個のHARQプロセス番号が指定され、それぞれのHARQ処理を並列に行うことができる。また、再送するULデータに関する情報(ここでは、HARQプロセス番号)をULグラントに含めることにより、ユーザ端末は再送すべきULデータを適切に把握することが可能となる。
 以下に、TCCが設定されたユーザ端末のUL HARQ動作方法について具体的に説明する。なお、以下の説明は、ユーザ端末に対してPCC及び/又はSCCからTCCへのULクロスキャリアスケジューリングを設定する場合を示すが、本実施の形態はこれに限られない。例えば、非衝突型のランダムアクセス時(CFRA:Contention Free Random Access)にPCC及び/又はSCCからTCCへPDCCHトリガーを行う場合にも同様に適用することができる。
(方法1)
 ユーザ端末は、PCC及び/又はSCCから(例えば、PUCCHを用いて)TCCのUL送信が指示される場合、TCCに対してスケジュールされたPUSCHに対応するPHICHは読まない(検出しない)ように動作することができる。一方で、ユーザ端末は、PCC及び/又はSCCにスケジュールされたPUSCHに対応するPHICHを既存システムと同様に検出して再送制御を制御することができる。
 この場合、無線基地局は、TCCにスケジュールするULグラントに対してHARQプロセス番号に関する情報(例えば3ビット)を付加することができる。一方で、PCC及び/又はSCCにスケジュールするULグラントにはHARQプロセス番号に関する情報は付加しない構成とすることができる。
 したがって、ユーザ端末は、PCC及び/又はSCCではPHICHを用いて同期型HARQを適用し、TCCでは非同期型HARQを適用する。これにより、PCC及び/又はSCCでは、ULグラントの情報量の増加を抑制し、PDCCHオーバーヘッドを削減することができる。
(方法2)
 ユーザ端末は、PCC及び/又はSCCからTCCのUL送信が指示される場合、TCCに対してスケジュールされたPUSCHに対応するPHICHは読まない(検出しない)ように動作することができる。同様に、ユーザ端末は、PCC及び/又はSCCにスケジュールされたPUSCHに対応するPHICHも読まない(検出しない)ように動作してもよい。
 この場合、無線基地局は、PCC、SCC及びTCCにスケジュールするULグラントに対してHARQプロセス番号に関する情報(例えば3ビット)を付加することができる。
 また、この場合、PCC、SCC及びTCCで送信するULグラントのサイズを同じ(同一ビット長)とすることができるため、サーチスペースを共有化することができる。つまり、ユーザ端末は、下り制御情報(例えば、ULグラント)に対するブラインド復号において、PCC、SCC及びTCCに対する下り制御情報を一度に検出することが可能となる。
 また、PCC及び/又はSCCのULグラントにHARQプロセス番号に関する情報を付加する場合、TCC以外のCC(PCC及び/又はSCC)に対するスケジューリング時においては、所定のビット値(例えば、固定値0)を設定してもよい。ユーザ端末は、PCC及び/又はSCCのULグラントに含まれるHARQプロセス番号(例えば、固定値)に基づいて、PHICHを用いる場合と同様に、所定後のタイミングで再送制御を行うことができる。
(第3の態様)
 第3の態様では、アンライセンスバンド(TCC)においてLBT結果を考慮したULの割当て方法について説明する。
 TCCがアンライセンスバンドの場合、無線基地局(eNB)がユーザ端末にUL送信(例えば、PUSCH)を割当てても、当該TCCのLBT結果が(LBT_busy)である場合、ユーザ端末のUL送信が制限される。
 そのため、本実施の形態では、無線基地局が一つのCCから複数のTCCへのリソース(例えば、PUSCHリソース、PUCCHリソース等)を同時に割当てる。つまり、ユーザ端末は、TCCにおけるUL送信を指示された場合、複数のTCCの中で送信可能なTCC(LBT_idle)を用いてUL送信を行うことができる。
 無線基地局は、あらかじめユーザ端末に対してCC間の関連付けをしておくことができる。例えば、図11に示すように、PCC(CC#1)に対して複数のTCC#1、#2(CC#2、#3)を含むTCCグループ#1を関連付ける。あるいは、SCC(CC#4)に対して複数のTCC#3、#4(CC#5、#6)を含むTCCグループ#2を関連付ける。CC間の関連付け情報は、無線基地局からユーザ端末へ通知することができる。
 無線基地局は、PCC(CC#1)からTCCグループ#1に対するUL信号の割当て情報(例えば、ULグラント)をユーザ端末に送信する。この場合、ユーザ端末は、PCCに関連づけられたTCCグループ#1(複数のTCC#1、#2)においてLBTを実施する。そして、ユーザ端末は、複数のTCCの中で送信可能なTCC(LBT_idle)を用いてUL送信を行うことができる。
 あるいは、SCC(CC#4)からTCCグループ#2に対するUL信号の割当て情報(例えば、ULグラント)をユーザ端末に送信する。この場合、ユーザ端末は、SCCに関連づけられたTCCグループ#2(複数のTCC#3、#4)においてLBTを実施する。そして、ユーザ端末は、複数のTCCの中で送信可能なTCC(LBT_idle)を用いてUL送信を行うことができる。
 TCCグループの中で送信可能(LBT_idle)となるTCCが複数存在する場合、ユーザ端末は、所定条件に基づいて特定のTCCを選択してUL送信を行うことができる。例えば、ユーザ端末は、セルインデックス(CellIndex/SCellIndex)の小さいTCC(あるいはセルインデックスの大きいTCC)、又は、通信品質(例えば、受信品質、チャネル品質等)のよいTCCを選択してUL送信を行うことができる。あるいは、ユーザ端末は、送信可能(LBT_idle)となる複数のTCCを用いてUL送信を行ってもよい。この場合、送信ダイバーシチ効果を得ることができる。
 無線基地局は、複数のTCC(例えば、TCC#1、#2の両方)に対してユーザ端末からの上り信号(PUSCH)を想定して受信動作を行うことができる。これにより、無線基地局側で各TCCの上りLBTの結果を把握することができなくても、ユーザ端末からのULデータを適切に受信することが可能となる。
(第4の態様)
 第4の態様では、アンライセンスバンド(TCC)においてLBT結果を考慮したULの報告動作について説明する。
 既存システム(Rel.10-12)の上りCAでは、送信を行うCC(PCC及び/又はSCC)に対して、ユーザ端末は余剰送信電力を示すパワーヘッドルーム(PH:Power Headroom)を無線基地局に報告する。図12にパワーヘッドルームの概念図を示す。なお、図12では、PUSCHに対する送信電力について示す。
 図12Aに示すように、ユーザ端末の送信電力PPUSCHが最大送信電力PCMAXに達していない場合、ユーザ端末は、最大送信電力PCMAXから送信電力PPUSCHを差し引いた値を余剰送信電力PHの値として通知する。また、図12Bに示すように、ユーザ端末の送信電力PPUSCHが最大送信電力PCMAXを超える場合、ユーザ端末は、実際の送信電力を最大送信電力PCMAXの値として、余剰送信電力PHの値は下記式(1)に基づいて負の値を通知する。
PHtype1,c(i)=PCMAX,c(i)-{10log10(MPUSCH,c(i))+PO_PUSCH,c(j)+αc(j)・PLcTF,c(i)+fc(i)}  (1)
 ユーザ端末は、無線基地局に対して、ユーザ端末の余剰送信電力を報告するためのPHR(Power Headroom Report)をフィードバックする。PHRは、ユーザ端末の送信電力PPUSCHと最大送信電力PCMAXとの差分情報であるPHと、2ビットの予約(Reserved)領域とを含んで構成される。なお、PHには、Type1とType2がサポートされており、Type 1 PHは、PUSCHのみが伝送されると仮定した場合のPHであり、Type 2 PHは、PUSCH及びPUCCHが伝送されると仮定した場合のPHとなっている。
 既存システムにおいて、ユーザ端末は、UL送信を行うCCについては実際の送信電力を考慮したリアルPHR(Real PHR)に関する情報を報告し、UL送信を行わないCCについては仮想PHR(Virtual PHR)に関する情報を報告する。仮想PH(VPH:Virtual PH)は、PUSCH帯域幅に依存しないPHに対応し、仮想PHを含むPHRを仮想PHRともいう。
