[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016192494A1 - 一种图像处理方法及装置 - Google Patents

一种图像处理方法及装置 Download PDF

Info

Publication number
WO2016192494A1
WO2016192494A1 PCT/CN2016/080445 CN2016080445W WO2016192494A1 WO 2016192494 A1 WO2016192494 A1 WO 2016192494A1 CN 2016080445 W CN2016080445 W CN 2016080445W WO 2016192494 A1 WO2016192494 A1 WO 2016192494A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
pixel
original
boundary line
low
Prior art date
Application number
PCT/CN2016/080445
Other languages
English (en)
French (fr)
Inventor
丁威
Original Assignee
阿里巴巴集团控股有限公司
丁威
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阿里巴巴集团控股有限公司, 丁威 filed Critical 阿里巴巴集团控股有限公司
Priority to PL16802417T priority Critical patent/PL3306562T3/pl
Priority to EP16802417.2A priority patent/EP3306562B1/en
Priority to SG11201709583SA priority patent/SG11201709583SA/en
Priority to JP2017562016A priority patent/JP6784704B2/ja
Priority to ES16802417T priority patent/ES2805728T3/es
Priority to KR1020177036699A priority patent/KR102095626B1/ko
Publication of WO2016192494A1 publication Critical patent/WO2016192494A1/zh
Priority to US15/818,609 priority patent/US10417770B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4007Scaling of whole images or parts thereof, e.g. expanding or contracting based on interpolation, e.g. bilinear interpolation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/20Image enhancement or restoration using local operators
    • G06T5/30Erosion or dilatation, e.g. thinning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/136Segmentation; Edge detection involving thresholding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30232Surveillance