 ユーザ端末は、リアルPHR及び仮想PHRに関する情報は、MAC CEに含めてUL送信を行うCCのPUSCHを用いて無線基地局に報告する。無線基地局は、リアルPHRに加えて、仮想PHRに関する情報を受信することにより、送信がないCCの上り送信電力制御も含めて総余剰送信電力を考慮することができる。
 TCCがアンライセンスバンドとなる場合、UL送信の割当てが指示されてもLBT結果によってはUL送信が制限される。そのため、既存システムと同様に制御する場合、ユーザ端末は、TCCにおいてUL送信の割当てがあっても、LBT結果により送信が制限されるTCCに対しては、仮想PHRを報告することとなる。この場合、無線基地局側では、当該TCCについて、ユーザ端末から仮想PHRが報告されるため、正確なUL送信電力を把握することが困難となる。
 また、ユーザ端末がUL送信の直前にLBTを実施する場合、LBT結果が判明するのはUL送信の直前となるおそれがある。そのため、ユーザ端末は、TCCにおいてUL送信を行うつもりでリアルPHRに関する情報を用いてMAC CEを作成しても、LBT結果がLBT_busyの場合には仮想PHRを作成する必要がある。また、かかる場合、ユーザ端末が送信する情報の変更(リアルPHR→仮想PHR)が間に合わなくなるおそれもある。
 そのため、本実施の形態では、ユーザ端末は、TCCにおけるUL送信のLBT結果に関わらず、所定のPHRに関する情報を送信するように制御することができる。これにより、TCCにおけるUL送信が制限される場合(LBT_busy)であっても、ユーザ端末は適切にPHRに関する情報を生成して送信することができる。ユーザ端末は、生成・送信するPHRに関する情報の種類(例えば、リアルPHR又は仮想PHR)に関する情報をあらかじめ無線基地局へ通知してもよい。あるいは、無線基地局があらかじめユーザ端末に送信させるPHRの種類を設定してもよい。
 例えば、ユーザ端末は、TCCにおけるUL送信が制限される場合(LBT_busy)であっても、TCCに対してリアルPHRを報告することができる。この場合、無線基地局からユーザ端末に対して当該TCCにおけるUL信号の割当ては行われているため、ユーザ端末はリアルPHRを計算して報告することは可能となる。
 なお、ユーザ端末は、TCCに対するリアルPHRの報告について、UL送信が可能となる他のCC(例えば、PCC及び/又はSCC)で行うことができる。また、ユーザ端末は、LBT結果に関わらず、UL信号の割当ての有無で報告するPHRの種類を決定してPHRを生成(MAC CEを生成)することができるため、ユーザ端末の負担を低減することが可能となる。
 あるいは、ユーザ端末は、TCCについては常に仮想PHRを報告する構成としてもよいし、ユーザ端末が報告するPHRの種類(リアルPHR/仮想PHR)を選択する構成としてもよい。
(無線通信システムの構成)
 以下、本発明の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本発明の実施形態に係る無線通信方法が適用される。なお、上記の各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用してもよい。
 図13は、本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。なお、図13に示す無線通信システムは、例えば、LTEシステム、SUPER 3G、LTE-Aシステムなどが包含されるシステムである。この無線通信システムでは、複数のコンポーネントキャリア(PCC、SCC、TCC)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。なお、この無線通信システムは、IMT-Advancedと呼ばれても良いし、4G、5G、FRA(Future Radio Access)などと呼ばれても良い。
 図13に示す無線通信システム1は、マクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12a-12cとを備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、異なる周波数を用いるマクロセルC1とスモールセルC2を、CA又はDCにより同時に使用することが想定される。また、ユーザ端末20は、少なくとも6個以上のCC(セル)を用いてCA又はDCを適用することができる。一例として、マクロセルC1をPCell(PCC)、スモールセルC2をSCell(SCC)及び/又はTCell(TCC)としてユーザ端末に設定することができる。また、TCCとしては、ライセンスバンド及び/又はアンライセンスバンドを設定することができる。
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、Legacy carrierなどと呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線接続(光ファイバ、X2インターフェースなど)又は無線接続する構成とすることができる。
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでよい。
 無線通信システムにおいては、無線アクセス方式として、下りリンクについてはOFDMA(直交周波数分割多元接続)が適用され、上りリンクについてはSC-FDMA(シングルキャリア-周波数分割多元接続)が適用される。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限られない。
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、報知チャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHにより、ユーザデータや上位レイヤ制御情報、所定のSIB(System Information Block)が伝送される。また、PBCHにより、MIB(Master Information Block)などが伝送される。
 下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHにより、PDSCH及びPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。PCFICHにより、PDCCHに用いるOFDMシンボル数が伝送される。PHICHにより、PUSCHに対するHARQの送達確認信号(ACK/NACK)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどを伝送するために用いられてもよい。
 また、下りリンクの参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態測定用参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用に利用されるユーザ固有参照信号(DM-RS:Demodulation Reference Signal)などを含む。
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHにより、ユーザデータや上位レイヤ制御情報が伝送される。また、PUCCHにより、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認信号(HARQ-ACK)などが伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブル(RAプリアンブル)が伝送される。
<無線基地局>
 図14は、本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106とを備えている。なお、送受信部103は、送信部及び受信部で構成される。
 下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御等のRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQ(Hybrid Automatic Repeat reQuest)の送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理等の送信処理が行われて各送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化や逆高速フーリエ変換などの送信処理が行われて、各送受信部103に転送される。