Definitions

  • the target image When processing the original image captured by the camera, it is often necessary to identify the target object or the target person from the original image (ie, determine the target image).
  • the pixels included in the original image are usually scanned one by one to determine the boundary line of the target image from the original image.
  • the original image pixel is high, since the original image contains more pixels, using the above technical solution, it takes several seconds or even longer to determine the target image from the original image, and the time taken to acquire the target image. Long and inefficient.
  • An embodiment of the present invention provides an image processing method and apparatus for solving the problem that a time taken to acquire a target image is long in the process of acquiring a target image from an original image.
  • the fast bilinear interpolation algorithm is used to perform image compression processing on the original image to obtain pixel values of each compressed pixel, including:
  • the first direction is a vertical direction
  • the second direction is a horizontal direction
  • determining the boundary line of the target image in the low-pixel image specifically: determining, from the low-pixel image, an area to be detected; according to each adjacent two pixels in the to-be-detected area A gradient value between the points, a boundary line detection process is performed on the area to be detected, and a boundary line of the target image is determined.
  • determining the to-be-detected area from the low-pixel image specifically, performing binarization processing on the low-pixel image, and converting the low-pixel image into a binary image; wherein the binary value The image includes only two colors; performing edge detection processing on the binary image, acquiring at least one edge line included in the binary image; expanding each edge line separately; and connecting each of the expanded processing One edge line to obtain each connected area; according to the position of each connected area And filtering the connected area to obtain a specific area; wherein the specific area is an area including a specific graphic part in the target image; and determining, in the low-pixel image, an area other than the specific area Detection area.
  • the method further includes: performing Gaussian smoothing processing on the binary image by using a preset Gaussian smoothing parameter.
  • performing boundary line detection on the to-be-detected area according to a gradient value between each adjacent two pixel points in the to-be-detected area, and determining a boundary line of the target image specifically:
  • the low-pixel image is subjected to binarization processing to convert the low-pixel image into a binary image; wherein the binary image contains only two colors; for either side, the following operation is performed: And comparing a gradient value between each adjacent two pixel points in the to-be-detected area of the binary image to a preset initial gradient threshold corresponding to the arbitrary one of the directions, and obtaining the arbitrary one according to the comparison result.
  • An initial boundary line; a boundary line of the target image is determined according to the number of initial boundary lines acquired in each direction, respectively.
  • the boundary line of the target image is determined according to the number of initial boundary lines acquired in each direction, and specifically includes: performing detection operations on any one direction, and performing the following operations: initializing when any one of the directions is obtained upward When the number of boundary lines is at least two, each of the initial boundary lines in any one direction is linearly detected according to position information of each of the initial boundary lines in any one of the directions, and at least from any one of the directions Obtaining the boundary line in any one of the two initial boundary lines; when the initial boundary line acquired in the arbitrary direction is less than two, the arbitrary one direction is sequentially decreased according to the preset first gradient difference value. Corresponding preset initial gradient threshold, and using the reduced initial gradient threshold, detecting the to-be-detected area of the binary image in any one of the directions, until the number of initial boundary lines acquired by the arbitrary one is at least two article.
  • mapping the boundary line included in the low-pixel image into the original image, and acquiring the target image included in the original image specifically: acquiring each adjacent two included in the low-pixel image a boundary line intersection point; mapping the acquired intersection points to the original image according to the preset compression ratio, and generating corresponding mapping points in the original image; sequentially connecting to the original mapping A mapping point in the image, the quadrilateral generated after the connection is determined as the target image contained in the original image.
  • the method further includes: performing a correction process on the target image by using a transmission transform algorithm.
  • An image acquisition device includes: an original image acquisition unit, configured to acquire an original image; wherein the original image includes a target image; and a low pixel image acquisition unit is configured to: the original image according to a preset compression ratio Performing image compression processing to acquire a low-pixel image after image compression processing; a boundary line determining unit for determining a boundary line of the target image in the low-pixel image; and a target image acquiring unit for determining the determined A boundary line included in the low-pixel image is mapped into the original image, and a target image included in the original image is acquired.
  • the low-pixel image acquiring unit is configured to: determine a position of each compressed pixel point according to the preset compression ratio; and perform a fast bilinear interpolation algorithm on the original image
  • the image compression process acquires a pixel value of each compressed pixel, and generates a low pixel image according to the pixel value and position of each of the compressed pixel points.
  • the low-pixel image acquisition unit adopts a fast bilinear interpolation algorithm, and performs image compression processing on the original image to obtain a pixel value of each compressed pixel, which includes: according to the preset a compression ratio, among all the original pixel points included in the original image, determining four original pixel points corresponding to each compressed pixel point; determining four original pixel points corresponding to each of the compressed pixel points The two pairs of original pixel points in the first direction and the two pairs of original pixel points in the second direction; wherein the first direction is a horizontal direction, the second direction is a vertical direction, or the first The direction is a vertical direction, and the second direction is a horizontal direction; acquiring a first interpolation corresponding to each of the two pairs of original pixel points in the first direction of each compressed pixel point, and acquiring the first two Interpolating as an initial interpolation; or acquiring a second interpolation corresponding to each of the two pairs of original pixel points in the second direction of each of the compressed pixels, and
  • the boundary line determining unit is configured to: determine, from the low-pixel image, an area to be detected; according to a gradient value between each adjacent two pixel points in the area to be detected, The area to be detected is subjected to boundary line detection processing to determine a boundary line of the target image.
  • the determining, by the boundary line determining unit, the area to be detected from the low-pixel image specifically: performing binarization processing on the low-pixel image, and converting the low-pixel image into a binary image;
  • the binary image includes only two colors; performing edge detection processing on the binary image, acquiring at least one edge line included in the binary image; and expanding each edge line separately; Connecting each edge line after the expansion process to obtain each connected area; respectively, filtering the connected area according to the position information of each connected area to obtain a specific area; wherein the specific area is a specific image in the target image a partial region; in the low-pixel image, an area other than the specific region is determined as a region to be detected.
  • the method further includes a Gaussian smoothing processing unit, configured to: perform Gaussian smoothing on the binary image by using a preset Gaussian smoothing parameter before performing edge detection processing on the binary image.
  • a Gaussian smoothing processing unit configured to: perform Gaussian smoothing on the binary image by using a preset Gaussian smoothing parameter before performing edge detection processing on the binary image.
  • the boundary line determining unit performs boundary line detection on the to-be-detected area according to a gradient value between each adjacent two pixel points in the to-be-detected area, and determines a boundary line of the target image.
  • the method includes: performing binarization processing on the low-pixel image to convert the low-pixel image into a binary image; wherein the binary image includes only two colors; and performing an operation on any one of the following: And comparing any one of the gradient values between each adjacent two pixel points in the to-be-detected area of the binary image to a preset initial gradient threshold corresponding to the arbitrary one direction, according to the comparison result. Obtaining an initial boundary line of the arbitrary one direction; determining a boundary line of the target image according to the number of initial boundary lines acquired in each direction respectively.
  • the target image acquiring unit is configured to: acquire an intersection of each adjacent two boundary lines included in the low pixel image; and map the acquired intersection points to the In the original image; the points mapped to the original image are sequentially connected, and the quadrilateral generated after the connection is determined as the target image included in the original image.
  • the correction unit further includes: after acquiring the target image included in the original image, performing a correction process on the target image by using a transmission transform algorithm.
  • FIG. 2 is a structural diagram of an image processing system in an embodiment of the present application.
  • Figure 5a is a schematic diagram of a Cartesian coordinate system in the embodiment of the present application.
  • FIG. 5b is a schematic diagram of interpolation operation in the embodiment of the present application.
  • FIG. 7 is a flowchart of determining a boundary line of a target image in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of determining a boundary line of a target image in an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an image processing apparatus according to an embodiment of the present application.
  • the image processing system includes an image processing device, and the image processing device is configured to process the acquired original image to determine a target image from the original image.
  • the image processing device may be provided with a user interaction interface to facilitate presentation of the target image to the user; in addition, the image processing system may further include a plurality of imaging devices for providing the image processing device with the original image to be processed;
  • the image processing system may further include an image capturing device, configured to collect an original image provided by the image capturing device, and send the collected original image to the image processing device.
  • the image processing device may also be a mobile terminal having various imaging functions. In the embodiment of the present application, the image processing device is used as a mobile terminal having various imaging functions as an example, and the image acquisition process is described in detail.
  • the process of processing the original image to obtain the target image included in the original image in the embodiment of the present application includes:
  • Step 310 Perform image compression processing on the original image according to a preset compression ratio, and acquire a low-pixel image after image compression processing.
  • Step 330 Map a boundary line included in the low pixel image into the original image, and acquire a target image included in the original image.
  • step 300 the image capturing device respectively transmits the original image acquired from each of the image capturing devices to the image processing device, so that the image processing device directly acquires the original image captured by each of the image capturing devices.
  • the image processing device determines the position of each pixel in the low pixel image according to a preset compression ratio, and performs image compression processing on the original image by using a fast bilinear interpolation algorithm to obtain a low pixel image.
  • a pixel value of each pixel, and a low pixel image is generated according to the pixel value and position of each of the compressed pixel points described above.
  • the preset compression ratio is a value pre-configured according to a specific application scenario; the preset compression ratio includes a preset horizontal compression ratio and a vertical compression ratio, and the horizontal compression ratio and the vertical compression ratio may be equal or may not be equal. .
  • the image processing apparatus establishes a Cartesian coordinate system in the original image, with the horizontal direction as the horizontal axis and the vertical direction perpendicular to the horizontal axis as the vertical axis, which is the original The upper left corner of the image serves as the origin.
  • the first direction is the positive direction of the horizontal axis
  • the second direction is the positive direction of the vertical axis
  • the first direction is the positive direction of the vertical axis
  • the second direction is the positive direction of the horizontal axis.
  • the image processing device determines, according to the resolution of the original image and the preset compression ratio, four corresponding to each compressed pixel point among all the original pixel points included in the original image.
  • the original pixel point wherein the number of original pixel points corresponding to one compressed pixel point is greater than or equal to one and less than or equal to four, and the number is determined according to a preset compression ratio.
  • the preset compression ratio is 5:2, that is, 5 ⁇ 5 pixels are compressed into 2 ⁇ 2 pixels, and the original pixel corresponding to the compressed first pixel is the second pixel and the second pixel.
  • the number of original pixel points corresponding to one compressed pixel is four.
  • the preset horizontal compression ratio and the vertical compression ratio are both 3:1, that is, 3 ⁇ 3 pixel points are compressed into 1 pixel point, and the original pixel point corresponding to the compressed first pixel point is the third pixel.
  • the number of original pixel points corresponding to the compressed pixel points is less than four
  • the number of original pixel points is generally expanded to four, that is, according to a preset compression ratio
  • the original pixel points are The adjacent original pixel points are determined as the original pixel points corresponding to the compressed pixel points; and corresponding weight values are configured for each of the determined original pixel points, and a compressed one is determined based on the four original pixel points and their weight values.
  • the pixel value of the pixel For example, referring to FIG.
  • the resolution of the original image is a 1 ⁇ a 2
  • the preset compression ratio is q
  • the weight value corresponding to each original pixel point can be obtained according to a preset compression ratio.
  • the preset compression ratio is 5:2, that is, the 5 ⁇ 5 pixel point is compressed into 2 ⁇ 2 pixel points, and then the compression is performed.
  • the four original pixel points corresponding to the original pixel corresponding to the first pixel point are the second pixel second pixel point and the second row third pixel point, the third row second pixel point and the third row
  • the weight value of the second pixel of the second row is 0.5, for the same reason, the weight values of the remaining three pixels are also 0.5.
  • the weight value is a positive integer or a non-positive integer
  • the weight value is shifted to obtain a corresponding positive integer, and according to the obtained positive integer
  • Perform image processing and after the image processing is completed, perform shift operation on the position of each pixel point included in the acquired low pixel image, and perform correction operation on each pixel value to ensure image processing is reduced.
  • the accuracy of the target image finally obtained is improved.
  • Step a2 The image processing device determines two pairs of original pixel points in the first direction and two pairs of original pixel points in the second direction among the four original pixel points corresponding to each of the compressed pixel points.
  • the image processing device divides four original images corresponding to one compressed pixel into two pairs, wherein two original pixel images in the same row or the same column among the four original pixels are taken as one
  • the original pixel corresponding to the first pixel corresponding to the compressed pixel is the second pixel and the second row and the third row.
  • the pixel and the third pixel and the third pixel are a pair.
  • the image processing device determines, according to the four original pixel points obtained above, two pairs of original pixel points in the first direction and two pairs of original pixels in the second direction, among the four original pixel points corresponding to each of the compressed pixel points.
  • Point for example, as shown in FIG. 5b, if the first direction is the positive direction of the horizontal axis and the second direction is the positive direction of the vertical axis, the two pairs of original pixel points in the first direction are Q 11 and Q 12 , respectively, and Q 21 And Q 22 , the two pairs of original pixel points in the second direction are Q 11 and Q 21 , and Q 12 and Q 22 , respectively .
  • Step a3 The image processing device acquires a first interpolation corresponding to each of the two pairs of original pixel points in the first direction of each of the compressed pixel points, and takes the obtained two first interpolations as initial interpolation; or, obtains each of the above A compressed pixel point corresponds to a second interpolation of two pairs of original pixel points in the second direction, and the obtained two second interpolations are used as initial interpolation.
  • the image processing device when the image processing device obtains the initial interpolation corresponding to each compressed pixel point, the following two methods may be used:
  • the image processing device acquires a first interpolation corresponding to each pair of original pixel points in the first direction of each compressed pixel, and obtains two interpolations as corresponding to each of the compressed pixel points.
  • Initial interpolation for example, as shown in FIG. 5b, if the first direction is the positive direction of the horizontal axis and the second direction is the positive direction of the vertical axis, the first interpolation is the interpolation of Q 11 and Q 12 , and the Q 21 and Q 22 Interpolation.
  • the image processing device acquires a second interpolation corresponding to each of the two pairs of original pixel points in the second direction of each compressed pixel, and the obtained two interpolations are used as the corresponding pixel points of each of the compressed pixels.
  • Initial interpolation for example, as shown in FIG. 5b, if the first direction is the positive direction of the horizontal axis and the second direction is the positive direction of the vertical axis, the second interpolation is the interpolation of Q 11 and Q 21 , and the Q 12 and Q 22 Interpolation.
  • Step a4 The image processing device calculates, according to the two initial interpolations corresponding to each of the compressed pixel points, the interpolation corresponding to each of the compressed pixel points, and calculates the calculated corresponding pixel points of each of the compressed pixels. Interpolation is determined as the pixel value of each of the compressed pixel points.
  • the manner of obtaining the interpolation corresponding to each compressed pixel point also includes two types:
  • the image processing device determines, by the first interpolation corresponding to each of the two pairs of original pixel points in the first direction, the initial interpolation corresponding to each compressed pixel point, Interpolating the two initial interpolations corresponding to each of the compressed pixel points determined in the second direction, and using the interpolation as the interpolation corresponding to each of the compressed pixel points; for example, referring to FIG. 5b, One direction is the positive direction of the horizontal axis, and the second direction is the positive direction of the vertical axis.
  • the initial interpolation of Q 11 and Q 12 is R 1
  • the initial interpolation of Q 21 and Q 22 is R 2
  • the initial interpolation R 1 is calculated.
  • the interpolation of the initial interpolation R 2 is performed, and the calculated interpolation is determined as the pixel value of the compressed pixel point P of the original pixel points Q 11 , Q 12 , Q 21 and Q 22 .
  • One direction is the positive direction of the horizontal axis, and the second direction is the positive direction of the vertical axis, then the initial interpolation of Q 11 and Q 21 is R 3 , and the initial interpolation of Q 12 and Q 22 is R 4 , and the initial interpolation R 3 and The interpolation of the initial interpolation R 4 determines the calculated interpolation as the pixel value of the compressed pixel point P of the original pixel points Q 11 , Q 12 , Q 21 and Q 22 .
  • the pixel values of the pixels in the low-pixel image can be obtained by the above-mentioned fast bilinear interpolation algorithm according to the pixel value of the original pixel.
  • any of the above R i can be obtained by the following formula:
  • R i is an interpolation value
  • Q a is a pixel value of the first original pixel point
  • q a is a weight value of the first original pixel point, the weight value is obtained according to a preset compression ratio
  • Q b is a second original pixel point The pixel value
  • q b is a weight value of the second original pixel, and the weight value is obtained according to a preset compression ratio.
  • the original image with higher resolution is converted into a low pixel image
  • the following pairs Each step of image processing is based on the above-mentioned low-pixel image, which avoids the problem that the image processing amount is large due to a large number of pixel points in the original image when processing the original image, which reduces the processing load of the system and shortens the image processing time. Improve image processing efficiency.
  • the boundary line of the target image is determined in the acquired low pixel image. Since the target image may include some specific graphic portion, the specific graphic may cause interference to the detection process of the target image boundary line in the later stage, so that the detection is performed. There is an error in the obtained boundary line of the target image. Therefore, when determining the boundary line of the target image from the low pixel image, the specific graphic portion needs to be culled first, and only the area to be detected that does not include the specific graphic is detected, and A boundary line of the target image is determined in the area to be detected. For example, when the ID card image is included as the target image for the ID card image included in the original image, the portrait portion and the text portion included in the target image are specific patterns.
  • the low-pixel image is converted from a color image to a gray-scale image, and the gray-scale image is binarized, and the low-pixel image is converted into a binary image; wherein the binary image includes only two Color, preferably, one of the two colors has a pixel value of 0 and the other color has a pixel value of 255; performing edge detection processing on the binary image to obtain at least the binary image
  • An edge line the edge detection processing may be canny edge detection processing; each edge line is separately expanded; the edge line obtained above may be broken, and at this time, each edge line after the expansion process is connected To obtain each connected area; respectively, according to the location information of each connected area, filter all connected areas to obtain a specific area; wherein the specific area is a specific graphic part included in the target image; in the low pixel image, the above is removed A portion other than the specific area is determined as the area to be detected; the above position information is the bit of each connected area in the low pixel image .
  • the specific area included in the low-pixel image is filtered out, and the boundary line detection is performed only on the area to be detected that does not include the specific area, thereby further avoiding the image processing process of the image processing apparatus on the non-to-be-detected area.
  • the image processing apparatus effectively improves the image processing efficiency; and the image processing apparatus performs boundary line detection only on the to-be-detected area that does not include the specific area, and avoids that the specific value is determined when the gradient value of the specific pattern in the specific area satisfies the boundary line detection condition.
  • the curve in the area is determined as the boundary line problem, which effectively ensures the accuracy of the target image acquisition.
  • step 320 the image processing device calculates a gradient value between each adjacent two pixel points in the area to be detected, and performs edge area detection on the area to be detected according to the calculated gradient value, thereby determining a target included in the low pixel image.
  • the boundary line of the image is the boundary line of the image.
  • the process of determining the boundary line of the target image included in the low pixel image is:
  • the low-pixel image is converted from a color image to a binary image containing only two colors, wherein one of the two colors has a pixel value of 0 and the other color has a pixel value of 255.
  • the image processing device converts the color low-pixel image into a binary image, which simplifies the complexity of using the gradient value for boundary line detection, and improves the efficiency of image processing.
  • the process of the image processing device acquiring the gradient of each adjacent two pixel points includes: for any one adjacent two pixel points, the any adjacent two pixel points include the first pixel point and the second pixel point Obtaining a first color pixel value (S 1 ) of the first pixel, a second color pixel value (S 2 ), and a third color pixel value (S 3 ), and acquiring the first of the second pixel points a color pixel value (U 1 ), a second color pixel value (U 2 ), and a third color pixel value (U 3 ); respectively calculating a first color pixel value (S 1 ) of the first pixel point and The absolute value of the difference of the first color pixel value (U 1 ) of the second pixel, the second color pixel value (S 2 ) of the first pixel point, and the second color pixel value of the second pixel point ( The absolute value of the difference of U 2 ), and the absolute value of the difference between the third color pixel value (S 3 ) of the first pixel
  • T is a gradient value between any two adjacent pixels; S 1 is a first color pixel value of the first pixel; S 2 is a second color pixel value of the first pixel; 3 is the third color pixel value of the first pixel; U 1 is the first color pixel value of the second pixel; U 2 is the second color pixel value of the second pixel; U 3 is the second pixel The third color pixel value of the point.
  • the two adjacent pixels include two pixels adjacent to each other, or two pixels adjacent to each other.
  • each adjacent two is introduced.
  • the calculation process of the gradient value between the pixels, when the original image contains four basic colors or more basic colors, each of the adjacent two pixels can be obtained by using the original pixels composed of the above three basic colors.
  • the same principle of the gradient value is obtained, and the gradient value between each adjacent two pixel points is obtained, and details are not described herein again.
  • Step b2 Performing the following operation on any one of the directions: the gradient value between each adjacent two pixel points in the to-be-detected area of the binary image is up to the preset corresponding to the arbitrary one direction The initial gradient thresholds are compared, and based on the comparison result, the initial boundary line in either direction is obtained.
  • the target image is a closed quadrilateral. Therefore, the terminal points upward from any one of the gradient values between each adjacent two pixel points in the to-be-detected area of the binary image to the arbitrary one direction. Comparing the preset initial gradient thresholds, when the gradient values between any two adjacent pixel points along any one of the above directions are greater than a preset initial gradient threshold, then the adjacent two pixels of the group are A set of pixels consisting of lines that are determined to be the boundary line of either side.
  • the two initial gradient thresholds are compared. When there is any pixel in any two adjacent columns, the gradient value between each adjacent two pixel points reaches the second initial gradient threshold, and then the arbitrary adjacent two are determined.
  • the line on the left side of the column is an initial boundary line in the second direction; in any of the above two adjacent columns, the gradient value between any two adjacent pixels is not up to the second
  • the initial gradient threshold continues to detect whether the gradient value between the next two adjacent columns of pixels is a boundary line detection condition.
  • the image processing device acquires the boundary line in the first direction, it is necessary to calculate a gradient value between two adjacent pixels in the binary image, and obtain the gradient value and the first The initial gradient threshold is compared. When there is any pixel in any two adjacent columns, the gradient value between each adjacent two pixel points reaches the first initial gradient threshold, and then the adjacent two adjacent columns are determined.
  • the line on the left side is an initial boundary line in the first direction; when all the pixels in any one of the adjacent two columns are present, the gradient value between any two adjacent pixels is not up to the first initial Gradient threshold, continue to detect whether the gradient value between the next two adjacent columns of pixels is the boundary line detection condition; similarly, when the image processing device acquires the boundary line in the second direction, it is necessary to calculate the binary image, each upper and lower phase a gradient value between two adjacent pixels, and comparing the obtained gradient value with a second initial gradient threshold.
  • each of the two adjacent pixels If the gradient value between the prime points reaches the second initial gradient threshold, it is determined that the line of the upper row of the adjacent one of the two adjacent rows is an initial boundary line of the second direction; when any one of the adjacent two rows is all In the pixel, there is a gradient value between any two adjacent pixels that does not reach the second initial gradient threshold, and it is continued to detect whether the gradient value between the next two adjacent rows of pixels is a boundary line detection condition.
  • the first initial gradient threshold and the second initial gradient threshold are preset values according to specific application scenarios, and the two may be the same or different.
  • the first direction is the positive direction of the horizontal axis, and the first direction boundary line is detected as an example.
  • the i-th row and the i+1th row in the binary image are adjacent to each other, in each row.
  • Each includes three pixel points, wherein the i-th row includes pixel points Z i1 , Z i2 , and Z i3 , and the i+1 row includes pixel points Z (i+1)1 , Z (i+1) 2 and Z (i+1)3 , the first initial gradient threshold is T, Z i1 and Z (i+1) 1 are two adjacent pixels, and Z i2 and Z (i+1) 2 are adjacent to each other.
  • the pixel points, Z i3 and Z (i+1) 3 are two adjacent pixels, and the gradient between the pixel point Z i1 and the pixel point Z (i+1) 1 is T 1 , and the pixel point Z i2
  • the gradient value between the pixel point Z (i+1)2 is T 2
  • the gradient value between the pixel point Z i3 and the pixel point Z (i+1) 3 is T 3 ; when T 1 , T 2 and T
  • T when 3 is greater than or equal to T, the i-th row is determined as a boundary line in the first direction; when at least one of T 1 , T 2 and T 3 is less than T, the i+1th row and the i+2th row are continuously detected. Whether there is a boundary line between the boundary line conditions.
  • the continuous hough transform algorithm may be used to implement the boundary line detection.
  • the image processing device may further perform Gaussian smoothing processing on the binary image by using a second preset Gaussian smoothing parameter, and the second pre-
  • the Gaussian smoothing parameter may be preset according to a specific application scenario.
  • the first preset Gaussian smoothing parameter may be 5 ⁇ 5, and may be 3 ⁇ 3.
  • Step b3 When the number of initial boundary lines acquired by any one of the above directions is not less than at least two, each initial boundary line of any one direction is performed according to position information of each initial boundary line in the arbitrary direction.
  • the line detection acquires the boundary line of the arbitrary direction from at least two initial boundary lines in the arbitrary direction.
  • each of the first directions is respectively Position information of the initial boundary line, for each initial boundary line of the first direction a line detection, obtaining two boundary lines in a first direction from at least two initial boundary lines in the first direction; and initializing each of the second directions according to position information of each initial boundary line in the second direction
  • the boundary line performs line detection from the two boundary lines in the second direction from at least two initial boundary lines in the second direction.
  • the image processing device can detect a plurality of initial boundary lines in different directions, and because there are possible interference factors such as background images in the plurality of initial boundary lines, the plurality of initial boundary lines are Not all of the boundary lines of the target image. At this time, all the initial boundary lines acquired as described above need to be detected to determine the boundary line of the target image.
  • the image processing device performs, for each initial boundary line, an image processing device acquiring position information of the initial boundary line, where the position information is a distance from the horizontal axis of the initial boundary line in the low pixel image. And a distance from the vertical axis; the image processing device acquires an estimated region of the target image, and compares the position information of the initial boundary line with the estimated region; when the position information of the initial boundary line is successfully matched with the estimated region
  • the initial boundary line is determined as the boundary line of the target image; when the initial position information of the initial boundary line is unsuccessful in matching with the estimated area, it is determined that the initial boundary line is not the boundary line of the target image.
  • the position information of the initial boundary line is successfully matched with the predicted area, that is, the distance between the initial boundary line and the horizontal axis is equal to the distance of any boundary line of the estimated area from the horizontal axis; or the distance of the initial boundary line from the vertical axis The distance from the vertical axis of any boundary line of the estimated area is equal.
  • the image processing device acquires the length of the line segment between the intersection points in each initial boundary line after the initial boundary line intersects, and according to The ratio of each side of the target image is selected from the plurality of initial boundary lines to match the ratio of each side of the target image, and the initial boundary line in the different direction of the intersection is provided as the boundary line of the target image.
  • the target image is an ID image
  • the aspect ratio of the ID card is 4:3
  • the first initial boundary line length of the first direction acquired by the image processing device is 8 cm, and the second direction intersects the first initial boundary line.
  • Step b4 When the number of initial boundary lines acquired in any one of the directions is less than at least two, the preset initial gradient threshold corresponding to the arbitrary direction is successively decreased according to the preset first gradient difference, and the reduced initial gradient threshold is used. The area to be detected of the binary image is detected in any of the two sides until the number of initial boundary lines acquired by the arbitrary one is not less than at least two.
  • the preset initial gradient threshold when the number of initial boundary lines acquired by any one of the foregoing is less than the preset number, the preset initial gradient threshold may be decreased, and the edge region detection may be performed again by using the reduced initial gradient threshold;
  • the preset initial gradient threshold is lowered again until the number of initial boundary lines acquired by the arbitrary one is not less than at least two, according to each initial The position of the boundary line is filtered to select the boundary line of any one of the initial boundary lines.
  • the first initial gradient threshold is sequentially decreased according to the preset first gradient difference value, until the acquisition is performed.
  • the number of initial boundary lines in the first direction is at least two; if the number of initial boundary lines in the first direction is multiple, the position information of each initial boundary line according to the first direction is respectively Each initial boundary line is linearly detected, and two boundary lines in the first direction are obtained from a plurality of initial boundary lines in the first direction.
  • the second initial gradient threshold is sequentially decreased according to the preset second gradient difference until at least two initial boundary lines in the second direction are acquired. If the number of initial boundary lines in the second direction is multiple, the line is detected for each initial boundary line in the second direction according to the position information of each initial boundary line in the second direction, from the second direction. Get the second in multiple initial boundary lines Two boundary lines of direction.
  • the image processing device when the image processing device successively calculates the gradient between each adjacent two rows of pixel points in the first direction, Determining that there is no gradient value between any two adjacent rows of pixels, and when the preset first gradient threshold is met, the image processing device reduces the first initial gradient threshold according to the preset first gradient difference, and performs the above process again; When the image processing apparatus can acquire two initial boundary lines in the first direction according to the lowered gradient threshold, the above process will be terminated; when the image processing apparatus according to the lowered gradient threshold, two of the first directions cannot be acquired.
  • the first initial gradient threshold is again decreased according to the preset first gradient difference value, until the two initial boundary lines in the first direction can be acquired according to the reduced gradient threshold.
  • the image processing device After the image processing device successively calculates the gradient between each adjacent two columns of pixel points in the second direction, it is determined that there is no gradient value between any adjacent two columns of pixel points, and the preset second gradient threshold is satisfied.
  • the image processing device reduces the second initial gradient threshold according to the preset second gradient difference value, and re-executes the above process; when the image processing device according to the lowered gradient threshold, the two initial boundary lines in the second direction can be acquired.
  • the above process will be terminated; when the image processing device is unable to acquire the two initial boundary lines in the second direction according to the lowered gradient threshold, the second initial gradient will be lowered according to the preset second gradient difference again.
  • the threshold is such that two initial boundary lines in the second direction can be acquired according to the lowered gradient threshold.
  • the image processing device acquires the boundary line of the target image in a manner that the first direction is the positive direction of the horizontal axis and the second direction is the vertical axis.
  • the situation in the positive direction is the same and will not be described here.
  • the first preset gradient difference value is a value preset according to a specific application scenario, and the value is 10.
  • step 330 the location information of the boundary line intersections included in the low pixel image is acquired; the acquired intersection points are respectively mapped into the original image according to the preset compression ratio; and the intersection points are sequentially connected to the points in the original image, The graphic generated after the connection is determined as the target image contained in the original image.
  • the inverse process of the fast bilinear interpolation algorithm in step 310 can be adopted to map each of the above intersections Shoot into the original image.
  • the target image is corrected by using a transmission transform algorithm.
  • the shape of the target image in the original image may be different from the shape of the target object itself.
  • the target object is an ID card
  • the shape of the ID card is a rectangle
  • the target image is a parallelogram. Therefore, the image processing device uses a projection transformation algorithm to perform the correction processing on the target image: any intersection point of all the intersection points is used as a fixed point, and the distance between the vertex and any adjacent vertex is used as the length of any side of the target image, according to The aspect ratio of the target image is determined, and other vertices of the target image are determined. After all the vertices are sequentially connected, the formed image is the target image after the correction processing.
  • the original image may be a color image or a grayscale image, and does not limit the form of the original image, and has high versatility; and, according to the gradient value between two adjacent pixels, the target image is determined.
  • the initial boundary line, and according to the shape of the target object and the position information of the obtained initial boundary line, the obtained initial boundary line is filtered to determine the boundary line of the target image, and the background is avoided when the background image is very similar to the target image.
  • the problem that the image interferes with the acquisition of the target graphic ensures the accuracy of the acquired target image; in addition, when the image processing device is a mobile terminal, the above technical solution is adopted, and the process of acquiring and correcting the target image only needs 600. In milliseconds, image processing is fast.
  • the foregoing technical solution is applicable to various operating systems such as an Android system and an IOS system.
  • the embodiment of the present application further provides an image acquiring apparatus, including an original image acquiring unit 90, a low pixel image acquiring unit 91, a boundary line determining unit 92, and a target image acquiring unit 93. among them:
  • the low-pixel image obtaining unit 91 is configured to perform image compression processing on the original image according to a preset compression ratio, and acquire a low-pixel image after image compression processing;
  • a boundary line determining unit 92 configured to determine a boundary line of the target image in the low pixel image
  • the target image obtaining unit 93 is configured to map the boundary line included in the determined low pixel image into the original image, and acquire a target image included in the original image.
  • the low-pixel image acquiring unit 91 is specifically configured to: determine, according to the preset compression ratio, a position of each compressed pixel point; and perform a fast bilinear interpolation algorithm on the original image
  • the image compression process acquires a pixel value of each compressed pixel, and generates a low pixel image according to the pixel value and position of each of the compressed pixel points.
  • the low-pixel image obtaining unit 91 adopts a fast bilinear interpolation algorithm, and performs image compression processing on the original image to obtain a pixel value of each compressed pixel, which includes: according to the preset a compression ratio, among all the original pixel points included in the original image, determining four original pixel points corresponding to each compressed pixel point; determining four original pixels corresponding to each of the compressed pixel points a pair of original pixel points in a first direction and two pairs of original pixel points in a second direction; wherein the first direction is a horizontal direction, the second direction is a vertical direction, or a direction is a vertical direction, and the second direction is a horizontal direction; acquiring a first interpolation corresponding to each of the two pairs of original pixel points in the first direction of each compressed pixel point, and acquiring the two Interpolating as an initial interpolation; or acquiring a second interpolation corresponding to each of the two pairs of original pixel points in the second direction of each of the compressed pixels, and
  • the boundary line determining unit 92 determines the to-be-detected area from the low-pixel image, and specifically includes: performing binarization processing on the low-pixel image to convert the low-pixel image into a binary value An image; wherein the binary image includes only two colors; performing edge detection processing on the binary image, acquiring at least one edge line included in the binary image; and expanding each edge line separately And connecting each edge line after the expansion processing to obtain each connected area; respectively, filtering the connected area according to the position information of each connected area to obtain a specific area; wherein the specific area is included in the target image An area of a specific graphic portion; an area other than the specific area in the low-pixel image is determined as an area to be detected.
  • the Gaussian smoothing processing unit 94 is further configured to: perform Gaussian smoothing on the binary image by using a preset Gaussian smoothing parameter before performing edge detection processing on the binary image.
  • the boundary line determining unit 92 performs boundary line detection on the to-be-detected area according to a gradient value between each adjacent two pixel points in the to-be-detected area, and determines a boundary line of the target image.
  • the method includes: performing binarization processing on the low-pixel image, and converting the low-pixel image into a binary image; wherein the binary image includes only two colors; And comparing any one of the gradient values between each adjacent two pixel points in the to-be-detected area of the binary image to a preset initial gradient threshold corresponding to the arbitrary one direction, according to comparison As a result, the initial boundary line of the arbitrary one is obtained; the boundary line of the target image is determined according to the number of initial boundary lines acquired in each direction, respectively.
  • the target image acquiring unit 93 is configured to: acquire an intersection of each adjacent two boundary lines included in the low-pixel image; and map the acquired intersection points to the respective points according to the preset compression ratio In the original image; the points mapped to the original image are sequentially connected, and the quadrilateral generated after the connection is determined as the target image included in the original image.
  • the correcting unit 95 is further configured to: after acquiring the target image included in the original image, perform a correction process on the target image by using a transmission transform algorithm.
  • the image acquisition device may be a component located in the image processing device; or the image acquisition device is the image processing device.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or four flow diagrams and/or block diagrams of one or four blocks of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or four flows of the flowchart or in one or four blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