 各送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。
 例えば、送受信部103は、CAを行うCCに関する情報(例えば、TCCとなるセルの情報等)を送信することができる。送受信部103は、TCCにおけるUL送信を指示する下り制御情報(例えば、ULグラント)を送信することができる。例えば、送受信部103は、TCCに対するULグラントを、TCCの下り制御チャネル(PDCCH/EPDCCH)を利用して送信してもよいし、PCC及び/又はSCCの下り制御チャネルを用いて送信してもよい(クロスキャリアスケジューリング)。
 また、送受信部103は、TCCにおいて非同期型のUL HARQを適用する場合に、ULグラントに非同期HARQ用のHARQプロセス番号を含めてユーザ端末に送信することができる(図10参照)。また、送受信部103は、複数のTCCを含むTCCグループに対して、UL送信用の無線リソースを含むULグラントを送信することができる(図11参照)。この場合、送受信部103は、同一のTCCグループに含まれる各TCCにおいて、UL信号の受信処理を行うことができる。なお、送受信部103は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置とすることができる。
 一方、上り信号については、各送受信アンテナ101で受信された無線周波数信号がそれぞれアンプ部102で増幅される。各送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ、PDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放等の呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、光ファイバ、X2インターフェース)を介して隣接無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
 図15は、本実施形態に係る無線基地局の機能構成の一例を示す図である。なお、図15では、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているものとする。図15に示すように、ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部(生成部)302と、マッピング部303と、受信信号処理部304と、を備えている。
 制御部(スケジューラ)301は、PDSCHで送信される下りデータ信号、PDCCH及び/又はEPDCCHで伝送される下り制御信号のスケジューリング(例えば、リソース割り当て)を制御する。また、システム情報、同期信号、ページング情報、CRS、CSI-RS等のスケジューリングの制御も行う。
 制御部301は、アンライセンスCC(例えば、TCC)に対してはDL LBTの結果に基づいてDL信号の送信を制御する。制御部301は、アンライセンスバンド(TCC)でLBTを実施する場合、当該LBT結果をライセンスバンド(PCC及び/又はSCC)でユーザ端末に通知するように制御してもよい。
 制御部301は、TCCにおいて非同期型のHARQを適用することができる。この場合、制御部301は、ユーザ端末がPHICH(同期型HARQ動作)のためのACK/NACKを読まずに(検出せずに)動作すると仮定して送受信動作を制御することができる。また、制御部301は、非同期型のUL HARQを適用する場合、ULグラントに所定のULデータを示すHARQプロセス番号を付加するように制御することができる(図10参照)。
 また、制御部301は、一つのCC(PCC及び/又はSCC)から複数のTCCへのリソースを同時に割当てるように制御することができる(図11参照)。この場合、制御部301は、あらかじめユーザ端末に対してCC間の関連付けを設定し、CC間の関連付け情報をユーザ端末へ通知するように制御することができる。
 また、制御部301は、上り参照信号、PUSCHで送信される上りデータ信号、PUCCH及び/又はPUSCHで送信される上り制御信号、PRACHで送信されるランダムアクセスプリアンブル等のスケジューリングを制御する。なお、制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置とすることができる。
 送信信号生成部302は、制御部301からの指示に基づいて、DL信号を生成して、マッピング部303に出力する。例えば、送信信号生成部302は、制御部301からの指示に基づいて、下り信号の割り当て情報を通知するDLアサインメント及び上り信号の割り当て情報を通知するULグラントを生成する。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI)等に基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。なお、送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置とすることができる。
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。なお、マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置とすることができる。
 受信信号処理部304は、ユーザ端末から送信されるUL信号(例えば、送達確認信号(HARQ-ACK)、PUSCHで送信されたデータ信号、PRACHで送信されたランダムアクセスプリアンブル等)に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。処理結果は、制御部301に出力される。
 また、受信信号処理部304は、受信した信号を用いて受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(RSRQ(Reference Signal Received Quality))やチャネル状態などについて測定してもよい。あるいは、受信信号処理部304は、DL信号の送信を行う前にDL LBTを実施してもよい。なお、受信信号処理部304における測定結果は、制御部301に出力されてもよい。なお、測定動作を行う測定部を受信信号処理部304と別に設けてもよい。
 受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置、並びに、測定器、測定回路又は測定装置から構成することができる。
<ユーザ端末>
 図16は、本実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、MIMO伝送のための複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信部203は、送信部及び受信部から構成されてもよい。
 複数の送受信アンテナ201で受信された無線周波数信号は、それぞれアンプ部202で増幅される。各送受信部203はアンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。
 送受信部203は、TCCにおけるUL送信を指示する下り制御情報(例えば、ULグラント)等のDL信号を受信する。この場合、送受信部203は、TCC用のULグラントを含む下り制御情報を、PCC、SCC及び/又はTCCの下り制御チャネル(PDCCH/EPDCCH)から受信することができる。
 また、送受信部203は、PCC又はSCCにおいてULグラントに対応するULデータがないと判断した場合にパディングビットを用いてULデータの送信を行い、TCCにおいてULグラントに対応するULデータがないと判断した場合にULデータの送信を行わないことができる。この場合、送受信部203は、TCCにおいてULグラントに対応するULデータがないことを示す情報をPCC及び/又はSCCのUL信号に含めて送信してもよい(図8参照)。
 また、送受信部203は、ユーザ端末の能力情報(capability)を無線基地局へ通知することができる。例えば、送受信部203は、TCCを利用できる周波数に関する情報に加えて、同時に設定可能なTCCに関する情報(例えば、TCCの組み合わせ情報)を無線基地局に送信する。なお、送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置とすることができる。
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理や、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、報知情報もアプリケーション部205に転送される。