本申请公开了一种图像处理方法及装置,方法为,根据预设的压缩比例,将原始图像转换为低像素图像;对低像素图像进行边界线检测,确定低像素图像中包含的目标图像的边界线;将该低像素图像中包含的边界线映射到原始图像中,获取该原始图像中包含的目标图像。采用本申请技术方案,将原始图像转换为低像素图像,由于低像素图像中包含的像素点较少,且目标图像的获取过程均基于该低像素图像,因此,基于低像素图像的目标图像获取过程缩短了目标图像的获取时长,提高了获取目标图像的效率。

Description

一种图像处理方法及装置 技术领域
本申请涉及图像处理领域,尤其涉及一种图像处理方法及装置。
背景技术
随着科学技术的飞速发展,摄像技术广泛应用于各个领域,用于对特定场景进行监控、对目标人物进行检索等。
在对摄像头所采集的原始图像进行处理时,往往需要从原始图像中识别出目标物体或目标人物(即确定目标图像)。目前,从原始图像中确定目标图像(参阅图1所示)时,通常采用对原始图像中包含的像素逐个进行扫描,以从原始图像中确定目标图像的边界线。当原始图像像素较高时,由于原始图像所包含的像素点较多,因此,采用上述技术方案,将需要几秒钟甚至更长的时间才能从原始图像中确定目标图像,获取目标图像所用时间长,效率较低。
由此可见,目前从原始图像中获取目标图像的过程中,存在获取目标图像所用时间长的问题。
发明内容
本申请实施例提供一种图像处理方法及装置,用以解决目前从原始图像中获取目标图像的过程中,存在获取目标图像所用时间长的问题。
本申请实施例提供的具体技术方案如下:
一种图像获取方法,包括:获取原始图像;其中,所述原始图像中包含目标图像;根据预设的压缩比例,对所述原始图像进行图像压缩处理,获取图像压缩处理后的低像素图像;在所述低像素图像中,确定所述目标图像的边界线;将确定的所述低像素图像中包含的边界线映射到所述原始图像中,获取所述原始图像中包含的目标图像。
可选的,根据预设的压缩比例,对所述原始图像进行图像压缩处理,获取 图像压缩处理后的低像素图像,具体包括:根据所述预设的压缩比例,确定每一个压缩后的像素点的位置;采用快速双线性插值算法,对所述原始图像进行图像压缩处理,获取每一个压缩后的像素点的像素值,根据所述每一个压缩后的像素点的像素值和位置,生成低像素图像。
可选的,采用快速双线性插值算法,对所述原始图像进行图像压缩处理,获取每一个压缩后的像素点的像素值,具体包括:
根据所述预设的压缩比例,在所述原始图像中包含的所有原始像素点中,确定每一个压缩后的像素点对应的四个原始像素点;确定所述每一个压缩后的像素点对应的四个原始像素点中,第一方向的两对原始像素点,以及第二方向的两对原始像素点;其中,所述第一方向为水平方向,所述第二方向为竖直方向,或者,所述第一方向为竖直方向,所述第二方向为水平方向;获取所述每一个压缩后的像素点在第一方向的两对原始像素点分别对应的第一插值,并将获取的两个第一插值作为初始插值;或者,获取所述每一个压缩后的像素点在第二方向的两对原始像素点分别对应的第二插值,并将获取的两个第二插值作为初始插值;根据所述每一个压缩后的像素点对应的初始插值,计算所述每一个压缩后的像素点对应的插值,并根据计算得到的所述每一个压缩后的像素点对应的插值,确定所述每一个压缩后的像素点的像素值。
可选的,在所述低像素图像中,确定所述目标图像的边界线,具体包括:从所述低像素图像中,确定待检测区域;根据所述待检测区域中每相邻两个像素点之间的梯度值,对所述待检测区域进行边界线检测处理,确定所述目标图像的边界线。
可选的,从所述低像素图像中,确定待检测区域,具体包括:对所述低像素图像进行二值化处理,将所述低像素图像转换为二值图像;其中,所述二值图像中仅包含两种颜色;对所述二值图像进行边缘检测处理,获取所述二值图像中包含的至少一条边缘线;分别对每一条边缘线进行膨胀处理;并连接膨胀处理后的每一条边缘线,获取各个连通区域;分别根据每一个连通区域的位置 信息,对所述连通区域进行筛选,获取特定区域;其中,所述特定区域为目标图像中包含特定图形部分的区域;将所述低像素图像中,除去所述特定区域以外的区域确定为待检测区域。
进一步的,对所述二值图像进行边缘检测处理之前,还包括:采用预设高斯平滑参数,对所述二值图像进行高斯平滑处理。
可选的,根据所述待检测区域中每相邻两个像素点之间的梯度值,对所述待检测区域进行边界线检测,确定所述目标图像的边界线,具体包括:将所述低像素图像进行二值化处理,将所述低像素图像转换为二值图像;其中,所述二值图像中仅包含两种颜色;针对任意一方向上,执行如下操作:将所述任意一方向上对所述二值图像的待检测区域中每相邻两个像素点之间的梯度值,分别与所述任意一方向对应的预设初始梯度阈值进行比较,根据比较结果,获取该任意一方向上的初始边界线;分别根据每一个方向上获取的初始边界线数目,确定所述目标图像的边界线。
可选的,分别根据每一个方向上获取的初始边界线数目,确定所述目标图像的边界线,具体包括:针对任意一方向的检测结果,执行如下操作:当所述任意一方向上获取的初始边界线数目为至少两条时,分别根据所述任意一方向的每一条初始边界线的位置信息,对所述任意一方向的每一条初始边界线进行直线检测,从所述任意一方向的至少两条初始边界线中获取所述任意一方向的边界线;当所述任意一方向获取的初始边界线为少于两条时,按照预设第一梯度差值,逐次降低所述任意一方向对应的预设初始梯度阈值,并用降低后的初始梯度阈值,在所述任意一方向上对所述二值图像的待检测区域进行检测,直至所述任意一方向上获取的初始边界线数目为至少两条。
可选的,将所述低像素图像中包含的边界线映射到所述原始图像中,获取所述原始图像中包含的目标图像,具体包括:获取所述低像素图像中包含的每相邻两条边界线交点;根据所述预设压缩比例,将获取的交点分别映射到所述原始图像中,在所述原始图像中生成相应的映射点;依次连接映射到所述原始 图像中的映射点,将连接后生成的四边形确定为所述原始图像中包含的目标图像。
进一步的,获取所述原始图像中包含的目标图像之后,还包括:采用透射变换算法,对所述目标图像进行矫正处理。
一种图像获取装置,包括:原始图像获取单元,用于获取原始图像;其中,所述原始图像中包含目标图像;低像素图像获取单元,用于根据预设的压缩比例,对所述原始图像进行图像压缩处理,获取图像压缩处理后的低像素图像;边界线确定单元,用于在所述低像素图像中,确定所述目标图像的边界线;目标图像获取单元,用于将确定的所述低像素图像中包含的边界线映射到所述原始图像中,获取所述原始图像中包含的目标图像。
可选的,所述低像素图像获取单元,具体用于:根据所述预设的压缩比例,确定每一个压缩后的像素点的位置;采用快速双线性插值算法,对所述原始图像进行图像压缩处理,获取每一个压缩后的像素点的像素值,根据所述每一个压缩后的像素点的像素值和位置,生成低像素图像。
可选的,所述低像素图像获取单元采用快速双线性插值算法,对所述原始图像进行图像压缩处理,获取每一个压缩后的像素点的像素值,具体包括:根据所述预设的压缩比例,在所述原始图像中包含的所有原始像素点中,确定每一个压缩后的像素点对应的四个原始像素点;确定所述每一个压缩后的像素点对应的四个原始像素点中,第一方向的两对原始像素点,以及第二方向的两对原始像素点;其中,所述第一方向为水平方向,所述第二方向为竖直方向,或者,所述第一方向为竖直方向,所述第二方向为水平方向;获取所述每一个压缩后的像素点在第一方向的两对原始像素点分别对应的第一插值,并将获取的两个第一插值作为初始插值;或者,获取所述每一个压缩后的像素点在第二方向的两对原始像素点分别对应的第二插值,并将获取的两个第二插值作为初始插值;根据所述每一个压缩后的像素点对应的初始插值,计算所述每一个压缩后的像素点对应的插值,并根据计算得到的所述每一个压缩后的像素点对应的 插值,确定所述每一个压缩后的像素点的像素值。
可选的,所述边界线确定单元,用于:从所述低像素图像中,确定待检测区域;根据所述待检测区域中每相邻两个像素点之间的梯度值,对所述待检测区域进行边界线检测处理,确定所述目标图像的边界线。
可选的,所述边界线确定单元从所述低像素图像中,确定待检测区域,具体包括:对所述低像素图像进行二值化处理,将所述低像素图像转换为二值图像;其中,所述二值图像中仅包含两种颜色;对所述二值图像进行边缘检测处理,获取所述二值图像中包含的至少一条边缘线;分别对每一条边缘线进行膨胀处理;并连接膨胀处理后的每一条边缘线,获取各个连通区域;分别根据每一个连通区域的位置信息,对所述连通区域进行筛选,获取特定区域;其中,所述特定区域为目标图像中包含特定图形部分的区域;将所述低像素图像中,除去所述特定区域以外的区域确定为待检测区域。
进一步的,还包括高斯平滑处理单元,用于:对所述二值图像进行边缘检测处理之前,采用预设高斯平滑参数,对所述二值图像进行高斯平滑处理。
可选的,所述边界线确定单元根据所述待检测区域中每相邻两个像素点之间的梯度值,对所述待检测区域进行边界线检测,确定所述目标图像的边界线,具体包括:将所述低像素图像进行二值化处理,将所述低像素图像转换为二值图像;其中,所述二值图像中仅包含两种颜色;针对任意一方向上,执行如下操作:将所述任意一方向上对所述二值图像的待检测区域中每相邻两个像素点之间的梯度值,分别与所述任意一方向对应的预设初始梯度阈值进行比较,根据比较结果,获取该任意一方向上的初始边界线;分别根据每一个方向上获取的初始边界线数目,确定所述目标图像的边界线。
可选的,所述边界线确定单元分别根据每一个方向上获取的初始边界线数目,确定所述目标图像的边界线,具体包括:针对任意一方向的检测结果,执行如下操作:当所述任意一方向上获取的初始边界线数目为至少两条时,分别根据所述任意一方向的每一条初始边界线的位置信息,对所述任意一方向的每 一条初始边界线进行直线检测,从所述任意一方向的至少两条初始边界线中获取所述任意一方向的边界线;当所述任意一方向获取的初始边界线为少于两条时,按照预设第一梯度差值,逐次降低所述任意一方向对应的预设初始梯度阈值,并用降低后的初始梯度阈值,在所述任意一方向上对所述二值图像的待检测区域进行检测,直至所述任意一方向上获取的初始边界线数目为至少两条。
可选的,所述目标图像获取单元,具体用于:获取所述低像素图像中包含的每相邻两条边界线交点;根据所述预设压缩比例,分别将获取的交点映射到所述原始图像中;依次连接映射到所述原始图像中的点,将连接后生成的四边形确定为所述原始图像中包含的目标图像。
进一步的,还包括矫正单元,用于:获取所述原始图像中包含的目标图像之后,采用透射变换算法,对所述目标图像进行矫正处理。
本申请实施例中,根据预设的压缩比例,将原始图像转换为低像素图像;对低像素图像进行边界线检测,确定低像素图像中包含的目标图像的边界线;将该低像素图像中包含的边界线映射到原始图像中,获取该原始图像中包含的目标图像。采用本申请技术方案,将原始图像转换为低像素图像,由于低像素图像中包含的像素点较少,且目标图像的获取过程均基于该低像素图像,因此,基于低像素图像的目标图像获取过程缩短了目标图像的获取时长,提高了获取目标图像的效率。
附图说明
图1为现有技术中原始图像示意图;
图2为本申请实施例中图像处理系统架构图;
图3为本申请实施例中图像处理流程图;
图4为本申请实施例中生成低像素图像流程图;
图5a为本申请实施例中直角坐标系示意图;
图5b为本申请实施例中插值运算示意图;
图6为本申请实施例中获取的连通区域示意图;
图7为本申请实施例中确定目标图像边界线流程图;
图8为本申请实施例中确定目标图像边界线示意图;
图9为本申请实施例中图像处理装置结构示意图。
具体实施方式
为了解决目前从原始图像中获取目标图像的过程中,存在获取目标图像所用时间长的问题。本申请实施例中,根据预设的压缩比例,将原始图像转换为低像素图像;对低像素图像进行边界线检测,确定低像素图像中包含的目标图像的边界线;将该低像素图像中包含的边界线映射到原始图像中,获取该原始图像中包含的目标图像。采用本申请技术方案,将原始图像转换为低像素图像,由于低像素图像中包含的像素点较少,且目标图像的获取过程均基于该低像素图像,因此,基于低像素图像的目标图像获取过程缩短了目标图像的获取时长,提高了获取目标图像的效率。
参阅图2所示,为本申请实施例中图像处理系统架构图,该图像处理系统包括图像处理设备,该图像处理设备用于将获取到的原始图像进行处理,以从原始图像中确定目标图像,该图像处理设备可以具备用户交互界面,以便于向用户呈现目标图像;此外,上述图像处理系统中还可以包含多个摄像设备,用于向图像处理设备提供待处理的原始图像;可选的,上述图像处理系统中还可以包含图像采集设备,用于采集摄像设备提供的原始图像,并将采集到的原始图像发送至图像处理设备。上述图像处理设备还可以为各种具备摄像功能的移动终端;本申请实施例中,以图像处理设备为各种具备摄像功能的移动终端为例,详细介绍图像获取过程。
下面结合附图对本申请优选的实施方式进行详细说明。
参阅图3所示,本申请实施例中对原始图像进行处理,以获取原始图像中包含的目标图像的过程包括:
步骤300:获取原始图像;其中,该原始图像中包含目标图像。
步骤310:根据预设的压缩比例,对上述原始图像进行图像压缩处理,获取图像压缩处理后的低像素图像。
步骤320:从低像素图像中,确定目标图像的边界线。
步骤330:将低像素图像中包含的边界线映射到原始图像中,获取该原始图像中包含的目标图像。
在步骤300中,图像采集设备分别将从每一个摄像设备获取的原始图像发送至图像处理设备,使图像处理设备直接获取每一个摄像设备拍摄的原始图像。
在步骤310中,图像处理设备根据预设的压缩比例,确定低像素图像中每一个像素点的位置,并采用快速双线性插值算法,对上述原始图像进行图像压缩处理,获取低像素图像中每一个像素点的像素值,以及根据上述每一个压缩后的像素点的像素值和位置,生成低像素图像。其中,该预设的压缩比例为根据具体应用场景预先配置的值;预设的压缩比例包括预设的横向压缩比例和纵向压缩比例,且横向压缩比例与纵向压缩比例可以相等,也可以不等。
参阅图4所示,在图像处理设备生成低像素图像的过程中,图像处理设备获取低像素图像中每一个像素点的像素值的过程,具体包括:
步骤a1:图像处理设备根据预设的压缩比例,在原始图像中包含的所有原始像素点中,确定每一个压缩后的像素点对应的四个原始像素点。
本申请实施例中,可选的,参阅图5a所示,图像处理设备在原始图像中建立直角坐标系,将水平方向作为横轴,将与横轴垂直的竖直方向作为纵轴,将原始图像的左上角作为原点。基于该直角坐标系,上述第一方向即为横轴正方向,第二方向即为纵轴正方向;或者,上述第一方向即为纵轴正方向,第二方向为横轴正方向。
进一步的,图像处理设备根据原始图像的分辨率,以及预设的压缩比例,在原始图像包含的所有原始像素点中,确定每一个压缩后的像素点对应的四个 原始像素点;其中,一个压缩后的像素点对应的原始像素点的数目为大于等于一个,且小于等于四个,该数目根据预设的压缩比例确定。例如,预设的压缩比例为5:2,即将5×5的像素点压缩为2×2的像素点,压缩后的第一个像素点对应的原始像素点即为第二行第二个像素点和第二行第三个像素点,第三行第二个像素点和第三行第三个像素点,此时,一个压缩后的像素点对应的原始像素点的数目即为四个。又如,预设的横向压缩比例和纵向压缩比例均为3:1,即将3×3的像素点压缩为1个像素点,压缩后的第一个像素点对应的原始像素点即为第三行第三个像素点(3÷1=3),此时,一个压缩后的像素点对应的原始像素点的数目即为一个。
可选的,为了便于计算,当压缩后的像素点对应的原始像素点数目小于四个时,通常将原始像素点的数目扩展为四个,即根据预设的压缩比例,将与原始像素点相邻的原始像素点确定为压缩后的像素点对应的原始像素点;并为确定的每一个原始像素点配置相应的权重值,以及基于四个原始像素点及其权重值,确定一个压缩后的像素点的像素值。例如,参阅图5b所示,基于上述已经建立的直角坐标系,原始图像的分辨率为a1×a2,预设的压缩比例为q,则生成的低像素图像的分辨率为b1×b2,其中,a1/b1=q,且a2/b2=q;自上述直角坐标系的原点开始,低像素图像中第一个像素点为P,设该像素点P对应于上述原始图像的第一个原始像素点用Q11表示,该像素点P对应于上述原始图像的第二个原始像素点用Q12表示,该像素点P对应于上述原始图像的第三个原始像素点用Q21表示,该像素点P对应于上述原始图像的第四个原始像素点用Q22表示。其中,每一个原始像素点对应的权重值能够根据预设的压缩比例获取,例如,预设的压缩比例为5:2,即将5×5的像素点压缩为2×2的像素点,则压缩后的第一个像素点对应的原始像素对应的四个原始像素点即为第二行第二个像素点和第二行第三个像素点,第三行第二个像素点和第三行第三个像素点,由于第二行第二个像素点距离压缩后的像素点的距离为0.5(5÷2-2的绝对值),因此,第二行第二个像素点的权重值为0.5,同理,其余三个像素点 的权重值也为0.5。
由于权重值为正整数或者为非正整数,因此,当该权重值为非正整数时,可选的,将该权重值进行移位运算,获取相应的正整数,并根据获取的该正整数,进行图像处理;并在图像处理完毕之后,对获取的低像素图像中包含的每一个像素点的位置再次进行移位运算,以及对该每一个像素值进行修正运算,以保证在降低图像处理量的同时,提高最终获取的目标图像的准确度。
步骤a2:图像处理设备确定上述每一个压缩后的像素点对应的四个原始像素点中,第一方向的两对原始像素点,以及第二方向的两对原始像素点。
本申请实施例中,图像处理设备将一个压缩后的像素点对应的四个原始图像划分为两对,其中,将四个原始像素点中处于同一行或者同一列的两个原始像素图像作为一对,例如,预设的压缩比例为5:2,则压缩后的第一个像素点对应的原始像素对应的四个原始像素点即为第二行第二个像素点和第二行第三个像素点,第三行第二个像素点和第三行第三个像素点,则第二行第二个像素点和第二行第三个像素点为一对,第三行第二个像素点和第三行第三个像素点为一对。
基于上述获取的四个原始像素点,图像处理设备确定上述每一个压缩后的像素点对应的四个原始像素点中,第一方向的两对原始像素点,以及第二方向的两对原始像素点;例如,参阅图5b所示,若第一方向为横轴正方向,第二方向为纵轴正方向,则第一方向的两对原始像素点分别为Q11和Q12,以及Q21和Q22,第二方向的两对原始像素点分别为Q11和Q21,以及Q12和Q22
步骤a3:图像处理设备获取上述每一个压缩后的像素点在第一方向的两对原始像素点分别对应的第一插值,并将获取的两个第一插值作为初始插值;或者,获取上述每一个压缩后的像素点在第二方向的两对原始像素点分别对应的第二插值,并将获取的两个第二插值作为初始插值。
本申请实施例中,图像处理设备获取每一个压缩后的像素点对应的初始插值时,可以采用以下两种方式:
第一种方式,图像处理设备获取每一个压缩后的像素点在第一方向的两对原始像素点分别对应的第一插值,将获取的两个插值作为上述每一个压缩后的像素点对应的初始插值;例如,参阅图5b所示,若第一方向为横轴正方向,第二方向为纵轴正方向,则第一插值为Q11和Q12的插值,以及Q21和Q22的插值。
第二种方式,图像处理设备获取每一个压缩后的像素点在第二方向的两对原始像素点分别对应的第二插值,将获取的两个插值作为上述每一个压缩后的像素点对应的初始插值;例如,参阅图5b所示,若第一方向为横轴正方向,第二方向为纵轴正方向,则第二插值为Q11和Q21的插值,以及Q12和Q22的插值。
步骤a4:图像处理设备根据上述每一个压缩后的像素点对应的两个初始插值,计算该每一个压缩后的像素点对应的插值,并将计算得到的该每一个压缩后的像素点对应的插值,确定为该每一个压缩后的像素点的像素值。
本申请实施例中,基于上述步骤a3中的两种方式,获取每一个压缩后的像素点对应的插值的方式也包含两种:
第一种方式,图像处理设备将每一个压缩后的像素点在第一方向的两对原始像素点分别对应的第一插值,确定为该每一个压缩后的像素点对应的初始插值时,在第二方向上计算上述确定的每一个压缩后的像素点对应的两个初始插值的插值,将该插值作为该每一个压缩后的像素点对应的插值;例如,参阅图5b所示,若第一方向为横轴正方向,第二方向为纵轴正方向,则Q11和Q12的初始插值为R1,以及Q21和Q22的初始插值为R2,计算该初始插值R1和初始插值R2的插值,将计算得到的插值确定为该原始像素点Q11、Q12、Q21和Q22的压缩后的像素点P的像素值。
第二种方式,图像处理设备将每一个压缩后的像素点在第二方向的两对原始像素点分别对应的第二插值,确定为该每一个压缩后的像素点对应的初始插值时,在第一方向上计算上述确定的每一个压缩后的像素点对应的两个初始插 值的插值,将该插值作为该每一个压缩后的像素点对应的插值;例如,参阅图5b所示,若第一方向为横轴正方向,第二方向为纵轴正方向,则Q11和Q21的初始插值为R3,以及Q12和Q22的初始插值为R4,计算该初始插值R3和初始插值R4的插值,将计算得到的插值确定为该原始像素点Q11、Q12、Q21和Q22的压缩后的像素点P的像素值。
低像素图像中的像素点的像素值均可以采用上述快速双线性插值算法,根据原始像素点的像素值获取。其中,上述任意一Ri可以采用如下公式获取:
Ri=Qa×qa+Qb×qb
其中,Ri为插值;Qa为第一原始像素点的像素值;qa为第一原始像素点的权重值,该权重值根据预设的压缩比例获取;Qb为第二原始像素点的像素值;qb为第二原始像素点的权重值,该权重值根据预设的压缩比例获取。
可选的,在计算上述每一个压缩后的像素点对应的插值时,可以预先统计原始图像中每一行原始像素点的权重值以及每一列原始像素点的权重值,并将计算得到的每一行原始像素点的权重值以及每一列原始像素点的权重值进行保存,以便在上述插值运算过程中,已知原始像素点的行号和列号,可以直接调用该原始像素点的权重值,无须针对每一个压缩后的像素点,均计算其所对应的原始像素点的权重值,从而提高了低像素图像的生成效率。
可选的,在计算上述每一个压缩后的像素点对应的插值时,图像处理设备可以在计算得到的任意一压缩后的像素点对应的第一插值或者第二插值时,即将该第一插值或者第二插值缓存在本地,当在计算其他压缩后的像素点对应的插值时,所采用的原始像素点与上述任意一压缩后的像素点对应的原始像素点相同时,直接调用上述第一插值或者第二插值即可,无须重新计算,从而缩短了获取低像素图像的效率。
本申请实施例中,图像处理设备采用上述方式,确定每一个压缩后的像素点的像素值,并根据每一个压缩后的像素点的位置和像素值,生成低像素图像。
采用上述技术方案,将分辨率较高的原始图像转换为低像素图像,以下对 图像进行处理的各个步骤均是基于上述低像素图像,避免了对原始图像进行处理时由于原始图像中像素点较多造成的图像处理量大的问题,降低了系统处理负担,缩短了图像处理时长,提高了图像处理效率。
在步骤320中,在获取的低像素图像确定目标图像的边界线,由于目标图像中可能包含某些特定图形部分,该特定图形将会对后期的目标图像边界线检测过程中造成干扰,使检测得到的目标图像边界线存在误差,因此,从低像素图像中确定目标图像的边界线时,首先需要将该特定图形部分进行剔除,仅对不包含该特定图形的待检测区域进行检测,并从该待检测区域中确定目标图像的边界线。例如,当对原始图像中包含的身份证图像时,将该身份证图像作为目标图像,则该目标图像中包含的人像部分和文字部分即为特定图形。
具体的,将低像素图像由彩色图像转换为灰度图像,并将该灰度图像进行二值化处理,将该低像素图像转换为二值图像;其中,所述二值图像中仅包含两种颜色,较佳的,该两种颜色中一种颜色的像素值为0,另一种颜色的像素值为255;对该二值图像进行边缘检测处理,获取该二值图像中包含的至少一条边缘线,该边缘检测处理可以为canny边缘检测处理;分别对每一条边缘线进行膨胀处理;上述获取的每一条边缘线可能存在断裂,此时,将膨胀处理后的每一条边缘线进行连接,以获取各个连通区域;分别根据每一个连通区域的位置信息,对所有连通区域筛选,获取特定区域;其中,该特定区域为目标图像中包含的特定图形部分;将低像素图像中,除去上述特定区域以外的部分确定为待检测区域;上述位置信息即为每一个连通区域在低像素图像中的位置。
可选的,图像处理设备可以采用预设的边缘检测参数,对该二值图像进行边缘检测处理,该边缘检测参数越弱,检测得到的边缘线越多;该边缘检测参数越强,检测得到的边缘线越少。此外,图像处理设备还可以采用预设的膨胀处理参数,分别对每一条边缘线进行膨胀处理,且该膨胀处理参数与上述边缘检测参数相适应,当边缘检测参数越弱,检测得到的边缘线越多时,采用的膨胀处理参数越小,当边缘检测参数越强,检测得到的边缘线越少时,采用的膨 胀处理参数越大,较佳的,该膨胀处理参数为5×5或者3×3。
在上述过程中,分别根据每一个连通区域的位置信息,对所有连通区域筛选,获取特定区域,具体包括:获取每一个连通区域的位置信息,以及获取目标图像的预估区域,该预估区域为采用现有技术预先估计的区域;当上述所有连通区域中存在任意一连通区域位于上述预估区域以内时,确定该任意一连通区域为特定区域;当上述所有连通区域中存在任意一连通区域位于上述预估区域以外时,确定该任意一连通区域不是特定区域。例如,参阅图6所示,针对低像素图像进行图像处理后,获取连通区域A和连通区域B,目标图像的预估区域为C,由图6可知,连通区域A位于预估区域C内,连通区域B位于预估区域C以外,因此,连通区域A为特定区域,连通区域B不是特定区域。
进一步的,在对二值图像进行边缘检测处理之前,图像处理设备还可以采用第一预设高斯平滑参数,对所述二值图像进行高斯平滑处理。其中,该第一预设高斯平滑参数可以根据具体应用场景预先设置;如该第一预设高斯平滑参数可以为5×5,可以为3×3。采用该技术方案,在对图像进行边缘检测处理之前,对二值图像进行高斯平滑处理,能够滤除二值图像中包含的噪声纹理,避免了噪声干扰造成的图像处理准确度下降的问题,有效提高了图像处理的准确度。
采用上述技术方案,将低像素图像中包含的特定区域进行滤除,仅对不包含该特定区域的待检测区域进行边界线检测,进一步避免了图像处理设备对非待检测区域的图像处理过程,有效提高了图像处理效率;并且,图像处理设备仅对不包含该特定区域的待检测区域进行边界线检测,避免了由于特定区域中的特定图形的梯度值满足边界线检测条件时,将该特定区域中的曲线确定为边界线的问题,有效保证了目标图像获取的准确性。
在步骤320中,图像处理设备计算待检测区域中每相邻两个像素点之间的梯度值,根据计算得到的梯度值,对待检测区域进行边缘区域检测,进而确定低像素图像中包含的目标图像的边界线。
具体的,参阅图7所示,确定低像素图像中包含的目标图像的边界线的过程为:
步骤b1:将低像素图像进行二值化处理,将该低像素图像转换为二值图像;其中,二值图像中仅包含两种颜色。
本申请实施例中,将低像素图像由彩色图像转换为仅包含两种颜色的二值图像,该两种颜色中一种颜色的像素值为0,另一种颜色的像素值为255。采用上述技术方案,图像处理设备将彩色的低像素图像转化为二值图像,简化了在利用梯度值进行边界线检测的复杂度,提高了图像处理的效率。
进一步的,图像处理设备获取每相邻两个像素点的梯度的过程,包括:对于任意一相邻两个像素点,该任意一相邻两个像素点包括第一像素点和第二像素点;获取第一像素点的第一种颜色像素值(S1),第二种颜色像素值(S2),以及第三种颜色像素值(S3),并获取第二像素点的第一种颜色像素值(U1),第二种颜色像素值(U2),以及第三种颜色像素值(U3);分别计算第一像素点的第一种颜色像素值(S1)和第二像素点的第一种颜色像素值(U1)的差值的绝对值,第一像素点的第二种颜色像素值(S2)和第二像素点的第二种颜色像素值(U2)的差值的绝对值,以及第一像素点的第三种颜色像素值(S3)和第二像素点的第三种颜色像素值(U3)的差值的绝对值,将上述计算得到的三个绝对值作为该第一像素点之间的梯度值。具体的,图像处理设备可以采用如下公式计算任意一相邻两个像素点之间的梯度值:
T=|S1-U1|+|S2-U2|+|S3-U3|
其中,T为上述任意一相邻两个像素点之间的梯度值;S1为第一像素点的第一种颜色像素值;S2为第一像素点的第二种颜色像素值;S3为第一像素点的第三种颜色像素值;U1为第二像素点的第一种颜色像素值;U2为第二像素点的第二种颜色像素值;U3为第二像素点的第三种颜色像素值。上述相邻两个像素点包含上下相邻的两个像素点,或者左右相邻的两个像素点。
本申请实施例中,仅以三种基本颜色构成的原始图像为例,介绍每相邻两 个像素点之间的梯度值的计算过程,当原始图像包含四个基本颜色或者更多的基本颜色,均可以采用与上述三种基本颜色构成的原始像素中获取每相邻两个像素点之间的梯度值的相同原理,获取每相邻两个像素点之间的梯度值,在此不再赘述。
步骤b2:针对任意一方向上,执行如下操作:将该任意一方向上对上述二值图像的待检测区域中每相邻两个像素点之间的梯度值,分别与该任意一方向对应的预设初始梯度阈值进行比较,根据比较结果,获取该任意一方向上的初始边界线。
本申请实施例中,目标图像为封闭的四边形,因此,终端将任意一方向上对上述二值图像的待检测区域中每相邻两个像素点之间的梯度值,分别与该任意一方向对应的预设初始梯度阈值进行比较,当沿上述任意一方向上的任意一组相邻两个像素点之间的梯度值均大于预设的初始梯度阈值,则将该组相邻两个像素点中的一组像素点组成的线,确定为该任意一方向上的边界线。其中,该任意一方向为第一方向或者第二方向,第一方向为自原点起,沿横轴正方向的方向,第二方向为自原点起,沿纵轴正方向的方向(第一种方案);或者,第一方向为自原点起,沿纵轴正方向的方向,第二方向为自原点起,沿横轴正方向的方向(第二种方案)
若采用上述第一种方案,则图像处理设备获取第一方向的边界线时,需要计算二值图像中,每上下相邻两个像素点之间的梯度值,并将获取的梯度值与第一初始梯度阈值进行比较,当存在任意一相邻两行所有像素点中,每上下相邻两个像素点之间的梯度值均达到上述第一初始梯度阈值,则确定该任意一相邻两行中上一行像素点构成的线条即为第一方向的一条初始边界线;当上述任意一相邻两行所有像素点中,存在任意一上下相邻两个像素点之间的梯度值未达到上述第一初始梯度阈值,继续检测下一个相邻两行像素点之间的梯度值是否均边界线检测条件;同理,图像处理设备获取第二方向的边界线时,需要计算二值图像中,每左右相邻两个像素点之间的梯度值,并将获取的梯度值与第 二初始梯度阈值进行比较,当存在任意一相邻两列所有像素点中,每左右相邻两个像素点之间的梯度值均达到上述第二初始梯度阈值,则确定该任意一相邻两列中左侧的线条即为第二方向的一条初始边界线;当上述任意一相邻两列所有像素点中,存在任意一左右相邻两个像素点之间的梯度值未达到上述第二初始梯度阈值,继续检测下一个相邻两列像素点之间的梯度值是否均边界线检测条件。
若采用上述第二种方案,图像处理设备获取第一方向的边界线时,需要计算二值图像中,每左右相邻两个像素点之间的梯度值,并将获取的梯度值与第一初始梯度阈值进行比较,当存在任意一相邻两列所有像素点中,每左右相邻两个像素点之间的梯度值均达到上述第一初始梯度阈值,则确定该任意一相邻两列中左侧的线条即为第一方向的一条初始边界线;当上述任意一相邻两列所有像素点中,存在任意一左右相邻两个像素点之间的梯度值未达到上述第一初始梯度阈值,继续检测下一个相邻两列像素点之间的梯度值是否均边界线检测条件;同理,图像处理设备获取第二方向的边界线时,需要计算二值图像中,每上下相邻两个像素点之间的梯度值,并将获取的梯度值与第二初始梯度阈值进行比较,当存在任意一相邻两行所有像素点中,每上下相邻两个像素点之间的梯度值均达到上述第二初始梯度阈值,则确定该任意一相邻两行中上一行的线条即为第二方向的一条初始边界线;当上述任意一相邻两行所有像素点中,存在任意一上下相邻两个像素点之间的梯度值未达到上述第二初始梯度阈值,继续检测下一个相邻两行像素点之间的梯度值是否均边界线检测条件。其中,上述第一初始梯度阈值和第二初始梯度阈值均为根据具体应用场景预先设置的值,两者可以相同,也可以不同。