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)や、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて各送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。
 図17は、本実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、図17においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているものとする。図17に示すように、ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、を備えている。
 制御部401は、無線基地局10から送信された下り制御信号(PDCCH/EPDCCHで送信された信号)及び下りデータ信号(PDSCHで送信された信号)を、受信信号処理部404から取得する。制御部401は、下り制御信号や、下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号(例えば、送達確認信号など)や上りデータ信号の生成を制御する。
 制御部401は、送信信号生成部402、マッピング部403及び受信信号処理部404の制御を行うことができる。また、制御部401は、送受信部203の制御を行うことも可能である。例えば、ユーザ端末がTCCを用いたCAを適用する場合(図5、図6参照)、制御部401は、TCCに対してPCC及び/又はSCCとは異なるUL信号の送信動作を適用することができる。
 例えば、制御部401は、PCC又はSCCにおいてULグラントに対応するULデータがないと判断した場合にパディングビットを用いてULデータの送信を行うように制御する。また、制御部401は、TCCにおいてULグラントに対応するULデータがないと判断した場合にULデータの送信を行わないように制御することができる(図8参照)。
 また、制御部401は、TCCにおいて送信したUL信号に対して非同期型のHARQを適用することができる(図10参照)。制御部401は、送受信部203がTCCにおけるUL信号の送信を指示するULグラントを受信した場合、TCCにおいてPHICHの検出を行わないように制御することができる。また、制御部401は、TCCにおいて送信したUL信号に対して、ULグラントに含まれるHARQプロセス番号に基づいて再送制御を行うことができる。
 また、制御部401は、送受信部203がTCCにおけるUL信号の送信を指示するULグラントを受信した場合、あらかじめ設定された複数TCCに対するリスニングを実施し、リスニング結果に基づいて所定のTCCでUL信号を送信することができる(図11参照)。
 また、制御部401は、TCCのPHR(Power Headroom Report)として、リスニング結果に関わらず所定のPHR(例えば、リアルPHR)を無線基地局へ報告するように制御することができる。
 制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置とすることができる。
 送信信号生成部402は、制御部401からの指示に基づいて、UL信号を生成して、マッピング部403に出力する。例えば、送信信号生成部402は、制御部401からの指示に基づいて、送達確認信号(HARQ-ACK)やチャネル状態情報(CSI)等の上り制御信号を生成する。
 また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、TCCにおいてULグラントに対応するULデータがないと判断した場合にULデータ(パディングビット)の生成を行わないように動作することができる。また、送信信号生成部402は、制御部401からの指示(ULグラントに含まれるHARQプロセス番号等)に基づいて再送用の上りデータ信号を生成する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置とすることができる。
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号(上り制御信号及び/又は上りデータ)を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置とすることができる。
 受信信号処理部404は、DL信号(例えば、無線基地局からPDCCH/EPDCCHで送信される下り制御信号、PDSCHで送信される下りデータ信号等)に対して、受信処理(例えば、デマッピング、復調、復号等)を行う。受信信号処理部404は、無線基地局10から受信した情報を、制御部401に出力する。受信信号処理部404は、例えば、報知情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。
 受信信号処理部404は、制御部401からの指示に基づいてDL信号の受信動作を制御することができる。例えば、TCCにおいて非同期型のUL HARQを適用する場合、受信信号処理部404は、TCCにおけるUL信号の送信を指示するULグラントを受信した場合、TCCにおいてPHICHの検出を行わないように動作することができる。
 また、受信信号処理部404は、受信した信号を用いて受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(RSRQ(Reference Signal Received Quality))やチャネル状態などについて測定してもよい。あるいは、受信信号処理部404は、UL信号の送信を行う前にUL LBTを実施してもよい。受信信号処理部404における測定結果は、制御部401に出力されてもよい。なお、測定動作を行う測定部を受信信号処理部404と別に設けてもよい。
 受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置、並びに、測定器、測定回路又は測定装置から構成することができる。
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的に結合した1つの装置により実現されてもよいし、物理的に分離した2つ以上の装置を有線又は無線で接続し、これら複数の装置により実現されてもよい。
 例えば、無線基地局10やユーザ端末20の各機能の一部又は全ては、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されても良い。また、無線基地局10やユーザ端末20は、プロセッサ(CPU)と、ネットワーク接続用の通信インターフェースと、メモリと、プログラムを保持したコンピュータ読み取り可能な記憶媒体と、を含むコンピュータ装置によって実現されてもよい。
 ここで、プロセッサやメモリなどは情報を通信するためのバスで接続される。また、コンピュータ読み取り可能な記録媒体は、例えば、フレキシブルディスク、光磁気ディスク、ROM、EPROM、CD-ROM、RAM、ハードディスクなどの記憶媒体である。また、プログラムは、電気通信回線を介してネットワークから送信されても良い。また、無線基地局10やユーザ端末20は、入力キーなどの入力装置や、ディスプレイなどの出力装置を含んでいてもよい。
 無線基地局10及びユーザ端末20の機能構成は、上述のハードウェアによって実現されてもよいし、プロセッサによって実行されるソフトウェアモジュールによって実現されてもよいし、両者の組み合わせによって実現されてもよい。プロセッサは、オペレーティングシステムを動作させてユーザ端末の全体を制御する。また、プロセッサは、記憶媒体からプログラム、ソフトウェアモジュールやデータをメモリに読み出し、これらに従って各種の処理を実行する。ここで、当該プログラムは、上記の各実施形態で説明した各動作を、コンピュータに実行させるプログラムであれば良い。例えば、ユーザ端末20の制御部401は、メモリに格納され、プロセッサで動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。例えば、上述の各実施形態は単独で用いてもよいし、組み合わせて用いてもよい。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 本出願は、2015年2月19日出願の特願2015-030785に基づく。この内容は、全てここに含めておく。