例如,参阅图8所示,以第一方向为横轴正方向,检测第一方向边界线为例,二值图像中的第i行和第i+1行为相邻的两行,每一行中均包含三个像素点,其中,第i行中包含像素点Zi1、Zi2和Zi3,第i+1行中包含像素点Z(i+1)1、Z(i+1)2和Z(i+1)3,第一初始梯度阈值为T,Zi1和Z(i+1)1为上下相邻两个像素 点,Zi2和Z(i+1)2为上下相邻两个像素点,Zi3和Z(i+1)3为上下相邻两个像素点,像素点Zi1和像素点Z(i+1)1之间的梯度值为T1,像素点Zi2和像素点Z(i+1)2之间的梯度值为T2,像素点Zi3和像素点Z(i+1)3之间的梯度值为T3;当T1、T2和T3均大于等于T时,将第i行确定为第一方向的一条边界线;当T1、T2和T3存在至少一项小于T,继续检测第i+1行和第i+2行之间是否存在满足边界线条件的边界线。
可选的,图像处理设备对上述边界线进行检测时,可以采用连续hough变换算法实现边界线检测。
本申请实施例中,图像处理设备在对二值图像中的待检测区域进行边界线检测之前,还可以采用第二预设高斯平滑参数,对该二值图像进行高斯平滑处理,该第二预设高斯平滑参数可以根据具体应用场景预先设置,如该第一预设高斯平滑参数可以为5×5,可以为3×3。采用该技术方案,在对图像进行边缘检测处理之前,对二值图像进行高斯平滑处理,能够滤除二值图像中包含的噪声纹理,避免了噪声干扰造成的图像处理准确度下降的问题,有效提高了图像处理的准确度。
步骤b3:当上述任意一方向上获取的初始边界线数目不少于至少两条时,分别根据该任意一方向的每一条初始边界线的位置信息,对该任意一方向的每一条初始边界线进行直线检测,从该任意一方向的至少两条初始边界线中获取该任意一方向的边界线。
本申请实施例中,图像处理设备判断任意一方向上获取的初始边界线数目是否大于等于两条,当该任意一方向上获取的初始边界线数目大于等于两条时,即可根据每一条初始边界线的位置,对初始边界线进行筛选,以从所有初始边界线中选取该任意一方向的边界线。
具体的,在目标图像的边界线检测过程中,当检测结果为得到第一方向的至少两条初始边界线,以及第二方向的至少两条初始边界线时,分别根据第一方向的每一条初始边界线的位置信息,对该第一方向的每一条初始边界线进行 直线检测,从该第一方向的至少两条初始边界线中获取第一方向的两条边界线;以及分别根据第二方向的每一条初始边界线的位置信息,对第二方向的每一条初始边界线进行直线检测,从该第二方向的至少两条初始边界线中该第二方向的两条边界线。
本申请实施例中,图像处理设备在不同方向上,能够检测得到多条初始边界线,由于该多条初始边界线中可能存在背景图像等干扰因素,因此,上述多条初始边界线中,并不均为目标图像的边界线,此时,需要对上述获取的所有初始边界线进行检测,进而确定目标图像的边界线。
具体的,图像处理设备针对每一条初始边界线,均执行如下操作:图像处理设备获取该初始边界线的位置信息,该位置信息即为该初始边界线在低像素图像中距离横轴的距离,以及距离纵轴的距离;图像处理设备获取目标图像的预估区域,并将该初始边界线的位置信息与上述预估区域进行比较;当该初始边界线的位置信息与上述预估区域匹配成功时,即确定该初始边界线为目标图像的边界线;当该初始边界线的初始位置信息与上述预估区域匹配不成功时,确定该初始边界线不是目标图像的边界线。其中,上述初始边界线的位置信息与上述预估区域匹配成功即为初始边界线距离横轴的距离与预估区域任意一边界线距离横轴的距离相等;或者,初始边界线距离纵轴的距离与预估区域任意一边界线距离纵轴的距离相等。
进一步的,经过上述初始边界线筛选之后,仍存在多条初始边界线时,此时,图像处理设备获取初始边界线相交后,每一条初始边界线中位于交点之间的线段的长度,并根据目标图像的各个边之比,从上述多条初始边界线中,筛选满足目标图像的各个边之比,且具备交点的不同方向的初始边界线,作为目标图像的边界线。例如,目标图像为身份证图像,身份证的长宽比为4:3,图像处理设备获取的第一方向的第一初始边界线长度为8cm,与该第一初始边界线相交的第二方向的第二初始边界线长度为4cm,由于第一初始边界线和第二初始边界线长度之比不等于4:3,因此,第一初始边界线和第二初始边界线均 不是目标图像的边界线;图像处理设备获取的第一方向的第三初始边界线长度为8cm,与该第一初始边界线相交的第二方向的第四初始边界线长度为6cm,由于第一初始边界线和第二初始边界线长度之比等于4:3,因此,第一初始边界线和第二初始边界线为目标图像的边界线。
采用上述技术方案,采用多个限制条件,从初始边界线中获取目标图像的边界线,从而保证了获取的目标图像的边界线的准确性。
步骤b4:当上述任意一方向获取的初始边界线数目小于至少两条时,按照预设第一梯度差值,逐次降低该任意一方向对应的预设初始梯度阈值,并用降低后的初始梯度阈值,在该任意一方向上对所述二值图像的待检测区域进行检测,直至该任意一方向上获取的初始边界线数目不少于至少两条。
本申请实施例中,当上述任意一方向上获取的初始边界线数目小于预设数目时,即可降低预设初始梯度阈值,并用降低后的初始梯度阈值再次进行边缘区域检测;当能够获取的该任意一方向上的边界线的数目仍小于至少两条时,重复上述过程,即再次降低预设初始梯度阈值,直至该任意一方向上获取的初始边界线数目不少于至少两条,根据每一条初始边界线的位置,对初始边界线进行筛选,以从所有初始边界线中选取该任意一方向的边界线。
具体的,在目标图像的边界线检测过程中,当检测结果为无法获取第一方向的至少两条初始边界线时,按照预设第一梯度差值,逐次降低第一初始梯度阈值,直至获取第一方向的初始边界线的数目为至少两条;若获取的第一方向的初始边界线数目为多条时,分别根据第一方向的每一条初始边界线的位置信息,对第一方向的每一条初始边界线进行直线检测,从第一方向的多条初始边界线中获取第一方向的两条边界线。同理,当检测结果为无法获取第二方向的至少两条初始边界线时,按照预设第二梯度差值,依次降低第二初始梯度阈值,直至获取第二方向的至少两条初始边界线;若获取的第二方向的初始边界线数目为多条时,分别根据第二方向的每一条初始边界线的位置信息,对第二方向的每一条初始边界线进行直线检测,从第二方向的多条初始边界线中获取第二 方向的两条边界线。
本申请实施例中,若第一方向为横轴正方向,第二方向为纵轴正方向,则当图像处理设备在第一方向上逐次计算每相邻两行像素点之间的梯度后,确定没有任意一相邻两行像素点之间的梯度值,满足预设第一梯度阈值时,图像处理设备按照预设第一梯度差值,降低该第一初始梯度阈值,重新执行上述过程;当图像处理设备根据降低后的梯度阈值,能够获取第一方向上的两条初始边界线时,将终止上述过程;当图像处理设备根据降低后的梯度阈值,不能够获取第一方向上的两条初始边界线时,将再次根据预设第一梯度差值,降低该第一初始梯度阈值,直至能够根据降低后的梯度阈值,获取第一方向上的两条初始边界线。同理,当图像处理设备在第二方向上逐次计算每相邻两列像素点之间的梯度后,确定没有任意一相邻两列像素点之间的梯度值,满足预设第二梯度阈值时,图像处理设备按照预设第二梯度差值,降低该第二初始梯度阈值,重新执行上述过程;当图像处理设备根据降低后的梯度阈值,能够获取第二方向上的两条初始边界线时,将终止上述过程;当图像处理设备根据降低后的梯度阈值,不能够获取第二方向上的两条初始边界线时,将再次根据预设第二梯度差值,降低该第二初始梯度阈值,直至能够根据降低后的梯度阈值,获取第二方向上的两条初始边界线。
进一步的,若第一方向为纵轴正方向,第二方向为横轴正方向,则图像处理设备获取目标图像边界线的方式与上述第一方向为横轴正方向,第二方向为纵轴正方向的情况相同,在此不再赘述。
其中,上述第一预设梯度差值为根据具体应用场景预先设定的值,如该值为10。
在步骤330中,获取低像素图像中包含的边界线交点的位置信息;根据预设的压缩比例,分别将获取的交点映射到原始图像中;依次连接该交点映射到原始图像中的点,将连接后生成的图形确定为原始图像中包含的目标图像。其中,可以采用与步骤310中快速双线性插值算法的逆过程,将上述各个交点映 射到原始图像中。
进一步的,获取原始图像中包含的目标图像之后,采用透射变换算法,对目标图像进行矫正处理。具体的,由于拍摄角度的问题,原始图像中目标图像所呈现的形状与目标物体本身的形状可能存在一定差异,如目标物体为身份证,身份证的形状为矩形,而目标图像为平行四边形,因此,图像处理设备采用投射变换算法,将上述目标图像进行矫正处理:将所有交点中的任意一交点作为定点,将该顶点与任意一相邻顶点之间距离作为目标图像的任意一边长,根据目标图像的长宽比,确定目标图像的其他顶点,将所有顶点依次连接之后,构成的图形即为矫正处理后的目标图像。
采用上述技术方案,原始图像可以为彩色图像也可以为灰度图像,并不限制原始图像的形式,通用性较强;并且,根据相邻两个像素点之间的梯度值,确定目标图像的初始边界线,并根据目标物体的形状和获取的初始边界线的位置信息,对获取的初始边界线进行筛选,以确定目标图像的边界线,避免了由于背景图像与目标图像极为相似时,背景图像对目标图形的获取造成干扰的问题,保证了获取的目标图像的准确性;此外,当图像处理设备为移动终端时,采用上述技术方案,对目标图像进行获取以及矫正处理的过程仅需要600毫秒,图像处理速度快。
本申请实施例中,当图像处理设备为移动终端时,上述技术方案适用于安卓(Android)系统、IOS系统等多种操作系统。
基于上述技术方案,参阅图9所示,本申请实施例还提供一种图像获取装置,包括原始图像获取单元90,低像素图像获取单元91,边界线确定单元92,以及目标图像获取单元93,其中:
原始图像获取单元90,用于获取原始图像;其中,所述原始图像中包含目标图像;
低像素图像获取单元91,用于根据预设的压缩比例,对所述原始图像进行图像压缩处理,获取图像压缩处理后的低像素图像;
边界线确定单元92,用于在所述低像素图像中,确定所述目标图像的边界线;
目标图像获取单元93,用于将确定的所述低像素图像中包含的边界线映射到所述原始图像中,获取所述原始图像中包含的目标图像。
其中,所述低像素图像获取单元91,具体用于:根根据所述预设的压缩比例,确定每一个压缩后的像素点的位置;采用快速双线性插值算法,对所述原始图像进行图像压缩处理,获取每一个压缩后的像素点的像素值,根据所述每一个压缩后的像素点的像素值和位置,生成低像素图像。
可选的,所述低像素图像获取单元91采用快速双线性插值算法,对所述原始图像进行图像压缩处理,获取每一个压缩后的像素点的像素值,具体包括:根据所述预设的压缩比例,在所述原始图像中包含的所有原始像素点中,确定每一个压缩后的像素点对应的四个原始像素点;确定所述每一个压缩后的像素点对应的四个原始像素点中,第一方向的两对原始像素点,以及第二方向的两对原始像素点;其中,所述第一方向为水平方向,所述第二方向为竖直方向,或者,所述第一方向为竖直方向,所述第二方向为水平方向;获取所述每一个压缩后的像素点在第一方向的两对原始像素点分别对应的第一插值,并将获取的两个第一插值作为初始插值;或者,获取所述每一个压缩后的像素点在第二方向的两对原始像素点分别对应的第二插值,并将获取的两个第二插值作为初始插值;根据所述每一个压缩后的像素点对应的初始插值,计算所述每一个压缩后的像素点对应的插值,并根据计算得到的所述每一个压缩后的像素点对应的插值,确定所述每一个压缩后的像素点的像素值。
可选的,所述边界线确定单元92,用于:从所述低像素图像中,确定待检测区域;根据所述待检测区域中每相邻两个像素点之间的梯度值,对所述待检测区域进行边界线检测处理,确定所述目标图像的边界线。
可选的,所述边界线确定单元92从所述低像素图像中,确定待检测区域,具体包括:对所述低像素图像进行二值化处理,将所述低像素图像转换为二值 图像;其中,所述二值图像中仅包含两种颜色;对所述二值图像进行边缘检测处理,获取所述二值图像中包含的至少一条边缘线;分别对每一条边缘线进行膨胀处理;并连接膨胀处理后的每一条边缘线,获取各个连通区域;分别根据每一个连通区域的位置信息,对所述连通区域进行筛选,获取特定区域;其中,所述特定区域为目标图像中包含特定图形部分的区域;将所述低像素图像中,除去所述特定区域以外的区域确定为待检测区域。
进一步的,还包括高斯平滑处理单元94,用于:对所述二值图像进行边缘检测处理之前,采用预设高斯平滑参数,对所述二值图像进行高斯平滑处理。
可选的,所述边界线确定单元92根据所述待检测区域中每相邻两个像素点之间的梯度值,对所述待检测区域进行边界线检测,确定所述目标图像的边界线,具体包括:将所述低像素图像进行二值化处理,将所述低像素图像转换为二值图像;其中,所述二值图像中仅包含两种颜色;针对任意一方向上,执行如下操作:将所述任意一方向上对所述二值图像的待检测区域中每相邻两个像素点之间的梯度值,分别与所述任意一方向对应的预设初始梯度阈值进行比较,根据比较结果,获取该任意一方向上的初始边界线;分别根据每一个方向上获取的初始边界线数目,确定所述目标图像的边界线。
可选的,所述边界线确定单元92分别根据每一个方向上获取的初始边界线数目,确定所述目标图像的边界线,具体包括:针对任意一方向的检测结果,执行如下操作:当所述任意一方向上获取的初始边界线数目为至少两条时,分别根据所述任意一方向的每一条初始边界线的位置信息,对所述任意一方向的每一条初始边界线进行直线检测,从所述任意一方向的至少两条初始边界线中获取所述任意一方向的边界线;当所述任意一方向获取的初始边界线为少于两条时,按照预设第一梯度差值,逐次降低所述任意一方向对应的预设初始梯度阈值,并用降低后的初始梯度阈值,在所述任意一方向上对所述二值图像的待检测区域进行检测,直至所述任意一方向上获取的初始边界线数目为至少两条。
可选的,所述目标图像获取单元93,具体用于:获取所述低像素图像中包含的每相邻两条边界线交点;根据所述预设压缩比例,分别将获取的交点映射到所述原始图像中;依次连接映射到所述原始图像中的点,将连接后生成的四边形确定为所述原始图像中包含的目标图像。
可选的,还包括矫正单元95,用于:获取所述原始图像中包含的目标图像之后,采用透射变换算法,对所述目标图像进行矫正处理。
上述图像获取装置可以为一个部件,位于图像处理设备当中;或者,该图像获取装置即为上述图像处理设备。
综上所述,本申请实施例中,获取原始图像;根据预设的压缩比例,对上述原始图像进行图像压缩处理,获取图像压缩处理后的低像素图像;从低像素图像中,获取待检测区域;其中,该待检测区域为不包含特定图形部分的区域;根据上述待检测区域中每相邻两个像素点之间的梯度值,对该待检测区域进行边界线检测,确定低像素图像中包含的目标图像的边界线;将低像素图像中包含的边界线映射到原始图像中,获取该原始图像中包含的目标图像。采用本申请技术方案,将原始图像转换为低像素图像,对目标图像的边界线获取过程均是基于该低像素图像,由于低像素图像中包含的像素点较少,因此,缩短了对低像素图像的处理时长,提高了获取目标图像的效率;并且,由于特定区域为干扰因素,因此,将低像素图像中不包含特定区域的部分作为待检测区域,即为将低像素图像中的干扰因素滤除,仅对检测待检测区域进行检测,在降低图像处理时长的基础上,能够保证图像处理的准确性;此外,根据待检测区域中每相邻两个像素点之间的梯度值变化,确定目标图像的边界线,并将得到的边界线映射至原始图像中,以在原始图像中确定目标图像,从而避免了在低像素图像中获取的目标图像与原始图像中的目标图像存在偏差的问题,保证了获取的目标图像的准确性。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结 合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或四个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或四个流程和/或方框图一个方框或四个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或四个流程和/或方框图一个方框或四个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或四个流程和/或方框图一个方框或四个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (20)

  1. 一种图像处理方法,其特征在于,包括:
    获取原始图像;其中,所述原始图像中包含目标图像;
    根据预设的压缩比例,对所述原始图像进行图像压缩处理,获取图像压缩处理后的低像素图像;
    在所述低像素图像中,确定所述目标图像的边界线;
    将确定的所述低像素图像中包含的边界线映射到所述原始图像中,获取所述原始图像中包含的目标图像。
  2. 如权利要求1所述的方法,其特征在于,根据预设的压缩比例,对所述原始图像进行图像压缩处理,获取图像压缩处理后的低像素图像,具体包括:
    根据所述预设的压缩比例,确定每一个压缩后的像素点的位置;
    采用快速双线性插值算法,对所述原始图像进行图像压缩处理,获取每一个压缩后的像素点的像素值;
    根据所述每一个压缩后的像素点的像素值和位置,生成低像素图像。
  3. 如权利要求2所述的方法,其特征在于,采用快速双线性插值算法,对所述原始图像进行图像压缩处理,获取每一个压缩后的像素点的像素值,具体包括:
    根据所述预设的压缩比例,在所述原始图像中包含的所有原始像素点中,确定每一个压缩后的像素点对应的四个原始像素点;确定所述每一个压缩后的像素点对应的四个原始像素点中,第一方向的两对原始像素点,以及第二方向的两对原始像素点;其中,所述第一方向为水平方向,所述第二方向为竖直方向,或者,所述第一方向为竖直方向,所述第二方向为水平方向;
    获取所述每一个压缩后的像素点在第一方向的两对原始像素点分别对应的第一插值,并将获取的两个第一插值作为初始插值;或者,获取所述每一个压缩后的像素点在第二方向的两对原始像素点分别对应的第二插值,并将获取 的两个第二插值作为初始插值;
    根据所述每一个压缩后的像素点对应的初始插值,计算所述每一个压缩后的像素点对应的插值,并根据计算得到的所述每一个压缩后的像素点对应的插值,确定所述每一个压缩后的像素点的像素值。
  4. 如权利要求1-3任一项所述的方法,其特征在于,在所述低像素图像中,确定所述目标图像的边界线,具体包括:
    从所述低像素图像中,确定待检测区域;
    根据所述待检测区域中每相邻两个像素点之间的梯度值,对所述待检测区域进行边界线检测处理,确定所述目标图像的边界线。
  5. 如权利要求4所述的方法,其特征在于,从所述低像素图像中,确定待检测区域,具体包括:
    对所述低像素图像进行二值化处理,将所述低像素图像转换为二值图像;其中,所述二值图像中仅包含两种颜色;
    对所述二值图像进行边缘检测处理,获取所述二值图像中包含的至少一条边缘线;
    分别对每一条边缘线进行膨胀处理;并
    连接膨胀处理后的每一条边缘线,获取各个连通区域;
    分别根据每一个连通区域的位置信息,对所述连通区域进行筛选,获取特定区域;其中,所述特定区域为目标图像中包含特定图形部分的区域;
    将所述低像素图像中,除去所述特定区域以外的区域确定为待检测区域。
  6. 如权利要求5所述的方法,其特征在于,对所述二值图像进行边缘检测处理之前,还包括:
    采用预设高斯平滑参数,对所述二值图像进行高斯平滑处理。
  7. 如权利要求4所述的方法,其特征在于,根据所述待检测区域中每相邻两个像素点之间的梯度值,对所述待检测区域进行边界线检测,确定所述目标图像的边界线,具体包括:
    将所述低像素图像进行二值化处理,将所述低像素图像转换为二值图像;其中,所述二值图像中仅包含两种颜色;
    针对任意一方向上,执行如下操作:将所述任意一方向上对所述二值图像的待检测区域中每相邻两个像素点之间的梯度值,分别与所述任意一方向对应的预设初始梯度阈值进行比较,根据比较结果,获取该任意一方向上的初始边界线;
    分别根据每一个方向上获取的初始边界线数目,确定所述目标图像的边界线。
  8. 如权利要求7所述的方法,其特征在于,分别根据每一个方向上获取的初始边界线数目,确定所述目标图像的边界线,具体包括:
    针对任意一方向的检测结果,执行如下操作:
    当所述任意一方向上获取的初始边界线数目为至少两条时,分别根据所述任意一方向的每一条初始边界线的位置信息,对所述任意一方向的每一条初始边界线进行直线检测,从所述任意一方向的至少两条初始边界线中获取所述任意一方向的边界线;
    当所述任意一方向获取的初始边界线为少于两条时,按照预设第一梯度差值,逐次降低所述任意一方向对应的预设初始梯度阈值,并用降低后的初始梯度阈值,在所述任意一方向上对所述二值图像的待检测区域进行检测,直至所述任意一方向上获取的初始边界线数目为至少两条。
  9. 如权利要求4所述的方法,其特征在于,将所述低像素图像中包含的边界线映射到所述原始图像中,获取所述原始图像中包含的目标图像,具体包括:
    获取所述低像素图像中包含的每相邻两条边界线交点;
    根据所述预设压缩比例,将获取的交点分别映射到所述原始图像中,在所述原始图像中生成相应的映射点;
    依次连接映射到所述原始图像中的映射点,将连接后生成的四边形确定为 所述原始图像中包含的目标图像。
  10. 如权利要求4所述的方法,其特征在于,获取所述原始图像中包含的目标图像之后,还包括:
    采用透射变换算法,对所述目标图像进行矫正处理。
  11. 一种图像处理装置,其特征在于,包括:
    原始图像获取单元,用于获取原始图像;其中,所述原始图像中包含目标图像;
    低像素图像获取单元,用于根据预设的压缩比例,对所述原始图像进行图像压缩处理,获取图像压缩处理后的低像素图像;
    边界线确定单元,用于在所述低像素图像中,确定所述目标图像的边界线;
    目标图像获取单元,用于将确定的所述低像素图像中包含的边界线映射到所述原始图像中,获取所述原始图像中包含的目标图像。
  12. 如权利要求11所述的装置,其特征在于,所述低像素图像获取单元,具体用于:
    根据所述预设的压缩比例,确定每一个压缩后的像素点的位置;采用快速双线性插值算法,对所述原始图像进行图像压缩处理,获取每一个压缩后的像素点的像素值;根据所述每一个压缩后的像素点的像素值和位置,生成低像素图像。
  13. 如权利要求12所述的装置,其特征在于,所述低像素图像获取单元采用快速双线性插值算法,对所述原始图像进行图像压缩处理,获取每一个压缩后的像素点的像素值,具体包括:
    根据所述预设的压缩比例,在所述原始图像中包含的所有原始像素点中,确定每一个压缩后的像素点对应的四个原始像素点;确定所述每一个压缩后的像素点对应的四个原始像素点中,第一方向的两对原始像素点,以及第二方向的两对原始像素点;其中,所述第一方向为水平方向,所述第二方向为竖直方向,或者,所述第一方向为竖直方向,所述第二方向为水平方向;获取所述每 一个压缩后的像素点在第一方向的两对原始像素点分别对应的第一插值,并将获取的两个第一插值作为初始插值;或者,获取所述每一个压缩后的像素点在第二方向的两对原始像素点分别对应的第二插值,并将获取的两个第二插值作为初始插值;根据所述每一个压缩后的像素点对应的初始插值,计算所述每一个压缩后的像素点对应的插值,并根据计算得到的所述每一个压缩后的像素点对应的插值,确定所述每一个压缩后的像素点的像素值。
  14. 如权利要求11-13任一项所述的装置,其特征在于,所述边界线确定单元,用于:
    从所述低像素图像中,确定待检测区域;根据所述待检测区域中每相邻两个像素点之间的梯度值,对所述待检测区域进行边界线检测处理,确定所述目标图像的边界线。
  15. 如权利要求14所述的装置,其特征在于,所述边界线确定单元从所述低像素图像中,确定待检测区域,具体包括:
    对所述低像素图像进行二值化处理,将所述低像素图像转换为二值图像;其中,所述二值图像中仅包含两种颜色;对所述二值图像进行边缘检测处理,获取所述二值图像中包含的至少一条边缘线;分别对每一条边缘线进行膨胀处理;并连接膨胀处理后的每一条边缘线,获取各个连通区域;分别根据每一个连通区域的位置信息,对所述连通区域进行筛选,获取特定区域;其中,所述特定区域为目标图像中包含特定图形部分的区域;将所述低像素图像中,除去所述特定区域以外的区域确定为待检测区域。
  16. 如权利要求15所述的装置,其特征在于,还包括高斯平滑处理单元,用于:
    对所述二值图像进行边缘检测处理之前,采用预设高斯平滑参数,对所述二值图像进行高斯平滑处理。
  17. 如权利要求14所述的装置,其特征在于,所述边界线确定单元根据所述待检测区域中每相邻两个像素点之间的梯度值,对所述待检测区域进行边 界线检测,确定所述目标图像的边界线,具体包括:
    将所述低像素图像进行二值化处理,将所述低像素图像转换为二值图像;其中,所述二值图像中仅包含两种颜色;针对任意一方向上,执行如下操作:将所述任意一方向上对所述二值图像的待检测区域中每相邻两个像素点之间的梯度值,分别与所述任意一方向对应的预设初始梯度阈值进行比较,根据比较结果,获取该任意一方向上的初始边界线;分别根据每一个方向上获取的初始边界线数目,确定所述目标图像的边界线。
  18. 如权利要求17所述的装置,其特征在于,所述边界线确定单元分别根据每一个方向上获取的初始边界线数目,确定所述目标图像的边界线,具体包括:
    针对任意一方向的检测结果,执行如下操作:当所述任意一方向上获取的初始边界线数目为至少两条时,分别根据所述任意一方向的每一条初始边界线的位置信息,对所述任意一方向的每一条初始边界线进行直线检测,从所述任意一方向的至少两条初始边界线中获取所述任意一方向的边界线;当所述任意一方向获取的初始边界线为少于两条时,按照预设第一梯度差值,逐次降低所述任意一方向对应的预设初始梯度阈值,并用降低后的初始梯度阈值,在所述任意一方向上对所述二值图像的待检测区域进行检测,直至所述任意一方向上获取的初始边界线数目为至少两条。
  19. 如权利要求14所述的装置,其特征在于,所述目标图像获取单元,具体用于:
    获取所述低像素图像中包含的每相邻两条边界线交点;根据所述预设压缩比例,分别将获取的交点映射到所述原始图像中;依次连接映射到所述原始图像中的点,将连接后生成的四边形确定为所述原始图像中包含的目标图像。
  20. 如权利要求14所述的装置,其特征在于,还包括矫正单元,用于:
    获取所述原始图像中包含的目标图像之后,采用透射变换算法,对所述目标图像进行矫正处理。
PCT/CN2016/080445 2015-05-29 2016-04-28 一种图像处理方法及装置 WO2016192494A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PL16802417T PL3306562T3 (pl) 2015-05-29 2016-04-28 Sposób i urządzenie do przetwarzania obrazu
EP16802417.2A EP3306562B1 (en) 2015-05-29 2016-04-28 Image processing method and device
SG11201709583SA SG11201709583SA (en) 2015-05-29 2016-04-28 Image processing method and apparatus
JP2017562016A JP6784704B2 (ja) 2015-05-29 2016-04-28 画像処理方法及び装置
ES16802417T ES2805728T3 (es) 2015-05-29 2016-04-28 Método de procesamiento de imágenes y dispositivo
KR1020177036699A KR102095626B1 (ko) 2015-05-29 2016-04-28 이미지 프로세싱 방법 및 장치
US15/818,609 US10417770B2 (en) 2015-05-29 2017-11-20 Efficient acquisition of a target image from an original image