Claims (10)

  1.  複数のコンポーネントキャリア(CC:Component Carrier)を用いたキャリアアグリゲーションを利用して無線基地局と通信するユーザ端末であって、
     各CCから送信されるDL信号を受信する受信部と、
     UL信号を送信する送信部と、
     前記送信部における送信動作を制御する制御部と、を有し、
     複数のCCとして、少なくとも既存システムのプライマリCCに対応する第1のCCと、第1のCC及び既存システムのセカンダリCCに対応する第2のCCとは異なる第3のCCと、が設定される場合、前記制御部は、第3のCCに対して第2のCCとは異なるUL信号の送信動作を適用することを特徴とするユーザ端末。
  2.  前記制御部は、第1のCC又は第2のCCにおいてULグラントに対応するULデータがないと判断した場合にパディングビットを用いてULデータの送信を行い、第3のCCにおいてULグラントに対応するULデータがないと判断した場合にULデータの送信を行わないことを特徴とする請求項1に記載のユーザ端末。
  3.  前記送信部は、第3のCCにおいてULグラントに対応するULデータがないことを示す情報を第1のCC及び/又は第2のCCのUL信号に含めて送信することを特徴とする請求項2に記載のユーザ端末。
  4.  前記制御部は、第3のCCにおいて送信したUL信号に対して非同期型のHARQを適用することを特徴とする請求項1に記載のユーザ端末。
  5.  前記受信部が第3のCCにおけるUL信号の送信を指示するULグラントを受信した場合、前記制御部は、第3のCCにおいてPHICH(Physical Hybrid-ARQ Indicator Channel)の検出を行わないように制御することを特徴とする請求項4に記載のユーザ端末。
  6.  前記制御部は、第3のCCにおいて送信したUL信号に対して、ULグラントに含まれるHARQプロセス番号に基づいて再送制御を行うことを特徴とする請求項5に記載のユーザ端末。
  7.  前記受信部が第3のCCにおけるUL信号の送信を指示するULグラントを受信した場合、前記制御部は、あらかじめ設定された複数の第3のCCに対するリスニングを実施し、リスニング結果に基づいて所定の第3のCCでUL信号を送信することを特徴とする請求項1に記載のユーザ端末。
  8.  前記受信部が第3のCCにおけるUL信号の送信を指示するULグラントを受信した場合、前記制御部は、第3のCCのPHR(Power Headroom Report)として、リスニング結果に関わらず所定のPHRを無線基地局へ報告するように制御することを特徴とする請求項1に記載のユーザ端末。
  9.  複数のコンポーネントキャリア(CC:Component Carrier)を用いたキャリアアグリゲーションを利用して無線基地局と通信するユーザ端末の無線通信方法であって、
     各CCから送信されるDL信号を受信する工程と、
     UL信号を送信する工程と、を有し、
     複数のCCとして、少なくとも既存システムのプライマリCCに対応する第1のCCと、第1のCC及び既存システムのセカンダリCCに対応する第2のCCとは異なる第3のCCと、が設定される場合、第3のCCに対して第2のCCとは異なるUL信号の送信動作を適用することを特徴とする無線通信方法。
  10.  複数のコンポーネントキャリア(CC:Component Carrier)を用いたキャリアアグリゲーションを利用するユーザ端末と通信する無線基地局であって、
     各CCにおいてDL信号を送信する送信部と、
     UL信号の割当てを制御する制御部と、を有し、
     少なくとも既存システムのプライマリCCに対応する第1のCCと、第1のCC及び既存システムのセカンダリCCに対応する第2のCCとは異なる第3のCCと、がユーザ端末に設定される場合、前記制御部は、第1のCC及び/又は第2のCCのうち1つのCCから複数の第3のCCに対するリソースを同時に割当てることを特徴とする無線基地局。
     