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510291061.2A CN106296578B (zh) 2015-05-29 2015-05-29 一种图像处理方法及装置
CN201510291061.2 2015-05-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/818,609 Continuation US10417770B2 (en) 2015-05-29 2017-11-20 Efficient acquisition of a target image from an original image

Publications (1)

Publication Number Publication Date
WO2016192494A1 true WO2016192494A1 (zh) 2016-12-08

Family

ID=57440130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/080445 WO2016192494A1 (zh) 2015-05-29 2016-04-28 一种图像处理方法及装置

Country Status (9)

Country Link
US (2) US10417770B2 (zh)
EP (1) EP3306562B1 (zh)
JP (1) JP6784704B2 (zh)
KR (1) KR102095626B1 (zh)
CN (1) CN106296578B (zh)
ES (1) ES2805728T3 (zh)
PL (1) PL3306562T3 (zh)
SG (2) SG11201709583SA (zh)
WO (1) WO2016192494A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110717940A (zh) * 2019-10-17 2020-01-21 南京鑫和汇通电子科技有限公司 一种基于深度图像的表面快速区分及特定目标识别方法
CN111221996A (zh) * 2019-11-25 2020-06-02 上海华兴数字科技有限公司 仪表屏幕视觉检测方法和系统
CN113068043A (zh) * 2020-01-02 2021-07-02 武汉金山办公软件有限公司 一种png图像压缩方法、装置、电子设备及存储介质
CN113870293A (zh) * 2021-09-27 2021-12-31 东莞拓斯达技术有限公司 图像处理方法、装置、电子设备及存储介质
CN114067008A (zh) * 2020-07-31 2022-02-18 京东方科技集团股份有限公司 图像处理方法及装置、电子设备、图像显示系统
CN116758106A (zh) * 2023-07-13 2023-09-15 江苏中天吉奥信息技术股份有限公司 基于无人机的水流登记单元界线核实方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106482739B (zh) * 2016-11-30 2020-07-17 英华达(上海)科技有限公司 自动导引运输车导航方法
CN109949332B (zh) * 2017-12-20 2021-09-17 北京京东尚科信息技术有限公司 用于处理图像的方法和装置
CN109224291B (zh) * 2017-12-29 2021-03-02 深圳硅基仿生科技有限公司 视网膜刺激器的图像处理方法和装置及视网膜刺激器
CN108171230A (zh) * 2018-01-02 2018-06-15 联想(北京)有限公司 图像处理方法和装置
CN111246197B (zh) * 2018-05-06 2022-03-22 Oppo广东移动通信有限公司 三维视频通信方法及系统、电子装置、服务器和可读存储介质
WO2020037566A1 (zh) * 2018-08-22 2020-02-27 深圳配天智能技术研究院有限公司 一种图像处理、匹配方法、装置及存储介质
CN109754381B (zh) * 2019-01-03 2023-01-17 广东小天才科技有限公司 一种图像处理方法及系统
CN111429399B (zh) * 2019-01-09 2023-08-01 银河水滴科技(北京)有限公司 一种直线检测方法及装置
CN110428414B (zh) * 2019-08-02 2023-05-23 杭州睿琪软件有限公司 一种识别图像中票据数量的方法及装置
CN110544223B (zh) * 2019-09-10 2024-10-15 腾讯科技(深圳)有限公司 一种图像降噪的方法、装置、终端设备及可读存储介质
CN110852938B (zh) * 2019-10-28 2024-03-19 腾讯科技(深圳)有限公司 一种展示图片生成方法、装置及存储介质
CN111368915A (zh) * 2020-03-04 2020-07-03 广东博智林机器人有限公司 一种图纸校对方法、装置、设备及存储介质
CN111724329B (zh) * 2020-07-03 2022-03-01 北京字节跳动网络技术有限公司 图像的处理方法、装置以及电子设备
CN114451784B (zh) * 2020-11-05 2024-07-05 云米互联科技(广东)有限公司 饮水机控制方法、饮水机及计算机可读存储介质
CN114627457A (zh) * 2020-12-11 2022-06-14 航天信息股份有限公司 一种票面信息识别方法及装置
CN113643364A (zh) * 2021-07-05 2021-11-12 珠海格力电器股份有限公司 一种图像目标检测方法、装置和设备
CN114820829B (zh) * 2022-06-24 2022-09-09 数聚(山东)医疗科技有限公司 一种用于放射影像的智能压缩方法
CN115358958A (zh) * 2022-08-26 2022-11-18 北京字跳网络技术有限公司 特效图生成方法、装置、设备及存储介质
CN116188472B (zh) * 2023-05-04 2023-07-07 无锡康贝电子设备有限公司 一种数控机床零件的在线视觉检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101511022A (zh) * 2009-03-20 2009-08-19 北京航空航天大学 一种机载视频压缩与目标跟踪联合实现方法
CN101742291A (zh) * 2008-11-14 2010-06-16 北大方正集团有限公司 压缩图像目标的定位与识别方法及装置
CN103927767A (zh) * 2014-04-18 2014-07-16 北京智谷睿拓技术服务有限公司 图像处理方法及图像处理装置
WO2016017272A1 (ja) * 2014-07-28 2016-02-04 クラリオン株式会社 物体検出装置

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5325447A (en) * 1991-10-02 1994-06-28 Environmental Research Institute Of Michigan Handwritten digit normalization method
US5351314A (en) * 1991-10-04 1994-09-27 Canon Information Systems, Inc. Method and apparatus for image enhancement using intensity dependent spread filtering
TW358296B (en) * 1996-11-12 1999-05-11 Matsushita Electric Ind Co Ltd Digital picture encoding method and digital picture encoding apparatus, digital picture decoding method and digital picture decoding apparatus, and data storage medium
EP0971545A4 (en) * 1997-01-10 2003-08-13 Matsushita Electric Ind Co Ltd IMAGE PROCESSING METHOD AND DEVICE, AND DATA RECORDING MEDIUM
JPH10208056A (ja) * 1997-01-16 1998-08-07 Honda Motor Co Ltd 直線検出方法
JP2000113203A (ja) * 1998-09-30 2000-04-21 Canon Inc 画像処理装置及び方法
US6417867B1 (en) 1999-05-27 2002-07-09 Sharp Laboratories Of America, Inc. Image downscaling using peripheral vision area localization
JP2001188910A (ja) 1999-10-22 2001-07-10 Toshiba Corp 画像の輪郭抽出方法、画像からの物体抽出方法およびこの物体抽出方法を用いた画像伝送システム
JP4100885B2 (ja) * 2001-07-11 2008-06-11 キヤノン株式会社 帳票認識装置、方法、プログラムおよび記憶媒体
US7330596B2 (en) * 2002-07-17 2008-02-12 Ricoh Company, Ltd. Image decoding technique for suppressing tile boundary distortion
WO2004047025A2 (en) * 2002-11-18 2004-06-03 Koninklijke Philips Electronics N.V. Method and device for image registration
US7379594B2 (en) * 2004-01-28 2008-05-27 Sharp Laboratories Of America, Inc. Methods and systems for automatic detection of continuous-tone regions in document images
JP4755490B2 (ja) * 2005-01-13 2011-08-24 オリンパスイメージング株式会社 ブレ補正方法および撮像装置
US8386909B2 (en) * 2005-04-07 2013-02-26 Hewlett-Packard Development Company, L.P. Capturing and presenting interactions with image-based media
CN1879553B (zh) * 2005-06-15 2010-10-06 佳能株式会社 在胸部图像中检测边界的方法及装置
JP4769695B2 (ja) * 2005-12-16 2011-09-07 キヤノン株式会社 撮像装置及び再生装置
US7684595B2 (en) * 2006-06-23 2010-03-23 The United States Of America As Represented By The Secretary Of The Navy Method of facial recognition
US20080298648A1 (en) * 2007-05-31 2008-12-04 Motorola, Inc. Method and system for slap print segmentation
EP2190179B1 (en) 2007-08-15 2015-10-14 Japan Science and Technology Agency Image processing device, method, and program
CN101849246B (zh) * 2007-09-19 2014-06-11 汤姆森特许公司 缩放图像的系统和方法
JP5044041B2 (ja) * 2008-03-20 2012-10-10 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. サムネイルに基く画像クオリティ検査
CN101630360B (zh) * 2008-07-14 2012-12-19 上海分维智能科技有限公司 一种在高清晰图像中识别车牌的方法
US8395824B2 (en) * 2008-07-17 2013-03-12 Samsung Electronics Co., Ltd. Method for determining ground line
JP5075182B2 (ja) * 2009-10-20 2012-11-14 楽天株式会社 画像処理装置、画像処理方法、および、画像処理プログラム
JP5672796B2 (ja) * 2010-01-13 2015-02-18 株式会社ニコン 画像処理装置、画像処理方法
WO2011114668A1 (ja) * 2010-03-18 2011-09-22 パナソニック株式会社 データ処理装置およびデータ処理方法
JP5565041B2 (ja) * 2010-03-30 2014-08-06 ソニー株式会社 画像処理装置および方法、並びにプログラム
JP5308391B2 (ja) * 2010-03-31 2013-10-09 富士フイルム株式会社 画像符号化装置および方法並びにプログラム
US9413477B2 (en) * 2010-05-10 2016-08-09 Microsoft Technology Licensing, Llc Screen detector
US9070182B1 (en) * 2010-07-13 2015-06-30 Google Inc. Method and system for automatically cropping images
JP5569206B2 (ja) * 2010-07-15 2014-08-13 ソニー株式会社 画像処理装置および方法
JP5844991B2 (ja) * 2011-04-14 2016-01-20 キヤノン株式会社 ソースノード及びその送信方法
JP5492139B2 (ja) * 2011-04-27 2014-05-14 富士フイルム株式会社 画像圧縮装置、画像伸長装置、方法、及びプログラム
JP5514338B2 (ja) * 2012-04-11 2014-06-04 シャープ株式会社 映像処理装置、映像処理方法、テレビジョン受像機、プログラム、及び記録媒体
US9008422B2 (en) * 2012-06-28 2015-04-14 Lexmark International, Inc. Methods of content-driven image cropping
CN102800094A (zh) * 2012-07-13 2012-11-28 南京邮电大学 一种快速彩色图像分割方法
JP6099457B2 (ja) * 2013-03-28 2017-03-22 株式会社Pfu 画像処理装置、領域決定方法及びコンピュータプログラム
TWI496109B (zh) * 2013-07-12 2015-08-11 Vivotek Inc 影像處理器及其影像合成方法
US9466009B2 (en) * 2013-12-09 2016-10-11 Nant Holdings Ip. Llc Feature density object classification, systems and methods
US9355311B2 (en) * 2014-09-23 2016-05-31 Konica Minolta Laboratory U.S.A., Inc. Removal of graphics from document images using heuristic text analysis and text recovery
US10325165B2 (en) * 2014-09-30 2019-06-18 Conduent Business Services, Llc Vision-based on-street parked vehicle detection via normalized-view classifiers and temporal filtering
JP6197963B2 (ja) * 2014-10-29 2017-09-20 株式会社島津製作所 画像処理装置
CN105139364A (zh) 2015-10-10 2015-12-09 湖北知本信息科技有限公司 一种图像增强方法及其应用
CN105489194B (zh) * 2015-11-24 2018-09-04 小米科技有限责任公司 一种显示图像的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101742291A (zh) * 2008-11-14 2010-06-16 北大方正集团有限公司 压缩图像目标的定位与识别方法及装置
CN101511022A (zh) * 2009-03-20 2009-08-19 北京航空航天大学 一种机载视频压缩与目标跟踪联合实现方法
CN103927767A (zh) * 2014-04-18 2014-07-16 北京智谷睿拓技术服务有限公司 图像处理方法及图像处理装置
WO2016017272A1 (ja) * 2014-07-28 2016-02-04 クラリオン株式会社 物体検出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3306562A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110717940A (zh) * 2019-10-17 2020-01-21 南京鑫和汇通电子科技有限公司 一种基于深度图像的表面快速区分及特定目标识别方法
CN111221996A (zh) * 2019-11-25 2020-06-02 上海华兴数字科技有限公司 仪表屏幕视觉检测方法和系统
CN111221996B (zh) * 2019-11-25 2023-04-25 上海华兴数字科技有限公司 仪表屏幕视觉检测方法和系统
CN113068043A (zh) * 2020-01-02 2021-07-02 武汉金山办公软件有限公司 一种png图像压缩方法、装置、电子设备及存储介质
CN113068043B (zh) * 2020-01-02 2024-04-30 武汉金山办公软件有限公司 一种png图像压缩方法、装置、电子设备及存储介质
CN114067008A (zh) * 2020-07-31 2022-02-18 京东方科技集团股份有限公司 图像处理方法及装置、电子设备、图像显示系统
CN113870293A (zh) * 2021-09-27 2021-12-31 东莞拓斯达技术有限公司 图像处理方法、装置、电子设备及存储介质
CN116758106A (zh) * 2023-07-13 2023-09-15 江苏中天吉奥信息技术股份有限公司 基于无人机的水流登记单元界线核实方法
CN116758106B (zh) * 2023-07-13 2024-02-27 江苏中天吉奥信息技术股份有限公司 基于无人机的水流登记单元界线核实方法

Also Published As

Publication number Publication date
ES2805728T3 (es) 2021-02-15
EP3306562A4 (en) 2019-01-16
KR20180013982A (ko) 2018-02-07
JP6784704B2 (ja) 2020-11-11
EP3306562B1 (en) 2020-04-08
SG11201709583SA (en) 2017-12-28
US20180075608A1 (en) 2018-03-15
US10417770B2 (en) 2019-09-17
CN106296578A (zh) 2017-01-04
SG10202001849PA (en) 2020-04-29
KR102095626B1 (ko) 2020-04-01
PL3306562T3 (pl) 2020-11-02
EP3306562A1 (en) 2018-04-11
JP2018520428A (ja) 2018-07-26
CN106296578B (zh) 2020-04-28
US20200005432A1 (en) 2020-01-02

Similar Documents

Publication Publication Date Title
WO2016192494A1 (zh) 一种图像处理方法及装置
US9715761B2 (en) Real-time 3D computer vision processing engine for object recognition, reconstruction, and analysis
CN110675346B (zh) 适用于Kinect的图像采集与深度图增强方法及装置
US9693028B2 (en) Projection system, semiconductor integrated circuit, and image correction method
US8755630B2 (en) Object pose recognition apparatus and object pose recognition method using the same
JP2018520428A5 (zh)
CN102289803A (zh) 图像处理设备、图像处理方法及程序
KR20150117646A (ko) 적어도 하나의 추가적인 이미지를 사용한 이미지 향상과 에지 검증을 위한 방법 및 장치
CN108345821B (zh) 面部追踪方法及设备
CN104079912A (zh) 图像处理装置和图像处理方法
CN102542282B (zh) 一种无源图像马赛克检测方法及装置
JP2013066164A (ja) 画像処理装置、および画像処理方法、並びにプログラム
CN107452028A (zh) 一种确定目标图像位置信息的方法及装置
KR102158390B1 (ko) 영상 처리 방법 및 장치
EP2536123B1 (en) Image processing method and image processing apparatus
CN107423709A (zh) 一种融合可见光与远红外线的目标检测方法
CN104537627A (zh) 一种深度图像的后处理方法
CN103514587B (zh) 基于海天分界线检测的舰载稳像方法
JP3659426B2 (ja) エツジ検出方法及びエツジ検出装置
JP2009237846A (ja) 情報処理装置、および情報処理方法、並びにコンピュータ・プログラム
JP5677234B2 (ja) エッジ検出装置およびそのプログラム
JP3638845B2 (ja) 画像処理装置及び方法
CN111539970B (zh) 一种适用于结构光三维重建的棋盘格角点检测方法
KR101344943B1 (ko) 실시간 스테레오 정합 시스템
CN112927308A (zh) 一种三维注册方法、装置、终端及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16802417

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11201709583S

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 2017562016

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177036699

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016802417

Country of ref document: EP