PCT/JP2016/054785 2015-02-19 2016-02-19 ユーザ端末、無線基地局及び無線通信方法 WO2016133183A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
SG11201706410XA SG11201706410XA (en) 2015-02-19 2016-02-19 User terminal, wireless base station and wireless communication method
US15/548,460 US10512067B2 (en) 2015-02-19 2016-02-19 User terminal, radio base station, and radio communication method
JP2017500744A JP6408122B2 (ja) 2015-02-19 2016-02-19 ユーザ端末、無線基地局及び無線通信方法
EP16752569.0A EP3261402A4 (en) 2015-02-19 2016-02-19 User terminal, wireless base station and wireless communication method
CN201680010952.9A CN107409411B (zh) 2015-02-19 2016-02-19 用户终端、无线基站以及无线通信方法
US16/681,197 US20200084763A1 (en) 2015-02-19 2019-11-12 Terminal and radio control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-030785 2015-02-19
JP2015030785 2015-02-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/548,460 A-371-Of-International US10512067B2 (en) 2015-02-19 2016-02-19 User terminal, radio base station, and radio communication method
US16/681,197 Continuation US20200084763A1 (en) 2015-02-19 2019-11-12 Terminal and radio control method

Publications (1)

Publication Number Publication Date
WO2016133183A1 true WO2016133183A1 (ja) 2016-08-25

Family

ID=56689403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054785 WO2016133183A1 (ja) 2015-02-19 2016-02-19 ユーザ端末、無線基地局及び無線通信方法

Country Status (6)

Country Link
US (2) US10512067B2 (ja)
EP (1) EP3261402A4 (ja)
JP (1) JP6408122B2 (ja)
CN (1) CN107409411B (ja)
SG (1) SG11201706410XA (ja)
WO (1) WO2016133183A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018513614A (ja) * 2015-04-09 2018-05-24 エルジー エレクトロニクス インコーポレイティド 非兔許スペクトルで動作する少なくとも一つのSCellを有する搬送波集成において電力ヘッドルーム報告を送信するための方法及びそのための装置
JP2018113689A (ja) * 2017-01-13 2018-07-19 華碩電腦股▲ふん▼有限公司 無線通信システムにおける制御チャネルとデータチャネルとのタイミング関係についての方法及び装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107431580B (zh) * 2015-05-15 2020-07-14 华为技术有限公司 授权辅助接入系统中用于传输上行数据的方法和装置
US10334624B2 (en) * 2016-04-29 2019-06-25 Ofinno, Llc Allocation of licensed assisted access resources in a wireless device
US10517021B2 (en) 2016-06-30 2019-12-24 Evolve Cellular Inc. Long term evolution-primary WiFi (LTE-PW)
WO2018082078A1 (en) * 2016-11-05 2018-05-11 Apple Inc. Asymmetric bandwidth support and dynamic bandwidth adjustment
CN108811145A (zh) 2017-05-04 2018-11-13 株式会社Ntt都科摩 发送和接收上行数据的方法、用户设备和基站
US10631195B2 (en) * 2017-06-16 2020-04-21 Hughes Network Systems, Llc Buffer status report trigger enhancement in a long term evolution and satellite communication system
CN114884791B (zh) 2017-11-17 2024-03-19 瑞典爱立信有限公司 用于授权辅助接入无线电系统中的信号处理的设备和方法
CN110149684B (zh) * 2018-02-11 2021-02-19 维沃移动通信有限公司 无线通信方法、终端设备和网络设备
CN111225447B (zh) * 2018-11-23 2023-04-07 奇酷互联网络科技(深圳)有限公司 一种数据时延优化方法和移动终端
CN112637894B (zh) * 2020-12-18 2023-08-01 京信网络系统股份有限公司 资源配置方法、装置、接入网设备和存储介质

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2424139A4 (en) * 2009-04-24 2016-05-18 Lg Electronics Inc METHOD AND APPARATUS FOR TRANSMITTING AND RECEIVING CONTROL SIGNAL FOR MERGING CARRIERS DURING TRANSMISSION
CN101925105B (zh) * 2009-06-15 2013-04-03 电信科学技术研究院 一种上报上行功率余量信息的方法及装置
US8594718B2 (en) * 2010-06-18 2013-11-26 Intel Corporation Uplink power headroom calculation and reporting for OFDMA carrier aggregation communication system
KR101832175B1 (ko) * 2010-10-12 2018-02-27 삼성전자주식회사 캐리어 집적을 위한 이동통신 시스템에서 캐리어 별 최대 송신 전력을 결정하는 방법 및 장치
KR20130126980A (ko) * 2011-02-07 2013-11-21 인터디지탈 패튼 홀딩스, 인크 면허 면제 스펙트럼에서 보충 셀을 동작시키는 방법 및 장치
GB2498988B (en) * 2012-02-02 2014-08-06 Broadcom Corp Communications apparatus and methods
US8885752B2 (en) * 2012-07-27 2014-11-11 Intel Corporation Method and apparatus for feedback in 3D MIMO wireless systems
KR20160085753A (ko) * 2013-11-07 2016-07-18 엘지전자 주식회사 무선 통신 시스템에서 하향링크 신호 송수신 방법 및 이를 위한 장치
US9763199B2 (en) * 2014-01-29 2017-09-12 Interdigital Patent Holdings, Inc. Uplink transmissions in wireless communications
KR102404863B1 (ko) * 2014-05-15 2022-06-07 엘지전자 주식회사 비면허 대역에서의 파워 제어
EP3251277A1 (en) * 2015-01-28 2017-12-06 Interdigital Patent Holdings, Inc. Uplink operation for lte in an unlicensed band
US9843992B2 (en) * 2015-02-02 2017-12-12 Telefonaktiebolaget Lm Ericsson (Publ) Cell search for D2D enabled UEs in out of network coverage

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Discussion on UL HARQ handling in LAA", 3GPP TSG-RAN WG1#80 R1-150583, 13 February 2015 (2015-02-13), XP050948764, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_80/Docs/Rl-150583.zip> [retrieved on 20160303] *
INTEL CORPORATION: "On the LAA uplink: scheduling, LBT, and HARQ", 3GPP TSG-RAN WG1#80 R1-150507, 13 February 2015 (2015-02-13), XP050949030, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_80/Docs/R1-150507.zip> [retrieved on 20160303] *
MICROSOFT CORPORATION: "Discussion on DL and UL transmissions for licensed-assisted access using LTE", 3GPP TSG-RAN WG1#80 R1-150631, 13 February 2015 (2015-02-13), XP050948716, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg-ran/WG1_RL1/TSGR1_80/Docs/R1-150631.zip> [retrieved on 20160303] *
See also references of EP3261402A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018513614A (ja) * 2015-04-09 2018-05-24 エルジー エレクトロニクス インコーポレイティド 非兔許スペクトルで動作する少なくとも一つのSCellを有する搬送波集成において電力ヘッドルーム報告を送信するための方法及びそのための装置
US10531404B2 (en) 2015-04-09 2020-01-07 Lg Electronics Inc. Method for transmitting a power headroom reporting in a carrier aggregation with at least one SCell operating in an unlicensed spectrum and a device therefor
JP2018113689A (ja) * 2017-01-13 2018-07-19 華碩電腦股▲ふん▼有限公司 無線通信システムにおける制御チャネルとデータチャネルとのタイミング関係についての方法及び装置
KR20180083819A (ko) * 2017-01-13 2018-07-23 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서의 제어 채널 및 데이터 채널 간 타이밍 관계를 위한 방법 및 장치
US10356808B2 (en) 2017-01-13 2019-07-16 Asustek Computer Inc. Method and apparatus for timing relationship between control channel and data channel in a wireless communication system
KR102101546B1 (ko) 2017-01-13 2020-04-17 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서의 제어 채널 및 데이터 채널 간 타이밍 관계를 위한 방법 및 장치

Also Published As

Publication number Publication date
EP3261402A4 (en) 2018-09-26
US20180020445A1 (en) 2018-01-18
JPWO2016133183A1 (ja) 2018-01-18
JP6408122B2 (ja) 2018-10-17
CN107409411B (zh) 2021-02-19
SG11201706410XA (en) 2017-09-28
CN107409411A (zh) 2017-11-28
US20200084763A1 (en) 2020-03-12
US10512067B2 (en) 2019-12-17
EP3261402A1 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
JP6408122B2 (ja) ユーザ端末、無線基地局及び無線通信方法
JP6609252B2 (ja) ユーザ端末、無線基地局及び無線通信方法
JP6479963B2 (ja) ユーザ端末、無線基地局及び無線通信方法
CN107432015B (zh) 用户终端、无线基站以及无线通信方法
JP6174094B2 (ja) ユーザ端末、無線基地局及び無線通信方法
JP6165201B2 (ja) 無線基地局、ユーザ端末及び無線通信方法
WO2016006450A1 (ja) 無線基地局、ユーザ端末及び無線通信システム
US20170310434A1 (en) User terminal, radio base station and radio communication method
CN111935720B (zh) 终端以及无线通信方法
US11184123B2 (en) Terminal and radio communication method
WO2016072219A1 (ja) 無線基地局、ユーザ端末及び無線通信方法
US20190045458A1 (en) User terminal, radio base station and radio communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16752569

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15548460

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 11201706410X

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 2017500744

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016752569

Country of ref document: EP